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About Richard Feynman

Born in 1918 in New York City, Richard P. Feynman received his Ph.D.
from Princeton in 1942. Despite his youth, he played an important part in the
Manhattan Project at Los Alamos during World War II. Subsequently, he taught
at Cornell and at the California Institute of Technology. In 1965 he received the
Nobel Prize in Physics, along with Sin-Itiro Tomonaga and Julian Schwinger, for
his work in quantum electrodynamics.

Dr. Feynman won his Nobel Prize for successfully resolving problems with the
theory of quantum electrodynamics. He also created a mathematical theory that
accounts for the phenomenon of superfluidity in liquid helium. Thereafter, with
Murray Gell-Mann, he did fundamental work in the area of weak interactions such
as beta decay. In later years Feynman played a key role in the development of
quark theory by putting forward his parton model of high energy proton collision
processes.

Beyond these achievements, Dr. Feynman introduced basic new computa-
tional techniques and notations into physics—above all, the ubiquitous Feynman
diagrams that, perhaps more than any other formalism in recent scientific history,
have changed the way in which basic physical processes are conceptualized and
calculated.

Feynman was a remarkably effective educator. Of all his numerous awards,
he was especially proud of the Oersted Medal for Teaching, which he won in
1972. The Feynman Lectures on Physics, originally published in 1963, were
described by a reviewer in Scientific American as “tough, but nourishing and full
of flavor. After 25 years it is the guide for teachers and for the best of beginning
students.” In order to increase the understanding of physics among the lay public,
Dr. Feynman wrote The Character of Physical Law and QED: The Strange
Theory of Light and Matter. He also authored a number of advanced publications
that have become classic references and textbooks for researchers and students.

Richard Feynman was a constructive public man. His work on the Challenger
commission is well known, especially his famous demonstration of the susceptibility
of the O-rings to cold, an elegant experiment which required nothing more than
a glass of ice water and a C-clamp. Less well known were Dr. Feynman’s efforts
on the California State Curriculum Committee in the 1960s, where he protested
the mediocrity of textbooks.

A recital of Richard Feynman’s myriad scientific and educational accomplish-
ments cannot adequately capture the essence of the man. As any reader of
even his most technical publications knows, Feynman’s lively and multi-sided
personality shines through all his work. Besides being a physicist, he was at
various times a repairer of radios, a picker of locks, an artist, a dancer, a bongo
player, and even a decipherer of Mayan Hieroglyphics. Perpetually curious about
his world, he was an exemplary empiricist.

Richard Feynman died on February 15, 1988, in Los Angeles.
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Preface to the New Millennium Edition

Nearly fifty years have passed since Richard Feynman taught the introductory
physics course at Caltech that gave rise to these three volumes, The Feynman
Lectures on Physics. In those fifty years our understanding of the physical
world has changed greatly, but The Feynman Lectures on Physics has endured.
Feynman’s lectures are as powerful today as when first published, thanks to
Feynman’s unique physics insights and pedagogy. They have been studied
worldwide by novices and mature physicists alike; they have been translated
into at least a dozen languages with more than 1.5 millions copies printed in the
English language alone. Perhaps no other set of physics books has had such wide
impact, for so long.

This New Millennium Edition ushers in a new era for The Feynman Lectures
on Physics (FLP): the twenty-first century era of electronic publishing. FLP
has been converted to eFLP, with the text and equations expressed in the LATEX
electronic typesetting language, and all figures redone using modern drawing
software.

The consequences for the print version of this edition are not startling; it
looks almost the same as the original red books that physics students have known
and loved for decades. The main differences are an expanded and improved index,
the correction of 885 errata found by readers over the five years since the first
printing of the previous edition, and the ease of correcting errata that future
readers may find. To this I shall return below.

The eBook Version of this edition, and the Enhanced Electronic Version are
electronic innovations. By contrast with most eBook versions of 20th century tech-
nical books, whose equations, figures and sometimes even text become pixellated
when one tries to enlarge them, the LATEX manuscript of the New Millennium
Edition makes it possible to create eBooks of the highest quality, in which all
features on the page (except photographs) can be enlarged without bound and
retain their precise shapes and sharpness. And the Enhanced Electronic Version,
with its audio and blackboard photos from Feynman’s original lectures, and its
links to other resources, is an innovation that would have given Feynman great
pleasure.

Memories of Feynman’s Lectures

These three volumes are a self-contained pedagogical treatise. They are also a
historical record of Feynman’s 1961–64 undergraduate physics lectures, a course
required of all Caltech freshmen and sophomores regardless of their majors.

Readers may wonder, as I have, how Feynman’s lectures impacted the students
who attended them. Feynman, in his Preface to these volumes, offered a somewhat
negative view. “I don’t think I did very well by the students,” he wrote. Matthew
Sands, in his memoir in Feynman’s Tips on Physics expressed a far more positive
view. Out of curiosity, in spring 2005 I emailed or talked to a quasi-random set
of 17 students (out of about 150) from Feynman’s 1961–63 class—some who had
great difficulty with the class, and some who mastered it with ease; majors in
biology, chemistry, engineering, geology, mathematics and astronomy, as well as
in physics.

The intervening years might have glazed their memories with a euphoric tint,
but about 80 percent recall Feynman’s lectures as highlights of their college years.



“It was like going to church.” The lectures were “a transformational experience,”
“the experience of a lifetime, probably the most important thing I got from
Caltech.” “I was a biology major but Feynman’s lectures stand out as a high
point in my undergraduate experience . . . though I must admit I couldn’t do
the homework at the time and I hardly turned any of it in.” “I was among the
least promising of students in this course, and I never missed a lecture. . . . I
remember and can still feel Feynman’s joy of discovery. . . . His lectures had an
. . . emotional impact that was probably lost in the printed Lectures.”

By contrast, several of the students have negative memories due largely to two
issues: (i) “You couldn’t learn to work the homework problems by attending the
lectures. Feynman was too slick—he knew tricks and what approximations could
be made, and had intuition based on experience and genius that a beginning
student does not possess.” Feynman and colleagues, aware of this flaw in the
course, addressed it in part with materials that have been incorporated into
Feynman’s Tips on Physics: three problem-solving lectures by Feynman, and
a set of exercises and answers assembled by Robert B. Leighton and Rochus
Vogt. (ii) “The insecurity of not knowing what was likely to be discussed in
the next lecture, the lack of a text book or reference with any connection to
the lecture material, and consequent inability for us to read ahead, were very
frustrating. . . . I found the lectures exciting and understandable in the hall, but
they were Sanskrit outside [when I tried to reconstruct the details].” This problem,
of course, was solved by these three volumes, the printed version of The Feynman
Lectures on Physics. They became the textbook from which Caltech students
studied for many years thereafter, and they live on today as one of Feynman’s
greatest legacies.

A History of Errata

The Feynman Lectures on Physics was produced very quickly by Feynman
and his co-authors, Robert B. Leighton and Matthew Sands, working from
and expanding on tape recordings and blackboard photos of Feynman’s course
lectures* (both of which are incorporated into the Enhanced Electronic Version
of this New Millennium Edition). Given the high speed at which Feynman,
Leighton and Sands worked, it was inevitable that many errors crept into the first
edition. Feynman accumulated long lists of claimed errata over the subsequent
years—errata found by students and faculty at Caltech and by readers around
the world. In the 1960’s and early 70’s, Feynman made time in his intense life
to check most but not all of the claimed errata for Volumes I and II, and insert
corrections into subsequent printings. But Feynman’s sense of duty never rose
high enough above the excitement of discovering new things to make him deal
with the errata in Volume III.† After his untimely death in 1988, lists of errata
for all three volumes were deposited in the Caltech Archives, and there they lay
forgotten.

In 2002 Ralph Leighton (son of the late Robert Leighton and compatriot of
Feynman) informed me of the old errata and a new long list compiled by Ralph’s
friend Michael Gottlieb. Leighton proposed that Caltech produce a new edition
of The Feynman Lectures with all errata corrected, and publish it alongside a new
volume of auxiliary material, Feynman’s Tips on Physics, which he and Gottlieb
were preparing.

Feynman was my hero and a close personal friend. When I saw the lists of
errata and the content of the proposed new volume, I quickly agreed to oversee
this project on behalf of Caltech (Feynman’s long-time academic home, to which

* For descriptions of the genesis of Feynman’s lectures and of these volumes, see Feynman’s
Preface and the Forewords to each of the three volumes, and also Matt Sands’ Memoir in
Feynman’s Tips on Physics, and the Special Preface to the Commemorative Edition of FLP,
written in 1989 by David Goodstein and Gerry Neugebauer, which also appears in the 2005
Definitive Edition.

† In 1975, he started checking errata for Volume III but got distracted by other things and
never finished the task, so no corrections were made.
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he, Leighton and Sands had entrusted all rights and responsibilities for The
Feynman Lectures). After a year and a half of meticulous work by Gottlieb, and
careful scrutiny by Dr. Michael Hartl (an outstanding Caltech postdoc who vetted
all errata plus the new volume), the 2005 Definitive Edition of The Feynman
Lectures on Physics was born, with about 200 errata corrected and accompanied
by Feynman’s Tips on Physics by Feynman, Gottlieb and Leighton.

I thought that edition was going to be “Definitive”. What I did not antic-
ipate was the enthusiastic response of readers around the world to an appeal
from Gottlieb to identify further errata, and submit them via a website that
Gottlieb created and continues to maintain, The Feynman Lectures Website,
www.feynmanlectures.info. In the five years since then, 965 new errata have
been submitted and survived the meticulous scrutiny of Gottlieb, Hartl, and Nate
Bode (an outstanding Caltech physics graduate student, who succeeded Hartl
as Caltech’s vetter of errata). Of these, 965 vetted errata, 80 were corrected in
the fourth printing of the Definitive Edition (August 2006) and the remaining
885 are corrected in the first printing of this New Millennium Edition (332 in
volume I, 263 in volume II, and 200 in volume III). For details of the errata, see
www.feynmanlectures.info.

Clearly, making The Feynman Lectures on Physics error-free has become a
world-wide community enterprise. On behalf of Caltech I thank the 50 readers
who have contributed since 2005 and the many more who may contribute over the
coming years. The names of all contributors are posted at www.feynmanlectures.
info/flp_errata.html.

Almost all the errata have been of three types: (i) typographical errors
in prose; (ii) typographical and mathematical errors in equations, tables and
figures—sign errors, incorrect numbers (e.g., a 5 that should be a 4), and missing
subscripts, summation signs, parentheses and terms in equations; (iii) incorrect
cross references to chapters, tables and figures. These kinds of errors, though
not terribly serious to a mature physicist, can be frustrating and confusing to
Feynman’s primary audience: students.

It is remarkable that among the 1165 errata corrected under my auspices,
only several do I regard as true errors in physics. An example is Volume II,
page 5-9, which now says “. . . no static distribution of charges inside a closed
grounded conductor can produce any [electric] fields outside” (the word grounded
was omitted in previous editions). This error was pointed out to Feynman by a
number of readers, including Beulah Elizabeth Cox, a student at The College of
William and Mary, who had relied on Feynman’s erroneous passage in an exam.
To Ms. Cox, Feynman wrote in 1975,* “Your instructor was right not to give
you any points, for your answer was wrong, as he demonstrated using Gauss’s
law. You should, in science, believe logic and arguments, carefully drawn, and
not authorities. You also read the book correctly and understood it. I made a
mistake, so the book is wrong. I probably was thinking of a grounded conducting
sphere, or else of the fact that moving the charges around in different places
inside does not affect things on the outside. I am not sure how I did it, but I
goofed. And you goofed, too, for believing me.”

How this New Millennium Edition Came to Be

Between November 2005 and July 2006, 340 errata were submitted to The
Feynman Lectures Website www.feynmanlectures.info. Remarkably, the bulk
of these came from one person: Dr. Rudolf Pfeiffer, then a physics postdoctoral
fellow at the University of Vienna, Austria. The publisher, Addison Wesley, fixed
80 errata, but balked at fixing more because of cost: the books were being printed
by a photo-offset process, working from photographic images of the pages from
the 1960s. Correcting an error involved re-typesetting the entire page, and to
ensure no new errors crept in, the page was re-typeset twice by two different

* Pages 288–289 of Perfectly Reasonable Deviations from the Beaten Track, The Letters of
Richard P. Feynman, ed. Michelle Feynman (Basic Books, New York, 2005).
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people, then compared and proofread by several other people—a very costly
process indeed, when hundreds of errata are involved.

Gottlieb, Pfeiffer and Ralph Leighton were very unhappy about this, so they
formulated a plan aimed at facilitating the repair of all errata, and also aimed
at producing eBook and enhanced electronic versions of The Feynman Lectures
on Physics. They proposed their plan to me, as Caltech’s representative, in
2007. I was enthusiastic but cautious. After seeing further details, including a
one-chapter demonstration of the Enhanced Electronic Version, I recommended
that Caltech cooperate with Gottlieb, Pfeiffer and Leighton in the execution of
their plan. The plan was approved by three successive chairs of Caltech’s Division
of Physics, Mathematics and Astronomy—Tom Tombrello, Andrew Lange, and
Tom Soifer—and the complex legal and contractual details were worked out by
Caltech’s Intellectual Property Counsel, Adam Cochran. With the publication of
this New Millennium Edition, the plan has been executed successfully, despite
its complexity. Specifically:

Pfeiffer and Gottlieb have converted into LATEX all three volumes of FLP
(and also more than 1000 exercises from the Feynman course for incorporation
into Feynman’s Tips on Physics). The FLP figures were redrawn in modern
electronic form in India, under guidance of the FLP German translator, Henning
Heinze, for use in the German edition. Gottlieb and Pfeiffer traded non-exclusive
use of their LATEX equations in the German edition (published by Oldenbourg)
for non-exclusive use of Heinze’s figures in this New Millennium English edition.
Pfeiffer and Gottlieb have meticulously checked all the LATEX text and equations
and all the redrawn figures, and made corrections as needed. Nate Bode and
I, on behalf of Caltech, have done spot checks of text, equations, and figures;
and remarkably, we have found no errors. Pfeiffer and Gottlieb are unbelievably
meticulous and accurate. Gottlieb and Pfeiffer arranged for John Sullivan at the
Huntington Library to digitize the photos of Feynman’s 1962–64 blackboards,
and for George Blood Audio to digitize the lecture tapes—with financial support
and encouragement from Caltech Professor Carver Mead, logistical support from
Caltech Archivist Shelley Erwin, and legal support from Cochran.

The legal issues were serious: In the 1960s, Caltech licensed to Addison Wesley
rights to publish the print edition, and in the 1990s, rights to distribute the audio
of Feynman’s lectures and a variant of an electronic edition. In the 2000s, through
a sequence of acquisitions of those licenses, the print rights were transferred to
the Pearson publishing group, while rights to the audio and the electronic version
were transferred to the Perseus publishing group. Cochran, with the aid of Ike
Williams, an attorney who specializes in publishing, succeeded in uniting all of
these rights with Perseus (Basic Books), making possible this New Millennium
Edition.
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Feynman’s Preface

These are the lectures in physics that I gave last year and the year before
to the freshman and sophomore classes at Caltech. The lectures are, of course,
not verbatim—they have been edited, sometimes extensively and sometimes less
so. The lectures form only part of the complete course. The whole group of 180
students gathered in a big lecture room twice a week to hear these lectures and
then they broke up into small groups of 15 to 20 students in recitation sections
under the guidance of a teaching assistant. In addition, there was a laboratory
session once a week.

The special problem we tried to get at with these lectures was to maintain
the interest of the very enthusiastic and rather smart students coming out of
the high schools and into Caltech. They have heard a lot about how interesting
and exciting physics is—the theory of relativity, quantum mechanics, and other
modern ideas. By the end of two years of our previous course, many would be
very discouraged because there were really very few grand, new, modern ideas
presented to them. They were made to study inclined planes, electrostatics, and
so forth, and after two years it was quite stultifying. The problem was whether
or not we could make a course which would save the more advanced and excited
student by maintaining his enthusiasm.

The lectures here are not in any way meant to be a survey course, but are very
serious. I thought to address them to the most intelligent in the class and to make
sure, if possible, that even the most intelligent student was unable to completely
encompass everything that was in the lectures—by putting in suggestions of
applications of the ideas and concepts in various directions outside the main line
of attack. For this reason, though, I tried very hard to make all the statements
as accurate as possible, to point out in every case where the equations and ideas
fitted into the body of physics, and how—when they learned more—things would
be modified. I also felt that for such students it is important to indicate what
it is that they should—if they are sufficiently clever—be able to understand by
deduction from what has been said before, and what is being put in as something
new. When new ideas came in, I would try either to deduce them if they were
deducible, or to explain that it was a new idea which hadn’t any basis in terms of
things they had already learned and which was not supposed to be provable—but
was just added in.

At the start of these lectures, I assumed that the students knew something
when they came out of high school—such things as geometrical optics, simple
chemistry ideas, and so on. I also didn’t see that there was any reason to
make the lectures in a definite order, in the sense that I would not be allowed
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to mention something until I was ready to discuss it in detail. There was a
great deal of mention of things to come, without complete discussions. These
more complete discussions would come later when the preparation became more
advanced. Examples are the discussions of inductance, and of energy levels, which
are at first brought in in a very qualitative way and are later developed more
completely.

At the same time that I was aiming at the more active student, I also wanted
to take care of the fellow for whom the extra fireworks and side applications are
merely disquieting and who cannot be expected to learn most of the material
in the lecture at all. For such students I wanted there to be at least a central
core or backbone of material which he could get. Even if he didn’t understand
everything in a lecture, I hoped he wouldn’t get nervous. I didn’t expect him to
understand everything, but only the central and most direct features. It takes,
of course, a certain intelligence on his part to see which are the central theorems
and central ideas, and which are the more advanced side issues and applications
which he may understand only in later years.

In giving these lectures there was one serious difficulty: in the way the course
was given, there wasn’t any feedback from the students to the lecturer to indicate
how well the lectures were going over. This is indeed a very serious difficulty, and
I don’t know how good the lectures really are. The whole thing was essentially
an experiment. And if I did it again I wouldn’t do it the same way—I hope I
don’t have to do it again! I think, though, that things worked out—so far as the
physics is concerned—quite satisfactorily in the first year.

In the second year I was not so satisfied. In the first part of the course, dealing
with electricity and magnetism, I couldn’t think of any really unique or different
way of doing it—of any way that would be particularly more exciting than the
usual way of presenting it. So I don’t think I did very much in the lectures on
electricity and magnetism. At the end of the second year I had originally intended
to go on, after the electricity and magnetism, by giving some more lectures on
the properties of materials, but mainly to take up things like fundamental modes,
solutions of the diffusion equation, vibrating systems, orthogonal functions, . . .
developing the first stages of what are usually called “the mathematical methods
of physics.” In retrospect, I think that if I were doing it again I would go back
to that original idea. But since it was not planned that I would be giving these
lectures again, it was suggested that it might be a good idea to try to give an
introduction to the quantum mechanics—what you will find in Volume III.

It is perfectly clear that students who will major in physics can wait until
their third year for quantum mechanics. On the other hand, the argument was
made that many of the students in our course study physics as a background for
their primary interest in other fields. And the usual way of dealing with quantum
mechanics makes that subject almost unavailable for the great majority of students
because they have to take so long to learn it. Yet, in its real applications—
especially in its more complex applications, such as in electrical engineering
and chemistry—the full machinery of the differential equation approach is not
actually used. So I tried to describe the principles of quantum mechanics in
a way which wouldn’t require that one first know the mathematics of partial
differential equations. Even for a physicist I think that is an interesting thing
to try to do—to present quantum mechanics in this reverse fashion—for several
reasons which may be apparent in the lectures themselves. However, I think that
the experiment in the quantum mechanics part was not completely successful—in
large part because I really did not have enough time at the end (I should, for
instance, have had three or four more lectures in order to deal more completely
with such matters as energy bands and the spatial dependence of amplitudes).
Also, I had never presented the subject this way before, so the lack of feedback
was particularly serious. I now believe the quantum mechanics should be given
at a later time. Maybe I’ll have a chance to do it again someday. Then I’ll do it
right.

The reason there are no lectures on how to solve problems is because there
were recitation sections. Although I did put in three lectures in the first year on
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how to solve problems, they are not included here. Also there was a lecture on
inertial guidance which certainly belongs after the lecture on rotating systems,
but which was, unfortunately, omitted. The fifth and sixth lectures are actually
due to Matthew Sands, as I was out of town.

The question, of course, is how well this experiment has succeeded. My own
point of view—which, however, does not seem to be shared by most of the people
who worked with the students—is pessimistic. I don’t think I did very well by
the students. When I look at the way the majority of the students handled the
problems on the examinations, I think that the system is a failure. Of course,
my friends point out to me that there were one or two dozen students who—very
surprisingly—understood almost everything in all of the lectures, and who were
quite active in working with the material and worrying about the many points
in an excited and interested way. These people have now, I believe, a first-rate
background in physics—and they are, after all, the ones I was trying to get at.
But then, “The power of instruction is seldom of much efficacy except in those
happy dispositions where it is almost superfluous.” (Gibbon)

Still, I didn’t want to leave any student completely behind, as perhaps I did.
I think one way we could help the students more would be by putting more hard
work into developing a set of problems which would elucidate some of the ideas
in the lectures. Problems give a good opportunity to fill out the material of the
lectures and make more realistic, more complete, and more settled in the mind
the ideas that have been exposed.

I think, however, that there isn’t any solution to this problem of education
other than to realize that the best teaching can be done only when there is a
direct individual relationship between a student and a good teacher—a situation
in which the student discusses the ideas, thinks about the things, and talks about
the things. It’s impossible to learn very much by simply sitting in a lecture, or
even by simply doing problems that are assigned. But in our modern times we
have so many students to teach that we have to try to find some substitute for
the ideal. Perhaps my lectures can make some contribution. Perhaps in some
small place where there are individual teachers and students, they may get some
inspiration or some ideas from the lectures. Perhaps they will have fun thinking
them through—or going on to develop some of the ideas further.

Richard P. Feynman
June, 1963
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Foreword

For some forty years Richard P. Feynman focussed his curiosity on the
mysterious workings of the physical world, and bent his intellect to searching out
the order in its chaos. Now, he has given two years of his ability and his energy
to his Lectures on Physics for beginning students. For them he has distilled the
essence of his knowledge, and has created in terms they can hope to grasp a
picture of the physicist’s universe. To his lectures he has brought the brilliance
and clarity of his thought, the originality and vitality of his approach, and the
contagious enthusiasm of his delivery. It was a joy to behold.

The first year’s lectures formed the basis for the first volume of this set of
books. We have tried in this the second volume to make some kind of a record of
a part of the second year’s lectures—which were given to the sophomore class
during the 1962–1963 academic year. The rest of the second year’s lectures will
make up Volume III.

Of the second year of lectures, the first two-thirds were devoted to a fairly
complete treatment of the physics of electricity and magnetism. Its presentation
was intended to serve a dual purpose. We hoped, first, to give the students a
complete view of one of the great chapters of physics—from the early gropings
of Franklin, through the great synthesis of Maxwell, on to the Lorentz electron
theory of material properties, and ending with the still unsolved dilemmas of the
electromagnetic self-energy. And we hoped, second, by introducing at the outset
the calculus of vector fields, to give a solid introduction to the mathematics of
field theories. To emphasize the general utility of the mathematical methods,
related subjects from other parts of physics were sometimes analyzed together
with their electric counterparts. We continually tried to drive home the generality
of the mathematics. (“The same equations have the same solutions.”) And we
emphasized this point by the kinds of exercises and examinations we gave with
the course.

Following the electromagnetism there are two chapters each on elasticity and
fluid flow. In the first chapter of each pair, the elementary and practical aspects
are treated. The second chapter on each subject attempts to give an overview of
the whole complex range of phenomena which the subject can lead to. These
four chapters can well be omitted without serious loss, since they are not at all a
necessary preparation for Volume III.

The last quarter, approximately, of the second year was dedicated to an
introduction to quantum mechanics. This material has been put into the third
volume.

In this record of the Feynman Lectures we wished to do more than provide a
transcription of what was said. We hoped to make the written version as clear an
exposition as possible of the ideas on which the original lectures were based. For
some of the lectures this could be done by making only minor adjustments of the
wording in the original transcript. For others of the lectures a major reworking
and rearrangement of the material was required. Sometimes we felt we should
add some new material to improve the clarity or balance of the presentation.
Throughout the process we benefitted from the continual help and advice of
Professor Feynman.



The translation of over 1,000,000 spoken words into a coherent text on a tight
schedule is a formidable task, particularly when it is accompanied by the other
onerous burdens which come with the introduction of a new course—preparing for
recitation sections, and meeting students, designing exercises and examinations,
and grading them, and so on. Many hands—and heads—were involved. In some
instances we have, I believe, been able to render a faithful image—or a tenderly
retouched portrait—of the original Feynman. In other instances we have fallen
far short of this ideal. Our successes are owed to all those who helped. The
failures, we regret.

As explained in detail in the Foreword to Volume I, these lectures were
but one aspect of a program initiated and supervised by the Physics Course
Revision Committee (R. B. Leighton, Chairman, H. V. Neher, and M. Sands)
at the California Institute of Technology, and supported financially by the Ford
Foundation. In addition, the following people helped with one aspect or another of
the preparation of textual material for this second volume: T. K. Caughey, M. L.
Clayton, J. B. Curcio, J. B. Hartle, T. W. H. Harvey, M. H. Israel, W. J. Karzas,
R. W. Kavanagh, R. B. Leighton, J. Mathews, M. S. Plesset, F. L. Warren, W.
Whaling, C. H. Wilts, and B. Zimmerman. Others contributed indirectly through
their work on the course: J. Blue, G. F. Chapline, M. J. Clauser, R. Dolen, H. H.
Hill, and A. M. Title. Professor Gerry Neugebauer contributed in all aspects
of our task with a diligence and devotion far beyond the dictates of duty. The
story of physics you find here would, however, not have been, except for the
extraordinary ability and industry of Richard P. Feynman.

Matthew Sands
March, 1964
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1

Electromagnetism

1-1 Electrical forces
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1-6 Electromagnetism in science and

technology

a force like gravitation which varies predominantly inversely as the
square of the distance, but which is about a billion-billion-billion-billion times
stronger. And with another difference. There are two kinds of “matter,” which we
can call positive and negative. Like kinds repel and unlike kinds attract—unlike
gravity where there is only attraction. What would happen?

A bunch of positives would repel with an enormous force and spread out in all
directions. A bunch of negatives would do the same. But an evenly mixed bunch
of positives and negatives would do something completely different. The opposite
pieces would be pulled together by the enormous attractions. The net result
would be that the terrific forces would balance themselves out almost perfectly,
by forming tight, fine mixtures of the positive and the negative, and between two
separate bunches of such mixtures there would be practically no attraction or
repulsion at all.

Review: Chapter 12, Vol. I, Character-
istics of Force

There is such a force: the electrical force. And all matter is a mixture of
positive protons and negative electrons which are attracting and repelling with
this great force. So perfect is the balance, however, that when you stand near
someone else you don’t feel any force at all. If there were even a little bit of
unbalance you would know it. If you were standing at arm’s length from someone
and each of you had one percent more electrons than protons, the repelling force
would be incredible. How great? Enough to lift the Empire State Building? No!
To lift Mount Everest? No! The repulsion would be enough to lift a “weight”
equal to that of the entire earth!

With such enormous forces so perfectly balanced in this intimate mixture, it
is not hard to understand that matter, trying to keep its positive and negative
charges in the finest balance, can have a great stiffness and strength. The Empire
State Building, for example, swings less than one inch in the wind because the
electrical forces hold every electron and proton more or less in its proper place.
On the other hand, if we look at matter on a scale small enough that we see only
a few atoms, any small piece will not, usually, have an equal number of positive
and negative charges, and so there will be strong residual electrical forces. Even
when there are equal numbers of both charges in two neighboring small pieces,
there may still be large net electrical forces because the forces between individual
charges vary inversely as the square of the distance. A net force can arise if a
negative charge of one piece is closer to the positive than to the negative charges
of the other piece. The attractive forces can then be larger than the repulsive
ones and there can be a net attraction between two small pieces with no excess
charges. The force that holds the atoms together, and the chemical forces that
hold molecules together, are really electrical forces acting in regions where the
balance of charge is not perfect, or where the distances are very small.

You know, of course, that atoms are made with positive protons in the nucleus
and with electrons outside. You may ask: “If this electrical force is so terrific,
why don’t the protons and electrons just get on top of each other? If they want
to be in an intimate mixture, why isn’t it still more intimate?” The answer has to
do with the quantum effects. If we try to confine our electrons in a region that is
very close to the protons, then according to the uncertainty principle they must
have some mean square momentum which is larger the more we try to confine
them. It is this motion, required by the laws of quantum mechanics, that keeps
the electrical attraction from bringing the charges any closer together.
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There is another question: “What holds the nucleus together”? In a nucleus
there are several protons, all of which are positive. Why don’t they push them-
selves apart? It turns out that in nuclei there are, in addition to electrical forces,
nonelectrical forces, called nuclear forces, which are greater than the electrical
forces and which are able to hold the protons together in spite of the electrical
repulsion. The nuclear forces, however, have a short range—their force falls off
much more rapidly than 1/r2. And this has an important consequence. If a
nucleus has too many protons in it, it gets too big, and it will not stay together.
An example is uranium, with 92 protons. The nuclear forces act mainly between
each proton (or neutron) and its nearest neighbor, while the electrical forces act
over larger distances, giving a repulsion between each proton and all of the others
in the nucleus. The more protons in a nucleus, the stronger is the electrical
repulsion, until, as in the case of uranium, the balance is so delicate that the
nucleus is almost ready to fly apart from the repulsive electrical force. If such a
nucleus is just “tapped” lightly (as can be done by sending in a slow neutron), it
breaks into two pieces, each with positive charge, and these pieces fly apart by
electrical repulsion. The energy which is liberated is the energy of the atomic
bomb. This energy is usually called “nuclear” energy, but it is really “electrical”
energy released when electrical forces have overcome the attractive nuclear forces.

Lower case Greek letters
and commonly used capitals

α alpha
β beta
γ Γ gamma
δ ∆ delta
ε epsilon
ζ zeta
η eta
θ Θ theta
ι iota
κ kappa
λ Λ lambda
µ mu
ν nu
ξ Ξ xi (ksi)
o omicron
π Π pi
ρ rho
σ Σ sigma
τ tau
υ Υ upsilon
φ Φ phi
χ chi (khi)
ψ Ψ psi
ω Ω omega

We may ask, finally, what holds a negatively charged electron together (since
it has no nuclear forces). If an electron is all made of one kind of substance, each
part should repel the other parts. Why, then, doesn’t it fly apart? But does the
electron have “parts”? Perhaps we should say that the electron is just a point
and that electrical forces only act between different point charges, so that the
electron does not act upon itself. Perhaps. All we can say is that the question of
what holds the electron together has produced many difficulties in the attempts
to form a complete theory of electromagnetism. The question has never been
answered. We will entertain ourselves by discussing this subject some more in
later chapters.

As we have seen, we should expect that it is a combination of electrical forces
and quantum-mechanical effects that will determine the detailed structure of
materials in bulk, and, therefore, their properties. Some materials are hard, some
are soft. Some are electrical “conductors”—because their electrons are free to
move about; others are “insulators”—because their electrons are held tightly to
individual atoms. We shall consider later how some of these properties come
about, but that is a very complicated subject, so we will begin by looking at the
electrical forces only in simple situations. We begin by treating only the laws of
electricity—including magnetism, which is really a part of the same subject.

We have said that the electrical force, like a gravitational force, decreases
inversely as the square of the distance between charges. This relationship is
called Coulomb’s law. But it is not precisely true when charges are moving—the
electrical forces depend also on the motions of the charges in a complicated
way. One part of the force between moving charges we call the magnetic force.
It is really one aspect of an electrical effect. That is why we call the subject
“electromagnetism.”

There is an important general principle that makes it possible to treat elec-
tromagnetic forces in a relatively simple way. We find, from experiment, that the
force that acts on a particular charge—no matter how many other charges there
are or how they are moving—depends only on the position of that particular
charge, on the velocity of the charge, and on the amount of charge. We can write
the force F on a charge q moving with a velocity v as

F = q(E + v ×B). (1.1)

We call E the electric field and B the magnetic field at the location of the charge.
The important thing is that the electrical forces from all the other charges in the
universe can be summarized by giving just these two vectors. Their values will
depend on where the charge is, and may change with time. Furthermore, if we
replace that charge with another charge, the force on the new charge will be just
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in proportion to the amount of charge so long as all the rest of the charges in
the world do not change their positions or motions. (In real situations, of course,
each charge produces forces on all other charges in the neighborhood and may
cause these other charges to move, and so in some cases the fields can change if
we replace our particular charge by another.)

We know from Vol. I how to find the motion of a particle if we know the force
on it. Equation (1.1) can be combined with the equation of motion to give

d

dt

[
mv

(1− v2/c2)1/2

]
= F = q(E + v ×B). (1.2)

So if E and B are given, we can find the motions. Now we need to know how
the E’s and B’s are produced.

One of the most important simplifying principles about the way the fields are
produced is this: Suppose a number of charges moving in some manner would
produce a field E1, and another set of charges would produce E2. If both sets of
charges are in place at the same time (keeping the same locations and motions
they had when considered separately), then the field produced is just the sum

E = E1 +E2. (1.3)

This fact is called the principle of superposition of fields. It holds also for magnetic
fields.

This principle means that if we know the law for the electric and magnetic
fields produced by a single charge moving in an arbitrary way, then all the laws of
electrodynamics are complete. If we want to know the force on charge A we need
only calculate the E and B produced by each of the charges B, C, D, etc., and
then add the E’s and B’s from all the charges to find the fields, and from them
the forces acting on charge A. If it had only turned out that the field produced
by a single charge was simple, this would be the neatest way to describe the laws
of electrodynamics. We have already given a description of this law (Chapter 28,
Vol. I) and it is, unfortunately, rather complicated.

It turns out that the form in which the laws of electrodynamics are simplest
are not what you might expect. It is not simplest to give a formula for the force
that one charge produces on another. It is true that when charges are standing
still the Coulomb force law is simple, but when charges are moving about the
relations are complicated by delays in time and by the effects of acceleration,
among others. As a result, we do not wish to present electrodynamics only
through the force laws between charges; we find it more convenient to consider
another point of view—a point of view in which the laws of electrodynamics
appear to be the most easily manageable.

1-2 Electric and magnetic fields

First, we must extend, somewhat, our ideas of the electric and magnetic
vectors, E and B. We have defined them in terms of the forces that are felt by a
charge. We wish now to speak of electric and magnetic fields at a point even when
there is no charge present. We are saying, in effect, that since there are forces
“acting on” the charge, there is still “something” there when the charge is removed.
If a charge located at the point (x, y, z) at the time t feels the force F given
by Eq. (1.1) we associate the vectors E and B with the point in space (x, y, z).
We may think of E(x, y, z, t) and B(x, y, z, t) as giving the forces that would be
experienced at the time t by a charge located at (x, y, z), with the condition that
placing the charge there did not disturb the positions or motions of all the other
charges responsible for the fields.

Following this idea, we associate with every point (x, y, z) in space two vectors
E and B, which may be changing with time. The electric and magnetic fields are,
then, viewed as vector functions of x, y, z, and t. Since a vector is specified by
its components, each of the fields E(x, y, z, t) and B(x, y, z, t) represents three
mathematical functions of x, y, z, and t.
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It is precisely because E (or B) can be specified at every point in space that it
is called a “field.” A “field” is any physical quantity which takes on different values
at different points in space. Temperature, for example, is a field—in this case a
scalar field, which we write as T (x, y, z). The temperature could also vary in time,
and we would say the temperature field is time-dependent, and write T (x, y, z, t).
Another example is the “velocity field” of a flowing liquid. We write v(x, y, z, t)
for the velocity of the liquid at each point in space at the time t. It is a vector field.

Fig. 1-1. A vector field may be repre-
sented by drawing a set of arrows whose
magnitudes and directions indicate the val-
ues of the vector field at the points from
which the arrows are drawn.

Returning to the electromagnetic fields—although they are produced by
charges according to complicated formulas, they have the following important
characteristic: the relationships between the values of the fields at one point and
the values at a nearby point are very simple. With only a few such relationships
in the form of differential equations we can describe the fields completely. It is in
terms of such equations that the laws of electrodynamics are most simply written.

Fig. 1-2. A vector field can be represented
by drawing lines which are tangent to the di-
rection of the field vector at each point, and
by drawing the density of lines proportional
to the magnitude of the field vector.

There have been various inventions to help the mind visualize the behavior of
fields. The most correct is also the most abstract: we simply consider the fields
as mathematical functions of position and time. We can also attempt to get a
mental picture of the field by drawing vectors at many points in space, each of
which gives the field strength and direction at that point. Such a representation
is shown in Fig. 1-1. We can go further, however, and draw lines which are
everywhere tangent to the vectors—which, so to speak, follow the arrows and
keep track of the direction of the field. When we do this we lose track of the
lengths of the vectors, but we can keep track of the strength of the field by
drawing the lines far apart when the field is weak and close together when it is
strong. We adopt the convention that the number of lines per unit area at right
angles to the lines is proportional to the field strength. This is, of course, only an
approximation, and it will require, in general, that new lines sometimes start up
in order to keep the number up to the strength of the field. The field of Fig. 1-1
is represented by field lines in Fig. 1-2.

1-3 Characteristics of vector fields

There are two mathematically important properties of a vector field which
we will use in our description of the laws of electricity from the field point of
view. Suppose we imagine a closed surface of some kind and ask whether we
are losing “something” from the inside; that is, does the field have a quality of
“outflow”? For instance, for a velocity field we might ask whether the velocity is
always outward on the surface or, more generally, whether more fluid flows out
(per unit time) than comes in. We call the net amount of fluid going out through
the surface per unit time the “flux of velocity” through the surface. The flow
through an element of a surface is just equal to the component of the velocity
perpendicular to the surface times the area of the surface. For an arbitrary closed
surface, the net outward flow—or flux—is the average outward normal component
of the velocity, times the area of the surface:

Flux = (average normal component) · (surface area). (1.4)
Vector

Surface

Component perpendicular
to the surface

Fig. 1-3. The flux of a vector field
through a surface is defined as the aver-
age value of the normal component of the
vector times the area of the surface.

In the case of an electric field, we can mathematically define something
analogous to an outflow, and we again call it the flux, but of course it is not the
flow of any substance, because the electric field is not the velocity of anything. It
turns out, however, that the mathematical quantity which is the average normal
component of the field still has a useful significance. We speak, then, of the
electric flux—also defined by Eq. (1.4). Finally, it is also useful to speak of the
flux not only through a completely closed surface, but through any bounded
surface. As before, the flux through such a surface is defined as the average
normal component of a vector times the area of the surface. These ideas are
illustrated in Fig. 1-3.

There is a second property of a vector field that has to do with a line, rather
than a surface. Suppose again that we think of a velocity field that describes the
flow of a liquid. We might ask this interesting question: Is the liquid circulating?
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By that we mean: Is there a net rotational motion around some loop? Suppose
that we instantaneously freeze the liquid everywhere except inside of a tube
which is of uniform bore, and which goes in a loop that closes back on itself as
in Fig. 1-4. Outside of the tube the liquid stops moving, but inside the tube it
may keep on moving because of the momentum in the trapped liquid—that is,
if there is more momentum heading one way around the tube than the other.
We define a quantity called the circulation as the resulting speed of the liquid in
the tube times its circumference. We can again extend our ideas and define the
“circulation” for any vector field (even when there isn’t anything moving). For
any vector field the circulation around any imagined closed curve is defined as
the average tangential component of the vector (in a consistent sense) multiplied
by the circumference of the loop (Fig. 1-5):

Circulation = (average tangential component) · (distance around). (1.5)

You will see that this definition does indeed give a number which is proportional
to the circulation velocity in the quickly frozen tube described above.

(a)

(b)

Tube

(c)

solid

liquid

Fig. 1-4. (a) The velocity field in a liquid.
Imagine a tube of uniform cross section that
follows an arbitrary closed curve as in (b). If
the liquid were suddenly frozen everywhere
except inside the tube, the liquid in the tube
would circulate as shown in (c).

With just these two ideas—flux and circulation—we can describe all the laws
of electricity and magnetism at once. You may not understand the significance
of the laws right away, but they will give you some idea of the way the physics of
electromagnetism will be ultimately described.

1-4 The laws of electromagnetism

The first law of electromagnetism describes the flux of the electric field:

The flux of E through any closed surface = the net charge inside
ε0

, (1.6)

where ε0 is a convenient constant. (The constant ε0 is usually read as “epsilon-
zero” or “epsilon-naught”.) If there are no charges inside the surface, even though
there are charges nearby outside the surface, the average normal component of E
is zero, so there is no net flux through the surface. To show the power of this
type of statement, we can show that Eq. (1.6) is the same as Coulomb’s law,
provided only that we also add the idea that the field from a single charge is
spherically symmetric. For a point charge, we draw a sphere around the charge.
Then the average normal component is just the value of the magnitude of E at
any point, since the field must be directed radially and have the same strength
for all points on the sphere. Our rule now says that the field at the surface of the
sphere, times the area of the sphere—that is, the outgoing flux—is proportional
to the charge inside. If we were to make the radius of the sphere bigger, the area
would increase as the square of the radius. The average normal component of
the electric field times that area must still be equal to the same charge inside,
and so the field must decrease as the square of the distance—we get an “inverse
square” field.

+ direction

Arbitrary
Closed Curve

+

+

+

− −

−

Fig. 1-5. The circulation of a vector field
is the average tangential component of the
vector (in a consistent sense) times the cir-
cumference of the loop.

If we have an arbitrary stationary curve in space and measure the circulation
of the electric field around the curve, we will find that it is not, in general, zero
(although it is for the Coulomb field). Rather, for electricity there is a second
law that states: for any surface S (not closed) whose edge is the curve C,

Circulation of E around C = − d

dt
(flux of B through S). (1.7)

We can complete the laws of the electromagnetic field by writing two corre-
sponding equations for the magnetic field B:

Flux of B through any closed surface = 0. (1.8)

For a surface S bounded by the curve C,

c2(circulation of B around C) = d

dt
(flux of E through S)

+ flux of electric current through S
ε0

. (1.9)
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Fig. 1-6. A bar magnet gives a field B
at a wire. When there is a current along
the wire, the wire moves because of the
force F = qv × B.

The constant c2 that appears in Eq. (1.9) is the square of the velocity of light.
It appears because magnetism is in reality a relativistic effect of electricity. The
constant ε0 has been stuck in to make the units of electric current come out in a
convenient way.

Equations (1.6) through (1.9), together with Eq. (1.1), are all the laws of
electrodynamics*. As you remember, the laws of Newton were very simple to
write down, but they had a lot of complicated consequences and it took us a long
time to learn about them all. These laws are not nearly as simple to write down,
which means that the consequences are going to be more elaborate and it will
take us quite a lot of time to figure them all out.

We can illustrate some of the laws of electrodynamics by a series of small ex-
periments which show qualitatively the interrelationships of electric and magnetic
fields. You have experienced the first term of Eq. (1.1) when combing your hair,
so we won’t show that one. The second part of Eq. (1.1) can be demonstrated
by passing a current through a wire which hangs above a bar magnet, as shown
in Fig. 1-6. The wire will move when a current is turned on because of the
force F = qv×B. When a current exists, the charges inside the wire are moving,
so they have a velocity v, and the magnetic field from the magnet exerts a force
on them, which results in pushing the wire sideways.

When the wire is pushed to the left, we would expect that the magnet must
feel a push to the right. (Otherwise we could put the whole thing on a wagon
and have a propulsion system that didn’t conserve momentum!) Although the
force is too small to make movement of the bar magnet visible, a more sensitively
supported magnet, like a compass needle, will show the movement.

How does the wire push on the magnet? The current in the wire produces a
magnetic field of its own that exerts forces on the magnet. According to the last
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Fig. 1-7. The magnetic field of the wire
exerts a force on the magnet.

* We need only to add a remark about some conventions for the sign of the circulation.
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Fig. 1-8. Two wires, carrying current,
exert forces on each other.

term in Eq. (1.9), a current must have a circulation of B—in this case, the lines
of B are loops around the wire, as shown in Fig. 1-7. This B-field is responsible
for the force on the magnet.

Equation (1.9) tells us that for a fixed current through the wire the circulation
of B is the same for any curve that surrounds the wire. For curves—say circles—
that are farther away from the wire, the circumference is larger, so the tangential
component of B must decrease. You can see that we would, in fact, expect B to
decrease linearly with the distance from a long straight wire.

Now, we have said that a current through a wire produces a magnetic field,
and that when there is a magnetic field present there is a force on a wire carrying
a current. Then we should also expect that if we make a magnetic field with a
current in one wire, it should exert a force on another wire which also carries
a current. This can be shown by using two hanging wires as shown in Fig. 1-8.
When the currents are in the same direction, the two wires attract, but when
the currents are opposite, they repel.

In short, electrical currents, as well as magnets, make magnetic fields. But
wait, what is a magnet, anyway? If magnetic fields are produced by moving
charges, is it not possible that the magnetic field from a piece of iron is really the
result of currents? It appears to be so. We can replace the bar magnet of our
experiment with a coil of wire, as shown in Fig. 1-9. When a current is passed
through the coil—as well as through the straight wire above it—we observe a
motion of the wire exactly as before, when we had a magnet instead of a coil. In
other words, the current in the coil imitates a magnet. It appears, then, that a
piece of iron acts as though it contains a perpetual circulating current. We can,
in fact, understand magnets in terms of permanent currents in the atoms of the
iron. The force on the magnet in Fig. 1-7 is due to the second term in Eq. (1.1).

COIL OF WIRE

current
in coil

B
(from coil)

F
(on wire)
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+ TERMINAL

TO
−TERMINAL
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nt

Fig. 1-9. The bar magnet of Fig. 1-6 can
be replaced by a coil carrying an electrical
current. A similar force acts on the wire.
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Where do the currents come from? One possibility would be from the motion
of the electrons in atomic orbits. Actually, that is not the case for iron, although
it is for some materials. In addition to moving around in an atom, an electron also
spins about on its own axis—something like the spin of the earth—and it is the
current from this spin that gives the magnetic field in iron. (We say “something
like the spin of the earth” because the question is so deep in quantum mechanics
that the classical ideas do not really describe things too well.) In most substances,
some electrons spin one way and some spin the other, so the magnetism cancels
out, but in iron—for a mysterious reason which we will discuss later—many of
the electrons are spinning with their axes lined up, and that is the source of the
magnetism.

Since the fields of magnets are from currents, we do not have to add any
extra term to Eqs. (1.8) or (1.9) to take care of magnets. We just take all
currents, including the circulating currents of the spinning electrons, and then
the law is right. You should also notice that Eq. (1.8) says that there are no
magnetic “charges” analogous to the electrical charges appearing on the right
side of Eq. (1.6). None has been found.

Fig. 1-10. The circulation of B around
the curve C is given either by the current
passing through the surface S1, or by the
rate of change of the flux of E through the
surface S2.

Current Current

Curve C

Surface S1 Surface S2

+ −

E

B

B
B

B

The first term on the right-hand side of Eq. (1.9) was discovered theoretically
by Maxwell and is of great importance. It says that changing electric fields
produce magnetic effects. In fact, without this term the equation would not
make sense, because without it there could be no currents in circuits that are
not complete loops. But such currents do exist, as we can see in the following
example. Imagine a capacitor made of two flat plates. It is being charged by
a current that flows toward one plate and away from the other, as shown in
Fig. 1-10. We draw a curve C around one of the wires and fill it in with a surface
which crosses the wire, as shown by the surface S1 in the figure. According to
Eq. (1.9), the circulation of B around C (times c2) is given by the current in the
wire (divided by ε0). But what if we fill in the curve with a different surface S2,
which is shaped like a bowl and passes between the plates of the capacitor, staying
always away from the wire? There is certainly no current through this surface.
But, surely, just changing the location of an imaginary surface is not going to
change a real magnetic field! The circulation of B must be what it was before.
The first term on the right-hand side of Eq. (1.9) does, indeed, combine with the
second term to give the same result for the two surfaces S1 and S2. For S2 the
circulation of B is given in terms of the rate of change of the flux of E between
the plates of the capacitor. And it works out that the changing E is related to
the current in just the way required for Eq. (1.9) to be correct. Maxwell saw
that it was needed, and he was the first to write the complete equation.

With the setup shown in Fig. 1-6 we can demonstrate another of the laws of
electromagnetism. We disconnect the ends of the hanging wire from the battery
and connect them to a galvanometer which tells us when there is a current through
the wire. When we push the wire sideways through the magnetic field of the
magnet, we observe a current. Such an effect is again just another consequence of
Eq. (1.1)—the electrons in the wire feel the force F = qv×B. The electrons have
a sidewise velocity because they move with the wire. This v with a vertical B
from the magnet results in a force on the electrons directed along the wire, which
starts the electrons moving toward the galvanometer.
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Suppose, however, that we leave the wire alone and move the magnet. We
guess from relativity that it should make no difference, and indeed, we observe
a similar current in the galvanometer. How does the magnetic field produce
forces on charges at rest? According to Eq. (1.1) there must be an electric
field. A moving magnet must make an electric field. How that happens is said
quantitatively by Eq. (1.7). This equation describes many phenomena of great
practical interest, such as those that occur in electric generators and transformers.

The most remarkable consequence of our equations is that the combination of
Eq. (1.7) and Eq. (1.9) contains the explanation of the radiation of electromagnetic
effects over large distances. The reason is roughly something like this: suppose
that somewhere we have a magnetic field which is increasing because, say, a
current is turned on suddenly in a wire. Then by Eq. (1.7) there must be a
circulation of an electric field. As the electric field builds up to produce its
circulation, then according to Eq. (1.9) a magnetic circulation will be generated.
But the building up of this magnetic field will produce a new circulation of the
electric field, and so on. In this way fields work their way through space without
the need of charges or currents except at their source. That is the way we see
each other! It is all in the equations of the electromagnetic fields.

1-5 What are the fields?

We now make a few remarks on our way of looking at this subject. You may
be saying: “All this business of fluxes and circulations is pretty abstract. There
are electric fields at every point in space; then there are these ‘laws.’ But what is
actually happening? Why can’t you explain it, for instance, by whatever it is that
goes between the charges.” Well, it depends on your prejudices. Many physicists
used to say that direct action with nothing in between was inconceivable. (How
could they find an idea inconceivable when it had already been conceived?) They
would say: “Look, the only forces we know are the direct action of one piece of
matter on another. It is impossible that there can be a force with nothing to
transmit it.” But what really happens when we study the “direct action” of one
piece of matter right against another? We discover that it is not one piece right
against the other; they are slightly separated, and there are electrical forces acting
on a tiny scale. Thus we find that we are going to explain so-called direct-contact
action in terms of the picture for electrical forces. It is certainly not sensible to
try to insist that an electrical force has to look like the old, familiar, muscular
push or pull, when it will turn out that the muscular pushes and pulls are going
to be interpreted as electrical forces! The only sensible question is what is the
most convenient way to look at electrical effects. Some people prefer to represent
them as the interaction at a distance of charges, and to use a complicated law.
Others love the field lines. They draw field lines all the time, and feel that writing
E’s and B’s is too abstract. The field lines, however, are only a crude way of
describing a field, and it is very difficult to give the correct, quantitative laws
directly in terms of field lines. Also, the ideas of the field lines do not contain
the deepest principle of electrodynamics, which is the superposition principle.
Even though we know how the field lines look for one set of charges and what
the field lines look like for another set of charges, we don’t get any idea about
what the field line patterns will look like when both sets are present together.
From the mathematical standpoint, on the other hand, superposition is easy—we
simply add the two vectors. The field lines have some advantage in giving a vivid
picture, but they also have some disadvantages. The direct interaction way of
thinking has great advantages when thinking of electrical charges at rest, but
has great disadvantages when dealing with charges in rapid motion.

The best way is to use the abstract field idea. That it is abstract is unfortunate,
but necessary. The attempts to try to represent the electric field as the motion
of some kind of gear wheels, or in terms of lines, or of stresses in some kind of
material have used up more effort of physicists than it would have taken simply
to get the right answers about electrodynamics. It is interesting that the correct
equations for the behavior of light were worked out by MacCullagh in 1839.
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But people said to him: “Yes, but there is no real material whose mechanical
properties could possibly satisfy those equations, and since light is an oscillation
that must vibrate in something, we cannot believe this abstract equation business.”
If people had been more open-minded, they might have believed in the right
equations for the behavior of light a lot earlier than they did.

In the case of the magnetic field we can make the following point: Suppose
that you finally succeeded in making up a picture of the magnetic field in terms
of some kind of lines or of gear wheels running through space. Then you try to
explain what happens to two charges moving in space, both at the same speed
and parallel to each other. Because they are moving, they will behave like two
currents and will have a magnetic field associated with them (like the currents in
the wires of Fig. 1-8). An observer who was riding along with the two charges,
however, would see both charges as stationary, and would say that there is no
magnetic field. The “gear wheels” or “lines” disappear when you ride along with
the object! All we have done is to invent a new problem. How can the gear
wheels disappear?! The people who draw field lines are in a similar difficulty.
Not only is it not possible to say whether the field lines move or do not move
with charges—they may disappear completely in certain coordinate frames.

What we are saying, then, is that magnetism is really a relativistic effect. In
the case of the two charges we just considered, travelling parallel to each other, we
would expect to have to make relativistic corrections to their motion, with terms
of order v2/c2. These corrections must correspond to the magnetic force. But
what about the force between the two wires in our experiment (Fig. 1-8). There
the magnetic force is the whole force. It didn’t look like a “relativistic correction.”
Also, if we estimate the velocities of the electrons in the wire (you can do this
yourself), we find that their average speed along the wire is about 0.01 centimeter
per second. So v2/c2 is about 10−25. Surely a negligible “correction.” But no!
Although the magnetic force is, in this case, 10−25 of the “normal” electrical
force between the moving electrons, remember that the “normal” electrical forces
have disappeared because of the almost perfect balancing out—because the wires
have the same number of protons as electrons. The balance is much more precise
than one part in 1025, and the small relativistic term which we call the magnetic
force is the only term left. It becomes the dominant term.

It is the near-perfect cancellation of electrical effects which allowed relativity
effects (that is, magnetism) to be studied and the correct equations—to or-
der v2/c2—to be discovered, even though physicists didn’t know that’s what was
happening. And that is why, when relativity was discovered, the electromagnetic
laws didn’t need to be changed. They—unlike mechanics—were already correct
to a precision of v2/c2.

1-6 Electromagnetism in science and technology

Let us end this chapter by pointing out that among the many phenomena
studied by the Greeks there were two very strange ones: that if you rubbed a
piece of amber you could lift up little pieces of papyrus, and that there was a
strange rock from the island of Magnesia which attracted iron. It is amazing to
think that these were the only phenomena known to the Greeks in which the
effects of electricity or magnetism were apparent. The reason that these were
the only phenomena that appeared is due primarily to the fantastic precision
of the balancing of charges that we mentioned earlier. Study by scientists who
came after the Greeks uncovered one new phenomenon after another that were
really some aspect of these amber and/or lodestone effects. Now we realize that
the phenomena of chemical interaction and, ultimately, of life itself are to be
understood in terms of electromagnetism.

At the same time that an understanding of the subject of electromagnetism was
being developed, technical possibilities that defied the imagination of the people
that came before were appearing: it became possible to signal by telegraph over
long distances, and to talk to another person miles away without any connections
between, and to run huge power systems—a great water wheel, connected by
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filaments over hundreds of miles to another engine that turns in response to the
master wheel—many thousands of branching filaments—ten thousand engines in
ten thousand places running the machines of industries and homes—all turning
because of the knowledge of the laws of electromagnetism.

Today we are applying even more subtle effects. The electrical forces, enormous
as they are, can also be very tiny, and we can control them and use them in very
many ways. So delicate are our instruments that we can tell what a man is doing
by the way he affects the electrons in a thin metal rod hundreds of miles away.
All we need to do is to use the rod as an antenna for a television receiver!

From a long view of the history of mankind—seen from, say, ten thousand
years from now—there can be little doubt that the most significant event of the
19th century will be judged as Maxwell’s discovery of the laws of electrodynamics.
The American Civil War will pale into provincial insignificance in comparison
with this important scientific event of the same decade.
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physicist needs a facility in looking at problems from several points of
view. The exact analysis of real physical problems is usually quite complicated,
and any particular physical situation may be too complicated to analyze directly
by solving the differential equation. But one can still get a very good idea of
the behavior of a system if one has some feel for the character of the solution
in different circumstances. Ideas such as the field lines, capacitance, resistance,
and inductance are, for such purposes, very useful. So we will spend much of our
time analyzing them. In this way we will get a feel as to what should happen in
different electromagnetic situations. On the other hand, none of the heuristic
models, such as field lines, is really adequate and accurate for all situations.
There is only one precise way of presenting the laws, and that is by means of
differential equations. They have the advantage of being fundamental and, so
far as we know, precise. If you have learned the differential equations you can
always go back to them. There is nothing to unlearn.

Review: Chapter 11, Vol. I, Vectors

It will take you some time to understand what should happen in different
circumstances. You will have to solve the equations. Each time you solve
the equations, you will learn something about the character of the solutions.
To keep these solutions in mind, it will be useful also to study their meaning
in terms of field lines and of other concepts. This is the way you will really
“understand” the equations. That is the difference between mathematics and
physics. Mathematicians, or people who have very mathematical minds, are often
led astray when “studying” physics because they lose sight of the physics. They
say: “Look, these differential equations—the Maxwell equations—are all there is
to electrodynamics; it is admitted by the physicists that there is nothing which is
not contained in the equations. The equations are complicated, but after all they
are only mathematical equations and if I understand them mathematically inside
out, I will understand the physics inside out.” Only it doesn’t work that way.
Mathematicians who study physics with that point of view—and there have been
many of them—usually make little contribution to physics and, in fact, little to
mathematics. They fail because the actual physical situations in the real world
are so complicated that it is necessary to have a much broader understanding of
the equations.

What it means really to understand an equation—that is, in more than a
strictly mathematical sense—was described by Dirac. He said: “I understand
what an equation means if I have a way of figuring out the characteristics of its
solution without actually solving it.” So if we have a way of knowing what should
happen in given circumstances without actually solving the equations, then
we “understand” the equations, as applied to these circumstances. A physical
understanding is a completely unmathematical, imprecise, and inexact thing, but
absolutely necessary for a physicist.

Ordinarily, a course like this is given by developing gradually the physical
ideas—by starting with simple situations and going on to more and more compli-
cated situations. This requires that you continuously forget things you previously
learned—things that are true in certain situations, but which are not true in
general. For example, the “law” that the electrical force depends on the square
of the distance is not always true. We prefer the opposite approach. We prefer
to take first the complete laws, and then to step back and apply them to simple
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situations, developing the physical ideas as we go along. And that is what we
are going to do.

Our approach is completely opposite to the historical approach in which one
develops the subject in terms of the experiments by which the information was
obtained. But the subject of physics has been developed over the past 200 years
by some very ingenious people, and as we have only a limited time to acquire
our knowledge, we cannot possibly cover everything they did. Unfortunately
one of the things that we shall have a tendency to lose in these lectures is the
historical, experimental development. It is hoped that in the laboratory some of
this lack can be corrected. You can also fill in what we must leave out by reading
the Encyclopedia Britannica, which has excellent historical articles on electricity
and on other parts of physics. You will also find historical information in many
textbooks on electricity and magnetism.

2-2 Scalar and vector fields—T and h

We begin now with the abstract, mathematical view of the theory of electricity
and magnetism. The ultimate idea is to explain the meaning of the laws given in
Chapter 1. But to do this we must first explain a new and peculiar notation that
we want to use. So let us forget electromagnetism for the moment and discuss
the mathematics of vector fields. It is of very great importance, not only for
electromagnetism, but for all kinds of physical circumstances. Just as ordinary
differential and integral calculus is so important to all branches of physics, so
also is the differential calculus of vectors. We turn to that subject.

Listed below are a few facts from the algebra of vectors. It is assumed that
you already know them.

A · B = scalar = AxBx +AyBy +AzBz (2.1)

A×B = vector (2.2)
(A×B)z = AxBy −AyBx
(A×B)x = AyBz −AzBy
(A×B)y = AzBx −AxBz

A×A = 0 (2.3)

A · (A×B) = 0 (2.4)

A · (B ×C) = (A×B) ·C (2.5)

A× (B ×C) = B(A ·C)−C(A ·B) (2.6)

Also we will want to use the two following equalities from the calculus:

∆f(x, y, z) = ∂f

∂x
∆x+ ∂f

∂y
∆y + ∂f

∂z
∆z, (2.7)

∂2f

∂x ∂y
= ∂2f

∂y ∂x
. (2.8)

The first equation (2.7) is, of course, true only in the limit that ∆x, ∆y, and ∆z
go toward zero.

The simplest possible physical field is a scalar field. By a field, you remember,
we mean a quantity which depends upon position in space. By a scalar field we
merely mean a field which is characterized at each point by a single number—a
scalar. Of course the number may change in time, but we need not worry about
that for the moment. We will talk about what the field looks like at a given
instant. As an example of a scalar field, consider a solid block of material which
has been heated at some places and cooled at others, so that the temperature of
the body varies from point to point in a complicated way. Then the temperature
will be a function of x, y, and z, the position in space measured in a rectangular
coordinate system. Temperature is a scalar field.
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x

y

0

h

T (x, y , z)

T = 40◦

T = 30◦

T = 20◦

T = 10◦

Hot

Cold

Cold

Fig. 2-1. Temperature T is an example of a scalar
field. With each point (x, y , z) in space there is asso-
ciated a number T (x, y , z). All points on the surface
marked T = 20◦ (shown as a curve at z = 0) are at the
same temperature. The arrows are samples of the heat
flow vector h.

One way of thinking about scalar fields is to imagine “contours” which are
imaginary surfaces drawn through all points for which the field has the same
value, just as contour lines on a map connect points with the same height. For
a temperature field the contours are called “isothermal surfaces” or isotherms.
Figure 2-1 illustrates a temperature field and shows the dependence of T on x
and y when z = 0. Several isotherms are drawn.

ROTATION

Fig. 2-2. The velocity of the atoms in
a rotating object is an example of a vector
field.

There are also vector fields. The idea is very simple. A vector is given for each
point in space. The vector varies from point to point. As an example, consider a
rotating body. The velocity of the material of the body at any point is a vector
which is a function of position (Fig. 2-2). As a second example, consider the flow
of heat in a block of material. If the temperature in the block is high at one
place and low at another, there will be a flow of heat from the hotter places to
the colder. The heat will be flowing in different directions in different parts of
the block. The heat flow is a directional quantity which we call h. Its magnitude
is a measure of how much heat is flowing. Examples of the heat flow vector are
also shown in Fig. 2-1.

x

y

z

T1

T2

h

∆a

heat flow Fig. 2-3. Heat flow is a vector field. The vector h
points along the direction of the flow. Its magnitude is
the energy transported per unit time across a surface
element oriented perpendicular to the flow, divided by
the area of the surface element.

Let’s make a more precise definition of h: The magnitude of the vector heat
flow at a point is the amount of thermal energy that passes, per unit time and
per unit area, through an infinitesimal surface element at right angles to the
direction of flow. The vector points in the direction of flow (see Fig. 2-3). In
symbols: If ∆J is the thermal energy that passes per unit time through the
surface element ∆a, then

h = ∆J
∆a ef , (2.9)

where ef is a unit vector in the direction of flow.
The vector h can be defined in another way—in terms of its components. We

ask how much heat flows through a small surface at any angle with respect to the
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flow. In Fig. 2-4 we show a small surface ∆a2 inclined with respect to ∆a1, which
is perpendicular to the flow. The unit vector n is normal to the surface ∆a2. The
angle θ between n and h is the same as the angle between the surfaces (since h
is normal to ∆a1). Now what is the heat flow per unit area through ∆a2? The
flow through ∆a2 is the same as through ∆a1; only the areas are different. In
fact, ∆a1 = ∆a2 cos θ. The heat flow through ∆a2 is

∆J
∆a2

= ∆J
∆a1

cos θ = h · n. (2.10)

We interpret this equation: the heat flow (per unit time and per unit area) through
any surface element whose unit normal is n, is given by h · n. Equally, we could
say: the component of the heat flow perpendicular to the surface element ∆a2
is h · n. We can, if we wish, consider that these statements define h. We will be
applying the same ideas to other vector fields.

n

h

θ

∆a1

∆a2

Fig. 2-4. The heat flow through ∆a2 is
the same as through ∆a1.

2-3 Derivatives of fields—the gradient

When fields vary in time, we can describe the variation by giving their
derivatives with respect to t. We want to describe the variations with position
in a similar way, because we are interested in the relationship between, say, the
temperature in one place and the temperature at a nearby place. How shall
we take the derivative of the temperature with respect to position? Do we
differentiate the temperature with respect to x? Or with respect to y, or z?

Useful physical laws do not depend upon the orientation of the coordinate
system. They should, therefore, be written in a form in which either both sides
are scalars or both sides are vectors. What is the derivative of a scalar field,
say ∂T/∂x? Is it a scalar, or a vector, or what? It is neither a scalar nor a
vector, as you can easily appreciate, because if we took a different x-axis, ∂T/∂x
would certainly be different. But notice: We have three possible derivatives:
∂T/∂x, ∂T/∂y, and ∂T/∂z. Since there are three kinds of derivatives and we
know that it takes three numbers to form a vector, perhaps these three derivatives
are the components of a vector:(

∂T

∂x
,
∂T

∂y
,
∂T

∂z

)
?= a vector. (2.11)

Of course it is not generally true that any three numbers form a vector. It is
true only if, when we rotate the coordinate system, the components of the vector
transform among themselves in the correct way. So it is necessary to analyze
how these derivatives are changed by a rotation of the coordinate system. We
shall show that (2.11) is indeed a vector. The derivatives do transform in the
correct way when the coordinate system is rotated.

We can see this in several ways. One way is to ask a question whose answer
is independent of the coordinate system, and try to express the answer in an
“invariant” form. For instance, if S = A ·B, and if A and B are vectors, we
know—because we proved it in Chapter 11 of Vol. I—that S is a scalar. We
know that S is a scalar without investigating whether it changes with changes in
coordinate systems. It can’t, because it’s a dot product of two vectors. Similarly,
if we have three numbers B1, B2, and B3 and we find out that for every vector A

AxB1 +AyB2 +AzB3 = S, (2.12)

where S is the same for any coordinate system, then it must be that the three
numbers B1, B2, B3 are the components Bx, By, Bz of some vector B.

Now let’s think of the temperature field. Suppose we take two points P1
and P2, separated by the small interval ∆R. The temperature at P1 is T1 and
at P2 is T2, and the difference ∆T = T2 − T1. The temperatures at these real,
physical points certainly do not depend on what axis we choose for measuring
the coordinates. In particular, ∆T is a number independent of the coordinate
system. It is a scalar.
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x

y

z

P1

P2
∆R

∆x

∆y

∆z

∆x
∆z

∆y

∆z

Fig. 2-5. The vector ∆R, whose compo-
nents are ∆x , ∆y , and ∆z .

If we choose some convenient set of axes, we could write T1 = T (x, y, z) and
T2 = T (x+ ∆x, y + ∆y, z + ∆z), where ∆x, ∆y, and ∆z are the components of
the vector ∆R (Fig. 2-5). Remembering Eq. (2.7), we can write

∆T = ∂T

∂x
∆x+ ∂T

∂y
∆y + ∂T

∂z
∆z. (2.13)

The left side of Eq. (2.13) is a scalar. The right side is the sum of three products
with ∆x, ∆y, and ∆z, which are the components of a vector. It follows that the
three numbers

∂T

∂x
,
∂T

∂y
,
∂T

∂z

are also the x-, y-, and z-components of a vector. We write this new vector
with the symbol ∇T . The symbol ∇ (called “del”) is an upside-down ∆, and
is supposed to remind us of differentiation. People read ∇T in various ways:
“del-T ,” or “gradient of T ,” or “gradT ;”*

gradT =∇T =
(
∂T

∂x
,
∂T

∂y
,
∂T

∂z

)
. (2.14)

Using this notation, we can rewrite Eq. (2.13) in the more compact form

∆T =∇T ·∆R. (2.15)

In words, this equation says that the difference in temperature between two
nearby points is the dot product of the gradient of T and the vector displacement
between the points. The form of Eq. (2.15) also illustrates clearly our proof above
that ∇T is indeed a vector.

Perhaps you are still not convinced? Let’s prove it in a different way. (Al-
though if you look carefully, you may be able to see that it’s really the same proof
in a longer-winded form!) We shall show that the components of ∇T transform
in just the same way that components of R do. If they do, ∇T is a vector
according to our original definition of a vector in Chapter 11 of Vol. I. We take a
new coordinate system x′, y′, z′, and in this new system we calculate ∂T/∂x′,
∂T/∂y′, and ∂T/∂z′. To make things a little simpler, we let z = z′, so that we
can forget about the z-coordinate. (You can check out the more general case for
yourself.)

x

y

x ′

y ′ (a)

x

y

x ′
y ′

θ

P1

x

y

x ′

y ′
(b)

∆x

∆x ′ ∆y ′

P1 P2
θ

Fig. 2-6. (a) Transformation to a rotated
coordinate system. (b) Special case of an
interval ∆R parallel to the x-axis.

We take an x′y′-system rotated an angle θ with respect to the xy-system, as
in Fig. 2-6(a). For a point (x, y) the coordinates in the prime system are

x′ = x cos θ + y sin θ, (2.16)

y′ = −x sin θ + y cos θ. (2.17)

Or, solving for x and y,
x = x′ cos θ − y′ sin θ, (2.18)

y = x′ sin θ + y′ cos θ. (2.19)

If any pair of numbers transforms with these equations in the same way that x
and y do, they are the components of a vector.

Now let’s look at the difference in temperature between the two nearby points
P1 and P2, chosen as in Fig. 2-6(b). If we calculate with the x- and y-coordinates,
we would write

∆T = ∂T

∂x
∆x (2.20)

—since ∆y is zero.
* In our notation, the expression (a, b, c) represents a vector with components a, b, and c. If

you like to use the unit vectors i, j, and k, you may write

∇T = i
∂T

∂x
+ j

∂T

∂y
+ k

∂T

∂z
.
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What would a computation in the prime system give? We would have written

∆T = ∂T

∂x′
∆x′ + ∂T

∂y′
∆y′. (2.21)

Looking at Fig. 2-6(b), we see that

∆x′ = ∆x cos θ (2.22)
and

∆y′ = −∆x sin θ, (2.23)

since ∆y′ is negative when ∆x is positive. Substituting these in Eq. (2.21), we
find that

∆T = ∂T

∂x′
∆x cos θ − ∂T

∂y′
∆x sin θ (2.24)

=
(
∂T

∂x′
cos θ − ∂T

∂y′
sin θ

)
∆x. (2.25)

Comparing Eq. (2.25) with (2.20), we see that

∂T

∂x
= ∂T

∂x′
cos θ − ∂T

∂y′
sin θ. (2.26)

This equation says that ∂T/∂x is obtained from ∂T/∂x′ and ∂T/∂y′, just as x
is obtained from x′ and y′ in Eq. (2.18). So ∂T/∂x is the x-component of a
vector. The same kind of arguments would show that ∂T/∂y and ∂T/∂z are y-
and z-components. So ∇T is definitely a vector. It is a vector field derived from
the scalar field T .

2-4 The operator ∇

Now we can do something that is extremely amusing and ingenious—and
characteristic of the things that make mathematics beautiful. The argument
that gradT , or ∇T , is a vector did not depend upon what scalar field we were
differentiating. All the arguments would go the same if T were replaced by any
scalar field. Since the transformation equations are the same no matter what
we differentiate, we could just as well omit the T and replace Eq. (2.26) by the
operator equation

∂

∂x
= ∂

∂x′
cos θ − ∂

∂y′
sin θ. (2.27)

We leave the operators, as Jeans said, “hungry for something to differentiate.”
Since the differential operators themselves transform as the components of a

vector should, we can call them components of a vector operator . We can write

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, (2.28)

which means, of course,

∇x = ∂

∂x
, ∇y = ∂

∂y
, ∇z = ∂

∂z
. (2.29)

We have abstracted the gradient away from the T—that is the wonderful idea.
You must always remember, of course, that ∇ is an operator. Alone, it means

nothing. If ∇ by itself means nothing, what does it mean if we multiply it by a
scalar—say T—to get the product T∇? (One can always multiply a vector by a
scalar.) It still does not mean anything. Its x-component is

T
∂

∂x
, (2.30)

which is not a number, but is still some kind of operator. However, according to
the algebra of vectors we would still call T∇ a vector.
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Now let’s multiply ∇ by a scalar on the other side, so that we have the
product (∇T ). In ordinary algebra

TA = AT, (2.31)

but we have to remember that operator algebra is a little different from ordinary
vector algebra. With operators we must always keep the sequence right, so that
the operations make proper sense. You will have no difficulty if you just remember
that the operator∇ obeys the same convention as the derivative notation. What is
to be differentiated must be placed on the right of the ∇. The order is important.

Keeping in mind this problem of order, we understand that T∇ is an operator,
but the product ∇T is no longer a hungry operator; the operator is completely
satisfied. It is indeed a physical vector having a meaning. It represents the
spatial rate of change of T . The x-component of ∇T is how fast T changes in
the x-direction. What is the direction of the vector ∇T? We know that the rate
of change of T in any direction is the component of ∇T in that direction (see
Eq. 2.15). It follows that the direction of ∇T is that in which it has the largest
possible component—in other words, the direction in which T changes the fastest.
The gradient of T has the direction of the steepest uphill slope (in T ).

2-5 Operations with ∇

Can we do any other algebra with the vector operator∇? Let us try combining
it with a vector. We can combine two vectors by making a dot product. We
could make the products

(a vector) ·∇, or ∇ · (a vector).

The first one doesn’t mean anything yet, because it is still an operator. What
it might ultimately mean would depend on what it is made to operate on. The
second product is some scalar field. (A ·B is always a scalar.)

Let’s try the dot product of ∇ with a vector field we know, say h. We write
out the components:

∇ · h = ∇xhx +∇yhy +∇zhz (2.32)
or

∇ · h = ∂hx
∂x

+ ∂hy
∂y

+ ∂hz
∂z

. (2.33)

The sum is invariant under a coordinate transformation. If we were to choose a
different system (indicated by primes), we would have*

∇′ · h = ∂hx′

∂x′
+ ∂hy′

∂y′
+ ∂hz′

∂z′
, (2.34)

which is the same number as would be gotten from Eq. (2.33), even though it
looks different. That is,

∇′ · h =∇ · h (2.35)
for every point in space. So ∇ · h is a scalar field, which must represent some
physical quantity. You should realize that the combination of derivatives in ∇ ·h
is rather special. There are all sorts of other combinations like ∂hy/∂x, which
are neither scalars nor components of vectors.

The scalar quantity ∇ · (a vector) is extremely useful in physics. It has been
given the name the divergence. For example,

∇ · h = divh = “divergence of h.” (2.36)

As we did for ∇T , we can ascribe a physical significance to ∇ · h. We shall,
however, postpone that until later.

* We think of h as a physical quantity that depends on position in space, and not strictly
as a mathematical function of three variables. When h is “differentiated” with respect to
x, y, and z, or with respect to x′, y′, and z′, the mathematical expression for h must first be
expressed as a function of the appropriate variables.

2-7



First, we wish to see what else we can cook up with the vector operator ∇.
What about a cross product? We must expect that

∇× h = a vector. (2.37)

It is a vector whose components we can write by the usual rule for cross products
(see Eq. 2.2):

(∇× h)z = ∇xhy −∇yhx = ∂hy
∂x
− ∂hx

∂y
. (2.38)

Similarly,

(∇× h)x = ∇yhz −∇zhy = ∂hz
∂y
− ∂hy

∂z
(2.39)

and
(∇× h)y = ∇zhx −∇xhz = ∂hx

∂z
− ∂hz

∂x
. (2.40)

The combination ∇× h is called “the curl of h.” The reason for the name
and the physical meaning of the combination will be discussed later.

Summarizing, we have three kinds of combinations with ∇:

∇T = gradT = a vector,
∇ · h = divh = a scalar,
∇× h = curlh = a vector.

Using these combinations, we can write about the spatial variations of fields in
a convenient way—in a way that is general, in that it doesn’t depend on any
particular set of axes.

As an example of the use of our vector differential operator ∇, we write a set
of vector equations which contain the same laws of electromagnetism that we
gave in words in Chapter 1. They are called Maxwell’s equations.

Maxwell’s Equations

(1) ∇ ·E = ρ

ε0

(2) ∇×E = −∂B
∂t

(3) ∇ ·B = 0

(4) c2∇×B = ∂E

∂t
+ j

ε0

(2.41)

where ρ (rho), the “electric charge density,” is the amount of charge per unit
volume, and j, the “electric current density,” is the rate at which charge flows
through a unit area per second. These four equations contain the complete
classical theory of the electromagnetic field. You see what an elegantly simple
form we can get with our new notation!

(a)

T1T2

Heat
Flow

Area A

d

(b)

∆s

h

Area ∆A

ISOTHERMALS

T1 + ∆T T1

Fig. 2-7. (a) Heat flow through a slab.
(b) An infinitesimal slab parallel to an
isothermal surface in a large block.

2-6 The differential equation of heat flow

Let us give another example of a law of physics written in vector notation. The
law is not a precise one, but for many metals and a number of other substances that
conduct heat it is quite accurate. You know that if you take a slab of material and
heat one face to temperature T2 and cool the other to a different temperature T1
the heat will flow through the material from T2 to T1 [Fig. 2-7(a)]. The heat flow
is proportional to the area A of the faces, and to the temperature difference. It
is also inversely proportional to d, the distance between the plates. (For a given
temperature difference, the thinner the slab the greater the heat flow.) Letting J
be the thermal energy that passes per unit time through the slab, we write

J = κ(T2 − T1) A
d
. (2.42)

The constant of proportionality κ (kappa) is called the thermal conductivity.
2-8



What will happen in a more complicated case? Say in an odd-shaped block of
material in which the temperature varies in peculiar ways? Suppose we look at a
tiny piece of the block and imagine a slab like that of Fig. 2-7(a) on a miniature
scale. We orient the faces parallel to the isothermal surfaces, as in Fig. 2-7(b),
so that Eq. (2.42) is correct for the small slab.

If the area of the small slab is ∆A, the heat flow per unit time is

∆J = κ∆T ∆A
∆s , (2.43)

where ∆s is the thickness of the slab. Now ∆J/∆A we have defined earlier as
the magnitude of h, whose direction is the heat flow. The heat flow will be from
T1 + ∆T toward T1 and so it will be perpendicular to the isotherms, as drawn
in Fig. 2-7(b). Also, ∆T/∆s is just the rate of change of T with position. And
since the position change is perpendicular to the isotherms, our ∆T/∆s is the
maximum rate of change. It is, therefore, just the magnitude of ∇T . Now since
the direction of ∇T is opposite to that of h, we can write (2.43) as a vector
equation:

h = −κ∇T. (2.44)
(The minus sign is necessary because heat flows “downhill” in temperature.)
Equation (2.44) is the differential equation of heat conduction in bulk materials.
You see that it is a proper vector equation. Each side is a vector if κ is just a
number. It is the generalization to arbitrary cases of the special relation (2.42) for
rectangular slabs. Later we should learn to write all sorts of elementary physics
relations like (2.42) in the more sophisticated vector notation. This notation is
useful not only because it makes the equations look simpler. It also shows most
clearly the physical content of the equations without reference to any arbitrarily
chosen coordinate system.

2-7 Second derivatives of vector fields

So far we have had only first derivatives. Why not second derivatives? We
could have several combinations:

(a) ∇ · (∇T )
(b) ∇× (∇T )
(c) ∇(∇ · h)
(d) ∇ · (∇× h)
(e) ∇× (∇× h)

(2.45)

You can check that these are all the possible combinations.
Let’s look first at the second one, (b). It has the same form as

A× (AT ) = (A×A)T = 0,

since A×A is always zero. So we should have

curl(gradT ) =∇× (∇T ) = 0. (2.46)

We can see how this equation comes about if we go through once with the
components:

[∇× (∇T )]z = ∇x(∇T )y −∇y(∇T )x

= ∂

∂x

(
∂T

∂y

)
− ∂

∂y

(
∂T

∂x

)
, (2.47)

which is zero (by Eq. 2.8). It goes the same for the other components. So
∇× (∇T ) = 0, for any temperature distribution—in fact, for any scalar function.

Now let us take another example. Let us see whether we can find another
zero. The dot product of a vector with a cross product which contains that vector
is zero:

A · (A×B) = 0, (2.48)
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becauseA×B is perpendicular toA, and so has no components in the directionA.
The same combination appears in (d) of (2.45), so we have

∇ · (∇× h) = div(curlh) = 0. (2.49)

Again, it is easy to show that it is zero by carrying through the operations with
components.

Now we are going to state two mathematical theorems that we will not prove.
They are very interesting and useful theorems for physicists to know.

In a physical problem we frequently find that the curl of some quantity—say
of the vector field A—is zero. Now we have seen (Eq. 2.46) that the curl of a
gradient is zero, which is easy to remember because of the way the vectors work.
It could certainly be, then, that A is the gradient of some quantity, because then
its curl would necessarily be zero. The interesting theorem is that if the curlA
is zero, then A is always the gradient of something—there is some scalar field ψ
(psi) such that A is equal to gradψ. In other words, we have the

Theorem:
If ∇×A = 0
there is a ψ

such that A =∇ψ. (2.50)

There is a similar theorem if the divergence of A is zero. We have seen in
Eq. (2.49) that the divergence of a curl of something is always zero. If you come
across a vector field D for which divD is zero, then you can conclude that D is
the curl of some vector field C.

Theorem:
If ∇ ·D = 0
there is a C

such that D =∇×C. (2.51)

In looking at the possible combinations of two ∇ operators, we have found
that two of them always give zero. Now we look at the ones that are not zero.
Take the combination ∇ · (∇T ), which was first on our list. It is not, in general,
zero. We write out the components:

∇T = i∇xT + j∇yT + k∇zT.

Then
∇ · (∇T ) = ∇x(∇xT ) +∇y(∇yT ) +∇z(∇zT )

= ∂2T

∂x2 + ∂2T

∂y2 + ∂2T

∂z2 , (2.52)

which would, in general, come out to be some number. It is a scalar field.
You see that we do not need to keep the parentheses, but can write, without

any chance of confusion,

∇ · (∇T ) =∇ ·∇T = (∇ ·∇)T = ∇2T. (2.53)

We look at ∇2 as a new operator. It is a scalar operator. Because it appears
often in physics, it has been given a special name—the Laplacian.

Laplacian = ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . (2.54)

Since the Laplacian is a scalar operator, we may operate with it on a vector—by
which we mean the same operation on each component in rectangular coordinates:

∇2h = (∇2hx,∇2hy,∇2hz).
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Let’s look at one more possibility: ∇ × (∇ × h), which was (e) in the
list (2.45). Now the curl of the curl can be written differently if we use the vector
equality (2.6):

A× (B ×C) = B(A ·C)−C(A ·B). (2.55)

In order to use this formula, we should replace A and B by the operator ∇ and
put C = h. If we do that, we get

∇× (∇× h) =∇(∇ · h)− h(∇ ·∇) . . . ???

Wait a minute! Something is wrong. The first two terms are vectors all right (the
operators are satisfied), but the last term doesn’t come out to anything. It’s still
an operator. The trouble is that we haven’t been careful enough about keeping
the order of our terms straight. If you look again at Eq. (2.55), however, you see
that we could equally well have written it as

A× (B ×C) = B(A ·C)− (A ·B)C. (2.56)

The order of terms looks better. Now let’s make our substitution in (2.56). We
get

∇× (∇× h) =∇(∇ · h)− (∇ ·∇)h. (2.57)

This form looks all right. It is, in fact, correct, as you can verify by computing
the components. The last term is the Laplacian, so we can equally well write

∇× (∇× h) =∇(∇ · h)−∇2h. (2.58)

We have had something to say about all of the combinations in our list of
double ∇’s, except for (c), ∇(∇ · h). It is a possible vector field, but there is
nothing special to say about it. It’s just some vector field which may occasionally
come up.

It will be convenient to have a table of our conclusions:

(a) ∇ · (∇T ) = ∇2T = a scalar field
(b) ∇× (∇T ) = 0
(c) ∇(∇ · h) = a vector field
(d) ∇ · (∇× h) = 0
(e) ∇× (∇× h) =∇(∇ · h)−∇2h

(f) (∇ ·∇)h = ∇2h = a vector field

(2.59)

You may notice that we haven’t tried to invent a new vector operator (∇×∇).
Do you see why?

2-8 Pitfalls

We have been applying our knowledge of ordinary vector algebra to the algebra
of the operator ∇. We have to be careful, though, because it is possible to go
astray. There are two pitfalls which we will mention, although they will not
come up in this course. What would you say about the following expression, that
involves the two scalar functions ψ and φ (phi):

(∇ψ)× (∇φ)?

You might want to say: it must be zero because it’s just like

(Aa)× (Ab),

which is zero because the cross product of two equal vectors A×A is always zero.
But in our example the two operators ∇ are not equal! The first one operates
on one function, ψ; the other operates on a different function, φ. So although
we represent them by the same symbol ∇, they must be considered as different
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operators. Clearly, the direction of ∇ψ depends on the function ψ, so it is not
likely to be parallel to ∇φ:

(∇ψ)× (∇φ) 6= 0 (generally).

Fortunately, we won’t have to use such expressions. (What we have said doesn’t
change the fact that ∇ ×∇ψ = 0 for any scalar field, because here both ∇’s
operate on the same function.)

Pitfall number two (which, again, we need not get into in our course) is the
following: The rules that we have outlined here are simple and nice when we
use rectangular coordinates. For example, if we have ∇2h and we want the
x-component, it is

(∇2h)x =
(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
hx = ∇2hx. (2.60)

The same expression would not work if we were to ask for the radial component
of ∇2h. The radial component of ∇2h is not equal to ∇2hr. The reason is that
when we are dealing with the algebra of vectors, the directions of the vectors are
all quite definite. But when we are dealing with vector fields, their directions
are different at different places. If we try to describe a vector field in, say, polar
coordinates, what we call the “radial” direction varies from point to point. So
we can get into a lot of trouble when we start to differentiate the components.
For example, even for a constant vector field, the radial component changes from
point to point.

It is usually safest and simplest just to stick to rectangular coordinates
and avoid trouble, but there is one exception worth mentioning: Since the
Laplacian ∇2, is a scalar, we can write it in any coordinate system we want to
(for example, in polar coordinates). But since it is a differential operator, we
should use it only on vectors whose components are in a fixed direction—that
means rectangular coordinates. So we shall express all of our vector fields in
terms of their x-, y-, and z-components when we write our vector differential
equations out in components.
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3-7 Curl-free and divergence-free

fields
3-8 Summary

found in Chapter 2 that there were various ways of taking derivatives of
fields. Some gave vector fields; some gave scalar fields. Although we developed
many different formulas, everything in Chapter 2 could be summarized in one
rule: the operators ∂/∂x, ∂/∂y, and ∂/∂z are the three components of a vector
operator ∇. We would now like to get some understanding of the significance
of the derivatives of fields. We will then have a better feeling for what a vector
field equation means.

We have already discussed the meaning of the gradient operation (∇ on a
scalar). Now we turn to the meanings of the divergence and curl operations. The
interpretation of these quantities is best done in terms of certain vector integrals
and equations relating such integrals. These equations cannot, unfortunately, be
obtained from vector algebra by some easy substitution, so you will just have to
learn them as something new. Of these integral formulas, one is practically trivial,
but the other two are not. We will derive them and explain their implications.
The equations we shall study are really mathematical theorems. They will be
useful not only for interpreting the meaning and the content of the divergence and
the curl, but also in working out general physical theories. These mathematical
theorems are, for the theory of fields, what the theorem of the conservation of
energy is to the mechanics of particles. General theorems like these are important
for a deeper understanding of physics. You will find, though, that they are not
very useful for solving problems—except in the simplest cases. It is delightful,
however, that in the beginning of our subject there will be many simple problems
which can be solved with the three integral formulas we are going to treat. We
will see, however, as the problems get harder, that we can no longer use these
simple methods.

(1)

(2)

Curve Γ

ds

∇ψ

Fig. 3-1. The terms used in Eq. (3.1).
The vector ∇ψ is evaluated at the line ele-
ments ds.

We take up first an integral formula involving the gradient. The relation
contains a very simple idea: Since the gradient represents the rate of change of a
field quantity, if we integrate that rate of change, we should get the total change.
Suppose we have the scalar field ψ(x, y, z). At any two points (1) and (2), the
function ψ will have the values ψ(1) and ψ(2), respectively. [We use a convenient
notation, in which (2) represents the point (x2, y2, z2) and ψ(2) means the same
thing as ψ(x2, y2, z2).] If Γ (gamma) is any curve joining (1) and (2), as in Fig. 3-1,
the following relation is true:

Theorem 1.

ψ(2)− ψ(1) =
∫ (2)

(1)
along Γ

(∇ψ) · ds . (3.1)

The integral is a line integral, from (1) to (2) along the curve Γ, of the dot product
of ∇ψ—a vector—with ds—another vector which is an infinitesimal line element
of the curve Γ (directed away from (1) and toward (2)).

(1)

(2)

Curve Γ

a b

c
∆s1

∆s2

∆s3

∆si

∇ψ
(∇ψ)t

Fig. 3-2. The line integral is the limit of
a sum.

First, we should review what we mean by a line integral. Consider a scalar
function f(x, y, z), and the curve Γ joining two points (1) and (2). We mark off
the curve at a number of points and join these points by straight-line segments,
as shown in Fig. 3-2. Each segment has the length ∆si, where i is an index that
runs 1, 2, 3, . . . By the line integral∫ (2)

(1)
along Γ

f ds
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we mean the limit of the sum ∑
i
fi∆si,

where fi is the value of the function at the ith segment. The limiting value is
what the sum approaches as we add more and more segments (in a sensible way,
so that the largest ∆si → 0).

The integral in our theorem, Eq. (3.1), means the same thing, although it
looks a little different. Instead of f , we have another scalar—the component
of ∇ψ in the direction of ∆s. If we write (∇ψ)t for this tangential component,
it is clear that

(∇ψ)t ∆s = (∇ψ) ·∆s. (3.2)
The integral in Eq. (3.1) means the sum of such terms.

Now let’s see why Eq. (3.1) is true. In Chapter 2, we showed that the
component of ∇ψ along a small displacement ∆R was the rate of change of ψ
in the direction of ∆R. Consider the line segment ∆s from (1) to point a in
Fig. 3-2. According to our definition,

∆ψ1 = ψ(a)− ψ(1) = (∇ψ)1 ·∆s1. (3.3)
Also, we have

ψ(b)− ψ(a) = (∇ψ)2 ·∆s2, (3.4)

where, of course, (∇ψ)1 means the gradient evaluated at the segment ∆s1,
and (∇ψ)2, the gradient evaluated at ∆s2. If we add Eqs. (3.3) and (3.4), we get

ψ(b)− ψ(1) = (∇ψ)1 ·∆s1 + (∇ψ)2 ·∆s2. (3.5)

You can see that if we keep adding such terms, we get the result

ψ(2)− ψ(1) =
∑

i
(∇ψ)i ·∆si. (3.6)

The left-hand side doesn’t depend on how we choose our intervals—if (1) and (2)
are kept always the same—so we can take the limit of the right-hand side. We
have therefore proved Eq. (3.1).

You can see from our proof that just as the equality doesn’t depend on how
the points a b, c, . . . , are chosen, similarly it doesn’t depend on what we choose
for the curve Γ to join (1) and (2). Our theorem is correct for any curve from (1)
to (2).

One remark on notation: You will see that there is no confusion if we write,
for convenience,

(∇ψ) · ds =∇ψ · ds. (3.7)
With this notation, our theorem is

Theorem 1.

ψ(2)− ψ(1) =
∫ (2)

(1)
any curve from

(1) to (2)

∇ψ · ds . (3.8)

3-2 The flux of a vector field

h

n

da

Closed
Surface S

Volume V

Fig. 3-3. The closed surface S defines
the volume V . The unit vector n is the
outward normal to the surface element da,
and h is the heat-flow vector at the surface
element.

Before we consider our next integral theorem—a theorem about the divergence
—we would like to study a certain idea which has an easily understood physical
significance in the case of heat flow. We have defined the vector h, which represents
the heat that flows through a unit area in a unit time. Suppose that inside a
block of material we have some closed surface S which encloses the volume V
(Fig. 3-3). We would like to find out how much heat is flowing out of this volume.
We can, of course, find it by calculating the total heat flow out of the surface S.

We write da for the area of an element of the surface. The symbol stands for
a two-dimensional differential. If, for instance, the area happened to be in the
xy-plane we would have

da = dx dy.
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Later we shall have integrals over volume and for these it is convenient to consider
a differential volume that is a little cube. So when we write dV we mean

dV = dx dy dz.

Some people like to write d2a instead of da to remind themselves that it is
kind of a second-order quantity. They would also write d3V instead of dV . We
will use the simpler notation, and assume that you can remember that an area
has two dimensions and a volume has three.

The heat flow out through the surface element da is the area times the
component of h perpendicular to da. We have already defined n as a unit vector
pointing outward at right angles to the surface (Fig. 3-3). The component of h
that we want is

hn = h · n. (3.9)

The heat flow out through da is then

h · n da. (3.10)

To get the total heat flow through any surface we sum the contributions from all
the elements of the surface. In other words, we integrate (3.10) over the whole
surface:

Total heat flow outward through S =
∫
S

h · n da. (3.11)

We are also going to call this surface integral “the flux of h through the
surface.” Originally the word flux meant flow, so that the surface integral just
means the flow of h through the surface. We may think: h is the “current density”
of heat flow and the surface integral of it is the total heat current directed out of
the surface; that is, the thermal energy per unit time (joules per second).

We would like to generalize this idea to the case where the vector does not
represent the flow of anything; for instance, it might be the electric field. We can
certainly still integrate the normal component of the electric field over an area if
we wish. Although it is not the flow of anything, we still call it the “flux.” We say

Flux of E through the surface S =
∫
S

E · n da. (3.12)

We generalize the word “flux” to mean the “surface integral of the normal
component” of a vector. We will also use the same definition even when the
surface considered is not a closed one, as it is here.

Returning to the special case of heat flow, let us take a situation in which
heat is conserved. For example, imagine some material in which after an initial
heating no further heat energy is generated or absorbed. Then, if there is a net
heat flow out of a closed surface, the heat content of the volume inside must
decrease. So, in circumstances in which heat would be conserved, we say that∫

S

h · n da = −dQ
dt
, (3.13)

where Q is the heat inside the surface. The heat flux out of S is equal to minus
the rate of change with respect to time of the total heat Q inside of S. This
interpretation is possible because we are speaking of heat flow and also because
we supposed that the heat was conserved. We could not, of course, speak of the
total heat inside the volume if heat were being generated there.

Now we shall point out an interesting fact about the flux of any vector. You
may think of the heat flow vector if you wish, but what we say will be true for
any vector field C. Imagine that we have a closed surface S that encloses the
volume V . We now separate the volume into two parts by some kind of a “cut,”
as in Fig. 3-4. Now we have two closed surfaces and volumes. The volume V1 is
enclosed in the surface S1, which is made up of part of the original surface Sa and
of the surface of the cut, Sab. The volume V2 is enclosed by S2, which is made up
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Fig. 3-4. A volume V contained inside the surface S
is divided into two pieces by a “cut” at the surface Sab.
We now have the volume V1 enclosed in the surface
S1 = Sa +Sab and the volume V2 enclosed in the surface
S2 = Sb + Sab.

n

n1n2

C

C

cut

Sab

Sa Sb

V1 V2

of the rest of the original surface Sb and closed off by the cut Sab. Now consider
the following question: Suppose we calculate the flux out through surface S1 and
add to it the flux through surface S2. Does the sum equal the flux through the
whole surface that we started with? The answer is yes. The flux through the
part of the surfaces Sab common to both S1 and S2 just exactly cancels out. For
the flux of the vector C out of V1 we can write

Flux through S1 =
∫
Sa

C · n da+
∫
Sab

C · n1 da, (3.14)

and for the flux out of V2,

Flux through S2 =
∫
Sb

C · n da+
∫
Sab

C · n2 da. (3.15)

Note that in the second integral we have written n1 for the outward normal
for Sab when it belongs to S1, and n2 when it belongs to S2, as shown in Fig. 3-4.
Clearly, n1 = −n2, so that∫

Sab

C · n1 da = −
∫
Sab

C · n2 da. (3.16)

If we now add Eqs. (3.14) and (3.15), we see that the sum of the fluxes through
S1 and S2 is just the sum of two integrals which, taken together, give the flux
through the original surface S = Sa + Sb.

We see that the flux through the complete outer surface S can be considered
as the sum of the fluxes from the two pieces into which the volume was broken.
We can similarly subdivide again—say by cutting V1 into two pieces. You see
that the same arguments apply. So for any way of dividing the original volume,
it must be generally true that the flux through the outer surface, which is the
original integral, is equal to a sum of the fluxes out of all the little interior pieces.

3-3 The flux from a cube; Gauss’ theorem
(x, y , z)

(x + ∆x, y , z)

(x, y + ∆y, z)

(x, y , z + ∆z)

∆x

∆y

∆z

1 2

3

4

5

6

n n′

C

Cx

C′

Fig. 3-5. Computation of the flux of C
out of a small cube.

We now take the special case of a small cube* and find an interesting formula
for the flux out of it. Consider a cube whose edges are lined up with the axes
as in Fig. 3-5. Let us suppose that the coordinates of the corner nearest the
origin are x, y, z. Let ∆x be the length of the cube in the x-direction, ∆y be
the length in the y-direction, and ∆z be the length in the z-direction. We wish
to find the flux of a vector field C through the surface of the cube. We shall do
this by making a sum of the fluxes through each of the six faces. First, consider
the face marked 1 in the figure. The flux outward on this face is the negative of
the x-component of C, integrated over the area of the face. This flux is

−
∫
Cx dy dz.

* The following development applies equally well to any rectangular parallelepiped.
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Since we are considering a small cube, we can approximate this integral by the
value of Cx at the center of the face—which we call the point (1)—multiplied by
the area of the face, ∆y∆z:

Flux out of 1 = −Cx(1) ∆y∆z.

Similarly, for the flux out of face 2, we write

Flux out of 2 = Cx(2) ∆y∆z.

Now Cx(1) and Cx(2) are, in general, slightly different. If ∆x is small enough,
we can write

Cx(2) = Cx(1) + ∂Cx
∂x

∆x.

There are, of course, more terms, but they will involve (∆x)2 and higher powers,
and so will be negligible if we consider only the limit of small ∆x. So the flux
through face 2 is

Flux out of 2 =
[
Cx(1) + ∂Cx

∂x
∆x
]

∆y∆z.

Summing the fluxes for faces 1 and 2, we get

Flux out of 1 and 2 = ∂Cx
∂x

∆x∆y∆z.

The derivative should really be evaluated at the center of face 1; that is, at
[x, y + (∆y/2), z + (∆z/2)]. But in the limit of an infinitesimal cube, we make a
negligible error if we evaluate it at the corner (x, y, z).

Applying the same reasoning to each of the other pairs of faces, we have

Flux out of 3 and 4 = ∂Cy
∂y

∆x∆y∆z

and
Flux out of 5 and 6 = ∂Cz

∂z
∆x∆y∆z.

The total flux through all the faces is the sum of these terms. We find that∫
cube

C · n da =
(
∂Cx
∂x

+ ∂Cy
∂y

+ ∂Cz
∂z

)
∆x∆y∆z,

and the sum of the derivatives is just ∇ ·C. Also, ∆x∆y∆z = ∆V , the volume
of the cube. So we can say that for an infinitesimal cube∫

surface

C · n da = (∇ ·C) ∆V. (3.17)

We have shown that the outward flux from the surface of an infinitesimal cube is
equal to the divergence of the vector multiplied by the volume of the cube. We
now see the “meaning” of the divergence of a vector. The divergence of a vector
at the point P is the flux—the outgoing “flow” of C—per unit volume, in the
neighborhood of P .

We have connected the divergence ofC to the flux ofC out of each infinitesimal
volume. For any finite volume we can use the fact we proved above—that the
total flux from a volume is the sum of the fluxes out of each part. We can, that
is, integrate the divergence over the entire volume. This gives us the theorem
that the integral of the normal component of any vector over any closed surface
can also be written as the integral of the divergence of the vector over the volume
enclosed by the surface. This theorem is named after Gauss.

Gauss’ Theorem. ∫
S

C · n da =
∫
V

∇ ·C dV, (3.18)

where S is any closed surface and V is the volume inside it.
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3-4 Heat conduction; the diffusion equation

Let’s consider an example of the use of this theorem, just to get familiar with
it. Suppose we take again the case of heat flow in, say, a metal. Suppose we
have a simple situation in which all the heat has been previously put in and the
body is just cooling off. There are no sources of heat, so that heat is conserved.
Then how much heat is there inside some chosen volume at any time? It must
be decreasing by just the amount that flows out of the surface of the volume. If
our volume is a little cube, we would write, following Eq. (3.17),

Heat out =
∫
cube

h · n da =∇ · h∆V. (3.19)

But this must equal the rate of loss of the heat inside the cube. If q is the heat
per unit volume, the heat in the cube is q∆V , and the rate of loss is

− ∂

∂t
(q∆V ) = −∂q

∂t
∆V. (3.20)

Comparing (3.19) and (3.20), we see that

− ∂q

∂t
=∇ · h. (3.21)

Take careful note of the form of this equation; the form appears often in
physics. It expresses a conservation law—here the conservation of heat. We have
expressed the same physical fact in another way in Eq. (3.13). Here we have the
differential form of a conservation equation, while Eq. (3.13) is the integral form.

We have obtained Eq. (3.21) by applying Eq. (3.13) to an infinitesimal cube.
We can also go the other way. For a big volume V bounded by S, Gauss’ law
says that ∫

S

h · n da =
∫
V

∇ · h dV. (3.22)

Using (3.21), the integral on the right-hand side is found to be just −dQ/dt, and
again we have Eq. (3.13).

h

R

Block of metal

Source
of heat

Fig. 3-6. In the region near a point source
of heat, the heat flow is radially outward.

Now let’s consider a different case. Imagine that we have a block of material
and that inside it there is a very tiny hole in which some chemical reaction is
taking place and generating heat. Or we could imagine that there are some wires
running into a tiny resistor that is being heated by an electric current. We shall
suppose that the heat is generated practically at a point, and let W represent
the energy liberated per second at that point. We shall suppose that in the rest
of the volume heat is conserved, and that the heat generation has been going on
for a long time—so that now the temperature is no longer changing anywhere.
The problem is: What does the heat vector h look like at various places in the
metal? How much heat flow is there at each point?

We know that if we integrate the normal component of h over a closed surface
that encloses the source, we will always get W . All the heat that is being
generated at the point source must flow out through the surface, since we have
supposed that the flow is steady. We have the difficult problem of finding a vector
field which, when integrated over any surface, always gives W . We can, however,
find the field rather easily by taking a somewhat special surface. We take a
sphere of radius R, centered at the source, and assume that the heat flow is radial
(Fig. 3-6). Our intuition tells us that h should be radial if the block of material
is large and we don’t get too close to the edges, and it should also have the same
magnitude at all points on the sphere. You see that we are adding a certain
amount of guesswork—usually called “physical intuition”—to our mathematics
in order to find the answer.

When h is radial and spherically symmetric, the integral of the normal
component of h over the area is very simple, because the normal component
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is just the magnitude of h and is constant. The area over which we integrate
is 4πR2. We have then that ∫

S

h · n da = h · 4πR2 (3.23)

(where h is the magnitude of h). This integral should equal W , the rate at which
heat is produced at the source. We get

h = W

4πR2 ,

or
h = W

4πR2 er, (3.24)

where, as usual, er represents a unit vector in the radial direction. Our result
says that h is proportional toW and varies inversely as the square of the distance
from the source.

The result we have just obtained applies to the heat flow in the vicinity of
a point source of heat. Let’s now try to find the equations that hold in the
most general kind of heat flow, keeping only the condition that heat is conserved.
We will be dealing only with what happens at places outside of any sources or
absorbers of heat.

The differential equation for the conduction of heat was derived in Chapter 2.
According to Eq. (2.44),

h = −κ∇T. (3.25)
(Remember that this relationship is an approximate one, but fairly good for
some materials like metals.) It is applicable, of course, only in regions of the
material where there is no generation or absorption of heat. We derived above
another relation, Eq. (3.21), that holds when heat is conserved. If we combine
that equation with (3.25), we get

−∂q
∂t

=∇ · h = −∇ · (κ∇T ),
or

∂q

∂t
= κ∇ ·∇T = κ∇2T, (3.26)

if κ is a constant. You remember that q is the amount of heat in a unit volume
and ∇ ·∇ = ∇2 is the Laplacian operator

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

If we now make one more assumption we can obtain a very interesting equation.
We assume that the temperature of the material is proportional to the heat content
per unit volume—that is, that the material has a definite specific heat. When
this assumption is valid (as it often is), we can write

∆q = cv ∆T
or

∂q

∂t
= cv

∂T

∂t
. (3.27)

The rate of change of heat is proportional to the rate of change of temperature.
The constant of proportionality cv is, here, the specific heat per unit volume of
the material. Using Eq. (3.27) with (3.26), we get

∂T

∂t
= κ

cv
∇2T. (3.28)

We find that the time rate of change of T—at every point—is proportional to
the Laplacian of T , which is the second derivative of its spatial dependence. We
have a differential equation—in x, y, z, and t—for the temperature T .
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The differential equation (3.28) is called the heat diffusion equation. It is
often written as

∂T

∂t
= D∇2T, (3.29)

where D is called the diffusion constant, and is here equal to κ/cv.
The diffusion equation appears in many physical problems—in the diffusion of

gases, in the diffusion of neutrons, and in others. We have already discussed the
physics of some of these phenomena in Chapter 43 of Vol. I. Now you have the
complete equation that describes diffusion in the most general possible situation.
At some later time we will take up ways of solving the diffusion equation to find
how the temperature varies in particular cases. We turn back now to consider
other theorems about vector fields.

3-5 The circulation of a vector field

Loop Γ

ds

ds

ds

C

C

C

Ct

Ct

Fig. 3-7. The circulation of C around
the curve Γ is the line integral of Ct , the
tangential component of C.

We wish now to look at the curl in somewhat the same way we looked at
the divergence. We obtained Gauss’ theorem by considering the integral over
a surface, although it was not obvious at the beginning that we were going to
be dealing with the divergence. How did we know that we were supposed to
integrate over a surface in order to get the divergence? It was not at all clear
that this would be the result. And so with an apparent equal lack of justification,
we shall calculate something else about a vector and show that it is related to
the curl. This time we calculate what is called the circulation of a vector field.
If C is any vector field, we take its component along a curved line and take the
integral of this component all the way around a complete loop. The integral
is called the circulation of the vector field around the loop. We have already
considered a line integral of ∇ψ earlier in this chapter. Now we do the same
kind of thing for any vector field C.

Let Γ be any closed loop in space—imaginary, of course. An example is given
in Fig. 3-7. The line integral of the tangential component of C around the loop
is written as ∮

Γ
Ct ds =

∮
Γ
C · ds. (3.30)

You should note that the integral is taken all the way around, not from one point
to another as we did before. The little circle on the integral sign is to remind
us that the integral is to be taken all the way around. This integral is called
the circulation of the vector field around the curve Γ. The name came originally
from considering the circulation of a liquid. But the name—like flux—has been
extended to apply to any field even when there is no material “circulating.”

(1)

(2)

Γ1
Γ2

Γa
ΓbΓab

ds2

ds1

Fig. 3-8. The circulation around the
whole loop is the sum of the circulations
around the two loops: Γ1 = Γa + Γab and
Γ2 = Γb + Γab.

Playing the same kind of game we did with the flux, we can show that the
circulation around a loop is the sum of the circulations around two partial loops.
Suppose we break up our curve of Fig. 3-7 into two loops, by joining two points
(1) and (2) on the original curve by some line that cuts across as shown in Fig. 3-8.
There are now two loops, Γ1 and Γ2. Γ1 is made up of Γa, which is that part of
the original curve to the left of (1) and (2), plus Γab, the “short cut.” Γ2 is made
up of the rest of the original curve plus the short cut.

The circulation around Γ1 is the sum of an integral along Γa and along Γab.
Similarly, the circulation around Γ2 is the sum of two parts, one along Γb and the
other along Γab. The integral along Γab will have, for the curve Γ2, the opposite
sign from what it has for Γ1, because the direction of travel is opposite—we must
take both our line integrals with the same “sense” of rotation.

Following the same kind of argument we used before, you can see that the
sum of the two circulations will give just the line integral around the original
curve Γ. The parts due to Γab cancel. The circulation around the one part plus
the circulation around the second part equals the circulation about the outer
line. We can continue the process of cutting the original loop into any number
of smaller loops. When we add the circulations of the smaller loops, there is
always a cancellation of the parts on their adjacent portions, so that the sum is
equivalent to the circulation around the original single loop.
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Loop Γ

Fig. 3-9. Some surface bounded by the
loop Γ is chosen. The surface is divided
into a number of small areas, each approxi-
mately a square. The circulation around Γ

is the sum of the circulations around the
little loops.

Now let us suppose that the original loop is the boundary of some surface.
There are, of course, an infinite number of surfaces which all have the original
loops as the boundary. Our results will not, however, depend on which surface
we choose. First, we break our original loop into a number of small loops that
all lie on the surface we have chosen, as in Fig. 3-9. No matter what the shape
of the surface, if we choose our small loops small enough, we can assume that
each of the small loops will enclose an area which is essentially flat. Also, we can
choose our small loops so that each is very nearly a square. Now we can calculate
the circulation around the big loop Γ by finding the circulations around all of
the little squares and then taking their sum.

3-6 The circulation around a square; Stokes’ theorem

How shall we find the circulation for each little square? One question is, how
is the square oriented in space? We could easily make the calculation if it had a
special orientation. For example, if it were in one of the coordinate planes. Since
we have not assumed anything as yet about the orientation of the coordinate
axes, we can just as well choose the axes so that the one little square we are
concentrating on at the moment lies in the xy-plane, as in Fig. 3-10. If our result
is expressed in vector notation, we can say that it will be the same no matter
what the particular orientation of the plane.

x

y

(x, y)

∆x

∆y

C

Cx

CCy

1

2

3

4

Fig. 3-10. Computing the circulation of C
around a small square.

We want now to find the circulation of the field C around our little square. It
will be easy to do the line integral if we make the square small enough that the
vector C doesn’t change much along any one side of the square. (The assumption
is better the smaller the square, so we are really talking about infinitesimal
squares.) Starting at the point (x, y)—the lower left corner of the figure—we go
around in the direction indicated by the arrows. Along the first side—marked (1)—
the tangential component is Cx(1) and the distance is ∆x. The first part of the
integral is Cx(1) ∆x. Along the second leg, we get Cy(2) ∆y. Along the third, we
get −Cx(3) ∆x, and along the fourth, −Cy(4) ∆y. The minus signs are required
because we want the tangential component in the direction of travel. The whole
line integral is then∮

C · ds = Cx(1) ∆x+ Cy(2) ∆y − Cx(3) ∆x− Cy(4) ∆y. (3.31)

Now let’s look at the first and third pieces. Together they are

[Cx(1)− Cx(3)] ∆x. (3.32)

You might think that to our approximation the difference is zero. That is true
to the first approximation. We can be more accurate, however, and take into
account the rate of change of Cx. If we do, we may write

Cx(3) = Cx(1) + ∂Cx
∂y

∆y. (3.33)

If we included the next approximation, it would involve terms in (∆y)2, but since
we will ultimately think of the limit as ∆y → 0, such terms can be neglected.
Putting (3.33) together with (3.32), we find that

[Cx(1)− Cx(3)] ∆x = −∂Cx
∂y

∆x∆y. (3.34)

The derivative can, to our approximation, be evaluated at (x, y).
Similarly, for the other two terms in the circulation, we may write

Cy(2) ∆y − Cy(4) ∆y = ∂Cy
∂x

∆x∆y. (3.35)

The circulation around our square is then(
∂Cy
∂x
− ∂Cx

∂y

)
∆x∆y, (3.36)
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which is interesting, because the two terms in the parentheses are just the z-
component of the curl. Also, we note that ∆x∆y is the area of our square. So
we can write our circulation (3.36) as

(∇×C)z ∆a.

But the z-component really means the component normal to the surface element.
We can, therefore, write the circulation around a differential square in an invariant
vector form: ∮

C · ds = (∇×C)n ∆a = (∇×C) · n∆a. (3.37)

Our result is: the circulation of any vector C around an infinitesimal square
is the component of the curl of C normal to the surface, times the area of the
square. C

ds Loop Γ

Surface S

n

∇× C

Fig. 3-11. The circulation of C around Γ

is the surface integral of the normal compo-
nent of ∇× C.

The circulation around any loop Γ can now be easily related to the curl of
the vector field. We fill in the loop with any convenient surface S, as in Fig. 3-11,
and add the circulations around a set of infinitesimal squares in this surface. The
sum can be written as an integral. Our result is a very useful theorem called
Stokes’ theorem (after Mr. Stokes).

Stokes’ Theorem. ∮
Γ
C · ds =

∫
S

(∇×C)n da, (3.38)

where S is any surface bounded by Γ.

We must now speak about a convention of signs. In Fig. 3-10 the z-axis would
point toward you in a “usual”—that is, “right-handed”—system of axes. When
we took our line integral with a “positive” sense of rotation, we found that the
circulation was equal to the z-component of ∇×C. If we had gone around the
other way, we would have gotten the opposite sign. Now how shall we know,
in general, what direction to choose for the positive direction of the “normal”
component of ∇×C? The “positive” normal must always be related to the sense
of rotation, as in Fig. 3-10. It is indicated for the general case in Fig. 3-11.

One way of remembering the relationship is by the “right-hand rule.” If you
make the fingers of your right hand go around the curve Γ, with the fingertips
pointed in the direction of the positive sense of ds, then your thumb points in
the direction of the positive normal to the surface S.

3-7 Curl-free and divergence-free fields

C

(1)

(2)

a

b

Fig. 3-12. If∇×C is zero, the circulation
around the closed curve Γ is zero. The line
integral from (1) to (2) along a must be
the same as the line integral along b.

We would like, now, to consider some consequences of our new theorems. Take
first the case of a vector whose curl is everywhere zero. Then Stokes’ theorem
says that the circulation around any loop is zero. Now if we choose two points
(1) and (2) on a closed curve (Fig. 3-12), it follows that the line integral of the
tangential component from (1) to (2) is independent of which of the two possible
paths is taken. We can conclude that the integral from (1) to (2) can depend
only on the location of these points—that is to say, it is some function of position
only. The same logic was used in Chapter 14 of Vol. I, where we proved that
if the integral around a closed loop of some quantity is always zero, then that
integral can be represented as the difference of a function of the position of the
two ends. This fact allowed us to invent the idea of a potential. We proved,
furthermore, that the vector field was the gradient of this potential function (see
Eq. 14.13 of Vol. I).

It follows that any vector field whose curl is zero is equal to the gradient of
some scalar function. That is, if ∇×C = 0, everywhere, there is some ψ (psi)
for which C =∇ψ—a useful idea. We can, if we wish, describe this special kind
of vector field by means of a scalar field.

Let’s show something else. Suppose we have any scalar field φ (phi). If we
take its gradient, ∇φ, the integral of this vector around any closed loop must be
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zero. Its line integral from point (1) to point (2) is [φ(2)− φ(1)]. If (1) and (2)
are the same points, our Theorem 1, Eq. (3.8), tells us that the line integral is
zero: ∮

loop

∇φ · ds = 0.

Using Stokes’ theorem, we can conclude that∫
(∇× (∇φ))n da = 0

over any surface. But if the integral is zero over any surface, the integrand must
be zero. So

∇× (∇φ) = 0, always.
We proved the same result in Section 2-7 by vector algebra.

Loop Γ

Surface S

n

∇× C

Fig. 3-13. Going to the limit of a closed
surface, we find that the surface integral
of (∇× C)n must vanish.

Let’s look now at a special case in which we fill in a small loop Γ with a
large surface S, as indicated in Fig. 3-13. We would like, in fact, to see what
happens when the loop shrinks down to a point, so that the surface boundary
disappears—the surface becomes closed. Now if the vector C is everywhere finite,
the line integral around Γ must go to zero as we shrink the loop—the integral is
roughly proportional to the circumference of Γ, which goes to zero. According to
Stokes’ theorem, the surface integral of (∇×C)n must also vanish. Somehow,
as we close the surface we add in contributions that cancel out what was there
before. So we have a new theorem:∫

any closed
surface

(∇×C)n da = 0. (3.39)

Now this is interesting, because we already have a theorem about the surface
integral of a vector field. Such a surface integral is equal to the volume integral
of the divergence of the vector, according to Gauss’ theorem (Eq. 3.18). Gauss’
theorem, applied to ∇×C, says∫

closed
surface

(∇×C)n da =
∫

volume
inside

∇ · (∇×C) dV. (3.40)

So we conclude that the second integral must also be zero:∫
any

volume

∇ · (∇×C) dV = 0, (3.41)

and this is true for any vector field C whatever. Since Eq. (3.41) is true for any
volume, it must be true that at every point in space the integrand is zero. We
have

∇ · (∇×C) = 0, always.
But this is the same result we got from vector algebra in Section 2-7. Now we
begin to see how everything fits together.

3-8 Summary

Let us summarize what we have found about the vector calculus. These are
really the salient points of Chapters 2 and 3:

1. The operators ∂/∂x, ∂/∂y, and ∂/∂z can be considered as the three com-
ponents of a vector operator ∇, and the formulas which result from vector
algebra by treating this operator as a vector are correct:

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
.
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2. The difference of the values of a scalar field at two points is equal to the line
integral of the tangential component of the gradient of that scalar along
any curve at all between the first and second points:

ψ(2)− ψ(1) =
∫ (2)

(1)
any curve

∇ψ · ds. (3.42)

3. The surface integral of the normal component of an arbitrary vector over a
closed surface is equal to the integral of the divergence of the vector over
the volume interior to the surface:∫

closed
surface

C · n da =
∫

volume
inside

∇ ·C dV. (3.43)

4. The line integral of the tangential component of an arbitrary vector around
a closed loop is equal to the surface integral of the normal component of
the curl of that vector over any surface which is bounded by the loop:∫

boundary

C · ds =
∫

surface

(∇×C) · n da. (3.44)
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4

Electrostatics

4-1 Statics

We 4-1 Statics
4-2 Coulomb’s law; superposition
4-3 Electric potential
4-4 E = −∇φ
4-5 The flux of E
4-6 Gauss’ law; the divergence of E
4-7 Field of a sphere of charge
4-8 Field lines; equipotential surfaces

begin now our detailed study of the theory of electromagnetism. All of
electromagnetism is contained in the Maxwell equations.

Maxwell’s equations:
∇ ·E = ρ

ε0
, (4.1)

∇×E = −∂B
∂t

, (4.2)

c2∇×B = ∂E

∂t
+ j

ε0
, (4.3)

∇ ·B = 0. (4.4)

Review: Chapters 13 and 14, Vol. I,
Work and Potential Energy

The situations that are described by these equations can be very complicated.
We will consider first relatively simple situations, and learn how to handle them
before we take up more complicated ones. The easiest circumstance to treat is
one in which nothing depends on the time—called the static case. All charges
are permanently fixed in space, or if they do move, they move as a steady flow
in a circuit (so ρ and j are constant in time). In these circumstances, all of the
terms in the Maxwell equations which are time derivatives of the field are zero.
In this case, the Maxwell equations become:

ε0c
2 =

107

4π
1

4πε0
≈ 9× 109

[ε0] = coulomb2/newton·meter2

Electrostatics:
∇ ·E = ρ

ε0
, (4.5)

∇×E = 0. (4.6)

Magnetostatics:
∇×B = j

ε0c2
, (4.7)

∇ ·B = 0. (4.8)

You will notice an interesting thing about this set of four equations. It can
be separated into two pairs. The electric field E appears only in the first two,
and the magnetic field B appears only in the second two. The two fields are
not interconnected. This means that electricity and magnetism are distinct
phenomena so long as charges and currents are static. The interdependence of E
and B does not appear until there are changes in charges or currents, as when a
condensor is charged, or a magnet moved. Only when there are sufficiently rapid
changes, so that the time derivatives in Maxwell’s equations become significant,
will E and B depend on each other.

Now if you look at the equations of statics you will see that the study of
the two subjects we call electrostatics and magnetostatics is ideal from the
point of view of learning about the mathematical properties of vector fields.
Electrostatics is a neat example of a vector field with zero curl and a given
divergence. Magnetostatics is a neat example of a field with zero divergence
and a given curl. The more conventional—and you may be thinking, more
satisfactory—way of presenting the theory of electromagnetism is to start first
with electrostatics and thus to learn about the divergence. Magnetostatics and
the curl are taken up later. Finally, electricity and magnetism are put together.
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We have chosen to start with the complete theory of vector calculus. Now we
shall apply it to the special case of electrostatics, the field of E given by the first
pair of equations.

We will begin with the simplest situations—ones in which the positions of all
charges are specified. If we had only to study electrostatics at this level (as we
shall do in the next two chapters), life would be very simple—in fact, almost trivial.
Everything can be obtained from Coulomb’s law and some integration, as you
will see. In many real electrostatic problems, however, we do not know, initially,
where the charges are. We know only that they have distributed themselves in
ways that depend on the properties of matter. The positions that the charges take
up depend on the E field, which in turn depends on the positions of the charges.
Then things can get quite complicated. If, for instance, a charged body is brought
near a conductor or insulator, the electrons and protons in the conductor or
insulator will move around. The charge density ρ in Eq. (4.5) may have one
part that we know about, from the charge that we brought up; but there will
be other parts from charges that have moved around in the conductor. And all
of the charges must be taken into account. One can get into some rather subtle
and interesting problems. So although this chapter is to be on electrostatics, it
will not cover the more beautiful and subtle parts of the subject. It will treat
only the situation where we can assume that the positions of all the charges are
known. Naturally, you should be able to do that case before you try to handle
the other ones.

4-2 Coulomb’s law; superposition

It would be logical to use Eqs. (4.5) and (4.6) as our starting points. It will
be easier, however, if we start somewhere else and come back to these equations.
The results will be equivalent. We will start with a law that we have talked
about before, called Coulomb’s law, which says that between two charges at rest
there is a force directly proportional to the product of the charges and inversely
proportional to the square of the distance between. The force is along the straight
line from one charge to the other.

Coulomb’s law:
F 1 = 1

4πε0
q1q2

r2
12
e12 = −F 2. (4.9)

F 1 is the force on charge q1, e12 is the unit vector in the direction to q1 from q2,
and r12 is the distance between q1 and q2. The force F 2 on q2 is equal and
opposite to F 1.

The constant of proportionality, for historical reasons, is written as 1/4πε0.
In the system of units which we use—the mks system—it is defined as exactly
10−7 times the speed of light squared. Now since the speed of light is approximately
3× 108 meters per second, the constant is approximately 9× 109, and the unit
turns out to be newton·meter2 per coulomb2 or volt·meter per coulomb.

1
4πε0

= 10−7c2 (by definition)

= 9.0× 109 (by experiment). (4.10)
Unit: newton·meter2/coulomb2,

or volt·meter/coulomb.

When there are more than two charges present—the only really interesting
times—we must supplement Coulomb’s law with one other fact of nature: the
force on any charge is the vector sum of the Coulomb forces from each of the
other charges. This fact is called “the principle of superposition.” That’s all
there is to electrostatics. If we combine the Coulomb law and the principle of
superposition, there is nothing else. Equations (4.5) and (4.6)—the electrostatic
equations—say no more and no less.

When applying Coulomb’s law, it is convenient to introduce the idea of an
electric field. We say that the field E(1) is the force per unit charge on q1 (due
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to all other charges). Dividing Eq. (4.9) by q1, we have, for one other charge
besides q1,

E(1) = 1
4πε0

q2

r2
12
e12. (4.11)

Also, we consider that E(1) describes something about the point (1) even if q1
were not there—assuming that all other charges keep their same positions. We
say: E(1) is the electric field at the point (1).

The electric field E is a vector, so by Eq. (4.11) we really mean three equa-
tions—one for each component. Writing out explicitly the x-component, Eq. (4.11)
means

Ex(x1, y1, z1) = q2

4πε0
x1 − x2

[(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]3/2 , (4.12)

and similarly for the other components.
If there are many charges present, the field E at any point (1) is a sum of

the contributions from each of the other charges. Each term of the sum will look
like (4.11) or (4.12). Letting qj be the magnitude of the jth charge, and r1j the
displacement from qj to the point (1), we write

E(1) =
∑
j

1
4πε0

qj
r2
1j
e1j . (4.13)

Which means, of course,

Ex(x1, y1, z1) =
∑
j

1
4πε0

qj(x1 − xj)
[(x1 − xj)2 + (y1 − yj)2 + (z1 − zj)2]3/2 , (4.14)

and so on.
Often it is convenient to ignore the fact that charges come in packages like

electrons and protons, and think of them as being spread out in a continuous
smear—or in a “distribution,” as it is called. This is O.K. so long as we are
not interested in what is happening on too small a scale. We describe a charge
distribution by the “charge density,” ρ(x, y, z). If the amount of charge in a small
volume ∆V2 located at the point (2) is ∆q2, then ρ is defined by

∆q2 = ρ(2)∆V2. (4.15)

ρ(x, y , z)

(1); (x1, y1, z1)

(2); (x2, y2, z2)

r12

dV2

Fig. 4-1. The electric field E at point (1),
from a charge distribution, is obtained from
an integral over the distribution. Point (1)

could also be inside the distribution.

To use Coulomb’s law with such a description, we replace the sums of Eqs.
(4.13) or (4.14) by integrals over all volumes containing charges. Then we have

E(1) = 1
4πε0

∫
all

space

ρ(2)e12 dV2

r2
12

. (4.16)

Some people prefer to write
e12 = r12

r12
,

where r12 is the vector displacement to (1) from (2), as shown in Fig. 4-1. The
integral for E is then written as

E(1) = 1
4πε0

∫
all

space

ρ(2)r12 dV2

r3
12

. (4.17)

When we want to calculate something with these integrals, we usually have
to write them out in explicit detail. For the x-component of either Eq. (4.16)
or (4.17), we would have

Ex(x1, y1, z1) =
∫
all

space

(x1 − x2)ρ(x2, y2, z2) dx2 dy2 dz2

4πε0[(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]3/2 . (4.18)
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We are not going to use this formula much. We write it here only to emphasize
the fact that we have completely solved all the electrostatic problems in which
we know the locations of all of the charges. Given the charges, what are the
fields? Answer : Do this integral. So there is nothing to the subject; it is just a
case of doing complicated integrals over three dimensions—strictly a job for a
computing machine!

With our integrals we can find the fields produced by a sheet of charge, from a
line of charge, from a spherical shell of charge, or from any specified distribution.
It is important to realize, as we go on to draw field lines, to talk about potentials,
or to calculate divergences, that we already have the answer here. It is merely a
matter of it being sometimes easier to do an integral by some clever guesswork
than by actually carrying it out. The guesswork requires learning all kinds of
strange things. In practice, it might be easier to forget trying to be clever and
always to do the integral directly instead of being so smart. We are, however,
going to try to be smart about it. We shall go on to discuss some other features
of the electric field.

4-3 Electric potential

F

ds
q

a

b

one path

another
path

Fig. 4-2. The work done in carrying a
charge from a to b is the negative of the
integral of F · ds along the path taken.

First we take up the idea of electric potential, which is related to the work
done in carrying a charge from one point to another. There is some distribution
of charge, which produces an electric field. We ask about how much work it
would take to carry a small charge from one place to another. The work done
against the electrical forces in carrying a charge along some path is the negative
of the component of the electrical force in the direction of the motion, integrated
along the path. If we carry a charge from point a to point b,

W = −
∫ b

a

F · ds,

where F is the electrical force on the charge at each point, and ds is the differential
vector displacement along the path. (See Fig. 4-2.)

It is more interesting for our purposes to consider the work that would be
done in carrying one unit of charge. Then the force on the charge is numerically
the same as the electric field. Calling the work done against electrical forces in
this case W (unit), we write

W (unit) = −
∫ b

a

E · ds. (4.19)

Now, in general, what we get with this kind of an integral depends on the path
we take. But if the integral of (4.19) depended on the path from a to b, we could
get work out of the field by carrying the charge to b along one path and then
back to a on the other. We would go to b along the path for which W is smaller
and back along the other, getting out more work than we put in.

There is nothing impossible, in principle, about getting energy out of a field.
We shall, in fact, encounter fields where it is possible. It could be that as you
move a charge you produce forces on the other part of the “machinery.” If the
“machinery” moved against the force it would lose energy, thereby keeping the
total energy in the world constant. For electrostatics, however, there is no such
“machinery.” We know what the forces back on the sources of the field are. They
are the Coulomb forces on the charges responsible for the field. If the other charges
are fixed in position—as we assume in electrostatics only—these back forces can
do no work on them. There is no way to get energy from them—provided, of
course, that the principle of energy conservation works for electrostatic situations.
We believe that it will work, but let’s just show that it must follow from Coulomb’s
law of force.

We consider first what happens in the field due to a single charge q. Let
point a be at the distance ra from q, and point b at rb. Now we carry a different
charge, which we will call the “test” charge, and whose magnitude we choose to
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be one unit, from a to b. Let’s start with the easiest possible path to calculate.
We carry our test charge first along the arc of a circle, then along a radius, as
shown in part (a) of Fig. 4-3. Now on that particular path it is child’s play to
find the work done (otherwise we wouldn’t have picked it). First, there is no
work done at all on the path from a to a′. The field is radial (from Coulomb’s
law), so it is at right angles to the direction of motion. Next, on the path from
a′ to b, the field is in the direction of motion and varies as 1/r2. Thus the work
done on the test charge in carrying it from a to b would be

−
∫ b

a

E · ds = − q

4πε0

∫ b

a′

dr

r2 = − q

4πε0

(
1
ra
− 1
rb

)
. (4.20)

(a)

+
q

a

a′

b

(b)

+
q

a

a′

a′′

b

Fig. 4-3. In carrying a test charge from
a to b the same work is done along either
path.

Now let’s take another easy path. For instance, the one shown in part (b)
of Fig. 4-3. It goes for awhile along an arc of a circle, then radially for awhile,
then along an arc again, then radially, and so on. Every time we go along the
circular parts, we do no work. Every time we go along the radial parts, we must
just integrate 1/r2. Along the first radial stretch, we integrate from ra to ra′ ,
then along the next radial stretch from ra′ to ra′′ , and so on. The sum of all
these integrals is the same as a single integral directly from ra to rb. We get the
same answer for this path that we did for the first path we tried. It is clear that
we would get the same answer for any path which is made up of an arbitrary
number of the same kinds of pieces.

What about smooth paths? Would we get the same answer? We discussed
this point previously in Chapter 13 of Vol. I. Applying the same arguments used
there, we can conclude that work done in carrying a unit charge from a to b is
independent of the path.

W (unit)

a→ b

}
= −

∫ b

aany
path

E · ds.

Since the work done depends only on the endpoints, it can be represented as
the difference between two numbers. We can see this in the following way. Let’s
choose a reference point P0 and agree to evaluate our integral by using a path
that always goes by way of point P0. Let φ(a) stand for the work done against
the field in going from P0 to point a, and let φ(b) be the work done in going
from P0 to point b (Fig. 4-4). The work in going to P0 from a (on the way to b)
is the negative of φ(a), so we have that

−
∫ b

a

E · ds = φ(b)− φ(a). (4.21)

a

b

P0

W (a→ b) = φ(b)− φ(a)

W (P0 → a) = φ(a)

W (P0 → b) = φ(b)

Fig. 4-4. The work done in going along
any path from a to b is the negative of the
work from some point P0 to a plus the work
from P0 to b.

Since only the difference in the function φ at two points is ever involved, we
do not really have to specify the location of P0. Once we have chosen some
reference point, however, a number φ is determined for any point in space; φ is
then a scalar field. It is a function of x, y, z. We call this scalar function the
electrostatic potential at any point.

Electrostatic potential:

φ(P ) = −
∫ P

P0

E · ds. (4.22)

For convenience, we will often take the reference point at infinity. Then, for a
single charge at the origin, the potential φ is given for any point (x, y, z)—using
Eq. (4.20):

φ(x, y, z) = q

4πε0
1
r
. (4.23)

The electric field from several charges can be written as the sum of the electric
field from the first, from the second, from the third, etc. When we integrate
the sum to find the potential we get a sum of integrals. Each of the integrals
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is the negative of the potential from one of the charges. We conclude that
the potential φ from a lot of charges is the sum of the potentials from all the
individual charges. There is a superposition principle also for potentials. Using
the same kind of arguments by which we found the electric field from a group of
charges and for a distribution of charges, we can get the complete formulas for
the potential φ at a point we call (1):

φ(1) =
∑
j

1
4πε0

qj
r1j

, (4.24)

φ(1) = 1
4πε0

∫
all

space

ρ(2) dV2

r12
. (4.25)

Remember that the potential φ has a physical significance: it is the potential
energy which a unit charge would have if brought to the specified point in space
from some reference point.

4-4 E = −∇φ
Who cares about φ? Forces on charges are given by E, the electric field. The

point is that E can be obtained easily from φ—it is as easy, in fact, as taking a
derivative. Consider two points, one at x and one at (x+ ∆x), but both at the
same y and z, and ask how much work is done in carrying a unit charge from
one point to the other. The path is along the horizontal line from x to x+ ∆x.
The work done is the difference in the potential at the two points:

∆W = φ(x+ ∆x, y, z)− φ(x, y, z) = ∂φ

∂x
∆x.

But the work done against the field for the same path is

∆W = −
∫
E · ds = −Ex ∆x.

We see that
Ex = −∂φ

∂x
. (4.26)

Similarly, Ey = −∂φ/∂y, Ez = −∂φ/∂z, or, summarizing with the notation of
vector analysis,

E = −∇φ. (4.27)
This equation is the differential form of Eq. (4.22). Any problem with specified
charges can be solved by computing the potential from (4.24) or (4.25) and
using (4.27) to get the field. Equation (4.27) also agrees with what we found
from vector calculus: that for any scalar field φ∫ b

a

∇φ · ds = φ(b)− φ(a). (4.28)

According to Eq. (4.25) the scalar potential φ is given by a three-dimensional
integral similar to the one we had for E. Is there any advantage to computing φ
rather than E? Yes. There is only one integral for φ, while there are three
integrals for E—because it is a vector. Furthermore, 1/r is usually a little easier
to integrate than x/r3. It turns out in many practical cases that it is easier to
calculate φ and then take the gradient to find the electric field, than it is to
evaluate the three integrals for E. It is merely a practical matter.

There is also a deeper physical significance to the potential φ. We have
shown that E of Coulomb’s law is obtained from E = − gradφ, when φ is given
by (4.22). But if E is equal to the gradient of a scalar field, then we know from
the vector calculus that the curl of E must vanish:

∇×E = 0. (4.29)
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But that is just our second fundamental equation of electrostatics, Eq. (4.6). We
have shown that Coulomb’s law gives an E field that satisfies that condition. So
far, everything is all right.

We had really proved that ∇×E was zero before we defined the potential.
We had shown that the work done around a closed path is zero. That is, that∮

E · ds = 0

for any path. We saw in Chapter 3 that for any such field ∇×E must be zero
everywhere. The electric field in electrostatics is an example of a curl-free field.

You can practice your vector calculus by proving that ∇ × E is zero in a
different way—by computing the components of ∇×E for the field of a point
charge, as given by Eq. (4.11). If you get zero, the superposition principle says
you would get zero for the field of any charge distribution.

We should point out an important fact. For any radial force the work done
is independent of the path, and there exists a potential. If you think about
it, the entire argument we made above to show that the work integral was
independent of the path depended only on the fact that the force from a single
charge was radial and spherically symmetric. It did not depend on the fact that
the dependence on distance was as 1/r2—there could have been any r dependence.
The existence of a potential, and the fact that the curl of E is zero, comes really
only from the symmetry and direction of the electrostatic forces. Because of this,
Eq. (4.28)—or (4.29)—can contain only part of the laws of electricity.

4-5 The flux of E

We will now derive a field equation that depends specifically and directly on
the fact that the force law is inverse square. That the field varies inversely as
the square of the distance seems, for some people, to be “only natural,” because
“that’s the way things spread out.” Take a light source with light streaming out:
the amount of light that passes through a surface cut out by a cone with its
apex at the source is the same no matter at what radius the surface is placed. It
must be so if there is to be conservation of light energy. The amount of light per
unit area—the intensity—must vary inversely as the area cut by the cone, i. e.,
inversely as the square of the distance from the source. Certainly the electric field
should vary inversely as the square of the distance for the same reason! But there
is no such thing as the “same reason” here. Nobody can say that the electric field
measures the flow of something like light which must be conserved. If we had
a “model” of the electric field in which the electric field vector represented the
direction and speed—say the current—of some kind of little “bullets” which were
flying out, and if our model required that these bullets were conserved, that none
could ever disappear once it was shot out of a charge, then we might say that
we can “see” that the inverse square law is necessary. On the other hand, there
would necessarily be some mathematical way to express this physical idea. If the
electric field were like conserved bullets going out, then it would vary inversely
as the square of the distance and we would be able to describe that behavior by
an equation—which is purely mathematical. Now there is no harm in thinking
this way, so long as we do not say that the electric field is made out of bullets,
but realize that we are using a model to help us find the right mathematics.

Suppose, indeed, that we imagine for a moment that the electric field did
represent the flow of something that was conserved—everywhere, that is, except
at charges. (It has to start somewhere!) We imagine that whatever it is flows out
of a charge into the space around. If E were the vector of such a flow (as h is for
heat flow), it would have a 1/r2 dependence near a point source. Now we wish
to use this model to find out how to state the inverse square law in a deeper or
more abstract way, rather than simply saying “inverse square.” (You may wonder
why we should want to avoid the direct statement of such a simple law, and want
instead to imply the same thing sneakily in a different way. Patience! It will
turn out to be useful.)
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Closed Surface S

a

Ea b

Eb

+

Point Charge
Fig. 4-5. The flux of E out of the sur-

face S is zero.

Surface S

E

En

θ

∆a

+

Point Charge
Fig. 4-6. The flux of E out of the sur-

face S is zero.

We ask: What is the “flow” of E out of an arbitrary closed surface in the
neighborhood of a point charge? First let’s take an easy surface—the one shown
in Fig. 4-5. If the E field is like a flow, the net flow out of this box should be zero.
That is what we get if by the “flow” from this surface we mean the surface integral
of the normal component of E—that is, the flux of E. On the radial faces, the
normal component is zero. On the spherical faces, the normal component En is
just the magnitude of E—minus for the smaller face and plus for the larger face.
The magnitude of E decreases as 1/r2, but the surface area is proportional to r2,
so the product is independent of r. The flux ofE into face a is just cancelled by the
flux out of face b. The total flow out of S is zero, which is to say that for this surface∫

S

En da = 0. (4.30)

+

E

En

Surface S

Fig. 4-7. Any volume can be thought
of as completely made up of infinitesimal
truncated cones. The flux of E from one
end of each conical segment is equal and
opposite to the flux from the other end. The
total flux from the surface S is therefore
zero.

Next we show that the two end surfaces may be tilted with respect to the radial
line without changing the integral (4.30). Although it is true in general, for our
purposes it is only necessary to show that this is true when the end surfaces are
small, so that they subtend a small angle from the source—in fact, an infinitesimal
angle. In Fig. 4-6 we show a surface S whose “sides” are radial, but whose “ends”
are tilted. The end surfaces are not small in the figure, but you are to imagine
the situation for very small end surfaces. Then the field E will be sufficiently
uniform over the surface that we can use just its value at the center. When we
tilt the surface by an angle θ, the area is increased by the factor 1/ cos θ. But En,
the component of E normal to the surface, is decreased by the factor cos θ. The
product En ∆a is unchanged. The flux out of the whole surface S is still zero.

Now it is easy to see that the flux out of a volume enclosed by any surface S
must be zero. Any volume can be thought of as made up of pieces, like that in
Fig. 4-6. The surface will be subdivided completely into pairs of end surfaces,
and since the fluxes in and out of these end surfaces cancel by pairs, the total
flux out of the surface will be zero. The idea is illustrated in Fig. 4-7. We have
the completely general result that the total flux of E out of any surface S in the
field of a point charge is zero.

q

aEa

b

Eb

Fig. 4-8. If a charge is inside a surface,
the flux out is not zero.

But notice! Our proof works only if the surface S does not surround the
charge. What would happen if the point charge were inside the surface? We
could still divide our surface into pairs of areas that are matched by radial lines
through the charge, as shown in Fig. 4-8. The fluxes through the two surfaces
are still equal—by the same arguments as before—only now they have the same
sign. The flux out of a surface that surrounds a charge is not zero. Then what
is it? We can find out by a little trick. Suppose we “remove” the charge from
the “inside” by surrounding the charge by a little surface S′ totally inside the
original surface S, as shown in Fig. 4-9. Now the volume enclosed between the
two surfaces S and S′ has no charge in it. The total flux out of this volume
(including that through S′) is zero, by the arguments we have given above. The
arguments tell us, in fact, that the flux into the volume through S′ is the same
as the flux outward through S.
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Point Charge
q

Surface
S

Surface
S′

Fig. 4-9. The flux through S is the same
as the flux through S′.

We can choose any shape we wish for S′, so let’s make it a sphere centered
on the charge, as in Fig. 4-10. Then we can easily calculate the flux through it.
If the radius of the little sphere is r, the value of E everywhere on its surface is

1
4πε0

q

r2 ,

and is directed always normal to the surface. We find the total flux through S′ if
we multiply this normal component of E by the surface area:

Flux through the surface S′ =
(

1
4πε0

q

r2

)
(4πr2) = q

ε0
, (4.31)

a number independent of the radius of the sphere! We know then that the flux
outward through S is also q/ε0—a value independent of the shape of S so long
as the charge q is inside.

We can write our conclusions as follows:∫
any surface S

En da =

0; q outside S
q

ε0
; q inside S

(4.32)

+ q

E

S′

Fig. 4-10. The flux through a spherical
surface containing a point charge q is q/ε0.

Let’s return to our “bullet” analogy and see if it makes sense. Our theorem says
that the net flow of bullets through a surface is zero if the surface does not enclose
the gun that shoots the bullets. If the gun is enclosed in a surface, whatever size
and shape it is, the number of bullets passing through is the same—it is given by
the rate at which bullets are generated at the gun. It all seems quite reasonable for
conserved bullets. But does the model tell us anything more than we get simply by
writing Eq. (4.32)? No one has succeeded in making these “bullets” do anything
else but produce this one law. After that, they produce nothing but errors. That
is why today we prefer to represent the electromagnetic field purely abstractly.

4-6 Gauss’ law; the divergence of E

Our nice result, Eq. (4.32), was proved for a single point charge. Now suppose
that there are two charges, a charge q1 at one point and a charge q2 at another.
The problem looks more difficult. The electric field whose normal component we
integrate for the flux is the field due to both charges. That is, if E1 represents
the electric field that would have been produced by q1 alone, and E2 represents
the electric field produced by q2 alone, the total electric field is E = E1 +E2.
The flux through any closed surface S is∫

S

(E1n + E2n) da =
∫
S

E1n da+
∫
S

E2n da. (4.33)

The flux with both charges present is the flux due to a single charge plus the flux
due to the other charge. If both charges are outside S, the flux through S is zero.
If q1 is inside S but q2 is outside, then the first integral gives q1/ε0 and the second
integral gives zero. If the surface encloses both charges, each will give its contribu-
tion and we have that the flux is (q1 + q2)/ε0. The general rule is clearly that the
total flux out of a closed surface is equal to the total charge inside, divided by ε0.

Our result is an important general law of the electrostatic field, called Gauss’
law.

Gauss’ law: ∫
any closed
surface S

En da = sum of charges inside
ε0

, (4.34)

or ∫
any closed
surface S

E · n da = Qint

ε0
, (4.35)
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where
Qint =

∑
inside S

qi. (4.36)

If we describe the location of charges in terms of a charge density ρ, we can
consider that each infinitesimal volume dV contains a “point” charge ρ dV . The
sum over all charges is then the integral

Qint =
∫

volume
inside S

ρ dV. (4.37)

From our derivation you see that Gauss’ law follows from the fact that the
exponent in Coulomb’s law is exactly two. A 1/r3 field, or any 1/rn field with
n 6= 2, would not give Gauss’ law. So Gauss’ law is just an expression, in
a different form, of the Coulomb law of forces between two charges. In fact,
working back from Gauss’ law, you can derive Coulomb’s law. The two are quite
equivalent so long as we keep in mind the rule that the forces between charges
are radial.

We would now like to write Gauss’ law in terms of derivatives. To do this, we
apply Gauss’ law to an infinitesimal cubical surface. We showed in Chapter 3
that the flux of E out of such a cube is ∇ ·E times the volume dV of the cube.
The charge inside of dV , by the definition of ρ, is equal to ρ dV , so Gauss’ law
gives

∇ ·E dV = ρ dV

ε0
,

or
∇ ·E = ρ

ε0
. (4.38)

The differential form of Gauss’ law is the first of our fundamental field equations
of electrostatics, Eq. (4.5). We have now shown that the two equations of
electrostatics, Eqs. (4.5) and (4.6), are equivalent to Coulomb’s law of force. We
will now consider one example of the use of Gauss’ law. (We will come later to
many more examples.)

4-7 Field of a sphere of charge

Charge
Distribution

ρ

Gaussian
Surface S

a

R

P

E

Fig. 4-11. Using Gauss’ law to find the
field of a uniform sphere of charge.

One of the difficult problems we had when we studied the theory of gravi-
tational attractions was to prove that the force produced by a solid sphere of
matter was the same at the surface of the sphere as it would be if all the matter
were concentrated at the center. For many years Newton didn’t make public
his theory of gravitation, because he couldn’t be sure this theorem was true.
We proved the theorem in Chapter 13 of Vol. I by doing the integral for the
potential and then finding the gravitational force by using the gradient. Now we
can prove the theorem in a most simple fashion. Only this time we will prove
the corresponding theorem for a uniform sphere of electrical charge. (Since the
laws of electrostatics are the same as those of gravitation, the same proof could
be done for the gravitational field.)

We ask: What is the electric field E at a point P anywhere outside the surface
of a sphere filled with a uniform distribution of charge? Since there is no “special”
direction, we can assume that E is everywhere directed away from the center of
the sphere. We consider an imaginary surface that is spherical and concentric
with the sphere of charge, and that passes through the point P (Fig. 4-11). For
this surface, the flux outward is∫

En da = E · 4πR2.

Gauss’ law tells us that this flux is equal to the total charge Q of the sphere
(over ε0):

E · 4πR2 = Q

ε0
,
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Fig. 4-12. Field lines and equipotential surfaces for a positive point charge.

or
E = 1

4πε0
Q

R2 , (4.39)

which is the same formula we would have for a point charge Q. We have proved
Newton’s problem more easily than by doing the integral. It is, of course, a false
kind of easiness—it has taken you some time to be able to understand Gauss’
law, so you may think that no time has really been saved. But after you have
used the theorem more and more, it begins to pay. It is a question of efficiency.

4-8 Field lines; equipotential surfaces

We would like now to give a geometrical description of the electrostatic field.
The two laws of electrostatics, one that the flux is proportional to the charge
inside and the other that the electric field is the gradient of a potential, can also
be represented geometrically. We illustrate this with two examples.

First, we take the field of a point charge. We draw lines in the direction of
the field—lines which are always tangent to the field, as in Fig. 4-12. These are
called field lines. The lines show everywhere the direction of the electric vector.
But we also wish to represent the magnitude of the vector. We can make the
rule that the strength of the electric field will be represented by the “density” of
the lines. By the density of the lines we mean the number of lines per unit area
through a surface perpendicular to the lines. With these two rules we can have
a picture of the electric field. For a point charge, the density of the lines must
decrease as 1/r2. But the area of a spherical surface perpendicular to the lines
at any radius r increases as r2, so if we always keep the same number of lines
for all distances from the charge, the density will remain in proportion to the
magnitude of the field. We can guarantee that there are the same number of
lines at every distance if we insist that the lines be continuous—that once a line
is started from the charge, it never stops. In terms of the field lines, Gauss’ law
says that lines should start only at plus charges and stop at minus charges. The
number which leave a charge q must be equal to q/ε0.
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Fig. 4-13. Field lines and equipotentials for two equal and opposite point charges.

Now, we can find a similar geometrical picture for the potential φ. The easiest
way to represent the potential is to draw surfaces on which φ is a constant. We
call them equipotential surfaces—surfaces of equal potential. Now what is the
geometrical relationship of the equipotential surfaces to the field lines? The
electric field is the gradient of the potential. The gradient is in the direction
of the most rapid change of the potential, and is therefore perpendicular to an
equipotential surface. If E were not perpendicular to the surface, it would have
a component in the surface. The potential would be changing in the surface, but
then it wouldn’t be an equipotential. The equipotential surfaces must then be
everywhere at right angles to the electric field lines.

A Note about Units

Quantity Unit
F newton
Q coulomb
L meter
W joule
ρ ∼ Q/L3 coulomb/meter3

1/ε0 ∼ FL2/Q2 newton·meter2/coulomb2

E ∼ F/Q newton/coulomb
φ ∼W/Q joule/coulomb = volt
E ∼ φ/L volt/meter
1/ε0 ∼ EL2/Q volt·meter/coulomb

For a point charge all by itself, the equipotential surfaces are spheres centered
at the charge. We have shown in Fig. 4-12 the intersection of these spheres with
a plane through the charge.

As a second example, we consider the field near two equal charges, a positive
one and a negative one. To get the field is easy. The field is the superposition of
the fields from each of the two charges. So, we can take two pictures like Fig. 4-12
and superimpose them—impossible! Then we would have field lines crossing each
other, and that’s not possible, because E can’t have two directions at the same
point. The disadvantage of the field-line picture is now evident. By geometrical
arguments it is impossible to analyze in a very simple way where the new lines
go. From the two independent pictures, we can’t get the combined picture. The
principle of superposition, a simple and deep principle about electric fields, does
not have, in the field-line picture, an easy representation.

The field-line picture has its uses, however, so we might still like to draw
the picture for a pair of equal (and opposite) charges. If we calculate the fields
from Eq. (4.13) and the potentials from (4.24), we can draw the field lines and
equipotentials. Figure 4-13 shows the result. But we first had to solve the
problem mathematically!
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are two laws of electrostatics: that the flux of the electric field from a
volume is proportional to the charge inside—Gauss’ law, and that the circulation of
the electric field is zero—E is a gradient. From these two laws, all the predictions
of electrostatics follow. But to say these things mathematically is one thing; to use
them easily, and with a certain amount of ingenuity, is another. In this chapter
we will work through a number of calculations which can be made with Gauss’
law directly. We will prove theorems and describe some effects, particularly in
conductors, that can be understood very easily from Gauss’ law. Gauss’ law by
itself cannot give the solution of any problem because the other law must be obeyed
too. So when we use Gauss’ law for the solution of particular problems, we will
have to add something to it. We will have to presuppose, for instance, some idea
of how the field looks—based, for example, on arguments of symmetry. Or we may
have to introduce specifically the idea that the field is the gradient of a potential.

5-2 Equilibrium in an electrostatic field

Consider first the following question: When can a point charge be in stable
mechanical equilibrium in the electric field of other charges? As an example,
imagine three negative charges at the corners of an equilateral triangle in a
horizontal plane. Would a positive charge placed at the center of the triangle
remain there? (It will be simpler if we ignore gravity for the moment, although
including it would not change the results.) The force on the positive charge is
zero, but is the equilibrium stable? Would the charge return to the equilibrium
position if displaced slightly? The answer is no.

There are no points of stable equilibrium in any electrostatic field—except
right on top of another charge. Using Gauss’ law, it is easy to see why. First, for
a charge to be in equilibrium at any particular point P0, the field must be zero.
Second, if the equilibrium is to be a stable one, we require that if we move the
charge away from P0 in any direction, there should be a restoring force directed
opposite to the displacement. The electric field at all nearby points must be
pointing inward—toward the point P0. But that is in violation of Gauss’ law if
there is no charge at P0, as we can easily see.

P0
Imaginary
surface
surrounding P0

Fig. 5-1. If P0 were a position of stable
equilibrium for a positive charge, the electric
field everywhere in the neighborhood would
point toward P0.

Consider a tiny imaginary surface that encloses P0, as in Fig. 5-1. If the
electric field everywhere in the vicinity is pointed toward P0, the surface integral
of the normal component is certainly not zero. For the case shown in the figure,
the flux through the surface must be a negative number. But Gauss’ law says
that the flux of electric field through any surface is proportional to the total
charge inside. If there is no charge at P0, the field we have imagined violates
Gauss’ law. It is impossible to balance a positive charge in empty space—at
a point where there is not some negative charge. A positive charge can be in
equilibrium if it is in the middle of a distributed negative charge. Of course,
the negative charge distribution would have to be held in place by other than
electrical forces!

Our result has been obtained for a point charge. Does the same conclusion
hold for a complicated arrangement of charges held together in fixed relative
positions—with rods, for example? We consider the question for two equal charges
fixed on a rod. Is it possible that this combination can be in equilibrium in some
electrostatic field? The answer is again no. The total force on the rod cannot be
restoring for displacements in every direction.

5-1



Call F the total force on the rod in any position—F is then a vector field.
Following the argument used above, we conclude that at a position of stable
equilibrium, the divergence of F must be a negative number. But the total force
on the rod is the first charge times the field at its position, plus the second charge
times the field at its position:

F = q1E1 + q2E2. (5.1)

The divergence of F is given by

∇ · F = q1(∇ ·E1) + q2(∇ ·E2).

If each of the two charges q1 and q2 is in free space, both ∇ ·E1 and ∇ ·E2 are
zero, and ∇ · F is zero—not negative, as would be required for equilibrium. You
can see that an extension of the argument shows that no rigid combination of any
number of charges can have a position of stable equilibrium in an electrostatic
field in free space.

Fig. 5-2. A charge can be in equilibrium
if there are mechanical constraints.

+ + +

Hollow
Tube

Now we have not shown that equilibrium is forbidden if there are pivots or
other mechanical constraints. As an example, consider a hollow tube in which a
charge can move back and forth freely, but not sideways. Now it is very easy to
devise an electric field that points inward at both ends of the tube if it is allowed
that the field may point laterally outward near the center of the tube. We simply
place positive charges at each end of the tube, as in Fig. 5-2. There can now be
an equilibrium point even though the divergence of E is zero. The charge, of
course, would not be in stable equilibrium for sideways motion were it not for
“nonelectrical” forces from the tube walls.

5-3 Equilibrium with conductors

There is no stable spot in the field of a system of fixed charges. What about
a system of charged conductors? Can a system of charged conductors produce a
field that will have a stable equilibrium point for a point charge? (We mean at
a point other than on a conductor, of course.) You know that conductors have
the property that charges can move freely around in them. Perhaps when the
point charge is displaced slightly, the other charges on the conductors will move
in a way that will give a restoring force to the point charge? The answer is still
no—although the proof we have just given doesn’t show it. The proof for this
case is more difficult, and we will only indicate how it goes.

First, we note that when charges redistribute themselves on the conductors,
they can only do so if their motion decreases their total potential energy. (Some
energy is lost to heat as they move in the conductor.) Now we have already
shown that if the charges producing a field are stationary, there is, near any
zero point P0 in the field, some direction for which moving a point charge away
from P0 will decrease the energy of the system (since the force is away from P0).
Any readjustment of the charges on the conductors can only lower the potential
energy still more, so (by the principle of virtual work) their motion will only
increase the force in that particular direction away from P0, and not reverse it.

Our conclusions do not mean that it is not possible to balance a charge by
electrical forces. It is possible if one is willing to control the locations or the sizes
of the supporting charges with suitable devices. You know that a rod standing
on its point in a gravitational field is unstable, but this does not prove that it
cannot be balanced on the end of a finger. Similarly, a charge can be held in
one spot by electric fields if they are variable. But not with a passive—that is, a
static—system.
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5-4 Stability of atoms

UNIFORM SPHERE
OF POSITIVE
CHARGE

NEGATIVE CHARGE
CONCENTRATED
AT THE CENTER

Fig. 5-3. The Thomson model of an atom.

If charges cannot be held stably in position, it is surely not proper to imagine
matter to be made up of static point charges (electrons and protons) governed
only by the laws of electrostatics. Such a static configuration is impossible; it
would collapse!

It was once suggested that the positive charge of an atom could be distributed
uniformly in a sphere, and the negative charges, the electrons, could be at rest
inside the positive charge, as shown in Fig. 5-3. This was the first atomic model,
proposed by Thomson. But Rutherford concluded from the experiment of Geiger
and Marsden that the positive charges were very much concentrated, in what he
called the nucleus. Thomson’s static model had to be abandoned. Rutherford and
Bohr then suggested that the equilibrium might be dynamic, with the electrons
revolving in orbits, as shown in Fig. 5-4. The electrons would be kept from falling
in toward the nucleus by their orbital motion. We already know at least one
difficulty with this picture. With such motion, the electrons would be accelerating
(because of the circular motion) and would, therefore, be radiating energy. They
would lose the kinetic energy required to stay in orbit, and would spiral in toward
the nucleus. Again unstable!

+

−

−

−

POSITIVE NUCLEUS
AT THE CENTER

NEGATIVE
ELECTRONS IN

PLANETARY ORBITS

Fig. 5-4. The Rutherford-Bohr model of
an atom.

The stability of the atoms is now explained in terms of quantum mechanics.
The electrostatic forces pull the electron as close to the nucleus as possible, but
the electron is compelled to stay spread out in space over a distance given by
the uncertainty principle. If it were confined in too small a space, it would have
a great uncertainty in momentum. But that means that it would have a high
expected energy—which it would use to escape from the electrical attraction.
The net result is an electrical equilibrium not too different from the idea of
Thomson—only it is the negative charge that is spread out (because the mass of
the electron is so much smaller than the mass of the proton).

5-5 The field of a line charge

Gauss’ law can be used to solve a number of electrostatic field problems
involving a special symmetry—usually spherical, cylindrical, or planar symmetry.
In the remainder of this chapter we will apply Gauss’ law to a few such problems.
The ease with which these problems can be solved may give the misleading
impression that the method is very powerful, and that one should be able to go
on to many other problems. It is unfortunately not so. One soon exhausts the
list of problems that can be solved easily with Gauss’ law. In later chapters we
will develop more powerful methods for investigating electrostatic fields.

As our first example, we consider a system with cylindrical symmetry. Suppose
that we have a very long, uniformly charged rod. By this we mean that electric
charges are distributed uniformly along an indefinitely long straight line, with the
charge λ per unit length. We wish to know the electric field. The problem can,
of course, be solved by integrating the contribution to the field from every part
of the line. We are going to do it without integrating, by using Gauss’ law and
some guesswork. First, we surmise that the electric field will be directed radially
outward from the line. Any axial component from charges on one side would be
accompanied by an equal axial component from charges on the other side. The re-
sult could only be a radial field. It also seems reasonable that the field should have
the same magnitude at all points equidistant from the line. This is obvious. (It
may not be easy to prove, but it is true if space is symmetric—as we believe it is.)

E

r

GAUSSIAN
SURFACE LINE

CHARGE

Fig. 5-5. A cylindrical gaussian surface
coaxial with a line charge.

We can use Gauss’ law in the following way. We consider an imaginary surface
in the shape of a cylinder coaxial with the line, as shown in Fig. 5-5. According
to Gauss’ law, the total flux of E from this surface is equal to the charge inside
divided by ε0. Since the field is assumed to be normal to the surface, the normal
component is the magnitude of the field. Let’s call it E. Also, let the radius of
the cylinder be r, and its length be taken as one unit, for convenience. The flux
through the cylindrical surface is equal to E times the area of the surface, which
is 2πr. The flux through the two end faces is zero because the electric field is
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tangential to them. The total charge inside our surface is just λ, because the
length of the line inside is one unit. Gauss’ law then gives

E · 2πr = λ/ε0,

E = λ

2πε0r
. (5.2)

The electric field of a line charge depends inversely on the first power of the
distance from the line.

5-6 A sheet of charge; two sheets

UNIFORMLY
CHARGED
SHEET

GAUSSIAN
SURFACE

E1E2

Fig. 5-6. The electric field near a uni-
formly charged sheet can be found by apply-
ing Gauss’ law to an imaginary box.

As another example, we will calculate the field from a uniform plane sheet
of charge. Suppose that the sheet is infinite in extent and that the charge per
unit area is σ. We are going to take another guess. Considerations of symmetry
lead us to believe that the field direction is everywhere normal to the plane, and
if we have no field from any other charges in the world, the fields must be the
same (in magnitude) on each side. This time we choose for our Gaussian surface
a rectangular box that cuts through the sheet, as shown in Fig. 5-6. The two
faces parallel to the sheet will have equal areas, say A. The field is normal to
these two faces, and parallel to the other four. The total flux is E times the area
of the first face, plus E times the area of the opposite face—with no contribution
from the other four faces. The total charge enclosed in the box is σA. Equating
the flux to the charge inside, we have

EA+ EA = σA

ε0
,

from which
E = σ

2ε0
, (5.3)

a simple but important result.
You may remember that the same result was obtained in an earlier chapter

by an integration over the entire surface. Gauss’ law gives us the answer, in this
instance, much more quickly (although it is not as generally applicable as the
earlier method).

We emphasize that this result applies only to the field due to the charges on
the sheet. If there are other charges in the neighborhood, the total field near the
sheet would be the sum of (5.3) and the field of the other charges. Gauss’ law
would then tell us only that

E1 + E2 = σ

ε0
, (5.4)

where E1 and E2 are the fields directed outward on each side of the sheet.
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Fig. 5-7. The field between two charged
sheets is σ/ε0.

The problem of two parallel sheets with equal and opposite charge densities,
+σ and −σ, is equally simple if we assume again that the outside world is
quite symmetric. Either by superposing two solutions for a single sheet or by
constructing a gaussian box that includes both sheets, it is easily seen that the field
is zero outside of the two sheets (Fig. 5-7a). By considering a box that includes
only one surface or the other, as in (b) or (c) of the figure, it can be seen that the
field between the sheets must be twice what it is for a single sheet. The result is

E (between the sheets) =σ/ε0, (5.5)

E (outside) = 0. (5.6)

5-7 A sphere of charge; a spherical shell

We have already (in Chapter 4) used Gauss’ law to find the field outside a
uniformly charged spherical region. The same method can also give us the field
at points inside the sphere. For example, the computation can be used to obtain
a good approximation to the field inside an atomic nucleus. In spite of the fact
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that the protons in a nucleus repel each other, they are, because of the strong
nuclear forces, spread nearly uniformly throughout the body of the nucleus.

r
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Fig. 5-8. Gauss’ law can be used to find
the field inside a uniformly charged sphere.

Suppose that we have a sphere of radius R filled uniformly with charge. Let ρ
be the charge per unit volume. Again using arguments of symmetry, we assume
the field to be radial and equal in magnitude at all points at the same distance
from the center. To find the field at the distance r from the center, we take a
spherical gaussian surface of radius r (r < R), as shown in Fig. 5-8. The flux out
of this surface is

4πr2E.

The charge inside our gaussian surface is the volume inside times ρ, or
4
3πr

3ρ.

Using Gauss’ law, it follows that the magnitude of the field is given by

E = ρr

3ε0
(r < R). (5.7)

You can see that this formula gives the proper result for r = R. The electric field
is proportional to the radius and is directed radially outward.

The arguments we have just given for a uniformly charged sphere can be
applied also to a thin spherical shell of charge. Assuming that the field is
everywhere radial and is spherically symmetric, one gets immediately from Gauss’
law that the field outside the shell is like that of a point charge, while the field
everywhere inside the shell is zero. (A gaussian surface inside the shell will
contain no charge.)

5-8 Is the field of a point charge exactly 1/r2?

If we look in a little more detail at how the field inside the shell gets to be
zero, we can see more clearly why it is that Gauss’ law is true only because
the Coulomb force depends exactly on the square of the distance. Consider any
point P inside a uniform spherical shell of charge. Imagine a small cone whose
apex is at P and which extends to the surface of the sphere, where it cuts out
a small surface area ∆a1, as in Fig. 5-9. An exactly symmetric cone diverging
from the opposite side of P would cut out the surface area ∆a2. If the distances
from P to these two elements of area are r1 and r2, the areas are in the ratio

∆a2

∆a1
= r2

2
r2
1
.

(You can show this by geometry for any point P inside the sphere.)

P

r1

r2

∆a1

∆a2

Fig. 5-9. The field is zero at any point P
inside a spherical shell of charge.

If the surface of the sphere is uniformly charged, the charge ∆q on each of
the elements of area is proportional to the area, so

∆q2

∆q1
= ∆a2

∆a1
.

Coulomb’s law then says that the magnitudes of the fields produced at P by
these two surface elements are in the ratio

E2

E1
= ∆q2/r

2
2

∆q1/r2
1

= 1.

The fields cancel exactly. Since all parts of the surface can be paired off in the
same way, the total field at P is zero. But you can see that it would not be so if
the exponent of r in Coulomb’s law were not exactly two.

The validity of Gauss’ law depends upon the inverse square law of Coulomb.
If the force law were not exactly the inverse square, it would not be true that the
field inside a uniformly charged sphere would be exactly zero. For instance, if
the force varied more rapidly, like, say, the inverse cube of r, that portion of the
surface which is nearer to an interior point would produce a field which is larger
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than that which is farther away, resulting in a radial inward field for a positive
surface charge. These conclusions suggest an elegant way of finding out whether
the inverse square law is precisely correct. We need only determine whether or
not the field inside of a uniformly charged spherical shell is precisely zero.

It is lucky that such a method exists. It is usually difficult to measure a
physical quantity to high precision—a one percent result may not be too difficult,
but how would one go about measuring, say, Coulomb’s law to an accuracy of
one part in a billion? It is almost certainly not possible with the best available
techniques to measure the force between two charged objects with such an
accuracy. But by determining only that the electric fields inside a charged sphere
are smaller than some value we can make a highly accurate measurement of
the correctness of Gauss’ law, and hence of the inverse square dependence of
Coulomb’s law. What one does, in effect, is compare the force law to an ideal
inverse square. Such comparisons of things that are equal, or nearly so, are
usually the bases of the most precise physical measurements.

How shall we observe the field inside a charged sphere? One way is to try
to charge an object by touching it to the inside of a spherical conductor. You
know that if we touch a small metal ball to a charged object and then touch
it to an electrometer the meter will become charged and the pointer will move
from zero (Fig. 5-10a). The ball picks up charge because there are electric fields
outside the charged sphere that cause charges to run onto (or off) the little ball.
If you do the same experiment by touching the little ball to the inside of the
charged sphere, you find that no charge is carried to the electrometer. With such
an experiment you can easily show that the field inside is, at most, a few percent
of the field outside, and that Gauss’ law is at least approximately correct.

(a)
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Fig. 5-10. The electric field is zero inside
a closed conducting shell.

It appears that Benjamin Franklin was the first to notice that the field inside
a conducting shell is zero. The result seemed strange to him. When he reported
his observation to Priestley, the latter suggested that it might be connected
with an inverse square law, since it was known that a spherical shell of matter
produced no gravitational field inside. But Coulomb didn’t measure the inverse
square dependence until 18 years later, and Gauss’ law came even later still.

Gauss’ law has been checked carefully by putting an electrometer inside a
large sphere and observing whether any deflections occur when the sphere is
charged to a high voltage. A null result is always obtained. Knowing the geometry
of the apparatus and the sensitivity of the meter, it is possible to compute the
minimum field that would be observed. From this number it is possible to place
an upper limit on the deviation of the exponent from two. If we write that the
electrostatic force depends on r−2+ε, we can place an upper bound on ε. By this
method Maxwell determined that ε was less than 1/10,000. The experiment was
repeated and improved upon in 1936 by Plimpton and Lawton. They found that
Coulomb’s exponent differs from two by less than one part in a billion.

Now that brings up an interesting question: How accurate do we know this
Coulomb law to be in various circumstances? The experiments we just described
measure the dependence of the field on distance for distances of some tens of
centimeters. But what about the distances inside an atom—in the hydrogen
atom, for instance, where we believe the electron is attracted to the nucleus
by the same inverse square law? It is true that quantum mechanics must be
used for the mechanical part of the behavior of the electron, but the force is the
usual electrostatic one. In the formulation of the problem, the potential energy
of an electron must be known as a function of distance from the nucleus, and
Coulomb’s law gives a potential which varies inversely with the first power of the
distance. How accurately is the exponent known for such small distances? As
a result of very careful measurements in 1947 by Lamb and Retherford on the
relative positions of the energy levels of hydrogen, we know that the exponent is
correct again to one part in a billion on the atomic scale—that is, at distances of
the order of one angstrom (10−8 centimeter).

The accuracy of the Lamb-Retherford measurement was possible again because
of a physical “accident.” Two of the states of a hydrogen atom are expected to
have almost identical energies only if the potential varies exactly as 1/r. A
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measurement was made of the very slight difference in energies by finding the
frequency ω of the photons that are emitted or absorbed in the transition from
one state to the other, using for the energy difference ∆E = ~ω. Computations
showed that ∆E would have been noticeably different from what was observed if
the exponent in the force law 1/r2 differed from 2 by as much as one part in a
billion.

Is the same exponent correct at still shorter distances? From measurements
in nuclear physics it is found that there are electrostatic forces at typical nuclear
distances—at about 10−13 centimeter—and that they still vary approximately
as the inverse square. We shall look at some of the evidence in a later chapter.
Coulomb’s law is, we know, still valid, at least to some extent, at distances of
the order of 10−13 centimeter.

How about 10−14 centimeter? This range can be investigated by bombarding
protons with very energetic electrons and observing how they are scattered.
Results to date seem to indicate that the law fails at these distances. The
electrical force seems to be about 10 times too weak at distances less than
10−14 centimeter. Now there are two possible explanations. One is that the
Coulomb law does not work at such small distances; the other is that our objects,
the electrons and protons, are not point charges. Perhaps either the electron or
proton, or both, is some kind of a smear. Most physicists prefer to think that the
charge of the proton is smeared. We know that protons interact strongly with
mesons. This implies that a proton will, from time to time, exist as a neutron
with a π+ meson around it. Such a configuration would act—on the average—like
a little sphere of positive charge. We know that the field from a sphere of charge
does not vary as 1/r2 all the way into the center. It is quite likely that the proton
charge is smeared, but the theory of pions is still quite incomplete, so it may also
be that Coulomb’s law fails at very small distances. The question is still open.

One more point: The inverse square law is valid at distances like one meter
and also at 10−10 m; but is the coefficient 1/4πε0 the same? The answer is yes;
at least to an accuracy of 15 parts in a million.

We go back now to an important matter that we slighted when we spoke of
the experimental verification of Gauss’ law. You may have wondered how the
experiment of Maxwell or of Plimpton and Lawton could give such an accuracy
unless the spherical conductor they used was a perfect sphere. An accuracy
of one part in a billion is really something to achieve, and you might well ask
whether they could make a sphere which was that precise. There are certain to
be slight irregularities in any real sphere and if there are irregularities, will they
not produce fields inside? We wish to show now that it is not necessary to have
a perfect sphere. It is possible, in fact, to show that there is no field inside a
closed conducting shell of any shape. In other words, the experiments depended
on 1/r2, but had nothing to do with the surface being a sphere (except that with
a sphere it is easier to calculate what the fields would be if Coulomb had been
wrong), so we take up that subject now. To show this, it is necessary to know
some of the properties of electrical conductors.

5-9 The fields of a conductor

An electrical conductor is a solid that contains many “free” electrons. The
electrons can move around freely in the material, but cannot leave the surface.
In a metal there are so many free electrons that any electric field will set large
numbers of them into motion. Either the current of electrons so set up must
be continually kept moving by external sources of energy, or the motion of the
electrons will cease as they discharge the sources producing the initial field. In
“electrostatic” situations, we do not consider continuous sources of current (they
will be considered later when we study magnetostatics), so the electrons move
only until they have arranged themselves to produce zero electric field everywhere
inside the conductor. (This usually happens in a small fraction of a second.) If
there were any field left, this field would urge still more electrons to move; the
only electrostatic solution is that the field is everywhere zero inside.
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Now consider the interior of a charged conducting object. (By “interior” we
mean in the metal itself.) Since the metal is a conductor, the interior field must
be zero, and so the gradient of the potential φ is zero. That means that φ does
not vary from point to point. Every conductor is an equipotential region, and its
surface is an equipotential surface. Since in a conducting material the electric
field is everywhere zero, the divergence of E is zero, and by Gauss’ law the charge
density in the interior of the conductor must be zero.
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CONDUCTOR

E1 = 0

E2 =
σ

ε0

GAUSSIAN
SURFACE

LOCAL
SURFACE CHARGE
DENSITY σ

Fig. 5-11. The electric field just outside
the surface of a conductor is proportional
to the local surface density of charge.

If there can be no charges in a conductor, how can it ever be charged? What
do we mean when we say a conductor is “charged”? Where are the charges? The
answer is that they reside at the surface of the conductor, where there are strong
forces to keep them from leaving—they are not completely “free.” When we study
solid-state physics, we shall find that the excess charge of any conductor is on the
average within one or two atomic layers of the surface. For our present purposes,
it is accurate enough to say that if any charge is put on, or in, a conductor it all
accumulates on the surface; there is no charge in the interior of a conductor.

We note also that the electric field just outside the surface of a conductor
must be normal to the surface. There can be no tangential component. If there
were a tangential component, the electrons would move along the surface; there
are no forces preventing that. Saying it another way: we know that the electric
field lines must always go at right angles to an equipotential surface.

We can also, using Gauss’ law, relate the field strength just outside a conductor
to the local density of the charge at the surface. For a gaussian surface, we take a
small cylindrical box half inside and half outside the surface, like the one shown
in Fig. 5-11. There is a contribution to the total flux of E only from the side of
the box outside the conductor. The field just outside the surface of a conductor
is then

Outside a conductor:
E = σ

ε0
, (5.8)

where σ is the local surface charge density.
Why does a sheet of charge on a conductor produce a different field than

just a sheet of charge? In other words, why is (5.8) twice as large as (5.3)? The
reason, of course, is that we have not said for the conductor that there are no
“other” charges around. There must, in fact, be some to make E = 0 in the
conductor. The charges in the immediate neighborhood of a point P on the
surface do, in fact, give a field Elocal = σlocal/2ε0 both inside and outside the
surface. But all the rest of the charges on the conductor “conspire” to produce
an additional field at the point P equal in magnitude to Elocal. The total field
inside goes to zero and the field outside to 2Elocal = σ/ε0.

5-10 The field in a cavity of a conductor
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Fig. 5-12. What is the field in an empty
cavity of a conductor, for any shape?

We return now to the problem of the hollow container—a conductor with a
cavity. There is no field in the metal, but what about in the cavity? We shall
show that if the cavity is empty then there are no fields in it, no matter what the
shape of the conductor or the cavity—say for the one in Fig. 5-12. Consider a
gaussian surface, like S in Fig. 5-12, that encloses the cavity but stays everywhere
in the conducting material. Everywhere on S the field is zero, so there is no flux
through S and the total charge inside S is zero. For a spherical shell, one could
then argue from symmetry that there could be no charge inside. But, in general,
we can only say that there are equal amounts of positive and negative charge on
the inner surface of the conductor. There could be a positive surface charge on
one part and a negative one somewhere else, as indicated in Fig. 5-12. Such a
thing cannot be ruled out by Gauss’ law.

What really happens, of course, is that any equal and opposite charges on the
inner surface would slide around to meet each other, cancelling out completely. We
can show that they must cancel completely by using the law that the circulation
of E is always zero (electrostatics). Suppose there were charges on some parts
of the inner surface. We know that there would have to be an equal number of
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opposite charges somewhere else. Now any lines of E would have to start on the
positive charges and end on the negative charges (since we are considering only
the case that there are no free charges in the cavity). Now imagine a loop Γ that
crosses the cavity along a line of force from some positive charge to some negative
charge, and returns to its starting point via the conductor (as in Fig. 5-12). The
integral along such a line of force from the positive to the negative charges would
not be zero. The integral through the metal is zero, since E = 0. So we would
have ∮

E · ds 6= 0???

But the line integral of E around any closed loop in an electrostatic field is always
zero. So there can be no fields inside the empty cavity, nor any charges on the
inside surface.

You should notice carefully one important qualification we have made. We
have always said “inside an empty” cavity. If some charges are placed at some
fixed locations in the cavity—as on an insulator or on a small conductor insulated
from the main one—then there can be fields in the cavity. But then that is not
an “empty” cavity.

We have shown that if a cavity is completely enclosed by a conductor, no static
distribution of charges outside can ever produce any fields inside. This explains
the principle of “shielding” electrical equipment by placing it in a metal can. The
same arguments can be used to show that no static distribution of charges inside
a closed grounded conductor can produce any fields outside. Shielding works
both ways! In electrostatics—but not in varying fields—the fields on the two
sides of a closed grounded conducting shell are completely independent.

Now you see why it was possible to check Coulomb’s law to such a great
precision. The shape of the hollow shell used doesn’t matter. It doesn’t need to be
spherical; it could be square! If Gauss’ law is exact, the field inside is always zero.
Now you also understand why it is safe to sit inside the high-voltage terminal
of a million-volt Van de Graaff generator, without worrying about getting a
shock—because of Gauss’ law.
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6

The Electric Field in Various Circumstances

6-1 Equations of the electrostatic potential

This 6-1 Equations of the electrostatic
potential

6-2 The electric dipole
6-3 Remarks on vector equations
6-4 The dipole potential as a gradient
6-5 The dipole approximation for an

arbitrary distribution
6-6 The fields of charged conductors
6-7 The method of images
6-8 A point charge near a conducting

plane
6-9 A point charge near a conducting

sphere
6-10 Condensers; parallel plates
6-11 High-voltage breakdown
6-12 The field-emission microscope

chapter will describe the behavior of the electric field in a number of
different circumstances. It will provide some experience with the way the electric
field behaves, and will describe some of the mathematical methods which are
used to find this field.

We begin by pointing out that the whole mathematical problem is the solution
of two equations, the Maxwell equations for electrostatics:

∇ ·E = ρ

ε0
, (6.1)

∇×E = 0. (6.2)

In fact, the two can be combined into a single equation. From the second equation,
we know at once that we can describe the field as the gradient of a scalar (see
Section 3-7):

E = −∇φ. (6.3)
We may, if we wish, completely describe any particular electric field in terms

of its potential φ. We obtain the differential equation that φ must obey by
substituting Eq. (6.3) into (6.1), to get

∇ ·∇φ = − ρ

ε0
. (6.4)

The divergence of the gradient of φ is the same as ∇2 operating on φ:

∇ ·∇φ = ∇2φ = ∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 , (6.5)

so we write Eq. (6.4) as
∇2φ = − ρ

ε0
. (6.6)

The operator ∇2 is called the Laplacian, and Eq. (6.6) is called the Poisson
equation. The entire subject of electrostatics, from a mathematical point of view,
is merely a study of the solutions of the single equation (6.6). Once φ is obtained
by solving Eq. (6.6) we can find E immediately from Eq. (6.3).

Review: Chapter 23, Vol. I, Resonance

We take up first the special class of problems in which ρ is given as a function
of x, y, z. In that case the problem is almost trivial, for we already know the
solution of Eq. (6.6) for the general case. We have shown that if ρ is known at
every point, the potential at point (1) is

φ(1) =
∫
ρ(2) dV2

4πε0r12
, (6.7)

where ρ(2) is the charge density, dV2 is the volume element at point (2), and r12
is the distance between points (1) and (2). The solution of the differential
equation (6.6) is reduced to an integration over space. The solution (6.7) should
be especially noted, because there are many situations in physics that lead to
equations like

∇2(something) = (something else),
and Eq. (6.7) is a prototype of the solution for any of these problems.

The solution of electrostatic field problems is thus completely straightforward
when the positions of all the charges are known. Let’s see how it works in a few
examples.

6-1



6-2 The electric dipole

x

y

z

P (x, y , z)

+q

−q
d

θ

Fig. 6-1. A dipole: two charges +q

and −q the distance d apart.

First, take two point charges, +q and −q, separated by the distance d. Let
the z-axis go through the charges, and pick the origin halfway between, as shown
in Fig. 6-1. Then, using (4.24), the potential from the two charges is given by

φ(x, y, z)

= 1
4πε0

[
q√

[z − (d/2)]2 + x2 + y2
+ −q√

[z + (d/2)]2 + x2 + y2

]
. (6.8)

We are not going to write out the formula for the electric field, but we can always
calculate it once we have the potential. So we have solved the problem of two
charges.

There is an important special case in which the two charges are very close
together—which is to say that we are interested in the fields only at distances
from the charges large in comparison with their separation. We call such a close
pair of charges a dipole. Dipoles are very common.

A “dipole” antenna can often be approximated by two charges separated by a
small distance—if we don’t ask about the field too close to the antenna. (We are
usually interested in antennas with moving charges; then the equations of statics
do not really apply, but for some purposes they are an adequate approximation.)

More important perhaps, are atomic dipoles. If there is an electric field in any
material, the electrons and protons feel opposite forces and are displaced relative
to each other. In a conductor, you remember, some of the electrons move to
the surfaces, so that the field inside becomes zero. In an insulator the electrons
cannot move very far; they are pulled back by the attraction of the nucleus. They
do, however, shift a little bit. So although an atom, or molecule, remains neutral
in an external electric field, there is a very tiny separation of its positive and
negative charges and it becomes a microscopic dipole. If we are interested in the
fields of these atomic dipoles in the neighborhood of ordinary-sized objects, we
are normally dealing with distances large compared with the separations of the
pairs of charges.

H H

O

+ +

−

Fig. 6-2. The water molecule H2O. The
hydrogen atoms have slightly less than their
share of the electron cloud; the oxygen,
slightly more.

In some molecules the charges are somewhat separated even in the absence
of external fields, because of the form of the molecule. In a water molecule, for
example, there is a net negative charge on the oxygen atom and a net positive
charge on each of the two hydrogen atoms, which are not placed symmetrically
but as in Fig. 6-2. Although the charge of the whole molecule is zero, there is a
charge distribution with a little more negative charge on one side and a little more
positive charge on the other. This arrangement is certainly not as simple as two
point charges, but when seen from far away the system acts like a dipole. As we
shall see a little later, the field at large distances is not sensitive to the fine details.

Let’s look, then, at the field of two opposite charges with a small separation d.
If d becomes zero, the two charges are on top of each other, the two potentials
cancel, and there is no field. But if they are not exactly on top of each other, we
can get a good approximation to the potential by expanding the terms of (6.8) in
a power series in the small quantity d (using the binomial expansion). Keeping
terms only to first order in d, we can write(

z − d

2

)2
≈ z2 − zd.

It is convenient to write
x2 + y2 + z2 = r2.

Then (
z − d

2

)2
+ x2 + y2 ≈ r2 − zd = r2

(
1− zd

r2

)
,

and
1√

[z − (d/2)]2 + x2 + y2
≈ 1√

r2[1− (zd/r2)]
= 1
r

(
1− zd

r2

)−1/2
.
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Using the binomial expansion again for [1− (zd/r2)]−1/2—and throwing away
terms with the square or higher powers of d—we get

1
r

(
1 + 1

2
zd

r2

)
.

Similarly,
1√

[z + (d/2)]2 + x2 + y2
≈ 1
r

(
1− 1

2
zd

r2

)
.

The difference of these two terms gives for the potential

φ(x, y, z) = 1
4πε0

z

r3 qd. (6.9)

The potential, and hence the field, which is its derivative, is proportional to qd,
the product of the charge and the separation. This product is defined as the
dipole moment of the two charges, for which we will use the symbol p (do not
confuse with momentum!):

p = qd. (6.10)
Equation (6.9) can also be written as

φ(x, y, z) = 1
4πε0

p cos θ
r2 , (6.11)

since z/r = cos θ, where θ is the angle between the axis of the dipole and
the radius vector to the point (x, y, z)—see Fig. 6-1. The potential of a dipole
decreases as 1/r2 for a given direction from the axis (whereas for a point charge
it goes as 1/r). The electric field E of the dipole will then decrease as 1/r3.

p er

r

P

θ

Fig. 6-3. Vector notation for a dipole.

We can put our formula into a vector form if we define p as a vector whose
magnitude is p and whose direction is along the axis of the dipole, pointing from
−q toward +q. Then

p cos θ = p · er, (6.12)
where er is the unit radial vector (Fig. 6-3). We can also represent the point
(x, y, z) by r. Then

Dipole potential:
φ(r) = 1

4πε0
p · er
r2 = 1

4πε0
p · r
r3 (6.13)

This formula is valid for a dipole with any orientation and position if r represents
the vector from the dipole to the point of interest.

If we want the electric field of the dipole we can get it by taking the gradient
of φ. For example, the z-component of the field is −∂φ/∂z. For a dipole oriented
along the z-axis we can use (6.9):

−∂φ
∂z

= − p

4πε0
∂

∂z

(
z

r3

)
= − p

4πε0

(
1
r3 −

3z2

r5

)
,

or
Ez = p

4πε0
3 cos2 θ − 1

r3 . (6.14)

The x- and y-components are

Ex = p

4πε0
3zx
r5 , Ey = p

4πε0
3zy
r5 .

These two can be combined to give one component directed perpendicular to the
z-axis, which we will call the transverse component E⊥:

E⊥ =
√
E2
x + E2

y = p

4πε0
3z
r5

√
x2 + y2

or
E⊥ = p

4πε0
3 cos θ sin θ

r3 . (6.15)
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The transverse component E⊥ is in the xy-plane and points directly away from
the axis of the dipole. The total field, of course, is

E =
√
E2
z + E2

⊥.

The dipole field varies inversely as the cube of the distance from the dipole.
On the axis, at θ = 0, it is twice as strong as at θ = 90◦. At both of these special
angles the electric field has only a z-component, but of opposite sign at the two
places (Fig. 6-4).

6-3 Remarks on vector equations

pE
r

θ
E⊥

Ez E

Fig. 6-4. The electric field of a dipole.

This is a good place to make a general remark about vector analysis. The
fundamental proofs can be expressed by elegant equations in a general form, but
in making various calculations and analyses it is always a good idea to choose
the axes in some convenient way. Notice that when we were finding the potential
of a dipole we chose the z-axis along the direction of the dipole, rather than at
some arbitrary angle. This made the work much easier. But then we wrote the
equations in vector form so that they would no longer depend on any particular
coordinate system. After that, we are allowed to choose any coordinate system
we wish, knowing that the relation is, in general, true. It clearly doesn’t make
any sense to bother with an arbitrary coordinate system at some complicated
angle when you can choose a neat system for the particular problem—provided
that the result can finally be expressed as a vector equation. So by all means take
advantage of the fact that vector equations are independent of any coordinate
system.

On the other hand, if you are trying to calculate the divergence of a vector,
instead of just looking at ∇ ·E and wondering what it is, don’t forget that it
can always be spread out as

∂Ex
∂x

+ ∂Ey
∂y

+ ∂Ez
∂z

.

If you can then work out the x-, y-, and z-components of the electric field
and differentiate them, you will have the divergence. There often seems to be
a feeling that there is something inelegant—some kind of defeat involved—in
writing out the components; that somehow there ought always to be a way to
do everything with the vector operators. There is often no advantage to it. The
first time we encounter a particular kind of problem, it usually helps to write out
the components to be sure we understand what is going on. There is nothing
inelegant about putting numbers into equations, and nothing inelegant about
substituting the derivatives for the fancy symbols. In fact, there is often a certain
cleverness in doing just that. Of course when you publish a paper in a professional
journal it will look better—and be more easily understood—if you can write
everything in vector form. Besides, it saves print.

6-4 The dipole potential as a gradient

We would like to point out a rather amusing thing about the dipole formula,
Eq. (6.13). The potential can also be written as

φ = − 1
4πε0

p ·∇
(

1
r

)
. (6.16)

If you calculate the gradient of 1/r, you get

∇
(

1
r

)
= − r

r3 = −er
r2 ,

and Eq. (6.16) is the same as Eq. (6.13).
How did we think of that? We just remembered that er/r2 appeared in the

formula for the field of a point charge, and that the field was the gradient of a
potential which has a 1/r dependence.

6-4



x

y

z

O

∆z

P

P ′
∆z

Fig. 6-5. The potential at P from a point
charge at ∆z above the origin is the same
as the potential at P ′ (∆z below P ) from
the same charge at the origin.

There is a physical reason for being able to write the dipole potential in the
form of Eq. (6.16). Suppose we have a point charge q at the origin. The potential
at the point P at (x, y, z) is

φ0 = q

r
.

(Let’s leave off the 1/4πε0 while we make these arguments; we can stick it in at
the end.) Now if we move the charge +q up a distance ∆z, the potential at P
will change a little, by, say, ∆φ+. How much is ∆φ+? Well, it is just the amount
that the potential would change if we were to leave the charge at the origin and
move P downward by the same distance ∆z (Fig. 6-5). That is,

∆φ+ = −∂φ0

∂z
∆z,

where by ∆z we mean the same as d/2. So, using φ0 = q/r, we have that the
potential from the positive charge is

φ+ = q

r
− ∂

∂z

(
q

r

)
d

2 . (6.17)

Applying the same reasoning for the potential from the negative charge, we
can write

φ− = −q
r

+ ∂

∂z

(
−q
r

)
d

2 . (6.18)

The total potential is the sum of (6.17) and (6.18):

φ = φ+ + φ− = − ∂

∂z

(
q

r

)
d (6.19)

= − ∂

∂z

(
1
r

)
qd

For other orientations of the dipole, we could represent the displacement of
the positive charge by the vector ∆r+. We should then write the equation above
Eq. (6.17) as

∆φ+ = −∇φ0 ·∆r+,

where ∆r+ is then to be replaced by d/2. Completing the derivation as before,
Eq. (6.19) would then become

φ = −∇
(

1
r

)
· qd.

This is the same as Eq. (6.16), if we replace qd = p, and put back the 1/4πε0.
Looking at it another way, we see that the dipole potential, Eq. (6.13), can be
interpreted as

φ = −p ·∇Φ0, (6.20)

where Φ0 = 1/4πε0r is the potential of a unit point charge.
Although we can always find the potential of a known charge distribution

by an integration, it is sometimes possible to save time by getting the answer
with a clever trick. For example, one can often make use of the superposition
principle. If we are given a charge distribution that can be made up of the sum
of two distributions for which the potentials are already known, it is easy to find
the desired potential by just adding the two known ones. One example of this is
our derivation of (6.20), another is the following.

Suppose we have a spherical surface with a distribution of surface charge that
varies as the cosine of the polar angle. The integration for this distribution is fairly
messy. But, surprisingly, such a distribution can be analyzed by superposition.
For imagine a sphere with a uniform volume density of positive charge, and
another sphere with an equal uniform volume density of negative charge, originally
superposed to make a neutral—that is, uncharged—sphere. If the positive sphere
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Fig. 6-6. Two uniformly charged spheres,
superposed with a slight displacement, are
equivalent to a nonuniform distribution of
surface charge.
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(a) + (b) = (c)

is then displaced slightly with respect to the negative sphere, the body of the
uncharged sphere would remain neutral, but a little positive charge will appear on
one side, and some negative charge will appear on the opposite side, as illustrated
in Fig. 6-6. If the relative displacement of the two spheres is small, the net charge
is equivalent to a surface charge (on a spherical surface), and the surface charge
density will be proportional to the cosine of the polar angle.

Now if we want the potential from this distribution, we do not need to do an
integral. We know that the potential from each of the spheres of charge is—for
points outside the sphere—the same as from a point charge. The two displaced
spheres are like two point charges; the potential is just that of a dipole.

In this way you can show that a charge distribution on a sphere of radius a
with a surface charge density

σ = σ0 cos θ
produces a field outside the sphere which is just that of a dipole whose moment is

p = 4πσ0a
3

3 .

It can also be shown that inside the sphere the field is constant, with the value

E = σ0

3ε0
.

If θ is the angle from the positive z-axis, the electric field inside the sphere is in
the negative z-direction. The example we have just considered is not as artificial
as it may appear; we will encounter it again in the theory of dielectrics.

6-5 The dipole approximation for an arbitrary distribution

The dipole field appears in another circumstance both interesting and im-
portant. Suppose that we have an object that has a complicated distribution
of charge—like the water molecule (Fig. 6-2)—and we are interested only in
the fields far away. We will show that it is possible to find a relatively simple
expression for the fields which is appropriate for distances large compared with
the size of the object.

We can think of our object as an assembly of point charges qi in a certain
limited region, as shown in Fig. 6-7. (We can, later, replace qi by ρ dV if we
wish.) Let each charge qi be located at the displacement di from an origin chosen

Fig. 6-7. Computation of the potential
at a point P at a large distance from a set
of charges.

+ −

+
+

−
+

−
+

−

P

qi

di

ri

R
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somewhere in the middle of the group of charges. What is the potential at the
point P , located at R, where R is much larger than the maximum di? The
potential from the whole collection is given by

φ = 1
4πε0

∑
i

qi
ri
, (6.21)

where ri is the distance from P to the charge qi (the length of the vector R−di).
Now if the distance from the charges to P , the point of observation, is enormous,
each of the ri’s can be approximated by R. Each term becomes qi/R, and we
can take 1/R out as a factor in front of the summation. This gives us the simple
result

φ = 1
4πε0

1
R

∑
i

qi = Q

4πε0R
, (6.22)

where Q is just the total charge of the whole object. Thus we find that for points
far enough from any lump of charge, the lump looks like a point charge. The
result is not too surprising.

But what if there are equal numbers of positive and negative charges? Then
the total charge Q of the object is zero. This is not an unusual case; in fact, as
we know, objects are usually neutral. The water molecule is neutral, but the
charges are not all at one point, so if we are close enough we should be able to see
some effects of the separate charges. We need a better approximation than (6.22)
for the potential from an arbitrary distribution of charge in a neutral object.
Equation (6.21) is still precise, but we can no longer just set ri = R. We need
a more accurate expression for ri. If the point P is at a large distance, ri will
differ from R to an excellent approximation by the projection of d on R, as can
be seen from Fig. 6-7. (You should imagine that P is really farther away than
is shown in the figure.) In other words, if eR is the unit vector in the direction
of R, then our next approximation to ri is

ri ≈ R− di · eR. (6.23)

What we really want is 1/ri, which, since di � R, can be written to our
approximation as

1
ri
≈ 1
R

(
1 + di · eR

R

)
. (6.24)

Substituting this in (6.21), we get that the potential is

φ = 1
4πε0

(
Q

R
+
∑
i

qi
di · eR
R2 + · · ·

)
. (6.25)

The three dots indicate the terms of higher order in di/R that we have neglected.
These, as well as the ones we have already obtained, are successive terms in a
Taylor expansion of 1/ri about 1/R in powers of di/R.

The first term in (6.25) is what we got before; it drops out if the object is
neutral. The second term depends on 1/R2, just as for a dipole. In fact, if we
define

p =
∑
i

qidi (6.26)

as a property of the charge distribution, the second term of the potential (6.25)
is

φ = 1
4πε0

p · eR
R2 , (6.27)

precisely a dipole potential. The quantity p is called the dipole moment of the
distribution. It is a generalization of our earlier definition, and reduces to it for
the special case of two point charges.

Our result is that, far enough away from any mess of charges that is as a
whole neutral, the potential is a dipole potential. It decreases as 1/R2 and varies
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as cos θ—and its strength depends on the dipole moment of the distribution of
charge. It is for these reasons that dipole fields are important, since the simple
case of a pair of point charges is quite rare.

The water molecule, for example, has a rather strong dipole moment. The
electric fields that result from this moment are responsible for some of the
important properties of water. For many molecules, for example CO2, the dipole
moment vanishes because of the symmetry of the molecule. For them we should
expand still more accurately, obtaining another term in the potential which
decreases as 1/R3, and which is called a quadrupole potential. We will discuss
such cases later.

6-6 The fields of charged conductors

− +

A

B

Fig. 6-8. The field lines and equipoten-
tials for two point charges.

We have now finished with the examples we wish to cover of situations in
which the charge distribution is known from the start. It has been a problem
without serious complications, involving at most some integrations. We turn now
to an entirely new kind of problem, the determination of the fields near charged
conductors.

Suppose that we have a situation in which a total charge Q is placed on an
arbitrary conductor. Now we will not be able to say exactly where the charges
are. They will spread out in some way on the surface. How can we know how
the charges have distributed themselves on the surface? They must distribute
themselves so that the potential of the surface is constant. If the surface were
not an equipotential, there would be an electric field inside the conductor, and
the charges would keep moving until it became zero. The general problem of this
kind can be solved in the following way. We guess at a distribution of charge and
calculate the potential. If the potential turns out to be constant everywhere on
the surface, the problem is finished. If the surface is not an equipotential, we have
guessed the wrong distribution of charges, and should guess again—hopefully
with an improved guess! This can go on forever, unless we are judicious about
the successive guesses.

The question of how to guess at the distribution is mathematically difficult.
Nature, of course, has time to do it; the charges push and pull until they all
balance themselves. When we try to solve the problem, however, it takes us so
long to make each trial that that method is very tedious. With an arbitrary
group of conductors and charges the problem can be very complicated, and in
general it cannot be solved without rather elaborate numerical methods. Such
numerical computations, these days, are set up on a computing machine that
will do the work for us, once we have told it how to proceed.

On the other hand, there are a lot of little practical cases where it would be
nice to be able to find the answer by some more direct method—without having
to write a program for a computer. Fortunately, there are a number of cases
where the answer can be obtained by squeezing it out of Nature by some trick or
other. The first trick we will describe involves making use of solutions we have
already obtained for situations in which charges have specified locations.

6-7 The method of images

+q

CONDUCTOR

Fig. 6-9. The field outside a conductor
shaped like the equipotential A of Fig. 6-8.

We have solved, for example, the field of two point charges. Figure 6-8 shows
some of the field lines and equipotential surfaces we obtained by the computations
in Chapter 4. Now consider the equipotential surface marked A. Suppose we
were to shape a thin sheet of metal so that it just fits this surface. If we place it
right at the surface and adjust its potential to the proper value, no one would
ever know it was there, because nothing would be changed.

But notice! We have really solved a new problem. We have a situation in
which the surface of a curved conductor with a given potential is placed near a
point charge. If the metal sheet we placed at the equipotential surface eventually
closes on itself (or, in practice, if it goes far enough) we have the kind of situation
considered in Section 5-10, in which our space is divided into two regions, one
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inside and one outside a closed conducting shell. We found there that the fields
in the two regions are quite independent of each other. So we would have the
same fields outside our curved conductor no matter what is inside. We can even
fill up the whole inside with conducting material. We have found, therefore, the
fields for the arrangement of Fig. 6-9. In the space outside the conductor the
field is just like that of two point charges, as in Fig. 6-8. Inside the conductor,
it is zero. Also—as it must be—the electric field just outside the conductor is
normal to the surface.

Thus we can compute the fields in Fig. 6-9 by computing the field due to q
and to an imaginary point charge −q at a suitable point. The point charge we
“imagine” existing behind the conducting surface is called an image charge.

In books you can find long lists of solutions for hyperbolic-shaped conductors
and other complicated looking things, and you wonder how anyone ever solved
these terrible shapes. They were solved backwards! Someone solved a simple
problem with given charges. He then saw that some equipotential surface showed
up in a new shape, and he wrote a paper in which he pointed out that the field
outside that particular shape can be described in a certain way.

6-8 A point charge near a conducting plane

As the simplest application of the use of this method, let’s make use of the
plane equipotential surface B of Fig. 6-8. With it, we can solve the problem of a
charge in front of a conducting sheet. We just cross out the left-hand half of the
picture. The field lines for our solution are shown in Fig. 6-10. Notice that the
plane, since it was halfway between the two charges, has zero potential. We have
solved the problem of a positive charge next to a grounded conducting sheet.

We have now solved for the total field, but what about the real charges that
are responsible for it? There are, in addition to our positive point charge, some
induced negative charges on the conducting sheet that have been attracted by
the positive charge (from large distances away). Now suppose that for some

+−

P

IMAGE CHARGE

ρ

a

CONDUCTING

PLATE

−

−

−

−

−

−

−

−

−

−

Fig. 6-10. The field of a charge near a plane conducting surface, found by the method
of images.
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technical reason—or out of curiosity—you would like to know how the negative
charges are distributed on the surface. You can find the surface charge density
by using the result we worked out in Section 5-9 with Gauss’ law. The normal
component of the electric field just outside a conductor is equal to the density of
surface charge σ divided by ε0. We can obtain the density of charge at any point
on the surface by working backwards from the normal component of the electric
field at the surface. We know that, because we know the field everywhere.

Consider a point on the surface at the distance ρ from the point directly
beneath the positive charge (Fig. 6-10). The electric field at this point is normal
to the surface and is directed into it. The component normal to the surface of
the field from the positive point charge is

En+ = − 1
4πε0

aq

(a2 + ρ2)3/2 . (6.28)

To this we must add the electric field produced by the negative image charge.
That just doubles the normal component (and cancels all others), so the charge
density σ at any point on the surface is

σ(ρ) = ε0E(ρ) = − 2aq
4π(a2 + ρ2)3/2 . (6.29)

An interesting check on our work is to integrate σ over the whole surface. We
find that the total induced charge is −q, as it should be.

One further question: Is there a force on the point charge? Yes, because there
is an attraction from the induced negative surface charge on the plate. Now that
we know what the surface charges are (from Eq. 6.29), we could compute the
force on our positive point charge by an integral. But we also know that the force
acting on the positive charge is exactly the same as it would be with the negative
image charge instead of the plate, because the fields in the neighborhood are
the same in both cases. The point charge feels a force toward the plate whose
magnitude is

F = 1
4πε0

q2

(2a)2 . (6.30)

We have found the force much more easily than by integrating over all the negative
charges.

6-9 A point charge near a conducting sphere

q

q′ = −
a

b
qa2

b

a
b

P

r1r2

Fig. 6-11. The point charge q induces
charges on a grounded conducting sphere
whose fields are those of an image charge q′

placed at the point shown.

What other surfaces besides a plane have a simple solution? The next most
simple shape is a sphere. Let’s find the fields around a grounded metal sphere
which has a point charge q near it, as shown in Fig. 6-11. Now we must look for
a simple physical situation which gives a sphere for an equipotential surface. If
we look around at problems people have already solved, we find that someone
has noticed that the field of two unequal point charges has an equipotential that
is a sphere. Aha! If we choose the location of an image charge—and pick the
right amount of charge—maybe we can make the equipotential surface fit our
sphere. Indeed, it can be done with the following prescription.

Assume that you want the equipotential surface to be a sphere of radius a
with its center at the distance b from the charge q. Put an image charge of
strength q′ = −q(a/b) on the line from the charge to the center of the sphere,
and at a distance a2/b from the center. The sphere will be at zero potential.

The mathematical reason stems from the fact that a sphere is the locus of all
points for which the distances from two points are in a constant ratio. Referring
to Fig. 6-11, the potential at P from q and q′ is proportional to

q

r1
+ q′

r2
.

The potential will thus be zero at all points for which
q′

r2
= − q

r1
or r2

r1
= −q

′

q
.
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If we place q′ at the distance a2/b from the center, the ratio r2/r1 has the constant
value a/b. Then if

q′

q
= −a

b
(6.31)

the sphere is an equipotential. Its potential is, in fact, zero.
What happens if we are interested in a sphere that is not at zero potential?

That would be so only if its total charge happens accidentally to be q′. Of course
if it is grounded, the charges induced on it would have to be just that. But what
if it is insulated, and we have put no charge on it? Or if we know that the total
charge Q has been put on it? Or just that it has a given potential not equal
to zero? All these questions are easily answered. We can always add a point
charge q′′ at the center of the sphere. The sphere still remains an equipotential
by superposition; only the magnitude of the potential will be changed.

If we have, for example, a conducting sphere which is initially uncharged and
insulated from everything else, and we bring near to it the positive point charge q,
the total charge of the sphere will remain zero. The solution is found by using
an image charge q′ as before, but, in addition, adding a charge q′′ at the center
of the sphere, choosing

q′′ = −q′ = a

b
q. (6.32)

The fields everywhere outside the sphere are given by the superposition of the
fields of q, q′, and q′′. The problem is solved.

We can see now that there will be a force of attraction between the sphere
and the point charge q. It is not zero even though there is no charge on the
neutral sphere. Where does the attraction come from? When you bring a positive
charge up to a conducting sphere, the positive charge attracts negative charges to
the side closer to itself and leaves positive charges on the surface of the far side.
The attraction by the negative charges exceeds the repulsion from the positive
charges; there is a net attraction. We can find out how large the attraction is
by computing the force on q in the field produced by q′ and q′′. The total force
is the sum of the attractive force between q and a charge q′ = −(a/b)q, at the
distance b− (a2/b), and the repulsive force between q and a charge q′′ = +(a/b)q
at the distance b.

Those who were entertained in childhood by the baking powder box which
has on its label a picture of a baking powder box which has on its label a picture
of a baking powder box which has . . . may be interested in the following problem.
Two equal spheres, one with a total charge of +Q and the other with a total
charge of −Q, are placed at some distance from each other. What is the force
between them? The problem can be solved with an infinite number of images.
One first approximates each sphere by a charge at its center. These charges will
have image charges in the other sphere. The image charges will have images, etc.,
etc., etc. The solution is like the picture on the box of baking powder—and it
converges pretty fast.

6-10 Condensers; parallel plates
Area = A

+σ

−σ

dE
+ + + + + + +

− − − − − − −

Fig. 6-12. A parallel-plate condenser.

We take up now another kind of a problem involving conductors. Consider two
large metal plates which are parallel to each other and separated by a distance
small compared with their width. Let’s suppose that equal and opposite charges
have been put on the plates. The charges on each plate will be attracted by the
charges on the other plate, and the charges will spread out uniformly on the inner
surfaces of the plates. The plates will have surface charge densities +σ and −σ,
respectively, as in Fig. 6-12. From Chapter 5 we know that the field between the
plates is σ/ε0, and that the field outside the plates is zero. The plates will have
different potentials φ1 and φ2. For convenience we will call the difference V ; it is
often called the “voltage”:

φ1 − φ2 = V.

(You will find that sometimes people use V for the potential, but we have chosen
to use φ.)
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The potential difference V is the work per unit charge required to carry a
small charge from one plate to the other, so that

V = Ed = σ

ε0
d = d

ε0A
Q, (6.33)

where ±Q is the total charge on each plate, A is the area of the plates, and d is
the separation.

We find that the voltage is proportional to the charge. Such a proportionality
between V and Q is found for any two conductors in space if there is a plus
charge on one and an equal minus charge on the other. The potential difference
between them—that is, the voltage—will be proportional to the charge. (We are
assuming that there are no other charges around.)

Why this proportionality? Just the superposition principle. Suppose we know
the solution for one set of charges, and then we superimpose two such solutions.
The charges are doubled, the fields are doubled, and the work done in carrying a
unit charge from one point to the other is also doubled. Therefore the potential
difference between any two points is proportional to the charges. In particular,
the potential difference between the two conductors is proportional to the charges
on them. Someone originally wrote the equation of proportionality the other way.
That is, they wrote

Q = CV,

where C is a constant. This coefficient of proportionality is called the capacity,
and such a system of two conductors is called a condenser.* For our parallel-plate
condenser

C = ε0A

d
(parallel plates). (6.34)

Fig. 6-13. The electric field near the edge
of two parallel plates.

This formula is not exact, because the field is not really uniform everywhere
between the plates, as we assumed. The field does not just suddenly quit at the
edges, but really is more as shown in Fig. 6-13. The total charge is not σA, as we
have assumed—there is a little correction for the effects at the edges. To find out
what the correction is, we will have to calculate the field more exactly and find
out just what does happen at the edges. That is a complicated mathematical
problem which can, however, be solved by techniques which we will not describe
now. The result of such calculations is that the charge density rises somewhat
near the edges of the plates. This means that the capacity of the plates is a little
higher than we computed.

We have talked about the capacity for two conductors only. Sometimes people
talk about the capacity of a single object. They say, for instance, that the capacity
of a sphere of radius a is 4πε0a. What they imagine is that the other terminal is
another sphere of infinite radius—that when there is a charge +Q on the sphere,
the opposite charge, −Q, is on an infinite sphere. One can also speak of capacities
when there are three or more conductors, a discussion we shall, however, defer.

Suppose that we wish to have a condenser with a very large capacity. We
could get a large capacity by taking a very big area and a very small separation.
We could put waxed paper between sheets of aluminum foil and roll it up. (If
we seal it in plastic, we have a typical radio-type condenser.) What good is it?
It is good for storing charge. If we try to store charge on a ball, for example,
its potential rises rapidly as we charge it up. It may even get so high that the
charge begins to escape into the air by way of sparks. But if we put the same
charge on a condenser whose capacity is very large, the voltage developed across
the condenser will be small.

In many applications in electronic circuits, it is useful to have something
which can absorb or deliver large quantities of charge without changing its
potential much. A condenser (or “capacitor”) does just that. There are also
many applications in electronic instruments and in computers where a condenser

* Some people think the words “capacitance” and “capacitor” should be used, instead of
“capacity” and “condensor.” We have decided to use the older terminology, because it is still
more commonly heard in the physics laboratory—even if not in textbooks!
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is used to get a specified change in voltage in response to a particular change
in charge. We have seen a similar application in Chapter 23, Vol. I, where we
described the properties of resonant circuits.

ε0 ≈
1

36π × 109 farad/meter
From the definition of C, we see that its unit is one coulomb/volt. This unit

is also called a farad. Looking at Eq. (6.34), we see that one can express the
units of ε0 as farad/meter, which is the unit most commonly used. Typical sizes
of condensers run from one micro-microfarad (1 picofarad) to millifarads. Small
condensers of a few picofarads are used in high-frequency tuned circuits, and
capacities up to hundreds or thousands of microfarads are found in power-supply
filters. A pair of plates one square centimeter in area with a one millimeter
separation have a capacity of roughly one micro-microfarad.

6-11 High-voltage breakdown

CONDUCTOR

Fig. 6-14. The electric field near a sharp
point on a conductor is very high.

We would like now to discuss qualitatively some of the characteristics of the
fields around conductors. If we charge a conductor that is not a sphere, but one
that has on it a point or a very sharp end, as, for example, the object sketched
in Fig. 6-14, the field around the point is much higher than the field in the other
regions. The reason is, qualitatively, that charges try to spread out as much as
possible on the surface of a conductor, and the tip of a sharp point is as far away
as it is possible to be from most of the surface. Some of the charges on the plate
get pushed all the way to the tip. A relatively small amount of charge on the tip
can still provide a large surface density; a high charge density means a high field
just outside.

WIRE

Fig. 6-15. The field of a pointed object
can be approximated by that of two spheres
at the same potential.

One way to see that the field is highest at those places on a conductor where
the radius of curvature is smallest is to consider the combination of a big sphere
and a little sphere connected by a wire, as shown in Fig. 6-15. It is a somewhat
idealized version of the conductor of Fig. 6-14. The wire will have little influence
on the fields outside; it is there to keep the spheres at the same potential. Now,
which ball has the biggest field at its surface? If the ball on the left has the
radius a and carries a charge Q, its potential is about

φ1 = 1
4πε0

Q

a
.

(Of course the presence of one ball changes the charge distribution on the other,
so that the charges are not really spherically symmetric on either. But if we are
interested only in an estimate of the fields, we can use the potential of a spherical
charge.) If the smaller ball, whose radius is b, carries the charge q, its potential
is about

φ2 = 1
4πε0

q

b
.

But φ1 = φ2, so
Q

a
= q

b
.

On the other hand, the field at the surface (see Eq. 5.8) is proportional to the
surface charge density, which is like the total charge over the radius squared. We
get that

Ea
Eb

= Q/a2

q/b2
= b

a
. (6.35)

Therefore the field is higher at the surface of the small sphere. The fields are in
the inverse proportion of the radii.

This result is technically very important, because air will break down if the
electric field is too great. What happens is that a loose charge (electron, or ion)
somewhere in the air is accelerated by the field, and if the field is very great,
the charge can pick up enough speed before it hits another atom to be able to
knock an electron off that atom. As a result, more and more ions are produced.
Their motion constitutes a discharge, or spark. If you want to charge an object
to a high potential and not have it discharge itself by sparks in the air, you must
be sure that the surface is smooth, so that there is no place where the field is
abnormally large.
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6-12 The field-emission microscope
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Fig. 6-16. Field-emission microscope.

There is an interesting application of the extremely high electric field which
surrounds any sharp protuberance on a charged conductor. The field-emission
microscope depends for its operation on the high fields produced at a sharp
metal point.* It is built in the following way. A very fine needle, with a tip
whose diameter is about 1000 angstroms, is placed at the center of an evacuated
glass sphere (Fig. 6-16). The inner surface of the sphere is coated with a thin
conducting layer of fluorescent material, and a very high potential difference is
applied between the fluorescent coating and the needle.

Let’s first consider what happens when the needle is negative with respect to
the fluorescent coating. The field lines are highly concentrated at the sharp point.
The electric field can be as high as 40 million volts per centimeter. In such intense
fields, electrons are pulled out of the surface of the needle and accelerated across
the potential difference between the needle and the fluorescent layer. When they
arrive there they cause light to be emitted, just as in a television picture tube.

The electrons which arrive at a given point on the fluorescent surface are, to
an excellent approximation, those which leave the other end of the radial field
line, because the electrons will travel along the field line passing from the point
to the surface. Thus we see on the surface some kind of an image of the tip of
the needle. More precisely, we see a picture of the emissivity of the surface of the
needle—that is the ease with which electrons can leave the surface of the metal
tip. If the resolution were high enough, one could hope to resolve the positions
of the individual atoms on the tip of the needle. With electrons, this resolution
is not possible for the following reasons. First, there is quantum-mechanical
diffraction of the electron waves which blurs the image. Second, due to the
internal motions of the electrons in the metal they have a small sideways initial
velocity when they leave the needle, and this random transverse component of
the velocity causes some smearing of the image. The combination of these two
effects limits the resolution to 25 Å or so.

Fig. 6-17. Image produced by a field-
emission microscope. [Courtesy of Erwin W.
Müller, Research Prof. of Physics, Pennsyl-
vania State University.]

If, however, we reverse the polarity and introduce a small amount of helium gas
into the bulb, much higher resolutions are possible. When a helium atom collides
with the tip of the needle, the intense field there strips an electron off the helium
atom, leaving it positively charged. The helium ion is then accelerated outward
along a field line to the fluorescent screen. Since the helium ion is so much heavier
than an electron, the quantum-mechanical wavelengths are much smaller. If the
temperature is not too high, the effect of the thermal velocities is also smaller
than in the electron case. With less smearing of the image a much sharper picture
of the point is obtained. It has been possible to obtain magnifications up to
2,000,000 times with the positive ion field-emission microscope—a magnification
ten times better than is obtained with the best electron microscope.

Figure 6-17 is an example of the results which were obtained with a field-ion
microscope, using a tungsten needle. The center of a tungsten atom ionizes a
helium atom at a slightly different rate than the spaces between the tungsten
atoms. The pattern of spots on the fluorescent screen shows the arrangement of
the individual atoms on the tungsten tip. The reason the spots appear in rings
can be understood by visualizing a large box of balls packed in a rectangular
array, representing the atoms in the metal. If you cut an approximately spherical
section out of this box, you will see the ring pattern characteristic of the atomic
structure. The field-ion microscope provided human beings with the means of
seeing atoms for the first time. This is a remarkable achievement, considering
the simplicity of the instrument.

* See E. W. Müller: “The field-ion microscope,” Advances in Electronics and Electron
Physics, 13, 83–179 (1960). Academic Press, New York.
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7

The Electric Field in Various Circumstances
(Continued)

7-1 Methods for finding the electrostatic field

This 7-1 Methods for finding the
electrostatic field

7-2 Two-dimensional fields; functions
of the complex variable

7-3 Plasma oscillations
7-4 Colloidal particles in an

electrolyte
7-5 The electrostatic field of a grid

chapter is a continuation of our consideration of the characteristics of
electric fields in various particular situations. We shall first describe some of the
more elaborate methods for solving problems with conductors. It is not expected
that these more advanced methods can be mastered at this time. Yet it may be
of interest to have some idea about the kinds of problems that can be solved,
using techniques that may be learned in more advanced courses. Then we take
up two examples in which the charge distribution is neither fixed nor is carried
by a conductor, but instead is determined by some other law of physics.

As we found in Chapter 6, the problem of the electrostatic field is fundamen-
tally simple when the distribution of charges is specified; it requires only the
evaluation of an integral. When there are conductors present, however, compli-
cations arise because the charge distribution on the conductors is not initially
known; the charge must distribute itself on the surface of the conductor in such
a way that the conductor is an equipotential. The solution of such problems is
neither direct nor simple.

We have looked at an indirect method of solving such problems, in which we
find the equipotentials for some specified charge distribution and replace one of
them by a conducting surface. In this way we can build up a catalog of special
solutions for conductors in the shapes of spheres, planes, etc. The use of images,
described in Chapter 6, is an example of an indirect method. We shall describe
another in this chapter.

If the problem to be solved does not belong to the class of problems for which
we can construct solutions by the indirect method, we are forced to solve the
problem by a more direct method. The mathematical problem of the direct
method is the solution of Laplace’s equation,

∇2φ = 0, (7.1)

subject to the condition that φ is a suitable constant on certain boundaries—the
surfaces of the conductors. Problems which involve the solution of a differential
field equation subject to certain boundary conditions are called boundary-value
problems. They have been the object of considerable mathematical study. In the
case of conductors having complicated shapes, there are no general analytical
methods. Even such a simple problem as that of a charged cylindrical metal can
closed at both ends—a beer can—presents formidable mathematical difficulties.
It can be solved only approximately, using numerical methods. The only general
methods of solution are numerical.

There are a few problems for which Eq. (7.1) can be solved directly. For
example, the problem of a charged conductor having the shape of an ellipsoid
of revolution can be solved exactly in terms of known special functions. The
solution for a thin disc can be obtained by letting the ellipsoid become infinitely
oblate. In a similar manner, the solution for a needle can be obtained by letting
the ellipsoid become infinitely prolate. However, it must be stressed that the
only direct methods of general applicability are the numerical techniques.

Boundary-value problems can also be solved by measurements of a physical
analog. Laplace’s equation arises in many different physical situations: in steady-
state heat flow, in irrotational fluid flow, in current flow in an extended medium,
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and in the deflection of an elastic membrane. It is frequently possible to set up
a physical model which is analogous to an electrical problem which we wish to
solve. By the measurement of a suitable analogous quantity on the model, the
solution to the problem of interest can be determined. An example of the analog
technique is the use of the electrolytic tank for the solution of two-dimensional
problems in electrostatics. This works because the differential equation for the
potential in a uniform conducting medium is the same as it is for a vacuum.

There are many physical situations in which the variations of the physical
fields in one direction are zero, or can be neglected in comparison with the
variations in the other two directions. Such problems are called two-dimensional;
the field depends on two coordinates only. For example, if we place a long charged
wire along the z-axis, then for points not too far from the wire the electric field
depends on x and y, but not on z; the problem is two-dimensional. Since in a
two-dimensional problem ∂φ/∂z = 0, the equation for φ in free space is

∂2φ

∂x2 + ∂2φ

∂y2 = 0. (7.2)

Because the two-dimensional equation is comparatively simple, there is a wide
range of conditions under which it can be solved analytically. There is, in fact,
a very powerful indirect mathematical technique which depends on a theorem
from the mathematics of functions of a complex variable, and which we will now
describe.

7-2 Two-dimensional fields; functions of the complex variable

The complex variable z is defined as

z = x+ iy.

(Do not confuse z with the z-coordinate, which we ignore in the following discussion
because we assume there is no z-dependence of the fields.) Every point in x and y
then corresponds to a complex number z. We can use z as a single (complex)
variable, and with it write the usual kinds of mathematical functions F (z). For
example,

F (z) = z2,

or
F (z) = 1/z3,

or
F (z) = z ln z,

and so forth.
Given any particular F (z) we can substitute z = x+iy, and we have a function

of x and y—with real and imaginary parts. For example,

z2 = (x+ iy)2 = x2 − y2 + 2ixy. (7.3)

Any function F (z) can be written as a sum of a pure real part and a pure
imaginary part, each part a function of x and y:

F (z) = U(x, y) + iV (x, y), (7.4)

where U(x, y) and V (x, y) are real functions. Thus from any complex function F (z)
two new functions U(x, y) and V (x, y) can be derived. For example, F (z) = z2

gives us the two functions
U(x, y) = x2 − y2, (7.5)

and
V (x, y) = 2xy. (7.6)

Now we come to a miraculous mathematical theorem which is so delightful
that we shall leave a proof of it for one of your courses in mathematics. (We
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should not reveal all the mysteries of mathematics, or that subject matter would
become too dull.) It is this. For any “ordinary function” (mathematicians will
define it better) the functions U and V automatically satisfy the relations

∂U

∂x
= ∂V

∂y
, (7.7)

∂V

∂x
= −∂U

∂y
. (7.8)

It follows immediately that each of the functions U and V satisfy Laplace’s
equation:

∂2U

∂x2 + ∂2U

∂y2 = 0, (7.9)

∂2V

∂x2 + ∂2V

∂y2 = 0, (7.10)

These equations are clearly true for the functions of (7.5) and (7.6).
Thus, starting with any ordinary function, we can arrive at two functions

U(x, y) and V (x, y), which are both solutions of Laplace’s equation in two
dimensions. Each function represents a possible electrostatic potential. We can
pick any function F (z) and it should represent some electric field problem—in
fact, two problems, because U and V each represent solutions. We can write
down as many solutions as we wish—by just making up functions—then we just
have to find the problem that goes with each solution. It may sound backwards,
but it’s a possible approach.
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Fig. 7-1. Two sets of orthogonal curves which can represent equipo-
tentials in a two-dimensional electrostatic field.

As an example, let’s see what physics the function F (z) = z2 gives us. From
it we get the two potential functions of (7.5) and (7.6). To see what problem the
function U belongs to, we solve for the equipotential surfaces by setting U = A,
a constant:

x2 − y2 = A.

This is the equation of a rectangular hyperbola. For various values of A, we
get the hyperbolas shown in Fig. 7-1. When A = 0, we get the special case of
diagonal straight lines through the origin.
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CONDUCTOR +

CONDUCTOR −

Eetc. etc.

CFig. 7-2. The field near the point C is
the same as that in Fig. 7-1.

Such a set of equipotentials corresponds to several possible physical situations.
First, it represents the fine details of the field near the point halfway between two
equal point charges. Second, it represents the field at an inside right-angle corner
of a conductor. If we have two electrodes shaped like those in Fig. 7-2, which are
held at different potentials, the field near the corner marked C will look just like
the field above the origin in Fig. 7-1. The solid lines are the equipotentials, and
the broken lines at right angles correspond to lines of E. Whereas at points or
protuberances the electric field tends to be high, it tends to be low in dents or
hollows.

The solution we have found also corresponds to that for a hyperbola-shaped
electrode near a right-angle corner, or for two hyperbolas at suitable potentials.
You will notice that the field of Fig. 7-1 has an interesting property. The x-
component of the electric field, Ex, is given by

Ex = −∂φ
∂x

= −2x.

The electric field is proportional to the distance from the axis. This fact is used to
make devices (called quadrupole lenses) that are useful for focusing particle beams
(see Section 29-7). The desired field is usually obtained by using four hyperbola
shaped electrodes, as shown in Fig. 7-3. For the electric field lines in Fig. 7-3,
we have simply copied from Fig. 7-1 the set of broken-line curves that represent
V = constant. We have a bonus! The curves for V = constant are orthogonal to
the ones for U = constant because of the equations (7.7) and (7.8). Whenever
we choose a function F (z), we get from U and V both the equipotentials and
field lines. And you will remember that we have solved either of two problems,
depending on which set of curves we call the equipotentials.

CONDUCTOR
φ = +V

φ = +V

φ = −V φ = −V

Fig. 7-3. The field in a quadrupole lens.

As a second example, consider the function

F (z) = √z. (7.11)
If we write

z = x+ iy = ρeiθ,

where
ρ =

√
x2 + y2

and
tan θ = y/x,

then
F (z) = ρ1/2eiθ/2

= ρ1/2
(

cos θ2 + i sin θ2

)
,
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Fig. 7-4. Curves of constant U(x, y)

and V (x, y) from Eq. (7.12).

from which

F (z) =
[

(x2 + y2)1/2 + x

2

]1/2
+ i

[
(x2 + y2)1/2 − x

2

]1/2
. (7.12)

The curves for U(x, y) = A and V (x, y) = B, using U and V from Eq. (7.12),
are plotted in Fig. 7-4. Again, there are many possible situations that could be
described by these fields. One of the most interesting is the field near the edge
of a thin plate. If the line B = 0—to the right of the y-axis—represents a thin
charged plate, the field lines near it are given by the curves for various values
of A. The physical situation is shown in Fig. 7-5.

E

GROUNDED
PLATE

Fig. 7-5. The electric field near the edge
of a thin grounded plate.

Further examples are
F (z) = z2/3, (7.13)

which yields the field outside a rectangular corner

F (z) = ln z, (7.14)

which yields the field for a line charge, and

F (z) = 1/z, (7.15)

which gives the field for the two-dimensional analog of an electric dipole, i.e., two
parallel line charges with opposite polarities, very close together.

We will not pursue this subject further in this course, but should emphasize
that although the complex variable technique is often powerful, it is limited to
two-dimensional problems; and also, it is an indirect method.

7-3 Plasma oscillations

We consider now some physical situations in which the field is determined
neither by fixed charges nor by charges on conducting surfaces, but by a com-
bination of two physical phenomena. In other words, the field will be governed
simultaneously by two sets of equations: (1) the equations from electrostatics
relating electric fields to charge distribution, and (2) an equation from another
part of physics that determines the positions or motions of the charges in the
presence of the field.

The first example that we will discuss is a dynamic one in which the motion
of the charges is governed by Newton’s laws. A simple example of such a
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situation occurs in a plasma, which is an ionized gas consisting of ions and free
electrons distributed over a region in space. The ionosphere—an upper layer of
the atmosphere—is an example of such a plasma. The ultraviolet rays from the
sun knock electrons off the molecules of the air, creating free electrons and ions.
In such a plasma the positive ions are very much heavier than the electrons, so
we may neglect the ionic motion, in comparison to that of the electrons.

Let n0 be the density of electrons in the undisturbed, equilibrium state.
Assuming the molecules are singly ionized, this must also be the density of
positive ions, since the plasma is electrically neutral (when undisturbed). Now
we suppose that the electrons are somehow moved from equilibrium and ask what
happens. If the density of the electrons in one region is increased, they will repel
each other and tend to return to their equilibrium positions. As the electrons
move toward their original positions they pick up kinetic energy, and instead of
coming to rest in their equilibrium configuration, they overshoot the mark. They
will oscillate back and forth. The situation is similar to what occurs in sound
waves, in which the restoring force is the gas pressure. In a plasma, the restoring
force is the electrical force on the electrons.

x ∆x

s s + ∆s

x + s ∆x + ∆s

a b

a′ b′

Fig. 7-6. Motion in a plasma wave. The
electrons at the plane a move to a′, and
those at b move to b′.

To simplify the discussion, we will worry only about a situation in which
the motions are all in one dimension, say x. Let us suppose that the electrons
originally at x are, at the instant t, displaced from their equilibrium positions
by a small amount s(x, t). Since the electrons have been displaced, their density
will, in general, be changed. The change in density is easily calculated. Referring
to Fig. 7-6, the electrons initially contained between the two planes a and b have
moved and are now contained between the planes a′ and b′. The number of
electrons that were between a and b is proportional to n0∆x; the same number
are now contained in the space whose width is ∆x+∆s. The density has changed
to

n = n0∆x
∆x+ ∆s = n0

1 + (∆s/∆x) . (7.16)

If the change in density is small, we can write [using the binomial expansion
for (1 + ε)−1]

n = n0

(
1− ∆s

∆x

)
. (7.17)

We assume that the positive ions do not move appreciably (because of the much
larger inertia), so their density remains n0. Each electron carries the charge −qe,
so the average charge density at any point is given by

ρ = −(n− n0)qe,
or

ρ = n0qe
ds

dx
(7.18)

(where we have written the differential form for ∆s/∆x).
The charge density is related to the electric field by Maxwell’s equations, in

particular,
∇ ·E = ρ

ε0
. (7.19)

If the problem is indeed one-dimensional (and if there are no other fields but the
one due to the displacements of the electrons), the electric field E has a single
component Ex. Equation (7.19), together with (7.18), gives

∂Ex
∂x

= n0qe
ε0

∂s

∂x
. (7.20)

Integrating Eq. (7.20) gives
Ex = n0qe

ε0
s+K. (7.21)

Since Ex = 0 when s = 0, the integration constant K is zero.
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The force on an electron in the displaced position is

Fx = −n0q
2
e

ε0
s, (7.22)

a restoring force proportional to the displacement s of the electron. This leads
to a harmonic oscillation of the electrons. The equation of motion of a displaced
electron is

me
d2s

dt2
= −n0q

2
e

ε0
s. (7.23)

We find that s will vary harmonically. Its time variation will be as cosωpt,
or—using the exponential notation of Vol. I—as

eiωpt. (7.24)

The frequency of oscillation ωp is determined from (7.23):

ω2
p = n0q

2
e

ε0me
, (7.25)

and is called the plasma frequency. It is a characteristic number of the plasma.
When dealing with electron charges many people prefer to express their

answers in terms of a quantity e2 defined by

e2 = q2
e

4πε0
= 2.3068× 10−28 newton·meter2. (7.26)

Using this convention, Eq. (7.25) becomes

ω2
p = 4πe2n0

me
, (7.27)

which is the form you will find in most books.
Thus we have found that a disturbance of a plasma will set up free oscillations

of the electrons about their equilibrium positions at the natural frequency ωp,
which is proportional to the square root of the density of the electrons. The
plasma electrons behave like a resonant system, such as those we described in
Chapter 23 of Vol. I.

This natural resonance of a plasma has some interesting effects. For example,
if one tries to propagate a radiowave through the ionosphere, one finds that it can
penetrate only if its frequency is higher than the plasma frequency. Otherwise the
signal is reflected back. We must use high frequencies if we wish to communicate
with a satellite in space. On the other hand, if we wish to communicate with a
radio station beyond the horizon, we must use frequencies lower than the plasma
frequency, so that the signal will be reflected back to the earth.

Another interesting example of plasma oscillations occurs in metals. In a
metal we have a contained plasma of positive ions, and free electrons. The
density n0 is very high, so ωp is also. But it should still be possible to observe
the electron oscillations. Now, according to quantum mechanics, a harmonic
oscillator with a natural frequency ωp has energy levels which are separated
by the energy increment ~ωp. If, then, one shoots electrons through, say, an
aluminum foil, and makes very careful measurements of the electron energies on
the other side, one might expect to find that the electrons sometimes lose the
energy ~ωp to the plasma oscillations. This does indeed happen. It was first
observed experimentally in 1936 that electrons with energies of a few hundred
to a few thousand electron volts lost energy in jumps when scattering from or
going through a thin metal foil. The effect was not understood until 1953 when
Bohm and Pines* showed that the observations could be explained in terms of
quantum excitations of the plasma oscillations in the metal.

* For some recent work and a bibliography see C. J. Powell and J. B. Swann, Phys. Rev.
115, 869 (1959).
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7-4 Colloidal particles in an electrolyte

We turn to another phenomenon in which the locations of charges are governed
by a potential that arises in part from the same charges. The resulting effects
influence in an important way the behavior of colloids. A colloid consists of a
suspension in water of small charged particles which, though microscopic, from
an atomic point of view are still very large. If the colloidal particles were not
charged, they would tend to coagulate into large lumps; but because of their
charge, they repel each other and remain in suspension.

Now if there is also some salt dissolved in the water, it will be dissociated
into positive and negative ions. (Such a solution of ions is called an electrolyte.)
The negative ions are attracted to the colloid particles (assuming their charge
is positive) and the positive ions are repelled. We will determine how the ions
which surround such a colloidal particle are distributed in space.

To keep the ideas simple, we will again solve only a one-dimensional case. If we
think of a colloidal particle as a sphere having a very large radius—on an atomic
scale!—we can then treat a small part of its surface as a plane. (Whenever one is
trying to understand a new phenomenon it is a good idea to take a somewhat
oversimplified model; then, having understood the problem with that model, one
is better able to proceed to tackle the more exact calculation.)

We suppose that the distribution of ions generates a charge density ρ(x), and
an electrical potential φ, related by the electrostatic law ∇2φ = −ρ/ε0 or, for
fields that vary in only one dimension, by

d2φ

dx2 = − ρ

ε0
. (7.28)

Now supposing there were such a potential φ(x), how would the ions distribute
themselves in it? This we can determine by the principles of statistical mechanics.
Our problem then is to determine φ so that the resulting charge density from
statistical mechanics also satisfies (7.28).

According to statistical mechanics (see Chapter 40, Vol. I), particles in thermal
equilibrium in a force field are distributed in such a way that the density n of
particles at the position x is given by

n(x) = n0e
−U(x)/kT , (7.29)

where U(x) is the potential energy, k is Boltzmann’s constant, and T is the
absolute temperature.

We assume that the ions carry one electronic charge, positive or negative. At
the distance x from the surface of a colloidal particle, a positive ion will have
potential energy qeφ(x), so that

U(x) = qeφ(x).

The density of positive ions, n+, is then

n+(x) = n0e
−qeφ(x)/kT .

Similarly, the density of negative ions is

n−(x) = n0e
+qeφ(x)/kT .

The total charge density is

ρ = qen+ − qen−,
or

ρ = qen0(e−qeφ/kT − e+qeφ/kT ). (7.30)

Combining this with Eq. (7.28), we find that the potential φ must satisfy

d2φ

dx2 = −qen0

ε0
(e−qeφ/kT − e+qeφ/kT ). (7.31)
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This equation is readily solved in general [multiply both sides by 2(dφ/dx), and
integrate with respect to x], but to keep the problem as simple as possible, we
will consider here only the limiting case in which the potentials are small or the
temperature T is high. The case where φ is small corresponds to a dilute solution.
For these cases the exponent is small, and we can approximate

e±qeφ/kT = 1± qeφ

kT
. (7.32)

Equation (7.31) then gives
d2φ

dx2 = +2n0q
2
e

ε0kT
φ(x). (7.33)

Notice that this time the sign on the right is positive. The solutions for φ are
not oscillatory, but exponential.

The general solution of Eq. (7.33) is

φ = Ae−x/D +Be+x/D, (7.34)
with

D2 = ε0kT

2n0q2
e

. (7.35)

The constants A and B must be determined from the conditions of the problem.
In our case, B must be zero; otherwise the potential would go to infinity for
large x. So we have that

φ = Ae−x/D, (7.36)
in which A is the potential at x = 0, the surface of the colloidal particle.

x0 D 2D 3D

φ

0

A

Fig. 7-7. The variation of the potential
near the surface of a colloidal particle. D is
the Debye length.

The potential decreases by a factor 1/e each time the distance increases by D,
as shown in the graph of Fig. 7-7. The number D is called the Debye length, and
is a measure of the thickness of the ion sheath that surrounds a large charged
particle in an electrolyte. Equation (7.35) says that the sheath gets thinner with
increasing concentration of the ions (n0) or with decreasing temperature.

The constant A in Eq. (7.36) is easily obtained if we know the surface charge
density σ on the colloid particle. We know that

En = Ex(0) = σ

ε0
. (7.37)

But E is also the gradient of φ:

Ex(0) = − ∂φ

∂x

∣∣∣∣
0

= +A

D
, (7.38)

from which we get

A = σD

ε0
. (7.39)
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Using this result in (7.36), we find (by taking x = 0) that the potential of the
colloidal particle is

φ(0) = σD

ε0
. (7.40)

You will notice that this potential is the same as the potential difference across a
condenser with a plate spacing D and a surface charge density σ.

We have said that the colloidal particles are kept apart by their electrical
repulsion. But now we see that the field a little way from the surface of a particle
is reduced by the ion sheath that collects around it. If the sheaths get thin
enough, the particles have a good chance of knocking against each other. They
will then stick, and the colloid will coagulate and precipitate out of the liquid.
From our analysis, we understand why adding enough salt to a colloid should
cause it to precipitate out. The process is called “salting out a colloid.”

Another interesting example is the effect that a salt solution has on protein
molecules. A protein molecule is a long, complicated, and flexible chain of amino
acids. The molecule has various charges on it, and it sometimes happens that
there is a net charge, say negative, which is distributed along the chain. Because
of mutual repulsion of the negative charges, the protein chain is kept stretched
out. Also, if there are other similar chain molecules present in the solution,
they will be kept apart by the same repulsive effects. We can, therefore, have
a suspension of chain molecules in a liquid. But if we add salt to the liquid
we change the properties of the suspension. As salt is added to the solution,
decreasing the Debye distance, the chain molecules can approach one another,
and can also coil up. If enough salt is added to the solution, the chain molecules
will precipitate out of the solution. There are many chemical effects of this kind
that can be understood in terms of electrical forces.

7-5 The electrostatic field of a grid

As our last example, we would like to describe another interesting property of
electric fields. It is one which is made use of in the design of electrical instruments,
in the construction of vacuum tubes, and for other purposes. This is the character
of the electric field near a grid of charged wires. To make the problem as simple
as possible, let us consider an array of parallel wires lying in a plane, the wires
being infinitely long and with a uniform spacing between them.

If we look at the field a large distance above the plane of the wires, we see
a constant electric field, just as though the charge were uniformly spread over
a plane. As we approach the grid of wires, the field begins to deviate from the
uniform field we found at large distances from the grid. We would like to estimate
how close to the grid we have to be in order to see appreciable variations in
the potential. Figure 7-8 shows a rough sketch of the equipotentials at various
distances from the grid. The closer we get to the grid, the larger the variations.
As we travel parallel to the grid, we observe that the field fluctuates in a periodic
manner.

+ + + + + +

x

z

a

Fig. 7-8. Equipotential surfaces above a
uniform grid of charged wires.
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Now we have seen (Chapter 50, Vol. I) that any periodic quantity can be
expressed as a sum of sine waves (Fourier’s theorem). Let’s see if we can find a
suitable harmonic function that satisfies our field equations.

If the wires lie in the xy-plane and run parallel to the y-axis, then we might
try terms like

φ(x, z) = Fn(z) cos 2πnx
a

, (7.41)

where a is the spacing of the wires and n is the harmonic number. (We have
assumed long wires, so there should be no variation with y.) A complete solution
would be made up of a sum of such terms for n = 1, 2, 3, . . . .

If this is to be a valid potential, it must satisfy Laplace’s equation in the
region above the wires (where there are no charges). That is,

∂2φ

∂x2 + ∂2φ

∂z2 = 0.

Trying this equation on the φ in (7.41), we find that

− 4π2n2

a2 Fn(z) cos 2πnx
a

+ d2Fn
dz2 cos 2πnx

a
= 0, (7.42)

or that Fn(z) must satisfy
d2Fn
dz2 = 4πn2

a2 Fn. (7.43)

So we must have
Fn = Ane

−z/z0 , (7.44)
where

z0 = a

2πn. (7.45)

We have found that if there is a Fourier component of the field of harmonic n, that
component will decrease exponentially with a characteristic distance z0 = a/2πn.
For the first harmonic (n = 1), the amplitude falls by the factor e−2π (a large
decrease) each time we increase z by one grid spacing a. The other harmonics fall
off even more rapidly as we move away from the grid. We see that if we are only
a few times the distance a away from the grid, the field is very nearly uniform,
i.e., the oscillating terms are small. There would, of course, always remain the
“zero harmonic” field

φ0 = −E0z

to give the uniform field at large z. For a complete solution, we would combine
this term with a sum of terms like (7.41) with Fn from (7.44). The coefficients An
would be adjusted so that the total sum would, when differentiated, give an
electric field that would fit the charge density λ of the grid wires.

The method we have just developed can be used to explain why electrostatic
shielding by means of a screen is often just as good as with a solid metal sheet.
Except within a distance from the screen a few times the spacing of the screen
wires, the fields inside a closed screen are zero. We see why copper screen—
lighter and cheaper than copper sheet—is often used to shield sensitive electrical
equipment from external disturbing fields.
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8

Electrostatic Energy

8-1 The electrostatic energy of charges. A uniform sphere

In 8-1 The electrostatic energy of
charges. A uniform sphere

8-2 The energy of a condenser. Forces
on charged conductors

8-3 The electrostatic energy of an
ionic crystal

8-4 Electrostatic energy in nuclei
8-5 Energy in the electrostatic field
8-6 The energy of a point charge

the study of mechanics, one of the most interesting and useful discoveries
was the law of the conservation of energy. The expressions for the kinetic and
potential energies of a mechanical system helped us to discover connections
between the states of a system at two different times without having to look into
the details of what was occurring in between. We wish now to consider the energy
of electrostatic systems. In electricity also the principle of the conservation of
energy will be useful for discovering a number of interesting things.

The law of the energy of interaction in electrostatics is very simple; we have,
in fact, already discussed it. Suppose we have two charges q1 and q2 separated by
the distance r12. There is some energy in the system, because a certain amount
of work was required to bring the charges together. We have already calculated
the work done in bringing two charges together from a large distance. It is

q1q2

4πε0r12
. (8.1)

Review: Chapter 4, Vol. I, Conserva-
tion of Energy
Chapters 13 and 14, Vol. I,
Work and Potential Energy

We also know, from the principle of superposition, that if we have many charges
present, the total force on any charge is the sum of the forces from the others. It
follows, therefore, that the total energy of a system of a number of charges is the
sum of terms due to the mutual interaction of each pair of charges. If qi and qj
are any two of the charges and rij is the distance between them (Fig. 8-1), the
energy of that particular pair is

qiqj
4πε0rij

. (8.2)

The total electrostatic energy U is the sum of the energies of all possible pairs of
charges:

U =
∑

all pairs

qiqj
4πε0rij

. (8.3)

If we have a distribution of charge specified by a charge density ρ, the sum of
Eq. (8.3) is, of course, to be replaced by an integral.

qi

qj

ri j

Fig. 8-1. The electrostatic energy of a
system of particles is the sum of the elec-
trostatic energy of each pair.

We shall concern ourselves with two aspects of this energy. One is the
application of the concept of energy to electrostatic problems; the other is the
evaluation of the energy in different ways. Sometimes it is easier to compute the
work done for some special case than to evaluate the sum in Eq. (8.3), or the
corresponding integral. As an example, let us calculate the energy required to
assemble a sphere of charge with a uniform charge density. The energy is just
the work done in gathering the charges together from infinity.

Imagine that we assemble the sphere by building up a succession of thin
spherical layers of infinitesimal thickness. At each stage of the process, we gather
a small amount of charge and put it in a thin layer from r to r+ dr. We continue
the process until we arrive at the final radius a (Fig. 8-2). If Qr is the charge of
the sphere when it has been built up to the radius r, the work done in bringing
a charge dQ to it is

dU = Qr dQ

4πε0r
. (8.4)
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If the density of charge in the sphere is ρ, the charge Qr is

Qr = ρ · 4
3 πr

3,

and the charge dQ is
dQ = ρ · 4πr2 dr.

Equation (8.4) becomes

dU = 4πρ2r4 dr

3ε0
. (8.5)

dQR

dr

r

a

Fig. 8-2. The energy of a uniform sphere
of charge can be computed by imagining
that it is assembled from successive spherical
shells.

The total energy required to assemble the sphere is the integral of dU from r = 0
to r = a, or

U = 4πρ2a5

15ε0
. (8.6)

Or if we wish to express the result in terms of the total charge Q of the sphere,

U = 3
5

Q2

4πε0a
. (8.7)

The energy is proportional to the square of the total charge and inversely propor-
tional to the radius. We can also interpret Eq. (8.7) as saying that the average
of (1/rij) for all pairs of points in the sphere is 6/5a.

8-2 The energy of a condenser. Forces on charged conductors

We consider now the energy required to charge a condenser. If the charge Q
has been taken from one of the conductors of a condenser and placed on the
other, the potential difference between them is

V = Q

C
, (8.8)

where C is the capacity of the condenser. How much work is done in charging
the condenser? Proceeding as for the sphere, we imagine that the condenser
has been charged by transferring charge from one plate to the other in small
increments dQ. The work required to transfer the charge dQ is

dU = V dQ.

Taking V from Eq. (8.8), we write

dU = QdQ

C
.

Or integrating from zero charge to the final charge Q, we have

U = 1
2
Q2

C
. (8.9)

This energy can also be written as

U = 1
2CV

2. (8.10)

Recalling that the capacity of a conducting sphere (relative to infinity) is

Csphere = 4πε0a,

we can immediately get from Eq. (8.9) the energy of a charged sphere,

U = 1
2

Q2

4πε0a
. (8.11)

This, of course, is also the energy of a thin spherical shell of total charge Q and
is just 5/6 of the energy of a uniformly charged sphere, Eq. (8.7).
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We now consider applications of the idea of electrostatic energy. Consider
the following questions: What is the force between the plates of a condenser?
Or what is the torque about some axis of a charged conductor in the presence
of another with opposite charge? Such questions are easily answered by using
our result Eq. (8.9) for electrostatic energy of a condenser, together with the
principle of virtual work (Chapters 4, 13, and 14 of Vol. I).

Let’s use this method for determining the force between the plates of a
parallel-plate condenser. If we imagine that the spacing of the plates is increased
by the small amount ∆z, then the mechanical work done from the outside in
moving the plates would be

∆W = F ∆z, (8.12)

where F is the force between the plates. This work must be equal to the change
in the electrostatic energy of the condenser.

By Eq. (8.9), the energy of the condenser was originally

U = 1
2
Q2

C
.

The change in energy (if we do not let the charge change) is

∆U = 1
2 Q

2 ∆
(

1
C

)
. (8.13)

Equating (8.12) and (8.13), we have

F ∆z = Q2

2 ∆
(

1
C

)
. (8.14)

This can also be written as

F ∆z = − Q2

2C2 ∆C. (8.15)

The force, of course, results from the attraction of the charges on the plates, but
we see that we do not have to worry in detail about how they are distributed;
everything we need is taken care of in the capacity C.

It is easy to see how the idea is extended to conductors of any shape, and for
other components of the force. In Eq. (8.14), we replace F by the component we
are looking for, and we replace ∆z by a small displacement in the corresponding
direction. Or if we have an electrode with a pivot and we want to know the
torque τ , we write the virtual work as

∆W = τ ∆θ,

where ∆θ is a small angular displacement. Of course, ∆(1/C) must be the change
in 1/C which corresponds to ∆θ. We could, in this way, find the torque on the
movable plates in a variable condenser of the type shown in Fig. 8-3.

φ1

φ2

Fig. 8-3. What is the torque on a variable
capacitor?

Returning to the special case of a parallel-plate condenser, we can use the
formula we derived in Chapter 6 for the capacity:

1
C

= d

ε0A
, (8.16)

where A is the area of each plate. If we increase the separation by ∆z,

∆
(

1
C

)
= ∆z
ε0A

.

From Eq. (8.14) we get that the force between the plates is

F = Q2

2ε0A
. (8.17)
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Let’s look at Eq. (8.17) a little more closely and see if we can tell how the
force arises. If for the charge on one plate we write

Q = σA,

Eq. (8.17) can be rewritten as

F = 1
2 Q

σ

ε0
.

Or, since the electric field between the plates is

E0 = σ

ε0
,

then
F = 1

2QE0. (8.18)

One would immediately guess that the force acting on one plate is the charge Q
on the plate times the field acting on the charge. But we have a surprising factor
of one-half. The reason is that E0 is not the field at the charges. If we imagine
that the charge at the surface of the plate occupies a thin layer, as indicated in
Fig. 8-4, the field will vary from zero at the inner boundary of the layer to E0 in
the space outside of the plate. The average field acting on the surface charges
is E0/2. That is why the factor one-half is in Eq. (8.18).

CONDUCTING
PLATE

LAYER OF
SURFACE
CHARGE σ

E

|E| E0

Fig. 8-4. The field at the surface of a
conductor varies from zero to E0 = σ/ε0,
as one passes through the layer of surface
charge.

You should notice that in computing the virtual work we have assumed that
the charge on the condenser was constant—that it was not electrically connected
to other objects, and so the total charge could not change.

Suppose we had imagined that the condenser was held at a constant potential
difference as we made the virtual displacement. Then we should have taken

U = 1
2CV

2

and in place of Eq. (8.15) we would have had

F∆z = 1
2V

2 ∆C,

which gives a force equal in magnitude to the one in Eq. (8.15) (because V = Q/C),
but with the opposite sign! Surely the force between the condenser plates doesn’t
reverse in sign as we disconnect it from its charging source. Also, we know
that two plates with opposite electrical charges must attract. The principle of
virtual work has been incorrectly applied in the second case—we have not taken
into account the virtual work done on the charging source. That is, to keep
the potential constant at V as the capacity changes, a charge V ∆C must be
supplied by a source of charge. But this charge is supplied at a potential V , so
the work done by the electrical system which keeps the potential constant is
V 2 ∆C. The mechanical work F ∆z plus this electrical work V 2 ∆C together
make up the change in the total energy 1

2V
2 ∆C of the condenser. Therefore

F ∆z is − 1
2V

2 ∆C, as before.

8-3 The electrostatic energy of an ionic crystal

We now consider an application of the concept of electrostatic energy in
atomic physics. We cannot easily measure the forces between atoms, but we are
often interested in the energy differences between one atomic arrangement and
another, as, for example, the energy of a chemical change. Since atomic forces are
basically electrical, chemical energies are in large part just electrostatic energies.

Let’s consider, for example, the electrostatic energy of an ionic lattice. An
ionic crystal like NaCl consists of positive and negative ions which can be thought
of as rigid spheres. They attract electrically until they begin to touch; then there is
a repulsive force which goes up very rapidly if we try to push them closer together.

For our first approximation, therefore, we imagine a set of rigid spheres that
represent the atoms in a salt crystal. The structure of the lattice has been
determined by x-ray diffraction. It is a cubic lattice—like a three-dimensional
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checkerboard. Figure 8-5 shows a cross-sectional view. The spacing of the ions is
2.81 Å (= 2.81× 10−8 cm).

If our picture of this system is correct, we should be able to check it by
asking the following question: How much energy will it take to pull all these
ions apart—that is, to separate the crystal completely into ions? This energy
should be equal to the heat of vaporization of NaCl plus the energy required to
dissociate the molecules into ions. This total energy to separate NaCl to ions
is determined experimentally to be 7.92 electron volts per molecule. Using the
conversion

1 eV = 1.602× 10−19 joule,
and Avogadro’s number for the number of molecules in a mole,

N0 = 6.02× 1023,

the energy of dissociation can also be given as

W = 7.64× 105 joules/mole.

Physical chemists prefer for an energy unit the kilocalorie, which is 4190 joules;
so that 1 eV per molecule is 23 kilocalories per mole. A chemist would then say
that the dissociation energy of NaCl is

W = 183 kcal/mole.

+ − + − + −

− + − + − +

+ − + − + −

− + − + − +

Na Cl

2.81 Å

Fig. 8-5. Cross section of a salt crystal
on an atomic scale. The checkerboard ar-
rangement of Na and Cl ions is the same in
the two cross sections perpendicular to the
one shown. (See Vol. I, Fig. 1-7.)

Can we obtain this chemical energy theoretically by computing how much
work it would take to pull apart the crystal? According to our theory, this work is
the sum of the potential energies of all the pairs of ions. The easiest way to figure
out this sum is to pick out a particular ion and compute its potential energy with
each of the other ions. That will give us twice the energy per ion, because the
energy belongs to the pairs of charges. If we want the energy to be associated
with one particular ion, we should take half the sum. But we really want the
energy per molecule, which contains two ions, so that the sum we compute will
give directly the energy per molecule.

The energy of an ion with one of its nearest neighbors is e2/a, where e2 =
q2
e/4πε0 and a is the center-to-center spacing between ions. (We are considering
monovalent ions.) This energy is 5.12 eV, which we already see is going to give
us a result of the correct order of magnitude. But it is still a long way from the
infinite sum of terms we need.

Let’s begin by summing all the terms from the ions along a straight line.
Considering that the ion marked Na in Fig. 8-5 is our special ion, we shall consider
first those ions on a horizontal line with it. There are two nearest Cl ions with
negative charges, each at the distance a. Then there are two positive ions at the
distance 2a, etc. Calling the energy of this sum U1, we write

U1 = e2

a

(
−2

1 + 2
2 −

2
3 + 2

4 ∓ · · ·
)

= −2e2

a

(
1− 1

2 + 1
3 −

1
4 ± · · ·

)
. (8.19)

The series converges slowly, so it is difficult to evaluate numerically, but it is
known to be equal to ln 2. So

U1 = −2e2

a
ln 2 = −1.386 e

2

a
. (8.20)

Now consider the next adjacent line of ions above. The nearest is negative
and at the distance a. Then there are two positives at the distance

√
2 a. The

next pair are at the distance
√

5 a, the next at
√

10 a, and so on. So for the whole
line we get the series

e2

a

(
−1

1 + 2√
2
− 2√

5
+ 2√

10
∓ · · ·

)
. (8.21)
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There are four such lines: above, below, in front, and in back. Then there are
the four lines which are the nearest lines on diagonals, and on and on.

If you work patiently through for all the lines, and then take the sum, you
find that the grand total is

U = −1.747 e
2

a
,

which is just somewhat more than what we obtained in (8.20) for the first line.
Using e2/a = 5.12 eV, we get

U = −8.94 eV.

Our answer is about 10% above the experimentally observed energy. It shows
that our idea that the whole lattice is held together by electrical Coulomb forces
is fundamentally correct. This is the first time that we have obtained a specific
property of a macroscopic substance from a knowledge of atomic physics. We
will do much more later. The subject that tries to understand the behavior of
bulk matter in terms of the laws of atomic behavior is called solid-state physics.

Now what about the error in our calculation? Why is it not exactly right?
It is because of the repulsion between the ions at close distances. They are not
perfectly rigid spheres, so when they are close together they are partly squashed.
They are not very soft, so they squash only a little bit. Some energy, however,
is used in deforming them, and when the ions are pulled apart this energy is
released. The actual energy needed to pull the ions apart is a little less than the
energy that we calculated; the repulsion helps in overcoming the electrostatic
attraction.

Is there any way we can make an allowance for this contribution? We could
if we knew the law of the repulsive force. We are not ready to analyze the
details of this repulsive mechanism, but we can get some idea of its characteristics
from some large-scale measurements. From a measurement of the compressibility
of the whole crystal, it is possible to obtain a quantitative idea of the law of
repulsion between the ions and therefore of its contribution to the energy. In this
way it has been found that this contribution must be 1/9.4 of the contribution
from the electrostatic attraction and, of course, of opposite sign. If we subtract
this contribution from the pure electrostatic energy, we obtain 7.99 eV for the
dissociation energy per molecule. It is much closer to the observed result of
7.92 eV, but still not in perfect agreement. There is one more thing we haven’t
taken into account: we have made no allowance for the kinetic energy of the
crystal vibrations. If a correction is made for this effect, very good agreement
with the experimental number is obtained. The ideas are then correct; the major
contribution to the energy of a crystal like NaCl is electrostatic.

8-4 Electrostatic energy in nuclei

We will now take up another example of electrostatic energy in atomic physics,
the electrical energy of atomic nuclei. Before we do this we will have to discuss
some properties of the main forces (called nuclear forces) that hold the protons
and neutrons together in a nucleus. In the early days of the discovery of nuclei—
and of the neutrons and protons that make them up—it was hoped that the law
of the strong, nonelectrical part of the force between, say, a proton and another
proton would have some simple law, like the inverse square law of electricity. For
once one had determined this law of force, and the corresponding ones between
a proton and a neutron, and a neutron and a neutron, it would be possible to
describe theoretically the complete behavior of these particles in nuclei. Therefore
a big program was started for the study of the scattering of protons, in the hope
of finding the law of force between them; but after thirty years of effort, nothing
simple has emerged. A considerable knowledge of the force between proton and
proton has been accumulated, but we find that the force is as complicated as it
can possibly be.

What we mean by “as complicated as it can be” is that the force depends on
as many things as it possibly can.
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First, the force is not a simple function of the distance between the two
protons. At large distances there is an attraction, but at closer distances there is
a repulsion. The distance dependence is a complicated function, still imperfectly
known.

a b

c d

e f

Fig. 8-6. The force between two protons
depends on every possible parameter.

Second, the force depends on the orientation of the protons’ spin. The protons
have a spin, and any two interacting protons may be spinning with their angular
momenta in the same direction or in opposite directions. And the force is different
when the spins are parallel from what it is when they are antiparallel, as in (a)
and (b) of Fig. 8-6. The difference is quite large; it is not a small effect.

Third, the force is considerably different when the separation of the two
protons is in the direction parallel to their spins, as in (c) and (d) of Fig. 8-6,
than it is when the separation is in a direction perpendicular to the spins, as in
(a) and (b).

Fourth, the force depends, as it does in magnetism, on the velocity of the
protons, only much more strongly than in magnetism. And this velocity-dependent
force is not a relativistic effect; it is strong even at speeds much less than the
speed of light. Furthermore, this part of the force depends on other things besides
the magnitude of the velocity. For instance, when a proton is moving near another
proton, the force is different when the orbital motion has the same direction of
rotation as the spin, as in (e) of Fig. 8-6, than when it has the opposite direction
of rotation, as in (f). This is called the “spin orbit” part of the force.

The force between a proton and a neutron and between a neutron and a
neutron are also equally complicated. To this day we do not know the machinery
behind these forces—that is to say, any simple way of understanding them.

There is, however, one important way in which the nucleon forces are simpler
than they could be. That is that the nuclear force between two neutrons is the
same as the force between a proton and a neutron, which is the same as the
force between two protons! If, in any nuclear situation, we replace a proton
by a neutron (or vice versa), the nuclear interactions are not changed. The
“fundamental reason” for this equality is not known, but it is an example of an
important principle that can be extended also to the interaction laws of other
strongly interacting particles—such as the π-mesons and the “strange” particles.

1.982
B11 C11

2.14

4.46

5.03

6.76 6.81

7.30

7.99

8.57

8.92
9.19 9.28
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10.26 10.32
10.61

2.00

4.32

4.81

6.35
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6.90

7.50

8.10
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8.98

9.73
9.92

10.08

10.56
10.89

Fig. 8-7. The energy levels of B11 and
C11 (energies in MeV). The ground state of
C11 is 1.982 MeV higher than that of B11.

This fact is nicely illustrated by the locations of the energy levels in similar
nuclei. Consider a nucleus like B11 (boron-eleven), which is composed of five
protons and six neutrons. In the nucleus the eleven particles interact with one
another in a most complicated dance. Now, there is one configuration of all the
possible interactions which has the lowest possible energy; this is the normal
state of the nucleus, and is called the ground state. If the nucleus is disturbed
(for example, by being struck by a high-energy proton or other particle) it can be
put into any number of other configurations, called excited states, each of which
will have a characteristic energy that is higher than that of the ground state. In
nuclear physics research, such as is carried on with Van de Graaff generator (for
example, in Caltech’s Kellogg and Sloan Laboratories), the energies and other
properties of these excited states are determined by experiment. The energies of
the fifteen lowest known excited states of B11 are shown in a one-dimensional
graph on the left half of Fig. 8-7. The lowest horizontal line represents the ground
state. The first excited state has an energy 2.14 MeV higher than the ground
state, the next an energy 4.46 MeV higher than the ground state, and so on.
The study of nuclear physics attempts to find an explanation for this rather
complicated pattern of energies; there is as yet, however, no complete general
theory of such nuclear energy levels.

If we replace one of the neutrons in B11 with a proton, we have the nucleus of
an isotope of carbon, C11. The energies of the lowest sixteen excited states of C11

have also been measured; they are shown in the right half of Fig. 8-7. (The broken
lines indicate levels for which the experimental information is questionable.)

Looking at Fig. 8-7, we see a striking similarity between the pattern of the
energy levels in the two nuclei. The first excited states are about 2 MeV above
the ground states. There is a large gap of about 2.3 MeV to the second excited
state, then a small jump of only 0.5 MeV to the third level. Again, between
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the fourth and fifth levels, a big jump; but between the fifth and sixth a tiny
separation of the order of 0.1 MeV. And so on. After about the tenth level, the
correspondence seems to become lost, but can still be seen if the levels are labeled
with their other defining characteristics—for instance, their angular momentum
and what they do to lose their extra energy.

The striking similarity of the pattern of the energy levels of B11 and C11 is
surely not just a coincidence. It must reveal some physical law. It shows, in fact,
that even in the complicated situation in a nucleus, replacing a neutron by a
proton makes very little change. This can mean only that the neutron-neutron
and proton-proton forces must be nearly identical. Only then would we expect
the nuclear configurations with five protons and six neutrons to be the same as
with six protons and five neutrons.

Notice that the properties of these two nuclei tell us nothing about the
neutron-proton force; there are the same number of neutron-proton combinations
in both nuclei. But if we compare two other nuclei, such as C14, which has six
protons and eight neutrons, with N14, which has seven of each, we find a similar
correspondence of energy levels. So we can conclude that the p-p, n-n, and p-n
forces are identical in all their complexities. There is an unexpected principle in
the laws of nuclear forces. Even though the force between each pair of nuclear
particles is very complicated, the force between the three possible different pairs
is the same.

But there are some small differences. The levels do not correspond exactly;
also, the ground state of C11 has an absolute energy (its mass) which is higher
than the ground state of B11 by 1.982 MeV. All the other levels are also higher
in absolute energy by this same amount. So the forces are not exactly equal. But
we know very well that the complete forces are not exactly equal; there is an
electrical force between two protons because each has a positive charge, while
between two neutrons there is no such electrical force. Can we perhaps explain
the differences between B11 and C11 by the fact that the electrical interaction
of the protons is different in the two cases? Perhaps even the remaining minor
differences in the levels are caused by electrical effects? Since the nuclear forces
are so much stronger than the electrical force, electrical effects would have only
a small perturbing effect on the energies of the levels.

In order to check this idea, or rather to find out what the consequences of this
idea are, we first consider the difference in the ground-state energies of the two
nuclei. To take a very simple model, we suppose that the nuclei are spheres of
radius r (to be determined), containing Z protons. If we consider that a nucleus
is like a sphere with uniform charge density, we would expect the electrostatic
energy (from Eq. 8.7) to be

U = 3
5

(Zqe)2

4πε0r
. (8.22)

where qe is the elementary charge of the proton. Since Z is five for B11 and six
for C11, their electrostatic energies would be different.

With such a small number of protons, however, Eq. (8.22) is not quite correct.
If we compute the electrical energy between all pairs of protons, considered as
points which we assume to be nearly uniformly distributed throughout the sphere,
we find that in Eq. (8.22) the quantity Z2 should be replaced by Z(Z − 1), so
the energy is

U = 3
5
Z(Z − 1)q2

e

4πε0r
= 3

5
Z(Z − 1)e2

r
. (8.23)

If we knew the nuclear radius r, we could use (8.23) to find the electrostatic
energy difference between B11 and C11. But let’s do the opposite; let’s instead
use the observed energy difference to compute the radius, assuming that the
energy difference is all electrostatic in origin.

That is, however, not quite right. The energy difference of 1.982 MeV between
the ground states of B11 and C11 includes the rest energies—that is, the en-
ergy mc2—of all the particles. In going from B11 to C11, we replace a neutron by
a proton and an electron, which have less mass. So part of the energy difference

8-8



is the difference in the rest energies of a neutron and that of a proton plus an
electron, which is 0.784 MeV. The difference, to be accounted for by electrostatic
energy, is thus more than 1.982 MeV; it is

1.982 MeV + 0.784 MeV = 2.766 MeV.

Using this energy in Eq. (8.23), for the radius of either B11 or C11 we find

r = 3.12× 10−13 cm. (8.24)

Does this number have any meaning? To see whether it does, we should
compare it with some other determination of the radius of these nuclei. For
example, we can make another measurement of the radius of a nucleus by seeing
how it scatters fast particles. From such measurements it has been found, in fact,
that the density of matter in all nuclei is nearly the same, i.e., their volumes are
proportional to the number of particles they contain. If we let A be the number
of protons and neutrons in a nucleus (a number very nearly proportional to its
mass), it is found that its radius is given by

r = A1/3r0, (8.25)
where

r0 = 1.2× 10−13 cm. (8.26)

From these measurements we find that the radius of a B11 (or a C11) nucleus
is expected to be

r = (11)1/3(1.2× 10−13) cm = 2.7× 10−13 cm.

Comparing this result with (8.24), we see that our assumptions that the energy
difference between B11 and C11 is electrostatic is fairly good; the discrepancy is
only about 15% (not bad for our first nuclear computation!).

The reason for the discrepancy is probably the following. According to the
current understanding of nuclei, an even number of nuclear particles—in the case
of B11, five neutrons together with five protons—makes a kind of core; when one
more particle is added to this core, it revolves around on the outside to make a
new spherical nucleus, rather than being absorbed. If this is so, we should have
taken a different electrostatic energy for the additional proton. We should have
taken the excess energy of C11 over B11 to be just

ZBq
2
e

4πε0r

which is the energy needed to add one more proton to the outside of the core.
This number is just 5/6 of what Eq. (8.23) predicts, so the new prediction for the
radius is 5/6 of (8.24), which is in much closer agreement with what is directly
measured.

We can draw two conclusions from this agreement. One is that the electrical
laws appear to be working at dimensions as small as 10−13 cm. The other is that
we have verified the remarkable coincidence that the nonelectrical part of the
forces between proton and proton, neutron and neutron, and proton and neutron
are all equal.

8-5 Energy in the electrostatic field

We now consider other methods of calculating electrostatic energy. They
can all be derived from the basic relation Eq. (8.3), the sum, over all pairs of
charges, of the mutual energies of each charge-pair. First we wish to write an
expression for the energy of a charge distribution. As usual, we consider that
each volume element dV contains the element of charge ρ dV . Then Eq. (8.3)
should be written

U = 1
2

∫
all

space

ρ(1)ρ(2)
4πε0r12

dV1dV2. (8.27)
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Notice the factor 1
2 , which is introduced because in the double integral over

dV1 and dV2 we have counted all pairs of charge elements twice. (There is no
convenient way of writing an integral that keeps track of the pairs so that each
pair is counted only once.) Next we notice that the integral over dV2 in (8.27) is
just the potential at (1). That is,∫

ρ(2)
4πε0r12

dV2 = φ(1),

so that (8.27) can be written as

U = 1
2

∫
ρ(1)φ(1) dV1.

Or, since the point (2) no longer appears, we can simply write

U = 1
2

∫
ρφ dV. (8.28)

This equation can be interpreted as follows. The potential energy of the
charge ρ dV is the product of this charge and the potential at the same point.
The total energy is therefore the integral over φρ dV . But there is again the
factor 1

2 . It is still required because we are counting energies twice. The mutual
energies of two charges is the charge of one times the potential at it due to the
other. Or, it can be taken as the second charge times the potential at it from
the first. Thus for two point charges we would write

U = q1φ(1) = q1
q2

4πε0r12
or

U = q2φ(2) = q2
q1

4πε0r12
.

Notice that we could also write

U = 1
2 [q1φ(1) + q2φ(2)]. (8.29)

The integral in (8.28) corresponds to the sum of both terms in the brackets
of (8.29). That is why we need the factor 1

2 .
An interesting question is: Where is the electrostatic energy located? One

might also ask: Who cares? What is the meaning of such a question? If there is
a pair of interacting charges, the combination has a certain energy. Do we need
to say that the energy is located at one of the charges or the other, or at both,
or in between? These questions may not make sense because we really know only
that the total energy is conserved. The idea that the energy is located somewhere
is not necessary.

Yet suppose that it did make sense to say, in general, that energy is located
at a certain place, as it does for heat energy. We might then extend our principle
of the conservation of energy with the idea that if the energy in a given volume
changes, we should be able to account for the change by the flow of energy into
or out of that volume. You realize that our early statement of the principle of
the conservation of energy is still perfectly all right if some energy disappears at
one place and appears somewhere else far away without anything passing (that
is, without any special phenomena occurring) in the space between. We are,
therefore, now discussing an extension of the idea of the conservation of energy.
We might call it a principle of the local conservation of energy. Such a principle
would say that the energy in any given volume changes only by the amount that
flows into or out of the volume. It is indeed possible that energy is conserved
locally in such a way. If it is, we would have a much more detailed law than the
simple statement of the conservation of total energy. It does turn out that in
nature energy is conserved locally. We can find formulas for where the energy is
located and how it travels from place to place.
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There is also a physical reason why it is imperative that we be able to say
where energy is located. According to the theory of gravitation, all mass is a
source of gravitational attraction. We also know, by E = mc2, that mass and
energy are equivalent. All energy is, therefore, a source of gravitational force.
If we could not locate the energy, we could not locate all the mass. We would
not be able to say where the sources of the gravitational field are located. The
theory of gravitation would be incomplete.

If we restrict ourselves to electrostatics there is really no way to tell where the
energy is located. The complete Maxwell equations of electrodynamics give us
much more information (although even then the answer is, strictly speaking, not
unique.) We will therefore discuss this question in detail again in a later chapter.
We will give you now only the result for the particular case of electrostatics. The
energy is located in space, where the electric field is. This seems reasonable
because we know that when charges are accelerated they radiate electric fields.
We would like to say that when light or radiowaves travel from one point to
another, they carry their energy with them. But there are no charges in the
waves. So we would like to locate the energy where the electromagnetic field is
and not at the charges from which it came. We thus describe the energy, not in
terms of the charges, but in terms of the fields they produce. We can, in fact,
show that Eq. (8.28) is numerically equal to

U = ε0
2

∫
E ·E dV. (8.30)

We can then interpret this formula as saying that when an electric field is present,
there is located in space an energy whose density (energy per unit volume) is

u = ε0
2 E ·E = ε0E

2

2 . (8.31)

This idea is illustrated in Fig. 8-8.

E

dV

Fig. 8-8. Each volume element dV =

dx dy dz in an electric field contains the
energy (ε0/2)E2 dV .

To show that Eq. (8.30) is consistent with our laws of electrostatics, we begin
by introducing into Eq. (8.28) the relation between ρ and φ that we obtained in
Chapter 6:

ρ = −ε0∇2φ.

We get

U = −ε02

∫
φ∇2φdV. (8.32)

Writing out the components of the integrand, we see that

φ∇2φ = φ

(
∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2

)
= ∂

∂x

(
φ
∂φ

∂x

)
−
(
∂φ

∂x

)2
+ ∂

∂y

(
φ
∂φ

∂y

)
−
(
∂φ

∂y

)2
+ ∂

∂z

(
φ
∂φ

∂z

)
−
(
∂φ

∂z

)2

=∇ · (φ∇φ)− (∇φ) · (∇φ). (8.33)

Our energy integral is then

U = ε0
2

∫
(∇φ) · (∇φ) dV − ε0

2

∫
∇ · (φ∇φ) dV.

We can use Gauss’ theorem to change the second integral into a surface integral:∫
vol.

∇ · (φ∇φ) dV =
∫

surface

(φ∇φ) · n da. (8.34)

We evaluate the surface integral in the case that the surface goes to infinity
(so the volume integrals become integrals over all space), supposing that all the
charges are located within some finite distance. The simple way to proceed is to
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take a spherical surface of enormous radius R whose center is at the origin of
coordinates. We know that when we are very far away from all charges, φ varies
as 1/R and ∇φ as 1/R2. (Both will decrease even faster with R if there the
net charge in the distribution is zero.) Since the surface area of the large sphere
increases as R2, we see that the surface integral falls off as (1/R)(1/R2)R2 = (1/R)
as the radius of the sphere increases. So if we include all space in our integration
(R→∞), the surface integral goes to zero and we have that

U = ε0
2

∫
all

space

(∇φ) · (∇φ) dV = ε0
2

∫
all

space

E ·E dV. (8.35)

We see that it is possible for us to represent the energy of any charge distribution
as being the integral over an energy density located in the field.

8-6 The energy of a point charge

Our new relation, Eq. (8.35), says that even a single point charge q will have
some electrostatic energy. In this case, the electric field is given by

E = q

4πε0r2 .

So the energy density at the distance r from the charge is

ε0E
2

2 = q2

32π2ε0r4 .

We can take for an element of volume a spherical shell of thickness dr and
area 4πr2. The total energy is

U =
∞∫

r=0

q2

8πε0r2 dr = − q2

8πε0
1
r

∣∣∣∣r=∞
r=0

. (8.36)

Now the limit at r = ∞ gives no difficulty. But for a point charge we are
supposed to integrate down to r = 0, which gives an infinite integral. Equa-
tion (8.35) says that there is an infinite amount of energy in the field of a point
charge, although we began with the idea that there was energy only between
point charges. In our original energy formula for a collection of point charges
(Eq. 8.3), we did not include any interaction energy of a charge with itself. What
has happened is that when we went over to a continuous distribution of charge
in Eq. (8.27), we counted the energy of interaction of every infinitesimal charge
with all other infinitesimal charges. The same account is included in Eq. (8.35),
so when we apply it to a finite point charge, we are including the energy it would
take to assemble that charge from infinitesimal parts. You will notice, in fact,
that we would also get the result in Eq. (8.36) if we used our expression (8.11)
for the energy of a charged sphere and let the radius tend toward zero.

We must conclude that the idea of locating the energy in the field is inconsistent
with the assumption of the existence of point charges. One way out of the difficulty
would be to say that elementary charges, such as an electron, are not points but
are really small distributions of charge. Alternatively, we could say that there
is something wrong in our theory of electricity at very small distances, or with
the idea of the local conservation of energy. There are difficulties with either
point of view. These difficulties have never been overcome; they exist to this
day. Sometime later, when we have discussed some additional ideas, such as the
momentum in an electromagnetic field, we will give a more complete account of
these fundamental difficulties in our understanding of nature.
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9

Electricity in the Atmosphere

9-1 The electric potential gradient of the atmosphere
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an ordinary day over flat desert country, or over the sea, as one goes
upward from the surface of the ground the electric potential increases by about
100 volts per meter. Thus there is a vertical electric field E of 100 volts/m in
the air. The sign of the field corresponds to a negative charge on the earth’s
surface. This means that outdoors the potential at the height of your nose is
200 volts higher than the potential at your feet! You might ask: “Why don’t we
just stick a pair of electrodes out in the air one meter apart and use the 100 volts
to power our electric lights?” Or you might wonder: “If there is really a potential
difference of 200 volts between my nose and my feet, why is it I don’t get a shock
when I go out into the street?”

We will answer the second question first. Your body is a relatively good
conductor. If you are in contact with the ground, you and the ground will tend to
make one equipotential surface. Ordinarily, the equipotentials are parallel to the
surface, as shown in Fig. 9-1(a), but when you are there, the equipotentials are
distorted, and the field looks somewhat as shown in Fig. 9-1(b). So you still have
very nearly zero potential difference between your head and your feet. There are
charges Reference: Chalmers, J. Alan, Atmo-

spheric Electricity, Perga-
mon Press, London (1957).

that come from the earth to your head, changing the field. Some of them
may be discharged by ions collected from the air, but the current of these is very
small because air is a poor conductor.

(a)

0V

+100 V

+200 V

+300 V

E = 100 V/m

− − − − − − − −
GROUND

(b)

0V

+1
00
V

+20
0 V

+300
V

− − − − − − − −

− −
− −
− −
− −
− −
−

GROUND

Fig. 9-1. (a) The potential distribution above the earth. (b) The potential
distribution near a man in an open flat place.

How can we measure such a field if the field is changed by putting something
there? There are several ways. One way is to place an insulated conductor at
some distance above the ground and leave it there until it is at the same potential
as the air. If we leave it long enough, the very small conductivity in the air will
let the charges leak off (or onto) the conductor until it comes to the potential at
its level. Then we can bring it back to the ground, and measure the shift of its
potential as we do so. A faster way is to let the conductor be a bucket of water
with a small leak. As the water drops out, it carries away any excess charges
and the bucket will approach the same potential as the air. (The charges, as you
know, reside on the surface, and as the drops come off “pieces of surface” break
off.) We can measure the potential of the bucket with an electrometer.
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There is another way to directly measure the potential gradient. Since there
is an electric field, there is a surface charge on the earth (σ = ε0E). If we place
a flat metal plate at the earth’s surface and ground it, negative charges appear
on it (Fig. 9-2a). If this plate is now covered by another grounded conducting
cover B, the charges will appear on the cover, and there will be no charges on the
original plate A. If we measure the charge that flows from plate A to the ground
(by, say, a galvanometer in the grounding wire) as we cover it, we can find the
surface charge density that was there, and therefore also find the electric field. (a)

E

GROUND

CONNECTION
TO GROUND METAL PLATE A

− − − − − − − − − − − − − − − − − −

(b)

E

GROUND

COVER PLATE B

− − − −
− − − − − − − − − −

− − − −

Fig. 9-2. (a) A grounded metal plate will
have the same surface charge as the earth.
(b) If the plate is covered with a grounded
conductor it will have no surface charge.

Having suggested how we can measure the electric field in the atmosphere, we
now continue our description of it. Measurements show, first of all, that the field
continues to exist, but gets weaker, as one goes up to high altitudes. By about
50 kilometers, the field is very small, so most of the potential change (the integral
of E) is at lower altitudes. The total potential difference from the surface of the
earth to the top of the atmosphere is about 400,000 volts.

9-2 Electric currents in the atmosphere

Another thing that can be measured, in addition to the potential gradient, is
the current in the atmosphere. The current density is small—about 10 micromi-
croamperes crosses each square meter parallel to the earth. The air is evidently
not a perfect insulator, and because of this conductivity, a small current—caused
by the electric field we have just been describing—passes from the sky down to
the earth.

V

+

−

ELECTROMETER

IONS

AIR

+

−

+

+
+

− −

−
−
−

Fig. 9-3. Measuring the conductivity of
air due to the motion of ions.

Why does the atmosphere have conductivity? Here and there among the air
molecules there is an ion—a molecule of oxygen, say, which has acquired an extra
electron, or perhaps lost one. These ions do not stay as single molecules; because
of their electric field they usually accumulate a few other molecules around them.
Each ion then becomes a little lump which, along with other lumps, drifts in the
field—moving slowly upward or downward—making the observed current. Where
do the ions come from? It was first guessed that the ions were produced by the
radioactivity of the earth. (It was known that the radiation from radioactive
materials would make air conducting by ionizing the air molecules.) Particles like
β-rays coming out of the atomic nuclei are moving so fast that they tear electrons
from the atoms, leaving ions behind. This would imply, of course, that if we were
to go to higher altitudes, we should find less ionization, because the radioactivity
is all in the dirt on the ground—in the traces of radium, uranium, potassium, etc.

To test this theory, some physicists carried an experiment up in balloons
to measure the ionization of the air (Hess, in 1912) and discovered that the
opposite was true—the ionization per unit volume increased with altitude! (The
apparatus was like that of Fig. 9-3. The two plates were charged periodically to
the potential V . Due to the conductivity of the air, the plates slowly discharged;
the rate of discharge was measured with the electrometer.) This was a most
mysterious result—the most dramatic finding in the entire history of atmospheric
electricity. It was so dramatic, in fact, that it required a branching off of an
entirely new subject—cosmic rays. Atmospheric electricity itself remained less
dramatic. Ionization was evidently being produced by something from outside
the earth; the investigation of this source led to the discovery of the cosmic
rays. We will not discuss the subject of cosmic rays now, except to say that they
maintain the supply of ions. Although the ions are being swept away all the time,
new ones are being created by the cosmic-ray particles coming from the outside.

To be precise, we must say that besides the ions made of molecules, there are
also other kinds of ions. Tiny pieces of dirt, like extremely fine bits of dust, float
in the air and become charged. They are sometimes called “nuclei.” For example,
when a wave breaks in the sea, little bits of spray are thrown into the air. When
one of these drops evaporates, it leaves an infinitesimal crystal of NaCl floating
in the air. These tiny crystals can then pick up charges and become ions; they
are called “large ions.”

The small ions—those formed by cosmic rays—are the most mobile. Because
they are so small, they move rapidly through the air—with a speed of about
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1 cm/sec in a field of 100 volts/meter, or 1 volt/cm. The much bigger and heavier
ions move much more slowly. It turns out that if there are many “nuclei,” they will
pick up the charges from the small ions. Then, since the “large ions” move so slowly
in a field, the total conductivity is reduced. The conductivity of air, therefore, is
quite variable, since it is very sensitive to the amount of “dirt” there is in it. There
is much more of such dirt over land—where the winds can blow up dust or where
man throws all kinds of pollution into the air—than there is over water. It is not
surprising that from day to day, from moment to moment, from place to place,
the conductivity near the earth’s surface varies enormously. The voltage gradient
observed at any particular place on the earth’s surface also varies greatly because
roughly the same current flows down from high altitudes in different places, and
the varying conductivity near the earth results in a varying voltage gradient.

The conductivity of the air due to the drifting of ions also increases rapidly
with altitude—for two reasons. First of all, the ionization from cosmic rays
increases with altitude. Secondly, as the density of air goes down, the mean free
path of the ions increases, so that they can travel farther in the electric field before
they have a collision—resulting in a rapid increase of conductivity as one goes up.

Although the electric current-density in the air is only a few micromicroam-
peres per square meter, there are very many square meters on the earth’s surface.
The total electric current reaching the earth’s surface at any time is very nearly
constant at 1800 amperes. This current, of course, is “positive”—it carries plus
charges to the earth. So we have a voltage supply of 400,000 volts with a current
of 1800 amperes—a power of 700 megawatts!

+

−

HIGH
CONDUCTIVITY

CURRENT
≈ 10−12
Amps/m2400,000

VOLTS

50,000m

SEA LEVEL

EARTH’S SURFACE

Fig. 9-4. Typical electrical conditions in
a clear atmosphere.

With such a large current coming down, the negative charge on the earth
should soon be discharged. In fact, it should take only about half an hour to
discharge the entire earth. But the atmospheric electric field has already lasted
more than a half-hour since its discovery. How is it maintained? What maintains
the voltage? And between what and the earth? There are many questions.

The earth is negative, and the potential in the air is positive. If you go high
enough, the conductivity is so great that horizontally there is no more chance
for voltage variations. The air, for the scale of times that we are talking about,
becomes effectively a conductor. This occurs at a height in the neighborhood
of 50 kilometers. This is not as high as what is called the “ionosphere,” in
which there are very large numbers of ions produced by photoelectricity from the
sun. Nevertheless, for our discussions of atmospheric electricity, the air becomes
sufficiently conductive at about 50 kilometers that we can imagine that there is
practically a perfect conducting surface at this height, from which the currents
come down. Our picture of the situation is shown in Fig. 9-4. The problem is:
How is the positive charge maintained there? How is it pumped back? Because
if it comes down to the earth, it has to be pumped back somehow. That was one
of the greatest puzzles of atmospheric electricity for quite a while.
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Fig. 9-5. The average daily variation of
the atmospheric potential gradient on a clear
day over the oceans; referred to Greenwich
time.

Each piece of information we can get should give a clue or, at least, tell
you something about it. Here is an interesting phenomenon: If we measure
the current (which is more stable than the potential gradient) over the sea, for
instance, or in careful conditions, and average very carefully so that we get rid of
the irregularities, we discover that there is still a daily variation. The average of
many measurements over the oceans has a variation with time roughly as shown
in Fig. 9-5. The current varies by about ±15 percent, and it is largest at 7:00 p.m.
in London. The strange part of the thing is that no matter where you measure
the current—in the Atlantic Ocean, the Pacific Ocean, or the Arctic Ocean—it is
at its peak value when the clocks in London say 7:00 p.m.! All over the world the
current is at its maximum at 7:00 p.m. London time and it is at a minimum at
4:00 a.m. London time. In other words, it depends upon the absolute time on the
earth, not upon the local time at the place of observation. In one respect this is not
mysterious; it checks with our idea that there is a very high conductivity laterally
at the top, because that makes it impossible for the voltage difference from the
ground to the top to vary locally. Any potential variations should be worldwide,
as indeed they are. What we now know, therefore, is that the voltage at the “top”
surface is dropping and rising by 15 percent with the absolute time on the earth.
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9-3 Origin of the atmospheric currents

We must next talk about the source of the large negative currents which
must be flowing from the “top” to the surface of the earth to keep charging it
up negatively. Where are the batteries that do this? The “battery” is shown in
Fig. 9-6. It is the thunderstorm and its lightning. It turns out that the bolts of
lightning do not “discharge” the potential we have been talking about (as you
might at first guess). Lightning storms carry negative charges to the earth. When
a lightning bolt strikes, nine times out of ten it brings down negative charges to
the earth in large amounts. It is the thunderstorms throughout the world that
are charging the earth with an average of 1800 amperes, which is then being
discharged through regions of fair weather.

There are about 40,000 thunderstorms per day all over the earth, and we
can think of them as batteries pumping the electricity to the upper layer and
maintaining the voltage difference. Then take into account the geography of the
earth—there are thunderstorms in the afternoon in Brazil, tropical thunderstorms
in Africa, and so forth. People have made estimates of how much lightning is
striking world-wide at any time, and perhaps needless to say, their estimates
more or less agree with the voltage difference measurements: the total amount
of thunderstorm activity is highest on the whole earth at about 7:00 p.m. in
London. However, the thunderstorm estimates are very difficult to make and were
made only after it was known that the variation should have occurred. These
things are very difficult because we don’t have enough observations on the seas
and over all parts of the world to know the number of thunderstorms accurately.
But those people who think they “do it right” obtain the result that there are
about 100 lightning flashes per second world-wide with a peak in the activity at
7:00 p.m. Greenwich Mean Time.

Fig. 9-6. The mechanism that generates atmospheric electric field. [Photo by William L. Widmayer.]
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In order to understand how these batteries work, we will look at a thunderstorm
in detail. What is going on inside a thunderstorm? We will describe this insofar
as it is known. As we get into this marvelous phenomenon of real nature—instead
of the idealized spheres of perfect conductors inside of other spheres that we can
solve so neatly—we discover that we don’t know very much. Yet it is really quite
exciting. Anyone who has been in a thunderstorm has enjoyed it, or has been
frightened, or at least has had some emotion. And in those places in nature where
we get an emotion, we find that there is generally a corresponding complexity
and mystery about it. It is not going to be possible to describe exactly how a
thunderstorm works, because we do not yet know very much. But we will try to
describe a little bit about what happens.

9-4 Thunderstorms
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Fig. 9-7. A thunderstorm cell in the early
stages of development. [From U.S. Depart-
ment of Commerce Weather Bureau Report,
June 1949.]

In the first place, an ordinary thunderstorm is made up of a number of “cells”
fairly close together, but almost independent of each other. So it is best to
analyze one cell at a time. By a “cell” we mean a region with a limit area in the
horizontal direction in which all of the basic processes occur. Usually there are
several cells side by side, and in each one about the same thing is happening,
although perhaps with a different timing. Figure 9-7 indicates in an idealized
fashion what such a cell looks like in the early stage of the thunderstorm. It turns
out that in a certain place in the air, under certain conditions which we shall
describe, there is a general rising of the air, with higher and higher velocities
near the top. As the warm, moist air at the bottom rises, it cools and the water
vapor in it condenses. In the figure the little stars indicate snow and the dots
indicate rain, but because the updraft currents are great enough and the drops
are small enough, the snow and rain do not come down at this stage. This is the
beginning stage, and not the real thunderstorm yet—in the sense that we don’t
have anything happening at the ground. At the same time that the warm air
rises, there is an entrainment of air from the sides—an important point which
was neglected for many years. Thus it is not just the air from below which is
rising, but also a certain amount of other air from the sides.
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Fig. 9-8. Atmospheric temperature.
(a) Static atmosphere; (b) adiabatic cooling
of dry air; (c) adiabatic cooling of wet air;
(d) wet air with some mixing of ambient air.

Why does the air rise like this? As you know, when you go up in altitude
the air is colder. The ground is heated by the sun, and the re-radiation of heat
to the sky comes from water vapor high in the atmosphere; so at high altitudes
the air is cold—very cold—whereas lower down it is warm. You may say, “Then
it’s very simple. Warm air is lighter than cold; therefore the combination is
mechanically unstable and the warm air rises.” Of course, if the temperature
is different at different heights, the air is unstable thermodynamically. Left to
itself infinitely long, the air would all come to the same temperature. But it is
not left to itself; the sun is always shining (during the day). So the problem is
indeed not one of thermodynamic equilibrium, but of mechanical equilibrium.
Suppose we plot—as in Fig. 9-8—the temperature of the air against height above
the ground. In ordinary circumstances we would get a decrease along a curve
like the one labeled (a); as the height goes up, the temperature goes down. How
can the atmosphere be stable? Why doesn’t the hot air below simply rise up
into the cold air? The answer is this: if the air were to go up, its pressure would
go down, and if we consider a particular parcel of air going up, it would be
expanding adiabatically. (There would be no heat coming in or out because in
the large dimensions considered here, there isn’t time for much heat flow.) Thus
the parcel of air would cool as it rises. Such an adiabatic process would give a
temperature-height relationship like curve (b) in Fig. 9-8. Any air which rose
from below would be colder than the environment it goes into. Thus there is no
reason for the hot air below to rise; if it were to rise, it would cool to a lower
temperature than the air already there, would be heavier than the air there, and
would just want to come down again. On a good, bright day with very little
humidity there is a certain rate at which the temperature in the atmosphere falls,
and this rate is, in general, lower than the “maximum stable gradient,” which is
represented by curve (b). The air is in stable mechanical equilibrium.
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On the other hand, if we think of a parcel of air that contains a lot of water
vapor being carried up into the air, its adiabatic cooling curve will be different.
As it expands and cools, the water vapor in it will condense, and the condensing
water will liberate heat. Moist air, therefore, does not cool nearly as much as dry
air does. So if air that is wetter than the average starts to rise, its temperature
will follow a curve like (c) in Fig. 9-8. It will cool off somewhat, but will still
be warmer than the surrounding air at the same level. If we have a region of
warm moist air and something starts it rising, it will always find itself lighter and
warmer than the air around it and will continue to rise until it gets to enormous
heights. This is the machinery that makes the air in the thunderstorm cell rise.
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Fig. 9-9. A mature thunderstorm cell.
[From U.S. Department of Commerce
Weather Bureau Report, June 1949.]

For many years the thunderstorm cell was explained simply in this manner.
But then measurements showed that the temperature of the cloud at different
heights was not nearly as high as indicated by curve (c). The reason is that as
the moist air “bubble” goes up, it entrains air from the environment and is cooled
off by it. The temperature-versus-height curve looks more like curve (d), which
is much closer to the original curve (a) than to curve (c).

After the convection just described gets under way, the cross section of
a thunderstorm cell looks like Fig. 9-9. We have what is called a “mature”
thunderstorm. There is a very rapid updraft which, in this stage, goes up to
about 10,000 to 15,000 meters—sometimes even much higher. The thunderheads,
with their condensation, climb way up out of the general cloud bank, carried by
an updraft that is usually about 60 miles an hour. As the water vapor is carried
up and condenses, it forms tiny drops which are rapidly cooled to temperatures
below zero degrees. They should freeze, but do not freeze immediately—they
are “supercooled.” Water and other liquids will usually cool well below their
freezing points before crystallizing if there are no “nuclei” present to start the
crystallization process. Only if there is some small piece of material present, like
a tiny crystal of NaCl, will the water drop freeze into a little piece of ice. Then
the equilibrium is such that the water drops evaporate and the ice crystals grow.
Thus at a certain point there is a rapid disappearance of the water and a rapid
buildup of ice. Also, there may be direct collisions between the water drops and
the ice—collisions in which the supercooled water becomes attached to the ice
crystals, which causes it to suddenly crystallize. So at a certain point in the
cloud expansion there is a rapid accumulation of large ice particles.

When the ice particles are heavy enough, they begin to fall through the rising
air—they get too heavy to be supported any longer in the updraft. As they come
down, they draw a little air with them and start a downdraft. And surprisingly
enough, it is easy to see that once the downdraft is started, it will maintain itself.
The air now drives itself down!

Notice that the curve (d) in Fig. 9-8 for the actual distribution of temperature
in the cloud is not as steep as curve (c), which applies to wet air. So if we
have wet air falling, its temperature will drop with the slope of curve (c) and
will go below the temperature of the environment if it gets down far enough, as
indicated by curve (e) in the figure. The moment it does that, it is denser than
the environment and continues to fall rapidly. You say, “That is perpetual motion.
First, you argue that the air should rise, and when you have it up there, you
argue equally well that the air should fall.” But it isn’t perpetual motion. When
the situation is unstable and the warm air should rise, then clearly something
has to replace the warm air. It is equally true that cold air coming down would
energetically replace the warm air, but you realize that what is coming down is
not the original air. The early arguments, that had a particular cloud without
entrainment going up and then coming down, had some kind of a puzzle. They
needed the rain to maintain the downdraft—an argument which is hard to believe.
As soon as you realize that there is a lot of original air mixed in with the rising
air, the thermodynamic argument shows that there can be a descent of the cold
air which was originally at some great height. This explains the picture of the
active thunderstorm sketched in Fig. 9-9.

As the air comes down, rain begins to come out of the bottom of the thun-
derstorm. In addition, the relatively cold air spreads out when it arrives at the
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earth’s surface. So just before the rain comes there is a certain little cold wind
that gives us a forewarning of the coming storm. In the storm itself there are
rapid and irregular gusts of air, there is an enormous turbulence in the cloud,
and so on. But basically we have an updraft, then a downdraft—in general, a
very complicated process.

The moment at which precipitation starts is the same moment that the large
downdraft begins and is the same moment, in fact, when the electrical phenomena
arise. Before we describe lightning, however, we can finish the story by looking
at what happens to the thunderstorm cell after about one-half an hour to an
hour. The cell looks as shown in Fig. 9-10. The updraft stops because there is
no longer enough warm air to maintain it. The downward precipitation continues
far a while, the last little bits of water come out, and things get quieter and
quieter—although there are small ice crystals left way up in the air. Because
the winds at very great altitude are in different directions, the top of the cloud
usually spreads into an anvil shape. The cell comes to the end of its life.
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Fig. 9-10. The late phase of a thunderstorm cell.
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Fig. 9-11. The distribution of electrical charges in a mature
thunderstorm cell. [From U.S. Department of Commerce
Weather Bureau Report, June 1949.]

9-5 The mechanism of charge separation

We want now to discuss the most important aspect for our purposes—the
development of the electrical charges. Experiments of various kinds—including
flying airplanes through thunderstorms (the pilots who do this are brave men!)—
tell us that the charge distribution in a thunderstorm cell is something like that
shown in Fig. 9-11. The top of the thunderstorm has a positive charge, and the
bottom a negative one—except for a small local region of positive charge in the
bottom of the cloud, which has caused everybody a lot of worry. No one seems to
know why it is there, how important it is—whether it is a secondary effect of the
positive rain coming down, or whether it is an essential part of the machinery.
Things would be much simpler if it weren’t there. Anyway, the predominantly
negative charge at the bottom and the positive charge at the top have the correct
sign for the battery needed to drive the earth negative. The positive charges are 6
or 7 kilometers up in the air, where the temperature is about −20◦C, whereas the
negative charges are 3 or 4 kilometers high, where the temperature is between
zero and −10◦C.
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The charge at the bottom of the cloud is large enough to produce potential
differences of 20, or 30, or even 100 million volts between the cloud and the
earth—much bigger than the 0.4 million volts from the “sky” to the ground in a
clear atmosphere. These large voltages break down the air and create giant arc
discharges. When the breakdown occurs the negative charges at the bottom of
the thunderstorm are carried down to the earth in the lightning strokes.

Now we will describe in some detail the character of the lightning. First
of all, there are large voltage differences around, so that the air breaks down.
There are lightning strokes between one piece of a cloud and another piece of
a cloud, or between one cloud and another cloud, or between a cloud and the
earth. In each of the independent discharge flashes—the kind of lightning strokes
you see there are approximately 20 or 30 coulombs of charge brought down.
One question is: How long does it take for the cloud to regenerate the 20 or
30 coulombs which are taken away by the lightning bolt? This can be seen by
measuring, far from a cloud, the electric field produced by the cloud’s dipole
moment. In such measurements you see a sudden decrease in the field when the
lightning strikes, and then an exponential return to the previous value with a
time constant which is slightly different for different cases but which is in the
neighborhood of 5 seconds. It takes a thunderstorm only 5 seconds after each
lightning stroke to build its charge up again. That doesn’t necessarily mean
that another stroke is going to occur in exactly 5 seconds every time, because,
of course, the geometry is changed, and so on. The strokes occur more or less
irregularly, but the important point is that it takes about 5 seconds to recreate
the original condition. Thus there are approximately 4 amperes of current in
the generating machine of the thunderstorm. This means that any model made
to explain how this storm generates its electricity must be one with plenty of
juice—it must be a big, rapidly operating device.
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++
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TO WATER
SUPPLY

Fig. 9-12. A jet of water with an electric
field near the nozzle.

Before we go further we shall consider something which is almost certainly
completely irrelevant, but nevertheless interesting, because it does show the effect
of an electric field on water drops. We say that it may be irrelevant because it
relates to an experiment one can do in the laboratory with a stream of water
to show the rather strong effects of the electric field on drops of water. In a
thunderstorm there is no stream of water; there is a cloud of condensing ice and
drops of water. So the question of the mechanisms at work in a thunderstorm
is probably not at all related to what you can see in the simple experiment we
will describe. If you take a small nozzle connected to a water faucet and direct it
upward at a steep angle, as in Fig. 9-12, the water will come out in a fine stream
that eventually breaks up into a spray of fine drops. If you now put an electric
field across the stream at the nozzle (by bringing up a charged rod, for example),
the form of the stream will change. With a weak electric field you will find that
the stream breaks up into a smaller number of large-sized drops. But if you apply
a stronger field, the stream breaks up into many, many fine drops—smaller than
before.* With a weak electric field there is a tendency to inhibit the breakup of
the stream into drops. With a stronger field, however, there is an increase in the
tendency to separate into drops.

The explanation of these effects is probably the following. If we have the
stream of water coming out of the nozzle and we put a small electric field across
it one side of the water gets slightly positive and the other side gets slightly
negative. Then, when the stream breaks, the drops on one side may be positive,
and those on the other side may be negative. They will attract each other and
will have a tendency to stick together more than they would have before—the
stream doesn’t break up as much. On the other hand, if the field is stronger, the
charge in each one of the drops gets much larger, and there is a tendency for
the charge itself to help break up the drops through their own repulsion. Each
drop will break into many smaller ones, each carrying a charge, so that they are
all repelled, and spread out so rapidly. So as we increase the field, the stream

* A handy way to observe the sizes of the drops is to let the stream fall on a large thin
metal plate. The larger drops make a louder noise.
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becomes more finely separated. The only point we wish to make is that in certain
circumstances electric fields can have considerable influence on the drops. The
exact machinery by which something happens in a thunderstorm is not at all
known, and is not at all necessarily related to what we have just described. We
have included it just so that you will appreciate the complexities that could come
into play. In fact, nobody has a theory applicable to clouds based on that idea.

We would like to describe two theories which have been invented to account for
the separation of the charges in a thunderstorm. All the theories involve the idea
that there should be some charge on the precipitation particles and a different
charge in the air. Then by the movement of the precipitation particles—the
water or the ice—through the air there is a separation of electric charge. The
only question is: How does the charging of the drops begin? One of the older
theories is called the “breaking-drop” theory. Somebody discovered that if you
have a drop of water that breaks into two pieces in a windstream, there is positive
charge on the water and negative charge in the air. This breaking-drop theory
has several disadvantages, among which the most serious is that the sign is wrong.
Second, in the large number of temperate-zone thunderstorms which do exhibit
lightning, the precipitation effects at high altitudes are in ice, not in water. FALLING
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E

v
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Fig. 9-13. C. T. R. Wilson’s theory of
charge separation in a thundercloud.

From what we have just said, we note that if we could imagine some way
for the charge to be different at the top and bottom of a drop and if we could
also see some reason why drops in a high-speed airstream would break up into
unequal pieces—a large one in the front and a smaller one in the back because of
the motion through the air or something—we would have a theory. (Different
from any known theory!) Then the small drops would not fall through the air
as fast as the big ones, because of the air resistance, and we would get a charge
separation. You see, it is possible to concoct all kinds of possibilities.

One of the more ingenious theories, which is more satisfactory in many respects
than the breaking-drop theory, is due to C. T. R. Wilson. We will describe it,
as Wilson did, with reference to water drops, although the same phenomenon
would also work with ice. Suppose we have a water drop that is falling in the
electric field of about 100 volts per meter toward the negatively charged earth.
The drop will have an induced dipole moment—with the bottom of the drop
positive and the top of the drop negative, as drawn in Fig. 9-13. Now there are
in the air the “nuclei” that we mentioned earlier—the large slow-moving ions.
(The fast ions do not have an important effect here.) Suppose that as a drop
comes down, it approaches a large ion. If the ion is positive, it is repelled by the
positive bottom of the drop and is pushed away. So it does not become attached
to the drop. If the ion were to approach from the top, however, it might attach
to the negative, top side. But since the drop is falling through the air, there
is an air drift relative to it, going upwards, which carries the ions away if their
motion through the air is slow enough. Thus the positive ions cannot attach at
the top either. This would apply, you see, only to the large, slow-moving ions.
The positive ions of this type will not attach themselves either to the front or
the back of a falling drop. On the other hand, as the large, slow, negative ions
are approached by a drop, they will be attracted and will be caught. The drop
will acquire negative charge—the sign of the charge having been determined by
the original potential difference on the entire earth—and we get the right sign.
Negative charge will be brought down to the bottom part of the cloud by the
drops, and the positively charged ions which are left behind will be blown to the
top of the cloud by the various updraft currents. The theory looks pretty good,
and it at least gives the right sign. Also it doesn’t depend on having liquid drops.
We will see, when we learn about polarization in a dielectric, that pieces of ice
will do the same thing. They also will develop positive and negative charges on
their extremities when they are in an electric field.

There are, however, some problems even with this theory. First of all, the
total charge involved in a thunderstorm is very high. After a short time, the
supply of large ions would get used up. So Wilson and others have had to propose
that there are additional sources of the large ions. Once the charge separation
starts, very large electric fields are developed, and in these large fields there may
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be places where the air will become ionized. If there is a highly charged point,
or any small object like a drop, it may concentrate the field enough to make a
“brush discharge.” When there is a strong enough electric field—let us say it is
positive—electrons will fall into the field and will pick up a lot of speed between
collisions. Their speed will be such that in hitting another atom they will tear
electrons off at that atom, leaving positive charges behind. These new electrons
also pick up speed and collide with more electrons. So a kind of chain reaction or
avalanche occurs, and there is a rapid accumulation of ions. The positive charges
are left near their original positions, so the net effect is to distribute the positive
charge on the point into a region around the point. Then, of course, there is
no longer a strong field, and the process stops. This is the character of a brush
discharge. It is possible that the fields may become strong enough in the cloud
to produce a little bit of brush discharge; there may also be other mechanisms,
once the thing is started, to produce a large amount of ionization. But nobody
knows exactly how it works. So the fundamental origin of lightning is really not
thoroughly understood. We know it comes from the thunderstorms. (And we
know, of course, that thunder comes from the lightning—from the thermal energy
released by the bolt.)

At least we can understand, in part, the origin of atmospheric electricity. Due
to the air currents, ions, and water drops on ice particles in a thunderstorm,
positive and negative charges are separated. The positive charges are carried
upward to the top of the cloud (see Fig. 9-11), and the negative charges are
dumped into the ground in lightning strokes. The positive charges leave the top
of the cloud, enter the high-altitude layers of more highly conducting air, and
spread throughout the earth. In regions of clear weather, the positive charges in
this layer are slowly conducted to the earth by the ions in the air—ions formed
by cosmic rays, by the sea, and by man’s activities. The atmosphere is a busy
electrical machine!

9-6 Lightning

Fig. 9-14. Photograph of a lightning flash
taken with a “Boys” camera. [From Schon-
land, Malan, and Collens, Proc. Roy. Soc.
London, Vol. 152 (1935).

The first evidence of what happens in a lightning stroke was obtained in
photographs taken with a camera held by hand and moved back and forth with
the shutter open—while pointed toward a place where lightning was expected.
The first photographs obtained this way showed clearly that lightning strokes are
usually multiple discharges along the same path. Later, the “Boys” camera, which
has two lenses mounted 180◦ apart on a rapidly rotating disc, was developed.
The image made by each lens moves across the film—the picture is spread out in
time. If, for instance, the stroke repeats, there will be two images side by side.
By comparing the images of the two lenses, it is possible to work out the details
of the time sequence of the flashes. Figure 9-14 shows a photograph taken with
a “Boys” camera.

We will now describe the lightning. Again, we don’t understand exactly how
it works. We will give a qualitative description of what it looks like, but we won’t
go into any details of why it does what it appears to do. We will describe only the
ordinary case of the cloud with a negative bottom over flat country. Its potential
is much more negative than the earth underneath, so negative electrons will be
accelerated toward the earth. What happens is the following. It all starts with a
thing called a “step leader,” which is not as bright as the stroke of lightning. On
the photographs one can see a little bright spot at the beginning that starts from
the cloud and moves downward very rapidly—at a sixth of the speed of light!
It goes only about 50 meters and stops. It pauses for about 50 microseconds,
and then takes another step. It pauses again and then goes another step, and
so on. It moves in a series of steps toward the ground, along a path like that
shown in Fig. 9-15. In the leader there are negative charges from the cloud; the
whole column is full of negative charge. Also, the air is becoming ionized by the
rapidly moving charges that produce the leader, so the air becomes a conductor
along the path traced out. The moment the leader touches the ground, we have
a conducting “wire” that runs all the way up to the cloud and is full of negative
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charge. Now, at last, the negative charge of the cloud can simply escape and
run out. The electrons at the bottom of the leader are the first ones to realize
this; they dump out, leaving positive charge behind that attracts more negative
charge from higher up in the leader, which in its turn pours out, etc. So finally
all the negative charge in a part of the cloud runs out along the column in a
rapid and energetic way. So the lightning stroke you see runs upwards from the
ground, as indicated in Fig. 9-16. In fact, this main stroke—by far the brightest
part—is called the return stroke. It is what produces the very bright light, and
the heat, which by causing a rapid expansion of the air makes the thunder clap.
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Fig. 9-15. The formation of the “step
leader.”
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Fig. 9-16. The return lightning stroke
runs back up the path made by the leader.

The current in a lightning stroke is about 10,000 amperes at its peak, and it
carries down about 20 coulombs.

But we are still not finished. After a time of, perhaps, a few hundredths of
a second, when the return stroke has disappeared, another leader comes down.
But this time there are no pauses. It is called a “dart leader” this time, and it
goes all the way down—from top to bottom in one swoop. It goes full steam on
exactly the old track, because there is enough debris there to make it the easiest
route. The new leader is again full of negative charge. The moment it touches
the ground—zing!—there is a return stroke going straight up along the path. So
you see the lightning strike again, and again, and again. Sometimes it strikes
only once or twice, sometimes five or ten times—once as many as 42 times on
the same track was seen—but always in rapid succession.

Sometimes things get even more complicated. For instance, after one of its
pauses the leader may develop a branch by sending out two steps—both toward
the ground but in somewhat different directions, as shown in Fig. 9-15. What
happens then depends on whether one branch reaches the ground definitely
before the other. If that does happen, the bright return stroke (of negative charge
dumping into the ground) works its way up along the branch that touches the
ground, and when it reaches and passes the branching point on its way up to
the cloud, a bright stroke appears to go down the other branch. Why? Because
negative charge is dumping out and that is what lights up the bolt. This charge
begins to move at the top of the secondary branch, emptying successive, longer
pieces of the branch, so the bright lightning bolt appears to work its way down
that branch, at the same time as it works up toward the cloud. If, however,
one of these extra leader branches happens to have reached the ground almost
simultaneously with the original leader, it can sometimes happen that the dart
leader of the second stroke will take the second branch. Then you will see the
first main flash in one place and the second flash in another place. It is a variant
of the original idea.

Also, our description is oversimplified for the region very near the ground.
When the step leader gets to within a hundred meters or so from the ground,
there is evidence that a discharge rises from the ground to meet it. Presumably,
the field gets big enough for a brush-type discharge to occur. If, for instance,
there is a sharp object, like a building with a point at the top, then as the leader
comes down nearby the fields are so large that a discharge starts from the sharp
point and reaches up to the leader. The lightning tends to strike such a point.

It has apparently been known for a long time that high objects are struck by
lightning. There is a quotation of Artabanus, the advisor to Xerxes, giving his
master advice on a contemplated attack on the Greeks—during Xerxes’ campaign
to bring the entire known world under the control of the Persians. Artabanus
said, “See how God with his lightning always smites the bigger animals and will
not suffer them to wax insolent, while these of a lesser bulk chafe him not. How
likewise his bolts fall ever on the highest houses and tallest trees.” And then he
explains the reason: “So, plainly, doth he love to bring down everything that
exalts itself.”

Do you think—now that you know a true account of lightning striking tall
trees—that you have a greater wisdom in advising kings on military matters than
did Artabanus 2400 years ago? Do not exalt yourself. You could only do it less
poetically.
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10

Dielectrics

10-1 The dielectric constant

Here 10-1 The dielectric constant
10-2 The polarization vector P
10-3 Polarization charges
10-4 The electrostatic equations with

dielectrics
10-5 Fields and forces with dielectrics

we begin to discuss another of the peculiar properties of matter under
the influence of the electric field. In an earlier chapter we considered the behavior
of conductors, in which the charges move freely in response to an electric field
to such points that there is no field left inside a conductor. Now we will discuss
insulators, materials which do not conduct electricity. One might at first believe
that there should be no effect whatsoever. However, using a simple electroscope
and a parallel-plate capacitor, Faraday discovered that this was not so. His
experiments showed that the capacitance of such a capacitor is increased when
an insulator is put between the plates. If the insulator completely fills the space
between the plates, the capacitance is increased by a factor κ which depends
only on the nature of the insulating material. Insulating materials are also called
dielectrics; the factor κ is then a property of the dielectric, and is called the
dielectric constant. The dielectric constant of a vacuum is, of course, unity.

Our problem now is to explain why there is any electrical effect if the insu-
lators are indeed insulators and do not conduct electricity. We begin with the
experimental fact that the capacitance is increased and try to reason out what
might be going on. Consider a parallel-plate capacitor with some charges on
the surfaces of the conductors, let us say negative charge on the top plate and
positive charge on the bottom plate. Suppose that the spacing between the plates
is d and the area of each plate is A. As we have proved earlier, the capacitance is

C = ε0A

d
, (10.1)

and the charge and voltage on the capacitor are related by

Q = CV. (10.2)

Now the experimental fact is that if we put a piece of insulating material like
lucite or glass between the plates, we find that the capacitance is larger. That
means, of course, that the voltage is lower for the same charge. But the voltage
difference is the integral of the electric field across the capacitor; so we must
conclude that inside the capacitor, the electric field is reduced even though the
charges on the plates remain unchanged.
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Fig. 10-1. A parallel-plate capacitor with
a dielectric. The lines of E are shown.

Now how can that be? We have a law due to Gauss that tells us that the
flux of the electric field is directly related to the enclosed charge. Consider the
gaussian surface S shown by broken lines in Fig. 10-1. Since the electric field is
reduced with the dielectric present, we conclude that the net charge inside the
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surface must be lower than it would be without the material. There is only one
possible conclusion, and that is that there must be positive charges on the surface
of the dielectric. Since the field is reduced but is not zero, we would expect this
positive charge to be smaller than the negative charge on the conductor. So the
phenomena can be explained if we could understand in some way that when a
dielectric material is placed in an electric field there is positive charge induced
on one surface and negative charge induced on the other.

Fig. 10-2. If we put a conducting plate
in the gap of a parallel-plate condenser, the
induced charges reduce the field in the con-
ductor to zero.
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We would expect that to happen for a conductor. For example, suppose that
we had a capacitor with a plate spacing d, and we put between the plates a
neutral conductor whose thickness is b, as in Fig. 10-2. The electric field induces
a positive charge on the upper surface and a negative charge on the lower surface,
so there is no field inside the conductor. The field in the rest of the space is the
same as it was without the conductor, because it is the surface density of charge
divided by ε0; but the distance over which we have to integrate to get the voltage
(the potential difference) is reduced. The voltage is

V = σ

ε0
(d− b).

The resulting equation for the capacitance is like Eq. (10.1), with (d− b) substi-
tuted for d:

C = ε0A

d[1− (b/d)] . (10.3)

The capacitance is increased by a factor which depends upon (b/d), the proportion
of the volume which is occupied by the conductor.

Fig. 10-3. A model of a dielectric: small
conducting spheres embedded in an idealized
insulator.

This gives us an obvious model for what happens with dielectrics—that inside
the material there are many little sheets of conducting material. The trouble
with such a model is that it has a specific axis, the normal to the sheets, whereas
most dielectrics have no such axis. However, this difficulty can be eliminated if we
assume that all insulating materials contain small conducting spheres separated
from each other by insulation, as shown in Fig. 10-3. The phenomenon of the
dielectric constant is explained by the effect of the charges which would be induced
on each sphere. This is one of the earliest physical models of dielectrics used to
explain the phenomenon that Faraday observed. More specifically, it was assumed
that each of the atoms of a material was a perfect conductor, but insulated from
the others. The dielectric constant κ would depend on the proportion of space
which was occupied by the conducting spheres. This is not, however, the model
that is used today.

10-2 The polarization vector P

If we follow the above analysis further, we discover that the idea of regions of
perfect conductivity and insulation is not essential. Each of the small spheres
acts like a dipole, the moment of which is induced by the external field. The only
thing that is essential to the understanding of dielectrics is that there are many
little dipoles induced in the material. Whether the dipoles are induced because
there are tiny conducting spheres or for any other reason is irrelevant.
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Fig. 10-4. An atom in an electric field
has its distribution of electrons displaced
with respect to the nucleus.

Why should a field induce a dipole moment in an atom if the atom is not
a conducting sphere? This subject will be discussed in much greater detail in
the next chapter, which will be about the inner workings of dielectric materials.
However, we give here one example to illustrate a possible mechanism. An atom
has a positive charge on the nucleus, which is surrounded by negative electrons.
In an electric field, the nucleus will be attracted in one direction and the electrons
in the other. The orbits or wave patterns of the electrons (or whatever picture
is used in quantum mechanics) will be distorted to some extent, as shown in
Fig. 10-4; the center of gravity of the negative charge will be displaced and will
no longer coincide with the positive charge of the nucleus. We have already
discussed such distributions of charge. If we look from a distance, such a neutral
configuration is equivalent, to a first approximation, to a little dipole.

It seems reasonable that if the field is not too enormous, the amount of induced
dipole moment will be proportional to the field. That is, a small field will displace
the charges a little bit and a larger field will displace them further—and in
proportion to the field—unless the displacement gets too large. For the remainder
of this chapter, it will be supposed that the dipole moment is exactly proportional
to the field.

We will now assume that in each atom there are charges q separated by a
distance δ, so that qδ is the dipole moment per atom. (We use δ because we are
already using d for the plate separation.) If there are N atoms per unit volume,
there will be a dipole moment per unit volume equal to Nqδ. This dipole moment
per unit volume will be represented by a vector, P . Needless to say, it is in the
direction of the individual dipole moments, i.e., in the direction of the charge
separation δ:

P = Nqδ. (10.4)
In general, P will vary from place to place in the dielectric. However, at any

point in the material, P is proportional to the electric field E. The constant of
proportionality, which depends on the ease with which the electron are displaced,
will depend on the kinds of atoms in the material.

What actually determines how this constant of proportionality behaves, how
accurately it is constant for very large fields, and what is going on inside different
materials, we will discuss at a later time. For the present, we will simply suppose
that there exists a mechanism by which a dipole moment is induced which is
proportional to the electric field.

10-3 Polarization charges

Now let us see what this model gives for the theory of a condenser with a
dielectric. First consider a sheet of material in which there is a certain dipole
moment per unit volume. Will there be on the average any charge density
produced by this? Not if P is uniform. If the positive and negative charges being
displaced relative to each other have the same average density, the fact that they
are displaced does not produce any net charge inside the volume. On the other
hand, if P were larger at one place and smaller at another, that would mean
that more charge would be moved into some region than away from it; we would
then expect to get a volume density of charge. For the parallel-plate condenser,
we suppose that P is uniform, so we need to look only at what happens at the
surfaces. At one surface the negative charges, the electrons, have effectively
moved out a distance δ; at the other surface they have moved in, leaving some
positive charge effectively out a distance δ. As shown in Fig. 10-5, we will have a
surface density of charge, which will be called the surface polarization charge.

δ

+ + + + + + + + +

± ± ± ± ± ± ± ± ±

− − − − − − − − −

P
Fig. 10-5. A dielectric slab in a uniform

field. The positive charges displaced the
distance δ with respect to the negatives.
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This charge can be calculated as follows. If A is the area of the plate, the
number of electrons that appear at the surface is the product of A and N , the
number per unit volume, and the displacement δ, which we assume here is
perpendicular to the surface. The total charge is obtained by multiplying by the
electronic charge qe. To get the surface density of the polarization charge induced
on the surface, we divide by A. The magnitude of the surface charge density is

σpol = Nqeδ.

But this is just equal to the magnitude P of the polarization vector P , Eq. (10.4):

σpol = P. (10.5)

The surface density of charge is equal to the polarization inside the material. The
surface charge is, of course, positive on one surface and negative on the other.

Now let us assume that our slab is the dielectric of a parallel-plate capacitor.
The plates of the capacitor also have a surface charge, which we will call σfree,
because they can move “freely” anywhere on the conductor. This is, of course, the
charge that we put on when we charged the capacitor. It should be emphasized
that σpol exists only because of σfree. If σfree is removed by discharging the
capacitor, then σpol will disappear, not by going out on the discharging wire, but
by moving back into the material—by the relaxation of the polarization inside
the material.

We can now apply Gauss’ law to the gaussian surface S in Fig. 10-1. The
electric field E in the dielectric is equal to the total surface charge density divided
by ε0. It is clear that σpol and σfree have opposite signs, so

E = σfree − σpol
ε0

. (10.6)

Note that the field E0 between the metal plate and the surface of the dielectric
is higher than the field E; it corresponds to σfree alone. But here we are concerned
with the field inside the dielectric which, if the dielectric nearly fills the gap, is
the field over nearly the whole volume. Using Eq. (10.5), we can write

E = σfree − P
ε0

. (10.7)

This equation doesn’t tell us what the electric field is unless we know what P
is. Here, however, we are assuming that P depends on E—in fact, that it is
proportional to E. This proportionality is usually written as

P = χε0E. (10.8)

The constant χ (Greek “khi”) is called the electric susceptibility of the dielectric.
Then Eq. (10.7) becomes

E = σfree
ε0

1
(1 + χ) , (10.9)

which gives us the factor 1/(1 + χ) by which the field is reduced.
The voltage between the plates is the integral of the electric field. Since the

field is uniform, the integral is just the product of E and the plate separation d.
We have that

V = Ed = σfreed

ε0(1 + χ) .

The total charge on the capacitor is σfreeA, so that the capacitance defined
by (10.2) becomes

C = ε0A(1 + χ)
d

= κε0A

d
. (10.10)

We have explained the observed facts. When a parallel-plate capacitor is
filled with a dielectric, the capacitance is increased by the factor

κ = 1 + χ, (10.11)
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which is a property of the material. Our explanation, of course, is not complete
until we have explained—as we will do later—how the atomic polarization comes
about.

Let’s now consider something a little bit more complicated—the situation
in which the polarization P is not everywhere the same. As mentioned earlier,
if the polarization is not constant, we would expect in general to find a charge
density in the volume, because more charge might come into one side of a small
volume element than leaves it on the other. How can we find out how much
charge is gained or lost from a small volume?

n

θ
P

d
d cos θ

Fig. 10-6. The charge moved across an
element of an imaginary surface in a dielec-
tric is proportional to the component of P
normal to the surface.

First let’s compute how much charge moves across any imaginary surface
when the material is polarized. The amount of charge that goes across a surface
is just P times the surface area if the polarization is normal to the surface. Of
course, if the polarization is tangential to the surface, no charge moves across it.

Following the same arguments we have already used, it is easy to see that
the charge moved across any surface element is proportional to the component
of P perpendicular to the surface. Compare Fig. 10-6 with Fig. 10-5. We see
that Eq. (10.5) should, in the general case, be written

σpol = P · n. (10.12)

DIELECTRIC

P

∆Q

Volume V

Surface
S

Fig. 10-7. A nonuniform polarization P
can result in a net charge in the body of a
dielectric.

If we are thinking of an imagined surface element inside the dielectric,
Eq. (10.12) gives the charge moved across the surface but doesn’t result in
a net surface charge, because there are equal and opposite contributions from
the dielectric on the two sides of the surface.

The displacements of the charges can, however, result in a volume charge
density. The total charge displaced out of any volume V by the polarization
is the integral of the outward normal component of P over the surface S that
bounds the volume (see Fig. 10-7). An equal excess charge of the opposite sign
is left behind. Denoting the net charge inside V by ∆Qpol we write

∆Qpol = −
∫
S

P · n da. (10.13)

We can attribute ∆Qpol to a volume distribution of charge with the density ρpol,
and so

∆Qpol =
∫
V

ρpol dV. (10.14)

Combining the two equations yields∫
V

ρpol dV = −
∫
S

P · n da. (10.15)

We have a kind of Gauss’ theorem that relates the charge density from polarized
materials to the polarization vector P . We can see that it agrees with the
result we got for the surface polarization charge or the dielectric in a parallel-
plate capacitor. Using Eq. (10.15) with the gaussian surface of Fig. 10-1, the
surface integral gives P ∆A, and the charge inside is σpol ∆A, so we get again
that σpol = P .

Just as we did for Gauss’ law of electrostatics, we can convert Eq. (10.15) to
a differential form—using Gauss’ mathematical theorem:∫

S

P · n da =
∫
V

∇ · P dV.

We get
ρpol = −∇ · P . (10.16)

If there is a nonuniform polarization, its divergence gives the net density of charge
appearing in the material. We emphasize that this is a perfectly real charge
density; we call it “polarization charge” only to remind ourselves how it got there.
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10-4 The electrostatic equations with dielectrics

Now let’s combine the above result with our theory of electrostatics. The
fundamental equation is

∇ ·E = ρ

ε0
. (10.17)

The ρ here is the density of all electric charges. Since it is not easy to keep track
of the polarization charges, it is convenient to separate ρ into two parts. Again
we call ρpol the charges due to nonuniform polarizations, and call ρfree all the
rest. Usually ρfree is the charge we put on conductors, or at known places in
space. Equation (10.17) then becomes

∇ ·E = ρfree + ρpol
ε0

= ρfree −∇ · P
ε0

or

∇ ·
(
E + P

ε0

)
= ρfree

ε0
. (10.18)

Of course, the equation for the curl of E is unchanged:

∇×E = 0. (10.19)

Taking P from Eq. (10.8), we get the simpler equation

∇ · [(1 + χ)E] =∇ · (κE) = ρfree
ε0

. (10.20)

These are the equations of electrostatics when there are dielectrics. They don’t,
of course, say anything new, but they are in a form which is more convenient for
computation in cases where ρfree is known and the polarization P is proportional
to E.

Notice that we have not taken the dielectric “constant,” κ, out of the divergence.
That is because it may not be the same everywhere. If it has everywhere the same
value, it can be factored out and the equations are just those of electrostatics with
the charge density ρfree divided by κ. In the form we have given, the equations
apply to the general case where different dielectrics may be in different places in
the field. Then the equations may be quite difficult to solve.

There is a matter of some historical importance which should be mentioned
here. In the early days of electricity, the atomic mechanism of polarization was
not known and the existence of ρpol was not appreciated. The charge ρfree was
considered to be the entire charge density. In order to write Maxwell’s equations
in a simple form, a new vector D was defined to be equal to a linear combination
of E and P :

D = ε0E + P . (10.21)

As a result, Eqs. (10.18) and (10.19) were written in an apparently very simple
form:

∇ ·D = ρfree, ∇×E = 0. (10.22)

Can one solve these? Only if a third equation is given for the relationship between
D and E. When Eq. (10.8) holds, this relationship is

D = ε0(1 + χ)E = κε0E. (10.23)

This equation was usually written

D = εE, (10.24)

where ε is still another constant for describing the dielectric property of materials.
It is called the “permittivity.” (Now you see why we have ε0 in our equations, it
is the “permittivity of empty space.”) Evidently,

ε = κε0 = (1 + χ)ε0. (10.25)
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Today we look upon these matters from another point of view, namely, that
we have simpler equations in a vacuum, and if we exhibit in every case all the
charges, whatever their origin, the equations are always correct. If we separate
some of the charges away for convenience, or because we do not want to discuss
what is going on in detail, then we can, if we wish, write our equations in any
other form that may be convenient.

One more point should be emphasized. An equation like D = εE is an
attempt to describe a property of matter. But matter is extremely complicated,
and such an equation is in fact not correct. For instance, if E gets too large,
then D is no longer proportional to E. For some substances, the proportionality
breaks down even with relatively small fields. Also, the “constant” of propor-
tionality may depend on how fast E changes with time. Therefore this kind of
equation is a kind of approximation, like Hooke’s law. It cannot be a deep and
fundamental equation. On the other hand, our fundamental equations for E,
(10.17) and (10.19), represent our deepest and most complete understanding of
electrostatics.

10-5 Fields and forces with dielectrics

We will now prove some rather general theorems for electrostatics in situations
where dielectrics are present. We have seen that the capacitance of a parallel-plate
capacitor is increased by a definite factor if it is filled with a dielectric. We can
show that this is true for a capacitor of any shape, provided the entire region in
the neighborhood of the two conductors is filled with a uniform linear dielectric.
Without the dielectric, the equations to be solved are

∇ ·E0 = ρfree
ε0

and ∇×E0 = 0.

With the dielectric present, the first of these equations is modified; we have
instead the equations

∇ · (κE) = ρfree
ε0

and ∇×E = 0. (10.26)

Now since we are taking κ to be everywhere the same, the last two equations
can be written as

∇ · (κE) = ρfree
ε0

and ∇× (κE) = 0. (10.27)

We therefore have the same equations for κE as for E0, so they have the
solution κE = E0. In other words, the field is everywhere smaller, by the
factor 1/κ, than in the case without the dielectric. Since the voltage difference is
a line integral of the field, the voltage is reduced by this same factor. Since the
charge on the electrodes of the capacitor has been taken the same in both cases,
Eq. (10.2) tells us that the capacitance, in the case of an everywhere uniform
dielectric, is increased by the factor κ.

Let us now ask what the force would be between two charged conductors
in a dielectric. We consider a liquid dielectric that is homogeneous everywhere.
We have seen earlier that one way to obtain the force is to differentiate the
energy with respect to the appropriate distance. If the conductors have equal and
opposite charges, the energy U = Q2/2C, where C is their capacitance. Using
the principle of virtual work, any component is given by a differentiation; for
example,

Fx = −∂U
∂x

= −Q
2

2
∂

∂x

(
1
C

)
. (10.28)

Since the dielectric increases the capacity by a factor κ, all forces will be reduced
by this same factor.

One point should be emphasized. What we have said is true only if the
dielectric is a liquid. Any motion of conductors that are embedded in a solid
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dielectric changes the mechanical stress conditions of the dielectric and alters its
electrical properties, as well as causing some mechanical energy change in the
dielectric. Moving the conductors in a liquid does not change the liquid. The
liquid moves to a new place but its electrical characteristics are not changed.

Many older books on electricity start with the “fundamental” law that the
force between two charges is

F = q1q2

4πε0κr2 , (10.29)

a point of view which is thoroughly unsatisfactory. For one thing, it is not true
in general; it is true only for a world filled with a liquid. Secondly, it depends
on the fact that κ is a constant, which is only approximately true for most real
materials. It is much better to start with Coulomb’s law for charges in a vacuum,
which is always right (for stationary charges).

What does happen in a solid? This is a very difficult problem which has not
been solved, because it is, in a sense, indeterminate. If you put charges inside
a dielectric solid, there are many kinds of pressures and strains. You cannot
deal with virtual work without including also the mechanical energy required to
compress the solid, and it is a difficult matter, generally speaking, to make a
unique distinction between the electrical forces and the mechanical forces due
to the solid material itself. Fortunately, no one ever really needs to know the
answer to the question proposed. He may sometimes want to know how much
strain there is going to be in a solid, and that can be worked out. But it is much
more complicated than the simple result we got for liquids.

E

F

DIELECTRIC
OBJECT

−
− − − − −

−
+
+
+ + + +

+

Fig. 10-8. A dielectric object in a nonuni-
form field feels a force toward regions of
higher field strength.

A surprisingly complicated problem in the theory of dielectrics is the following:
Why does a charged object pick up little pieces of dielectric? If you comb your
hair on a dry day, the comb readily picks up small scraps of paper. If you thought
casually about it, you probably assumed the comb had one charge on it and the
paper had the opposite charge on it. But the paper is initially electrically neutral.
It hasn’t any net charge, but it is attracted anyway. It is true that sometimes the
paper will come up to the comb and then fly away, repelled immediately after
it touches the comb. The reason is, of course, that when the paper touches the
comb, it picks up some negative charges and then the like charges repel. But
that doesn’t answer the original question. Why did the paper come toward the
comb in the first place?

The answer has to do with the polarization of a dielectric when it is placed
in an electric field. There are polarization charges of both signs, which are
attracted and repelled by the comb. There is a net attraction, however, because
the field nearer the comb is stronger than the field farther away—the comb is
not an infinite sheet. Its charge is localized. A neutral piece of paper will not be
attracted to either plate inside the parallel plates of a capacitor. The variation
of the field is an essential part of the attraction mechanism.

As illustrated in Fig. 10-8, a dielectric is always drawn from a region of weak
field toward a region of stronger field. In fact, one can prove that for small
objects the force is proportional to the gradient of the square of the electric
field. Why does it depend on the square of the field? Because the induced
polarization charges are proportional to the fields, and for given charges the
forces are proportional to the field. However, as we have just indicated, there will
be a net force only if the square of the field is changing from point to point. So
the force is proportional to the gradient of the square of the field. The constant
of proportionality involves, among other things, the dielectric constant of the
object, and it also depends upon the size and shape of the object.

There is a related problem in which the force on a dielectric can be worked
out quite accurately. If we have a parallel-plate capacitor with a dielectric
slab only partially inserted, as shown in Fig. 10-9, there will be a force driving
the sheet in. A detailed examination of the force is quite complicated; it is
related to nonuniformities in the field near the edges of the dielectric and the
plates. However, if we do not look at the details, but merely use the principle of
conservation of energy, we can easily calculate the force. We can find the force
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Fig. 10-9. The force on a dielectric sheet

in a parallel-plate capacitor can be com-
puted by applying the principle of energy
conservation.

from the formula we derived earlier. Equation (10.28) is equivalent to

Fx = −∂U
∂x

= +V 2

2
∂C

∂x
. (10.30)

We need only find out how the capacitance varies with the position of the dielectric
slab.

Let’s suppose that the total length of the plates is L, that the width of the
plates is W , that the plate separation and dielectric thickness are d, and that
the distance to which the dielectric has been inserted is x. The capacitance is
the ratio of the total free charge on the plates to the voltage between the plates.
We have seen above that for a given voltage V the surface charge density of free
charge is κε0V/d. So the total charge on the plates is

Q = κε0V

d
xW + ε0V

d
(L− x)W,

from which we get the capacitance:

C = ε0W

d
(κx+ L− x). (10.31)

Using (10.30), we have

Fx = V 2

2
ε0W

d
(κ− 1). (10.32)

Now this equation is not particularly useful for anything unless you happen to
need to know the force in such circumstances. We only wished to show that
the theory of energy can often be used to avoid enormous complications in
determining the forces on dielectric materials—as there would be in the present
case.

Our discussion of the theory of dielectrics has dealt only with electrical
phenomena, accepting the fact that the material has a polarization which is
proportional to the electric field. Why there is such a proportionality is perhaps
of greater interest to physics. Once we understand the origin of the dielectric
constants from an atomic point of view, we can use electrical measurements of
the dielectric constants in varying circumstances to obtain detailed information
about atomic or molecular structure. This aspect will be treated in part in the
next chapter.
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11

Inside Dielectrics
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dielectric
11-5 The dielectric constant of liquids;

the Clausius-Mossotti equation
11-6 Solid dielectrics
11-7 Ferroelectricity; BaTiO3

this chapter we are going to discuss why it is that materials are dielectric.
We said in the last chapter that we could understand the properties of electrical
systems with dielectrics once we appreciated that when an electric field is applied
to a dielectric it induces a dipole moment in the atoms. Specifically, if the
electric field E induces an average dipole moment per unit volume P , then κ,
the dielectric constant, is given by

κ− 1 = P

ε0E
. (11.1)

Review: Chapter 31, Vol. I, The Origin
of the Refractive Index
Chapter 40, Vol. I, The Prin-
ciples of Statistical Mechanics

We have already discussed how this equation is applied; now we have to
discuss the mechanism by which polarization arises when there is an electric field
inside a material. We begin with the simplest possible example—the polarization
of gases. But even gases already have complications: there are two types. The
molecules of some gases, like oxygen, which has a symmetric pair of atoms in each
molecule, have no inherent dipole moment. But the molecules of others, like water
vapor (which has a nonsymmetric arrangement of hydrogen and oxygen atoms)
carry a permanent electric dipole moment. As we pointed out in Chapter 6, there
is in the water vapor molecule an average plus charge on the hydrogen atoms
and a negative charge on the oxygen. Since the center of gravity of the negative
charge and the center of gravity of the positive charge do not coincide, the total
charge distribution of the molecule has a dipole moment. Such a molecule is
called a polar molecule. In oxygen, because of the symmetry of the molecule, the
centers of gravity of the positive and negative charges are the same, so it is a
nonpolar molecule. It does, however, become a dipole when placed in an electric
field. The forms of the two types of molecules are sketched in Fig. 11-1.

11-2 Electronic polarization
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Fig. 11-1. (a) An oxygen molecule
with zero dipole moment. (b) The wa-
ter molecule has a permanent dipole mo-
ment p0.

We will first discuss the polarization of non polar molecules. We can start with
the simplest case of a monatomic gas (for instance, helium). When an atom of
such a gas is in an electric field, the electrons are pulled one way by the field while
the nucleus is pulled the other way, as shown in Fig. 10-4. Although the atoms
are very stiff with respect to the electrical forces we can apply experimentally,
there is a slight net displacement of the centers of charge, and a dipole moment
is induced. For small fields, the amount of displacement, and so also the dipole
moment, is proportional to the electric field. The displacement of the electron
distribution which produces this kind of induced dipole moment is called electronic
polarization.

We have already discussed the influence of an electric field on an atom in
Chapter 31 of Vol. I, when we were dealing with the theory of the index of
refraction. If you think about it for a moment, you will see that what we must
do now is exactly the same as we did then. But now we need worry only about
fields that do not vary with time, while the index of refraction depended on
time-varying fields.

In Chapter 31 of Vol. I we supposed that when an atom is placed in an
oscillating electric field the center of charge of the electrons obeys the equation

m
d2x

dt2
+mω2

0x = qeE. (11.2)
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The first term is the electron mass times its acceleration and the second is a
restoring force, while the right-hand side is the force from the outside electric
field. If the electric field varies with the frequency ω, Eq. (11.2) has the solution

x = qeE

m(ω2
0 − ω2) , (11.3)

which has a resonance at ω = ω0. When we previously found this solution, we
interpreted it as saying that ω0 was the frequency at which light (in the optical
region or in the ultraviolet, depending on the atom) was absorbed. For our
purposes, however, we are interested only in the ease of constant fields, i.e.,
for ω = 0, so we can disregard the acceleration term in (11.2), and we find that
the displacement is

x = qeE

mω2
0
. (11.4)

From this we see that the dipole moment p of a single atom is

p = qex = q2
eE

mω2
0
. (11.5)

In this theory the dipole moment p is indeed proportional to the electric field.
People usually write

p = αε0E. (11.6)

(Again the ε0 is put in for historical reasons.) The constant α is called the
polarizability of the atom, and has the dimensions L3. It is a measure of how
easy it is to induce a moment in an atom with an electric field. Comparing (11.5)
and (11.6), our simple theory says that

α = q2
e

ε0mω2
0

= 4πe2

mω2
0
. (11.7)

If there are N atoms in a unit volume, the polarization P—the dipole moment
per unit volume—is given by

P = Np = Nαε0E. (11.8)

Putting (11.1) and (11.8) together, we get

κ− 1 = P

ε0E
= Nα (11.9)

or, using (11.7),

κ− 1 = 4πNe2

mω2
0
. (11.10)

From Eq. (11.10) we would predict that the dielectric constant κ of different
gases should depend on the density of the gas and on the frequency ω0 of its
optical absorption.

Our formula is, of course, only a very rough approximation, because in
Eq. (11.2) we have taken a model which ignores the complications of quantum
mechanics. For example, we have assumed that an atom has only one resonant
frequency, when it really has many. To calculate properly the polarizability α of
atoms we must use the complete quantum-mechanical theory, but the classical
ideas above give us a reasonable estimate.

Let’s see if we can get the right order of magnitude for the dielectric constant
of some substance. Suppose we try hydrogen. We have once estimated (Chap-
ter 38, Vol. I) that the energy needed to ionize the hydrogen atom should be
approximately

E ≈ 1
2
me4

~2 . (11.11)
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For an estimate of the natural frequency ω0, we can set this energy equal to ~ω0—
the energy of an atomic oscillator whose natural frequency is ω0. We get

ω0 ≈
1
2
me4

~3 .

If we now use this value of ω0 in Eq. (11.7), we find for the electronic polarizability

α ≈ 16π
[

~2

me2

]3
. (11.12)

The quantity (~2/me2) is the radius of the ground-state orbit of a Bohr atom (see
Chapter 38, Vol. I) and equals 0.528 angstroms. In a gas at standard pressure and
temperature (1 atmosphere, 0◦C) there are 2.69× 1019 atoms/cm3, so Eq. (11.9)
gives us

κ = 1 + (2.69× 1019)16π(0.528× 10−8)3 = 1.00020. (11.13)

The dielectric constant for hydrogen gas is measured to be

κexp = 1.00026.

We see that our theory is about right. We should not expect any better, because
the measurements were, of course, made with normal hydrogen gas, which
has diatomic molecules, not single atoms. We should not be surprised if the
polarization of the atoms in a molecule is not quite the same as that of the
separate atoms. The molecular effect, however, is not really that large. An exact
quantum-mechanical calculation of α for hydrogen atoms gives a result about
12% higher than (11.12) (the 16π is changed to 18π), and therefore predicts a
dielectric constant somewhat closer to the observed one. In any case, it is clear
that our model of a dielectric is fairly good.

Another check on our theory is to try Eq. (11.12) on atoms which have a
higher frequency of excitation. For instance, it takes about 24.6 electron volts to
pull the electron off helium, compared with the 13.6 electron volts required to
ionize hydrogen. We would, therefore, expect that the absorption frequency ω0
for helium would be about twice as big as for hydrogen and that α would be
one-quarter as large. We expect that

κhelium ≈ 1.000050.
Experimentally,

κhelium = 1.000068,

so you see that our rough estimates are coming out on the right track. So we
have understood the dielectric constant of nonpolar gas, but only qualitatively,
because we have not yet used a correct atomic theory of the motions of the atomic
electrons.

11-3 Polar molecules; orientation polarization

(a)

p0

(b)

E

Fig. 11-2. (a) In a gas of polar molecules,
the individual moments are oriented at ran-
dom; the average moment in a small vol-
ume is zero. (b) When there is an electric
field, there is some average alignment of
the molecules.

Next we will consider a molecule which carries a permanent dipole moment p0—
such as a water molecule. With no electric field, the individual dipoles point
in random directions, so the net moment per unit volume is zero. But when
an electric field is applied, two things happen: First, there is an extra dipole
moment induced because of the forces on the electrons; this part gives just the
same kind of electronic polarizability we found for a nonpolar molecule. For very
accurate work, this effect should, of course, be included, but we will neglect it
for the moment. (It can always be added in at the end.) Second, the electric
field tends to line up the individual dipoles to produce a net moment per unit
volume. If all the dipoles in a gas were to line up, there would be a very large
polarization, but that does not happen. At ordinary temperatures and electric
fields the collisions of the molecules in their thermal motion keep them from lining
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up very much. But there is some net alignment, and so some polarization (see
Fig. 11-2). The polarization that does occur can be computed by the methods of
statistical mechanics we described in Chapter 40 of Vol. I.

To use this method we need to know the energy of a dipole in an electric
field. Consider a dipole of moment p0 in an electric field, as shown in Fig. 11-3.
The energy of the positive charge is qφ(1), and the energy of the negative charge
is −qφ(2). Thus the energy of the dipole is

U = qφ(1)− qφ(2) = qd ·∇φ,
or

U = −p0 ·E = −p0E cos θ, (11.14)

where θ is the angle between p0 and E. As we would expect, the energy is lower
when the dipoles are lined up with the field.

E

−q

+q
(1)

(2)

d

Fig. 11-3. The energy of a dipole p0 in
the field E is −p0 · E.

We now find out how much lining up occurs by using the methods of statistical
mechanics. We found in Chapter 40 of Vol. I that in a state of thermal equilibrium,
the relative number of molecules with the potential energy U is proportional to

e−U/kT , (11.15)

where U(x, y, z) is the potential energy as a function of position. The same
arguments would say that using Eq. (11.14) for the potential energy as a function
of angle, the number of molecules at θ per unit solid angle is proportional
to e−U/kT .

Letting n(θ) be the number of molecules per unit solid angle at θ, we have

n(θ) = n0e
+p0E cos θ/kT . (11.16)

For normal temperatures and fields, the exponent is small, so we can approximate
by expanding the exponential:

n(θ) = n0

(
1 + p0E cos θ

kT

)
. (11.17)

We can find n0 if we integrate (11.17) over all angles; the result should be
just N , the total number of molecules per unit volume. The average value of cos θ
over all angles is zero, so the integral is just n0 times the total solid angle 4π.
We get

n0 = N

4π . (11.18)

We see from (11.17) that there will be more molecules oriented along the field
(cos θ = 1) than against the field (cos θ = −1). So in any small volume containing
many molecules there will be a net dipole moment per unit volume—that is, a
polarization P . To calculate P , we want the vector sum of all the molecular
moments in a unit volume. Since we know that the result is going to be in the
direction of E, we will just sum the components in that direction (the components
at right angles to E will sum to zero):

P =
∑
unit

volume

p0 cos θi.

We can evaluate the sum by integrating over the angular distribution. The
solid angle at θ is 2π sin θ dθ, so

P =
∫ π

0
n(θ)p0 cos θ 2π sin θ dθ. (11.19)

Substituting for n(θ) from (11.17), we have

P = −N2

∫ −1

1

(
1 + p0E

kT
cos θ

)
p0 cos θ d(cos θ),
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which is easily integrated to give

P = Np2
0E

3kT . (11.20)

The polarization is proportional to the field E, so there will be normal dielectric
behavior. Also, as we expect, the polarization depends inversely on the temper-
ature, because at higher temperatures there is more disalignment by collisions.
This 1/T dependence is called Curie’s law. The permanent moment p0 appears
squared for the following reason: In a given electric field, the aligning force
depends upon p0, and the mean moment that is produced by the lining up is
again proportional to p0. The average induced moment is proportional to p2

0.

1/T (◦K−1)

0 0.001 0.002 0.003

κ− 1

0

0.001

0.002

0.003

0.004

Fig. 11-4. Experimental measurements
of the dielectric constant of water vapor at
various temperatures.

We should now try to see how well Eq. (11.20) agrees with experiment. Let’s
look at the case of steam. Since we don’t know what p0 is, we cannot compute P
directly, but Eq. (11.20) does predict that κ − 1 should vary inversely as the
temperature, and this we should check.

From (11.20) we get

κ− 1 = P

ε0E
= Np2

0
3ε0kT

, (11.21)

so κ − 1 should vary in direct proportion to the density N , and inversely as
the absolute temperature. The dielectric constant has been measured at several
different pressures and temperatures, chosen such that the number of molecules
in a unit volume remained fixed.* [Notice that if the measurements had all been
taken at constant pressure, the number of molecules per unit volume would
decrease linearly with increasing temperature and κ − 1 would vary as T−2

instead of as T−1.] In Fig. 11-4 we plot the experimental observations for κ− 1
as a function of 1/T . The dependence predicted by (11.21) is followed quite well.

There is another characteristic of the dielectric constant of polar molecules—
its variation with the frequency of the applied field. Due to the moment of inertia
of the molecules, it takes a certain amount of time for the heavy molecules to turn
toward the direction of the field. So if we apply frequencies in the high microwave
region or above, the polar contribution to the dielectric constant begins to fall
away because the molecules cannot follow. In contrast to this, the electronic
polarizability still remains the same up to optical frequencies, because of the
smaller inertia in the electrons.

11-4 Electric fields in cavities of a dielectric

(a)

(b)

(c)

(d)

E P

E P

Γ

−−−−−−−−

+ + + + + + + +

S

Fig. 11-5. The field in a slot cut in a
dielectric depends on the shape and orienta-
tion of the slot.

We now turn to an interesting but complicated question—the problem of the
dielectric constant in dense materials. Suppose that we take liquid helium or liquid
argon or some other nonpolar material. We still expect electronic polarization.
But in a dense material, P can be large, so the field on an individual atom will
be influenced by the polarization of the atoms in its close neighborhood. The
question is, what electric field acts on the individual atom?

Imagine that the liquid is put between the plates of a condenser. If the
plates are charged they will produce an electric field in the liquid. But there are
also charges in the individual atoms, and the total field E is the sum of both
of these effects. This true electric field varies very, very rapidly from point to
point in the liquid. It is very high inside the atoms—particularly right next to
the nucleus—and relatively small between the atoms. The potential difference
between the plates is the line integral of this total field. If we ignore all the
fine-grained variations, we can think of an average electric field E, which is
just V/d. (This is the field we were using in the last chapter.) We should think
of this field as the average over a space containing many atoms.

Now you might think that an “average” atom in an “average” location would
feel this average field. But it is not that simple, as we can show by considering
what happens if we imagine different-shaped holes in a dielectric. For instance,
suppose that we cut a slot in a polarized dielectric, with the slot oriented parallel

* Sänger, Steiger, and Gächter, Helvetica Physica Acta 5, 200 (1932).
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to the field, as shown in part (a) of Fig. 11-5. Since we know that ∇×E = 0,
the line integral of E around the curve, Γ, which goes as shown in (b) of the
figure, should be zero. The field inside the slot must give a contribution which
just cancels the part from the field outside. Therefore the field E0 actually found
in the center of a long thin slot is equal to E, the average electric field found in
the dielectric.

Now consider another slot whose large sides are perpendicular to E, as shown
in part (c) of Fig. 11-5. In this case, the field E0 in the slot is not the same as E
because polarization charges appear on the surfaces. If we apply Gauss’ law to a
surface S drawn as in (d) of the figure, we find that the field E0 in the slot is
given by

E0 = E + P

ε0
, (11.22)

where E is again the electric field in the dielectric. (The gaussian surface
contains the surface polarization charge σpol = P .) We mentioned in Chapter 10
that ε0E + P is often called D, so ε0E0 = D0 is equal to D in the dielectric.

Earlier in the history of physics, when it was supposed to be very important
to define every quantity by direct experiment, people were delighted to discover
that they could define what they meant by E and D in a dielectric without
having to crawl around between the atoms. The average field E is numerically
equal to the field E0 that would be measured in a slot cut parallel to the field.
And the field D could be measured by finding E0 in a slot cut normal to the
field. But nobody ever measures them that way anyway, so it was just one of
those philosophical things.

= +A

P
P

A
P

Fig. 11-6. The field at any point A in a
dielectric can be considered as the sum of
the field in a spherical hole plus the field due
to a spherical plug.

+
+ + + +

+

−
− − − −

−

a

E P

DIPOLE FIELD
OUTSIDE

Fig. 11-7. The electric field of a uniformly
polarized sphere.

For most liquids which are not too complicated in structure, we could expect
that an atom finds itself, on the average, surrounded by the other atoms in what
would be a good approximation to a spherical hole. And so we should ask: “What
would be the field in a spherical hole?” We can find out by noticing that if we
imagine carving out a spherical hole in a uniformly polarized material, we are just
removing a sphere of polarized material. (We must imagine that the polarization
is “frozen in” before we cut out the hole.) By superposition, however, the fields
inside the dielectric, before the sphere was removed, is the sum of the fields from
all charges outside the spherical volume plus the fields from the charges within
the polarized sphere. That is, if we call E the field in the uniform dielectric, we
can write

E = Ehole + Eplug, (11.23)

where Ehole is the field in the hole and Eplug is the field inside a sphere which
is uniformly polarized (see Fig. 11-6). The fields due to a uniformly polarized
sphere are shown in Fig. 11-7. The electric field inside the sphere is uniform, and
its value is

Eplug = − P

3ε0
. (11.24)

Using (11.23), we get

Ehole = E + P

3ε0
. (11.25)

The field in a spherical cavity is greater than the average field by the amount P/3ε0.
(The spherical hole gives a field 1/3 of the way between a slot parallel to the field
and a slot perpendicular to the field.)

11-6



11-5 The dielectric constant of liquids; the Clausius-Mossotti equation

In a liquid we expect that the field which will polarize an individual atom
is more like Ehole than just E. If we use the Ehole of (11.25) for the polarizing
field in Eq. (11.6), then Eq. (11.8) becomes

P = Nαε0

(
E + P

3ε0

)
, (11.26)

or
P = Nα

1− (Nα/3) ε0E. (11.27)

Remembering that κ− 1 is just P/ε0E, we have

κ− 1 = Nα

1− (Nα/3) , (11.28)

which gives us the dielectric constant of a liquid in terms of α, the atomic
polarizability. This is called the Clausius-Mossotti equation.

Whenever Nα is very small, as it is for a gas (because the density N is small),
then the term Nα/3 can be neglected compared with 1, and we get our old result,
Eq. (11.9), that

κ− 1 = Nα. (11.29)

Let’s compare Eq. (11.28) with some experimental results. It is first necessary
to look at gases for which, using the measurement of κ, we can find α from
Eq. (11.29). For instance, for carbon disulfide at zero degrees centigrade the
dielectric constant is 1.0029, so Nα is 0.0029. Now the density of the gas is easily
worked out and the density of the liquid can be found in handbooks. At 20◦C, the
density of liquid CS2 is 381 times higher than the density of the gas at 0◦C. This
means that N is 381 times higher in the liquid than it is in the gas so, that—if
we make the approximation that the basic atomic polarizability of the carbon
disulfide doesn’t change when it is condensed into a liquid—Nα in the liquid
is equal to 381 times 0.0029, or 1.11. Notice that the Nα/3 term amounts to
almost 0.4, so it is quite significant. With these numbers we predict a dielectric
constant of 2.76, which agrees reasonably well with the observed value of 2.64.

In Table 11-1 we give some experimental data on various materials (taken from
the Handbook of Chemistry and Physics), together with the dielectric constants
calculated from Eq. (11.28) in the way just described. The agreement between
observation and theory is even better for argon and oxygen than for CS2—and not
so good for carbon tetrachloride. On the whole, the results show that Eq. (11.28)
works very well.

Table 11-1

Computation of the dielectric constants of liquids
from the dielectric constant of the gas.

Gas Liquid
Substance κ (exp) Nα Density Density Ratio1 Nα κ (predict) κ (exp)

CS2 1.0029 0.0029 0.00339 1.293 381 1.11 2.76 2.64
O2 1.000523 0.000523 0.00143 1.19 832 0.435 1.509 1.507
CCl4 1.0030 0.0030 0.00489 1.59 325 0.977 2.45 2.24
Ar 1.000545 0.000545 0.00178 1.44 810 0.441 1.517 1.54

1 Ratio = density of liquid/density of gas.

Our derivation of Eq. (11.28) is valid only for electronic polarization in liquids.
It is not right for a polar molecule like H2O. If we go through the same calculations
for water, we get 13.2 for Nα, which means that the dielectric constant for the
liquid is negative, while the observed value of κ is 80. The problem has to do
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with the correct treatment of the permanent dipoles, and Onsager has pointed
out the right way to go. We do not have the time to treat the case now, but
if you are interested it is discussed in Kittel’s book, Introduction to Solid State
Physics.

11-6 Solid dielectrics

Now we turn to the solids. The first interesting fact about solids is that there
can be a permanent polarization built in—which exists even without applying an
electric field. An example occurs with a material like wax, which contains long
molecules having a permanent dipole moment. If you melt some wax and put a
strong electric field on it when it is a liquid, so that the dipole moments get partly
lined up, they will stay that way when the liquid freezes. The solid material will
have a permanent polarization which remains when the field is removed. Such a
solid is called an electret.

− − − − − − − − − −

+ + + + + + + + + +

− − − − − − − − − −

+ + + + + + + + + +

− − − − − − − − − −

+ + + + + + + + + +

− − − − − − − − − −

+ + + + + + + + + +

Fig. 11-8. A complex crystal lattice can
have a permanent intrinsic polarization P .

An electret has permanent polarization charges on its surface. It is the
electrical analog of a magnet. It is not as useful, though, because free charges
from the air are attracted to its surfaces, eventually cancelling the polarization
charges. The electret is “discharged” and there are no visible external fields.

A permanent internal polarization P is also found occurring naturally in
some crystalline substances. In such crystals, each unit cell of the lattice has an
identical permanent dipole moment, as drawn in Fig. 11-8. All the dipoles point
in the same direction, even with no applied electric field. Many complicated
crystals have, in fact, such a polarization; we do not normally notice it because
the external fields are discharged, just as for the electrets.

If these internal dipole moments of a crystal are changed, however, external
fields appear because there is not time for stray charges to gather and cancel
the polarization charges. If the dielectric is in a condenser, free charges will be
induced on the electrodes. For example, the moments can change when a dielectric
is heated, because of thermal expansion. The effect is called pyroelectricity.
Similarly, if we change the stresses in a crystal—for instance, if we bend it—
again the moment may change a little bit, and a small electrical effect, called
piezoelectricity, can be detected.

For crystals that do not have a permanent moment, one can work out a
theory of the dielectric constant that involves the electronic polarizability of the
atoms. It goes much the same as for liquids. Some crystals also have rotatable
dipoles inside, and the rotation of these dipoles will also contribute to κ. In ionic
crystals such as NaCl there is also ionic polarizability. The crystal consists of a
checkerboard of positive and negative ions, and in an electric field the positive
ions are pulled one way and the negatives the other; there is a net relative motion
of the plus and minus charges, and so a volume polarization. We could estimate
the magnitude of the ionic polarizability from our knowledge of the stiffness of
salt crystals, but we will not go into that subject here.

11-7 Ferroelectricity; BaTiO3

We want to describe now one special class of crystals which have, just by
accident almost, a built-in permanent moment. The situation is so marginal
that if we increase the temperature a little bit they lose the permanent moment
completely. On the other hand, if they are nearly cubic crystals, so that their
moments can be turned in different directions, we can detect a large change in
the moment when an applied electric field is changed. All the moments flip over
and we get a large effect. Substances which have this kind of permanent moment
are called ferroelectric, after the corresponding ferromagnetic effects which were
first discovered in iron.

Ti+4 Ba+2 O−2

4 Å

Fig. 11-9. The unit cell of BaTiO3. The
atoms really fill up most of the space; for
clarity, only the positions of their centers
are shown.

We would like to explain how ferroelectricity works by describing a partic-
ular example of a ferroelectric material. There are several ways in which the
ferroelectric property can originate; but we will take up only one mysterious
case—that of barium titanate, BaTiO3. This material has a crystal lattice whose
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basic cell is sketched in Fig. 11-9. It turns out that above a certain temperature,
specifically 118◦C, barium titanate is an ordinary dielectric with an enormous
dielectric constant. Below this temperature, however, it suddenly takes on a
permanent moment.

In working out the polarization of solid material, we must first find what are
the local fields in each unit cell. We must include the fields from the polarization
itself, just as we did for the case of a liquid. But a crystal is not a homogeneous
liquid, so we cannot use for the local field what we would get in a spherical
hole. If you work it out for a crystal, you find that the factor 1/3 in Eq. (11.24)
becomes slightly different, but not far from 1/3. (For a simple cubic crystal, it
is just 1/3.) We will, therefore, assume for our preliminary discussion that the
factor is 1/3 for BaTiO3.

Now when we wrote Eq. (11.28) you may have wondered what would happen
if Nα became greater than 3. It appears as though κ would become negative. But
that surely cannot be right. Let’s see what should happen if we were gradually
to increase α in a particular crystal. As α gets larger, the polarization gets
bigger, making a bigger local field. But a bigger local field will polarize each
atom more, raising the local fields still more. If the “give” of the atoms is enough,
the process keeps going; there is a kind of feedback that causes the polarization
to increase without limit—assuming that the polarization of each atom increases
in proportion to the field. The “runaway” condition occurs when Nα = 3. The
polarization does not become infinite, of course, because the proportionality
between the induced moment and the electric field breaks down at high fields, so
that our formulas are no longer correct. What happens is that the lattice gets
“locked in” with a high, self-generated, internal polarization.

In the case of BaTiO3, there is, in addition to an electronic polarization, also
a rather large ionic polarization, presumed to be due to titanium ions which can
move a little within the cubic lattice. The lattice resists large motions, so after
the titanium has gone a little way, it jams up and stops. But the crystal cell is
then left with a permanent dipole moment.

In most crystals, this is really the situation for all temperatures that can be
reached. The very interesting thing about barium titanate is that there is such
a delicate condition that if Nα is decreased just a little bit it comes unstuck.
Since N decreases with increasing temperature—because of thermal expansion—
we can vary Nα by varying the temperature. Below the critical temperature
it is just barely stuck, so it is easy—by applying an external field—to shift the
polarization and have it lock in a different direction.

Let’s see if we can analyze what happens in more detail. We call Tc the
critical temperature at which Nα is exactly 3. As the temperature increases, N
goes down a little bit because of the expansion of the lattice. Since the expansion
is small, we can say that near the critical temperature

Nα = 3− β(T − Tc), (11.30)

where β is a small constant, of the same order of magnitude as the thermal
expansion coefficient, or about 10−5 to 10−6 per degree C. Now if we substitute
this relation into Eq. (11.28), we get that

κ− 1 = 3− β(T − Tc)
β(T − Tc)/3

.

Since we have assumed that β(T − Tc) is small compared with one, we can
approximate this formula by

κ− 1 = 9
β(T − Tc)

. (11.31)

This relation is right, of course, only for T > Tc. We see that just above
the critical temperature κ is enormous. Because Nα is so close to 3, there
is a tremendous magnification effect, and the dielectric constant can easily be
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as high as 50,000 to 100,000. It is also very sensitive to temperature. For
increases in temperature, the dielectric constant goes down inversely as the
temperature, but, unlike the case of a dipolar gas, for which κ− 1 goes inversely
as the absolute temperature, for ferroelectrics it varies inversely as the difference
between the absolute temperature and the critical temperature (this law is called
the Curie-Weiss law).

When we lower the temperature to the critical temperature, what happens?
If we imagine a lattice of unit cells like that in Fig. 11-9, we see that it is possible
to pick out chains of ions along vertical lines. One of them consists of alternating
oxygen and titanium ions. There are other lines made up of either barium or
oxygen ions, but the spacing along these lines is greater. We make a simple
model to imitate this situation by imagining, as shown in Fig. 11-10(a), a series
of chains of ions. Along what we call the main chain, the separation of the ions
is a, which is half the lattice constant; the lateral distance between identical
chains is 2a. There are less-dense chains in between which we will ignore for the
moment. To make the analysis a little easier, we will also suppose that all the
ions on the main chain are identical. (It is not a serious simplification because
all the important effects will still appear. This is one of the tricks of theoretical
physics. One does a different problem because it is easier to figure out the first
time—then when one understands how the thing works, it is time to put in all
the complications.)

(a)

a

2a

(b)

Fig. 11-10. Models of a ferroelectric:
(a) corresponds to an antiferroelectric, and
(b) to a normal ferroelectric.

Now let’s try to find out what would happen with our model. We suppose
that the dipole moment of each atom is p and we wish to calculate the field at
one of the atoms of the chain. We must find the sum of the fields from all the
other atoms. We will first calculate the field from the dipoles in only one vertical
chain; we will talk about the other chains later. The field at the distance r from
a dipole in a direction along its axis is given by

E = 1
4πε0

2p
r3 . (11.32)

At any given atom, the dipoles at equal distances above and below it give fields
in the same direction, so for the whole chain we get

Echain = p

4πε0
2
a3 ·

(
2 + 2

8 + 2
27 + 2

64 + · · ·
)

= p

ε0

0.383
a3 . (11.33)

It is not too hard to show that if our model were like a completely cubic crystal—
that is, if the next identical lines were only the distance a away—the number 0.383
would be changed to 1/3. In other words, if the next lines were at the distance a
they would contribute only −0.050 unit to our sum. However, the next main chain
we are considering is at the distance 2a and, as you remember from Chapter 7,
the field from a periodic structure dies off exponentially with distance. Therefore
these lines contribute much less than −0.050 and we can just ignore all the other
chains.

It is necessary now to find out what polarizability α is needed to make the
runaway process work. Suppose that the induced moment p of each atom of the
chain is proportional to the field on it, as in Eq. (11.6). We get the polarizing
field on the atom from Echain using Eq. (11.32). So we have the two equations

p = αε0Echain

and
Echain = 0.383

a3
p

ε0
.

There are two solutions: Echain and p both zero, or

α = a3

0.383 ,

with Echain and p both finite. Thus if α is as large as a3/0.383, a permanent
polarization sustained by its own field will set in. This critical equality must be
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reached for barium titanate at just the temperature Tc. (Notice that if α were
larger than the critical value for small fields, it would decrease at larger fields
and at equilibrium the same equality we have found would hold.)

For BaTiO3, the spacing a is 2 × 10−8 cm, so we must expect that α =
21.8× 10−24 cm3. We can compare this with the known polarizabilities of the
individual atoms. For oxygen, α = 30.2× 10−24 cm3; we’re on the right track!
But for titanium, α = 2.4× 10−24 cm3; rather small. To use our model we should
probably take the average. (We could work out the chain again for alternating
atoms, but the result would be about the same.) So α(average) = 16.3×10−24 cm3,
which is not high enough to give a permanent polarization.

But wait a moment! We have so far only added up the electronic polarizabilities.
There is also some ionic polarization due to the motion of the titanium ion. All
we need is an ionic polarizability of 9.2×10−24 cm3. (A more precise computation
using alternating atoms shows that actually 11.9 × 10−24 cm3 is needed.) To
understand the properties of BaTiO3, we have to assume that such an ionic
polarizability exists.

Why the titanium ion in barium titanate should have that much ionic polariz-
ability is not known. Furthermore, why, at a lower temperature, it polarizes along
the cube diagonal and the face diagonal equally well is not clear. If we figure
out the actual size of the spheres in Fig. 11-9, and ask whether the titanium is a
little bit loose in the box formed by its neighboring oxygen atoms—which is what
you would hope, so that it could be easily shifted—you find quite the contrary.
It fits very tightly. The barium atoms are slightly loose, but if you let them be
the ones that move, it doesn’t work out. So you see that the subject is really not
one-hundred percent clear; there are still mysteries we would like to understand.

Returning to our simple model of Fig. 11-10(a), we see that the field from one
chain would tend to polarize the neighboring chain in the opposite direction, which
means that although each chain would be locked, there would be no net permanent
moment per unit volume! (Although there would be no external electric effects,
there are still certain thermodynamic effects one could observe.) Such systems
exist, and are called antiferroelectric. So what we have explained is really an
antiferroelectric. Barium titanate, however, is really like the arrangement in
Fig. 11-10(b). The oxygen-titanium chains are all polarized in the same direction
because there are intermediate chains of atoms in between. Although the atoms
in these chains are not very polarizable, or very dense, they will be somewhat
polarized, in the direction antiparallel to the oxygen-titanium chains. The small
fields produced at the next oxygen-titanium chain will get it started parallel to
the first. So BaTiO3 is really ferroelectric, and it is because of the atoms in
between. You may be wondering: “But what about the direct effect between the
two O-Ti chains?” Remember, though, the direct effect dies off exponentially
with the separation; the effect of the chain of strong dipoles at 2a can be less
than the effect of a chain of weak ones at the distance a.

This completes our rather detailed report on our present understanding of
the dielectric constants of gases, of liquids, and of solids.
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12

Electrostatic Analogs

12-1 The same equations have the same solutions

The 12-1 The same equations have the
same solutions

12-2 The flow of heat; a point source
near an infinite plane boundary

12-3 The stretched membrane
12-4 The diffusion of neutrons; a

uniform spherical source in a
homogeneous medium

12-5 Irrotational fluid flow; the flow
past a sphere

12-6 Illumination; the uniform
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total amount of information which has been acquired about the physical
world since the beginning of scientific progress is enormous, and it seems almost
impossible that any one person could know a reasonable fraction of it. But it is
actually quite possible for a physicist to retain a broad knowledge of the physical
world rather than to become a specialist in some narrow area. The reasons for
this are threefold: First, there are great principles which apply to all the different
kinds of phenomena—such as the principles of the conservation of energy and
of angular momentum. A thorough understanding of such principles gives an
understanding of a great deal all at once. Second, there is the fact that many
complicated phenomena, such as the behavior of solids under compression, really
basically depend on electrical and quantum-mechanical forces, so that if one
understands the fundamental laws of electricity and quantum mechanics, there is
at least some possibility of understanding many of the phenomena that occur
in complex situations. Finally, there is a most remarkable coincidence: The
equations for many different physical situations have exactly the same appearance.
Of course, the symbols may be different—one letter is substituted for another—
but the mathematical form of the equations is the same. This means that having
studied one subject, we immediately have a great deal of direct and precise
knowledge about the solutions of the equations of another.

We are now finished with the subject of electrostatics, and will soon go on to
study magnetism and electrodynamics. But before doing so, we would like to
show that while learning electrostatics we have simultaneously learned about a
large number of other subjects. We will find that the equations of electrostatics
appear in several other places in physics. By a direct translation of the solutions
(of course the same mathematical equations must have the same solutions) it is
possible to solve problems in other fields with the same ease—or with the same
difficulty—as in electrostatics.

The equations of electrostatics, we know, are

∇ · (κE) = ρfree
ε0

, (12.1)

∇×E = 0. (12.2)

(We take the equations of electrostatics with dielectrics so as to have the most
general situation.) The same physics can be expressed in another mathematical
form:

E = −∇φ, (12.3)

∇ · (κ∇φ) = −ρfree
ε0

. (12.4)

Now the point is that there are many physics problems whose mathematical equa-
tions have the same form. There is a potential (φ) whose gradient multiplied by a
scalar function (κ) has a divergence equal to another scalar function (−ρfree/ε0).

Whatever we know about electrostatics can immediately be carried over into
that other subject, and vice versa. (It works both ways, of course—if the other
subject has some particular characteristics that are known, then we can apply
that knowledge to the corresponding electrostatic problem.) We want to consider
a series of examples from different subjects that produce equations of this form.
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12-2 The flow of heat; a point source near an infinite plane boundary

We have discussed one example earlier (Section 3-4)—the flow of heat. Imagine
a block of material, which need not be homogeneous but may consist of different
materials at different places, in which the temperature varies from point to point.
As a consequence of these temperature variations there is a flow of heat, which
can be represented by the vector h. It represents the amount of heat energy
which flows per unit time through a unit area perpendicular to the flow. The
divergence of h represents the rate per unit volume at which heat is leaving a
region:

∇ · h = rate of heat out per unit volume.

(We could, of course, write the equation in integral form—just as we did in
electrostatics with Gauss’ law—which would say that the flux through a surface
is equal to the rate of change of heat energy inside the material. We will not
bother to translate the equations back and forth between the differential and the
integral forms, because it goes exactly the same as in electrostatics.)

The rate at which heat is generated or absorbed at various places depends,
of course, on the problem. Suppose, for example, that there is a source of heat
inside the material (perhaps a radioactive source, or a resistor heated by an
electrical current). Let us call s the heat energy produced per unit volume per
second by this source. There may also be losses (or gains) of thermal energy to
other internal energies in the volume. If u is the internal energy per unit volume,
−du/dt will also be a “source” of heat energy. We have, then,

∇ · h = s− du

dt
. (12.5)

We are not going to discuss just now the complete equation in which things
change with time, because we are making an analogy to electrostatics, where
nothing depends on the time. We will consider only steady heat-flow problems,
in which constant sources have produced an equilibrium state. In these cases,

∇ · h = s. (12.6)

It is, of course, necessary to have another equation, which describes how the
heat flows at various places. In many materials the heat current is approximately
proportional to the rate of change of the temperature with position: the larger
the temperature difference, the more the heat current. As we have seen, the
vector heat current is proportional to the temperature gradient. The constant of
proportionality K, a property of the material, is called the thermal conductivity.

h = −K∇T. (12.7)

If the properties of the material vary from place to place, then K = K(x, y, z),
a function of position. [Equation (12.7) is not as fundamental as (12.5), which
expresses the conservation of heat energy, since the former depends upon a special
property of the substance.] If now we substitute Eq. (12.7) into Eq. (12.6) we
have

∇ · (K∇T ) = −s, (12.8)

which has exactly the same form as (12.4). Steady heat-flow problems and
electrostatic problems are the same. The heat flow vector h corresponds to E,
and the temperature T corresponds to φ. We have already noticed that a point
heat source produces a temperature field which varies as 1/r and a heat flow
which varies as 1/r2. This is nothing more than a translation of the statements
from electrostatics that a point charge generates a potential which varies as 1/r
and an electric field which varies as 1/r2. We can, in general, solve static heat
problems as easily as we can solve electrostatic problems.

Consider a simple example. Suppose that we have a cylinder of radius a at
the temperature T1, maintained by the generation of heat in the cylinder. (It
could be, for example, a wire carrying a current, or a pipe with steam condensing
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inside.) The cylinder is covered with a concentric sheath of insulating material
which has a conductivity K. Say the outside radius of the insulation is b and the
outside is kept at temperature T2 (Fig. 12-1a). We want to find out at what rate
heat will be lost by the wire, or steampipe, or whatever it is in the center. Let
the total amount of heat lost from a length L of the pipe be called G—which is
what we are trying to find.

K

a
br

h

T1

T2

(a)

K

a
br

E

φ1

φ2

(b)

Fig. 12-1. (a) Heat flow in a cylindrical
geometry. (b) The corresponding electrical
problem.

How can we solve this problem? We have the differential equations, but
since these are the same as those of electrostatics, we have really already solved
the mathematical problem. The analogous problem is that of a conductor of
radius a at the potential φ1, separated from another conductor of radius b at the
potential φ2, with a concentric layer of dielectric material in between, as drawn
in Fig. 12-1(b). Now since the heat flow h corresponds to the electric field E,
the quantity G that we want to find corresponds to the flux of the electric field
from a unit length (in other words, to the electric charge per unit length over ε0).
We have solved the electrostatic problem by using Gauss’ law. We follow the
same procedure for our heat-flow problem.

From the symmetry of the situation, we know that h depends only on the
distance from the center. So we enclose the pipe in a gaussian cylinder of length L
and radius r. From Gauss’ law, we know that the heat flow h multiplied by the
area 2πrL of the surface must be equal to the total amount of heat generated
inside, which is what we are calling G:

2πrLh = G or h = G

2πrL. (12.9)

The heat flow is proportional to the temperature gradient:

h = −K∇T,

or, in this case, the radial component of h is

h = −K dT

dr
.

This, together with (12.9), gives

dT

dr
= − G

2πKLr . (12.10)

Integrating from r = a to r = b, we get

T2 − T1 = − G

2πKL ln b

a
. (12.11)

Solving for G, we find

G = 2πKL(T1 − T2)
ln(b/a) . (12.12)

This result corresponds exactly to the result for the charge on a cylindrical
condenser:

Q = 2πε0L(φ1 − φ2)
ln(b/a) .

The problems are the same, and they have the same solutions. From our knowledge
of electrostatics, we also know how much heat is lost by an insulated pipe.

Let’s consider another example of heat flow. Suppose we wish to know the
heat flow in the neighborhood of a point source of heat located a little way
beneath the surface of the earth, or near the surface of a large metal block. The
localized heat source might be an atomic bomb that was set off underground,
leaving an intense source of heat, or it might correspond to a small radioactive
source inside a block of iron—there are numerous possibilities.

We will treat the idealized problem of a point heat source of strength G
at the distance a beneath the surface of an infinite block of uniform material
whose thermal conductivity is K. And we will neglect the thermal conductivity
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of the air outside the material. We want to determine the distribution of the
temperature on the surface of the block. How hot is it right above the source
and at various places on the surface of the block?

How shall we solve it? It is like an electrostatic problem with two materials
with different dielectric coefficients κ on opposite sides of a plane boundary. Aha!
Perhaps it is the analog of a point charge near the boundary between a dielectric
and a conductor, or something similar. Let’s see what the situation is near the
surface. The physical condition is that the normal component of h on the surface
is zero, since we have assumed there is no heat flow out of the block. We should
ask: In what electrostatic problem do we have the condition that the normal
component of the electric field E (which is the analog of h) is zero at a surface?
There is none!

a

a

K

K = 0

h
T = Constant

ρ0 a 2a

T

SURFACE
TEMPERATURE

Fig. 12-2. The heat flow and isothermals
near a point heat source at the distance a
below the surface of a good thermal con-
ductor.

That is one of the things that we have to watch out for. For physical reasons,
there may be certain restrictions in the kinds of mathematical conditions which
arise in any one subject. So if we have analyzed the differential equation only for
certain limited cases, we may have missed some kinds of solutions that can occur
in other physical situations. For example, there is no material with a dielectric
constant of zero, whereas a vacuum does have zero thermal conductivity. So
there is no electrostatic analogy for a perfect heat insulator. We can, however,
still use the same methods. We can try to imagine what would happen if the
dielectric constant were zero. (Of course, the dielectric constant is never zero in
any real situation. But we might have a case in which there is a material with a
very high dielectric constant, so that we could neglect the dielectric constant of
the air outside.)

How shall we find an electric field that has no component perpendicular to the
surface? That is, one which is always tangent at the surface? You will notice that
our problem is opposite to the one of a point charge near a plane conductor. There
we wanted the field to be perpendicular to the surface, because the conductor
was all at the same potential. In the electrical problem, we invented a solution by
imagining a point charge behind the conducting plate. We can use the same idea
again. We try to pick an “image source” that will automatically make the normal
component of the field zero at the surface. The solution is shown in Fig. 12-2.
An image source of the same sign and the same strength placed at the distance a
above the surface will cause the field to be always horizontal at the surface. The
normal components of the two sources cancel out.

Thus our heat flow problem is solved. The temperature everywhere is the
same, by direct analogy, as the potential due to two equal point charges! The
temperature T at the distance r from a single point source G in an infinite
medium is

T = G

4πKr . (12.13)

(This, of course, is just the analog of φ = q/4πε0R.) The temperature for a point
source, together with its image source, is

T = G

4πKr1
+ G

4πKr2
. (12.14)

This formula gives us the temperature everywhere in the block. Several isothermal
surfaces are shown in Fig. 12-2. Also shown are lines of h, which can be obtained
from h = −K∇T .

We originally asked for the temperature distribution on the surface. For a
point on the surface at the distance ρ from the axis, r1 = r2 =

√
ρ2 + a2, so

T (surface) = 1
4πK

2G√
ρ2 + a2

. (12.15)

This function is also shown in the figure. The temperature is, naturally, higher
right above the source than it is farther away. This is the kind of problem that
geophysicists often need to solve. We now see that it is the same kind of thing
we have already been solving for electricity.
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12-3 The stretched membrane

A

B

Fig. 12-3. A thin rubber sheet stretched
over a cylindrical frame (like a drumhead).
If the sheet is pushed up at A and down
at B, what is the shape of the surface?

Now let us consider a completely different physical situation which, nev-
ertheless, gives the same equations again. Consider a thin rubber sheet—a
membrane—which has been stretched over a large horizontal frame (like a drum-
head). Suppose now that the membrane is pushed up in one place and down in
another; as shown in Fig. 12-3. Can we describe the shape of the surface? We
will show how the problem can be solved when the deflections of the membrane
are not too large.

There are forces in the sheet because it is stretched. If we were to make a
small cut anywhere, the two sides of the cut would pull apart (see Fig. 12-4). So
there is a surface tension in the sheet, analogous to the one-dimensional tension
in a stretched string. We define the magnitude of the surface tension τ as the
force per unit length which will just hold together the two sides of a cut such as
one of those shown in Fig. 12-4.

Suppose now that we look at a vertical cross section of the membrane. It will
appear as a curve, like the one in Fig. 12-5. Let u be the vertical displacement
of the membrane from its normal position, and x and y the coordinates in the
horizontal plane. (The cross section shown is parallel to the x-axis.)

τ

τ

τ

τ

τ

τ

Fig. 12-4. The surface tension τ of a
stretched rubber sheet is the force per unit
length across a line.

Consider a little piece of the surface of length ∆x and width ∆y. There will
be forces on the piece from the surface tension along each edge. The force along
edge 1 of the figure will be τ1 ∆y, directed tangent to the surface—that is, at
the angle θ1 from the horizontal. Along edge 2, the force will be τ2 ∆y at the
angle θ2. (There will be similar forces on the other two edges of the piece, but
we will forget them for the moment.) The net upward force on the piece from
edges 1 and 2 is

∆F = τ2 ∆y sin θ2 − τ1 ∆y sin θ1.

We will limit our considerations to small distortions of the membrane, i.e., to
small slopes: we can then replace sin θ by tan θ, which can be written as ∂u/∂x.
The force is then

∆F =
[
τ2

(
∂u

∂x

)
2
− τ1

(
∂u

∂x

)
1

]
∆y.

The quantity in brackets can be equally well written (for small ∆x) as

∂

∂x

(
τ
∂u

∂x

)
∆x;

then

∆F = ∂

∂x

(
τ
∂u

∂x

)
∆x∆y.

x

u

SHEET

1

2∆x

τ1

τ2

θ1

θ2

Fig. 12-5. Cross section of the deflected
sheet.

There will be another contribution to ∆F from the forces on the other two
edges; the total is evidently

∆F =
[
∂

∂x

(
τ
∂u

∂x

)
+ ∂

∂y

(
τ
∂u

∂y

)]
∆x∆y. (12.16)

The distortions of the diaphragm are caused by external forces. Let’s let f
represent the upward force per unit area on the sheet (a kind of “pressure”) from
the external forces. When the membrane is in equilibrium (the static case), this
force must be balanced by the internal force we have just computed, Eq. (12.16).
That is

f = − ∆F
∆x∆y .

Equation (12.16) can then be written

f = −∇ · (τ∇u), (12.17)

where by ∇ we now mean, of course, the two-dimensional gradient operator
(∂/∂x, ∂/∂y). We have the differential equation that relates u(x, y) to the applied
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forces f(x, y) and the surface tension τ(x, y), which may, in general, vary from
place to place in the sheet. (The distortions of a three-dimensional elastic body
are also governed by similar equations, but we will stick to two-dimensions.) We
will worry only about the case in which the tension τ is constant throughout the
sheet. We can then write for Eq. (12.17),

∇2u = −f
τ
. (12.18)

We have another equation that is the same as for electrostatics!—only this
time, limited to two-dimensions. The displacement u corresponds to φ, and f/τ
corresponds to ρ/ε0. So all the work we have done for infinite plane charged
sheets, or long parallel wires, or charged cylinders is directly applicable to the
stretched membrane.

Suppose we push the membrane at some points up to a definite height—that
is, we fix the value of u at some places. That is the analog of having a definite
potential at the corresponding places in an electrical situation. So, for instance,
we may make a positive “potential” by pushing up on the membrane with an
object having the cross-sectional shape of the corresponding cylindrical conductor.
For example, if we push the sheet up with a round rod, the surface will take
on the shape shown in Fig. 12-6. The height u is the same as the electrostatic
potential φ of a charged cylindrical rod. It falls off as ln(1/r). (The slope, which
corresponds to the electric field E, drops off as 1/r.)

Fig. 12-6. Cross section of a stretched
rubber sheet pushed up by a round rod. The
function u(x, y) is the same as the electric
potential φ(x, y) near a very long charges
rod.

u

The stretched rubber sheet has often been used as a way of solving complicated
electrical problems experimentally. The analogy is used backwards! Various rods
and bars are pushed against the sheet to heights that correspond to the potentials
of a set of electrodes. Measurements of the height then give the electrical potential
for the electrical situation. The analogy has been carried even further. If little
balls are placed on the membrane, their motion corresponds approximately to the
motion of electrons in the corresponding electric field. One can actually watch
the “electrons” move on their trajectories. This method was used to design the
complicated geometry of many photomultiplier tubes (such as the ones used for
scintillation counters, and the one used for controlling the headlight beams on
Cadillacs). The method is still used, but the accuracy is limited. For the most
accurate work, it is better to determine the fields by numerical methods, using
the large electronic computing machines.

12-4 The diffusion of neutrons; a uniform spherical source in a homogeneous
medium

We take another example that gives the same kind of equation, this time
having to do with diffusion. In Chapter 43 of Vol. I we considered the diffusion
of ions in a single gas, and of one gas through another. This time, let’s take
a different example—the diffusion of neutrons in a material like graphite. We
choose to speak of graphite (a pure form of carbon) because carbon doesn’t
absorb slow neutrons. In it the neutrons are free to wander around. They travel
in a straight line for several centimeters, on the average, before being scattered by
a nucleus and deflected into a new direction. So if we have a large block—many
meters on a side—the neutrons initially at one place will diffuse to other places.
We want to find a description of their average behavior—that is, their average
flow.
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Fig. 12-7. (a) Neutrons are produced uni-
formly throughout a sphere of radius a in
a large graphite block and diffuse outward.
The neutron density N is found as a function
of r , the distance from the center of the
source. (b) The analogous electrostatic sit-
uation: a uniform sphere of charge, where N
corresponds to φ and J corresponds to E.

Let N(x, y, z) ∆V be the number of neutrons in the element of volume ∆V
at the point (x, y, z). Because of their motion, some neutrons will be leaving ∆V ,
and others will be coming in. If there are more neutrons in one region than in
a nearby region, more neutrons will go from the first region to the second than
come back; there will be a net flow. Following the arguments of Chapter 43
in Vol. I, we describe the flow by a flow vector J . Its x-component Jx is the
net number of neutrons that pass in unit time a unit area perpendicular to the
x-direction. We found that

Jx = −D ∂N

∂x
, (12.19)

where the diffusion constant D is given in terms of the mean velocity v, and the
mean-free-path l between scatterings is given by

D = 1
3 lv.

The vector equation for J is
J = −D∇N. (12.20)

The rate at which neutrons flow across any surface element da is J · n da
(where, as usual, n is the unit normal). The net flow out of a volume element is
then (following the usual gaussian argument) ∇ · J dV . This flow would result
in a decrease with time of the number in ∆V unless neutrons are being created
in ∆V (by some nuclear process). If there are sources in the volume that generate
S neutrons per unit time in a unit volume, then the net flow out of ∆V will be
equal to (S − ∂N/∂t) ∆V . We have then that

∇ · J = S − ∂N

∂t
. (12.21)

Combining (12.21) with (12.20), we get the neutron diffusion equation

∇ · (−D∇N) = S − ∂N

∂t
. (12.22)

In the static case—where ∂N/∂t = 0—we have Eq. (12.4) all over again! We
can use our knowledge of electrostatics to solve problems about the diffusion of
neutrons. So let’s solve a problem. (You may wonder: Why do a problem if we
have already done all the problems in electrostatics? We can do it faster this
time because we have done the electrostatic problems!)

Suppose we have a block of material in which neutrons are being generated—
say by uranium fission—uniformly throughout a spherical region of radius a
(Fig. 12-7). We would like to know: What is the density of neutrons everywhere?
How uniform is the density of neutrons in the region where they are being
generated? What is the ratio of the neutron density at the center to the neutron
density at the surface of the source region? Finding the answers is easy. The
source density S0 replaces the charge density ρ, so our problem is the same as
the problem of a sphere of uniform charge density. Finding N is just like finding
the potential φ. We have already worked out the fields inside and outside of a
uniformly charged sphere; we can integrate them to get the potential. Outside,
the potential is Q/4πε0r, with the total charge Q given by 4πa3ρ/3. So

φoutside = ρa3

3ε0r
. (12.23)

For points inside, the field is due only to the charge Q(r) inside the sphere of
radius r, Q(r) = 4πr3ρ/3, so

E = ρr

3ε0
. (12.24)

The field increases linearly with r. Integrating E to get φ, we have

φinside = −ρr
2

6ε0
+ a constant.
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At the radius a, φinside must be the same as φoutside, so the constant must
be ρa2/2ε0. (We are assuming that φ is zero at large distances from the source,
which will correspond to N being zero for the neutrons.) Therefore,

φinside = ρ

3ε0

(
3a2

2 − r2

2

)
. (12.25)

We know immediately the neutron density in our other problem. The answer
is

Noutside = Sa3

3Dr , (12.26)

and

Ninside = S

3D

(
3a2

2 − r2

2

)
. (12.27)

N is shown as a function of r in Fig. 12-7.
Now what is the ratio of density at the center to that at the edge? At the

center (r = 0), it is proportional to 3a2/2. At the edge (r = a) it is proportional
to 2a2/2, so the ratio of densities is 3/2. A uniform source doesn’t produce a
uniform density of neutrons. You see, our knowledge of electrostatics gives us a
good start on the physics of nuclear reactors.

There are many physical circumstances in which diffusion plays a big part.
The motion of ions through a liquid, or of electrons through a semiconductor,
obeys the same equation. We find again and again the same equations.

12-5 Irrotational fluid flow; the flow past a sphere

Let’s now consider an example which is not really a very good one, because the
equations we will use will not really represent the subject with complete generality
but only in an artificial idealized situation. We take up the problem of water
flow. In the case of the stretched sheet, our equations were an approximation
which was correct only for small deflections. For our consideration of water flow,
we will not make that kind of an approximation; we must make restrictions that
do not apply at all to real water. We treat only the case of the steady flow of an
incompressible, nonviscous, circulation-free liquid. Then we represent the flow by
giving the velocity v(r) as a function of position r. If the motion is steady (the
only case for which there is an electrostatic analog) v is independent of time. If
ρ is the density of the fluid, then ρv is the amount of mass which passes per unit
time through a unit area. By the conservation of matter, the divergence of ρv
will be, in general, the time rate of change of the mass of the material per unit
volume. We will assume that there are no processes for the continuous creation or
destruction of matter. The conservation of matter then requires that ∇ · ρv = 0.
(It should, in general, be equal to −∂ρ/∂t, but since our fluid is incompressible,
ρ cannot change.) Since ρ is everywhere the same, we can factor it out, and our
equation is simply

∇ · v = 0.

Good! We have electrostatics again (with no charges); it’s just like ∇ ·E = 0.
Not so! Electrostatics is not simply ∇ ·E = 0. It is a pair of equations. One
equation does not tell us enough; we need still an additional equation. To
match electrostatics, we should have also that the curl of v is zero. But that
is not generally true for real liquids. Most liquids will ordinarily develop some
circulation. So we are restricted to the situation in which there is no circulation
of the fluid. Such flow is often called irrotational. Anyway, if we make all our
assumptions, we can imagine a case of fluid flow that is analogous to electrostatics.
So we take

∇ · v = 0 (12.28)
and

∇× v = 0. (12.29)
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We want to emphasize that the number of circumstances in which liquid
flow follows these equations is far from the great majority, but there are a few.
They must be cases in which we can neglect surface tension, compressibility,
and viscosity, and in which we can assume that the flow is irrotational. These
assumptions are valid so rarely for real water that the mathematician John
von Neumann said that people who analyze Eqs. (12.28) and (12.29) are studying
“dry water”! (We take up the problem of fluid flow in more detail in Chapters 40
and 41.)

Because ∇×v = 0, the velocity of “dry water” can be written as the gradient
of some potential:

v = −∇ψ. (12.30)

What is the physical meaning of ψ? There isn’t any very useful meaning. The
velocity can be written as the gradient of a potential simply because the flow is
irrotational. And by analogy with electrostatics, ψ is called the velocity potential,
but it is not related to a potential energy in the way that φ is. Since the divergence
of v is zero, we have

∇ · (∇ψ) = ∇2ψ = 0. (12.31)

The velocity potential ψ obeys the same differential equation as the electrostatic
potential in free space (ρ = 0).

v

r

P

Fig. 12-8. The velocity field of irrota-
tional fluid flow past a sphere.

Let’s pick a problem in irrotational flow and see whether we can solve it by the
methods we have learned. Consider the problem of a spherical ball falling through
a liquid. If it is going too slowly, the viscous forces, which we are disregarding,
will be important. If it is going too fast, little whirlpools (turbulence) will appear
in its wake and there will be some circulation of the water. But if the ball is
going neither too fast nor too slow, it is more or less true that the water flow will
fit our assumptions, and we can describe the motion of the water by our simple
equations.

It is convenient to describe what happens in a frame of reference fixed in the
sphere. In this frame we are asking the question: How does water flow past a
sphere at rest when the flow at large distances is uniform? That is, when, far from
the sphere, the flow is everywhere the same. The flow near the sphere will be as
shown by the streamlines drawn in Fig. 12-8. These lines, always parallel to v,
correspond to lines of electric field. We want to get a quantitative description for
the velocity field, i.e., an expression for the velocity at any point P .

We can find the velocity from the gradient of ψ, so we first work out the
potential. We want a potential that satisfies Eq. (12.31) everywhere, and which
also satisfies two restrictions: (1) there is no flow in the spherical region inside the
surface of the ball, and (2) the flow is constant at large distances. To satisfy (1),
the component of v normal to the surface of the sphere must be zero. That
means that ∂ψ/∂r is zero at r = a. To satisfy (2), we must have ∂ψ/∂z = v0 at
all points where r � a. Strictly speaking, there is no electrostatic case which
corresponds exactly to our problem. It really corresponds to putting a sphere
of dielectric constant zero in a uniform electric field. If we had worked out the
solution to the problem of a sphere of a dielectric constant κ in a uniform field,
then by putting κ = 0 we would immediately have the solution to this problem.

We have not actually worked out this particular electrostatic problem in detail,
but let’s do it now. (We could work directly on the fluid problem with v and ψ,
but we will use E and φ because we are so used to them.)

The problem is: Find a solution of ∇2φ = 0 such that E = −∇φ is a constant,
say E0, for large r, and such that the radial component of E is equal to zero
at r = a. That is,

∂φ

∂r

∣∣∣∣
r=a

= 0. (12.32)

Our problem involves a new kind of boundary condition, not one for which φ
is a constant on a surface, but for which ∂φ/∂r is a constant. That is a little
different. It is not easy to get the answer immediately. First of all, without
the sphere, φ would be −E0z. Then E would be in the z-direction and have
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the constant magnitude E0, everywhere. Now we have analyzed the case of a
dielectric sphere which has a uniform polarization inside it, and we found that
the field inside such a polarized sphere is a uniform field, and that outside it
is the same as the field of a point dipole located at the center. So let’s guess
that the solution we want is a superposition of a uniform field plus the field of a
dipole. The potential of a dipole (Chapter 6) is pz/4πε0r3. Thus we assume that

φ = −E0z + pz

4πε0r3 . (12.33)

Since the dipole field falls off as 1/r3, at large distances we have just the field E0.
Our guess will automatically satisfy condition (2) above. But what do we take
for the dipole strength p? To find out, we may use the other condition on φ,
Eq. (12.32). We must differentiate φ with respect to r, but of course we must do
so at a constant angle θ, so it is more convenient if we first express φ in terms of
r and θ, rather than of z and r. Since z = r cos θ, we get

φ = −E0r cos θ + p cos θ
4πε0r2 . (12.34)

The radial component of E is

− ∂φ

∂r
= +E0 cos θ + p cos θ

2πε0r3 . (12.35)

This must be zero at r = a for all θ. This will be true if

p = −2πε0a3E0. (12.36)

Note carefully that if both terms in Eq. (12.35) had not had the same θ-
dependence, it would not have been possible to choose p so that (12.35) turned
out to be zero at r = a for all angles. The fact that it works out means that
we have guessed wisely in writing Eq. (12.33). Of course, when we made the
guess we were looking ahead; we knew that we would need another term that
(a) satisfied ∇2φ = 0 (any real field would do that), (b) dependent on cos θ, and
(c) fell to zero at large r. The dipole field is the only one that does all three.

Using (12.36), our potential is

φ = −E0 cos θ
(
r + a3

2r2

)
. (12.37)

The solution of the fluid flow problem can be written simply as

ψ = −v0 cos θ
(
r + a3

2r2

)
. (12.38)

It is straightforward to find v from this potential. We will not pursue the matter
further.

12-6 Illumination; the uniform lighting of a plane

In this section we turn to a completely different physical problem—we want
to illustrate the great variety of possibilities. This time we will do something that
leads to the same kind of integral that we found in electrostatics. (If we have a
mathematical problem which gives us a certain integral, then we know something
about the properties of that integral if it is the same integral that we had to
do for another problem.) We take our example from illumination engineering.
Suppose there is a light source at the distance a above a plane surface. What
is the illumination of the surface? That is, what is the radiant energy per unit
time arriving at a unit area of the surface? (See Fig. 12-9.) We suppose that the
source is spherically symmetric, so that light is radiated equally in all directions.
Then the amount of radiant energy which passes through a unit area at right
angles to a light flow varies inversely as the square of the distance. It is evident
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cos θ

Fig. 12-9. The illumination In of a surface
is the radiant energy per unit time arriving
at a unit area of the surface.

that the intensity of the light in the direction normal to the flow is given by the
same kind of formula as for the electric field from a point source. If the light rays
meet the surface at an angle θ to the normal, then In, the energy arriving per
unit area of the surface, is only cos θ as great, because the same energy goes onto
an area larger by 1/ cos θ. If we call the strength of our light source S, then In,
the illumination of a surface, is

In = S

r2 er · n, (12.39)

where er is the unit vector from the source and n is the unit normal to the
surface. The illumination In corresponds to the normal component of the electric
field from a point charge of strength 4πε0S. Knowing that, we see that for any
distribution of light sources, we can find the answer by solving the corresponding
electrostatic problem. We calculate the vertical component of electric field on
the plane due to a distribution of charge in the same way as for that of the light
sources.*

Consider the following example. We wish for some special experimental
situation to arrange that the top surface of a table will have a very uniform
illumination. We have available long tubular fluorescent lights which radiate
uniformly along their lengths. We can illuminate the table by placing the
fluorescent tubes in a regular array on the ceiling, which is at the height z above
the table. What is the widest spacing b from tube to tube that we should use
if we want the surface illumination to be uniform to, say, within one part in
a thousand? Answer: (1) Find the electric field from a grid of wires with the
spacing b, each charged uniformly; (2) compute the vertical component of the
electric field; (3) find out what b must be so that the ripples of the field are not
more than one part in a thousand.

In Chapter 7 we saw that the electric field of a grid of charged wires could be
represented as a sum of terms, each one of which gave a sinusoidal variation of
the field with a period of b/n, where n is an integer. The amplitude of any one
of these terms is given by Eq. (7.44):

Fn = Ane
−2πnz/b.

We need consider only n = 1, so long as we only want the field at points not
too close to the grid. For a complete solution, we would still need to determine
the coefficients An, which we have not yet done (although it is a straightforward
calculation). Since we need only A1, we can estimate that its magnitude is
roughly the same as that of the average field. The exponential factor would
then give us directly the relative amplitude of the variations. If we want this
factor to be 10−3, we find that b must be 0.91z. If we make the spacing of the

* Since we are talking about incoherent sources whose intensities always add linearly, the
analogous electric charges will always have the same sign. Also, our analogy applies only to the
light energy arriving at the top of an opaque surface, so we must include in our integral only
the sources which shine on the surface (and, naturally, not sources located below the surface!).
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fluorescent tubes 3/4 of the distance to the ceiling, the exponential factor is
then 1/4000, and we have a safety factor of 4, so we are fairly sure that we will
have the illumination constant to one part in a thousand. (An exact calculation
shows that A1 is really twice the average field, so that b ≈ 0.83z.) It is somewhat
surprising that for such a uniform illumination the allowed separation of the
tubes comes out so large.

12-7 The “underlying unity” of nature

In this chapter, we wished to show that in learning electrostatics you have
learned at the same time how to handle many subjects in physics, and that by
keeping this in mind, it is possible to learn almost all of physics in a limited
number of years.

However, a question surely suggests itself at the end of such a discussion:
Why are the equations from different phenomena so similar? We might say:
“It is the underlying unity of nature.” But what does that mean? What could
such a statement mean? It could mean simply that the equations are similar for
different phenomena; but then, of course, we have given no explanation. The
“underlying unity” might mean that everything is made out of the same stuff,
and therefore obeys the same equations. That sounds like a good explanation,
but let us think. The electrostatic potential, the diffusion of neutrons, heat
flow—are we really dealing with the same stuff? Can we really imagine that
the electrostatic potential is physically identical to the temperature, or to the
density of particles? Certainly φ is not exactly the same as the thermal energy of
particles. The displacement of a membrane is certainly not like a temperature.
Why, then, is there “an underlying unity”?

A closer look at the physics of the various subjects shows, in fact, that the
equations are not really identical. The equation we found for neutron diffusion is
only an approximation that is good when the distance over which we are looking
is large compared with the mean free path. If we look more closely, we would see
the individual neutrons running around. Certainly the motion of an individual
neutron is a completely different thing from the smooth variation we get from
solving the differential equation. The differential equation is an approximation,
because we assume that the neutrons are smoothly distributed in space.

Is it possible that this is the clue? That the thing which is common to all
the phenomena is the space, the framework into which the physics is put? As
long as things are reasonably smooth in space, then the important things that
will be involved will be the rates of change of quantities with position in space.
That is why we always get an equation with a gradient. The derivatives must
appear in the form of a gradient or a divergence; because the laws of physics are
independent of direction, they must be expressible in vector form. The equations of
electrostatics are the simplest vector equations that one can get which involve only
the spatial derivatives of quantities. Any other simple problem—or simplification
of a complicated problem—must look like electrostatics. What is common to
all our problems is that they involve space and that we have imitated what is
actually a complicated phenomenon by a simple differential equation.

That leads us to another interesting question. Is the same statement perhaps
also true for the electrostatic equations? Are they also correct only as a smoothed-
out imitation of a really much more complicated microscopic world? Could it
be that the real world consists of little X-ons which can be seen only at very
tiny distances? And that in our measurements we are always observing on such
a large scale that we can’t see these little X-ons, and that is why we get the
differential equations?

Our currently most complete theory of electrodynamics does indeed have
its difficulties at very short distances. So it is possible, in principle, that these
equations are smoothed-out versions of something. They appear to be correct
at distances down to about 10−14 cm, but then they begin to look wrong. It
is possible that there is some as yet undiscovered underlying “machinery,” and
that the details of an underlying complexity are hidden in the smooth-looking
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equations—as is so in the “smooth” diffusion of neutrons. But no one has yet
formulated a successful theory that works that way.

Strangely enough, it turns out (for reasons that we do not at all understand)
that the combination of relativity and quantum mechanics as we know them
seems to forbid the invention of an equation that is fundamentally different
from Eq. (12.4), and which does not at the same time lead to some kind of
contradiction. Not simply a disagreement with experiment, but an internal
contradiction. As, for example, the prediction that the sum of the probabilities
of all possible occurrences is not equal to unity, or that energies may sometimes
come out as complex numbers, or some other such idiocy. No one has yet made
up a theory of electricity for which ∇2φ = −ρ/ε0 is understood as a smoothed-out
approximation to a mechanism underneath, and which does not lead ultimately
to some kind of an absurdity. But, it must be added, it is also true that the
assumption that ∇2φ = −ρ/ε0 is valid for all distances, no matter how small,
leads to absurdities of its own (the electrical energy of an electron is infinite)—
absurdities from which no one yet knows an escape.
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force on an electric charge depends not only on where it is, but also
on how fast it is moving. Every point in space is characterized by two vector
quantities which determine the force on any charge. First, there is the electric
force, which gives a force component independent of the motion of the charge. We
describe it by the electric field, E. Second, there is an additional force component,
called the magnetic force, which depends on the velocity of the charge. This
magnetic force has a strange directional character: At any particular point in
space, both the direction of the force and its magnitude depend on the direction
of motion of the particle: at every instant the force is always at right angles
to the velocity vector; also, at any particular point, the force is always at right
angles to a fixed direction in space (see Fig. 13-1); and finally, the magnitude of
the force is proportional to the component of the velocity at right angles to this
unique direction. It is possible to describe all of this behavior by defining the
magnetic field vector B, which specifies both the unique direction in space and
the constant of proportionality with the velocity, and to write the magnetic force
as qv ×B. The total electromagnetic force on a charge can, then, be written as

F = q(E + v ×B). (13.1)

This is called the Lorentz force.
The magnetic force is easily demonstrated by bringing a bar magnet close to

a cathode-ray tube. The deflection of the electron beam shows that the presence
of the magnet results in forces on the electrons transverse to their direction of
motion, as we described in Chapter 12 of Vol. I.

Review: Chapter 15, Vol. I, The Special
Theory of Relativity

The unit of magnetic field B is evidently one newton·second per coulomb-
meter. The same unit is also one volt·second per meter2. It is also called one
weber per square meter.

13-2 Electric current; the conservation of charge

B

q
v

F

90◦

90◦

θ

Fig. 13-1. The velocity-dependent com-
ponent of the force on a moving charge is at
right angles to v and to the direction of B.
It is also proportional to the component of v
at right angles to B, that is, to v sin θ.

We consider first how we can understand the magnetic forces on wires carrying
electric currents. In order to do this, we define what is meant by the current
density. Electric currents are electrons or other charges in motion with a net drift
or flow. We can represent the charge flow by a vector which gives the amount
of charge passing per unit area and per unit time through a surface element at
right angles to the flow (just as we did for the case of heat flow). We call this the
current density and represent it by the vector j. It is directed along the motion
of the charges. If we take a small area ∆S at a given place in the material, the
amount of charge flowing across that area in a unit time is

j · n∆S, (13.2)

where n is the unit vector normal to ∆S.
The current density is related to the average flow velocity of the charges. Sup-

pose that we have a distribution of charges whose average motion is a drift with the
velocity v. As this distribution passes over a surface element ∆S, the charge ∆q
passing through the surface element in a time ∆t is equal to the charge con-
tained in a parallelepiped whose base is ∆S and whose height is v∆t, as shown in
Fig. 13-2. The volume of the parallelepiped is the projection of ∆S at right angles
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to v times v∆t, which when multiplied by the charge density ρ will give ∆q. Thus

∆q = ρv · n∆S∆t.

The charge per unit time is then ρv · n∆S, from which we get

j = ρv. (13.3)
ρ

∆S

v ∆t

n

j

v

v
v ∆t

Fig. 13-2. If a charge distribution of den-
sity ρ moves with the velocity v , the charge
per unit time through ∆S is ρv · n∆S.

If the charge distribution consists of individual charges, say electrons, each
with the charge q and moving with the mean velocity v, then the current density is

j = Nqv. (13.4)

where N is the number of charges per unit volume.
The total charge passing per unit time through any surface S is called the

electric current, I. It is equal to the integral of the normal component of the flow
through all of the elements of the surface:

I =
∫
S

j · n dS (13.5)

(see Fig. 13-3).

j

j
j

n

SURFACE S

dS

Fig. 13-3. The current I through the
surface S is

∫
j · n dS.

The current I out of a closed surface S represents the rate at which charge
leaves the volume V enclosed by S. One of the basic laws of physics is that
electric charge is indestructible; it is never lost or created. Electric charges can
move from place to place but never appear from nowhere. We say that charge is
conserved. If there is a net current out of a closed surface, the amount of charge
inside must decrease by the corresponding amount (Fig. 13-4). We can, therefore,
write the law of the conservation of charge as∫

any closed
surface

j · n dS = − d

dt
(Qinside). (13.6)

The charge inside can be written as a volume integral of the charge density:

Qinside =
∫
V

inside S

ρ dV. (13.7) j
n

CLOSED
SURFACE
S

Fig. 13-4. The integral of j · n over a
closed surface is negative the rate of change
of the total charge Q inside.

If we apply (13.6) to a small volume ∆V , we know that the left-hand integral
is ∇ · j∆V . The charge inside is ρ∆V , so the conservation of charge can also
be written as

∇ · j = −∂ρ
∂t

(13.8)

(Gauss’ mathematics once again!).

13-3 The magnetic force on a current

Now we are ready to find the force on a current-carrying wire in a magnetic
field. The current consists of charged particles moving with the velocity v along
the wire. Each charge feels a transverse force

F = qv ×B

(Fig. 13-5a). If there are N such charges per unit volume, the number in a small
volume ∆V of the wire is N ∆V . The total magnetic force ∆F on the volume ∆V
is the sum of the forces on the individual charges, that is,

∆F = (N ∆V )(qv ×B).
But Nqv is just j, so

∆F = j ×B∆V (13.9)

(Fig. 13-5b). The force per unit volume is j ×B.
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If the current is uniform across a wire whose cross-sectional area is A, we may
take as the volume element a cylinder with the base area A and the length ∆L.
Then

∆F = j ×BA∆L. (13.10)
Now we can call jA the vector current I in the wire. (Its magnitude is the
electric current in the wire, and its direction is along the wire.) Then

∆F = I ×B∆L. (13.11)

The force per unit length on a wire is I ×B.

∆L

I

B

(a)

F

q
v

∆L

I

B

(b)

j

∆F

Fig. 13-5. The magnetic force on a
current-carrying wire is the sum of the forces
on the individual moving charges.

This equation gives the important result that the magnetic force on a wire,
due to the movement of charges in it, depends only on the total current, and not
on the amount of charge carried by each particle—or even its sign! The magnetic
force on a wire near a magnet is easily shown by observing its deflection when a
current is turned on, as was described in Chapter 1 (see Fig. 1-6).

13-4 The magnetic field of steady currents; Ampère’s law

We have seen that there is a force on a wire in the presence of a magnetic field,
produced, say, by a magnet. From the principle that action equals reaction we
might expect that there should be a force on the source of the magnetic field, i.e.,
on the magnet, when there is a current through the wire.* There are indeed such
forces, as is seen by the deflection of a compass needle near a current-carrying
wire. Now we know that magnets feel forces from other magnets, so that means
that when there is a current in a wire, the wire itself generates a magnetic field.
Moving charges, then, produce a magnetic field. We would like now to try to
discover the laws that determine how such magnetic fields are created. The
question is: Given a current, what magnetic field does it make? The answer to
this question was determined experimentally by three critical experiments and a
brilliant theoretical argument given by Ampère. We will pass over this interesting
historical development and simply say that a large number of experiments have
demonstrated the validity of Maxwell’s equations. We take them as our starting
point. If we drop the terms involving time derivatives in these equations we get
the equations of magnetostatics:

∇ ·B = 0 (13.12)
and

c2∇×B = j

ε0
. (13.13)

These equations are valid only if all electric charge densities are constant and
all currents are steady, so that the electric and magnetic fields are not changing
with time—all of the fields are “static.”

We may remark that it is rather dangerous to think that there is such a
thing as a static magnetic situation, because there must be currents in order to
get a magnetic field at all—and currents can come only from moving charges.
“Magnetostatics” is, therefore, an approximation. It refers to a special kind
of dynamic situation with large numbers of charges in motion, which we can
approximate by a steady flow of charge. Only then can we speak of a current
density j which does not change with time. The subject should more accurately
be called the study of steady currents. Assuming that all fields are steady, we drop
all terms in ∂E/∂t and ∂B/∂t from the complete Maxwell equations, Eqs. (2.41),
and obtain the two equations (13.12) and (13.13) above. Also notice that since
the divergence of the curl of any vector is necessarily zero, Eq. (13.13) requires
that ∇ · j = 0. This is true, by Eq. (13.8), only if ∂ρ/∂t is zero. But that must
be so if E is not changing with time, so our assumptions are consistent.

The requirement that ∇ · j = 0 means that we may only have charges which
flow in paths that close back on themselves. They may, for instance, flow in wires

* We will see later, however, that such assumptions are not generally correct for electromag-
netic forces!
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that form complete loops—called circuits. The circuits may, of course, contain
generators or batteries that keep the charges flowing. But they may not include
condensers which are charging or discharging. (We will, of course, extend the
theory later to include dynamic fields, but we want first to take the simpler case
of steady currents.)

Now let us look at Eqs. (13.12) and (13.13) to see what they mean. The
first one says that the divergence of B is zero. Comparing it to the analogous
equation in electrostatics, which says that ∇ ·E = −ρ/ε0, we can conclude that
there is no magnetic analog of an electric charge. There are no magnetic charges
from which lines of B can emerge. If we think in terms of “lines” of the vector
field B, they can never start and they never stop. Then where do they come
from? Magnetic fields “appear” in the presence of currents; they have a curl
proportional to the current density. Wherever there are currents, there are lines
of magnetic field making loops around the currents. Since lines of B do not begin
or end, they will often close back on themselves, making closed loops. But there
can also be complicated situations in which the lines are not simple closed loops.
But whatever they do, they never diverge from points. No magnetic charges have
ever been discovered, so∇ ·B = 0. This much is true not only for magnetostatics,
it is always true—even for dynamic fields.

SURFACE S

LOOP Γ

n

∇× B

B

ds

Fig. 13-6. The line integral of the tangen-
tial component of B is equal to the surface
integral of the normal component of∇×B.

The connection between the B field and currents is contained in Eq. (13.13).
Here we have a new kind of situation which is quite different from electrostatics,
where we had ∇ × E = 0. That equation meant that the line integral of E
around any closed path is zero: ∮

loop

E · ds = 0.

We got that result from Stokes’ theorem, which says that the integral around
any closed path of any vector field is equal to the surface integral of the normal
component of the curl of the vector (taken over any surface which has the closed
loop as its periphery). Applying the same theorem to the magnetic field vector
and using the symbols shown in Fig. 13-6, we get∮

Γ
B · ds =

∫
S

(∇×B) · n dS. (13.14)

Taking the curl of B from Eq. (13.13), we have∮
Γ
B · ds = 1

ε0c2

∫
S

j · n dS. (13.15)

The integral over S, according to (13.5), is the total current I through the
surface S. Since for steady currents the current through S is independent of
the shape of S, so long as it is bounded by the curve Γ, one usually speaks of
“the current through the loop Γ.” We have, then, a general law: the circulation
of B around any closed curve is equal to the current I through the loop, divided
by ε0c2: ∮

Γ
B · ds = Ithrough Γ

ε0c2
. (13.16)

This law—called Ampère’s law—plays the same role in magnetostatics that Gauss’
law played in electrostatics. Ampère’s law alone does not determine B from
currents; we must, in general, also use ∇ ·B = 0. But, as we will see in the
next section, it can be used to find the field in special circumstances which have
certain simple symmetries.

13-5 The magnetic field of a straight wire and of a solenoid; atomic currents

We can illustrate the use of Ampère’s law by finding the magnetic field near
a wire. We ask: What is the field outside a long straight wire with a cylindrical
cross section? We will assume something which may not be at all evident, but
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which is nevertheless true: that the field lines of B go around the wire in closed
circles. If we make this assumption, then Ampère’s law, Eq. (13.16), tells us
how strong the field is. From the symmetry of the problem, B has the same
magnitude at all points on a circle concentric with the wire (see Fig. 13-7). We
can then do the line integral of B · ds quite easily; it is just the magnitude of B
times the circumference. If r is the radius of the circle, then∮

B · ds = B · 2πr.

I

r

B

Fig. 13-7. The magnetic field outside of
a long wire carrying the current I.

The total current through the loop is merely the current I in the wire, so

B · 2πr = I

ε0c2
,

or
B = 1

4πε0c2
2I
r
. (13.17)

The strength of the magnetic field drops off inversely as r, the distance from
the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form.
Remembering that B is at right angles both to I and to r, we have

B = 1
4πε0c2

2I × er
r

. (13.18)

We have separated out the factor 1/4πε0c2, because it appears often. It is worth
remembering that it is exactly 10−7 (in the mks system), since an equation
like (13.17) is used to define the unit of current, the ampere. At one meter from
a current of one ampere the magnetic field is 2× 10−7 webers per square meter.

Since a current produces a magnetic field, it will exert a force on a nearby
wire which is also carrying a current. In Chapter 1 we described a simple
demonstration of the forces between two current-carrying wires. If the wires are
parallel, each is at right angles to the B field of the other; the wires should then
be pushed either toward or away from each other. When currents are in the same
direction, the wires attract; when the currents are moving in opposite directions,
the wires repel.

L

B0

Γ

I

LINES
OF B0

Fig. 13-8. The magnetic field of a long
solenoid.

Let’s take another example that can be analyzed by Ampère’s law if we add
some knowledge about the field. Suppose we have a long coil of wire wound in a
tight spiral, as shown by the cross sections in Fig. 13-8. Such a coil is called a
solenoid. We observe experimentally that when a solenoid is very long compared
with its diameter, the field outside is very small compared with the field inside.
Using just that fact, together with Ampère’s law, we can find the size of the field
inside.

Since the field stays inside (and has zero divergence), its lines must go along
parallel to the axis, as shown in Fig. 13-8. That being the case, we can use
Ampère’s law with the rectangular “curve” Γ shown in the figure. This loop goes
the distance L inside the solenoid, where the field is, say, B0, then goes at right
angles to the field, and returns along the outside, where the field is negligible.
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The line integral of B for this curve is just B0L, and it must be 1/ε0c2 times the
total current through Γ, which is NI if there are N turns of the solenoid in the
length L. We have

B0L = NI

ε0c2
.

Or, letting n be the number of turns per unit length of the solenoid (that is,
n = N/L), we get

B0 = nI

ε0c2
. (13.19)

SOLENOID

B

Fig. 13-9. The magnetic field outside of
a solenoid.

What happens to the lines of B when they get to the end of the solenoid?
Presumably, they spread out in some way and return to enter the solenoid at the
other end, as sketched in Fig. 13-9. Such a field is just what is observed outside
of a bar magnet. But what is a magnet anyway? Our equations say that B
comes from the presence of currents. Yet we know that ordinary bars of iron
(no batteries or generators) also produce magnetic fields. You might expect that
there should be some other terms on the right-hand side of (13.12) or (13.13) to
represent “the density of magnetic iron” or some such quantity. But there is no
such term. Our theory says that the magnetic effects of iron come from some
internal currents which are already taken care of by the j term.

Matter is very complex when looked at from a fundamental point of view—as
we saw when we tried to understand dielectrics. In order not to interrupt our
present discussion, we will wait until later to deal in detail with the interior
mechanisms of magnetic materials like iron: You will have to accept, for the
moment, that all magnetism is produced from currents, and that in a permanent
magnet there are permanent internal currents. In the case of iron, these currents
come from electrons spinning around their own axes. Every electron has such
a spin, which corresponds to a tiny circulating current. Of course, one electron
doesn’t produce much magnetic field, but in an ordinary piece of matter there are
billions and billions of electrons. Normally these spin and point every which way,
so that there is no net effect. The miracle is that in a very few substances, like
iron, a large fraction of the electrons spin with their axes in the same direction—
for iron, two electrons of each atom take part in this cooperative motion. In a bar
magnet there are large numbers of electrons all spinning in the same direction
and, as we will see, their total effect is equivalent to a current circulating on the
surface of the bar. (This is quite analogous to what we found for dielectrics—that
a uniformly polarized dielectric is equivalent to a distribution of charges on its
surface.) It is, therefore, no accident that a bar magnet is equivalent to a solenoid.

13-6 The relativity of magnetic and electric fields

When we said that the magnetic force on a charge was proportional to its
velocity, you may have wondered: “What velocity? With respect to which
reference frame?” It is, in fact, clear from the definition of B given at the
beginning of this chapter that what this vector is will depend on what we choose
as a reference frame for our specification of the velocity of charges. But we have
said nothing about which is the proper frame for specifying the magnetic field.

It turns out that any inertial frame will do. We will also see that magnetism
and electricity are not independent things—that they should always be taken
together as one complete electromagnetic field. Although in the static case
Maxwell’s equations separate into two distinct pairs, one pair for electricity and
one pair for magnetism, with no apparent connection between the two fields,
nevertheless, in nature itself there is a very intimate relationship between them
that arises from the principle of relativity. Historically, the principle of relativity
was discovered after Maxwell’s equations. It was, in fact, the study of electricity
and magnetism which led ultimately to Einstein’s discovery of his principle of
relativity. But let’s see what our knowledge of relativity would tell us about
magnetic forces if we assume that the relativity principle is applicable—as it
is—to electromagnetism.
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q
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Fig. 13-10. The interaction of a current-carrying wire and a particle with the
charge q as seen in two frames. In frame S (part a), the wire is at rest; in frame S′

(part b), the charge is at rest.

Suppose we think about what happens when a negative charge moves with
velocity v0 parallel to a current-carrying wire, as in Fig. 13-10. We will try to
understand what goes on in two reference frames: one fixed with respect to the
wire, as in part (a) of the figure, and one fixed with respect to the particle, as in
part (b). We will call the first frame S and the second S′.

In the S-frame, there is clearly a magnetic force on the particle. The force
is directed toward the wire, so if the charge were moving freely we would see it
curve in toward the wire. But in the S′-frame there can be no magnetic force
on the particle, because its velocity is zero. Does it, therefore, stay where it is?
Would we see different things happening in the two systems? The principle of
relativity would say that in S′ we should also see the particle move closer to the
wire. We must try to understand why that would happen.

We return to our atomic description of a wire carrying a current. In a normal
conductor, like copper, the electric currents come from the motion of some of the
negative electrons—called the conduction electrons—while the positive nuclear
charges and the remainder of the electrons stay fixed in the body of the material.
We let the charge density of the conduction electrons be ρ− and their velocity
in S be v. The density of the charges at rest in S is ρ+, which must be equal to
the negative of ρ−, since we are considering an uncharged wire. There is thus no
electric field outside the wire, and the force on the moving particle is just

F = qv0 ×B.

Using the result we found in Eq. (13.18) for the magnetic field at the distance r
from the axis of a wire, we conclude that the force on the particle is directed
toward the wire and has the magnitude

F = 1
4πε0c2

· 2Iqv0

r
.

Using Eqs. (13.3) and (13.5), the current I can be written as ρ−vA, where A is
the area of a cross section of the wire. Then

F = 1
4πε0c2

· 2qρ−Avv0

r
. (13.20)

We could continue to treat the general case of arbitrary velocities for v and v0,
but it will be just as good to look at the special case in which the velocity v0
of the particle is the same as the velocity v of the conduction electrons. So we
write v0 = v, and Eq. (13.20) becomes

F = q

2πε0
ρ−A

r

v2

c2
. (13.21)

Now we turn our attention to what happens in S′, in which the particle is at
rest and the wire is running past (toward the left in the figure) with the speed v.
The positive charges moving with the wire will make some magnetic field B′ at
the particle. But the particle is now at rest, so there is no magnetic force on it!
If there is any force on the particle, it must come from an electric field. It must
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be that the moving wire has produced an electric field. But it can do that only if
it appears charged—it must be that a neutral wire with a current appears to be
charged when set in motion.

We must look into this. We must try to compute the charge density in the
wire in S′ from what we know about it in S. One might, at first, think they
are the same; but we know that lengths are changed between S and S′ (see
Chapter 15, Vol. I), so volumes will change also. Since the charge densities
depend on the volume occupied by charges, the densities will change, too.

Before we can decide about the charge densities in S′, we must know what
happens to the electric charge of a bunch of electrons when the charges are
moving. We know that the apparent mass of a particle changes by 1/

√
1− v2/c2.

Does its charge do something similar? No! Charges are always the same, moving
or not. Otherwise we would not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially
uncharged. Now we heat it up. Because the electrons have a different mass
than the protons, the velocities of the electrons and of the protons will change
by different amounts. If the charge of a particle depended on the speed of the
particle carrying it, in the heated block the charge of the electrons and protons
would no longer balance. A block would become charged when heated. As we
have seen earlier, a very small fractional change in the charge of all the electrons
in a block would give rise to enormous electric fields. No such effect has ever
been observed.

Also, we can point out that the mean speed of the electrons in matter depends
on its chemical composition. If the charge on an electron changed with speed,
the net charge in a piece of material would be changed in a chemical reaction.
Again, a straightforward calculation shows that even a very small dependence of
charge on speed would give enormous fields from the simplest chemical reactions.
No such effect is observed, and we conclude that the electric charge of a single
particle is independent of its state of motion.

So the charge q on a particle is an invariant scalar quantity, independent of
the frame of reference. That means that in any frame the charge density of a
distribution of electrons is just proportional to the number of electrons per unit
volume. We need only worry about the fact that the volume can change because
of the relativistic contraction of distances.

We now apply these ideas to our moving wire. If we take a length L0 of the
wire, in which there is a charge density ρ0 of stationary charges, it will contain the
total charge Q = ρ0L0A0. If the same charges are observed in a different frame
to be moving with velocity v, they will all be found in a piece of the material
with the shorter length

L = L0
√

1− v2/c2, (13.22)
but with the same area A0 (since dimensions transverse to the motion are
unchanged). See Fig. 13-11.

If we call ρ the density of charges in the frame in which they are moving, the
total charge Q will be ρLA0. This must also be equal to ρ0L0A0, because charge
is the same in any system, so that ρL = ρ0L0 or, from (13.22),

ρ = ρ0√
1− v2/c2

. (13.23)

v = 0

L0

Q
Area A0

(a)

S

v

L

Q

Area A0

(b)

S′

Fig. 13-11. If a distribution of charged particles at rest has the charge density ρ0,
the same charges will have the density ρ = ρ0/

√
1− v 2/c2 when seen from a frame

with the relative velocity v .
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The charge density of a moving distribution of charges varies in the same way as
the relativistic mass of a particle.

We now use this general result for the positive charge density ρ+ of our wire.
These charges are at rest in frame S. In S′, however, where the wire moves with
the speed v, the positive charge density becomes

ρ′+ = ρ+√
1− v2/c2

. (13.24)

The negative charges are at rest in S′. So they have their “rest density” ρ0 in
this frame. In Eq. (13.23) ρ0 = ρ′−, because they have the density ρ− when the
wire is at rest, i.e., in frame S, where the speed of the negative charges is v. For
the conduction electrons, we then have that

ρ− =
ρ′−√

1− v2/c2
, (13.25)

or
ρ′− = ρ−

√
1− v2/c2. (13.26)

Now we can see why there are electric fields in S′—because in this frame the
wire has the net charge density ρ′ given by

ρ′ = ρ′+ + ρ′−.

Using (13.24) and (13.26), we have

ρ′ = ρ+√
1− v2/c2

+ ρ−
√

1− v2/c2.

Since the stationary wire is neutral, ρ− = −ρ+, and we have

ρ′ = ρ+
v2/c2√

1− v2/c2
. (13.27)

Our moving wire is positively charged and will produce an electric field E′ at the
external stationary particle. We have already solved the electrostatic problem of
a uniformly charged cylinder. The electric field at the distance r from the axis of
the cylinder is

E′ = ρ′A

2πε0r
= ρ+Av

2/c2

2πε0r
√

1− v2/c2
. (13.28)

The force on the negatively charged particle is toward the wire. We have, at
least, a force in the same direction from the two points of view; the electric force
in S′ has the same direction as the magnetic force in S.

The magnitude of the force in S′ is

F ′ = q

2πε0
ρ+A

r

v2/c2√
1− v2/c2

. (13.29)

Comparing this result for F ′ with our result for F in Eq. (13.21), we see that
the magnitudes of the forces are almost identical from the two points of view. In
fact,

F ′ = F√
1− v2/c2

, (13.30)

so for the small velocities we have been considering, the two forces are equal.
We can say that for low velocities, at least, we understand that magnetism and
electricity are just “two ways of looking at the same thing.”

But things are even better than that. If we take into account the fact that
forces also transform when we go from one system to the other, we find that the
two ways of looking at what happens do indeed give the same physical result for
any velocity.
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One way of seeing this is to ask a question like: What transverse momentum
will the particle have after the force has acted for a little while? We know from
Chapter 16 of Vol. I that the transverse momentum of a particle should be the
same in both the S- and S′-frames. Calling the transverse coordinate y, we want
to compare ∆py and ∆p′y. Using the relativistically correct equation of motion,
F = dp/dt, we expect that after the time ∆t our particle will have a transverse
momentum ∆py in the S-system given by

∆py = F ∆t. (13.31)

In the S′-system, the transverse momentum will be

∆p′y = F ′∆t′. (13.32)

We must, of course, compare ∆py and ∆p′y for corresponding time intervals ∆t
and ∆t′. We have seen in Chapter 15 of Vol. I that the time intervals referred
to a moving particle appear to be longer than those in the rest system of the
particle. Since our particle is initially at rest in S′, we expect, for small ∆t, that

∆t = ∆t′√
1− v2/c2

, (13.33)

and everything comes out O.K. From (13.31) and (13.32),

∆p′y
∆py

= F ′∆t′
F ∆t ,

which is just = 1 if we combine (13.30) and (13.33).

S

j

B

ρ = 0

S′

j ′

B′

ρ′ 6= 0

E′

Fig. 13-12. In frame S the charge density
is zero and the current density is j . There is
only a magnetic field. In S′, there is a charge
density ρ′ and a different current density j ′.
The magnetic field B′ is different and there
is an electric field E ′.

We have found that we get the same physical result whether we analyze the
motion of a particle moving along a wire in a coordinate system at rest with
respect to the wire, or in a system at rest with respect to the particle. In the first
instance, the force was purely “magnetic,” in the second, it was purely “electric.”
The two points of view are illustrated in Fig. 13-12 (although there is still a
magnetic field B′ in the second frame, it produces no forces on the stationary
particle).

If we had chosen still another coordinate system, we would have found a
different mixture of E and B fields. Electric and magnetic forces are part of
one physical phenomenon—the electromagnetic interactions of particles. The
separation of this interaction into electric and magnetic parts depends very much
on the reference frame chosen for the description. But a complete electromagnetic
description is invariant; electricity and magnetism taken together are consistent
with Einstein’s relativity.

Since electric and magnetic fields appear in different mixtures if we change
our frame of reference, we must be careful about how we look at the fields E
and B. For instance, if we think of “lines” of E or B, we must not attach too
much reality to them. The lines may disappear if we try to observe them from a
different coordinate system. For example, in system S′ there are electric field
lines, which we do not find “moving past us with velocity v in system S.” In
system S there are no electric field lines at all! Therefore it makes no sense to
say something like: When I move a magnet, it takes its field with it, so the lines
of B are also moved. There is no way to make sense, in general, out of the idea
of “the speed of a moving field line.” The fields are our way of describing what
goes on at a point in space. In particular, E and B tell us about the forces that
will act on a moving particle. The question “What is the force on a charge from
a moving magnetic field?” doesn’t mean anything precise. The force is given by
the values of E and B at the charge, and the formula (13.1) is not to be altered
if the source of E or B is moving (it is the values of E and B that will be altered
by the motion). Our mathematical description deals only with the fields as a
function of x, y, z, and t with respect to some inertial frame.

We will later be speaking of “a wave of electric and magnetic fields travelling
through space,” as, for instance, a light wave. But that is like speaking of a wave
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travelling on a string. We don’t then mean that some part of the string is moving
in the direction of the wave, we mean that the displacement of the string appears
first at one place and later at another. Similarly, in an electromagnetic wave,
the wave travels; but the magnitude of the fields change. So in the future when
we—or someone else—speaks of a “moving” field, you should think of it as just a
handy, short way of describing a changing field in some circumstances.

13-7 The transformation of currents and charges

You may have worried about the simplification we made above when we
took the same velocity v for the particle and for the conduction electrons in the
wire. We could go back and carry through the analysis again for two different
velocities, but it is easier to simply notice that charge and current density are
the components of a four-vector (see Chapter 17, Vol. I).

We have seen that if ρ0 is the density of the charges in their rest frame, then
in a frame in which they have the velocity v, the density is

ρ = ρ0√
1− v2/c2

.

In that frame their current density is

j = ρv = ρ0v√
1− v2/c2

. (13.34)

Now we know that the energy U and momentum p of a particle moving with
velocity v are given by

U = m0c
2√

1− v2/c2
, p = m0v√

1− v2/c2
,

where m0 is its rest mass. We also know that U and p form a relativistic four-
vector. Since ρ and j depend on the velocity v exactly as do U and p, we can
conclude that ρ and j are also the components of a relativistic four-vector. This
property is the key to a general analysis of the field of a wire moving with any
velocity, which we would need if we want to do the problem again with the
velocity v0 of the particle different from the velocity of the conduction electrons.

If we wish to transform ρ and j to a coordinate system moving with a
velocity u in the x-direction, we know that they transform just like t and (x, y, z),
so that we have (see Chapter 15, Vol. I)

x′ = x− ut√
1− u2/c2

, j′x = jx − uρ√
1− u2/c2

y′ = y, j′y = jy,

z′ = z, j′z = jz,

t′ = t− ux/c2√
1− u2/c2

, ρ′ = ρ− ujx/c2√
1− u2/c2

. (13.35)

With these equations we can relate charges and currents in one frame to those
in another. Taking the charges and currents in either frame, we can solve the
electromagnetic problem in that frame by using our Maxwell equations. The
result we obtain for the motions of particles will be the same no matter which
frame we choose. We will return at a later time to the relativistic transformations
of the electromagnetic fields.

13-8 Superposition; the right-hand rule

We will conclude this chapter by making two further points regarding the
subject of magnetostatics. First, our basic equations for the magnetic field,

∇ ·B = 0, ∇×B = j/c2ε0,
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are linear in B and j. That means that the principle of superposition also applies
to magnetic fields. The field produced by two different steady currents is the
sum of the individual fields from each current acting alone. Our second remark
concerns the right-hand rules which we have encountered (such as the right-hand
rule for the magnetic field produced by a current). We have also observed that
the magnetization of an iron magnet is to be understood from the spin of the
electrons in the material. The direction of the magnetic field of a spinning electron
is related to its spin axis by the same right-hand rule. Because B is determined
by a “handed” rule—involving either a cross product or a curl—it is called an
axial vector. (Vectors whose direction in space does not depend on a reference to
a right or left hand are called polar vectors. Displacement, velocity, force, and E,
for example, are polar vectors.)

Physically observable quantities in electromagnetism are not, however, right-
(or left-) handed. Electromagnetic interactions are symmetrical under reflection
(see Chapter 52, Vol. I). Whenever magnetic forces between two sets of currents are
computed, the result is invariant with respect to a change in the hand convention.
Our equations lead, independently of the right-hand convention, to the end result
that parallel currents attract, or that currents in opposite directions repel. (Try
working out the force using “left-hand rules.”) An attraction or repulsion is a
polar vector. This happens because in describing any complete interaction, we
use the right-hand rule twice—once to find B from currents, again to find the
force this B produces on a second current. Using the right-hand rule twice is
the same as using the left-hand rule twice. If we were to change our conventions
to a left-hand system all our B fields would be reversed, but all forces—or,
what is perhaps more relevant, the observed accelerations of objects—would be
unchanged.

Although physicists have recently found to their surprise that all the laws of
nature are not always invariant for mirror reflections, the laws of electromagnetism
do have such a basic symmetry.
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14

The Magnetic Field in Various Situations

14-1 The vector potential

In 14-1 The vector potential
14-2 The vector potential of known

currents
14-3 A straight wire
14-4 A long solenoid
14-5 The field of a small loop; the

magnetic dipole
14-6 The vector potential of a circuit
14-7 The law of Biot and Savart

this chapter we continue our discussion of magnetic fields associated with
steady currents—the subject of magnetostatics. The magnetic field is related to
electric currents by our basic equations

∇ ·B = 0, (14.1)

c2∇×B = j

ε0
. (14.2)

We want now to solve these equations mathematically in a general way, that is,
without requiring any special symmetry or intuitive guessing. In electrostatics,
we found that there was a straightforward procedure for finding the field when
the positions of all electric charges are known: One simply works out the scalar
potential φ by taking an integral over the charges—as in Eq. (4.25). Then if one
wants the electric field, it is obtained from the derivatives of φ. We will now show
that there is a corresponding procedure for finding the magnetic field B if we
know the current density j of all moving charges.

In electrostatics we saw that (because the curl of E was always zero) it was
possible to represent E as the gradient of a scalar field φ. Now the curl of B
is not always zero, so it is not possible, in general, to represent it as a gradient.
However, the divergence of B is always zero, and this means that we can always
represent B as the curl of another vector field. For, as we saw in Section 2-8,
the divergence of a curl is always zero. Thus we can always relate B to a field
we will call A by

B =∇×A. (14.3)
Or, by writing out the components,

Bx = (∇×A)x = ∂Az
∂y
− ∂Ay

∂z
,

By = (∇×A)y = ∂Ax
∂z
− ∂Az

∂x
,

Bz = (∇×A)z = ∂Ay
∂x
− ∂Ax

∂y
.

(14.4)

Writing B =∇×A guarantees that Eq. (14.1) is satisfied, since, necessarily,

∇ ·B =∇ · (∇×A) = 0.

The field A is called the vector potential.
You will remember that the scalar potential φ was not completely specified by

its definition. If we have found φ for some problem, we can always find another
potential φ′ that is equally good by adding a constant:

φ′ = φ+ C.

The new potential φ′ gives the same electric fields, since the gradient ∇C is zero;
φ′ and φ represent the same physics.

Similarly, we can have different vector potentials A which give the same
magnetic fields. Again, because B is obtained from A by differentiation, adding a
constant to A doesn’t change anything physical. But there is even more latitude
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for A. We can add to A any field which is the gradient of some scalar field,
without changing the physics. We can show this as follows. Suppose we have
an A that gives correctly the magnetic field B for some real situation, and ask
in what circumstances some other new vector potential A′ will give the same
field B if substituted into (14.3). Then A and A′ must have the same curl:

B =∇×A′ =∇×A.
Therefore

∇×A′ −∇×A =∇× (A′ −A) = 0.

But if the curl of a vector is zero it must be the gradient of some scalar field,
say ψ, so A′ −A =∇ψ. That means that if A is a satisfactory vector potential
for a problem then, for any ψ, at all,

A′ = A+∇ψ (14.5)

will be an equally satisfactory vector potential, leading to the same field B.
It is usually convenient to take some of the “latitude” out of A by arbitrarily

placing some other condition on it (in much the same way that we found it
convenient—often—to choose to make the potential φ zero at large distances).
We can, for instance, restrict A by choosing arbitrarily what the divergence of A
must be. We can always do that without affecting B. This is because although
A′ and A have the same curl, and give the same B, they do not need to have
the same divergence. In fact, ∇ ·A′ = ∇ ·A+∇2ψ, and by a suitable choice
of ψ we can make ∇ ·A′ anything we wish.

What should we choose for ∇ ·A? The choice should be made to get the
greatest mathematical convenience and will depend on the problem we are doing.
For magnetostatics, we will make the simple choice

∇ ·A = 0. (14.6)

(Later, when we take up electrodynamics, we will change our choice.) Our complete
definition* of A is then, for the moment, ∇×A = B and ∇ ·A = 0.

To get some experience with the vector potential, let’s look first at what it is
for a uniform magnetic field B0. Taking our z-axis in the direction of B0, we
must have

Bx = ∂Az
∂y
− ∂Ay

∂z
= 0,

By = ∂Ax
∂z
− ∂Az

∂x
= 0,

Bz = ∂Ay
∂x
− ∂Ax

∂y
= B0.

(14.7)

By inspection, we see that one possible solution of these equations is

Ay = xB0, Ax = 0, Az = 0.

Or we could equally well take

Ax = −yB0, Ay = 0, Az = 0.

Still another solution is a linear combination of the two:

Ax = − 1
2yB0, Ay = 1

2xB0, Az = 0. (14.8)

It is clear that for any particular field B, the vector potential A is not unique;
there are many possibilities.

* Our definition still does not uniquely determine A. For a unique specification we would
also have to say something about how the field A behaves on some boundary, or at large
distances. It is sometimes convenient, for example, to choose a field which goes to zero at large
distances.
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Fig. 14-1. A uniform magnetic field B
in the z-direction corresponds to a vector
potential A that rotates about the z-axis,
with the magnitude A = Br ′/2 (r ′ is the
displacement from the z-axis).

The third solution, Eq. (14.8), has some interesting properties. Since the
x-component is proportional to −y and the y-component is proportional to +x,
A must be at right angles to the vector from the z-axis, which we will call r′ (the
“prime” is to remind us that it is not the vector displacement from the origin).
Also, the magnitude of A is proportional to

√
x2 + y2 and, hence, to r′. So A

can be simply written (for our uniform field) as

A = 1
2B0 × r′. (14.9)

The vector potential A has the magnitude B0r
′/2 and rotates about the z-axis as

shown in Fig. 14-1. If, for example, the B field is the axial field inside a solenoid,
then the vector potential circulates in the same sense as do the currents of the
solenoid.

The vector potential for a uniform field can be obtained in another way. The
circulation of A on any closed loop Γ can be related to the surface integral
of ∇×A by Stokes’ theorem, Eq. (3.38):∮

Γ
A · ds =

∫
inside Γ

(∇×A) · n da. (14.10)

But the integral on the right is equal to the flux of B through the loop, so∮
Γ
A · ds =

∫
inside Γ

B · n da. (14.11)

So the circulation of A around any loop is equal to the flux of B through the
loop. If we take a circular loop, of radius r′ in a plane perpendicular to a uniform
field B, the flux is just

πr′2B.

If we choose our origin on an axis of symmetry, so that we can take A as
circumferential and a function only of r′, the circulation will be∮

A · ds = 2πr′A = πr′2B.

We get, as before,

A = Br′

2 .

In the example we have just given, we have calculated the vector potential from
the magnetic field, which is opposite to what one normally does. In complicated
problems it is usually easier to solve for the vector potential, and then determine
the magnetic field from it. We will now show how this can be done.

14-2 The vector potential of known currents

Since B is determined by currents, so also is A. We want now to find A in
terms of the currents. We start with our basic equation (14.2):

c2∇×B = j

ε0
,

which means, of course, that

c2∇× (∇×A) = j

ε0
. (14.12)

This equation is for magnetostatics what the equation

∇ ·∇φ = − ρ

ε0
(14.13)

was for electrostatics.
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Our equation (14.12) for the vector potential looks even more like that for φ
if we rewrite ∇× (∇×A) using the vector identity Eq. (2.58):

∇× (∇×A) =∇(∇ ·A)−∇2A. (14.14)

Since we have chosen to make ∇ ·A = 0 (and now you see why), Eq. (14.12)
becomes

∇2A = − j

ε0c2
. (14.15)

This vector equation means, of course, three equations:

∇2Ax = − jx
ε0c2

, ∇2Ay = − jy
ε0c2

, ∇2Az = − jz
ε0c2

. (14.16)

And each of these equations is mathematically identical to

∇2φ = − ρ

ε0
. (14.17)

All we have learned about solving for potentials when ρ is known can be used for
solving for each component of A when j is known!

j

1

2

dV2

r12

Fig. 14-2. The vector potential A at
point 1 is given by an integral over the cur-
rent elements j dV at all points 2.

We have seen in Chapter 4 that a general solution for the electrostatic
equation (14.17) is

φ(1) = 1
4πε0

∫
ρ(2) dV2

r12
.

So we know immediately that a general solution for Ax is

Ax(1) = 1
4πε0c2

∫
jx(2) dV2

r12
, (14.18)

and similarly for Ay and Az. (Figure 14-2 will remind you of our conventions for
r12 and dV2.) We can combine the three solutions in the vector form

A(1) = 1
4πε0c2

∫
j(2) dV2

r12
, (14.19)

(You can verify if you wish, by direct differentiation of components, that this
integral for A satisfies ∇ ·A = 0 so long as ∇ · j = 0, which, as we saw, must
happen for steady currents.)

We have, then, a general method for finding the magnetic field of steady
currents. The principle is: the x-component of vector potential arising from a
current density j is the same as the electric potential φ that would be produced
by a charge density ρ equal to jx/c2—and similarly for the y- and z-components.
(This principle works only with components in fixed directions. The “radial”
component of A does not come in the same way from the “radial” component
of j, for example.) So from the vector current density j, we can find A using
Eq. (14.19)—that is, we find each component of A by solving three imaginary
electrostatic problems for the charge distributions ρ1 = jx/c

2, ρ2 = jy/c
2,

and ρ3 = jz/c
2. Then we getB by taking various derivatives ofA to obtain∇×A.

It’s a little more complicated than electrostatics, but the same idea. We will now
illustrate the theory by solving for the vector potential in a few special cases.

14-3 A straight wire

For our first example, we will again find the field of a straight wire—which we
solved in the last chapter by using Eq. (14.2) and some arguments of symmetry.
We take a long straight wire of radius a, carrying the steady current I. Unlike
the charge on a conductor in the electrostatic case, a steady current in a wire
is uniformly distributed throughout the cross section of the wire. If we choose
our coordinates as shown in Fig. 14-3, the current density vector j has only a
z-component. Its magnitude is

jz = I

πa2 (14.20)

inside the wire, and zero outside.
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x

y

z

a

r ′

P

A

j

I

Fig. 14-3. A long cylindrical wire along
the z-axis with a uniform current density j .

Since jx and jy are both zero, we have immediately

Ax = 0, Ay = 0.

To get Az we can use our solution for the electrostatic potential φ of a wire with a
uniform charge density ρ = jz/c

2. For points outside an infinite charged cylinder,
the electrostatic potential is

φ = − λ

2πε0
ln r′,

where r′ =
√
x2 + y2 and λ is the charge per unit length, πa2ρ. So Az must be

Az = − πa2jz
2πε0c2

ln r′

for points outside a long wire carrying a uniform current. Since πa2jz = I, we
can also write

Az = − I

2πε0c2
ln r′ (14.21)

Now we can find B from (14.4). There are only two of the six derivatives
that are not zero. We get

Bx = − I

2πε0c2
∂

∂y
ln r′ = − I

2πε0c2
y

r′2
, (14.22)

By = I

2πε0c2
∂

∂x
ln r′ = I

2πε0c2
x

r′2
, (14.23)

Bz = 0.

We get the same result as before:B circles around the wire, and has the magnitude

B = 1
4πε0c2

2I
r′
. (14.24)

14-4 A long solenoid

x

y

z

a
a

B B

J

J

Jx

Jy

φ

A

Fig. 14-4. A long solenoid with a surface
current density J.

Next, we consider again the infinitely long solenoid with a circumferential
current on the surface of nI per unit length. (We imagine there are n turns of
wire per unit length, carrying the current I, and we neglect the slight pitch of
the winding.)

Just as we have defined a “surface charge density” σ, we define here a “surface
current density” J equal to the current per unit length on the surface of the
solenoid (which is, of course, just the average j times the thickness of the thin
winding). The magnitude of J is, here, nI. This surface current (see Fig. 14-4)
has the components:

Jx = −J sinφ, Jy = J cosφ, Jz = 0.

Now we must find A for such a current distribution.
First, we wish to find Ax for points outside the solenoid. The result is the

same as the electrostatic potential outside a cylinder with a surface charge density

σ = σ0 sinφ,

with σ0 = −J/c2. We have not solved such a charge distribution, but we have done
something similar. This charge distribution is equivalent to two solid cylinders of
charge, one positive and one negative, with a slight relative displacement of their
axes in the y-direction. The potential of such a pair of cylinders is proportional
to the derivative with respect to y of the potential of a single uniformly charged
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cylinder. We could work out the constant of proportionality, but let’s not worry
about it for the moment.

The potential of a cylinder of charge is proportional to ln r′; the potential of
the pair is then

φ ∝ ∂ln r′
∂y

= y

r′2
.

So we know that
Ax = −K y

r′2
, (14.25)

where K is some constant. Following the same argument, we would find

Ay = K
x

r′2
. (14.26)

Although we said before that there was no magnetic field outside a solenoid,
we find now that there is an A-field which circulates around the z-axis, as in
Fig. 14-4. The question is: Is its curl zero?

Clearly, Bx and By are zero, and

Bz = ∂

∂x

(
K

x

r′2

)
− ∂

∂y

(
−K y

r′2

)
= K

(
1
r′2
− 2x2

r′4
+ 1
r′2
− 2y2

r′4

)
= 0.

So the magnetic field outside a very long solenoid is indeed zero, even though
the vector potential is not.

ω

J = σv

J = σv

B W

W

−−−
−

+
+ +
+

−
−
−−

+

+ +
+

Fig. 14-5. A rotating charged cylinder
produces a magnetic field inside. A short
radial wire rotating with the cylinder has
charges induced on its ends.

We can check our result against something else we know: The circulation of
the vector potential around the solenoid should be equal to the flux of B inside
the coil (Eq. 14.11). The circulation is A ·2πr′ or, since A = K/r′, the circulation
is 2πK. Notice that it is independent of r′. That is just as it should be if there
is no B outside, because the flux is just the magnitude of B inside the solenoid
times πa2. It is the same for all circles of radius r′ > a. We have found in the
last chapter that the field inside is nI/ε0c2, so we can determine the constant K:

2πK = πa2 nI

ε0c2
,

or

K = nIa2

2ε0c2
.

So the vector potential outside has the magnitude

A = nIa2

2ε0c2
1
r′
, (14.27)

and is always perpendicular to the vector r′.
We have been thinking of a solenoidal coil of wire, but we would produce

the same fields if we rotated a long cylinder with an electrostatic charge on the
surface. If we have a thin cylindrical shell of radius a with a surface charge σ,
rotating the cylinder makes a surface current J = σv, where v = aω is the velocity
of the surface charge. There will then be a magnetic field B = σaω/ε0c

2 inside
the cylinder.

Now we can raise an interesting question. Suppose we put a short piece of
wire W perpendicular to the axis of the cylinder, extending from the axis out to
the surface, and fastened to the cylinder so that it rotates with it, as in Fig. 14-5.
This wire is moving in a magnetic field, so the v ×B forces will cause the ends
of the wire to be charged (they will charge up until the E-field from the charges
just balances the v ×B force). If the cylinder has a positive charge, the end of
the wire at the axis will have a negative charge. By measuring the charge on the
end of the wire, we could measure the speed of rotation of the system. We would
have an “angular-velocity meter”!
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But are you wondering: “What if I put myself in the frame of reference of the
rotating cylinder? Then there is just a charged cylinder at rest, and I know that
the electrostatic equations say there will be no electric fields inside, so there will
be no force pushing charges to the center. So something must be wrong.” But
there is nothing wrong. There is no “relativity of rotation.” A rotating system is
not an inertial frame, and the laws of physics are different. We must be sure to use
equations of electromagnetism only with respect to inertial coordinate systems.

It would be nice if we could measure the absolute rotation of the earth with
such a charged cylinder, but unfortunately the effect is much too small to observe
even with the most delicate instruments now available.

14-5 The field of a small loop; the magnetic dipole

Let’s use the vector-potential method to find the magnetic field of a small
loop of current. As usual, by “small” we mean simply that we are interested in
the fields only at distances large compared with the size of the loop. It will turn
out that any small loop is a “magnetic dipole.” That is, it produces a magnetic
field like the electric field from an electric dipole.

a

b

P

R

x

y

z

I

I

Fig. 14-6. A rectangular loop of wire with the current I.
What is the magnetic field at P? (R� a and R� b.)

a

b

+ + + + + + + +

− − − − − − − −

jx

jx

x

y

z

Fig. 14-7. The distribution of jx in the
current loop of Fig. 14-6.

We take first a rectangular loop, and choose our coordinates as shown in
Fig. 14-6. There are no currents in the z-direction, so Az is zero. There
are currents in the x-direction on the two sides of length a. In each leg, the
current density (and current) is uniform. So the solution for Ax is just like the
electrostatic potential from two charged rods (see Fig. 14-7). Since the rods have
opposite charges, their electric potential at large distances would be just the
dipole potential (Section 6-5). At the point P in Fig. 14-6, the potential would
be

φ = 1
4πε0

p · eR
R2 , (14.28)

where p is the dipole moment of the charge distribution. The dipole moment, in
this case, is the total charge on one rod times the separation between them:

p = λab. (14.29)

The dipole moment points in the negative y-direction, so the cosine of the angle
between R and p is −y/R (where y is the coordinate of P ). So we have

φ = − 1
4πε0

λab

R2
y

R
.

We get Ax simply by replacing λ by I/c2:

Ax = − Iab

4πε0c2
y

R3 . (14.30)

By the same reasoning,

Ay = Iab

4πε0c2
x

R3 . (14.31)
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Again, Ay is proportional to x and Ax is proportional to −y, so the vector
potential (at large distances) goes in circles around the z-axis, circulating in the
same sense as I in the loop, as shown in Fig. 14-8.

x

y

z

I

µ

R

A

Fig. 14-8. The vector potential of a small
current loop at the origin (in the xy -plane);
a magnetic dipole field.

The strength of A is proportional to Iab, which is the current times the area
of the loop. This product is called the magnetic dipole moment (or, often, just
“magnetic moment”) of the loop. We represent it by µ:

µ = Iab. (14.32)

The vector potential of a small plane loop of any shape (circle, triangle, etc.) is
also given by Eqs. (14.30) and (14.31) provided we replace Iab by

µ = I · (area of the loop). (14.33)

We leave the proof of this to you.
We can put our equation in vector form if we define the direction of the

vector µ to be the normal to the plane of the loop, with a positive sense given
by the right-hand rule (Fig. 14-8). Then we can write

A = 1
4πε0c2

µ×R
R3 = 1

4πε0c2
µ× eR
R2 . (14.34)

We have still to find B. Using (14.33) and (14.34), together with (14.4), we
get

Bx = − ∂

∂z

µ

4πε0c2
x

R3 = · · · 3xz
R5 (14.35)

(where by · · · we mean µ/4πε0c2),

By = ∂

∂z

(
− · · · y

R3

)
= · · · 3yz

R5 ,

Bz = ∂

∂x

(
· · · x

R3

)
− ∂

∂y

(
− · · · y

R3

)
= − · · ·

(
1
R3 −

3z2

R5

)
.

(14.36)

The components of the B-field behave exactly like those of the E-field for
a dipole oriented along the z-axis. (See Eqs. (6.14) and (6.15); also Fig. 6-4.)
That’s why we call the loop a magnetic dipole. The word “dipole” is slightly
misleading when applied to a magnetic field because there are no magnetic “poles”
that correspond to electric charges. The magnetic “dipole field” is not produced
by two “charges,” but by an elementary current loop.

It is curious, though, that starting with completely different laws,∇·E = ρ/ε0
and ∇×B = j/ε0c

2, we can end up with the same kind of a field. Why should
that be? It is because the dipole fields appear only when we are far away from
all charges or currents. So through most of the relevant space the equations for
E and B are identical: both have zero divergence and zero curl. So they give
the same solutions. However, the sources whose configuration we summarize by
the dipole moments are physically quite different—in one case, it’s a circulating
current; in the other, a pair of charges, one above and one below the plane of the
loop for the corresponding field.

14-6 The vector potential of a circuit

We are often interested in the magnetic fields produced by circuits of wire in
which the diameter of the wire is very small compared with the dimensions of
the whole system. In such cases, we can simplify the equations for the magnetic
field. For a thin wire we can write our volume element as

dV = S ds
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where S is the cross-sectional area of the wire and ds is the element of distance
along the wire. In fact, since the vector ds is in the same direction as j, as
shown in Fig. 14-9 (and we can assume that j is constant across any given cross
section), we can write a vector equation:

j dV = jS ds. (14.37)

But jS is just what we call the current I in a wire, so our integral for the vector
potential (14.19) becomes

A(1) = 1
4πε0c2

∫
I ds2

r12
(14.38)

(see Fig. 14-10). (We assume that I is the same throughout the circuit. If
there are several branches with different currents, we should, of course, use the
appropriate I for each branch.)

S j

ds

I

Fig. 14-9. For a fine wire j dV is the
same as I ds.

1

2

r12

ds

I

Fig. 14-10. The magnetic field of a wire
can be obtained from an integral around the
circuit.

Again, we can find the fields from (14.38) either by integrating directly or by
solving the corresponding electrostatic problems.

14-7 The law of Biot and Savart

In studying electrostatics we found that the electric field of a known charge
distribution could be obtained directly with an integral, Eq. (4.16):

E(1) = 1
4πε0

∫
ρ(2)e12 dV2

r2
12

.

As we have seen, it is usually more work to evaluate this integral—there are
really three integrals, one for each component—than to do the integral for the
potential and take its gradient.

There is a similar integral which relates the magnetic field to the currents.
We already have an integral for A, Eq. (14.19); we can get an integral for B by
taking the curl of both sides:

B(1) =∇×A(1) =∇×
[

1
4πε0c2

∫
j(2) dV2

r12

]
. (14.39)

Now we must be careful: The curl operator means taking the derivatives of A(1),
that is, it operates only on the coordinates (x1, y1, z1). We can move the ∇× op-
erator inside the integral sign if we remember that it operates only on variables
with the subscript 1, which of course, appear only in

r12 = [(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]1/2. (14.40)

We have, for the x-component of B,

Bx = ∂Az
∂y1

− ∂Ay
∂z1

= 1
4πε0c2

∫ [
jz

∂

∂y1

(
1
r12

)
− jy

∂

∂z1

(
1
r12

)]
dV2

= − 1
4πε0c2

∫ [
jz
y1 − y2

r3
12

− jy
z1 − z2

r3
12

]
dV2.

(14.41)

The quantity in brackets is just the negative of the x-component of

j × r12

r3
12

= j × e12

r2
12

Corresponding results will be found for the other components, so we have

B(1) = 1
4πε0c2

∫
j(2)× e12

r2
12

dV2. (14.42)
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The integral gives B directly in terms of the known currents. The geometry
involved is the same as that shown in Fig. 14-2.

If the currents exist only in circuits of small wires we can, as in the last section,
immediately do the integral across the wire, replacing j dV by I ds, where ds is
an element of length of the wire. Then, using the symbols in Fig. 14-10,

B(1) = − 1
4πε0c2

∫
Ie12 × ds2

r2
12

. (14.43)

(The minus sign appears because we have reversed the order of the cross product.)
This equation for B is called the Biot-Savart law, after its discoverers. It gives
a formula for obtaining directly the magnetic field produced by wires carrying
currents.

You may wonder: “What is the advantage of the vector potential if we can
find B directly with a vector integral? After all, A also involves three integrals!”
Because of the cross product, the integrals for B are usually more complicated,
as is evident from Eq. (14.41). Also, since the integrals for A are like those of
electrostatics, we may already know them. Finally, we will see that in more
advanced theoretical matters (in relativity, in advanced formulations of the laws of
mechanics, like the principle of least action to be discussed later, and in quantum
mechanics) the vector potential plays an important role.
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15

The Vector Potential

15-1 The forces on a current loop; energy of a dipole

In 15-1 The forces on a current loop;
energy of a dipole

15-2 Mechanical and electrical
energies

15-3 The energy of steady currents
15-4 B versus A
15-5 The vector potential and

quantum mechanics
15-6 What is true for statics is false for

dynamics

the last chapter we studied the magnetic field produced by a small rectan-
gular current loop. We found that it is a dipole field, with the dipole moment
given by

µ = IA, (15.1)

where I is the current and A is the area of the loop. The direction of the moment
is normal to the plane of the loop, so we can also write

µ = IAn,

where n is the unit normal to the area A.
A current loop—or magnetic dipole—not only produces magnetic fields, but

will also experience forces when placed in the magnetic field of other currents.
We will look first at the forces on a rectangular loop in a uniform magnetic field.
Let the z-axis be along the direction of the field, and the plane of the loop be
placed through the y-axis, making the angle θ with the xy-plane as in Fig. 15-1.
Then the magnetic moment of the loop—which is normal to its plane—will make
the angle θ with the magnetic field.

a b

1

2

3

4

x

y

z

B

B

F1

F2

F3

F4

I

θ

µ

Fig. 15-1. A rectangular loop carrying the
current I sits in a uniform field B (in the
z-direction). The torque on the loop is τ =

µ × B, where the magnetic moment µ =

Iab.

Since the currents are opposite on opposite sides of the loop, the forces are
also opposite, so there is no net force on the loop (when the field is uniform).
Because of forces on the two sides marked 1 and 2 in the figure, however, there
is a torque which tends to rotate the loop about the y-axis. The magnitude of
these forces F1 and F2 is

F1 = F2 = IBb.

Their moment arm is
a sin θ,

so the torque is
τ = IabB sin θ,

or, since Iab is the magnetic moment of the loop,

τ = µB sin θ.

The torque can be written in vector notation:

τ = µ×B. (15.2)

Although we have only shown that the torque is given by Eq. (15.2) in one rather
special case, the result is right for a small loop of any shape, as we will see. The
same kind of relationship holds for the torque of an electric dipole in an electric
field:

τ = p×E.

We now ask about the mechanical energy of our current loop. Since there
is a torque, the energy evidently depends on the orientation. The principle of
virtual work says that the torque is the rate of change of energy with angle, so
we can write

dU = τ dθ.
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Setting τ = µB sin θ, and integrating, we can write for the energy

U = −µB cos θ + a constant. (15.3)

(The sign is negative because the torque tries to line up the moment with the
field; the energy is lowest when µ and B are parallel.)

For reasons which we will discuss later, this energy is not the total energy
of a current loop. (We have, for one thing, not taken into account the energy
required to maintain the current in the loop.) We will, therefore, call this energy
Umech, to remind us that it is only part of the energy. Also, since we are leaving
out some of the energy anyway, we can set the constant of integration equal to
zero in Eq. (15.3). So we rewrite the equation:

Umech = −µ ·B. (15.4)

Again, this corresponds to the result for an electric dipole:

U = −p ·E. (15.5)

Now the electrostatic energy U in Eq. (15.5) is the true energy, but Umech
in (15.4) is not the real energy. It can, however, be used in computing forces,
by the principle of virtual work, supposing that the current in the loop—or at
least µ—is kept constant.

We can show for our rectangular loop that Umech also corresponds to the
mechanical work done in bringing the loop into the field. The total force on the
loop is zero only in a uniform field; in a nonuniform field there are net forces on
a current loop. In putting the loop into a region with a field, we must have gone
through places where the field was not uniform, and so work was done. To make
the calculation simple, we shall imagine that the loop is brought into the field
with its moment pointing along the field. (It can be rotated to its final position
after it is in place.)

Imagine that we want to move the loop in the x-direction—toward a region
of stronger field—and that the loop is oriented as shown in Fig. 15-2. We start
somewhere where the field is zero and integrate the force times the distance as
we bring the loop into the field.

Fig. 15-2. A loop is carried along the x-
direction through the field B, at right angles
to x .

a

b
1 2

3

4

IF1 F2

B

x
x1 x2

First, let’s compute the work done on each side separately and then take the
sum (rather than adding the forces before integrating). The forces on sides 3
and 4 are at right angles to the direction of motion, so no work is done on them.
The force on side 2 is IbB(x) in the x-direction, and to get the work done against
the magnetic forces we must integrate this from some x where the field is zero,
say at x = −∞, to x2, its present position:

W2 = −
∫ x2

−∞
F2 dx = −Ib

∫ x2

−∞
B(x) dx. (15.6)

Similarly, the work done against the forces on side 1 is

W1 = −
∫ x1

−∞
F1 dx = Ib

∫ x1

−∞
B(x) dx. (15.7)
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To find each integral, we need to know how B(x) depends on x. But notice that
side 1 follows along right behind side 2, so that its integral includes most of the
work done on side 2. In fact, the sum of (15.6) and (15.7) is just

W = −Ib
∫ x2

x1

B(x) dx. (15.8)

But if we are in a region where B is nearly the same on both sides 1 and 2, we
can write the integral as∫ x2

x1

B(x) dx = (x2 − x1)B = aB,

where B is the field at the center of the loop. The total mechanical energy we
have put in is

Umech = W = −IabB = −µB. (15.9)
The result agrees with the energy we took for Eq. (15.4).

We would, of course, have gotten the same result if we had added the forces
on the loop before integrating to find the work. If we let B1 be the field at side 1
and B2 be the field at side 2, then the total force in the x-direction is

Fx = Ib(B2 −B1).

If the loop is “small,” that is, if B2 and B1 are not too different, we can write

B2 = B1 + ∂B

∂x
∆x = B1 + ∂B

∂x
a.

So the force is
Fx = Iab

∂B

∂x
. (15.10)

The total work done on the loop by external forces is

−
∫ x

−∞
Fx dx = −Iab

∫
∂B

∂x
dx = −IabB,

which is again just −µB. Only now we see why it is that the force on a small
current loop is proportional to the derivative of the magnetic field, as we would
expect from

Fx ∆x = −∆Umech = −∆(−µ ·B). (15.11)
Our result, then, is that even though Umech = −µ ·B may not include all

the energy of a system—it is a fake kind of energy—it can still be used with the
principle of virtual work to find the forces on steady current loops.

15-2 Mechanical and electrical energies

We want now to show why the energy Umech discussed in the previous section
is not the correct energy associated with steady currents—that it does not keep
track of the total energy in the world. We have, indeed, emphasized that it can
be used like the energy, for computing forces from the principle of virtual work,
provided that the current in the loop (and all other currents) do not change.
Let’s see why all this works.

Imagine that the loop in Fig. 15-2 is moving in the +x-direction and take the
z-axis in the direction of B. The conduction electrons in side 2 will experience
a force along the wire, in the y-direction. But because of their flow—as an
electric current—there is a component of their motion in the same direction as
the force. Each electron is, therefore, having work done on it at the rate Fyvy,
where vy, is the component of the electron velocity along the wire. We will call
this work done on the electrons electrical work. Now it turns out that if the
loop is moving in a uniform field, the total electrical work is zero, since positive
work is done on some parts of the loop and an equal amount of negative work is
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done on other parts. But this is not true if the circuit is moving in a nonuniform
field—then there will be a net amount of work done on the electrons. In general,
this work would tend to change the flow of the electrons, but if the current is
being held constant, energy must be absorbed or delivered by the battery or
other source that is keeping the current steady. This energy was not included
when we computed Umech in Eq. (15.9), because our computations included only
the mechanical forces on the body of the wire.

You may be thinking: But the force on the electrons depends on how fast
the wire is moved; perhaps if the wire is moved slowly enough this electrical
energy can be neglected. It is true that the rate at which the electrical energy is
delivered is proportional to the speed of the wire, but the total energy delivered
is proportional also to the time that this rate goes on. So the total electrical
energy is proportional to the velocity times the time, which is just the distance
moved. For a given distance moved in a field the same amount of electrical work
is done.

Let’s consider a segment of wire of unit length carrying the current I and
moving in a direction perpendicular to itself and to a magnetic field B with the
speed vwire. Because of the current the electrons will have a drift velocity vdrift
along the wire. The component of the magnetic force on each electron in the
direction of the drift is qevwireB. So the rate at which electrical work is being
done is Fvdrift = (qevwireB)vdrift. If there are N conduction electrons in the unit
length of the wire, the total rate at which electrical work is being done is

dUelect

dt
= NqevwireBvdrift.

But Nqevdrift = I, the current in the wire, so

dUelect

dt
= IvwireB.

Now since the current is held constant, the forces on the conduction electrons
do not cause them to accelerate; the electrical energy is not going into the
electrons but into the source that is keeping the current constant.

But notice that the force on the wire is IB, so IBvwire is also the rate of
mechanical work done on the wire, dUmech/dt = IBvwire. We conclude that the
mechanical work done on the wire is just equal to the electrical work done on
the current source, so the energy of the loop is a constant!

This is not a coincidence, but a consequence of the law we already know. The
total force on each charge in the wire is

F = q(E + v ×B).

The rate at which work is done is

v · F = q[v ·E + v · (v ×B)]. (15.12)

If there are no electric fields we have only the second term, which is always zero.
We shall see later that changing magnetic fields produce electric fields, so our
reasoning applies only to moving wires in steady magnetic fields.

How is it then that the principle of virtual work gives the right answer?
Because we still have not taken into account the total energy of the world. We
have not included the energy of the currents that are producing the magnetic
field we start out with.

Suppose we imagine a complete system such as that drawn in Fig. 15-3(a),
in which we are moving our loop with the current I1 into the magnetic field B1
produced by the current I2 in a coil. Now the current I1 in the loop will also be
producing some magnetic field B2 at the coil. If the loop is moving, the field B2
will be changing. As we shall see in the next chapter, a changing magnetic field
generates an E-field; and this E-field will do work on the charges in the coil.
This energy must also be included in our balance sheet of the total energy.

15-4



I1

B1

B2

I2

I2

(a)

v

Loop I1

B1

B2

I2

I2

(b)

v

Fig. 15-3. Finding the energy of a small loop in a magnetic field.

We could wait until the next chapter to find out about this new energy term,
but we can also see what it will be if we use the principle of relativity in the
following way. When we are moving the loop toward the stationary coil we know
that its electrical energy is just equal and opposite to the mechanical work done. So

Umech + Uelect(loop) = 0.

Suppose now we look at what is happening from a different point of view, in
which the loop is at rest, and the coil is moved toward it. The coil is then moving
into the field produced by the loop. The same arguments would give that

Umech + Uelect(coil) = 0.

The mechanical energy is the same in the two cases because it comes from the
force between the two circuits.

The sum of the two equations gives

2Umech + Uelect(loop) + Uelect(coil) = 0.

The total energy of the whole system is, of course, the sum of the two electrical
energies plus the mechanical energy taken only once. So we have

Utotal = Uelect(loop) + Uelect(coil) + Umech = −Umech. (15.13)

The total energy of the world is really the negative of Umech. If we want the
true energy of a magnetic dipole, for example, we should write

Utotal = +µ ·B.

It is only if we make the condition that all currents are constant that we can
use only a part of the energy, Umech (which is always the negative of the true
energy), to find the mechanical forces. In a more general problem, we must be
careful to include all energies.

We have seen an analogous situation in electrostatics. We showed that the
energy of a capacitor is equal to Q2/2C. When we use the principle of virtual
work to find the force between the plates of the capacitor, the change in energy
is equal to Q2/2 times the change in 1/C. That is,

∆U = Q2

2 ∆
(

1
C

)
= −Q

2

2
∆C
C2 . (15.14)

Now suppose that we were to calculate the work done in moving two conductors
subject to the different condition that the voltage between them is held constant.
Then we can get the right answers for force from the principle of virtual work if we
do something artificial. Since Q = CV , the real energy is 1

2CV
2. But if we define

an artificial energy equal to − 1
2CV

2, then the principle of virtual work can be used
to get forces by setting the change in the artificial energy equal to the mechanical
work, provided that we insist that the voltage V be held constant. Then

∆Umech = ∆
(
−CV

2

2

)
= −V

2

2 ∆C, (15.15)
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which is the same as Eq. (15.14). We get the correct result even though we are
neglecting the work done by the electrical system to keep the voltage constant.
Again, this electrical energy is just twice as big as the mechanical energy and
of the opposite sign.

Thus if we calculate artificially, disregarding the fact that the source of the
potential has to do work to maintain the voltages constant, we get the right
answer. It is exactly analogous to the situation in magnetostatics.

15-3 The energy of steady currents

We can now use our knowledge that Utotal = −Umech to find the true energy
of steady currents in magnetic fields. We can begin with the true energy of a
small current loop. Calling Utotal just U , we write

U = µ ·B. (15.16)

Although we calculated this energy for a plane rectangular loop, the same result
holds for a small plane loop of any shape.

Loop Γ

Surface S

B

n

I

I

I

I

I

I

I

Fig. 15-4. The energy of a large loop in
a magnetic field can be considered as the
sum of energies of smaller loops.

We can find the energy of a circuit of any shape by imagining that it is made
up of small current loops. Say we have a wire in the shape of the loop Γ of
Fig. 15-4. We fill in this curve with the surface S, and on the surface mark out a
large number of small loops, each of which can be considered plane. If we let the
current I circulate around each of the little loops, the net result will be the same
as a current around Γ, since the currents will cancel on all lines internal to Γ.
Physically, the system of little currents is indistinguishable from the original
circuit. The energy must also be the same, and so is just the sum of the energies
of the little loops.

If the area of each little loop is ∆a, its energy is I∆aBn, where Bn is the
component normal to ∆a. The total energy is

U =
∑

IBn ∆a.

Going to the limit of infinitesimal loops, the sum becomes an integral, and

U = I

∫
Bn da = I

∫
B · n da, (15.17)

where n is the unit normal to da.
If we set B =∇×A, we can connect the surface integral to a line integral,

using Stokes’ theorem,

I

∫
S

(∇×A) · n da = I

∮
Γ
A · ds, (15.18)

where ds is the line element along Γ. So we have the energy for a circuit of any
shape:

U = I

∮
circuit

A · ds, (15.19)

In this expression A refers, of course, to the vector potential due to those currents
(other than the I in the wire) which produce the field B at the wire.

Now any distribution of steady currents can be imagined to be made up of
filaments that run parallel to the lines of current flow. For each pair of such
circuits, the energy is given by (15.19), where the integral is taken around one
circuit, using the vector potential A from the other circuit. For the total energy
we want the sum of all such pairs. If, instead of keeping track of the pairs, we
take the complete sum over all the filaments, we would be counting the energy
twice (we saw a similar effect in electrostatics), so the total energy can be written

U = 1
2

∫
j ·A dV. (15.20)
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This formula corresponds to the result we found for the electrostatic energy:

U = 1
2

∫
ρφ dV. (15.21)

So we may if we wish think of A as a kind of potential for currents in magne-
tostatics. Unfortunately, this idea is not too useful, because it is true only for
static fields. In fact, neither of the equations (15.20) and (15.21) gives the correct
energy when the fields change with time.

15-4 B versus A

In this section we would like to discuss the following questions: Is the vector
potential merely a device which is useful in making calculations—as the scalar
potential is useful in electrostatics—or is the vector potential a “real” field? Isn’t
the magnetic field the “real” field, because it is responsible for the force on a
moving particle? First we should say that the phrase “a real field” is not very
meaningful. For one thing, you probably don’t feel that the magnetic field is very
“real” anyway, because even the whole idea of a field is a rather abstract thing.
You cannot put out your hand and feel the magnetic field. Furthermore, the value
of the magnetic field is not very definite; by choosing a suitable moving coordinate
system, for instance, you can make a magnetic field at a given point disappear.

What we mean here by a “real” field is this: a real field is a mathematical
function we use for avoiding the idea of action at a distance. If we have a charged
particle at the position P , it is affected by other charges located at some distance
from P . One way to describe the interaction is to say that the other charges
make some “condition”—whatever it may be—in the environment at P . If we
know that condition, which we describe by giving the electric and magnetic fields,
then we can determine completely the behavior of the particle—with no further
reference to how those conditions came about.

In other words, if those other charges were altered in some way, but the
conditions at P that are described by the electric and magnetic field at P remain
the same, then the motion of the charge will also be the same. A “real” field is
then a set of numbers we specify in such a way that what happens at a point
depends only on the numbers at that point. We do not need to know any more
about what’s going on at other places. It is in this sense that we will discuss
whether the vector potential is a “real” field.

You may be wondering about the fact that the vector potential is not unique—
that it can be changed by adding the gradient of any scalar with no change at
all in the forces on particles. That has not, however, anything to do with the
question of reality in the sense that we are talking about. For instance, the
magnetic field is in a sense altered by a relativity change (as are also E and A).
But we are not worried about what happens if the field can be changed in this
way. That doesn’t really make any difference; that has nothing to do with the
question of whether the vector potential is a proper “real” field for describing
magnetic effects, or whether it is just a useful mathematical tool.

We should also make some remarks on the usefulness of the vector potential A.
We have seen that it can be used in a formal procedure for calculating the
magnetic fields of known currents, just as φ can be used to find electric fields. In
electrostatics we saw that φ was given by the scalar integral

φ(1) = 1
4πε0

∫
ρ(2)
r12

dV2. (15.22)

From this φ, we get the three components of E by three differential operations.
This procedure is usually easier to handle than evaluating the three integrals in
the vector formula

E(1) = 1
4πε0

∫
ρ(2)e12

r2
12

dV2. (15.23)

First, there are three integrals; and second, each integral is in general somewhat
more difficult.
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The advantages are much less clear for magnetostatics. The integral for A is
already a vector integral:

A(1) = 1
4πε0c2

∫
j(2) dV2

r12
, (15.24)

which is, of course, three integrals. Also, when we take the curl of A to get B,
we have six derivatives to do and combine by pairs. It is not immediately obvious
whether in most problems this procedure is really any easier than computing B
directly from

B(1) = 1
4πε0c2

∫
j(2)× e12

r2
12

dV2. (15.25)

Using the vector potential is often more difficult for simple problems for the
following reason. Suppose we are interested only in the magnetic field B at one
point, and that the problem has some nice symmetry—say we want the field at a
point on the axis of a ring of current. Because of the symmetry, we can easily
get B by doing the integral of Eq. (15.25). If, however, we were to find A first,
we would have to compute B from derivatives of A, so we must know what A is
at all points in the neighborhood of the point of interest. And most of these points
are off the axis of symmetry, so the integral for A gets complicated. In the ring
problem, for example, we would need to use elliptic integrals. In such problems,
A is clearly not very useful. It is true that in many complex problems it is easier
to work with A, but it would be hard to argue that this ease of technique would
justify making you learn about one more vector field.

We have introduced A because it does have an important physical significance.
Not only is it related to the energies of currents, as we saw in the last section, but
it is also a “real” physical field in the sense that we described above. In classical
mechanics it is clear that we can write the force on a particle as

F = q(E + v ×B), (15.26)

so that, given the forces, everything about the motion is determined. In any
region where B = 0 even if A is not zero, such as outside a solenoid, there is
no discernible effect of A. Therefore for a long time it was believed that A was
not a “real” field. It turns out, however, that there are phenomena involving
quantum mechanics which show that the field A is in fact a “real” field in the
sense we have defined it. In the next section we will show you how that works.

15-5 The vector potential and quantum mechanics

There are many changes in what concepts are important when we go from
classical to quantum mechanics. We have already discussed some of them in
Vol. I. In particular, the force concept gradually fades away, while the concepts
of energy and momentum become of paramount importance. You remember
that instead of particle motions, one deals with probability amplitudes which
vary in space and time. In these amplitudes there are wavelengths related to
momenta, and frequencies related to energies. The momenta and energies, which
determine the phases of wave functions, are therefore the important quantities in
quantum mechanics. Instead of forces, we deal with the way interactions change
the wavelength of the waves. The idea of a force becomes quite secondary—if it
is there at all. When people talk about nuclear forces, for example, what they
usually analyze and work with are the energies of interaction of two nucleons,
and not the force between them. Nobody ever differentiates the energy to find
out what the force looks like. In this section we want to describe how the vector
and scalar potentials enter into quantum mechanics. It is, in fact, just because
momentum and energy play a central role in quantum mechanics that A and φ
provide the most direct way of introducing electromagnetic effects into quantum
descriptions.

We must review a little how quantum mechanics works. We will consider
again the imaginary experiment described in Chapter 37 of Vol. I, in which
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Fig. 15-5. An interference experiment with electrons (see
also Chapter 37 of Vol. I).

electrons are diffracted by two slits. The arrangement is shown again in Fig. 15-5.
Electrons, all of nearly the same energy, leave the source and travel toward a wall
with two narrow slits. Beyond the wall is a “backstop” with a movable detector.
The detector measures the rate, which we call I, at which electrons arrive at a
small region of the backstop at the distance x from the axis of symmetry. The
rate is proportional to the probability that an individual electron that leaves
the source will reach that region of the backstop. This probability has the
complicated-looking distribution shown in the figure, which we understand as due
to the interference of two amplitudes, one from each slit. The interference of the
two amplitudes depends on their phase difference. That is, if the amplitudes are
C1e

iΦ1 and C2e
iΦ2 , the phase difference δ = Φ1−Φ2 determines their interference

pattern [see Eq. (29.12) in Vol. I]. If the distance between the screen and the
slits is L, and if the difference in the path lengths for electrons going through
the two slits is a, as shown in the figure, then the phase difference of the two
waves is given by

δ = a

λ
. (15.27)

As usual, we let λ = λ/2π, where λ is the wavelength of the space variation of
the probability amplitude. For simplicity, we will consider only values of x much
less than L; then we can set

a = x

L
d

and
δ = x

L

d

λ
. (15.28)

When x is zero, δ is zero; the waves are in phase, and the probability has a
maximum. When δ is π, the waves are out of phase, they interfere destructively,
and the probability is a minimum. So we get the wavy function for the electron
intensity.

Now we would like to state the law that for quantum mechanics replaces
the force law F = qv ×B. It will be the law that determines the behavior of
quantum-mechanical particles in an electromagnetic field. Since what happens
is determined by amplitudes, the law must tell us how the magnetic influences
affect the amplitudes; we are no longer dealing with the acceleration of a particle.
The law is the following: the phase of the amplitude to arrive via any trajectory
is changed by the presence of a magnetic field by an amount equal to the integral
of the vector potential along the whole trajectory times the charge of the particle
over Planck’s constant. That is,

Magnetic change in phase = q

~

∫
trajectory

A · ds. (15.29)
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If there were no magnetic field there would be a certain phase of arrival. If there
is a magnetic field anywhere, the phase of the arriving wave is increased by the
integral in Eq. (15.29).

Although we will not need to use it for our present discussion, we mention
that the effect of an electrostatic field is to produce a phase change given by the
negative of the time integral of the scalar potential φ:

Electric change in phase = − q
~

∫
φdt.

These two expressions are correct not only for static fields, but together give the
correct result for any electromagnetic field, static or dynamic. This is the law
that replaces F = q(E + v ×B). We want now, however, to consider only a
static magnetic field.

Suppose that there is a magnetic field present in the two-slit experiment. We
want to ask for the phase of arrival at the screen of the two waves whose paths
pass through the two slits. Their interference determines where the maxima in
the probability will be. We may call Φ1 the phase of the wave along trajectory (1).
If Φ1(B = 0) is the phase without the magnetic field, then when the field is
turned on the phase will be

Φ1 = Φ1(B = 0) + q

~

∫
(1)
A · ds. (15.30)

Similarly, the phase for trajectory (2) is

Φ2 = Φ2(B = 0) + q

~

∫
(2)
A · ds. (15.31)

The interference of the waves at the detector depends on the phase difference

δ = Φ1(B = 0)− Φ2(B = 0) + q

~

∫
(1)
A · ds− q

~

∫
(2)
A · ds. (15.32)

The no-field difference we will call δ(B = 0); it is just the phase difference we
have calculated above in Eq. (15.28). Also, we notice that the two integrals can
be written as one integral that goes forward along (1) and back along (2); we
call this the closed path (1–2). So we have

δ = δ(B = 0) + q

~

∮
(1–2)

A · ds. (15.33)

This equation tells us how the electron motion is changed by the magnetic field;
with it we can find the new positions of the intensity maxima and minima at the
backstop.

Before we do that, however, we want to raise the following interesting and
important point. You remember that the vector potential function has some
arbitrariness. Two different vector potential functions A and A′ whose difference
is the gradient of some scalar function ∇ψ, both represent the same magnetic
field, since the curl of a gradient is zero. They give, therefore, the same classical
force qv×B. If in quantum mechanics the effects depend on the vector potential,
which of the many possible A-functions is correct?

The answer is that the same arbitrariness in A continues to exist for quantum
mechanics. If in Eq. (15.33) we change A to A′ = A+∇ψ, the integral on A
becomes ∮

(1–2)
A′ · ds =

∮
(1–2)

A · ds+
∮

(1–2)
∇ψ · ds.

The integral of ∇ψ is around the closed path (1–2), but the integral of the
tangential component of a gradient on a closed path is always zero, by Stokes’
theorem. Therefore both A and A′ give the same phase differences and the same
quantum-mechanical interference effects. In both classical and quantum theory
it is only the curl of A that matters; any choice of the function of A which has
the correct curl gives the correct physics.
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The same conclusion is evident if we use the results of Section 14-1. There we
found that the line integral of A around a closed path is the flux of B through
the path, which here is the flux between paths (1) and (2). Equation (15.33) can,
if we wish, be written as

δ = δ(B = 0) + q

~
[flux of B between (1) and (2)], (15.34)

where by the flux of B we mean, as usual, the surface integral of the normal com-
ponent of B. The result depends only on B, and therefore only on the curl of A.

Now because we can write the result in terms of B as well as in terms of A,
you might be inclined to think that the B holds its own as a “real” field and that
the A can still be thought of as an artificial construction. But the definition of
“real” field that we originally proposed was based on the idea that a “real” field
would not act on a particle from a distance. We can, however, give an example
in which B is zero—or at least arbitrarily small—at any place where there is
some chance to find the particles, so that it is not possible to think of it acting
directly on them.

J

B

A

Fig. 15-6. The magnetic field and vector
potential of a long solenoid.

You remember that for a long solenoid carrying an electric current there is a
B-field inside but none outside, while there is lots of A circulating around outside,
as shown in Fig. 15-6. If we arrange a situation in which electrons are to be
found only outside of the solenoid—only where there is A—there will still be an
influence on the motion, according to Eq. (15.33). Classically, that is impossible.
Classically, the force depends only on B; in order to know that the solenoid is
carrying current, the particle must go through it. But quantum-mechanically you
can find out that there is a magnetic field inside the solenoid by going around
it—without ever going close to it!

Suppose that we put a very long solenoid of small diameter just behind the
wall and between the two slits, as shown in Fig. 15-7. The diameter of the
solenoid is to be much smaller than the distance d between the two slits. In these
circumstances, the diffraction of the electrons at the slit gives no appreciable
probability that the electrons will get near the solenoid. What will be the effect
on our interference experiment?
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Fig. 15-7. A magnetic field can influence the motion of electrons even though
it exists only in regions where there is an arbitrarily small probability of finding the
electrons.

We compare the situation with and without a current through the solenoid.
If we have no current, we have no B or A and we get the original pattern of
electron intensity at the backstop. If we turn the current on in the solenoid and
build up a magnetic field B inside, then there is an A outside. There is a shift
in the phase difference proportional to the circulation of A outside the solenoid,
which will mean that the pattern of maxima and minima is shifted to a new
position. In fact, since the flux of B inside is a constant for any pair of paths,
so also is the circulation of A. For every arrival point there is the same phase
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change; this corresponds to shifting the entire pattern in x by a constant amount,
say x0, that we can easily calculate. The maximum intensity will occur where the
phase difference between the two waves is zero. Using Eq. (15.33) or Eq. (15.34)
for δ and Eq. (15.28) for x, we have

x0 = −L
d
λ
q

~

∮
(1–2)

A · ds, (15.35)

or
x0 = −L

d
λ
q

~
[flux of B between (1) and (2)]. (15.36)

The pattern with the solenoid in place should appear* as shown in Fig. 15-7. At
least, that is the prediction of quantum mechanics.

Precisely this experiment has recently been done. It is a very, very difficult
experiment. Because the wavelength of the electrons is so small, the apparatus
must be on a tiny scale to observe the interference. The slits must be very close
together, and that means that one needs an exceedingly small solenoid. It turns
out that in certain circumstances, iron crystals will grow in the form of very long,
microscopically thin filaments called whiskers. When these iron whiskers are
magnetized they are like a tiny solenoid, and there is no field outside except near
the ends. The electron interference experiment was done with such a whisker
between two slits, and the predicted displacement in the pattern of electrons was
observed.

In our sense then, the A-field is “real.” You may say: “But there was a
magnetic field.” There was, but remember our original idea—that a field is “real”
if it is what must be specified at the position of the particle in order to get the
motion. The B-field in the whisker acts at a distance. If we want to describe its
influence not as action-at-a-distance, we must use the vector potential.

This subject has an interesting history. The theory we have described was
known from the beginning of quantum mechanics in 1926. The fact that the
vector potential appears in the wave equation of quantum mechanics (called the
Schrödinger equation) was obvious from the day it was written. That it cannot
be replaced by the magnetic field in any easy way was observed by one man after
the other who tried to do so. This is also clear from our example of electrons
moving in a region where there is no field and being affected nevertheless. But
because in classical mechanics A did not appear to have any direct importance
and, furthermore, because it could be changed by adding a gradient, people
repeatedly said that the vector potential had no direct physical significance—that
only the magnetic and electric fields are “right” even in quantum mechanics. It
seems strange in retrospect that no one thought of discussing this experiment
until 1956, when Bohm and Aharonov first suggested it and made the whole
question crystal clear. The implication was there all the time, but no one paid
attention to it. Thus many people were rather shocked when the matter was
brought up. That’s why someone thought it would be worth while to do the
experiment to see that it really was right, even though quantum mechanics, which
had been believed for so many years, gave an unequivocal answer. It is interesting
that something like this can be around for thirty years but, because of certain
prejudices of what is and is not significant, continues to be ignored.

Now we wish to continue in our analysis a little further. We will show the
connection between the quantum-mechanical formula and the classical formula—
to show why it turns out that if we look at things on a large enough scale it will
look as though the particles are acted on by a force equal to qv × the curl of A.
To get classical mechanics from quantum mechanics, we need to consider cases
in which all the wavelengths are very small compared with distances over which
external conditions, like fields, vary appreciably. We shall not prove the result in
great generality, but only in a very simple example, to show how it works. Again
we consider the same slit experiment. But instead of putting all the magnetic

* If the field B comes out of the plane of the figure, the flux as we have defined it is positive
and since q for electrons is negative, x0 is positive.
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Fig. 15-8. The shift of the interference pattern due to a strip of magnetic field.

field in a very tiny region between the slits, we imagine a magnetic field that
extends over a larger region behind the slits, as shown in Fig. 15-8. We will take
the idealized case where we have a magnetic field which is uniform in a narrow
strip of width w, considered small as compared with L. (That can easily be
arranged; the backstop can be put as far out as we want.) In order to calculate
the shift in phase, we must take the two integrals of A along the two trajectories
(1) and (2). They differ, as we have seen, merely by the flux of B between the
paths. To our approximation, the flux is Bwd. The phase difference for the two
paths is then

δ = δ(B = 0) + q

~
Bwd. (15.37)

We note that, to our approximation, the phase shift is independent of the angle.
So again the effect will be to shift the whole pattern upward by an amount ∆x.
Using Eq. (15.35),

∆x = −Lλ
d

∆δ = −Lλ
d

[δ − δ(B = 0)].

Using (15.37) for δ − δ(B = 0),

∆x = −Lλ q
~
Bw. (15.38)

Such a shift is equivalent to deflecting all the trajectories by the small angle α
(see Fig. 15-8), where

α = ∆x
L

= −λ
~
qBw. (15.39)
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Fig. 15-9. Deflection of a particle due to
passage through a strip of magnetic field.

Now classically we would also expect a thin strip of magnetic field to deflect
all trajectories through some small angle, say α′, as shown in Fig. 15-9(a). As
the electrons go through the magnetic field, they feel a transverse force qv ×B
which lasts for a time w/v. The change in their transverse momentum is just
equal to this impulse, so

∆px = −qwB. (15.40)

The angular deflection [Fig. 15-9(b)] is equal to the ratio of this transverse
momentum to the total momentum p. We get that

α′ = ∆px
p

= −qwB
p

. (15.41)

We can compare this result with Eq. (15.39), which gives the same quantity
computed quantum-mechanically. But the connection between classical mechanics
and quantum mechanics is this: A particle of momentum p corresponds to a
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quantum amplitude varying with the wavelength λ = ~/p. With this equality, α
and α′ are identical; the classical and quantum calculations give the same result.

From the analysis we see how it is that the vector potential which appears in
quantum mechanics in an explicit form produces a classical force which depends
only on its derivatives. In quantum mechanics what matters is the interference
between nearby paths; it always turns out that the effects depend only on
how much the field A changes from point to point, and therefore only on the
derivatives of A and not on the value itself. Nevertheless, the vector potential A
(together with the scalar potential φ that goes with it) appears to give the most
direct description of the physics. This becomes more and more apparent the
more deeply we go into the quantum theory. In the general theory of quantum
electrodynamics, one takes the vector and scalar potentials as the fundamental
quantities in a set of equations that replace the Maxwell equations: E and B
are slowly disappearing from the modern expression of physical laws; they are
being replaced by A and φ.

15-6 What is true for statics is false for dynamics

We are now at the end of our exploration of the subject of static fields. Already
in this chapter we have come perilously close to having to worry about what
happens when fields change with time. We were barely able to avoid it in our
treatment of magnetic energy by taking refuge in a relativistic argument. Even
so, our treatment of the energy problem was somewhat artificial and perhaps
even mysterious, because we ignored the fact that moving coils must, in fact,
produce changing fields. It is now time to take up the treatment of time-varying
fields—the subject of electrodynamics. We will do so in the next chapter. First,
however, we would like to emphasize a few points.

Although we began this course with a presentation of the complete and correct
equations of electromagnetism, we immediately began to study some incomplete
pieces—because that was easier. There is a great advantage in starting with the
simpler theory of static fields, and proceeding only later to the more complicated
theory which includes dynamic fields. There is less new material to learn all at
once, and there is time for you to develop your intellectual muscles in preparation
for the bigger task.

But there is the danger in this process that before we get to see the complete
story, the incomplete truths learned on the way may become ingrained and taken
as the whole truth—that what is true and what is only sometimes true will
become confused. So we give in Table 15-1 a summary of the important formulas
we have covered, separating those which are true in general from those which are
true for statics, but false for dynamics. This summary also shows, in part, where
we are going, since as we treat dynamics we will be developing in detail what we
must just state here without proof.

It may be useful to make a few remarks about the table. First, you should
notice that the equations we started with are the true equations—we have not
misled you there. The electromagnetic force (often called the Lorentz force)
F = q(E + v ×B) is true. It is only Coulomb’s law that is false, to be used
only for statics. The four Maxwell equations for E and B are also true. The
equations we took for statics are false, of course, because we left off all terms
with time derivatives.

Gauss’ law, ∇ ·E = ρ/ε0, remains, but the curl of E is not zero in general.
So E cannot always be equated to the gradient of a scalar—the electrostatic
potential. We will see that a scalar potential still remains, but it is a time-
varying quantity that must be used together with vector potentials for a complete
description of the electric field. The equations governing this new scalar potential
are, necessarily, also new.

We must also give up the idea that E is zero in conductors. When the fields
are changing, the charges in conductors do not, in general, have time to rearrange
themselves to make the field zero. They are set in motion, but never reach
equilibrium. The only general statement is: electric fields in conductors produce
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Table 15-1

FALSE IN GENERAL (true only for statics) TRUE ALWAYS

F = 1
4πε0

q1q2

r2 (Coulomb’s law) F = q(E + v ×B) (Lorentz force)

∇ ·E = ρ

ε0
(Gauss’ law)

∇×E = 0 ∇×E = −∂B
∂t

(Faraday’s law)

E = −∇φ E = −∇φ− ∂A

∂t

E(1) = 1
4πε0

∫
ρ(2)e12

r2
12

dV2

For conductors, E = 0, φ = constant. Q = CV In a conductor, E makes currents.

∇ ·B = 0 (No magnetic charges)

B =∇×A

c2∇×B = j

ε0
(Ampère’s law) c2∇×B = j

ε0
+ ∂E

∂t

B(1) = 1
4πε0c2

∫
j(2)× e12

r2
12

dV2

∇2φ = − ρ

ε0
(Poisson’s equation)



∇2φ− 1
c2
∂2φ

∂t2
= − ρ

ε0
and

∇2A = − j

ε0c2
∇2A− 1

c2
∂2A

∂t2
= − j

ε0c2

with with

∇ ·A = 0 c2∇ ·A+ ∂φ

∂t
= 0

φ(1) = 1
4πε0

∫
ρ(2)
r12

dV2


φ(1, t) = 1
4πε0

∫
ρ(2, t′)
r12

dV2

and

A(1) = 1
4πε0c2

∫
j(2)
r12

dV2 A(1, t) = 1
4πε0c2

∫
j(2, t′)
r12

dV2

with
t′ = t− r12

c

U = 1
2

∫
ρφ dV + 1

2

∫
j ·A dV U =

∫ (
ε0
2 E ·E + ε0c

2

2 B ·B
)
dV

The equations marked with ( ) are Maxwell’s equations.
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currents. So in varying fields a conductor is not an equipotential. It also follows
that the idea of a capacitance is no longer precise.

Since there are no magnetic charges, the divergence of B is always zero. So B
can always be equated to∇×A. (Everything doesn’t change!) But the generation
of B is not only from currents; ∇×B is proportional to the current density plus
a new term ∂E/∂t. This means that A is related to currents by a new equation.
It is also related to φ. If we make use of our freedom to choose ∇ ·A for our
own convenience, the equations for A or φ can be arranged to take on a simple
and elegant form. We therefore make the condition that c2∇ ·A = −∂φ/∂t, and
the differential equations for A or φ appear as shown in the table.

The potentials A and φ can still be found by integrals over the currents and
charges, but not the same integrals as for statics. Most wonderfully, though, the
true integrals are like the static ones, with only a small and physically appealing
modification. When we do the integrals to find the potentials at some point, say
point (1) in Fig. 15-10, we must use the values of j and ρ at the point (2) at an
earlier time t′ = t− r12/c. As you would expect, the influences propagate from
point (2) to point (1) at the speed c. With this small change, one can solve for
the fields of varying currents and charges, because once we have A and φ, we
get B from ∇×A, as before, and E from −∇φ− ∂A/∂t.

Fig. 15-10. The potentials at point (1)

and at the time t are given by summing
the contributions from each element of the
source at the roving point (2), using the
currents and charges which were present at
the earlier time t − r12/c.

(1, t)

(2, t −
r12

c
)

r12

Finally, you will notice that some results—for example, that the energy density
in an electric field is ε0E2/2—are true for electrodynamics as well as for statics.
You should not be misled into thinking that this is at all “natural.” The validity
of any formula derived in the static case must be demonstrated over again for the
dynamic case. A contrary example is the expression for the electrostatic energy
in terms of a volume integral of ρφ. This result is true only for statics.

We will consider all these matters in more detail in due time, but it will
perhaps be useful to keep in mind this summary, so you will know what you can
forget, and what you should remember as always true.
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16

Induced Currents

16-1 Motors and generators

The 16-1 Motors and generators
16-2 Transformers and inductances
16-3 Forces on induced currents
16-4 Electrical technology

discovery in 1820 that there was a close connection between electricity and
magnetism was very exciting—until then, the two subjects had been considered as
quite independent. The first discovery was that currents in wires make magnetic
fields; then, in the same year, it was found that wires carrying current in a
magnetic field have forces on them.

One of the excitements whenever there is a mechanical force is the possibility
of using it in an engine to do work. Almost immediately after their discovery,
people started to design electric motors using the forces on current-carrying wires.
The principle of the electromagnetic motor is shown in bare outline in Fig. 16-1.
A permanent magnet—usually with some pieces of soft iron—is used to produce
a magnetic field in two slots. Across each slot there is a north and south pole, as
shown. A rectangular coil of copper is placed with one side in each slot. When a
current passes through the coil, it flows in opposite directions in the two slots, so
the forces are also opposite, producing a torque on the coil about the axis shown.
If the coil is mounted on a shaft so that it can turn, it can be coupled to pulleys
or gears and can do work.
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Fig. 16-1. Schematic outline of a simple
electromagnetic motor.

The same idea can be used for making a sensitive instrument for electrical
measurements. Thus the moment the force law was discovered the precision of
electrical measurements was greatly increased. First, the torque of such a motor
can be made much greater for a given current by making the current go around
many turns instead of just one. Then the coil can be mounted so that it turns with
very little torque—either by supporting its shaft on very delicate jewel bearings
or by hanging the coil on a very fine wire or a quartz fiber. Then an exceedingly
small current will make the coil turn, and for small angles the amount of rotation
will be proportional to the current. The rotation can be measured by gluing a
pointer to the coil or, for the most delicate instruments, by attaching a small
mirror to the coil and looking at the shift of the image of a scale. Such instruments
are called galvanometers. Voltmeters and ammeters work on the same principle.

The same ideas can be applied on a large scale to make large motors for
providing mechanical power. The coil can be made to go around and around by
arranging that the connections to the coil are reversed each half-turn by contacts
mounted on the shaft. Then the torque is always in the same direction. Small
dc motors are made just this way. Larger motors, dc or ac, are often made
by replacing the permanent magnet by an electromagnet, energized from the
electrical power source.

With the realization that electric currents make magnetic fields, people
immediately suggested that, somehow or other, magnets might also make electric
fields. Various experiments were tried. For example, two wires were placed
parallel to each other and a current was passed through one of them in the
hope of finding a current in the other. The thought was that the magnetic field
might in some way drag the electrons along in the second wire, giving some
such law as “likes prefer to move alike.” With the largest available current and
the most sensitive galvanometer to detect any current, the result was negative.
Large magnets next to wires also produced no observed effects. Finally, Faraday
discovered in 1840 the essential feature that had been missed—that electric effects
exist only when there is something changing. If one of a pair of wires has a
changing current, a current is induced in the other, or if a magnet is moved near
an electric circuit, there is a current. We say that currents are induced. This was
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the induction effect discovered by Faraday. It transformed the rather dull subject
of static fields into a very exciting dynamic subject with an enormous range of
wonderful phenomena. This chapter is devoted to a qualitative description of
some of them. As we will see, one can quickly get into fairly complicated situations
that are hard to analyze quantitatively in all their details. But never mind, our
main purpose in this chapter is first to acquaint you with the phenomena involved.
We will take up the detailed analysis later.

We can easily understand one feature of magnetic induction from what we
already know, although it was not known in Faraday’s time. It comes from the
v×B force on a moving charge that is proportional to its velocity in a magnetic
field. Suppose that we have a wire which passes near a magnet, as shown in
Fig. 16-2, and that we connect the ends of the wire to a galvanometer. If we
move the wire across the end of the magnet the galvanometer pointer moves.

The magnet produces some vertical magnetic field, and when we push the wire
across the field, the electrons in the wire feel a sideways force—at right angles to
the field and to the motion. The force pushes the electrons along the wire. But
why does this move the galvanometer, which is so far from the force? Because
when the electrons which feel the magnetic force try to move, they push—by
electric repulsion—the electrons a little farther down the wire; they, in turn, repel
the electrons a little farther on, and so on for a long distance. An amazing thing.

It was so amazing to Gauss and Weber—who first built a galvanometer—that
they tried to see how far the forces in the wire would go. They strung a wire
all the way across their city. Mr. Gauss, at one end, connected the wires to
a battery (batteries were known before generators) and Mr. Weber watched
the galvanometer move. They had a way of signaling long distances—it was
the beginning of the telegraph! Of course, this has nothing directly to do with
induction—it has to do with the way wires carry currents, whether the currents
are pushed by induction or not.

Now suppose in the setup of Fig. 16-2 we leave the wire alone and move
the magnet. We still see an effect on the galvanometer. As Faraday discovered,
moving the magnet under the wire—one way—has the same effect as moving
the wire over the magnet—the other way. But when the magnet is moved, we no
longer have any v×B force on the electrons in the wire. This is the new effect that
Faraday found. Today, we might hope to understand it from a relativity argument.

We already understand that the magnetic field of a magnet comes from its
internal currents. So we expect to observe the same effect if instead of a magnet
in Fig. 16-2 we use a coil of wire in which there is a current. If we move the wire
past the coil there will be a current through the galvanometer, or also if we move
the coil past the wire. But there is now a more exciting thing: If we change the
magnetic field of the coil not by moving it, but by changing its current, there is
again an effect in the galvanometer. For example, if we have a loop of wire near
a coil, as shown in Fig. 16-3, and if we keep both of them stationary but switch
off the current, there is a pulse of current through the galvanometer. When we
switch the coil on again, the galvanometer kicks in the other direction.

Whenever the galvanometer in a situation such as the one shown in Fig. 16-2,
or in Fig. 16-3, has a current, there is a net push on the electrons in the wire in one
direction along the wire. There may be pushes in different directions at different
places, but there is more push in one direction than another. What counts is
the push integrated around the complete circuit. We call this net integrated
push the electromotive force (abbreviated emf) in the circuit. More precisely, the
emf is defined as the tangential force per unit charge in the wire integrated over
length, once around the complete circuit. Faraday’s complete discovery was that
emf’s can be generated in a wire in three different ways: by moving the wire, by
moving a magnet near the wire, or by changing a current in a nearby wire.

Let’s consider the simple machine of Fig. 16-1 again, only now, instead of
putting a current through the wire to make it turn, let’s turn the loop by an
external force, for example by hand or by a waterwheel. When the coil rotates,
its wires are moving in the magnetic field and we will find an emf in the circuit
of the coil. The motor becomes a generator.
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Fig. 16-2. Moving a wire through a magnetic field pro-
duces a current, as shown by the galvanometer.
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Fig. 16-3. A coil with current produces a current
in a second coil if the first coil is moved or if its
current is changed.

The coil of the generator has an induced emf from its motion. The amount of
the emf is given by a simple rule discovered by Faraday. (We will just state the
rule now and wait until later to examine it in detail.) The rule is that when the
magnetic flux that passes through the loop (this flux is the normal component
ofB integrated over the area of the loop) is changing with time, the emf is equal to
the rate of change of the flux. We will refer to this as “the flux rule.” You see that
when the coil of Fig. 16-1 is rotated, the flux through it changes. At the start some
flux goes through one way; then when the coil has rotated 180◦ the same flux goes
through the other way. If we continuously rotate the coil the flux is first positive,
then negative, then positive, and so on. The rate of change of the flux must
alternate also. So there is an alternating emf in the coil. If we connect the two ends
of the coil to outside wires through some sliding contacts—called slip-rings—(just
so the wires won’t get twisted) we have an alternating-current generator.

Or we can also arrange, by means of some sliding contacts, that after every
one-half rotation, the connection between the coil ends and the outside wires is
reversed, so that when the emf reverses, so do the connections. Then the pulses of
emf will always push currents in the same direction through the external circuit.
We have what is called a direct-current generator.

The machine of Fig. 16-1 is either a motor or a generator. The reciprocity
between motors and generators is nicely shown by using two identical dc “motors”
of the permanent magnet kind, with their coils connected by two copper wires.
When the shaft of one is turned mechanically, it becomes a generator and drives
the other as a motor. If the shaft of the second is turned, it becomes the generator
and drives the first as a motor. So here is an interesting example of a new kind
of equivalence of nature: motor and generator are equivalent. The quantitative
equivalence is, in fact, not completely accidental. It is related to the law of
conservation of energy.
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Fig. 16-4. A telephone transmitter or
receiver.

Another example of a device that can operate either to generate emf’s or to
respond to emf’s is the receiver of a standard telephone—that is, an “earphone.”
The original telephone of Bell consisted of two such “earphones” connected by
two long wires. The basic principle is shown in Fig. 16-4. A permanent magnet
produces a magnetic field in two “yokes” of soft iron and in a thin diaphragm
that is moved by sound pressure. When the diaphragm moves, it changes the
amount of magnetic field in the yokes. Therefore a coil of wire wound around one
of the yokes will have the flux through it changed when a sound wave hits the
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diaphragm. So there is an emf in the coil. If the ends of the coil are connected
to a circuit, a current which is an electrical representation of the sound is set up.

If the ends of the coil of Fig. 16-4 are connected by two wires to another
identical gadget, varying currents will flow in the second coil. These currents will
produce a varying magnetic field and will make a varying attraction on the iron
diaphragm. The diaphragm will wiggle and make sound waves approximately
similar to the ones that moved the original diaphragm. With a few bits of iron
and copper the human voice is transmitted over wires!

(The modern home telephone uses a receiver like the one described but uses an
improved invention to get a more powerful transmitter. It is the “carbon-button
microphone,” that uses sound pressure to vary the electric current from a battery.)

16-2 Transformers and inductances

One of the most interesting features of Faraday’s discoveries is not that an
emf exists in a moving coil—which we can understand in terms of the magnetic
force qv ×B—but that a changing current in one coil makes an emf in a second
coil. And quite surprisingly the amount of emf induced in the second coil is
given by the same “flux rule”: that the emf is equal to the rate of change of
the magnetic flux through the coil. Suppose that we take two coils, each wound
around separate bundles of iron sheets (these help to make stronger magnetic
fields), as shown in Fig. 16-5. Now we connect one of the coils—coil (a)—to
an alternating-current generator. The continually changing current produces a
continuously varying magnetic field. This varying field generates an alternating
emf in the second coil—coil (b). This emf can, for example, produce enough
power to light an electric bulb.

B

(a)

∼ A.C.
GENERATOR

(b)
LIGHT
BULB

Fig. 16-5. Two coils, wrapped around
bundles of iron sheets, allow a generator to
light a bulb with no direct connection.

The emf alternates in coil (b) at a frequency which is, of course, the same as
the frequency of the original generator. But the current in coil (b) can be larger
or smaller than the current in coil (a). The current in coil (b) depends on the
emf induced in it and on the resistance and inductance of the rest of its circuit.
The emf can be less than that of the generator if, say, there is little flux change.
Or the emf in coil (b) can be made much larger than that in the generator by
winding coil (b) with many turns, since in a given magnetic field the flux through
the coil is then greater. (Or if you prefer to look at it another way, the emf is the
same in each turn, and since the total emf is the sum of the emf’s of the separate
turns, many turns in series produce a large emf.)

Such a combination of two coils—usually with an arrangement of iron sheets
to guide the magnetic fields—is called a transformer. It can “transform” one emf
(also called a “voltage”) to another.

There are also induction effects in a single coil. For instance, in the setup in
Fig. 16-5 there is a changing flux not only through coil (b), which lights the bulb,
but also through coil (a). The varying current in coil (a) produces a varying
magnetic field inside itself and the flux of this field is continually changing, so
there is a self-induced emf in coil (a). There is an emf acting on any current
when it is building up a magnetic field—or, in general, when its field is changing
in any way. The effect is called self-inductance.

When we gave “the flux rule” that the emf is equal to the rate of change of
the flux linkage, we didn’t specify the direction of the emf. There is a simple
rule, called Lenz’s rule, for figuring out which way the emf goes: the emf tries
to oppose any flux change. That is, the direction of an induced emf is always
such that if a current were to flow in the direction of the emf, it would produce a
flux of B that opposes the change in B that produces the emf. Lenz’s rule can
be used to find the direction of the emf in the generator of Fig. 16-1, or in the
transformer winding of Fig. 16-3.

In particular, if there is a changing current in a single coil (or in any wire)
there is a “back” emf in the circuit. This emf acts on the charges flowing in
coil (a) of Fig. 16-5 to oppose the change in magnetic field, and so in the direction
to oppose the change in current. It tries to keep the current constant; it is
opposite to the current when the current is increasing, and it is in the direction
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Fig. 16-6. Circuit connections for an elec-
tromagnet. The lamp allows the passage of
current when the switch is opened, prevent-
ing the appearance of excessive emf’s.

of the current when it is decreasing. A current in a self-inductance has “inertia,”
because the inductive effects try to keep the flow constant, just as mechanical
inertia tries to keep the velocity of an object constant.

Any large electromagnet will have a large self-inductance. Suppose that a
battery is connected to the coil of a large electromagnet, as in Fig. 16-6, and that
a strong magnetic field has been built up. (The current reaches a steady value
determined by the battery voltage and the resistance of the wire in the coil.) But
now suppose that we try to disconnect the battery by opening the switch. If we
really opened the circuit, the current would go to zero rapidly, and in doing so it
would generate an enormous emf. In most cases this emf would be large enough
to develop an arc across the opening contacts of the switch. The high voltage
that appears might also damage the insulation of the coil—or you, if you are
the person who opens the switch! For these reasons, electromagnets are usually
connected in a circuit like the one shown in Fig. 16-6. When the switch is opened,
the current does not change rapidly but remains steady, flowing instead through
the lamp, being driven by the emf from the self-inductance of the coil.

16-3 Forces on induced currents

You have probably seen the dramatic demonstration of Lenz’s rule made
with the gadget shown in Fig. 16-7. It is an electromagnet, just like coil (a) of
Fig. 16-5. An aluminum ring is placed on the end of the magnet. When the coil
is connected to an alternating-current generator by closing the switch, the ring
flies into the air. The force comes, of course, from the induced currents in the
ring. The fact that the ring flies away shows that the currents in it oppose the
change of the field through it. When the magnet is making a north pole at its
top, the induced current in the ring is making a downward-pointing north pole.
The ring and the coil are repelled just like two magnets with like poles opposite.
If a thin radial cut is made in the ring the force disappears, showing that it does
indeed come from the currents in the ring.

IRON
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CONDUCTING RING
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Fig. 16-7. A conducting ring is strongly repelled by
an electromagnet with a varying current.
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B

Fig. 16-8. An electromagnet near a perfectly con-
ducting plate.
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If, instead of the ring, we place a disc of aluminum or copper across the end
of the electromagnet of Fig. 16-7, it is also repelled; induced currents circulate in
the material of the disc, and again produce a repulsion.

N S

Fig. 16-9. A bar magnet is suspended
above a superconducting bowl, by the repul-
sion of eddy currents.

An interesting effect, similar in origin, occurs with a sheet of a perfect
conductor. In a “perfect conductor” there is no resistance whatever to the
current. So if currents are generated in it, they can keep going forever. In fact,
the slightest emf would generate an arbitrarily large current—which really means
that there can be no emf’s at all. Any attempt to make a magnetic flux go
through such a sheet generates currents that create opposite B fields—all with
infinitesimal emf’s, so with no flux entering.

If we have a sheet of a perfect conductor and put an electromagnet next to it,
when we turn on the current in the magnet, currents called eddy currents appear
in the sheet, so that no magnetic flux enters. The field lines would look as shown
in Fig. 16-8. The same thing happens, of course, if we bring a bar magnet near
a perfect conductor. Since the eddy currents are creating opposing fields, the
magnets are repelled from the conductor. This makes it possible to suspend a bar
magnet in air above a sheet of perfect conductor shaped like a dish, as shown in
Fig. 16-9. The magnet is suspended by the repulsion of the induced eddy currents
in the perfect conductor. There are no perfect conductors at ordinary tempera-
tures, but some materials become perfect conductors at low enough temperatures.
For instance, below 3.8◦K tin conducts perfectly. It is called a superconductor.
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Fig. 16-10. The braking of the pendulum
shows the forces due to eddy currents.

If the conductor in Fig. 16-8 is not quite perfect there will be some resistance
to flow of the eddy currents. The currents will tend to die out and the magnet
will slowly settle down. The eddy currents in an imperfect conductor need an
emf to keep them going, and to have an emf the flux must keep changing. The
flux of the magnetic field gradually penetrates the conductor.

In a normal conductor, there are not only repulsive forces from eddy currents,
but there can also be sidewise forces. For instance, if we move a magnet sideways
along a conducting surface the eddy currents produce a force of drag, because the
induced currents are opposing the changing of the location of flux. Such forces
are proportional to the velocity and are like a kind of viscous force.

These effects show up nicely in the apparatus shown in Fig. 16-10. A square
sheet of copper is suspended on the end of a rod to make a pendulum. The
copper swings back and forth between the poles of an electromagnet. When the
magnet is turned on, the pendulum motion is suddenly arrested. As the metal
plate enters the gap of the magnet, there is a current induced in the plate which
acts to oppose the change in flux through the plate. If the sheet were a perfect
conductor, the currents would be so great that they would push the plate out
again—it would bounce back. With a copper plate there is some resistance in the
plate, so the currents at first bring the plate almost to a dead stop as it starts to
enter the field. Then, as the currents die down, the plate slowly settles to rest in
the magnetic field.
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EDDY
CURRENTS

Fig. 16-11. The eddy currents in the
copper pendulum.

The nature of the eddy currents in the copper pendulum is shown in Fig. 16-11.
The strength and geometry of the currents are quite sensitive to the shape of the
plate. If, for instance, the copper plate is replaced by one which has several narrow
slots cut in it, as shown in Fig. 16-12, the eddy-current effects are drastically
reduced. The pendulum swings through the magnetic field with only a small
retarding force. The reason is that the currents in each section of the copper
have less flux to drive them, so the effects of the resistance of each loop are
greater. The currents are smaller and the drag is less. The viscous character of
the force is seen even more clearly if a sheet of copper is placed between the poles
of the magnet of Fig. 16-10 and then released. It doesn’t fall; it just sinks slowly
downward. The eddy currents exert a strong resistance to the motion—just like
the viscous drag in honey.

If, instead of dragging a conductor past a magnet, we try to rotate it in a
magnetic field, there will be a resistive torque from the same effects. Alternatively,
if we rotate a magnet—end over end—near a conducting plate or ring, the ring
is dragged around; currents in the ring will create a torque that tends to rotate
the ring with the magnet.
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Fig. 16-12. Eddy-current effects are drastically
reduced by cutting slots in the plate.
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Fig. 16-13. Making a rotating magnetic field.

A field just like that of a rotating magnet can be made with an arrangement of
coils such as is shown in Fig. 16-13. We take a torus of iron (that is, a ring of iron
like a doughnut) and wind six coils on it. If we put a current, as shown in part (a),
through windings (1) and (4), there will be a magnetic field in the direction shown
in the figure. If we now switch the current to windings (2) and (5), the magnetic
field will be in a new direction, as shown in part (b) of the figure. Continuing the
process, we get the sequence of fields shown in the rest of the figure. If the process
is done smoothly, we have a “rotating” magnetic field. We can easily get the
required sequence of currents by connecting the coils to a three-phase power line,
which provides just such a sequence of currents. “Three-phase power” is made
in a generator using the principle of Fig. 16-1, except that there are three loops
fastened together on the same shaft in a symmetrical way—that is, with an angle
of 120◦ from one loop to the next. When the coils are rotated as a unit, the emf is
a maximum in one, then in the next, and so on in a regular sequence. There are
many practical advantages of three-phase power. One of them is the possibility
of making a rotating magnetic field. The torque produced on a conductor by
such a rotating field is easily shown by standing a metal ring on an insulating
table just above the torus, as shown in Fig. 16-14. The rotating field causes the
ring to spin about a vertical axis. The basic elements seen here are quite the
same as those at play in a large commercial three-phase induction motor.

Fig. 16-14. The rotating field of
Fig. 16-13 can be used to provide torque on
a conducting ring.

Another form of induction motor is shown in Fig. 16-15. The arrangement
shown is not suitable for a practical high-efficiency motor but will illustrate the
principle. The electromagnet M , consisting of a bundle of laminated iron sheets
wound with a solenoidal coil, is powered with alternating current from a generator.
The magnet produces a varying flux of B through the aluminum disc. If we have
just these two components, as shown in part (a) of the figure, we do not yet have
a motor. There are eddy currents in the disc, but they are symmetric and there is
no torque. (There will be some heating of the disc due to the induced currents.) If
we now cover only one-half of the magnet pole with an aluminum plate, as shown
in part (b) of the figure, the disc begins to rotate, and we have a motor. The opera-
tion depends on two eddy-current effects. First, the eddy currents in the aluminum
plate oppose the change of flux through it, so the magnetic field above the plate
always lags the field above that half of the pole which is not covered. This so-called
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Fig. 16-15. A simple example of a shaded-pole induction motor.

“shaded-pole” effect produces a field which in the “shaded” region varies much like
that in the “unshaded” region except that it is delayed a constant amount in time.
The whole effect is as if there were a magnet only half as wide which is continually
being moved from the unshaded region toward the shaded one. Then the varying
fields interact with the eddy currents in the disc to produce the torque on it.

16-4 Electrical technology

When Faraday first made public his remarkable discovery that a changing
magnetic flux produces an emf, he was asked (as anyone is asked when he discovers
a new fact of nature), “What is the use of it?” All he had found was the oddity
that a tiny current was produced when he moved a wire near a magnet. Of what
possible “use” could that be? His answer was: “What is the use of a newborn
baby?”

Yet think of the tremendous practical applications his discovery has led to.
What we have been describing are not just toys but examples chosen in most
cases to represent the principle of some practical machine. For instance, the
rotating ring in the turning field is an induction motor. There are, of course,
some differences between it and a practical induction motor. The ring has a
very small torque; it can be stopped with your hand. For a good motor, things
have to be put together more intimately: there shouldn’t be so much “wasted”
magnetic field out in the air. First, the field is concentrated by using iron. We
have not discussed how iron does that, but iron can make the magnetic field tens
of thousands of times stronger than copper coils alone could do. Second, the gaps
between the pieces of iron are made small; to do that, some iron is even built
into the rotating ring. Everything is arranged so as to get the greatest forces
and the greatest efficiency—that is, conversion of electrical power to mechanical
power—until the “ring” can no longer be held still by your hand.

This problem of closing the gaps and making the thing work in the most
practical way is engineering. It requires serious study of design problems, although
there are no new basic principles from which the forces are obtained. But there is
a long way to go from the basic principles to a practical and economic design. Yet
it is just such careful engineering design that has made possible such a tremendous
thing as Boulder Dam and all that goes with it.

What is Boulder Dam? A huge river is stopped by a concrete wall. But what
a wall it is! Shaped with a perfect curve that is very carefully worked out so that
the least possible amount of concrete will hold back a whole river. It thickens at
the bottom in that wonderful shape that the artists like but that the engineers
can appreciate because they know that such thickening is related to the increase
of pressure with the depth of the water. But we are getting away from electricity.

Then the water of the river is diverted into a huge pipe. That’s a nice engineer-
ing accomplishment in itself. The pipe feeds the water into a “waterwheel”—a
huge turbine—and makes wheels turn. (Another engineering feat.) But why turn
wheels? They are coupled to an exquisitely intricate mess of copper and iron, all
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twisted and interwoven. With two parts—one that turns and one that doesn’t.
All a complex intermixture of a few materials, mostly iron and copper but also
some paper and shellac for insulation. A revolving monster thing. A generator.
Somewhere out of the mess of copper and iron come a few special pieces of copper.
The dam, the turbine, the iron, the copper, all put there to make something
special happen to a few bars of copper—an emf. Then the copper bars go a little
way and circle for several times around another piece of iron in a transformer;
then their job is done.

But around that same piece of iron curls another cable of copper which has
no direct connection whatsoever to the bars from the generator; they have just
been influenced because they passed near it—to get their emf. The transformer
converts the power from the relatively low voltages required for the efficient design
of the generator to the very high voltages that are best for efficient transmission
of electrical energy over long cables.

And everything must be enormously efficient—there can be no waste, no
loss. Why? The power for a metropolis is going through. If a small fraction
were lost—one or two percent—think of the energy left behind! If one percent of
the power were left in the transformer, that energy would need to be taken out
somehow. If it appeared as heat, it would quickly melt the whole thing. There is,
of course, some small inefficiency, but all that is required are a few pumps which
circulate some oil through a radiator to keep the transformer from heating up.

Out of the Boulder Dam come a few dozen rods of copper—long, long, long
rods of copper perhaps the thickness of your wrist that go for hundreds of miles in
all directions. Small rods of copper carrying the power of a giant river. Then the
rods are split to make more rods . . . then to more transformers . . . sometimes
to great generators which recreate the current in another form . . . sometimes
to engines turning for big industrial purposes . . . to more transformers . . . then
more splitting and spreading . . . until finally the river is spread throughout the
whole city—turning motors, making heat, making light, working gadgetry. The
miracle of hot lights from cold water over 600 miles away—all done with specially
arranged pieces of copper and iron. Large motors for rolling steel, or tiny motors
for a dentist’s drill. Thousands of little wheels, turning in response to the turning
of the big wheel at Boulder Dam. Stop the big wheel, and all the wheels stop;
the lights go out. They really are connected.

Yet there is more. The same phenomena that take the tremendous power of
the river and spread it through the countryside, until a few drops of the river
are running the dentist’s drill, come again into the building of extremely fine
instruments . . . for the detection of incredibly small amounts of current . . . for the
transmission of voices, music, and pictures . . . for computers . . . for automatic
machines of fantastic precision.

All this is possible because of carefully designed arrangements of copper and
iron—efficiently created magnetic fields . . . blocks of rotating iron six feet in
diameter whirling with clearances of 1/16 of an inch . . . careful proportions of
copper for the optimum efficiency . . . strange shapes all serving a purpose, like
the curve of the dam.

If some future archaeologist uncovers Boulder Dam, we may guess that he
would admire the beauty of its curves. But also the explorers from some great
future civilizations will look at the generators and transformers and say: “Notice
that every iron piece has a beautifully efficient shape. Think of the thought that
has gone into every piece of copper!”

This is the power of engineering and the careful design of our electrical
technology. There has been created in the generator something which exists
nowhere else in nature. It is true that there are forces of induction in other
places. Certainly in some places around the sun and stars there are effects of
electromagnetic induction. Perhaps also (though it’s not certain) the magnetic
field of the earth is maintained by an analog of an electric generator that operates
on circulating currents in the interior of the earth. But nowhere have there been
pieces put together with moving parts to generate electrical power as is done in
the generator—with great efficiency and regularity.
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You may think that designing electric generators is no longer an interesting
subject, that it is a dead subject because they are all designed. Almost perfect
generators or motors can be taken from a shelf. Even if this were true, we can
admire the wonderful accomplishment of a problem solved to near perfection. But
there remain as many unfinished problems. Even generators and transformers are
returning as problems. It is likely that the whole field of low temperatures and
superconductors will soon be applied to the problem of electric power distribution.
With a radically new factor in the problem, new optimum designs will have to
be created. Power networks of the future may have little resemblance to those of
today.

You can see that there is an endless number of applications and problems
that one could take up while studying the laws of induction. The study of the
design of electrical machinery is a life work in itself. We cannot go very far in
that direction, but we should be aware of the fact that when we have discovered
the law of induction, we have suddenly connected our theory to an enormous
practical development. We must, however, leave that subject to the engineers
and applied scientists who are interested in working out the details of particular
applications. Physics only supplies the base—the basic principles that apply,
no matter what. (We have not yet completed the base, because we have yet to
consider in detail the properties of iron and of copper. Physics has something to
say about these as we will see a little later!)

Modern electrical technology began with Faraday’s discoveries. The useless
baby developed into a prodigy and changed the face of the earth in ways its
proud father could never have imagined.
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17

The Laws of Induction

17-1 The physics of induction
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17-2 Exceptions to the “flux rule”
17-3 Particle acceleration by an

induced electric field; the
betatron

17-4 A paradox
17-5 Alternating-current generator
17-6 Mutual inductance
17-7 Self-inductance
17-8 Inductance and magnetic energy

the last chapter we described many phenomena which show that the effects
of induction are quite complicated and interesting. Now we want to discuss
the fundamental principles which govern these effects. We have already defined
the emf in a conducting circuit as the total accumulated force on the charges
throughout the length of the loop. More specifically, it is the tangential component
of the force per unit charge, integrated along the wire once around the circuit.
This quantity is equal, therefore, to the total work done on a single charge that
travels once around the circuit.

We have also given the “flux rule,” which says that the emf is equal to the
rate at which the magnetic flux through such a conducting circuit is changing.
Let’s see if we can understand why that might be. First, we’ll consider a case in
which the flux changes because a circuit is moved in a steady field.

In Fig. 17-1 we show a simple loop of wire whose dimensions can be changed.
The loop has two parts, a fixed U-shaped part (a) and a movable crossbar (b)
that can slide along the two legs of the U. There is always a complete circuit, but
its area is variable. Suppose we now place the loop in a uniform magnetic field
with the plane of the U perpendicular to the field. According to the rule, when
the crossbar is moved there should be in the loop an emf that is proportional to
the rate of change of the flux through the loop. This emf will cause a current in
the loop. We will assume that there is enough resistance in the wire that the
currents are small. Then we can neglect any magnetic field from this current.
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Fig. 17-1. An emf is induced in a loop if
the flux is changed by varying the area of
the circuit.

The flux through the loop is wLB, so the “flux rule” would give for the
emf—which we write as E—

E = wB
dL

dt
= wBv,

where v is the speed of translation of the crossbar.
Now we should be able to understand this result from the magnetic v ×B

forces on the charges in the moving crossbar. These charges will feel a force,
tangential to the wire, equal to vB per unit charge. It is constant along the
length w of the crossbar and zero elsewhere, so the integral is

E = wvB,

which is the same result we got from the rate of change of the flux.
The argument just given can be extended to any case where there is a fixed

magnetic field and the wires are moved. One can prove, in general, that for any
circuit whose parts move in a fixed magnetic field the emf is the time derivative
of the flux, regardless of the shape of the circuit.

On the other hand, what happens if the loop is stationary and the magnetic
field is changed? We cannot deduce the answer to this question from the same
argument. It was Faraday’s discovery—from experiment—that the “flux rule” is
still correct no matter why the flux changes. The force on electric charges is given
in complete generality by F = q(E+v×B); there are no new special “forces due
to changing magnetic fields.” Any forces on charges at rest in a stationary wire
come from the E term. Faraday’s observations led to the discovery that electric
and magnetic fields are related by a new law: in a region where the magnetic
field is changing with time, electric fields are generated. It is this electric field
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which drives the electrons around the wire—and so is responsible for the emf in
a stationary circuit when there is a changing magnetic flux.

The general law for the electric field associated with a changing magnetic
field is

∇×E = −∂B
∂t

. (17.1)

We will call this Faraday’s law. It was discovered by Faraday but was first written
in differential form by Maxwell, as one of his equations. Let’s see how this
equation gives the “flux rule” for circuits.

Using Stokes’ theorem, this law can be written in integral form as∮
Γ
E · ds =

∫
S

(∇×E) · n da = −
∫
S

∂B

∂t
· n da, (17.2)

where, as usual, Γ is any closed curve and S is any surface bounded by it. Here,
remember, Γ is a mathematical curve fixed in space, and S is a fixed surface.
Then the time derivative can be taken outside the integral and we have∮

Γ
E · ds = − d

dt

∫
S

B · n da

= − d

dt
(flux through S). (17.3)

Applying this relation to a curve Γ that follows a fixed circuit of conductor, we
get the “flux rule” once again. The integral on the left is the emf, and that on the
right is the negative rate of change of the flux linked by the circuit. So Eq. (17.1)
applied to a fixed circuit is equivalent to the “flux rule.”

So the “flux rule”—that the emf in a circuit is equal to the rate of change of
the magnetic flux through the circuit—applies whether the flux changes because
the field changes or because the circuit moves (or both). The two possibilities—
“circuit moves” or “field changes”—are not distinguished in the statement of the
rule. Yet in our explanation of the rule we have used two completely distinct
laws for the two cases—v ×B for “circuit moves” and ∇ × E = −∂B/∂t for
“field changes.”

We know of no other place in physics where such a simple and accurate general
principle requires for its real understanding an analysis in terms of two different
phenomena. Usually such a beautiful generalization is found to stem from a
single deep underlying principle. Nevertheless, in this case there does not appear
to be any such profound implication. We have to understand the “rule” as the
combined effects of two quite separate phenomena.

We must look at the “flux rule” in the following way. In general, the force
per unit charge is F /q = E + v×B. In moving wires there is the force from the
second term. Also, there is an E-field if there is somewhere a changing magnetic
field. They are independent effects, but the emf around the loop of wire is always
equal to the rate of change of magnetic flux through it.

17-2 Exceptions to the “flux rule”

We will now give some examples, due in part to Faraday, which show the
importance of keeping clearly in mind the distinction between the two effects
responsible for induced emf’s. Our examples involve situations to which the “flux
rule” cannot be applied—either because there is no wire at all or because the
path taken by induced currents moves about within an extended volume of a
conductor.

We begin by making an important point: The part of the emf that comes
from the E-field does not depend on the existence of a physical wire (as does the
v ×B part). The E-field can exist in free space, and its line integral around any
imaginary line fixed in space is the rate of change of the flux of B through that
line. (Note that this is quite unlike the E-field produced by static charges, for in
that case the line integral of E around a closed loop is always zero.)
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Fig. 17-2. When the disc rotates there is
an emf from v × B, but with no change in
the linked flux.

Now we will describe a situation in which the flux through a circuit does not
change, but there is nevertheless an emf. Figure 17-2 shows a conducting disc
which can be rotated on a fixed axis in the presence of a magnetic field. One
contact is made to the shaft and another rubs on the outer periphery of the disc.
A circuit is completed through a galvanometer. As the disc rotates, the “circuit,”
in the sense of the place in space where the currents are, is always the same. But
the part of the “circuit” in the disc is in material which is moving. Although the
flux through the “circuit” is constant, there is still an emf, as can be observed by
the deflection of the galvanometer. Clearly, here is a case where the v×B force in
the moving disc gives rise to an emf which cannot be equated to a change of flux.

GALVANOMETER

COPPER PLATES

P

P ′

⊗ B

Fig. 17-3. When the plates are rocked
in a uniform magnetic field, there can be a
large change in the flux linkage without the
generation of an emf.

Now we consider, as an opposite example, a somewhat unusual situation in
which the flux through a “circuit” (again in the sense of the place where the
current is) changes but where there is no emf. Imagine two metal plates with
slightly curved edges, as shown in Fig. 17-3, placed in a uniform magnetic field
perpendicular to their surfaces. Each plate is connected to one of the terminals
of a galvanometer, as shown. The plates make contact at one point P , so there is
a complete circuit. If the plates are now rocked through a small angle, the point
of contact will move to P ′. If we imagine the “circuit” to be completed through
the plates on the dotted line shown in the figure, the magnetic flux through this
circuit changes by a large amount as the plates are rocked back and forth. Yet
the rocking can be done with small motions, so that v ×B is very small and
there is practically no emf. The “flux rule” does not work in this case. It must be
applied to circuits in which the material of the circuit remains the same. When
the material of the circuit is changing, we must return to the basic laws. The
correct physics is always given by the two basic laws

F = q(E + v ×B),

∇×E = −∂B
∂t

.

17-3 Particle acceleration by an induced electric field; the betatron

We have said that the electromotive force generated by a changing magnetic
field can exist even without conductors; that is, there can be magnetic induction
without wires. We may still imagine an electromotive force around an arbitrary
mathematical curve in space. It is defined as the tangential component of E
integrated around the curve. Faraday’s law says that this line integral is equal to
minus the rate of change of the magnetic flux through the closed curve, Eq. (17.3).

As an example of the effect of such an induced electric field, we want now
to consider the motion of an electron in a changing magnetic field. We imagine
a magnetic field which, everywhere on a plane, points in a vertical direction,
as shown in Fig. 17-4. The magnetic field is produced by an electromagnet,
but we will not worry about the details. For our example we will imagine that
the magnetic field is symmetric about some axis, i.e., that the strength of the
magnetic field will depend only on the distance from the axis. The magnetic field
is also varying with time. We now imagine an electron that is moving in this field
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Fig. 17-4. An electron accelerating in an axially symmetric,
increasing magnetic field.

on a path that is a circle of constant radius with its center at the axis of the field.
(We will see later how this motion can be arranged.) Because of the changing
magnetic field, there will be an electric field E tangential to the electron’s orbit
which will drive it around the circle. Because of the symmetry, this electric field
will have the same value everywhere on the circle. If the electron’s orbit has the
radius r, the line integral of E around the orbit is equal to minus the rate of
change of the magnetic flux through the circle. The line integral of E is just its
magnitude times the circumference of the circle, 2πr. The magnetic flux must, in
general, be obtained from an integral. For the moment, we let Bav represent the
average magnetic field in the interior of the circle; then the flux is this average
magnetic field times the area of the circle. We will have

2πrE = d

dt
(Bav · πr2).

Since we are assuming r is constant, E is proportional to the time derivative
of the average field:

E = r

2
dBav

dt
. (17.4)

The electron will feel the electric force qE and will be accelerated by it. Re-
membering that the relativistically correct equation of motion is that the rate of
change of the momentum is proportional to the force, we have

qE = dp

dt
. (17.5)

For the circular orbit we have assumed, the electric force on the electron is
always in the direction of its motion, so its total momentum will be increasing at
the rate given by Eq. (17.5). Combining Eqs. (17.5) and (17.4), we may relate
the rate of change of momentum to the change of the average magnetic field:

dp

dt
= qr

2
dBav

dt
. (17.6)

Integrating with respect to t, we find for the electron’s momentum

p = p0 + qr

2 ∆Bav, (17.7)

where p0 is the momentum with which the electrons start out, and ∆Bav, is
the subsequent change in Bav. The operation of a betatron—a machine for
accelerating electrons to high energies—is based on this idea.

To see how the betatron operates in detail, we must now examine how the
electron can be constrained to move on a circle. We have discussed in Chapter 11
of Vol. I the principle involved. If we arrange that there is a magnetic field B
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at the orbit of the electron, there will be a transverse force qv ×B which, for a
suitably chosen B, can cause the electron to keep moving on its assumed orbit.
In the betatron this transverse force causes the electron to move in a circular
orbit of constant radius. We can find out what the magnetic field at the orbit
must be by using again the relativistic equation of motion, but this time, for the
transverse component of the force. In the betatron (see Fig. 17-4), B is at right
angles to v, so the transverse force is qvB. Thus the force is equal to the rate of
change of the transverse component pt of the momentum:

qvB = dpt
dt
. (17.8)

When a particle is moving in a circle, the rate of change of its transverse
momentum is equal to the magnitude of the total momentum times ω, the
angular velocity of rotation (following the arguments of Chapter 11, Vol. I):

dpt
dt

= ωp, (17.9)

where, since the motion is circular,
ω = v

r
. (17.10)

Setting the magnetic force equal to the transverse acceleration, we have

qvBorbit = p
v

r
, (17.11)

where Borbit is the field at the radius r.
As the betatron operates, the momentum of the electron grows in proportion

to Bav, according to Eq. (17.7), and if the electron is to continue to move in its
proper circle, Eq. (17.11) must continue to hold as the momentum of the electron
increases. The value of Borbit must increase in proportion to the momentum p.
Comparing Eq. (17.11) with Eq. (17.7), which determines p, we see that the
following relation must hold between Bav, the average magnetic field inside the
orbit at the radius r, and the magnetic field Borbit at the orbit:

∆Bav = 2 ∆Borbit. (17.12)

The correct operation of a betatron requires that the average magnetic field inside
the orbit increases at twice the rate of the magnetic field at the orbit itself. In
these circumstances, as the energy of the particle is increased by the induced
electric field the magnetic field at the orbit increases at just the rate required to
keep the particle moving in a circle.

The betatron is used to accelerate electrons to energies of tens of millions of
volts, or even to hundreds of millions of volts. However, it becomes impractical for
the acceleration of electrons to energies much higher than a few hundred million
volts for several reasons. One of them is the practical difficulty of attaining the
required high average value for the magnetic field inside the orbit. Another is that
Eq. (17.6) is no longer correct at very high energies because it does not include
the loss of energy from the particle due to its radiation of electromagnetic energy
(the so-called synchrotron radiation discussed in Chapter 36, Vol. I). For these
reasons, the acceleration of electrons to the highest energies—to many billions of
electron volts—is accomplished by means of a different kind of machine, called a
synchrotron.

17-4 A paradox

We would now like to describe for you an apparent paradox. A paradox is a
situation which gives one answer when analyzed one way, and a different answer
when analyzed another way, so that we are left in somewhat of a quandary as
to actually what should happen. Of course, in physics there are never any real
paradoxes because there is only one correct answer; at least we believe that nature
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will act in only one way (and that is the right way, naturally). So in physics a
paradox is only a confusion in our own understanding. Here is our paradox.

PLASTIC DISC

CHARGED
METAL SPHERES COIL OF WIRE

BATTERY

+
−

I

Fig. 17-5. Will the disc rotate if the cur-
rent I is stopped?

Imagine that we construct a device like that shown in Fig. 17-5. There is a
thin, circular plastic disc supported on a concentric shaft with excellent bearings,
so that it is quite free to rotate. On the disc is a coil of wire in the form of a
short solenoid concentric with the axis of rotation. This solenoid carries a steady
current I provided by a small battery, also mounted on the disc. Near the edge
of the disc and spaced uniformly around its circumference are a number of small
metal spheres insulated from each other and from the solenoid by the plastic
material of the disc. Each of these small conducting spheres is charged with the
same electrostatic charge Q. Everything is quite stationary, and the disc is at
rest. Suppose now that by some accident—or by prearrangement—the current in
the solenoid is interrupted, without, however, any intervention from the outside.
So long as the current continued, there was a magnetic flux through the solenoid
more or less parallel to the axis of the disc. When the current is interrupted, this
flux must go to zero. There will, therefore, be an electric field induced which
will circulate around in circles centered at the axis. The charged spheres on
the perimeter of the disc will all experience an electric field tangential to the
perimeter of the disc. This electric force is in the same sense for all the charges
and so will result in a net torque on the disc. From these arguments we would
expect that as the current in the solenoid disappears, the disc would begin to
rotate. If we knew the moment of inertia of the disc, the current in the solenoid,
and the charges on the small spheres, we could compute the resulting angular
velocity.

But we could also make a different argument. Using the principle of the
conservation of angular momentum, we could say that the angular momentum of
the disc with all its equipment is initially zero, and so the angular momentum of
the assembly should remain zero. There should be no rotation when the current
is stopped. Which argument is correct? Will the disc rotate or will it not? We
will leave this question for you to think about.

We should warn you that the correct answer does not depend on any nonessen-
tial feature, such as the asymmetric position of a battery, for example. In fact,
you can imagine an ideal situation such as the following: The solenoid is made of
superconducting wire through which there is a current. After the disc has been
carefully placed at rest, the temperature of the solenoid is allowed to rise slowly
When the temperature of the wire reaches the transition temperature between
superconductivity and normal conductivity, the current in the solenoid will be
brought to zero by the resistance of the wire. The flux will, as before, fall to zero,
and there will be an electric field around the axis. We should also warn you that
the solution is not easy, nor is it a trick. When you figure it out, you will have
discovered an important principle of electromagnetism.

17-5 Alternating-current generator

LOAD
B

Fig. 17-6. A coil of wire rotating in a
uniform magnetic field—the basic idea of
the AC generator.

In the remainder of this chapter we apply the principles of Section 17-1 to
analyze a number of the phenomena discussed in Chapter 16. We first look
in more detail at the alternating-current generator. Such a generator consists
basically of a coil of wire rotating in a uniform magnetic field. The same result
can also be achieved by a fixed coil in a magnetic field whose direction rotates
in the manner described in the last chapter. We will consider only the former
case. Suppose we have a circular coil of wire which can be turned on an axis
along one of its diameters. Let this coil be located in a uniform magnetic field
perpendicular to the axis of rotation, as in Fig. 17-6. We also imagine that the
two ends of the coil are brought to external connections through some kind of
sliding contacts.

Due to the rotation of the coil, the magnetic flux through it will be changing.
The circuit of the coil will therefore have an emf in it. Let S be the area of the
coil and θ the angle between the magnetic field and the normal to the plane of
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the coil.* The flux through the coil is then

BS cos θ. (17.13)

If the coil is rotating at the uniform angular velocity ω, θ varies with time
as θ = ωt.

Each turn of the coil will have an emf equal to the rate of change of this flux.
If the coil has N turns of wire the total emf will be N times larger, so

E = −N d

dt
(BS cosωt) = NBSω sinωt. (17.14)

If we bring the wires from the generator to a point some distance from the
rotating coil, where the magnetic field is zero, or at least is not varying with time,
the curl of E in this region will be zero and we can define an electric potential.
In fact, if there is no current being drawn from the generator, the potential
difference V between the two wires will be equal to the emf in the rotating coil.
That is,

V = NBSω sinωt = V0 sinωt.
The potential difference between the wires varies as sinωt. Such a varying
potential difference is called an alternating voltage.

∼A.C.
Generator

I

R

I =
E
R
=
V0

R
sinωt

Fig. 17-7. A circuit with an AC generator
and a resistance.

Since there is an electric field between the wires, they must be electrically
charged. It is clear that the emf of the generator has pushed some excess charges
out to the wire until the electric field from them is strong enough to exactly
counterbalance the induction force. Seen from outside the generator, the two
wires appear as though they had been electrostatically charged to the potential
difference V , and as though the charge was being changed with time to give
an alternating potential difference. There is also another difference from an
electrostatic situation. If we connect the generator to an external circuit that
permits passage of a current, we find that the emf does not permit the wires to
be discharged but continues to provide charge to the wires as current is drawn
from them, attempting to keep the wires always at the same potential difference.
If, in fact, the generator is connected in a circuit whose total resistance is R, the
current through the circuit will be proportional to the emf of the generator and
inversely proportional to R. Since the emf has a sinusoidal time variation, so
also does the current. There is an alternating current

I = E

R
= V0

R
sinωt.

The schematic diagram of such a circuit is shown in Fig. 17-7.
We can also see that the emf determines how much energy is supplied by the

generator. Each charge in the wire is receiving energy at the rate F · v, where F
is the force on the charge and v is its velocity. Now let the number of moving
charges per unit length of the wire be n; then the power being delivered into any
element ds of the wire is

F · vnds.
For a wire, v is always along ds, so we can rewrite the power as

nvF · ds.

The total power being delivered to the complete circuit is the integral of this
expression around the complete loop:

Power =
∮
nvF · ds. (17.15)

Now remember that qnv is the current I, and that the emf is defined as the
integral of F/q around the circuit. We get the result

Power from a generator = EI. (17.16)
* Now that we are using the letter A for the vector potential, we prefer to let S stand for a

surface area.
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When there is a current in the coil of the generator, there will also be
mechanical forces on it. In fact, we know that the torque on the coil is proportional
to its magnetic moment, to the magnetic field strength B, and to the sine of the
angle between. The magnetic moment is the current in the coil times its area.
Therefore the torque is

τ = NISB sin θ. (17.17)
The rate at which mechanical work must be done to keep the coil rotating is the
angular velocity ω times the torque:

dW

dt
= ωτ = ωNISB sin θ. (17.18)

Comparing this equation with Eq. (17.14), we see that the rate of mechanical
work required to rotate the coil against the magnetic forces is just equal to EI,
the rate at which electrical energy is delivered by the emf of the generator. All
of the mechanical energy used up in the generator appears as electrical energy in
the circuit.

As another example of the currents and forces due to an induced emf, let’s
analyze what happens in the setup described in Section 17-1, and shown in
Fig. 17-1. There are two parallel wires and a sliding crossbar located in a uniform
magnetic field perpendicular to the plane of the parallel wires. Now let’s assume
that the “bottom” of the U (the left side in the figure) is made of wires of high
resistance, while the two side wires are made of a good conductor like copper—
then we don’t need to worry about the change of the circuit resistance as the
crossbar is moved. As before, the emf in the circuit is

E = vBw. (17.19)

The current in the circuit is proportional to this emf and inversely proportional
to the resistance of the circuit:

I = E

R
= vBw

R
. (17.20)

Because of this current there will be a magnetic force on the crossbar that is
proportional to its length, to the current in it, and to the magnetic field, such
that

F = BIw. (17.21)
Taking I from Eq. (17.20), we have for the force

F = B2w2

R
v. (17.22)

We see that the force is proportional to the velocity of the crossbar. The direction
of the force, as you can easily see, is opposite to its velocity. Such a “velocity-
proportional” force, which is like the force of viscosity, is found whenever induced
currents are produced by moving conductors in a magnetic field. The examples of
eddy currents we gave in the last chapter also produced forces on the conductors
proportional to the velocity of the conductor, even though such situations, in
general, give a complicated distribution of currents which is difficult to analyze.

It is often convenient in the design of mechanical systems to have damping
forces which are proportional to the velocity. Eddy-current forces provide one of
the most convenient ways of getting such a velocity-dependent force. An example
of the application of such a force is found in the conventional domestic wattmeter.
In the wattmeter there is a thin aluminum disc that rotates between the poles
of a permanent magnet. This disc is driven by a small electric motor whose
torque is proportional to the power being consumed in the electrical circuit of the
house. Because of the eddy-current forces in the disc, there is a resistive force
proportional to the velocity. In equilibrium, the velocity is therefore proportional
to the rate of consumption of electrical energy. By means of a counter attached
to the rotating disc, a record is kept of the number of revolutions it makes.
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This count is an indication of the total energy consumption, i.e., the number of
watthours used.

We may also point out that Eq. (17.22) shows that the force from induced
currents—that is, any eddy-current force—is inversely proportional to the resis-
tance. The force will be larger, the better the conductivity of the material. The
reason, of course, is that an emf produces more current if the resistance is low,
and the stronger currents represent greater mechanical forces.

We can also see from our formulas how mechanical energy is converted into
electrical energy. As before, the electrical energy supplied to the resistance of
the circuit is the product EI. The rate at which work is done in moving the
conducting crossbar is the force on the bar times its velocity. Using Eq. (17.21)
for the force, the rate of doing work is

dW

dt
= v2B2w2

R
.

We see that this is indeed equal to the product EI we would get from Eqs. (17.19)
and (17.20). Again the mechanical work appears as electrical energy.

17-6 Mutual inductance

COIL 1

COIL 2

I1

I2

B

Fig. 17-8. A current in coil 1 produces a
magnetic field through coil 2.

We now want to consider a situation in which there are fixed coils of wire but
changing magnetic fields. When we described the production of magnetic fields
by currents, we considered only the case of steady currents. But so long as the
currents are changed slowly, the magnetic field will at each instant be nearly the
same as the magnetic field of a steady current. We will assume in the discussion
of this section that the currents are always varying sufficiently slowly that this is
true.

In Fig. 17-8 is shown an arrangement of two coils which demonstrates the
basic effects responsible for the operation of a transformer. Coil 1 consists of a
conducting wire wound in the form of a long solenoid. Around this coil—and
insulated from it—is wound coil 2, consisting of a few turns of wire. If now a
current is passed through coil 1, we know that a magnetic field will appear inside
it. This magnetic field also passes through coil 2. As the current in coil 1 is
varied, the magnetic flux will also vary, and there will be an induced emf in coil 2.
We will now calculate this induced emf.

We have seen in Section 13-5 that the magnetic field inside a long solenoid is
uniform and has the magnitude

B = 1
ε0c2

N1I1
l

, (17.23)

where N1 is the number of turns in coil 1, I1 is the current through it, and l is its
length. Let’s say that the cross-sectional area of coil 1 is S; then the flux of B is
its magnitude times S. If coil 2 has N2 turns, this flux links the coil N2 times.
Therefore the emf in coil 2 is given by

E2 = −N2S
dB

dt
. (17.24)

The only quantity in Eq. (17.23) which varies with time is I1. The emf is therefore
given by

E2 = −N1N2S

ε0c2l

dI1
dt
. (17.25)

We see that the emf in coil 2 is proportional to the rate of change of the
current in coil 1. The constant of proportionality, which is basically a geometric
factor of the two coils, is called the mutual inductance, and is usually designated
M21. Equation (17.25) is then written

E2 = M21
dI1
dt
. (17.26)
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Suppose now that we were to pass a current through coil 2 and ask about
the emf in coil 1. We would compute the magnetic field, which is everywhere
proportional to the current I2. The flux linkage through coil 1 would depend on
the geometry, but would be proportional to the current I2. The emf in coil 1
would, therefore, again be proportional to dI2/dt: We can write

E1 = M12
dI2
dt
. (17.27)

The computation of M12 would be more difficult than the computation we have
just done for M21. We will not carry through that computation now, because we
will show later in this chapter that M12 is necessarily equal to M21.

Since for any coil its field is proportional to its current, the same kind of result
would be obtained for any two coils of wire. The equations (17.26) and (17.27)
would have the same form; only the constants M21 and M12 would be different.
Their values would depend on the shapes of the coils and their relative positions.

Fig. 17-9. Any two coils have a mutual
inductance M proportional to the integral
of ds1 · ds2/r12.

1 2

I1

I2

ds1

ds2

r12

Suppose that we wish to find the mutual inductance between any two arbitrary
coils—for example, those shown in Fig. 17-9. We know that the general expression
for the emf in coil 1 can be written as

E1 = − d

dt

∫
(1)
B · n da,

where B is the magnetic field and the integral is to be taken over a surface
bounded by circuit 1. We have seen in Section 14-1 that such a surface integral
of B can be related to a line integral of the vector potential. In particular,∫

(1)
B · n da =

∮
(1)
A · ds1,

where A represents the vector potential and ds1 is an element of circuit 1. The
line integral is to be taken around circuit 1. The emf in coil 1 can therefore be
written as

E1 = − d

dt

∮
(1)
A · ds1. (17.28)

Now let’s assume that the vector potential at circuit 1 comes from currents
in circuit 2. Then it can be written as a line integral around circuit 2:

A = 1
4πε0c2

∮
(2)

I2 ds2

r12
, (17.29)

where I2 is the current in circuit 2, and r12 is the distance from the element of
the circuit ds2 to the point on circuit 1 at which we are evaluating the vector
potential. (See Fig. 17-9.) Combining Eqs. (17.28) and (17.29), we can express
the emf in circuit 1 as a double line integral:

E1 = − 1
4πε0c2

d

dt

∮
(1)

∮
(2)

I2 ds2

r12
· ds1.

In this equation the integrals are all taken with respect to stationary circuits. The
only variable quantity is the current I2, which does not depend on the variables
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of integration. We may therefore take it out of the integrals. The emf can then
be written as

E1 = M12
dI2
dt
,

where the coefficient M12 is

M12 = − 1
4πε0c2

∮
(1)

∮
(2)

ds2 · ds1

r12
. (17.30)

We see from this integral that M12 depends only on the circuit geometry. It
depends on a kind of average separation of the two circuits, with the average
weighted most for parallel segments of the two coils. Our equation can be used
for calculating the mutual inductance of any two circuits of arbitrary shape. Also,
it shows that the integral for M12 is identical to the integral for M21. We have
therefore shown that the two coefficients are identical. For a system with only
two coils, the coefficients M12 and M21 are often represented by the symbol M
without subscripts, called simply the mutual inductance:

M12 = M21 = M.

17-7 Self-inductance

In discussing the induced electromotive forces in the two coils of Figs. 17-8
or 17-9, we have considered only the case in which there was a current in one
coil or the other. If there are currents in the two coils simultaneously, the
magnetic flux linking either coil will be the sum of the two fluxes which would
exist separately, because the law of superposition applies for magnetic fields. The
emf in either coil will therefore be proportional not only to the change of the
current in the other coil, but also to the change in the current of the coil itself.
Thus the total emf in coil 2 should be written*

E2 = M21
dI1
dt

+ M22
dI2
dt
. (17.31)

Similarly, the emf in coil 1 will depend not only on the changing current in coil 2,
but also on the changing current in itself:

E1 = M12
dI2
dt

+ M11
dI1
dt
. (17.32)

The coefficients M22 and M11 are always negative numbers. It is usual to write

M11 = −L1, M22 = −L2, (17.33)

where L1 and L2 are called the self-inductances of the two coils.
The self-induced emf will, of course, exist even if we have only one coil. Any

coil by itself will have a self-inductance L. The emf will be proportional to the
rate of change of the current in it. For a single coil, it is usual to adopt the
convention that the emf and the current are considered positive if they are in the
same direction. With this convention, we may write for the emf of a single coil

E = −L dI

dt
. (17.34)

The negative sign indicates that the emf opposes the change in current—it is
often called a “back emf.”

Since any coil has a self-inductance which opposes the change in current,
the current in the coil has a kind of inertia. In fact, if we wish to change the
current in a coil we must overcome this inertia by connecting the coil to some
external voltage source such as a battery or a generator, as shown in the schematic

* The sign of M12 and M21 in Eqs. (17.31) and (17.32) depends on the arbitrary choices
for the sense of a positive current in the two coils.
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diagram of Fig. 17-10(a). In such a circuit, the current I depends on the voltage V
according to the relation

V = L
dI

dt
. (17.35)

(a)

V(t)

I

L

(b)

v

m
F

Fig. 17-10. (a) A circuit with a voltage
source and an inductance. (b) An analogous
mechanical system.

This equation has the same form as Newton’s law of motion for a particle
in one dimension. We can therefore study it by the principle that “the same
equations have the same solutions.” Thus, if we make the externally applied
voltage V correspond to an externally applied force F , and the current I in a coil
correspond to the velocity v of a particle, the inductance L of the coil corresponds
to the mass m of the particle.* See Fig. 17-10(b). We can make the following
table of corresponding quantities.

Particle Coil
F (force) V (potential difference)
v (velocity) I (current)

x (displacement) q (charge)
F = m

dv

dt
V = L

dI

dt
mv (momentum) LI

1
2mv

2 (kinetic energy) 1
2LI

2 (magnetic energy)

17-8 Inductance and magnetic energy

Continuing with the analogy of the preceding section, we would expect that
corresponding to the mechanical momentum p = mv, whose rate of change is the
applied force, there should be an analogous quantity equal to LI, whose rate of
change is V. We have no right, of course, to say that LI is the real momentum of
the circuit; in fact, it isn’t. The whole circuit may be standing still and have no
momentum. It is only that LI is analogous to the momentum mv in the sense of
satisfying corresponding equations. In the same way, to the kinetic energy 1

2mv
2,

there corresponds an analogous quantity 1
2LI

2. But there we have a surprise.
This 1

2LI
2 is really the energy in the electrical case also. This is because the rate

of doing work on the inductance is VI, and in the mechanical system it is Fv,
the corresponding quantity. Therefore, in the case of the energy, the quantities
not only correspond mathematically, but also have the same physical meaning as
well.

We may see this in more detail as follows. As we found in Eq. (17.16), the
rate of electrical work by induced forces is the product of the electromotive force
and the current:

dW

dt
= EI.

Replacing E by its expression in terms of the current from Eq. (17.34), we have

dW

dt
= −LI dI

dt
. (17.36)

Integrating this equation, we find that the energy required from an external
source to overcome the emf in the self-inductance while building up the current†
(which must equal the energy stored, U) is

−W = U = 1
2LI

2. (17.37)

Therefore the energy stored in an inductance is 1
2LI

2.
Applying the same arguments to a pair of coils such as those in Figs. 17-8

or 17-9, we can show that the total electrical energy of the system is given by

U = 1
2L1I

2
1 + 1

2L2I
2
2 + MI1I2. (17.38)

* This is, incidentally, not the only way a correspondence can be set up between mechanical
and electrical quantities.

† We are neglecting any energy loss to heat from the current in the resistance of the coil.
Such losses require additional energy from the source but do not change the energy which goes
into the inductance.
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For, starting with I = 0 in both coils, we could first turn on the current I1 in
coil 1, with I2 = 0. The work done is just 1

2L1I
2
1 . But now, on turning up I2, we

not only do the work 1
2L2I

2
2 against the emf in circuit 2, but also an additional

amount MI1I2, which is the integral of the emf [M(dI2/dt)] in circuit 1 times
the now constant current I1 in that circuit.

Suppose we now wish to find the force between any two coils carrying the
currents I1 and I2. We might at first expect that we could use the principle
of virtual work, by taking the change in the energy of Eq. (17.38). We must
remember, of course, that as we change the relative positions of the coils the
only quantity which varies is the mutual inductance M. We might then write
the equation of virtual work as

−F ∆x = ∆U = I1I2 ∆M (wrong).

But this equation is wrong because, as we have seen earlier, it includes only the
change in the energy of the two coils and not the change in the energy of the
sources which are maintaining the currents I1 and I2 at their constant values. We
can now understand that these sources must supply energy against the induced
emf’s in the coils as they are moved. If we wish to apply the principle of virtual
work correctly, we must also include these energies. As we have seen, however, we
may take a short cut and use the principle of virtual work by remembering that
the total energy is the negative of what we have called Umech, the “mechanical
energy.” We can therefore write for the force

− F ∆x = ∆Umech = −∆U. (17.39)

The force between two coils is then given by

F ∆x = I1I2 ∆M.

Equation (17.38) for the energy of a system of two coils can be used to show
that an interesting inequality exists between mutual inductance M and the self-
inductances L1 and L2 of the two coils. It is clear that the energy of two coils
must be positive. If we begin with zero currents in the coils and increase these
currents to some values, we have been adding energy to the system. If not, the
currents would spontaneously increase with release of energy to the rest of the
world—an unlikely thing to happen! Now our energy equation, Eq. (17.38), can
equally well be written in the following form:

U = 1
2 L1

(
I1 + M

L1
I2

)2
+ 1

2

(
L2 −

M2

L1

)
I2
2 . (17.40)

That is just an algebraic transformation. This quantity must always be positive
for any values of I1 and I2. In particular, it must be positive if I2 should happen
to have the special value

I2 = −L1

M
I1. (17.41)

But with this current for I2, the first term in Eq. (17.40) is zero. If the energy is
to be positive, the last term in (17.40) must be greater than zero. We have the
requirement that

L1L2 >M2.

We have thus proved the general result that the magnitude of the mutual induc-
tance M of any two coils is necessarily less than or equal to the geometric mean
of the two self-inductances. (M itself may be positive or negative, depending on
the sign conventions for the currents I1 and I2.)

|M| <
√

L1L2. (17.42)

The relation between M and the self-inductances is usually written as

M = k
√
L1L2. (17.43)
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The constant k is called the coefficient of coupling. If most of the flux from one
coil links the other coil, the coefficient of coupling is near one; we say the coils
are “tightly coupled.” If the coils are far apart or otherwise arranged so that there
is very little mutual flux linkage, the coefficient of coupling is near zero and the
mutual inductance is very small.

For calculating the mutual inductance of two coils, we have given in Eq. (17.30)
a formula which is a double line integral around the two circuits. We might think
that the same formula could be used to get the self-inductance of a single coil by
carrying out both line integrals around the same coil. This, however, will not
work, because the denominator r12 of the integrand will go to zero when the two
line elements ds1 and ds2 are at the same point on the coil. The self-inductance
obtained from this formula is infinite. The reason is that this formula is an
approximation that is valid only when the cross sections of the wires of the
two circuits are small compared with the distance from one circuit to the other.
Clearly, this approximation doesn’t hold for a single coil. It is, in fact, true that
the inductance of a single coil tends logarithmically to infinity as the diameter of
its wire is made smaller and smaller.

We must, then, look for a different way of calculating the self-inductance of a
single coil. It is necessary to take into account the distribution of the currents
within the wires because the size of the wire is an important parameter. We
should therefore ask not what is the inductance of a “circuit,” but what is the
inductance of a distribution of conductors. Perhaps the easiest way to find
this inductance is to make use of the magnetic energy. We found earlier, in
Section 15-3, an expression for the magnetic energy of a distribution of stationary
currents:

U = 1
2

∫
j ·A dV. (17.44)

If we know the distribution of current density j, we can compute the vector
potential A and then evaluate the integral of Eq. (17.44) to get the energy. This
energy is equal to the magnetic energy of the self-inductance, 1

2LI
2. Equating

the two gives us a formula for the inductance:

L = 1
I2

∫
j ·A dV. (17.45)

We expect, of course, that the inductance is a number depending only on the
geometry of the circuit and not on the current I in the circuit. The formula of
Eq. (17.45) will indeed give such a result, because the integral in this equation is
proportional to the square of the current—the current appears once through j
and again through the vector potential A. The integral divided by I2 will depend
on the geometry of the circuit but not on the current I.

Equation (17.44) for the energy of a current distribution can be put in a quite
different form which is sometimes more convenient for calculation. Also, as we
will see later, it is a form that is important because it is more generally valid. In
the energy equation, Eq. (17.44), both A and j can be related to B, so we can
hope to express the energy in terms of the magnetic field—just as we were able
to relate the electrostatic energy to the electric field. We begin by replacing j
by ε0c2∇ × B. We cannot replace A so easily, since B = ∇ × A cannot be
reversed to give A in terms of B. Anyway, we can write

U = ε0c
2

2

∫
(∇×B) ·A dV. (17.46)

The interesting thing is that—with some restrictions—this integral can be
written as

U = ε0c
2

2

∫
B · (∇×A) dV. (17.47)

To see this, we write out in detail a typical term. Suppose that we take the
term (∇×B)zAz which occurs in the integral of Eq. (17.46). Writing out the
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components, we get ∫ (
∂By
∂x
− ∂Bx

∂y

)
Az dx dy dz.

(There are, of course, two more integrals of the same kind.) We now integrate
the first term with respect to x—integrating by parts. That is, we can say∫

∂By
∂x

Az dx = ByAz −
∫
By

∂Az
∂x

dx.

Now suppose that our system—meaning the sources and fields—is finite, so that
as we go to large distances all fields go to zero. Then if the integrals are carried
out over all space, evaluating the term ByAz at the limits will give zero. We have
left only the term with By(∂Az/∂x), which is evidently one part of By(∇×A)y
and, therefore, of B · (∇×A). If you work out the other five terms, you will see
that Eq. (17.47) is indeed equivalent to Eq. (17.46).

But now we can replace (∇×A) by B, to get

U = ε0c
2

2

∫
B ·B dV. (17.48)

We have expressed the energy of a magnetostatic situation in terms of the
magnetic field only. The expression corresponds closely to the formula we found
for the electrostatic energy:

U = ε0
2

∫
E ·E dV. (17.49)

One reason for emphasizing these two energy formulas is that sometimes they
are more convenient to use. More important, it turns out that for dynamic fields
(when E and B are changing with time) the two expressions (17.48) and (17.49)
remain true, whereas the other formulas we have given for electric or magnetic
energies are no longer correct—they hold only for static fields.

If we know the magnetic field B of a single coil, we can find the self-inductance
by equating the energy expression (17.48) to 1

2LI
2. Let’s see how this works

by finding the self-inductance of a long solenoid. We have seen earlier that the
magnetic field inside a solenoid is uniform and B outside is zero. The magnitude
of the field inside is B = nI/ε0c

2, where n is the number of turns per unit length
in the winding and I is the current. If the radius of the coil is r and its length
is L (we take L very long, so that we can neglect end effects, i.e., L� r), the
volume inside is πr2L. The magnetic energy is therefore

U = ε0c
2

2 B2 · (Vol) = n2I2

2ε0c2
πr2L,

which is equal to 1
2LI

2. Or,

L = πr2n2

ε0c2
L. (17.50)
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18

The Maxwell Equations

18-1 Maxwell’s equations

In 18-1 Maxwell’s equations
18-2 How the new term works
18-3 All of classical physics
18-4 A travelling field
18-5 The speed of light
18-6 Solving Maxwell’s equations; the

potentials and the wave equation

this chapter we come back to the complete set of the four Maxwell equations
that we took as our starting point in Chapter 1. Until now, we have been studying
Maxwell’s equations in bits and pieces; it is time to add one final piece, and to
put them all together. We will then have the complete and correct story for
electromagnetic fields that may be changing with time in any way. Anything said
in this chapter that contradicts something said earlier is true and what was said
earlier is false—because what was said earlier applied to such special situations
as, for instance, steady currents or fixed charges. Although we have been very
careful to point out the restrictions whenever we wrote an equation, it is easy to
forget all of the qualifications and to learn too well the wrong equations. Now
we are ready to give the whole truth, with no qualifications (or almost none).

The complete Maxwell equations are written in Table 18-1, in words as well as
in mathematical symbols. The fact that the words are equivalent to the equations
should by this time be familiar—you should be able to translate back and forth
from one form to the other.

The first equation—that the divergence of E is the charge density over ε0—is
true in general. In dynamic as well as in static fields, Gauss’ law is always valid.
The flux of E through any closed surface is proportional to the charge inside.
The third equation is the corresponding general law for magnetic fields. Since
there are no magnetic charges, the flux of B through any closed surface is always
zero. The second equation, that the curl of E is −∂B/∂t, is Faraday’s law and
was discussed in the last two chapters. It also is generally true. The last equation
has something new. We have seen before only the part of it which holds for
steady currents. In that case we said that the curl of B is j/ε0c2, but the correct
general equation has a new part that was discovered by Maxwell.

Until Maxwell’s work, the known laws of electricity and magnetism were those
we have studied in Chapters 3 through 17. In particular, the equation for the
magnetic field of steady currents was known only as

∇×B = j

ε0c2
. (18.1)

Maxwell began by considering these known laws and expressing them as differ-
ential equations, as we have done here. (Although the ∇ notation was not yet
invented, it is mainly due to Maxwell that the importance of the combinations of
derivatives, which we today call the curl and the divergence, first became appar-
ent.) He then noticed that there was something strange about Eq. (18.1). If one
takes the divergence of this equation, the left-hand side will be zero, because the
divergence of a curl is always zero. So this equation requires that the divergence
of j also be zero. But if the divergence of j is zero, then the total flux of current
out of any closed surface is also zero.

The flux of current from a closed surface is the decrease of the charge inside
the surface. This certainly cannot in general be zero because we know that the
charges can be moved from one place to another. The equation

∇ · j = −∂ρ
∂t

(18.2)

has, in fact, been almost our definition of j. This equation expresses the very
fundamental law that electric charge is conserved—any flow of charge must come
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Table 18-1 Classical Physics

Maxwell’s equations

I. ∇ ·E = ρ

ε0
(Flux of E through a closed surface) = (Charge inside)/ε0

II. ∇×E = −∂B
∂t

(Line integral of E around a loop) = − d

dt
(Flux of B through the loop)

III. ∇ ·B = 0 (Flux of B through a closed surface) = 0

IV. c2∇×B = j

ε0
+ ∂E

∂t
c2(Integral of B around a loop) = (Current through the loop)/ε0

+ d

dt
(Flux of E through the loop)

Conservation of charge


∇ · j = −∂ρ
∂t

(Flux of current through a closed loop) = − d

dt
(Charge inside)

Force law

F = q(E + v ×B)

Law of motion
d

dt
(p) = F , where p = mv√

1− v2/c2
(Newton’s law, with Einstein’s modification)

Gravitation

F = −G m1m2

r2 er

from some supply. Maxwell appreciated this difficulty and proposed that it could
be avoided by adding the term ∂E/∂t to the right-hand side of Eq. (18.1); he
then got the fourth equation in Table 18-1:

IV. c2∇×B = j

ε0
+ ∂E

∂t
.

It was not yet customary in Maxwell’s time to think in terms of abstract
fields. Maxwell discussed his ideas in terms of a model in which the vacuum was
like an elastic solid. He also tried to explain the meaning of his new equation in
terms of the mechanical model. There was much reluctance to accept his theory,
first because of the model, and second because there was at first no experimental
justification. Today, we understand better that what counts are the equations
themselves and not the model used to get them. We may only question whether
the equations are true or false. This is answered by doing experiments, and untold
numbers of experiments have confirmed Maxwell’s equations. If we take away
the scaffolding he used to build it, we find that Maxwell’s beautiful edifice stands
on its own. He brought together all of the laws of electricity and magnetism and
made one complete and beautiful theory.

Let us show that the extra term is just what is required to straighten out
the difficulty Maxwell discovered. Taking the divergence of his equation (IV in
Table 18-1), we must have that the divergence of the right-hand side is zero:

∇ · j
ε0

+∇ · ∂E
∂t

= 0. (18.3)

In the second term, the order of the derivatives with respect to coordinates and
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time can be reversed, so the equation can be rewritten as

∇ · j + ε0
∂

∂t
∇ ·E = 0. (18.4)

But the first of Maxwell’s equations says that the divergence of E is ρ/ε0.
Inserting this equality in Eq. (18.4), we get back Eq. (18.2), which we know is
true. Conversely, if we accept Maxwell’s equations—and we do because no one
has ever found an experiment that disagrees with them—we must conclude that
charge is always conserved.

The laws of physics have no answer to the question: “What happens if a charge
is suddenly created at this point—what electromagnetic effects are produced?”
No answer can be given because our equations say it doesn’t happen. If it were
to happen, we would need new laws, but we cannot say what they would be. We
have not had the chance to observe how a world without charge conservation
behaves. According to our equations, if you suddenly place a charge at some
point, you had to carry it there from somewhere else. In that case, we can say
what would happen.

When we added a new term to the equation for the curl of E, we found that
a whole new class of phenomena was described. We shall see that Maxwell’s little
addition to the equation for ∇×B also has far-reaching consequences. We can
touch on only a few of them in this chapter.

18-2 How the new term works

Q

E

E

E

j

j

Γ

B?

Fig. 18-1. What is the magnetic field of
a spherically symmetric current?

As our first example we consider what happens with a spherically symmetric
radial distribution of current. Suppose we imagine a little sphere with radioactive
material on it. This radioactive material is squirting out some charged particles.
(Or we could imagine a large block of jello with a small hole in the center into
which some charge had been injected with a hypodermic needle and from which
the charge is slowly leaking out.) In either case we would have a current that is
everywhere radially outward. We will assume that it has the same magnitude in
all directions.

Let the total charge inside any radius r be Q(r). If the radial current density
at the same radius is j(r), then Eq. (18.2) requires that Q decreases at the rate

∂Q(r)
∂t

= −4πr2j(r). (18.5)

We now ask about the magnetic field produced by the currents in this situation.
Suppose we draw some loop Γ on a sphere of radius r, as shown in Fig. 18-1.
There is some current through this loop, so we might expect to find a magnetic
field circulating in the direction shown.

But we are already in difficulty. How can the B have any particular direction
on the sphere? A different choice of Γ would allow us to conclude that its direction
is exactly opposite to that shown. So how can there be any circulation of B
around the currents?

We are saved by Maxwell’s equation. The circulation of B depends not only
on the total current through Γ but also on the rate of change with time of the
electric flux through it. It must be that these two parts just cancel. Let’s see if
that works out.

The electric field at the radius r must be Q(r)/4πε0r2—so long as the charge
is symmetrically distributed, as we assume. It is radial, and its rate of change is
then

∂E

∂t
= 1

4πε0r2
∂Q

∂t
. (18.6)

Comparing this with Eq. (18.5), we see

∂E

∂t
= − j

ε0
. (18.7)
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Fig. 18-2. The magnetic field near a charging capacitor.

In Eq. IV the two source terms cancel and the curl of B is always zero. There is
no magnetic field in our example.

As our second example, we consider the magnetic field of a wire used to
charge a parallel-plate condenser (see Fig. 18-2). If the charge Q on the plates is
changing with time (but not too fast), the current in the wires is equal to dQ/dt.
We would expect that this current will produce a magnetic field that encircles the
wire. Surely, the current close to the plate must produce the normal magnetic
field—it cannot depend on where the current is going.

Suppose we take a loop Γ1 which is a circle with radius r, as shown in part (a)
of the figure. The line integral of the magnetic field should be equal to the
current I divided by ε0c2. We have

2πrB = I

ε0c2
. (18.8)

This is what we would get for a steady current, but it is also correct with Maxwell’s
addition, because if we consider the plane surface S inside the circle, there are
no electric fields on it (assuming the wire to be a very good conductor). The
surface integral of ∂E/∂t is zero.

Suppose, however, that we now slowly move the curve Γ downward. We get
always the same result until we draw even with the plates of the condenser. Then
the current I goes to zero. Does the magnetic field disappear? That would be
quite strange. Let’s see what Maxwell’s equation says for the curve Γ2, which is a
circle of radius r whose plane passes between the condenser plates [Fig. 18-2(b)].
The line integral of B around Γ2 is 2πrB. This must equal the time derivative of
the flux of E through the plane circular surface S2. This flux of E, we know from
Gauss’ law, must be equal to 1/ε0 times the charge Q on one of the condenser
plates. We have

c2 2πrB = d

dt

(
Q

ε0

)
. (18.9)

That is very convenient. It is the same result we found in Eq. (18.8). In-
tegrating over the changing electric field gives the same magnetic field as does
integrating over the current in the wire. Of course, that is just what Maxwell’s
equation says. It is easy to see that this must always be so by applying our
same arguments to the two surfaces S1 and S′1 that are bounded by the same
circle Γ1 in Fig. 18-2(b). Through S1 there is the current I, but no electric flux.
Through S′1 there is no current, but an electric flux changing at the rate I/ε0.
The same B is obtained if we use Eq. IV with either surface.

From our discussion so far of Maxwell’s new term, you may have the impression
that it doesn’t add much—that it just fixes up the equations to agree with what
we already expect. It is true that if we just consider Eq. IV by itself, nothing
particularly new comes out. The words “by itself ” are, however, all-important.
Maxwell’s small change in Eq. IV, when combined with the other equations, does
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indeed produce much that is new and important. Before we take up these matters,
however, we want to speak more about Table 18-1.

18-3 All of classical physics

In Table 18-1 we have all that was known of fundamental classical physics,
that is, the physics that was known by 1905. Here it all is, in one table. With
these equations we can understand the complete realm of classical physics.

First we have the Maxwell equations—written in both the expanded form and
the short mathematical form. Then there is the conservation of charge, which is
even written in parentheses, because the moment we have the complete Maxwell
equations, we can deduce from them the conservation of charge. So the table is
even a little redundant. Next, we have written the force law, because having all
the electric and magnetic fields doesn’t tell us anything until we know what they
do to charges. Knowing E and B, however, we can find the force on an object
with the charge q moving with velocity v. Finally, having the force doesn’t tell
us anything until we know what happens when a force pushes on something; we
need the law of motion, which is that the force is equal to the rate of change
of the momentum. (Remember? We had that in Volume I.) We even include
relativity effects by writing the momentum as p = m0v/

√
1− v2/c2.

If we really want to be complete, we should add one more law—Newton’s law
of gravitation—so we put that at the end.

Therefore in one small table we have all the fundamental laws of classical
physics—even with room to write them out in words and with some redundancy.
This is a great moment. We have climbed a great peak. We are on the top of K-2—
we are nearly ready for Mount Everest, which is quantum mechanics. We have
climbed the peak of a “Great Divide,” and now we can go down the other side.

We have mainly been trying to learn how to understand the equations. Now
that we have the whole thing put together, we are going to study what the
equations mean—what new things they say that we haven’t already seen. We’ve
been working hard to get up to this point. It has been a great effort, but now we
are going to have nice coasting downhill as we see all the consequences of our
accomplishment.

18-4 A travelling field

Now for the new consequences. They come from putting together all of
Maxwell’s equations. First, let’s see what would happen in a circumstance which
we pick to be particularly simple. By assuming that all the quantities vary only in
one coordinate, we will have a one-dimensional problem. The situation is shown in
Fig. 18-3. We have a sheet of charge located on the yz-plane. The sheet is first at
rest, then instantaneously given a velocity u in the y-direction, and kept moving
with this constant velocity. You might worry about having such an “infinite”

x

y

z

SHEET OF
CHARGE

MOVING BOUNDARY
OF FIELDS

NO FIELDS
E = B = 0

vt
x = 0 x = x0

J

E E E E
B

B B B

S

v

Fig. 18-3. An infinite sheet of charge is
suddenly set into motion parallel to itself.
There are magnetic and electric fields that
propagate out from the sheet at a constant
speed.
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acceleration, but it doesn’t really matter; just imagine that the velocity is brought
to u very quickly. So we have suddenly a surface current J (J is the current per
unit width in the z-direction). To keep the problem simple, we suppose that there
is also a stationary sheet of charge of opposite sign superposed on the yz-plane, so
that there are no electrostatic effects. Also, although in the figure we show only
what is happening in a finite region, we imagine that the sheet extends to infinity
in ±y and ±z. In other words, we have a situation where there is no current,
and then suddenly there is a uniform sheet of current. What will happen?

(a)

x

B or E

v

vt

(b)

x

B or E

v

v(t − T )

(c)

x

B or E

v

vT

Fig. 18-4. (a) The magnitude of B (or E)
as a function of x at time t after the charge
sheet is set in motion. (b) The fields for
a charge sheet set in motion, toward nega-
tive y at t = T . (c) The sum of (a) and (b).

Well, when there is a sheet of current in the plus y-direction, there is, as we
know, a magnetic field generated which will be in the minus z-direction for x > 0
and in the opposite direction for x < 0. We could find the magnitude of B by
using the fact that the line integral of the magnetic field will be equal to the
current over ε0c2. We would get that B = J/2ε0c2 (since the current I in a strip
of width w is Jw and the line integral of B is 2Bw).

This gives us the field next to the sheet—for small x—but since we are
imagining an infinite sheet, we would expect the same argument to give the
magnetic field farther out for larger values of x. However, that would mean that the
moment we turn on the current, the magnetic field is suddenly changed from zero
to a finite value everywhere. But wait! If the magnetic field is suddenly changed,
it will produce tremendous electrical effects. (If it changes in any way, there are
electrical effects.) So because we moved the sheet of charge, we make a changing
magnetic field, and therefore electric fields must be generated. If there are electric
fields generated, they had to start from zero and change to something else. There
will be some ∂E/∂t that will make a contribution, together with the current J ,
to the production of the magnetic field. So through the various equations there
is a big intermixing, and we have to try to solve for all the fields at once.

By looking at the Maxwell equations alone, it is not easy to see directly
how to get the solution. So we will first show you what the answer is and then
verify that it does indeed satisfy the equations. The answer is the following: The
field B that we computed is, in fact, generated right next to the current sheet (for
small x). It must be so, because if we make a tiny loop around the sheet, there
is no room for any electric flux to go through it. But the field B out farther—for
larger x—is, at first, zero. It stays zero for awhile, and then suddenly turns on.
In short, we turn on the current and the magnetic field immediately next to it
turns on to a constant value B; then the turning on of B spreads out from the
source region. After a certain time, there is a uniform magnetic field everywhere
out to some value x, and then zero beyond. Because of the symmetry, it spreads
in both the plus and minus x-directions.

The E-field does the same thing. Before t = 0 (when we turn on the current),
the field is zero everywhere. Then after the time t, both E and B are uniform
out to the distance x = vt, and zero beyond. The fields make their way forward
like a tidal wave, with a front moving at a uniform velocity which turns out to
be c, but for a while we will just call it v. A graph of the magnitude of E or B
versus x, as they appear at the time t, is shown in Fig. 18-4(a). Looking again
at Fig. 18-3, at the time t, the region between x = ±vt is “filled” with the fields,
but they have not yet reached beyond. We emphasize again that we are assuming
that the current sheet and, therefore the fields E and B, extend infinitely far
in both the y- and z-directions. (We cannot draw an infinite sheet, so we have
shown only what happens in a finite area.)

We want now to analyze quantitatively what is happening. To do that, we
want to look at two cross-sectional views, a top view looking down along the
y-axis, as shown in Fig. 18-5, and a side view looking back along the z-axis, as
shown in Fig. 18-6. Suppose we start with the side view. We see the charged
sheet moving up; the magnetic field points into the page for +x, and out of the
page for −x, and the electric field is downward everywhere—out to x = ±vt.

Let’s see if these fields are consistent with Maxwell’s equations. Let’s first draw
one of those loops that we use to calculate a line integral, say the rectangle Γ2
shown in Fig. 18-6. You notice that one side of the rectangle is in the region
where there are fields, but one side is in the region the fields have still not
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Fig. 18-5. Top view of Fig. 18-3. Fig. 18-6. Side view of Fig. 18-3.

reached. There is some magnetic flux through this loop. If it is changing, there
should be an emf around it. If the wavefront is moving, we will have a changing
magnetic flux, because the area in which B exists is progressively increasing
at the velocity v. The flux inside Γ2 is B times the part of the area inside Γ2
which has a magnetic field. The rate of change of the flux, since the magnitude
of B is constant, is the magnitude times the rate of change of the area. The rate
of change of the area is easy. If the width of the rectangle Γ2 is L, the area in
which B exists changes by Lv∆t in the time ∆t. (See Fig. 18-6.) The rate of
change of flux is then BLv. According to Faraday’s law, this should equal minus
the line integral of E around Γ2, which is just EL. We have the equation

E = vB. (18.10)

So if the ratio of E to B is v, the fields we have assumed will satisfy Faraday’s
equation.

But that is not the only equation; we have the other equation relating E
and B:

c2∇×B = j

ε0
+ ∂E

∂t
. (18.11)

To apply this equation, we look at the top view in Fig. 18-5. We have seen that
this equation will give us the value of B next to the current sheet. Also, for any
loop drawn outside the sheet but behind the wavefront, there is no curl of B nor
any j or changing E, so the equation is correct there. Now let’s look at what
happens for the curve Γ1 that intersects the wavefront, as shown in Fig. 18-5.
Here there are no currents, so Eq. (18.11) can be written—in integral form—as

c2
∮

Γ1

B · ds = d

dt

∫
inside Γ1

E · n da. (18.12)

The line integral of B is just B times L. The rate of change of the flux of E is
due only to the advancing wavefront. The area inside Γ1, where E is not zero, is
increasing at the rate vL. The right-hand side of Eq. (18.12) is then vLE. That
equation becomes

c2B = Ev. (18.13)
We have a solution in which we have a constant B and a constant E behind

the front, both at right angles to the direction in which the front is moving and
at right angles to each other. Maxwell’s equations specify the ratio of E to B.
From Eqs. (18.10) and (18.13),

E = vB, and E = c2

v
B.

But one moment! We have found two different conditions on the ratio E/B. Can
such a field as we describe really exist? There is, of course, only one velocity v
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for which both of these equations can hold, namely v = c. The wavefront must
travel with the velocity c. We have an example in which the electrical influence
from a current propagates at a certain finite velocity c.

Now let’s ask what happens if we suddenly stop the motion of the charged
sheet after it has been on for a short time T . We can see what will happen by
the principle of superposition. We had a current that was zero and then was
suddenly turned on. We know the solution for that case. Now we are going to
add another set of fields. We take another charged sheet and suddenly start it
moving, in the opposite direction with the same speed, only at the time T after
we started the first current. The total current of the two added together is first
zero, then on for a time T , then off again—because the two currents cancel. We
have a square “pulse” of current.

The new negative current produces the same fields as the positive one, only
with all the signs reversed and, of course, delayed in time by T . A wavefront again
travels out at the velocity c. At the time t it has reached the distance x = ±c(t−T ),
as shown in Fig. 18-4(b). So we have two “blocks” of field marching out at the
speed c, as in parts (a) and (b) of Fig. 18-4. The combined fields are as shown
in part (c) of the figure. The fields are zero for x > ct, they are constant (with
the values we found above) between x = c(t − T ) and x = ct, and again zero
for x < c(t− T ).

In short, we have a little piece of field—a block of thickness cT—which has
left the current sheet and is travelling through space all by itself. The fields have
“taken off”; they are propagating freely through space, no longer connected in
any way with the source. The caterpillar has turned into a butterfly!

How can this bundle of electric and magnetic fields maintain itself? The
answer is: by the combined effects of the Faraday law, ∇×E = −∂B/∂t, and
the new term of Maxwell, c2∇ ×B = ∂E/∂t. They cannot help maintaining
themselves. Suppose the magnetic field were to disappear. There would be a
changing magnetic field which would produce an electric field. If this electric
field tries to go away, the changing electric field would create a magnetic field
back again. So by a perpetual interplay—by the swishing back and forth from
one field to the other—they must go on forever. It is impossible for them to
disappear.* They maintain themselves in a kind of a dance—one making the
other, the second making the first—propagating onward through space.

18-5 The speed of light

We have a wave which leaves the material source and goes outward at the
velocity c, which is the speed of light. But let’s go back a moment. From a
historical point of view, it wasn’t known that the coefficient c in Maxwell’s
equations was also the speed of light propagation. There was just a constant in
the equations. We have called it c from the beginning, because we knew what it
would turn out to be. We didn’t think it would be sensible to make you learn
the formulas with a different constant and then go back to substitute c wherever
it belonged. From the point of view of electricity and magnetism, however, we
just start out with two constants, ε0 and c2, that appear in the equations of
electrostatics and magnetostatics:

∇ ·E = ρ

ε0
(18.14)

and
∇×B = j

ε0c2
. (18.15)

If we take any arbitrary definition of a unit of charge, we can determine exper-
imentally the constant ε0 required in Eq. (18.14)—say by measuring the force
between two unit charges at rest, using Coulomb’s law. We must also determine

* Well, not quite. They can be “absorbed” if they get to a region where there are charges.
By which we mean that other fields can be produced somewhere which superpose on these
fields and “cancel” them by destructive interference (see Chapter 31, Vol. I).
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experimentally the constant ε0c2 that appears in Eq. (18.15), which we can do,
say, by measuring the force between two unit currents. (A unit current means
one unit of charge per second.) The ratio of these two experimental constants
is c2—just another “electromagnetic constant.”

Notice now that this constant c2 is the same no matter what we choose
for our unit of charge. If we put twice as much “charge”—say twice as many
proton charges—in our “unit” of charge, ε0 would need to be one-fourth as large.
When we pass two of these “unit” currents through two wires, there will be twice
as much “charge” per second in each wire, so the force between two wires is
four times larger. The constant ε0c2 must be reduced by one-fourth. But the
ratio ε0c2/ε0 is unchanged.

So just by experiments with charges and currents we find a number c2 which
turns out to be the square of the velocity of propagation of electromagnetic
influences. From static measurements—by measuring the forces between two unit
charges and between two unit currents—we find that c = 3.00× 108 meters/sec.
When Maxwell first made this calculation with his equations, he said that
bundles of electric and magnetic fields should be propagated at this speed. He
also remarked on the mysterious coincidence that this was the same as the speed
of light. “We can scarcely avoid the inference,” said Maxwell, “that light consists
in the transverse undulations of the same medium which is the cause of electric
and magnetic phenomena.”

Maxwell had made one of the great unifications of physics. Before his time,
there was light, and there was electricity and magnetism. The latter two had
been unified by the experimental work of Faraday, Oersted, and Ampère. Then,
all of a sudden, light was no longer “something else,” but was only electricity and
magnetism in this new form—little pieces of electric and magnetic fields which
propagate through space on their own.

We have called your attention to some characteristics of this special solution,
which turn out to be true, however, for any electromagnetic wave: that the
magnetic field is perpendicular to the direction of motion of the wavefront;
that the electric field is likewise perpendicular to the direction of motion of
the wavefront; and that the two vectors E and B are perpendicular to each
other. Furthermore, the magnitude of the electric field E is equal to c times the
magnitude of the magnetic field B. These three facts—that the two fields are
transverse to the direction of propagation, that B is perpendicular to E, and
that E = cB—are generally true for any electromagnetic wave. Our special case
is a good one—it shows all the main features of electromagnetic waves.

18-6 Solving Maxwell’s equations; the potentials and the wave equation

Now we would like to do something mathematical; we want to write Maxwell’s
equations in a simpler form. You may consider that we are complicating them, but
if you will be patient a little bit, they will suddenly come out simpler. Although
by this time you are thoroughly used to each of the Maxwell equations, there are
many pieces that must all be put together. That’s what we want to do.

We begin with ∇ ·B = 0—the simplest of the equations. We know that it
implies that B is the curl of something. So, if we write

B =∇×A, (18.16)

we have already solved one of Maxwell’s equations. (Incidentally, you appreciate
that it remains true that another vectorA′ would be just as good ifA′ = A+∇ψ—
where ψ is any scalar field—because the curl of ∇ψ is zero, and B is still the
same. We have talked about that before.)

We take next the Faraday law, ∇×E = −∂B/∂t, because it doesn’t involve
any currents or charges. If we write B as ∇×A and differentiate with respect
to t, we can write Faraday’s law in the form

∇×E = − ∂

∂t
∇×A.

18-9



Since we can differentiate either with respect to time or to space first, we can
also write this equation as

∇×
(
E + ∂A

∂t

)
= 0. (18.17)

We see that E + ∂A/∂t is a vector whose curl is equal to zero. Therefore that
vector is the gradient of something. When we worked on electrostatics, we had
∇ ×E = 0, and then we decided that E itself was the gradient of something.
We took it to be the gradient of −φ (the minus for technical convenience). We
do the same thing for E + ∂A/∂t; we set

E + ∂A

∂t
= −∇φ. (18.18)

We use the same symbol φ so that, in the electrostatic case where nothing changes
with time and the ∂A/∂t term disappears, E will be our old −∇φ. So Faraday’s
equation can be put in the form

E = −∇φ− ∂A

∂t
. (18.19)

We have solved two of Maxwell’s equations already, and we have found that
to describe the electromagnetic fields E and B, we need four potential functions:
a scalar potential φ and a vector potential A, which is, of course, three functions.

Now that A determines part of E, as well as B, what happens when we
change A to A′ = A+∇ψ? In general, E would change if we didn’t take some
special precaution. We can, however, still allow A to be changed in this way
without affecting the fields E and B—that is, without changing the physics—if
we always change A and φ together by the rules

A′ = A+∇ψ, φ′ = φ− ∂ψ

∂t
. (18.20)

Then neither B nor E, obtained from Eq. (18.19), is changed.
Previously, we chose to make ∇ ·A = 0, to make the equations of statics

somewhat simpler. We are not going to do that now; we are going to make a
different choice. But we’ll wait a bit before saying what the choice is, because
later it will be clear why the choice is made.

Now we return to the two remaining Maxwell equations which will give us
relations between the potentials and the sources ρ and j. Once we can determine
A and φ from the currents and charges, we can always get E and B from Eqs.
(18.16) and (18.19), so we will have another form of Maxwell’s equations.

We begin by substituting Eq. (18.19) into ∇ ·E = ρ/ε0; we get

∇ ·
(
−∇φ− ∂A

∂t

)
= ρ

ε0
,

which we can write also as

−∇2φ− ∂

∂t
∇ ·A = ρ

ε0
. (18.21)

This is one equation relating φ and A to the sources.
Our final equation will be the most complicated. We start by rewriting the

fourth Maxwell equation as

c2∇×B − ∂E

∂t
= j

ε0
,

and then substitute for B and E in terms of the potentials, using Eqs. (18.16)
and (18.19):

c2∇× (∇×A)− ∂

∂t

(
−∇φ− ∂A

∂t

)
= j

ε0
.
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The first term can be rewritten using the algebraic identity: ∇ × (∇ ×A) =
∇(∇ ·A)−∇2A; we get

− c2∇2A+ c2∇(∇ ·A) + ∂

∂t
∇φ+ ∂2A

∂t2
= j

ε0
. (18.22)

It’s not very simple!
Fortunately, we can now make use of our freedom to choose arbitrarily the

divergence of A. What we are going to do is to use our choice to fix things so
that the equations for A and for φ are separated but have the same form. We
can do this by taking*

∇ ·A = − 1
c2
∂φ

∂t
. (18.23)

When we do that, the two middle terms in A and φ in Eq. (18.22) cancel, and
that equation becomes much simpler:

∇2A− 1
c2
∂2A

∂t2
= − j

ε0c2
. (18.24)

And our equation for φ—Eq. (18.21)—takes on the same form:

∇2φ− 1
c2
∂2φ

∂t2
= − ρ

ε0
. (18.25)

What a beautiful set of equations! They are beautiful, first, because they
are nicely separated—with the charge density, goes φ; with the current, goes A.
Furthermore, although the left side looks a little funny—a Laplacian together
with a ∂2/∂t2—when we unfold it we see

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 −
1
c2
∂2φ

∂t2
= − ρ

ε0
. (18.26)

It has a nice symmetry in x, y, z, t—the −1/c2 is necessary because, of course,
time and space are different; they have different units.

Maxwell’s equations have led us to a new kind of equation for the potentials
φ and A but to the same mathematical form for all four functions φ, Ax, Ay,
and Az. Once we learn how to solve these equations, we can get B and E from
∇×A and −∇φ− ∂A/∂t. We have another form of the electromagnetic laws
exactly equivalent to Maxwell’s equations, and in many situations they are much
simpler to handle.

We have, in fact, already solved an equation much like Eq. (18.26). When we
studied sound in Chapter 47 of Vol. I, we had an equation of the form

∂2φ

∂x2 = 1
c2
∂2φ

∂t2
,

and we saw that it described the propagation of waves in the x-direction at
the speed c. Equation (18.26) is the corresponding wave equation for three
dimensions. So in regions where there are no longer any charges and currents, the
solution of these equations is not that φ and A are zero. (Although that is indeed
one possible solution.) There are solutions in which there is some set of φ and A
which are changing in time but always moving out at the speed c. The fields travel
onward through free space, as in our example at the beginning of the chapter.

With Maxwell’s new term in Eq. IV, we have been able to write the field
equations in terms ofA and φ in a form that is simple and that makes immediately
apparent that there are electromagnetic waves. For many practical purposes, it
will still be convenient to use the original equations in terms of E and B. But
they are on the other side of the mountain we have already climbed. Now we are
ready to cross over to the other side of the peak. Things will look different—we
are ready for some new and beautiful views.

* Choosing the ∇ ·A is called “choosing a gauge.” Changing A by adding ∇ψ, is called a
“gauge transformation.” Equation (18.23) is called “the Lorenz gauge.”
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19

The Principle of Least Action

19-1 A special lecture—almost verbatim*
“When 19-1 A special lecture—almost

verbatim
19-2 A note added after the lecture

I was in high school, my physics teacher—whose name was Mr. Bader—
called me down one day after physics class and said, ‘You look bored; I want
to tell you something interesting.’ Then he told me something which I found
absolutely fascinating, and have, since then, always found fascinating. Every
time the subject comes up, I work on it. In fact, when I began to prepare this
lecture I found myself making more analyses on the thing. Instead of worrying
about the lecture, I got involved in a new problem. The subject is this—the
principle of least action.

“Mr. Bader told me the following: Suppose you have a particle (in a gravita-
tional field, for instance) which starts somewhere and moves to some other point
by free motion—you throw it, and it goes up and comes down.
It goes from the original place to the final place in a certain amount of time.
Now, you try a different motion. Suppose that to get from here to there, it went
like this
but got there in just the same amount of time. Then he said this: If you calculate
the kinetic energy at every moment on the path, take away the potential energy,
and integrate it over the time during the whole path, you’ll find that the number
you’ll get is bigger than that for the actual motion.

“In other words, the laws of Newton could be stated not in the form F = ma
but in the form: the average kinetic energy less the average potential energy is
as little as possible for the path of an object going from one point to another.

* Later chapters do not depend on the material of this special lecture—which is intended to
be for “entertainment.”
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“Let me illustrate a little bit better what it means. If you take the case
of the gravitational field, then if the particle has the path x(t) (let’s just take
one dimension for a moment; we take a trajectory that goes up and down
and not sideways), where x is the height above the ground, the kinetic energy
is 1

2m (dx/dt)2, and the potential energy at any time is mgx. Now I take the
kinetic energy minus the potential energy at every moment along the path and
integrate that with respect to time from the initial time to the final time. Let’s
suppose that at the original time t1 we started at some height and at the end of
the time t2 we are definitely ending at some other place.

“Then the integral is ∫ t2

t1

[
1
2m
(
dx

dt

)2
−mgx

]
dt.

The actual motion is some kind of a curve—it’s a parabola if we plot against
the time—and gives a certain value for the integral. But we could imagine some
other motion that went very high and came up and down in some peculiar way.

We can calculate the kinetic energy minus the potential energy and integrate for
such a path . . . or for any other path we want. The miracle is that the true path
is the one for which that integral is least.

“Let’s try it out. First, suppose we take the case of a free particle for which
there is no potential energy at all. Then the rule says that in going from one
point to another in a given amount of time, the kinetic energy integral is least,
so it must go at a uniform speed. (We know that’s the right answer—to go at a
uniform speed.) Why is that? Because if the particle were to go any other way,
the velocities would be sometimes higher and sometimes lower than the average.
The average velocity is the same for every case because it has to get from ‘here’
to ‘there’ in a given amount of time.

“As an example, say your job is to start from home and get to school in a
given length of time with the car. You can do it several ways: You can accelerate
like mad at the beginning and slow down with the brakes near the end, or you
can go at a uniform speed, or you can go backwards for a while and then go
forward, and so on. The thing is that the average speed has got to be, of course,
the total distance that you have gone over the time. But if you do anything but
go at a uniform speed, then sometimes you are going too fast and sometimes
you are going too slow. Now the mean square of something that deviates around
an average, as you know, is always greater than the square of the mean; so the
kinetic energy integral would always be higher if you wobbled your velocity than
if you went at a uniform velocity. So we see that the integral is a minimum if the
velocity is a constant (when there are no forces). The correct path is like this.

“Now, an object thrown up in a gravitational field does rise faster first and
then slow down. That is because there is also the potential energy, and we must
have the least difference of kinetic and potential energy on the average. Because
the potential energy rises as we go up in space, we will get a lower difference if
we can get as soon as possible up to where there is a high potential energy. Then
we can take that potential away from the kinetic energy and get a lower average.
So it is better to take a path which goes up and gets a lot of negative stuff from
the potential energy.

“On the other hand, you can’t go up too fast, or too far, because you will
then have too much kinetic energy involved—you have to go very fast to get way
up and come down again in the fixed amount of time available. So you don’t
want to go too far up, but you want to go up some. So it turns out that the
solution is some kind of balance between trying to get more potential energy with
the least amount of extra kinetic energy—trying to get the difference, kinetic
minus the potential, as small as possible.
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“That is all my teacher told me, because he was a very good teacher and knew
when to stop talking. But I don’t know when to stop talking. So instead of leaving
it as an interesting remark, I am going to horrify and disgust you with the complex-
ities of life by proving that it is so. The kind of mathematical problem we will have
is very difficult and a new kind. We have a certain quantity which is called the
action, S. It is the kinetic energy, minus the potential energy, integrated over time.

Action = S =
∫ t2

t1

(KE− PE) dt.

Remember that the PE and KE are both functions of time. For each different
possible path you get a different number for this action. Our mathematical
problem is to find out for what curve that number is the least.

“You say—Oh, that’s just the ordinary calculus of maxima and minima. You
calculate the action and just differentiate to find the minimum.

“But watch out. Ordinarily we just have a function of some variable, and we
have to find the value of that variable where the function is least or most. For
instance, we have a rod which has been heated in the middle and the heat is spread
around. For each point on the rod we have a temperature, and we must find the
point at which that temperature is largest. But now for each path in space we have
a number—quite a different thing—and we have to find the path in space for which
the number is the minimum. That is a completely different branch of mathematics.
It is not the ordinary calculus. In fact, it is called the calculus of variations.

“There are many problems in this kind of mathematics. For example, the
circle is usually defined as the locus of all points at a constant distance from a
fixed point, but another way of defining a circle is this: a circle is that curve of
given length which encloses the biggest area. Any other curve encloses less area
for a given perimeter than the circle does. So if we give the problem: find that
curve which encloses the greatest area for a given perimeter, we would have a
problem of the calculus of variations—a different kind of calculus than you’re
used to.

“So we make the calculation for the path of an object. Here is the way we
are going to do it. The idea is that we imagine that there is a true path and that
any other curve we draw is a false path, so that if we calculate the action for the
false path we will get a value that is bigger than if we calculate the action for
the true path.

“Problem: Find the true path. Where is it? One way, of course, is to calculate
the action for millions and millions of paths and look at which one is lowest.
When you find the lowest one, that’s the true path.

“That’s a possible way. But we can do it better than that. When we have a
quantity which has a minimum—for instance, in an ordinary function like the
temperature—one of the properties of the minimum is that if we go away from the
minimum in the first order, the deviation of the function from its minimum value
is only second order. At any place else on the curve, if we move a small distance
the value of the function changes also in the first order. But at a minimum, a tiny
motion away makes, in the first approximation, no difference.

“That is what we are going to use to calculate the true path. If we have
the true path, a curve which differs only a little bit from it will, in the first
approximation, make no difference in the action. Any difference will be in the
second approximation, if we really have a minimum.

“That is easy to prove. If there is a change in the first order when I deviate
the curve a certain way, there is a change in the action that is proportional to
the deviation. The change presumably makes the action greater; otherwise we
haven’t got a minimum. But then if the change is proportional to the deviation,
reversing the sign of the deviation will make the action less. We would get the
action to increase one way and to decrease the other way. The only way that it
could really be a minimum is that in the first approximation it doesn’t make any
change, that the changes are proportional to the square of the deviations from
the true path.
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“So we work it this way: We call x(t) (with an underline) the true path—the
one we are trying to find. We take some trial path x(t) that differs from the true
path by a small amount which we will call η(t) (eta of t).

“Now the idea is that if we calculate the action S for the path x(t), then the
difference between that S and the action that we calculated for the path x(t)—to
simplify the writing we can call it S—the difference of S and S must be zero in
the first-order approximation of small η. It can differ in the second order, but in
the first order the difference must be zero.

“And that must be true for any η at all. Well, not quite. The method doesn’t
mean anything unless you consider paths which all begin and end at the same
two points—each path begins at a certain point at t1 and ends at a certain other
point at t2, and those points and times are kept fixed. So the deviations in our η
have to be zero at each end, η(t1) = 0 and η(t2) = 0. With that condition, we
have specified our mathematical problem.

“If you didn’t know any calculus, you might do the same kind of thing to
find the minimum of an ordinary function f(x). You could discuss what happens
if you take f(x) and add a small amount h to x and argue that the correction
to f(x) in the first order in h must be zero at the minimum. You would substitute
x+ h for x and expand out to the first order in h . . . just as we are going to do
with η.

“The idea is then that we substitute x(t) = x(t) + η(t) in the formula for the
action:

S =
∫ [

m

2

(
dx

dt

)2
− V (x)

]
dt,

where I call the potential energy V (x). The derivative dx/dt is, of course, the
derivative of x(t) plus the derivative of η(t), so for the action I get this expression:

S =
∫ t2

t1

[
m

2

(
dx

dt
+ dη

dt

)2
− V (x+ η)

]
dt.

“Now I must write this out in more detail. For the squared term I get(
dx

dt

)2
+ 2 dx

dt

dη

dt
+
(
dη

dt

)2
.

But wait. I’m not worrying about higher than the first order, so I will take all
the terms which involve η2 and higher powers and put them in a little box called
‘second and higher order.’ From this term I get only second order, but there will
be more from something else. So the kinetic energy part is

m

2

(
dx

dt

)2
+m

dx

dt

dη

dt
+ (second and higher order).

“Now we need the potential V at x + η. I consider η small, so I can write
V (x) as a Taylor series. It is approximately V (x); in the next approximation
(from the ordinary nature of derivatives) the correction is η times the rate of
change of V with respect to x, and so on:

V (x+ η) = V (x) + ηV ′(x) + η2

2 V ′′(x) + · · ·

I have written V ′ for the derivative of V with respect to x in order to save
writing. The term in η2 and the ones beyond fall into the ‘second and higher
order’ category and we don’t have to worry about them. Putting it all together,

S =
∫ t2

t1

[
m

2

(
dx

dt

)2
− V (x) +m

dx

dt

dη

dt

− ηV ′(x) + (second and higher order)
]
dt.
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Now if we look carefully at the thing, we see that the first two terms which I
have arranged here correspond to the action S that I would have calculated with
the true path x. The thing I want to concentrate on is the change in S—the
difference between the S and the S that we would get for the right path. This
difference we will write as δS, called the variation in S. Leaving out the ‘second
and higher order’ terms, I have for δS

δS =
∫ t2

t1

[
m
dx

dt

dη

dt
− ηV ′(x)

]
dt.

“Now the problem is this: Here is a certain integral. I don’t know what
the x is yet, but I do know that no matter what η is, this integral must be zero.
Well, you think, the only way that that can happen is that what multiplies η
must be zero. But what about the first term with dη/dt? Well, after all, if η
can be anything at all, its derivative is anything also, so you conclude that the
coefficient of dη/dt must also be zero. That isn’t quite right. It isn’t quite right
because there is a connection between η and its derivative; they are not absolutely
independent, because η(t) must be zero at both t1 and t2.

“The method of solving all problems in the calculus of variations always uses
the same general principle. You make the shift in the thing you want to vary (as
we did by adding η); you look at the first-order terms; then you always arrange
things in such a form that you get an integral of the form ‘some kind of stuff times
the shift (η),’ but with no other derivatives (no dη/dt). It must be rearranged so
it is always ‘something’ times η. You will see the great value of that in a minute.
(There are formulas that tell you how to do this in some cases without actually
calculating, but they are not general enough to be worth bothering about; the
best way is to calculate it out this way.)

“How can I rearrange the term in dη/dt to make it have an η? I can do
that by integrating by parts. It turns out that the whole trick of the calculus
of variations consists of writing down the variation of S and then integrating
by parts so that the derivatives of η disappear. It is always the same in every
problem in which derivatives appear.

“You remember the general principle for integrating by parts. If you have
any function f times dη/dt integrated with respect to t, you write down the
derivative of ηf :

d

dt
(ηf) = η

df

dt
+ f

dη

dt
.

The integral you want is over the last term, so∫
f
dη

dt
dt = ηf −

∫
η
df

dt
dt.

“In our formula for δS, the function f is m times dx/dt; therefore, I have the
following formula for δS.

δS = m
dx

dt
η(t)

∣∣∣∣t2
t1

−
∫ t2

t1

d

dt

(
m
dx

dt

)
η(t) dt−

∫ t2

t1

V ′(x) η(t) dt.

The first term must be evaluated at the two limits t1 and t2. Then I must have
the integral from the rest of the integration by parts. The last term is brought
down without change.

“Now comes something which always happens—the integrated part disappears.
(In fact, if the integrated part does not disappear, you restate the principle, adding
conditions to make sure it does!) We have already said that η must be zero at both
ends of the path, because the principle is that the action is a minimum provided
that the varied curve begins and ends at the chosen points. The condition is that
η(t1) = 0, and η(t2) = 0. So the integrated term is zero. We collect the other
terms together and obtain this:

δS =
∫ t2

t1

[
−m d2x

dt2
− V ′(x)

]
η(t) dt.
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The variation in S is now the way we wanted it—there is the stuff in brackets,
say F , all multiplied by η(t) and integrated from t1 to t2.

“We have that an integral of something or other times η(t) is always zero:∫
F (t) η(t) dt = 0.

I have some function of t; I multiply it by η(t); and I integrate it from one end
to the other. And no matter what the η is, I get zero. That means that the
function F (t) is zero. That’s obvious, but anyway I’ll show you one kind of proof.

“Suppose that for η(t) I took something which was zero for all t except right
near one particular value. It stays zero until it gets to this t,

then it blips up for a moment and blips right back down. When we do the integral
of this η times any function F , the only place that you get anything other than
zero was where η(t) was blipping, and then you get the value of F at that place
times the integral over the blip. The integral over the blip alone isn’t zero, but
when multiplied by F it has to be; so the function F has to be zero where the
blip was. But the blip was anywhere I wanted to put it, so F must be zero
everywhere.

“We see that if our integral is zero for any η, then the coefficient of η must
be zero. The action integral will be a minimum for the path that satisfies this
complicated differential equation:[

−m d2x

dt2
− V ′(x)

]
= 0.

It’s not really so complicated; you have seen it before. It is just F = ma. The
first term is the mass times acceleration, and the second is the derivative of the
potential energy, which is the force.

“So, for a conservative system at least, we have demonstrated that the principle
of least action gives the right answer; it says that the path that has the minimum
action is the one satisfying Newton’s law.

“One remark: I did not prove it was a minimum—maybe it’s a maximum.
In fact, it doesn’t really have to be a minimum. It is quite analogous to what
we found for the ‘principle of least time’ which we discussed in optics. There
also, we said at first it was ‘least’ time. It turned out, however, that there were
situations in which it wasn’t the least time. The fundamental principle was that
for any first-order variation away from the optical path, the change in time was
zero; it is the same story. What we really mean by ‘least’ is that the first-order
change in the value of S, when you change the path, is zero. It is not necessarily
a ‘minimum.’

“Next, I remark on some generalizations. In the first place, the thing can be
done in three dimensions. Instead of just x, I would have x, y, and z as functions
of t; the action is more complicated. For three-dimensional motion, you have to
use the complete kinetic energy—(m/2) times the whole velocity squared. That
is,

KE = m

2

[(
dx

dt

)2
+
(
dy

dt

)2
+
(
dz

dt

)2]
.

Also, the potential energy is a function of x, y, and z. And what about the path?
The path is some general curve in space, which is not so easily drawn, but the
idea is the same. And what about the η? Well, η can have three components.
You could shift the paths in x, or in y, or in z—or you could shift in all three
directions simultaneously. So η would be a vector. This doesn’t really complicate
things too much, though. Since only the first-order variation has to be zero,
we can do the calculation by three successive shifts. We can shift η only in the
x-direction and say that coefficient must be zero. We get one equation. Then
we shift it in the y-direction and get another. And in the z-direction and get
another. Or, of course, in any order that you want. Anyway, you get three
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equations. And, of course, Newton’s law is really three equations in the three
dimensions—one for each component. I think that you can practically see that it
is bound to work, but we will leave you to show for yourself that it will work for
three dimensions. Incidentally, you could use any coordinate system you want,
polar or otherwise, and get Newton’s laws appropriate to that system right off
by seeing what happens if you have the shift η in radius, or in angle, etc.

“Similarly, the method can be generalized to any number of particles. If you
have, say, two particles with a force between them, so that there is a mutual
potential energy, then you just add the kinetic energy of both particles and take
the potential energy of the mutual interaction. And what do you vary? You vary
the paths of both particles. Then, for two particles moving in three dimensions,
there are six equations. You can vary the position of particle 1 in the x-direction,
in the y-direction, and in the z-direction, and similarly for particle 2; so there
are six equations. And that’s as it should be. There are the three equations
that determine the acceleration of particle 1 in terms of the force on it and three
for the acceleration of particle 2, from the force on it. You follow the same
game through, and you get Newton’s law in three dimensions for any number of
particles.

“I have been saying that we get Newton’s law. That is not quite true, because
Newton’s law includes nonconservative forces like friction. Newton said that ma
is equal to any F . But the principle of least action only works for conservative
systems—where all forces can be gotten from a potential function. You know,
however, that on a microscopic level—on the deepest level of physics—there
are no nonconservative forces. Nonconservative forces, like friction, appear only
because we neglect microscopic complications—there are just too many particles
to analyze. But the fundamental laws can be put in the form of a principle of
least action.

“Let me generalize still further. Suppose we ask what happens if the particle
moves relativistically. We did not get the right relativistic equation of motion;
F = ma is only right nonrelativistically. The question is: Is there a corresponding
principle of least action for the relativistic case? There is. The formula in the
case of relativity is the following:

S = −m0c
2
∫ t2

t1

√
1− v2/c2 dt− q

∫ t2

t1

[φ(x, y, z, t)− v ·A(x, y, z, t)] dt.

The first part of the action integral is the rest mass m0 times c2 times the
integral of a function of velocity,

√
1− v2/c2. Then instead of just the potential

energy, we have an integral over the scalar potential φ and over v times the
vector potential A. Of course, we are then including only electromagnetic forces.
All electric and magnetic fields are given in terms of φ and A. This action
function gives the complete theory of relativistic motion of a single particle in an
electromagnetic field.

“Of course, wherever I have written v, you understand that before you try
to figure anything out, you must substitute dx/dt for vx and so on for the other
components. Also, you put the point along the path at time t, x(t), y(t), z(t)
where I wrote simply x, y, z. Properly, it is only after you have made those
replacements for the v’s that you have the formula for the action for a relativistic
particle. I will leave to the more ingenious of you the problem to demonstrate that
this action formula does, in fact, give the correct equations of motion for relativity.
May I suggest you do it first without the A, that is, for no magnetic field? Then
you should get the components of the equation of motion, dp/dt = −q∇φ, where,
you remember, p = m0v/

√
1− v2/c2.

“It is much more difficult to include also the case with a vector potential. The
variations get much more complicated. But in the end, the force term does come
out equal to q(E + v ×B), as it should. But I will leave that for you to play
with.

“I would like to emphasize that in the general case, for instance in the rela-
tivistic formula, the action integrand no longer has the form of the kinetic energy
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minus the potential energy. That’s only true in the nonrelativistic approximation.
For example, the term m0c

2
√

1− v2/c2 is not what we have called the kinetic
energy. The question of what the action should be for any particular case must
be determined by some kind of trial and error. It is just the same problem as
determining what are the laws of motion in the first place. You just have to
fiddle around with the equations that you know and see if you can get them into
the form of the principle of least action.

“One other point on terminology. The function that is integrated over time
to get the action S is called the Lagrangian, L, which is a function only of the
velocities and positions of particles. So the principle of least action is also written

S =
∫ t2

t1

L(xi, vi) dt,

where by xi and vi are meant all the components of the positions and velocities.
So if you hear someone talking about the ‘Lagrangian,’ you know they are
talking about the function that is used to find S. For relativistic motion in an
electromagnetic field

L = −m0c
2
√

1− v2/c2 − q(φ− v ·A).

“Also, I should say that S is not really called the ‘action’ by the most precise
and pedantic people. It is called ‘Hamilton’s first principal function.’ Now I hate
to give a lecture on ‘the-principle-of-least-Hamilton’s-first-principal-function.’ So
I call it ‘the action.’ Also, more and more people are calling it the action. You
see, historically something else which is not quite as useful was called the action,
but I think it’s more sensible to change to a newer definition. So now you too
will call the new function the action, and pretty soon everybody will call it by
that simple name.

“Now I want to say some things on this subject which are similar to the
discussions I gave about the principle of least time. There is quite a difference
in the characteristic of a law which says a certain integral from one place to
another is a minimum—which tells something about the whole path—and of a
law which says that as you go along, there is a force that makes it accelerate.
The second way tells how you inch your way along the path, and the other is a
grand statement about the whole path. In the case of light, we talked about the
connection of these two. Now, I would like to explain why it is true that there are
differential laws when there is a least action principle of this kind. The reason is
the following: Consider the actual path in space and time. As before, let’s take
only one dimension, so we can plot the graph of x as a function of t. Along the
true path, S is a minimum. Let’s suppose that we have the true path and that it
goes through some point a in space and time, and also through another nearby
point b.

Now if the entire integral from t1 to t2 is a minimum, it is also necessary that
the integral along the little section from a to b is also a minimum. It can’t be
that the part from a to b is a little bit more. Otherwise you could just fiddle
with just that piece of the path and make the whole integral a little lower.

“So every subsection of the path must also be a minimum. And this is true
no matter how short the subsection. Therefore, the principle that the whole path
gives a minimum can be stated also by saying that an infinitesimal section of
path also has a curve such that it has a minimum action. Now if we take a short
enough section of path—between two points a and b very close together—how the
potential varies from one place to another far away is not the important thing,
because you are staying almost in the same place over the whole little piece of
the path. The only thing that you have to discuss is the first-order change in the
potential. The answer can only depend on the derivative of the potential and
not on the potential everywhere. So the statement about the gross property of
the whole path becomes a statement of what happens for a short section of the
path—a differential statement. And this differential statement only involves the
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derivatives of the potential, that is, the force at a point. That’s the qualitative
explanation of the relation between the gross law and the differential law.

“In the case of light we also discussed the question: How does the particle
find the right path? From the differential point of view, it is easy to understand.
Every moment it gets an acceleration and knows only what to do at that instant.
But all your instincts on cause and effect go haywire when you say that the
particle decides to take the path that is going to give the minimum action. Does
it ‘smell’ the neighboring paths to find out whether or not they have more action?
In the case of light, when we put blocks in the way so that the photons could
not test all the paths, we found that they couldn’t figure out which way to go,
and we had the phenomenon of diffraction.

“Is the same thing true in mechanics? Is it true that the particle doesn’t just
‘take the right path’ but that it looks at all the other possible trajectories? And
if by having things in the way, we don’t let it look, that we will get an analog
of diffraction? The miracle of it all is, of course, that it does just that. That’s
what the laws of quantum mechanics say. So our principle of least action is
incompletely stated. It isn’t that a particle takes the path of least action but that
it smells all the paths in the neighborhood and chooses the one that has the least
action by a method analogous to the one by which light chose the shortest time.
You remember that the way light chose the shortest time was this: If it went on
a path that took a different amount of time, it would arrive at a different phase.
And the total amplitude at some point is the sum of contributions of amplitude
for all the different ways the light can arrive. All the paths that give wildly
different phases don’t add up to anything. But if you can find a whole sequence
of paths which have phases almost all the same, then the little contributions will
add up and you get a reasonable total amplitude to arrive. The important path
becomes the one for which there are many nearby paths which give the same
phase.

“It is just exactly the same thing for quantum mechanics. The complete
quantum mechanics (for the nonrelativistic case and neglecting electron spin)
works as follows: The probability that a particle starting at point 1 at the time t1
will arrive at point 2 at the time t2 is the square of a probability amplitude. The
total amplitude can be written as the sum of the amplitudes for each possible
path—for each way of arrival. For every x(t) that we could have—for every
possible imaginary trajectory—we have to calculate an amplitude. Then we
add them all together. What do we take for the amplitude for each path? Our
action integral tells us what the amplitude for a single path ought to be. The
amplitude is proportional to some constant times eiS/~, where S is the action
for that path. That is, if we represent the phase of the amplitude by a complex
number, the phase angle is S/~. The action S has dimensions of energy times
time, and Planck’s constant ~ has the same dimensions. It is the constant that
determines when quantum mechanics is important.

“Here is how it works: Suppose that for all paths, S is very large compared
to ~. One path contributes a certain amplitude. For a nearby path, the phase is
quite different, because with an enormous S even a small change in S means a
completely different phase—because ~ is so tiny. So nearby paths will normally
cancel their effects out in taking the sum—except for one region, and that is when
a path and a nearby path all give the same phase in the first approximation (more
precisely, the same action within ~). Only those paths will be the important ones.
So in the limiting case in which Planck’s constant ~ goes to zero, the correct
quantum-mechanical laws can be summarized by simply saying: ‘Forget about
all these probability amplitudes. The particle does go on a special path, namely,
that one for which S does not vary in the first approximation.’ That’s the relation
between the principle of least action and quantum mechanics. The fact that
quantum mechanics can be formulated in this way was discovered in 1942 by a
student of that same teacher, Bader, I spoke of at the beginning of this lecture.
[Quantum mechanics was originally formulated by giving a differential equation
for the amplitude (Schrödinger) and also by some other matrix mathematics
(Heisenberg).]
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“Now I want to talk about other minimum principles in physics. There are
many very interesting ones. I will not try to list them all now but will only
describe one more. Later on, when we come to a physical phenomenon which has
a nice minimum principle, I will tell about it then. I want now to show that we
can describe electrostatics, not by giving a differential equation for the field, but
by saying that a certain integral is a maximum or a minimum. First, let’s take
the case where the charge density is known everywhere, and the problem is to
find the potential φ everywhere in space. You know that the answer should be

∇2φ = −ρ/ε0.

But another way of stating the same thing is this: Calculate the integral U∗,
where

U∗ = ε0
2

∫
(∇φ)2 dV −

∫
ρφ dV,

which is a volume integral to be taken over all space. This thing is a minimum
for the correct potential distribution φ(x, y, z).

“We can show that the two statements about electrostatics are equivalent.
Let’s suppose that we pick any function φ. We want to show that when we take
for φ the correct potential φ, plus a small deviation f , then in the first order, the
change in U∗ is zero. So we write

φ = φ+ f.

The φ is what we are looking for, but we are making a variation of it to find
what it has to be so that the variation of U∗ is zero to first order. For the first
part of U∗, we need

(∇φ)2 = (∇φ)2 + 2∇φ ·∇f + (∇f)2.

The only first-order term that will vary is

2∇φ ·∇f.

In the second term of the quantity U∗, the integrand is

ρφ = ρφ+ ρf,

whose variable part is ρf . So, keeping only the variable parts, we need the
integral

∆U∗ =
∫

(ε0∇φ ·∇f − ρf) dV.

“Now, following the old general rule, we have to get the darn thing all clear
of derivatives of f . Let’s look at what the derivatives are. The dot product is

∂φ

∂x

∂f

∂x
+
∂φ

∂y

∂f

∂y
+
∂φ

∂z

∂f

∂z
,

which we have to integrate with respect to x, to y, and to z. Now here is the
trick: to get rid of ∂f/∂x we integrate by parts with respect to x. That will
carry the derivative over onto the φ. It’s the same general idea we used to get
rid of derivatives with respect to t. We use the equality∫

∂φ

∂x

∂f

∂x
dx = f

∂φ

∂x
−
∫
f
∂2φ

∂x2 dx.

The integrated term is zero, since we have to make f zero at infinity. (That
corresponds to making η zero at t1 and t2. So our principle should be more
accurately stated: U∗ is less for the true φ than for any other φ(x, y, z) having
the same values at infinity.) Then we do the same thing for y and z. So our
integral ∆U∗ is

∆U∗ =
∫

(−ε0∇2φ− ρ)f dV.

19-10



In order for this variation to be zero for any f , no matter what, the coefficient
of f must be zero and, therefore,

∇2φ = −ρ/ε0.

We get back our old equation. So our ‘minimum’ proposition is correct.
“We can generalize our proposition if we do our algebra in a little different

way. Let’s go back and do our integration by parts without taking components.
We start by looking at the following equality:

∇ · (f∇φ) =∇f ·∇φ+ f ∇2φ.

If I differentiate out the left-hand side, I can show that it is just equal to the
right-hand side. Now we can use this equation to integrate by parts. In our
integral ∆U∗, we replace ∇φ ·∇f by ∇ · (f∇φ)− f ∇2φ, which gets integrated
over volume. The divergence term integrated over volume can be replaced by a
surface integral: ∫

∇ · (f∇φ) dV =
∫
f∇φ · n da.

Since we are integrating over all space, the surface over which we are integrating
is at infinity. There, f is zero and we get the same answer as before.

“Only now we see how to solve a problem when we don’t know where all the
charges are. Suppose that we have conductors with charges spread out on them
in some way. We can still use our minimum principle if the potentials of all the
conductors are fixed. We carry out the integral for U∗ only in the space outside
of all conductors. Then, since we can’t vary φ on the conductor, f is zero on all
those surfaces, and the surface integral∫

f∇φ · n da

is still zero. The remaining volume integral

∆U∗ =
∫

(−ε0∇2φ− ρ)f dV

is only to be carried out in the spaces between conductors. Of course, we get
Poisson’s equation again,

∇2φ = −ρ/ε0.

So we have shown that our original integral U∗ is also a minimum if we evaluate
it over the space outside of conductors all at fixed potentials (that is, such that
any trial φ(x, y, z) must equal the given potential of the conductors when (x, y, z)
is a point on the surface of a conductor).

“There is an interesting case when the only charges are on conductors. Then

U∗ = ε0
2

∫
(∇φ)2 dV.

Our minimum principle says that in the case where there are conductors set
at certain given potentials, the potential between them adjusts itself so that
integral U∗ is least. What is this integral? The term ∇φ is the electric field,
so the integral is the electrostatic energy. The true field is the one, of all those
coming from the gradient of a potential, with the minimum total energy.

“I would like to use this result to calculate something particular to show you
that these things are really quite practical. Suppose I take two conductors in the
form of a cylindrical condenser.

The inside conductor has the potential V , and the outside is at the potential
zero. Let the radius of the inside conductor be a and that of the outside, b. Now
we can suppose any distribution of potential between the two. If we use the
correct φ, and calculate ε0/2

∫
(∇φ)2 dV , it should be the energy of the system,
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1
2CV

2. So we can also calculate C by our principle. But if we use a wrong
distribution of potential and try to calculate the capacity C by this method, we
will get a capacity that is too big, since V is specified. Any assumed potential φ
that is not the exactly correct one will give a fake C that is larger than the
correct value. But if my false φ is any rough approximation, the C will be a good
approximation, because the error in C is second order in the error in φ.

“Suppose I don’t know the capacity of a cylindrical condenser. I can use
this principle to find it. I just guess at the potential function φ until I get the
lowest C. Suppose, for instance, I pick a potential that corresponds to a constant
field. (You know, of course, that the field isn’t really constant here; it varies
as 1/r.) A field which is constant means a potential which goes linearly with
distance. To fit the conditions at the two conductors, it must be

φ = V

(
1− r − a

b− a

)
.

This function is V at r = a, zero at r = b, and in between has a constant slope
equal to −V/(b− a). So what one does to find the integral U∗ is multiply the
square of this gradient by ε0/2 and integrate over all volume. Let’s do this
calculation for a cylinder of unit length. A volume element at the radius r
is 2πr dr. Doing the integral, I find that my first try at the capacity gives

1
2 CV

2(first try) = ε0
2

∫ b

a

V 2

(b− a)2 2πr dr.

The integral is easy; it is just

πV 2
(
b+ a

b− a

)
.

So I have a formula for the capacity which is not the true one but is an approximate
job:

C

2πε0
= b+ a

2(b− a) .

It is, naturally, different from the correct answer C = 2πε0/ ln(b/a), but it’s not
too bad. Let’s compare it with the right answer for several values of b/a. I have
computed out the answers in this table:

b

a

Ctrue

2πε0
C(first approx.)

2πε0
2 1.4423 1.500
4 0.721 0.833

10 0.434 0.612
100 0.217 0.51

1.5 2.4662 2.50
1.1 10.492059 10.500000

Even when b/a is as big as 2—which gives a pretty big variation in the field
compared with a linearly varying field—I get a pretty fair approximation. The
answer is, of course, a little too high, as expected. The thing gets much worse if
you have a tiny wire inside a big cylinder. Then the field has enormous variations
and if you represent it by a constant, you’re not doing very well. With b/a = 100,
we’re off by nearly a factor of two. Things are much better for small b/a. To take
the opposite extreme, when the conductors are not very far apart—say b/a = 1.1—
then the constant field is a pretty good approximation, and we get the correct
value for C to within a tenth of a percent.

“Now I would like to tell you how to improve such a calculation. (Of course,
you know the right answer for the cylinder, but the method is the same for some
other odd shapes, where you may not know the right answer.) The next step is
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to try a better approximation to the unknown true φ. For example, we might try
a constant plus an exponential φ, etc. But how do you know when you have a
better approximation unless you know the true φ? Answer: You calculate C; the
lowest C is the value nearest the truth. Let us try this idea out. Suppose that
the potential is not linear but say quadratic in r—that the electric field is not
constant but linear. The most general quadratic form that fits φ = 0 at r = b
and φ = V at r = a is

φ = V

[
1 + α

(
r − a
b− a

)
− (1 + α)

(
r − a
b− a

)2]
,

where α is any constant number. This formula is a little more complicated. It
involves a quadratic term in the potential as well as a linear term. It is very easy
to get the field out of it. The field is just

E = −dφ
dr

= − αV

b− a
+ 2(1 + α) (r − a)V

(b− a)2 .

Now we have to square this and integrate over volume. But wait a moment.
What should I take for α? I can take a parabola for the φ; but what parabola?
Here’s what I do: Calculate the capacity with an arbitrary α. What I get is

C

2πε0
= a

b− a

[
b

a

(
α2

6 + 2α
3 + 1

)
+ 1

6 α
2 + 1

3

]
.

It looks a little complicated, but it comes out of integrating the square of the
field. Now I can pick my α. I know that the truth lies lower than anything that
I am going to calculate, so whatever I put in for α is going to give me an answer
too big. But if I keep playing with α and get the lowest possible value I can, that
lowest value is nearer to the truth than any other value. So what I do next is
to pick the α that gives the minimum value for C. Working it out by ordinary
calculus, I get that the minimum C occurs for α = −2b/(b + a). Substituting
that value into the formula, I obtain for the minimum capacity

C

2πε0
= b2 + 4ab+ a2

3(b2 − a2) .

“I’ve worked out what this formula gives for C for various values of b/a. I call
these numbers C(quadratic). Here is a table that compares C(quadratic) with
the true C.

b

a

Ctrue

2πε0
C(quadratic)

2πε0
2 1.4423 1.444
4 0.721 0.733

10 0.434 0.475
100 0.217 0.346

1.5 2.4662 2.4667
1.1 10.492059 10.492065

“For example, when the ratio of the radii is 2 to 1, I have 1.444, which is a
very good approximation to the true answer, 1.4423. Even for larger b/a, it stays
pretty good—it is much, much better than the first approximation. It is even
fairly good—only off by 10 percent—when b/a is 10 to 1. But when it gets to be
100 to 1—well, things begin to go wild. I get that C is 0.346 instead of 0.217.
On the other hand, for a ratio of radii of 1.5, the answer is excellent; and for
a b/a of 1.1, the answer comes out 10.492065 instead of 10.492059. Where the
answer should be good, it is very, very good.

“I have given these examples, first, to show the theoretical value of the
principles of minimum action and minimum principles in general and, second,
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to show their practical utility—not just to calculate a capacity when we already
know the answer. For any other shape, you can guess an approximate field with
some unknown parameters like α and adjust them to get a minimum. You will
get excellent numerical results for otherwise intractable problems.”

19-2 A note added after the lecture

“I should like to add something that I didn’t have time for in the lecture. (I
always seem to prepare more than I have time to tell about.) As I mentioned
earlier, I got interested in a problem while working on this lecture. I want to
tell you what that problem is. Among the minimum principles that I could
mention, I noticed that most of them sprang in one way or another from the
least action principle of mechanics and electrodynamics. But there is also a class
that does not. As an example, if currents are made to go through a piece of
material obeying Ohm’s law, the currents distribute themselves inside the piece
so that the rate at which heat is generated is as little as possible. Also we can
say (if things are kept isothermal) that the rate at which energy is generated
is a minimum. Now, this principle also holds, according to classical theory, in
determining even the distribution of velocities of the electrons inside a metal
which is carrying a current. The distribution of velocities is not exactly the
equilibrium distribution [Chapter 40, Vol. I, Eq. (40.6)] because they are drifting
sideways. The new distribution can be found from the principle that it is the
distribution for a given current for which the entropy developed per second by
collisions is as small as possible. The true description of the electrons’ behavior
ought to be by quantum mechanics, however. The question is: Does the same
principle of minimum entropy generation also hold when the situation is described
quantum-mechanically? I haven’t found out yet.

“The question is interesting academically, of course. Such principles are
fascinating, and it is always worth while to try to see how general they are.
But also from a more practical point of view, I want to know. I, with some
colleagues, have published a paper in which we calculated by quantum mechanics
approximately the electrical resistance felt by an electron moving through an ionic
crystal like NaCl. [Feynman, Hellwarth, Iddings, and Platzman, “Mobility of Slow
Electrons in a Polar Crystal,” Phys. Rev. 127, 1004 (1962).] But if a minimum
principle existed, we could use it to make the results much more accurate, just as
the minimum principle for the capacity of a condenser permitted us to get such
accuracy for that capacity even though we had only a rough knowledge of the
electric field.”
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20

Solutions of Maxwell’s Equations in Free
Space

20-1 Waves in free space; plane waves

In 20-1 Waves in free space; plane waves
20-2 Three-dimensional waves
20-3 Scientific imagination
20-4 Spherical waves

Chapter 18 we had reached the point where we had the Maxwell equations
in complete form. All there is to know about the classical theory of the electric
and magnetic fields can be found in the four equations:

I. ∇ ·E = ρ

ε0
II. ∇×E = −∂B

∂t

III. ∇ ·B = 0 IV. c2∇×B = j

ε0
+ ∂E

∂t

(20.1)

References: Chapter 47, Vol. I: Sound:
The Wave Equation
Chapter 28, Vol. I: Elec-
tromagnetic Radiation

When we put all these equations together, a remarkable new phenomenon occurs:
fields generated by moving charges can leave the sources and travel alone through
space. We considered a special example in which an infinite current sheet is
suddenly turned on. After the current has been on for the time t, there are
uniform electric and magnetic fields extending out the distance ct from the source.
Suppose that the current sheet lies in the yz-plane with a surface current density J
going toward positive y. The electric field will have only a y-component, and the
magnetic field, only a z-component. The field components are given by

Ey = cBz = − J

2ε0c
, (20.2)

for positive values of x less than ct. For larger x the fields are zero. There are,
of course, similar fields extending the same distance from the current sheet in
the negative x-direction. In Fig. 20-1 we show a graph of the magnitude of the
fields as a function of x at the instant t. As time goes on, the “wavefront” at ct
moves outward in x at the constant velocity c.

x−ct ct

|E| = c|B|

Fig. 20-1. The electric and magnetic field
as a function of x at the time t after the
current sheet is turned on.

Now consider the following sequence of events. We turn on a current of unit
strength for a while, then suddenly increase the current strength to three units,
and hold it constant at this value. What do the fields look like then? We can see
what the fields will look like in the following way. First, we imagine a current
of unit strength that is turned on at t = 0 and left constant forever. The fields
for positive x are then given by the graph in part (a) of Fig. 20-2. Next, we ask
what would happen if we turn on a steady current of two units at the time t1.
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Fig. 20-2. The electric field of a current
sheet. (a) One unit of current turned on
at t = 0; (b) Two units of current turned on
at t = t1; (c) Superposition of (a) and (b).

The fields in this case will be twice as high as before, but will extend out
in x only the distance c(t− t1), as shown in part (b) of the figure. When we add
these two solutions, using the principle of superposition, we find that the sum of
the two sources is a current of one unit for the time from zero to t1 and a current
of three units for times greater than t1. At the time t the fields will vary with x
as shown in part (c) of Fig. 20-2.

Now let’s take a more complicated problem. Consider a current which is
turned on to one unit for a while, then turned up to three units, and later turned
off to zero. What are the fields for such a current? We can find the solution in
the same way—by adding the solutions of three separate problems. First, we
find the fields for a step current of unit strength. (We have solved that problem
already.) Next, we find the fields produced by a step current of two units. Finally,
we solve for the fields of a step current of minus three units. When we add the
three solutions, we will have a current which is one unit strong from t = 0 to
some later time, say t1, then three units strong until a still later time t2, and
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Fig. 20-3. If the current source strength varies as shown in (a), then at the time t
shown by the arrow the electric field as a function of x is as shown in (b).

then turned off—that is, to zero. A graph of the current as a function of time is
shown in Fig. 20-3(a). When we add the three solutions for the electric field, we
find that its variation with x, at a given instant t, is as shown in Fig. 20-3(b).
The field is an exact representation of the current. The field distribution in space
is a nice graph of the current variation with time—only drawn backwards. As
time goes on the whole picture moves outward at the speed c, so there is a little
blob of field, travelling toward positive x, which contains a completely detailed
memory of the history of all the current variations. If we were to stand miles
away, we could tell from the variation of the electric or magnetic field exactly
how the current had varied at the source.

You will also notice that long after all activity at the source has completely
stopped and all charges and currents are zero, the block of field continues to
travel through space. We have a distribution of electric and magnetic fields that
exist independently of any charges or currents. That is the new effect that comes
from the complete set of Maxwell’s equations. If we want, we can give a complete
mathematical representation of the analysis we have just done by writing that
the electric field at a given place and a given time is proportional to the current
at the source, only not at the same time, but at the earlier time t− x/c. We can
write

Ey(t) = −J(t− x/c)
2ε0c

. (20.3)

We have, believe it or not, already derived this same equation from another
point of view in Vol. I, when we were dealing with the theory of the index of
refraction. Then, we had to figure out what fields were produced by a thin
layer of oscillating dipoles in a sheet of dielectric material with the dipoles set in
motion by the electric field of an incoming electromagnetic wave. Our problem
was to calculate the combined fields of the original wave and the waves radiated
by the oscillating dipoles. How could we have calculated the fields generated by
moving charges when we didn’t have Maxwell’s equations? At that time we took
as our starting point (without any derivation) a formula for the radiation fields
produced at large distances from an accelerating point charge. If you will look in
Chapter 31 of Vol. I, you will see that Eq. (31.9) there is just the same as the
Eq. (20.3) that we have just written down. Although our earlier derivation was
correct only at large distances from the source, we see now that the same result
continues to be correct even right up to the source.

We want now to look in a general way at the behavior of electric and magnetic
fields in empty space far away from the sources, i.e., from the currents and charges.
Very near the sources—near enough so that during the delay in transmission, the
source has not had time to change much—the fields are very much the same as
we have found in what we called the electrostatic or magnetostatic cases. If we go
out to distances large enough so that the delays become important, however, the
nature of the fields can be radically different from the solutions we have found.
In a sense, the fields begin to take on a character of their own when they have
gone a long way from all the sources. So we can begin by discussing the behavior
of the fields in a region where there are no currents or charges.
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Suppose we ask: What kind of fields can there be in regions where ρ and j
are both zero? In Chapter 18 we saw that the physics of Maxwell’s equations
could also be expressed in terms of differential equations for the scalar and vector
potentials:

∇2φ− 1
c2
∂2φ

∂t2
= − ρ

ε0
, (20.4)

∇2A− 1
c2
∂2A

∂t2
= − j

ε0c2
. (20.5)

If ρ and j are zero, these equations take on the simpler form

∇2φ− 1
c2
∂2φ

∂t2
= 0, (20.6)

∇2A− 1
c2
∂2A

∂t2
= 0. (20.7)

Thus in free space the scalar potential φ and each component of the vector
potential A all satisfy the same mathematical equation. Suppose we let ψ (psi)
stand for any one of the four quantities φ, Ax, Ay, Az; then we want to investigate
the general solutions of the following equation:

∇2ψ − 1
c2
∂2ψ

∂t2
= 0. (20.8)

This equation is called the three-dimensional wave equation—three-dimensional,
because the function ψ may depend in general on x, y, and z, and we need to
worry about variations in all three coordinates. This is made clear if we write
out explicitly the three terms of the Laplacian operator:

∂2ψ

∂x2 + ∂2ψ

∂y2 + ∂2ψ

∂z2 −
1
c2
∂2ψ

∂t2
= 0. (20.9)

In free space, the electric fields E and B also satisfy the wave equation. For
example, since B =∇×A, we can get a differential equation for B by taking
the curl of Eq. (20.7). Since the Laplacian is a scalar operator, the order of the
Laplacian and curl operations can be interchanged:

∇× (∇2A) = ∇2(∇×A) = ∇2B.

Similarly, the order of the operations curl and ∂/∂t can be interchanged:

∇× 1
c2
∂2A

∂t2
= 1
c2

∂2

∂t2
(∇×A) = 1

c2
∂2B

∂t2
.

Using these results, we get the following differential equation for B:

∇2B − 1
c2
∂2B

∂t2
= 0. (20.10)

So each component of the magnetic field B satisfies the three-dimensional wave
equation. Similarly, using the fact that E = −∇φ− ∂A/∂t, it follows that the
electric field E in free space also satisfies the three-dimensional wave equation:

∇2E − 1
c2
∂2E

∂t2
= 0. (20.11)

All of our electromagnetic fields satisfy the same wave equation, Eq. (20.8).
We might well ask: What is the most general solution to this equation? However,
rather than tackling that difficult question right away, we will look first at what
can be said in general about those solutions in which nothing varies in y and z.
(Always do an easy case first so that you can see what is going to happen, and then
you can go to the more complicated cases.) Let’s suppose that the magnitudes of
the fields depend only upon x—that there are no variations of the fields with y
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and z. We are, of course, considering plane waves again. We should expect to get
results something like those in the previous section. In fact, we will find precisely
the same answers. You may ask: “Why do it all over again?” It is important to
do it again, first, because we did not show that the waves we found were the most
general solutions for plane waves, and second, because we found the fields only
from a very particular kind of current source. We would like to ask now: What
is the most general kind of one-dimensional wave there can be in free space? We
cannot find that by seeing what happens for this or that particular source, but
must work with greater generality. Also we are going to work this time with
differential equations instead of with integral forms. Although we will get the
same results, it is a way of practicing back and forth to show that it doesn’t make
any difference which way you go. You should know how to do things every which
way, because when you get a hard problem, you will often find that only one of
the various ways is tractable.

We could consider directly the solution of the wave equation for some elec-
tromagnetic quantity. Instead, we want to start right from the beginning with
Maxwell’s equations in free space so that you can see their close relationship to
the electromagnetic waves. So we start with the equations in (20.1), setting the
charges and currents equal to zero. They become

I. ∇ ·E = 0

II. ∇×E = −∂B
∂t

III. ∇ ·B = 0

IV. c2∇×B = ∂E

∂t

(20.12)

We write the first equation out in components:

∇ ·E = ∂Ex
∂x

+ ∂Ey
∂y

+ ∂Ez
∂z

= 0. (20.13)

We are assuming that there are no variations with y and z, so the last two terms
are zero. This equation then tells us that

∂Ex
∂x

= 0. (20.14)

Its solution is that Ex, the component of the electric field in the x-direction, is a
constant in space. If you look at IV in (20.12), supposing no B-variation in y
and z either, you can see that Ex is also constant in time. Such a field could be
the steady dc field from some charged condenser plates a long distance away. We
are not interested now in such an uninteresting static field; we are at the moment
interested only in dynamically varying fields. For dynamic fields, Ex = 0.

We have then the important result that for the propagation of plane waves in
any direction, the electric field must be at right angles to the direction of propa-
gation. It can, of course, still vary in a complicated way with the coordinate x.

The transverse E-field can always be resolved into two components, say the
y-component and the z-component. So let’s first work out a case in which the
electric field has only one transverse component. We’ll take first an electric field
that is always in the y-direction, with zero z-component. Evidently, if we solve
this problem we can also solve for the case where the electric field is always in the
z-direction. The general solution can always be expressed as the superposition of
two such fields.

How easy our equations now get. The only component of the electric field
that is not zero is Ey, and all derivatives—except those with respect to x—are
zero. The rest of Maxwell’s equations then become quite simple.
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Let’s look next at the second of Maxwell’s equations [II of Eq. (20.12)]. Writing
out the components of the curl E, we have

(∇×E)x = ∂Ez
∂y
− ∂Ey

∂z
= 0,

(∇×E)y = ∂Ex
∂z
− ∂Ez

∂x
= 0,

(∇×E)z = ∂Ey
∂x
− ∂Ex

∂y
= ∂Ey

∂x
.

The x-component of ∇ × E is zero because the derivatives with respect to y
and z are zero. The y-component is also zero; the first term is zero because the
derivative with respect to z is zero, and the second term is zero because Ez is
zero. The only components of the curl of E that is not zero is the z-component,
which is equal to ∂Ey/∂x. Setting the three components of ∇×E equal to the
corresponding components of −∂B/∂t, we can conclude the following:

∂Bx
∂t

= 0, ∂By
∂t

= 0. (20.15)

∂Bz
∂t

= −∂Ey
∂x

. (20.16)

Since the x-component of the magnetic field and the y-component of the magnetic
field both have zero time derivatives, these two components are just constant
fields and correspond to the magnetostatic solutions we found earlier. Somebody
may have left some permanent magnets near where the waves are propagating.
We will ignore these constant fields and set Bx and By equal to zero.

Incidentally, we would already have concluded that the x-component of B
should be zero for a different reason. Since the divergence of B is zero (from the
third Maxwell equation), applying the same arguments we used above for the
electric field, we would conclude that the longitudinal component of the magnetic
field can have no variation with x. Since we are ignoring such uniform fields in
our wave solutions, we would have set Bx equal to zero. In plane electromagnetic
waves the B-field, as well as the E-field, must be directed at right angles to the
direction of propagation.

Equation (20.16) gives us the additional proposition that if the electric field
has only a y-component, the magnetic field will have only a z-component. So E
and B are at right angles to each other. This is exactly what happened in the
special wave we have already considered.

We are now ready to use the last of Maxwell’s equations for free space [IV of
Eq. (20.12)]. Writing out the components, we have

c2(∇×B)x = c2
∂Bz
∂y
− c2 ∂By

∂z
= ∂Ex

∂t
,

c2(∇×B)y = c2
∂Bx
∂z
− c2 ∂Bz

∂x
= ∂Ey

∂t
,

c2(∇×B)z = c2
∂By
∂x
− c2 ∂Bx

∂y
= ∂Ez

∂t
.

(20.17)

Of the six derivatives of the components of B, only the term ∂Bz/∂x is not equal
to zero. So the three equations give us simply

− c2 ∂Bz
∂x

= ∂Ey
∂t

. (20.18)

The result of all our work is that only one component each of the electric and
magnetic fields is not zero, and that these components must satisfy Eqs. (20.16)
and (20.18). The two equations can be combined into one if we differentiate the
first with respect to x and the second with respect to t; the left-hand sides of
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the two equations will then be the same (except for the factor c2). So we find
that Ey satisfies the equation

∂2Ey
∂x2 −

1
c2
∂2Ey
∂t2

= 0. (20.19)

We have seen the same differential equation before, when we studied the propa-
gation of sound. It is the wave equation for one-dimensional waves.

You should note that in the process of our derivation we have found something
more than is contained in Eq. (20.11). Maxwell’s equations have given us the
further information that electromagnetic waves have field components only at
right angles to the direction of the wave propagation.

Let’s review what we know about the solutions of the one-dimensional wave
equation. If any quantity ψ satisfies the one-dimensional wave equation

∂2ψ

∂x2 −
1
c2
∂2ψ

∂t2
= 0, (20.20)

then one possible solution is a function ψ(x, t) of the form

ψ(x, t) = f(x− ct), (20.21)

that is, some function of the single variable (x − ct). The function f(x − ct)
represents a “rigid” pattern in x which travels toward positive x at the speed c
(see Fig. 20-4). For example, if the function f has a maximum when its argument
is zero, then for t = 0 the maximum of ψ, will occur at x = 0. At some later
time, say t = 10, ψ will have its maximum at x = 10c. As time goes on, the
maximum moves toward positive x at the speed c.

x

f

0

c

ct

t=0 t

Fig. 20-4. The function f (x − ct) repre-
sents a constant “shape” that travels toward
positive x with the speed c.

Sometimes it is more convenient to say that a solution of the one-dimensional
wave equation is a function of (t− x/c). However, this is saying the same thing,
because any function of (t− x/c) is also a function of (x− ct):

F (t− x/c) = F

[
−x− ct

c

]
= f(x− ct).

Let’s show that f(x− ct) is indeed a solution of the wave equation. Since it is
a function of only one variable—the variable (x− ct)—we will let f ′ represent the
derivative of f with respect to its variable and f ′′ represent the second derivative
of f . Differentiating Eq. (20.21) with respect to x, we have

∂ψ

∂x
= f ′(x− ct),

since the derivative of (x− ct) with respect to x is 1. The second derivative of ψ,
with respect to x is clearly

∂2ψ

∂x2 = f ′′(x− ct). (20.22)

Taking derivatives of ψ with respect to t, we find

∂ψ

∂t
= f ′(x− ct)(−c),

∂2ψ

∂t2
= +c2f ′′(x− ct). (20.23)

We see that ψ does indeed satisfy the one-dimensional wave equation.
You may be wondering: “If I have the wave equation, how do I know that I

should take f(x−ct) as a solution? I don’t like this backward method. Isn’t there
some forward way to find the solution?” Well, one good forward way is to know
the solution. It is possible to “cook up” an apparently forward mathematical
argument, especially because we know what the solution is supposed to be, but
with an equation as simple as this we don’t have to play games. Soon you will get
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so that when you see Eq. (20.20), you nearly simultaneously see ψ = f(x− xt)
as a solution. (Just as now when you see the integral of x2 dx, you know right
away that the answer is x3/3.)

Actually you should also see a little more. Not only is any function of (x− ct)
a solution, but any function of (x+ ct) is also a solution. Since the wave equation
contains only c2, changing the sign of c makes no difference. In fact, the most
general solution of the one-dimensional wave equation is the sum of two arbitrary
functions, one of (x− ct) and the other of (x+ ct):

ψ = f(x− ct) + g(x+ ct). (20.24)

The first term represents a wave travelling toward positive x, and the second
term an arbitrary wave travelling toward negative x. The general solution is the
superposition of two such waves both existing at the same time.

We will leave the following amusing question for you to think about. Take a
function ψ of the following form:

ψ = cos kx cos kct.

This equation isn’t in the form of a function of (x− ct) or of (x+ ct). Yet you can easily
show that this function is a solution of the wave equation by direct substitution into
Eq. (20.20). How can we then say that the general solution is of the form of Eq. (20.24)?

Applying our conclusions about the solution of the wave equation to the
y-component of the electric field, Ey, we conclude that Ey can vary with x in any
arbitrary fashion. However, the fields which do exist can always be considered
as the sum of two patterns. One wave is sailing through space in one direction
with speed c, with an associated magnetic field perpendicular to the electric
field; another wave is travelling in the opposite direction with the same speed.
Such waves correspond to the electromagnetic waves that we know about—light,
radiowaves, infrared radiation, ultraviolet radiation, x-rays, and so on. We have
already discussed the radiation of light in great detail in Vol. I. Since everything
we learned there applies to any electromagnetic wave, we don’t need to consider
in great detail here the behavior of these waves.

We should perhaps make a few further remarks on the question of the polar-
ization of the electromagnetic waves. In our solution we chose to consider the
special case in which the electric field has only a y-component. There is clearly
another solution for waves travelling in the plus or minus x-direction, with an
electric field which has only a z-component. Since Maxwell’s equations are linear,
the general solution for one-dimensional waves propagating in the x-direction is
the sum of waves of Ey and waves of Ez. This general solution is summarized in
the following equations:

E = (0, Ey, Ez)

Ey = f(x− ct) + g(x+ ct)

Ez = F (x− ct) +G(x+ ct)

B = (0, By, Bz)

cBz = f(x− ct)− g(x+ ct)

cBy = −F (x− ct) +G(x+ ct).

(20.25)

Such electromagnetic waves have an E-vector whose direction is not constant but
which gyrates around in some arbitrary way in the yz-plane. At every point the
magnetic field is always perpendicular to the electric field and to the direction of
propagation.

If there are only waves travelling in one direction, say the positive x-direction,
there is a simple rule which tells the relative orientation of the electric and
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magnetic fields. The rule is that the cross product E ×B—which is, of course,
a vector at right angles to both E and B—points in the direction in which the
wave is travelling. If E is rotated into B by a right-hand screw, the screw points
in the direction of the wave velocity. (We shall see later that the vector E ×B
has a special physical significance: it is a vector which describes the flow of energy
in an electromagnetic field.)

20-2 Three-dimensional waves

We want now to turn to the subject of three-dimensional waves. We have
already seen that the vector E satisfies the wave equation. It is also easy to arrive
at the same conclusion by arguing directly from Maxwell’s equations. Suppose
we start with the equation

∇×E = −∂B
∂t

and take the curl of both sides:

∇× (∇×E) = − ∂

∂t
(∇×B). (20.26)

You will remember that the curl of the curl of any vector can be written as the
sum of two terms, one involving the divergence and the other the Laplacian,

∇× (∇×E) =∇(∇ ·E)−∇2E.

In free space, however, the divergence of E is zero, so only the Laplacian term
remains. Also, from the fourth of Maxwell’s equations in free space [Eq. (20.12)]
the time derivative of c2∇×B is the second derivative of E with respect to t:

c2
∂

∂t
(∇×B) = ∂2E

∂t2
.

Equation (20.26) then becomes

∇2E = 1
c2
∂2E

∂t2
,

which is the three-dimensional wave equation. Written out in all its glory, this
equation is, of course,

∂2E

∂x2 + ∂2E

∂y2 + ∂2E

∂z2 −
1
c2
∂2E

∂t2
= 0. (20.27)

How shall we find the general wave solution? The answer is that all the
solutions of the three-dimensional wave equation can be represented as a superpo-
sition of the one-dimensional solutions we have already found. We obtained the
equation for waves which move in the x-direction by supposing that the field did
not depend on y and z. Obviously, there are other solutions in which the fields
do not depend on x and z, representing waves going in the y-direction. Then
there are solutions which do not depend on x and y, representing waves travelling
in the z-direction. Or in general, since we have written our equations in vector
form, the three-dimensional wave equation can have solutions which are plane
waves moving in any direction at all. Again, since the equations are linear, we
may have simultaneously as many plane waves as we wish, travelling in as many
different directions. Thus the most general solution of the three-dimensional
wave equation is a superposition of all sorts of plane waves moving in all sorts of
directions.

Try to imagine what the electric and magnetic fields look like at present in
the space in this lecture room. First of all, there is a steady magnetic field;
it comes from the currents in the interior of the earth—that is, the earth’s
steady magnetic field. Then there are some irregular, nearly static electric fields
produced perhaps by electric charges generated by friction as various people move
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about in their chairs and rub their coat sleeves against the chair arms. Then
there are other magnetic fields produced by oscillating currents in the electrical
wiring—fields which vary at a frequency of 60 cycles per second, in synchronism
with the generator at Boulder Dam. But more interesting are the electric and
magnetic fields varying at much higher frequencies. For instance, as light travels
from window to floor and wall to wall, there are little wiggles of the electric and
magnetic fields moving along at 186,000 miles per second. Then there are also
infrared waves travelling from the warm foreheads to the cold blackboard. And
we have forgotten the ultraviolet light, the x-rays, and the radiowaves travelling
through the room.

Flying across the room are electromagnetic waves which carry music of a jazz
band. There are waves modulated by a series of impulses representing pictures
of events going on in other parts of the world, or of imaginary aspirins dissolving
in imaginary stomachs. To demonstrate the reality of these waves it is only
necessary to turn on electronic equipment that converts these waves into pictures
and sounds.

If we go into further detail to analyze even the smallest wiggles, there are tiny
electromagnetic waves that have come into the room from enormous distances.
There are now tiny oscillations of the electric field, whose crests are separated by
a distance of one foot, that have come from millions of miles away, transmitted to
the earth from the Mariner II space craft which has just passed Venus. Its signals
carry summaries of information it has picked up about the planets (information
obtained from electromagnetic waves that travelled from the planet to the space
craft).

There are very tiny wiggles of the electric and magnetic fields that are waves
which originated billions of light years away—from galaxies in the remotest
corners of the universe. That this is true has been found by “filling the room with
wires”—by building antennas as large as this room. Such radiowaves have been
detected from places in space beyond the range of the greatest optical telescopes.
Even they, the optical telescopes, are simply gatherers of electromagnetic waves.
What we call the stars are only inferences, inferences drawn from the only physical
reality we have yet gotten from them—from a careful study of the unendingly
complex undulations of the electric and magnetic fields reaching us on earth.

There is, of course, more: the fields produced by lightning miles away, the
fields of the charged cosmic ray particles as they zip through the room, and more,
and more. What a complicated thing is the electric field in the space around
you! Yet it always satisfies the three-dimensional wave equation.

20-3 Scientific imagination

I have asked you to imagine these electric and magnetic fields. What do
you do? Do you know how? How do I imagine the electric and magnetic field?
What do I actually see? What are the demands of scientific imagination? Is
it any different from trying to imagine that the room is full of invisible angels?
No, it is not like imagining invisible angels. It requires a much higher degree of
imagination to understand the electromagnetic field than to understand invisible
angels. Why? Because to make invisible angels understandable, all I have to do is
to alter their properties a little bit—I make them slightly visible, and then I can
see the shapes of their wings, and bodies, and halos. Once I succeed in imagining
a visible angel, the abstraction required—which is to take almost invisible angels
and imagine them completely invisible—is relatively easy. So you say, “Professor,
please give me an approximate description of the electromagnetic waves, even
though it may be slightly inaccurate, so that I too can see them as well as I
can see almost invisible angels. Then I will modify the picture to the necessary
abstraction.”

I’m sorry I can’t do that for you. I don’t know how. I have no picture of
this electromagnetic field that is in any sense accurate. I have known about
the electromagnetic field a long time—I was in the same position 25 years ago
that you are now, and I have had 25 years more of experience thinking about
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these wiggling waves. When I start describing the magnetic field moving through
space, I speak of the E- and B-fields and wave my arms and you may imagine
that I can see them. I’ll tell you what I see. I see some kind of vague shadowy,
wiggling lines—here and there is an E and B written on them somehow, and
perhaps some of the lines have arrows on them—an arrow here or there which
disappears when I look too closely at it. When I talk about the fields swishing
through space, I have a terrible confusion between the symbols I use to describe
the objects and the objects themselves. I cannot really make a picture that is
even nearly like the true waves. So if you have some difficulty in making such a
picture, you should not be worried that your difficulty is unusual.

Our science makes terrific demands on the imagination. The degree of
imagination that is required is much more extreme than that required for some
of the ancient ideas. The modern ideas are much harder to imagine. We use a lot
of tools, though. We use mathematical equations and rules, and make a lot of
pictures. What I realize now is that when I talk about the electromagnetic field in
space, I see some kind of a superposition of all of the diagrams which I’ve ever seen
drawn about them. I don’t see little bundles of field lines running about because
it worries me that if I ran at a different speed the bundles would disappear, I
don’t even always see the electric and magnetic fields because sometimes I think
I should have made a picture with the vector potential and the scalar potential,
for those were perhaps the more physically significant things that were wiggling.

Perhaps the only hope, you say, is to take a mathematical view. Now what is
a mathematical view? From a mathematical view, there is an electric field vector
and a magnetic field vector at every point in space; that is, there are six numbers
associated with every point. Can you imagine six numbers associated with each
point in space? That’s too hard. Can you imagine even one number associated
with every point? I cannot! I can imagine such a thing as the temperature at
every point in space. That seems to be understandable. There is a hotness and
coldness that varies from place to place. But I honestly do not understand the
idea of a number at every point.

So perhaps we should put the question: Can we represent the electric field
by something more like a temperature, say like the displacement of a piece of
jello? Suppose that we were to begin by imagining that the world was filled with
thin jello and that the fields represented some distortion—say a stretching or
twisting—of the jello. Then we could visualize the field. After we “see” what it is
like we could abstract the jello away. For many years that’s what people tried to
do. Maxwell, Ampère, Faraday, and others tried to understand electromagnetism
this way. (Sometimes they called the abstract jello “ether.”) But it turned out
that the attempt to imagine the electromagnetic field in that way was really
standing in the way of progress. We are unfortunately limited to abstractions, to
using instruments to detect the field, to using mathematical symbols to describe
the field, etc. But nevertheless, in some sense the fields are real, because after we
are all finished fiddling around with mathematical equations—with or without
making pictures and drawings or trying to visualize the thing—we can still make
the instruments detect the signals from Mariner II and find out about galaxies a
billion miles away, and so on.

The whole question of imagination in science is often misunderstood by people
in other disciplines. They try to test our imagination in the following way. They
say, “Here is a picture of some people in a situation. What do you imagine will
happen next?” When we say, “I can’t imagine,” they may think we have a weak
imagination. They overlook the fact that whatever we are allowed to imagine in
science must be consistent with everything else we know: that the electric fields
and the waves we talk about are not just some happy thoughts which we are
free to make as we wish, but ideas which must be consistent with all the laws
of physics we know. We can’t allow ourselves to seriously imagine things which
are obviously in contradiction to the known laws of nature. And so our kind of
imagination is quite a difficult game. One has to have the imagination to think
of something that has never been seen before, never been heard of before. At
the same time the thoughts are restricted in a strait jacket, so to speak, limited
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by the conditions that come from our knowledge of the way nature really is.
The problem of creating something which is new, but which is consistent with
everything which has been seen before, is one of extreme difficulty.

While I’m on this subject I want to talk about whether it will ever be possible
to imagine beauty that we can’t see. It is an interesting question. When we look
at a rainbow, it looks beautiful to us. Everybody says, “Ooh, a rainbow.” (You
see how scientific I am. I am afraid to say something is beautiful unless I have
an experimental way of defining it.) But how would we describe a rainbow if we
were blind? We are blind when we measure the infrared reflection coefficient
of sodium chloride, or when we talk about the frequency of the waves that are
coming from some galaxy that we can’t see—we make a diagram, we make a plot.
For instance, for the rainbow, such a plot would be the intensity of radiation
vs. wavelength measured with a spectrophotometer for each direction in the sky.
Generally, such measurements would give a curve that was rather flat. Then
some day, someone would discover that for certain conditions of the weather, and
at certain angles in the sky, the spectrum of intensity as a function of wavelength
would behave strangely; it would have a bump. As the angle of the instrument
was varied only a little bit, the maximum of the bump would move from one
wavelength to another. Then one day the physical review of the blind men might
publish a technical article with the title “The Intensity of Radiation as a Function
of Angle under Certain Conditions of the Weather.” In this article there might
appear a graph such as the one in Fig. 20-5. The author would perhaps remark
that at the larger angles there was more radiation at long wavelengths, whereas
for the smaller angles the maximum in the radiation came at shorter wavelengths.
(From our point of view, we would say that the light at 40◦ is predominantly
green and the light at 42◦ is predominantly red.)
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θ
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◦

θ
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◦

Fig. 20-5. The intensity of electromag-
netic waves as a function of wavelength for
three angles (measured from the direction
opposite the sun), observed only with cer-
tain meteorological conditions.

Now do we find the graph of Fig. 20-5 beautiful? It contains much more detail
than we apprehend when we look at a rainbow, because our eyes cannot see the
exact details in the shape of a spectrum. The eye, however, finds the rainbow
beautiful. Do we have enough imagination to see in the spectral curves the same
beauty we see when we look directly at the rainbow? I don’t know.

But suppose I have a graph of the reflection coefficient of a sodium chloride
crystal as a function of wavelength in the infrared, and also as a function of angle.
I would have a representation of how it would look to my eyes if they could see in
the infrared—perhaps some glowing, shiny “green,” mixed with reflections from
the surface in a “metallic red.” That would be a beautiful thing, but I don’t know
whether I can ever look at a graph of the reflection coefficient of NaCl measured
with some instrument and say that it has the same beauty.

On the other hand, even if we cannot see beauty in particular measured
results, we can already claim to see a certain beauty in the equations which
describe general physical laws. For example, in the wave equation (20.9), there’s
something nice about the regularity of the appearance of the x, the y, the z, and
the t. And this nice symmetry in appearance of the x, y, z, and t suggests to
the mind still a greater beauty which has to do with the four dimensions, the
possibility that space has four-dimensional symmetry, the possibility of analyzing
that and the developments of the special theory of relativity. So there is plenty
of intellectual beauty associated with the equations.
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20-4 Spherical waves

We have seen that there are solutions of the wave equation which correspond
to plane waves, and that any electromagnetic wave can be described as a su-
perposition of many plane waves. In certain special cases, however, it is more
convenient to describe the wave field in a different mathematical form. We would
like to discuss now the theory of spherical waves—waves which correspond to
spherical surfaces that are spreading out from some center. When you drop a
stone into a lake, the ripples spread out in circular waves on the surface—they
are two-dimensional waves. A spherical wave is a similar thing except that it
spreads out in three dimensions.

Before we start describing spherical waves, we need a little mathematics.
Suppose we have a function that depends only on the radial distance r from a
certain origin—in other words, a function that is spherically symmetric. Let’s
call the function ψ(r), where by r we mean

r =
√
x2 + y2 + z2,

the radial distance from the origin. In order to find out what functions ψ(r)
satisfy the wave equation, we will need an expression for the Laplacian of ψ. So
we want to find the sum of the second derivatives of ψ with respect to x, y, and z.
We will use the notation that ψ′(r) represents the derivative of ψ with respect
to r and ψ′′(r) represents the second derivative of ψ with respect to r.

First, we find the derivatives with respect to x. The first derivative is

∂ψ(r)
∂x

= ψ′(r) ∂r
∂x
.

The second derivative of ψ with respect to x is

∂2ψ

∂x2 = ψ′′
(
∂r

∂x

)2
+ ψ′

∂2r

∂x2 .

We can evaluate the partial derivatives of r with respect to x from

∂r

∂x
= x

r
,

∂2r

∂x2 = 1
r

(
1− x2

r2

)
.

So the second derivative of ψ with respect to x is

∂2ψ

∂x2 = x2

r2 ψ
′′ + 1

r

(
1− x2

r2

)
ψ′. (20.28)

Likewise,
∂2ψ

∂y2 = y2

r2 ψ
′′ + 1

r

(
1− y2

r2

)
ψ′, (20.29)

∂2ψ

∂z2 = z2

r2 ψ
′′ + 1

r

(
1− z2

r2

)
ψ′. (20.30)

The Laplacian is the sum of these three derivatives. Remembering that
x2 + y2 + z2 = r2, we get

∇2ψ(r) = ψ′′(r) + 2
r
ψ′(r). (20.31)

It is often more convenient to write this equation in the following form:

∇2ψ(r) = 1
r

d2

dr2 (rψ). (20.32)

If you carry out the differentiation indicated in Eq. (20.32), you will see that the
right-hand side is the same as in Eq. (20.31).

If we wish to consider spherically symmetric fields which can propagate as
spherical waves, our field quantity must be a function of both r and t. Suppose
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we ask, then, what functions ψ(r, t) are solutions of the three-dimensional wave
equation

∇2ψ(r, t)− 1
c2

∂2

∂t2
ψ(r, t) = 0. (20.33)

Since ψ(r, t) depends only on the spatial coordinates through r, we can use the
equation for the Laplacian we found above, Eq. (20.32). To be precise, however,
since ψ is also a function of t, we should write the derivatives with respect to r
as partial derivatives. Then the wave equation becomes

1
r

∂2

∂r2 (rψ)− 1
c2

∂2

∂t2
ψ = 0.

We must now solve this equation, which appears to be much more complicated
than the plane wave case. But notice that if we multiply this equation by r, we
get

∂2

∂r2 (rψ)− 1
c2

∂2

∂t2
(rψ) = 0. (20.34)

This equation tells us that the function rψ satisfies the one-dimensional wave
equation in the variable r. Using the general principle which we have emphasized
so often, that the same equations always have the same solutions, we know that
if rψ is a function only of (r− ct) then it will be a solution of Eq. (20.34). So we
know that spherical waves must have the form

rψ(r, t) = f(r − ct).

Or, as we have seen before, we can equally well say that rψ can have the form

rψ = f(t− r/c).

Dividing by r, we find that the field quantity ψ (whatever it may be) has the
following form:

ψ = f(t− r/c)
r

. (20.35)

Such a function represents a general spherical wave travelling outward from the
origin at the speed c. If we forget about the r in the denominator for a moment,
the amplitude of the wave as a function of the distance from the origin at a
given time has a certain shape that travels outward at the speed c. The factor r
in the denominator, however, says that the amplitude of the wave decreases in
proportion to 1/r as the wave propagates. In other words, unlike a plane wave
in which the amplitude remains constant as the wave runs along, in a spherical
wave the amplitude steadily decreases, as shown in Fig. 20-6. This effect is easy
to understand from a simple physical argument.

(a)

r0 r1 r2

f
(t
−
r/
c
)

r

c(t2 − t1)

1/r

t1

t2
v=c

(b)

t0 t1 t2

f
(t
−
r/
c
)

r

r1

r2

Fig. 20-6. A spherical wave ψ = f (t − r/c)/r . (a) ψ as a function of r for t = t1 and the same wave
for the later time t2. (b) ψ as a function of t for r = r1 and the same wave seen at r2.
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We know that the energy density in a wave depends on the square of the wave
amplitude. As the wave spreads, its energy is spread over larger and larger areas
proportional to the radial distance squared. If the total energy is conserved, the
energy density must fall as 1/r2, and the amplitude of the wave must decrease
as 1/r. So Eq. (20.35) is the “reasonable” form for a spherical wave.

We have disregarded the second possible solution to the one-dimensional wave
equation:

rψ = g(t+ r/c),
or

ψ = g(t+ r/c)
r

.

This also represents a spherical wave, but one which travels inward from large r
toward the origin.

We are now going to make a special assumption. We say, without any
demonstration whatever, that the waves generated by a source are only the waves
which go outward. Since we know that waves are caused by the motion of charges,
we want to think that the waves proceed outward from the charges. It would be
rather strange to imagine that before charges were set in motion, a spherical wave
started out from infinity and arrived at the charges just at the time they began
to move. That is a possible solution, but experience shows that when charges
are accelerated the waves travel outward from the charges. Although Maxwell’s
equations would allow either possibility, we will put in an additional fact—based
on experience—that only the outgoing wave solution makes “physical sense.”

We should remark, however, that there is an interesting consequence to this
additional assumption: we are removing the symmetry with respect to time that
exists in Maxwell’s equations. The original equations for E and B, and also
the wave equations we derived from them, have the property that if we change
the sign of t, the equation is unchanged. These equations say that for every
solution corresponding to a wave going in one direction there is an equally valid
solution for a wave travelling in the opposite direction. Our statement that we will
consider only the outgoing spherical waves is an important additional assumption.
(A formulation of electrodynamics in which this additional assumption is avoided
has been carefully studied. Surprisingly, in many circumstances it does not lead
to physically absurd conclusions, but it would take us too far astray to discuss
these ideas just now. We will talk about them a little more in Chapter 28.)

We must mention another important point. In our solution for an outgoing
wave, Eq. (20.35), the function ψ is infinite at the origin. That is somewhat
peculiar. We would like to have a wave solution which is smooth everywhere.
Our solution must represent physically a situation in which there is some source
at the origin. In other words, we have inadvertently made a mistake. We have
not solved the free wave equation (20.33) everywhere; we have solved Eq. (20.33)
with zero on the right everywhere, except at the origin. Our mistake crept in
because some of the steps in our derivation are not “legal” when r = 0.

Let’s show that it is easy to make the same kind of mistake in an electrostatic
problem. Suppose we want a solution of the equation for an electrostatic potential
in free space, ∇2φ = 0. The Laplacian is equal to zero, because we are assuming
that there are no charges anywhere. But what about a spherically symmetric
solution to this equation—that is, some function φ that depends only on r. Using
the formula of Eq. (20.32) for the Laplacian, we have

1
r

d2

dr2 (rφ) = 0.

Multiplying this equation by r, we have an equation which is readily integrated:

d2

dr2 (rφ) = 0.

If we integrate once with respect to r, we find that the first derivative of rφ is a
20-14



constant, which we may call a:

d

dr
(rφ) = a.

Integrating again, we find that rφ is of the form

rφ = ar + b,

where b is another constant of integration. So we have found that the following φ
is a solution for the electrostatic potential in free space:

φ = a+ b

r
.

Something is evidently wrong. In the region where there are no electric
charges, we know the solution for the electrostatic potential: the potential is
everywhere a constant. That corresponds to the first term in our solution. But
we also have the second term, which says that there is a contribution to the
potential that varies as one over the distance from the origin. We know, however,
that such a potential corresponds to a point charge at the origin. So, although
we thought we were solving for the potential in free space, our solution also gives
the field for a point source at the origin. Do you see the similarity between what
happened now and what happened when we solved for a spherically symmetric
solution to the wave equation? If there were really no charges or currents at
the origin, there would not be spherical outgoing waves. The spherical waves
must, of course, be produced by sources at the origin. In the next chapter we
will investigate the connection between the outgoing electromagnetic waves and
the currents and voltages which produce them.

20-15



21

Solutions of Maxwell’s Equations with
Currents and Charges

21-1 Light and electromagnetic waves

We 21-1 Light and electromagnetic waves
21-2 Spherical waves from a point

source
21-3 The general solution of Maxwell’s

equations
21-4 The fields of an oscillating dipole
21-5 The potentials of a moving

charge; the general solution of
Liénard and Wiechert

21-6 The potentials for a charge
moving with constant velocity;
the Lorentz formula

saw in the last chapter that among their solutions, Maxwell’s equations
have waves of electricity and magnetism. These waves correspond to the phe-
nomena of radio, light, x-rays, and so on, depending on the wavelength. We
have already studied light in great detail in Vol. I. In this chapter we want to
tie together the two subjects—we want to show that Maxwell’s equations can
indeed form the base for our earlier treatment of the phenomena of light.

When we studied light, we began by writing down equations for the electric
and magnetic fields produced by a charge which moves in any arbitrary way.
Those equations were

E = q

4πε0

[
er′

r′2
+ r′

c

d

dt

(
er′

r′2

)
+ 1
c2

d2

dt2
er′

]
(21.1)

and
cB = er′ ×E.

[See Eqs. (28.3) and (28.4), Vol. I. As explained below, the signs here are the
negatives of the old ones.]

Review: Chapter 28, Vol. I, Electromag-
netic Radiation
Chapter 31, Vol. I, The Origin
of the Refractive Index
Chapter 34, Vol. I, Relativistic
Effects in Radiation

If a charge moves in an arbitrary way, the electric field we would find now at
some point depends only on the position and motion of the charge not now, but
at an earlier time—at an instant which is earlier by the time it would take light,
going at the speed c, to travel the distance r′ from the charge to the field point.
In other words, if we want the electric field at point (1) at the time t, we must
calculate the location (2′) of the charge and its motion at the time (t − r′/c),
where r′ is the distance to the point (1) from the position of the charge (2′) at
the time (t− r′/c). The prime is to remind you that r′ is the so-called “retarded
distance” from the point (2′) to the point (1), and not the actual distance between
point (2), the position of the charge at the time t, and the field point (1) (see
Fig. 21-1). Note that we are using a different convention now for the direction of
the unit vector er. In Chapters 28 and 34 of Vol. I it was convenient to take r
(and hence er) pointing toward the source. Now we are following the definition
we took for Coulomb’s law, in which r is directed from the charge, at (2), toward
the field point at (1). The only difference, of course, is that our new r (and er)
are the negatives of the old ones.

(1)

(2′)

(2)

q

q

r ′

r

er ′

v

Position at
t − r ′/c

Position at t

Fig. 21-1. The fields at (1) at the time t
depend on the position (2′) occupied by the
charge q at the time (t − r ′/c).

We have also seen that if the velocity v of a charge is always much less than c,
and if we consider only points at large distances from the charge, so that only
the last term of Eq. (21.1) is important, the fields can also be written as

E = q

4πε0c2r′

[
acceleration of the charge at (t− r′/c)
projected at right angles to r′

]
(21.1′)

and
cB = er′ ×E.

Let’s look at what the complete equation, Eq. (21.1), says in a little more
detail. The vector er′ is the unit vector to point (1) from the retarded position (2′).
The first term, then, is what we would expect for the Coulomb field of the charge
at its retarded position—we may call this “the retarded Coulomb field.” The
electric field depends inversely on the square of the distance and is directed away
from the retarded position of the charge (that is, in the direction of er′).
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But that is only the first term. The other terms tell us that the laws of
electricity do not say that all the fields are the same as the static ones, but just
retarded (which is what people sometimes like to say). To the “retarded Coulomb
field” we must add the other two terms. The second term says that there is a
“correction” to the retarded Coulomb field which is the rate of change of the
retarded Coulomb field multiplied by r′/c, the retardation delay. In a way of
speaking, this term tends to compensate for the retardation in the first term. The
first two terms correspond to computing the “retarded Coulomb field” and then
extrapolating it toward the future by the amount r′/c, that is, right up to the
time t! The extrapolation is linear, as if we were to assume that the “retarded
Coulomb field” would continue to change at the rate computed for the charge
at the point (2′). If the field is changing slowly, the effect of the retardation is
almost completely removed by the correction term, and the two terms together
give us an electric field that is the “instantaneous Coulomb field”—that is, the
Coulomb field of the charge at the point (2)—to a very good approximation.

Finally, there is a third term in Eq. (21.1) which is the second derivative of the
unit vector er′ . For our study of the phenomena of light, we made use of the fact
that far away from the charge the first two terms went inversely as the square of
the distance and, for large distances, became very weak in comparison to the last
term, which decreases as 1/r. So we concentrated entirely on the last term, and
we showed that it is (again, for large distances) proportional to the component of
the acceleration of the charge at right angles to the line of sight. (Also, for most
of our work in Vol. I, we took the case in which the charges were moving nonrela-
tivistically. We considered the relativistic effects in only one chapter, Chapter 34.)

Now we should try to connect the two things together. We have the Maxwell
equations, and we have Eq. (21.1) for the field of a point charge. We should
certainly ask whether they are equivalent. If we can deduce Eq. (21.1) from
Maxwell’s equations, we will really understand the connection between light and
electromagnetism. To make this connection is the main purpose of this chapter.

It turns out that we won’t quite make it—that the mathematical details get
too complicated for us to carry through in all their gory details. But we will come
close enough so that you should easily see how the connection could be made.
The missing pieces will only be in the mathematical details. Some of you may
find the mathematics in this chapter rather complicated, and you may not wish
to follow the argument very closely. We think it is important, however, to make
the connection between what you have learned earlier and what you are learning
now, or at least to indicate how such a connection can be made. You will notice,
if you look over the earlier chapters, that whenever we have taken a statement as
a starting point for a discussion, we have carefully explained whether it is a new
“assumption” that is a “basic law,” or whether it can ultimately be deduced from
some other laws. We owe it to you in the spirit of these lectures to make the
connection between light and Maxwell’s equations. If it gets difficult in places,
well, that’s life—there is no other way.

21-2 Spherical waves from a point source

In Chapter 18 we found that Maxwell’s equations could be solved by letting

E = −∇φ− ∂A

∂t
(21.2)

and
B =∇×A, (21.3)

where φ and A must then be solutions of the equations

∇2φ− 1
c2
∂2φ

∂t2
= − ρ

ε0
(21.4)

and

∇2A− 1
c2
∂2A

∂t2
= − j

ε0c2
, (21.5)
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and must also satisfy the condition that

∇ ·A = − 1
c2
∂φ

∂t
. (21.6)

Now we will find the solution of Eqs. (21.4) and (21.5). To do that we have
to find the solution ψ, of the equation

∇2ψ − 1
c2
∂2ψ

∂t2
= −s, (21.7)

where s, which we call the source, is known. Of course, s corresponds to ρ/ε0
and ψ to φ for Eq. (21.4), or s is jx/ε0c2 if ψ is Ax, etc., but we want to solve
Eq. (21.7) as a mathematical problem no matter what ψ and s are physically.

In places where ρ and j are zero—in what we have called “free” space—the
potentials φ and A, and the fields E and B, all satisfy the three-dimensional
wave equation without sources, whose mathematical form is

∇2ψ − 1
c2
∂2ψ

∂t2
= 0. (21.8)

In Chapter 20 we saw that solutions of this equation can represent waves of
various kinds: plane waves in the x-direction, ψ = f(t− x/c); plane waves in the
y- or z-direction, or in any other direction; or spherical waves of the form

ψ(x, y, z, t) = f(t− r/c)
r

. (21.9)

(The solutions can be written in still other ways, for example cylindrical waves
that spread out from an axis.)

We also remarked that, physically, Eq. (21.9) does not represent a wave in
free space—that there must be charges at the origin to get the outgoing wave
started. In other words, Eq. (21.9) is a solution of Eq. (21.8) everywhere except
right near r = 0, where it must be a solution of the complete equation (21.7),
including some sources. Let’s see how that works. What kind of a source s in
Eq. (21.7) would give rise to a wave like Eq. (21.9)?

Suppose we have the spherical wave of Eq. (21.9) and look at what is happening
for very small r. Then the retardation −r/c in f(t − r/c) can be neglected—
provided f is a smooth function—and ψ becomes

ψ = f(t)
r

(r → 0). (21.10)

So ψ is just like a Coulomb field for a charge at the origin that varies with time.
That is, if we had a little lump of charge, limited to a very small region near the
origin, with a density ρ, we know that

φ = Q/4πε0
r

,

where Q =
∫
ρ dV . Now we know that such a φ satisfies the equation

∇2φ = − ρ

ε0
.

Following the same mathematics, we would say that the ψ of Eq. (21.10)
satisfies

∇2ψ = −s (r → 0), (21.11)
where s is related to f by

f = S

4π ,

with
S =

∫
s dV.
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The only difference is that in the general case, s, and therefore S, can be a
function of time.

Now the important thing is that if ψ, satisfies Eq. (21.11) for small r, it also
satisfies Eq. (21.7). As we go very close to the origin, the 1/r dependence of ψ
causes the space derivatives to become very large. But the time derivatives keep
their same values. [They are just the time derivatives of f(t).] So as r goes to
zero, the term ∂2ψ/∂t2 in Eq. (21.7) can be neglected in comparison with ∇2ψ,
and Eq. (21.7) becomes equivalent to Eq. (21.11).

To summarize, then, if the source function s(t) of Eq. (21.7) is localized at
the origin and has the total strength

S(t) =
∫
s(t) dV, (21.12)

the solution of Eq. (21.7) is

ψ(x, y, z, t) = 1
4π

S(t− r/c)
r

. (21.13)

The only effect of the term ∂2ψ/∂t2 in Eq. (21.7) is to introduce the retarda-
tion (t− r/c) in the Coulomb-like potential.

21-3 The general solution of Maxwell’s equations

We have found the solution of Eq. (21.7) for a “point” source. The next
question is: What is the solution for a spread-out source? That’s easy; we can
think of any source s(x, y, z, t) as made up of the sum of many “point” sources,
one for each volume element dV , and each with the source strength s(x, y, z, t) dV .
Since Eq. (21.7) is linear, the resultant field is the superposition of the fields from
all of such source elements.

Using the results of the preceding section [Eq. (21.13)] we know that the
field dψ at the point (x1, y1, z1)—or (1) for short—at the time t, from a source
element s dV at the point (x2, y2, z2)—or (2) for short—is given by

dψ(1, t) = s(2, t− r12/c) dV2

4πr12
,

where r12 is the distance from (2) to (1). Adding the contributions from all
the pieces of the source means, of course, doing an integral over all regions
where s 6= 0; so we have

ψ(1, t) =
∫
s(2, t− r12/c)

4πr12
dV2. (21.14)

That is, the field at (1) at the time t is the sum of all the spherical waves which
leave the source elements at (2) at the times (t− r12/c). This is the solution of
our wave equation for any set of sources.

We see now how to obtain a general solution for Maxwell’s equations. If
for ψ we mean the scalar potential φ, the source function s becomes ρ/ε0. Or we
can let ψ represent any one of the three components of the vector potential A,
replacing s by the corresponding component of j/ε0c2. Thus, if we know the
charge density ρ(x, y, z, t) and the current density j(x, y, z, t) everywhere, we can
immediately write down the solutions of Eqs. (21.4) and (21.5). They are

φ(1, t) =
∫
ρ(2, t− r12/c)

4πε0r12
dV2 (21.15)

and

A(1, t) =
∫
j(2, t− r12/c)

4πε0c2r12
dV2. (21.16)

The fields E and B can then be found by differentiating the potentials, using
Eqs. (21.2) and (21.3). [Incidentally, it is possible to verify that the φ and A
obtained from Eqs. (21.15) and (21.16) do satisfy the equality (21.6).]
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We have solved Maxwell’s equations. Given the currents and charges in any
circumstance, we can find the potentials directly from these integrals and then
differentiate and get the fields. So we have finished with the Maxwell theory. Also
this permits us to close the ring back to our theory of light, because to connect with
our earlier work on light, we need only calculate the electric field from a moving
charge. All that remains is to take a moving charge, calculate the potentials from
these integrals, and then differentiate to find E from −∇φ− ∂A/∂t. We should
get Eq. (21.1). It turns out to be lots of work, but that’s the principle.

So here is the center of the universe of electromagnetism—the complete theory
of electricity and magnetism, and of light; a complete description of the fields
produced by any moving charges; and more. It is all here. Here is the structure
built by Maxwell, complete in all its power and beauty. It is probably one of the
greatest accomplishments of physics. To remind you of its importance, we will
put it all together in a nice frame.

Maxwell’s equations:

∇ ·E = ρ

ε0
∇ ·B = 0

∇×E = −∂B
∂t

c2∇×B = j

ε0
+ ∂E

∂t

Their solutions:
E = −∇φ− ∂A

∂t

B =∇×A

φ(1, t) =
∫ ρ(2, t− r12/c)

4πε0r12
dV2

A(1, t) =
∫ j(2, t− r12/c)

4πε0c2r12
dV2

21-4 The fields of an oscillating dipole

We have still not lived up to our promise to derive Eq. (21.1) for the electric
field of a point charge in motion. Even with the results we already have, it is a
relatively complicated thing to derive. We have not found Eq. (21.1) anywhere in
the published literature except in Vol. I of these lectures.* So you can see that it is
not easy to derive. (The fields of a moving charge have been written in many other
forms that are equivalent, of course.) We will have to limit ourselves here just to
showing that, in a few examples, Eqs. (21.15) and (21.16) give the same results
as Eq. (21.1). First, we will show that Eq. (21.1) gives the correct fields with only
the restriction that the motion of the charged particle is nonrelativistic. (Just this
special case will take care of 90 percent, or more, of what we said about light.)

We consider a situation in which we have a blob of charge that is moving
about in some way, in a small region, and we will find the fields far away. To
put it another way, we are finding the field at any distance from a point charge
that is shaking up and down in very small motion. Since light is usually emitted
from neutral objects such as atoms, we will consider that our wiggling charge q
is located near an equal and opposite charge at rest. If the separation between
the centers of the charges is d, the charges will have a dipole moment p = qd,

* The formula was first published by Oliver Heaviside in 1902. It was independently
discovered by R. P. Feynman, in about 1950, and given in some lectures as a good way of
thinking about synchrotron radiation.
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which we take to be a function of time. Now we should expect that if we look
at the fields close to the charges, we won’t have to worry about the delay; the
electric field will be exactly the same as the one we have calculated earlier for
an electrostatic dipole—using, of course, the instantaneous dipole moment p(t).
But if we go very far out, we ought to find a term in the field that goes as 1/r
and depends on the acceleration of the charge perpendicular to the line of sight.
Let’s see if we get such a result.

x

y

z

ρ(x, y , z)

∆V2

(1)

v

r ′

r

Fig. 21-2. The potential at (1) are given
by integrals over the charge density ρ.

We begin by calculating the vector potential A, using Eq. (21.16). Suppose
that our moving charge is in a small blob whose charge density is given by ρ(x, y, z),
and the whole thing is moving at any instant with the velocity v. Then the
current density j(x, y, z) will be equal to vρ(x, y, z). It will be convenient to
take our coordinate system so that the z-axis is in the direction of v; then the
geometry of our problem is as shown in Fig. 21-2. We want the integral∫

j(2, t− r12/c)
r12

dV2. (21.17)

Now if the size of the charge-blob is really very small compared with r12, we
can set the r12 term in the denominator equal to r, the distance to the center of
the blob, and take r outside the integral. Next, we are also going to set r12 = r
in the numerator, although that is not really quite right. It is not right because
we should take j at, say, the top of the blob at a slightly different time than we
used for j at the bottom of the blob. When we set r12 = r in j(t− r12/c), we are
taking the current density for the whole blob at the same time (t− r/c). That is
an approximation that will be good only if the velocity v of the charge is much
less than c. So we are making a nonrelativistic calculation. Replacing j by ρv,
the integral (21.17) becomes

1
r

∫
vρ(2, t− r/c) dV2.

Since all the charge has the same velocity, this integral is just v/r times the total
charge q. But qv is just ∂p/∂t, the rate of change of the dipole moment—which
is, of course, to be evaluated at the retarded time (t − r/c). We will write it
as ṗ(t− r/c). So we get for the vector potential

A(1, t) = 1
4πε0c2

ṗ(t− r/c)
r

. (21.18)

Our result says that the current in a varying dipole produces a vector potential
in the form of spherical waves whose source strength is ṗ/ε0c2.

We can now get the magnetic field from B =∇×A. Since ṗ is totally in the
z-direction, A has only a z-component; there are only two nonzero derivatives in
the curl. So Bx = ∂Az/∂y and By = −∂Az/∂x. Let’s first look at Bx:

Bx = ∂Az
∂y

= 1
4πε0c2

∂

∂y

ṗ(t− r/c)
r

. (21.19)

To carry out the differentiation, we must remember that r =
√
x2 + y2 + z2, so

Bx = 1
4πε0c2

ṗ(t− r/c) ∂

∂y

(
1
r

)
+ 1

4πε0c2
1
r

∂

∂y
ṗ(t− r/c). (21.20)

Remembering that ∂r/∂y = y/r, the first term gives

− 1
4πε0c2

yṗ(t− r/c)
r3 , (21.21)

which drops off as 1/r2 like the potential of a static dipole (because y/r is constant
for a given direction).

The second term in Eq. (21.20) gives us the new effects. Carrying out the
differentiation, we get

− 1
4πε0c2

y

cr2 p̈(t− r/c), (21.22)
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where p̈ means, of course, the second derivative of p with respect to t. This
term, which comes from differentiating the numerator, is responsible for radiation.
First, it describes a field which decreases with distance only as 1/r. Second, it
depends on the acceleration of the charge. You can begin to see how we are going
to get a result like Eq. (21.1′), which describes the radiation of light.

Let’s examine in a little more detail how this radiation term comes about—it
is such an interesting and important result. We start with the expression (21.18),
which has a 1/r dependence and is therefore like a Coulomb potential, except for
the delay term in the numerator. Why is it then that when we differentiate with
respect to space coordinates to get the fields, we don’t just get a 1/r2 field—with,
of course, the corresponding time delays?

r

Az

1/r

c

Fig. 21-3. The z-component of A as a
function of r at the instant t for the spheri-
cal wave from an oscillating dipole.

We can see why in the following way: Suppose that we let our dipole oscillate
up and down in a sinusoidal motion. Then we would have

p = pz = p0 sinωt
and

Az = 1
4πε0c2

ωp0 cosω(t− r/c)
r

.

If we plot a graph of Az as a function of r at a given instant, we get the curve
shown in Fig. 21-3. The peak amplitude decreases as 1/r, but there is, in addition,
an oscillation in space, bounded by the 1/r envelope. When we take the spatial
derivatives, they will be proportional to the slope of the curve. From the figure
we see that there are slopes much steeper than the slope of the 1/r curve itself.
It is, in fact, evident that for a given frequency the peak slopes are proportional
to the amplitude of the wave, which varies as 1/r. So that explains the drop-off
rate of the radiation term.

It all comes about because the variations with time at the source are translated
into variations in space as the waves are propagated outward, and the magnetic
fields depend on the spatial derivatives of the potential.

Let’s go back and finish our calculation of the magnetic field. We have for Bx
the two terms (21.21) and (21.22), so

Bx = 1
4πε0c2

[
−yṗ(t− r/c)

r3 − yp̈(t− r/c)
cr2

]
.

With the same kind of mathematics, we get

By = 1
4πε0c2

[
xṗ(t− r/c)

r3 + xp̈(t− r/c)
cr2

]
.

Or we can put it all together in a nice vector formula:

B = 1
4πε0c2

[ṗ+ (r/c)p̈]t−r/c × r
r3 . (21.23)

p̈

B

E

(1)

(2)

r

Fig. 21-4. The radiation fields B and E
of an oscillating dipole.

Now let’s look at this formula. First of all, if we go very far out in r, only the
p̈ term counts. The direction of B is given by p̈×r, which is at right angles to the
radius r and also at right angles to the acceleration, as in Fig. 21-4. Everything
is coming out right; that is also the result we get from Eq. (21.1′).

Now let’s look at what we are not used to—at what happens closer in. In
Section 14-7 we worked out the law of Biot and Savart for the magnetic field of
an element of current. We found that a current element j dV contributes to the
magnetic field the amount

dB = 1
4πε0c2

j × r
r3 dV. (21.24)

You see that this formula looks very much like the first term of Eq. (21.23), if
we remember that ṗ is the current. But there is one difference. In Eq. (21.23),
the current is to be evaluated at the time (t − r/c), which doesn’t appear in
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Eq. (21.24). Actually, however, Eq. (21.24) is still very good for small r, because
the second term of Eq. (21.23) tends to cancel out the effect of the retardation
in the first term. The two together give a result very near to Eq. (21.24) when r
is small.

We can see that this way: When r is small, (t − r/c) is not very different
from t, so we can expand the bracket in Eq. (21.23) in a Taylor series. For the
first term,

ṗ(t− r/c) = ṗ(t)− r

c
p̈(t) + etc.,

and to the same order in r/c,
r

c
p̈(t− r/c) = r

c
p̈(t) + etc.

When we take the sum, the two terms in p̈ cancel, and we are left with the
unretarded current ṗ: that is, ṗ(t)—plus terms of order (r/c)2 or higher [e.g.,
1
2 (r/c)2 ˙̇ṗ ] which will be very small for r small enough that ṗ does not alter
markedly in the time r/c.

So Eq. (21.23) gives fields very much like the instantaneous theory—much
closer than the instantaneous theory with a delay; the first-order effects of the
delay are taken out by the second term. The static formulas are very accurate,
much more accurate than you might think. Of course, the compensation only
works for points close in. For points far out the correction becomes very bad,
because the time delays produce a very large effect, and we get the important
1/r term of the radiation.

We still have the problem of computing the electric field and demonstrating
that it is the same as Eq. (21.1′). For large distances we can see that the answer
is going to come out all right. We know that far from the sources, where we have
a propagating wave, E is perpendicular to B (and also to r), as in Fig. 21-4,
and that cB = E. So E is proportional to the acceleration p̈, as expected from
Eq. (21.1′).

To get the electric field completely for all distances, we need to solve for the
electrostatic potential. When we computed the current integral for A to get
Eq. (21.18), we made an approximation by disregarding the slight variation of r
in the delay terms. This will not work for the electrostatic potential, because we
would then get 1/r times the integral of the charge density, which is a constant.
This approximation is too rough. We need to go to one higher order. Instead of
getting involved in that higher-order computation directly, we can do something
else—we can determine the scalar potential from Eq. (21.6), using the vector
potential we have already found. The divergence of A, in our case, is just
∂Az/∂z—since Ax and Ay are identically zero. Differentiating in the same way
that we did above to find B,

∇ ·A = 1
4πε0c2

[
ṗ(t− r/c) ∂

∂z

(
1
r

)
+ 1
r

∂

∂z
ṗ(t− r/c)

]
= 1

4πε0c2

[
−zṗ(t− r/c)

r3 − zp̈(t− r/c)
cr2

]
.

Or, in vector notation,

∇ ·A = − 1
4πε0c2

[ṗ+ (r/c)p̈]t−r/c · r
r3 .

Using Eq. (21.6), we have an equation for φ:

∂φ

∂t
= 1

4πε0
[ṗ+ (r/c)p̈]t−r/c · r

r3 .

Integrating with respect to t just removes one dot from each of the p’s, so

φ(r, t) = 1
4πε0

[p+ (r/c)ṗ]t−r/c · r
r3 . (21.25)
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(The constant of integration would correspond to some superposed static field
which could, of course, exist. For the oscillating dipole we have taken, there is
no static field.)

We are now able to find the electric field E from

E = −∇φ− ∂A

∂t
.

Since the steps are tedious but straightforward [providing you remember that p(t−
r/c) and its time derivatives depend on x, y, and z through the retardation r/c],
we will just give the result:

E(r, t) = 1
4πε0r3

[
3(p∗ · r)r

r2 − p∗ + 1
c2
{p̈(t− r/c)× r} × r

]
(21.26)

with
p∗ = p(t− r/c) + r

c
ṗ(t− r/c). (21.27)

Although it looks rather complicated, the result is easily interpreted. The
vector p∗ is the dipole moment retarded and then “corrected” for the retardation,
so the two terms with p∗ give just the static dipole field when r is small. [See
Chapter 6, Eq. (6.14).] When r is large, the term in p̈ dominates, and the electric
field is proportional to the acceleration of the charges, at right angles to r, and,
in fact, directed along the projection of p̈ in a plane perpendicular to r.

This result agrees with what we would have gotten using Eq. (21.1). Of course,
Eq. (21.1) is more general; it works with any motion, while Eq. (21.26) is valid
only for small motions for which we can take the retardation r/c as constant over
the source. At any rate, we have now provided the underpinnings for our entire
previous discussion of light (excepting some matters discussed in Chapter 34 of
Vol. I), for it all hinged on the last term of Eq. (21.26). We will discuss next
how the fields can be obtained for more rapidly moving charges (leading to the
relativistic effects of Chapter 34 of Vol. I).

21-5 The potentials of a moving charge; the general solution of Liénard and
Wiechert

In the last section we made a simplification in calculating our integral for A
by considering only low velocities. But in doing so we missed an important point
and also one where it is easy to go wrong. We will therefore take up now a
calculation of the potentials for a point charge moving in any way whatever—even
with a relativistic velocity. Once we have this result, we will have the complete
electromagnetism of electric charges. Even Eq. (21.1) can then be derived by
taking derivatives. The story will be complete. So bear with us.

Let’s try to calculate the scalar potential φ(1) at the point (x1, y1, z1) produced
by a point charge, such as an electron, moving in any manner whatsoever. By a
“point” charge we mean a very small ball of charge, shrunk down as small as you
like, with a charge density ρ(x, y, z). We can find φ from Eq. (21.15):

φ(1, t) = 1
4πε0

∫
ρ(2, t− r12/c)

r12
dV2. (21.28)

The answer would seem to be—and almost everyone would, at first, think—that
the integral of ρ over such a “point” charge is just the total charge q, so that

φ(1, t) = 1
4πε0

q

r′12
(wrong).

By r′12 we mean the radius vector from the charge at point (2) to point (1) at
the retarded time (t− r12/c). It is wrong.

The correct answer is

φ(1, t) = 1
4πε0

q

r′12
· 1

1− vr′/c
, (21.29)
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v w
(b)

(1)ri

∆Vi

Fig. 21-5. (a) A “point” charge—considered as a small cubical distribution of
charge—moving with the speed v toward point (1). (b) The volume element ∆Vi used
for calculating the potentials.

where vr′ , is the component of the velocity of the charge parallel to r′12—namely,
toward point (1). We will now show you why. To make the argument easier to
follow, we will make the calculation first for a “point” charge which is in the
form of a little cube of charge moving toward the point (1) with the speed v, as
shown in Fig. 21-5(a). Let the length of a side of the cube be a, which we take
to be much, much less than r12, the distance from the center of the charge to the
point (1).

Now to evaluate the integral of Eq. (21.28), we will return to basic principles;
we will write it as the sum ∑

i

ρi ∆Vi
ri

, (21.30)

where ri is the distance from point (1) to the ith volume element ∆Vi and ρi is
the charge density at ∆Vi at the time ti = t− ri/c. Since ri � a, always, it will
be convenient to take our ∆Vi in the form of thin, rectangular slices perpendicular
to r12, as shown in Fig. 21-5(b).

(a)

1
2

3
4

5
6 N

(1)

r1(b)
(1)r1

(c)
(1)r2

(d)
(1)r3

(e)
(1)rN

v ∆t a

b

Fig. 21-6. Integrating ρ(t − r ′/c) dV for
a moving charge.

Suppose we start by taking the volume elements ∆Vi with some thickness w
much less than a. The individual elements will appear as shown in Fig. 21-6(a),
where we have put in more than enough to cover the charge. But we have not
shown the charge, and for a good reason. Where should we draw it? For each
volume element ∆Vi we are to take ρ at the time ti = (t− ri/c), but since the
charge is moving, it is in a different place for each volume element ∆Vi!

Let’s say that we begin with the volume element labeled “1” in Fig. 21-6(a),
chosen so that at the time t1 = (t − r1/c) the “back” edge of the charge occu-
pies ∆V1, as shown in Fig. 21-6(b). Then when we evaluate ρ2 ∆V2, we must use
the position of the charge at the slightly later time t2 = (t − r2/c), when the
charge will be in the position shown in Fig. 21-6(c). And so on, for ∆V3, ∆V4,
etc. Now we can evaluate the sum.

Since the thickness of each ∆Vi is w, its volume is wa2. Then each volume
element that overlaps the charge distribution contains the amount of charge wa2ρ,
where ρ is the density of charge within the cube—which we take to be uniform.
When the distance from the charge to point (1) is large, we will make a negligible
error by setting all the ri’s in the denominators equal to some average value, say
the retarded position r′ of the center of the charge. Then the sum (21.30) is

N∑
i=1

ρwa2

r′
,

where ∆VN is the last ∆Vi that overlaps the charge distributions, as shown in
Fig. 21-6(e). The sum is, clearly,

N
ρwa2

r′
= ρa3

r′

(
Nw

a

)
.

Now ρa3 is just the total charge q and Nw is the length b shown in part (e) of
the figure. So we have

φ = q

4πε0r′

(
b

a

)
. (21.31)
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What is b? It is the length of the cube of charge increased by the distance
moved by the charge between t1 = (t− r1/c) and tN = (t− rN/c)—which is the
distance the charge moves in the time

∆t = tN − t1 = (r1 − rN )/c = b/c.

Since the speed of the charge is v, the distance moved is v∆t = vb/c. But the
length b is this distance added to a:

b = a+ v

c
b.

Solving for b, we get
b = a

1− (v/c) .

Of course by v we mean the velocity at the retarded time t′ = (t− r′/c), which
we can indicate by writing [1− v/c]ret, and Eq. (21.31) for the potential becomes

φ(1, t) = q

4πε0r′
1

[1− (v/c)]ret
.

This result agrees with our assertion, Eq. (21.29). There is a correction term
which comes about because the charge is moving as our integral “sweeps over
the charge.” When the charge is moving toward the point (1), its contribution
to the integral is increased by the ratio b/a. Therefore the correct integral is
q/r′ multiplied by b/a, which is 1/[1− v/c]ret.

If the velocity of the charge is not directed toward the observation point (1),
you can see that what matters is the component of its velocity toward point (1).
Calling this velocity component vr, the correction factor is 1/[1− vr/c]ret. Also,
the analysis we have made goes exactly the same way for a charge distribution of
any shape—it doesn’t have to be a cube. Finally, since the “size” of the charge q
doesn’t enter into the final result, the same result holds when we let the charge
shrink to any size—even to a point. The general result is that the scalar potential
for a point charge moving with any velocity is

φ(1, t) = q

4πε0r′[1− (vr/c)]ret
. (21.32)

This equation is often written in the equivalent form

φ(1, t) = q

4πε0[r − (v · r/c)]ret
, (21.33)

where r is the vector from the charge to the point (1), where φ is being evaluated,
and all the quantities in the bracket are to have their values at the retarded
time t′ = t− r′/c.

The same thing happens when we compute A for a point charge, from
Eq. (21.16). The current density is ρv and the integral over ρ is the same as we
found for φ. The vector potential is

A(1, t) = qvret
4πε0c2[r − (v · r/c)]ret

. (21.34)

The potentials for a point charge were first deduced in this form by Liénard
and Wiechert and are called the Liénard-Wiechert potentials.

To close the ring back to Eq. (21.1) it is only necessary to compute E and B
from these potentials (using B = ∇ ×A and E = −∇φ − ∂A/∂t). It is now
only arithmetic. The arithmetic, however, is fairly involved, so we will not write
out the details. Perhaps you will take our word for it that Eq. (21.1) is equivalent
to the Liénard-Wiechert potentials we have derived.*

* If you have a lot of paper and time you can try to work it through yourself. We would,
then, make two suggestions: First, don’t forget that the derivatives of r′ are complicated, since
it is a function of t′. Second, don’t try to derive (21.1), but carry out all of the derivatives in it,
and then compare what you get with the E obtained from the potentials (21.33) and (21.34).
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21-6 The potentials for a charge moving with constant velocity; the Lorentz
formula

We want next to use the Liénard-Wiechert potentials for a special case—to find
the fields of a charge moving with uniform velocity in a straight line. We will do it
again later, using the principle of relativity. We already know what the potentials
are when we are standing in the rest frame of a charge. When the charge is
moving, we can figure everything out by a relativistic transformation from one
system to the other. But relativity had its origin in the theory of electricity and
magnetism. The formulas of the Lorentz transformation (Chapter 15, Vol. I) were
discoveries made by Lorentz when he was studying the equations of electricity and
magnetism. So that you can appreciate where things have come from, we would
like to show that the Maxwell equations do lead to the Lorentz transformation.
We begin by calculating the potentials of a charge moving with uniform velocity,
directly from the electrodynamics of Maxwell’s equations. We have shown that
Maxwell’s equations lead to the potentials for a moving charge that we got in
the last section. So when we use these potentials, we are using Maxwell’s theory.

Fig. 21-7. Finding the potential at P of a
charge moving with uniform velocity along
the x-axis.

x

y

z

(x, y , z)
P

q
22′

r
r ′

“RETARDED” POSITION
(At t ′ = t − r ′/c)

“PRESENT” POSITION
(At t)

vt ′

vt

Suppose we have a charge moving along the x-axis with the speed v. We
want the potentials at the point P (x, y, z), as shown in Fig. 21-7. If t = 0 is the
moment when the charge is at the origin, at the time t the charge is at x = vt,
y = z = 0. What we need to know, however, is its position at the retarded time

t′ = t− r′

c
, (21.35)

where r′ is the distance to the point P from the charge at the retarded time. At
the earlier time t′, the charge was at x = vt′, so

r′ =
√

(x− vt′)2 + y2 + z2. (21.36)

To find r′ or t′ we have to combine this equation with Eq. (21.35). First, we
eliminate r′ by solving Eq. (21.35) for r′ and substituting in Eq. (21.36). Then,
squaring both sides, we get

c2(t− t′)2 = (x− vt′)2 + y2 + z2,

which is a quadratic equation in t′. Expanding the squared binomials and
collecting like terms in t′, we get

(v2 − c2)t′2 − 2(xv − c2t)t′ + x2 + y2 + z2 − (ct)2 = 0.

Solving for t′,(
1− v2

c2

)
t′ = t− vx

c2
− 1
c

√
(x− vt)2 +

(
1− v2

c2

)
(y2 + z2). (21.37)
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To get r′ we have to substitute this expression for t′ into

r′ = c(t− t′).

Now we are ready to find φ from Eq. (21.33), which, since v is constant,
becomes

φ(x, y, z, t) = q

4πε0
1

r′ − (v · r′/c) . (21.38)

The component of v in the direction of r′ is v × (x − vt′)/r′, so v · r′ is just
v × (x− vt′), and the whole denominator is

c(t− t′)− v

c
(x− vt′) = c

[
t− vx

c2
−
(

1− v2

c2

)
t′
]
.

Substituting for (1− v2/c2)t′ from Eq. (21.37), we get for φ

φ(x, y, z, t) = q

4πε0
1√

(x− vt)2 +
(

1− v2

c2

)
(y2 + z2)

.

This equation is more understandable if we rewrite it as

φ(x, y, z, t) = q

4πε0
1√

1− v2

c2

1[(
x− vt√
1− v2/c2

)2
+ y2 + z2

]1/2 . (21.39)

The vector potential A is the same expression with an additional factor of v/c2:

A = v

c2
φ.

In Eq. (21.39) you can clearly see the beginning of the Lorentz transformation.
If the charge were at the origin in its own rest frame, its potential would be

φ(x, y, z) = q

4πε0
1

[x2 + y2 + z2]1/2 .

We are seeing it in a moving coordinate system, and it appears that the coordinates
should be transformed by

x→ x− vt√
1− v2/c2

,

y → y,

z → z.

That is just the Lorentz transformation, and what we have done is essentially
the way Lorentz discovered it.

But what about that extra factor 1/
√

1− v2/c2 that appears at the front of
Eq. (21.39)? Also, how does the vector potential A appear, when it is everywhere
zero in the rest frame of the particle? We will soon show that A and φ together
constitute a four-vector, like the momentum p and the total energy U of a particle.
The extra 1/

√
1− v2/c2 in Eq. (21.39) is the same factor that always comes

in when one transforms the components of a four-vector—just as the charge
density ρ transforms to ρ/

√
1− v2/c2. In fact, it is almost apparent from Eqs.

(21.4) and (21.5) that A and φ are components of a four-vector, because we have
already shown in Chapter 13 that j and ρ are the components of a four-vector.

Later we will take up in more detail the relativity of electrodynamics; here
we only wished to show how naturally the Maxwell equations lead to the Lorentz
transformation. You will not, then, be surprised to find that the laws of electricity
and magnetism are already correct for Einstein’s relativity. We will not have to
“fix them up,” as we had to do for Newton’s laws of mechanics.
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AC Circuits

22-1 Impedances

Most 22-1 Impedances
22-2 Generators
22-3 Networks of ideal elements;

Kirchhoff’s rules
22-4 Equivalent circuits
22-5 Energy
22-6 A ladder network
22-7 Filters
22-8 Other circuit elements

of our work in this course has been aimed at reaching the complete
equations of Maxwell. In the last two chapters we have been discussing the
consequences of these equations. We have found that the equations contain all
the static phenomena we had worked out earlier, as well as the phenomena of
electromagnetic waves and light that we had gone over in some detail in Volume I.
The Maxwell equations give both phenomena, depending upon whether one
computes the fields close to the currents and charges, or very far from them.
There is not much interesting to say about the intermediate region; no special
phenomena appear there.

Review: Chapter 22, Vol. I, Algebra
Chapter 23, Vol. I, Resonance
Chapter 25, Vol. I, Linear Sys-
tems and Review

There still remain, however, several subjects in electromagnetism that we
want to take up. We want to discuss the question of relativity and the Maxwell
equations—what happens when one looks at the Maxwell equations with respect
to moving coordinate systems. There is also the question of the conservation of
energy in electromagnetic systems. Then there is the broad subject of the elec-
tromagnetic properties of materials; so far, except for the study of the properties
of dielectrics, we have considered only the electromagnetic fields in free space.
And although we covered the subject of light in some detail in Volume I, there
are still a few things we would like to do again from the point of view of the field
equations.

In particular, we want to take up again the subject of the index of refraction,
particularly for dense materials. Finally, there are the phenomena associated
with waves confined in a limited region of space. We touched on this kind of
problem briefly when we were studying sound waves. Maxwell’s equations lead
also to solutions which represent confined waves of the electric and magnetic
fields. We will take up this subject, which has important technical applications,
in some of the following chapters. In order to lead up to that subject, we will
begin by considering the properties of electrical circuits at low frequencies. We
will then be able to make a comparison between those situations in which the
almost static approximations of Maxwell’s equations are applicable and those
situations in which high-frequency effects are dominant.

So we descend from the great and esoteric heights of the last few chapters
and turn to the relatively low-level subject of electrical circuits. We will see,
however, that even such a mundane subject, when looked at in sufficient detail,
can contain great complications.

We have already discussed some of the properties of electrical circuits in
Chapters 23 and 25 of Vol. I. Now we will cover some of the same material again,
but in greater detail. Again we are going to deal only with linear systems and
with voltages and currents which all vary sinusoidally; we can then represent
all voltages and currents by complex numbers, using the exponential notation
described in Chapter 23 of Vol. I. Thus a time-varying voltage V (t) will be
written

V (t) = V̂ eiωt, (22.1)

where V̂ represents a complex number that is independent of t. It is, of course,
understood that the actual time-varying voltage V (t) is given by the real part of
the complex function on the right-hand side of the equation.
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Similarly, all of our other time-varying quantities will be taken to vary sinu-
soidally at the same frequency ω. So we write

I = Î eiωt (current),

E = Ê eiωt (emf),

E = Ê eiωt (electric field),

(22.2)

and so on.
Most of the time we will write our equations in terms of V , I, E, . . . (instead

of in terms of V̂ , Î, Ê, . . . ), remembering, though, that the time variations are
as given in (22.2).

I

I

a

b

V

Fig. 22-1. An inductance.

In our earlier discussion of circuits we assumed that such things as inductances,
capacitances, and resistances were familiar to you. We want now to look in a
little a more detail at what is meant by these idealized circuit elements. We
begin with the inductance.

An inductance is made by winding many turns of wire in the form of a coil and
bringing the two ends out to terminals at some distance from the coil, as shown
in Fig. 22-1. We want to assume that the magnetic field produced by currents in
the coil does not spread out strongly all over space and interact with other parts
of the circuit. This is usually arranged by winding the coil in a doughnut-shaped
form, or by confining the magnetic field by winding the coil on a suitable iron
core, or by placing the coil in some suitable metal box, as indicated schematically
in Fig. 22-1. In any case, we assume that there is a negligible magnetic field in
the external region near the terminals a and b. We are also going to assume that
we can neglect any electrical resistance in the wire of the coil. Finally, we will
assume that we can neglect the amount of electrical charge that appears on the
surface of a wire in building up the electric fields.

With all these approximations we have what we call an “ideal” inductance.
(We will come back later and discuss what happens in a real inductance.) For an
ideal inductance we say that the voltage across the terminals is equal to L(dI/dt).
Let’s see why that is so. When there is a current through the inductance, a
magnetic field proportional to the current is built up inside the coil. If the current
changes with time, the magnetic field also changes. In general, the curl of E is
equal to −∂B/∂t; or, put differently, the line integral of E all the way around any
closed path is equal to the negative of the rate of change of the flux of B through
the loop. Now suppose we consider the following path: Begin at terminal a and
go along the coil (staying always inside the wire) to terminal b; then return from
terminal b to terminal a through the air in the space outside the inductance. The
line integral of E around this closed path can be written as the sum of two parts:∮

E · ds =
∫ b

a
via
coil

E · ds+
∫ a

b
outside

E · ds. (22.3)

As we have seen before, there can be no electric fields inside a perfect conductor.
(The smallest fields would produce infinite currents.) Therefore the integral from
a to b via the coil is zero. The whole contribution to the line integral of E comes
from the path outside the inductance from terminal b to terminal a. Since we
have assumed that there are no magnetic fields in the space outside of the “box,”
this part of the integral is independent of the path chosen and we can define the
potentials of the two terminals. The difference of these two potentials is what we
call the voltage difference, or simply the voltage V , so we have

V = −
∫ a

b

E · ds = −
∮
E · ds.

The complete line integral is what we have before called the electromotive
force E and is, of course, equal to the rate of change of the magnetic flux in the
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coil. We have seen earlier that this emf is equal to the negative rate of change of
the current, so we have

V = −E = L
dI

dt
,

where L is the inductance of the coil. Since dI/dt = iωI, we have

V = iωLI. (22.4)

The way we have described the ideal inductance illustrates the general ap-
proach to other ideal circuit elements—usually called “lumped” elements. The
properties of the element are described completely in terms of currents and
voltages that appear at the terminals. By making suitable approximations, it
is possible to ignore the great complexities of the fields that appear inside the
object. A separation is made between what happens inside and what happens
outside.

I

I

a

b

V

Fig. 22-2. A capacitor (or condenser).

For all the circuit elements we will find a relation like the one in Eq. (22.4), in
which the voltage is proportional to the current with a proportionality constant
that is, in general, a complex number. This complex coefficient of proportionality
is called the impedance and is usually written as z (not to be confused with the
z-coordinate). It is, in general, a function of the frequency ω. So for any lumped
element we write

V

I
= V̂

Î
= z. (22.5)

For an inductance, we have

z (inductance) = zL = iωL. (22.6)

Now let’s look at a capacitor from the same point of view.* A capacitor
consists of a pair of conducting plates from which two wires are brought out to
suitable terminals. The plates may be of any shape whatsoever, and are often
separated by some dielectric material. We illustrate such a situation schematically
in Fig. 22-2. Again we make several simplifying assumptions. We assume that the
plates and the wires are perfect conductors. We also assume that the insulation
between the plates is perfect, so that no charges can flow across the insulation
from one plate to the other. Next, we assume that the two conductors are close
to each other but far from all others, so that all field lines which leave one plate
end up on the other. Then there are always equal and opposite charges on the
two plates and the charges on the plates are much larger than the charges on
the surfaces of the lead-in wires. Finally, we assume that there are no magnetic
fields close to the capacitor.

Suppose now we consider the line integral of E around a closed loop which
starts at terminal a, goes along inside the wire to the top plate of the capacitor,
jumps across the space between the plates, passes from the lower plate to
terminal b through the wire, and returns to terminal a in the space outside the
capacitor. Since there is no magnetic field, the line integral of E around this
closed path is zero. The integral can be broken down into three parts:∮

E · ds =
∫

along
wires

E · ds+
∫

between
plates

E · ds+
∫ a

b
outside

E · ds. (22.7)

The integral along the wires is zero, because there are no electric fields inside
perfect conductors. The integral from b to a outside the capacitor is equal to the
negative of the potential difference between the terminals. Since we imagined

* There are people who say we should call the objects by the names “inductor” and
“capacitor” and call their properties “inductance” and “capacitance” (by analogy with “resistor”
and “resistance”). We would rather use the words you will hear in the laboratory. Most people
still say “inductance” for both the physical coil and its inductance L. The word “capacitor”
seems to have caught on—although you will still hear “condenser” fairly often—and most people
still prefer the sound of “capacity” to “capacitance.”

22-3



that the two plates are in some way isolated from the rest of the world, the total
charge on the two plates must be zero; if there is a charge Q on the upper plate,
there is an equal, opposite charge −Q on the lower plate. We have seen earlier
that if two conductors have equal and opposite charges, plus and minus Q, the
potential difference between the plates is equal to Q/C, where C is called the
capacity of the two conductors. From Eq. (22.7) the potential difference between
the terminals a and b is equal to the potential difference between the plates. We
have, therefore, that

V = Q

C
.

I

I

a

b

V

Fig. 22-3. A resistor

The electric current I entering the capacitor through terminal a (and leaving
through terminal b) is equal to dQ/dt, the rate of change of the electric charge
on the plates. Writing dV/dt as iωV , we can put the voltage current relationship
for a capacitor in the following way:

iωV = I

C
,

or
V = I

iωC
. (22.8)

The impedance z of a capacitor, is then

z (capacitor) = zC = 1
iωC

. (22.9)

The third element we want to consider is a resistor. However, since we have
not yet discussed the electrical properties of real materials, we are not yet ready
to talk about what happens inside a real conductor. We will just have to accept
as fact that electric fields can exist inside real materials, that these electric fields
give rise to a flow of electric charge—that is, to a current—and that this current
is proportional to the integral of the electric field from one end of the conductor
to the other. We then imagine an ideal resistor constructed as in the diagram
of Fig. 22-3. Two wires which we take to be perfect conductors go from the
terminals a and b to the two ends of a bar of resistive material. Following our
usual line of argument, the potential difference between the terminals a and b
is equal to the line integral of the external electric field, which is also equal to
the line integral of the electric field through the bar of resistive material. It then
follows that the current I through the resistor is proportional to the terminal
voltage V :

I = V

R
,

where R is called the resistance. We will see later that the relation between
the current and the voltage for real conducting materials is only approximately
linear. We will also see that this approximate proportionality is expected to be
independent of the frequency of variation of the current and voltage only if the
frequency is not too high. For alternating currents then, the voltage across a
resistor is in phase with the current, which means that the impedance is a real
number:

z (resistance) = zR = R. (22.10)

(a)

a

b

zI V

z =
V

I

(b)

L

iωL

(c)

C

1

iωC

(d)

R

R

Fig. 22-4. The ideal lumped circuit ele-
ments (passive).

Our results for the three lumped circuit elements—the inductor, the capacitor,
and the resistor—are summarized in Fig. 22-4. In this figure, as well as in the
preceding ones, we have indicated the voltage by an arrow that is directed from
one terminal to another. If the voltage is “positive”—that is, if the terminal a is
at a higher potential than the terminal b—the arrow indicates the direction of a
positive “voltage drop.”

Although we are talking about alternating currents, we can of course include
the special case of circuits with steady currents by taking the limit as the
frequency ω goes to zero. For zero frequency—that is, for dc—the impedance of
an inductance goes to zero; it becomes a short circuit. For dc, the impedance of

22-4



a condenser goes to infinity; it becomes an open circuit. Since the impedance of
a resistor is independent of frequency, it is the only element left when we analyze
a circuit for dc.

In the circuit elements we have described so far, the current and voltage are
proportional to each other. If one is zero, so also is the other. We usually think in
terms like these: An applied voltage is “responsible” for the current, or a current
“gives rise to” a voltage across the terminals; so in a sense the elements “respond”
to the “applied” external conditions. For this reason these elements are called
passive elements. They can thus be contrasted with the active elements, such as
the generators we will consider in the next section, which are the sources of the
oscillating currents or voltages in a circuit.

22-2 Generators

I
a

b

V

N

S

Fig. 22-5. A generator consisting of a
fixed coil and a rotating magnetic field.

Now we want to talk about an active circuit element—one that is a source of
the currents and voltages in a circuit—namely, a generator.

Suppose that we have a coil like an inductance except that it has very few
turns, so that we may neglect the magnetic field of its own current. This coil,
however, sits in a changing magnetic field such as might be produced by a rotating
magnet, as sketched in Fig. 22-5. (We have seen earlier that such a rotating
magnetic field can also be produced by a suitable set of coils with alternating
currents.) Again we must make several simplifying assumptions. The assumptions
we will make are all the ones that we described for the case of the inductance. In
particular, we assume that the varying magnetic field is restricted to a definite
region in the vicinity of the coil and does not appear outside the generator in the
space between the terminals.

E

a

b

V

Fig. 22-6. Symbol for an ideal generator.

Following closely the analysis we made for the inductance, we consider the line
integral of E around a complete loop that starts at terminal a, goes through the
coil to terminal b and returns to its starting point in the space between the two
terminals. Again we conclude that the potential difference between the terminals
is equal to the total line integral of E around the loop:

V = −
∮
E · ds.

This line integral is equal to the emf in the circuit, so the potential difference V
across the terminals of the generator is also equal to the rate of change of the
magnetic flux linking the coil:

V = −E = d

dt
(flux). (22.11)

For an ideal generator we assume that the magnetic flux linking the coil is deter-
mined by external conditions—such as the angular velocity of a rotating magnetic
field—and is not influenced in any way by the currents through the generator.
Thus a generator—at least the ideal generator we are considering—is not an
impedance. The potential difference across its terminals is determined by the ar-
bitrarily assigned electromotive force E(t). Such an ideal generator is represented
by the symbol shown in Fig. 22-6. The little arrow represents the direction of the
emf when it is positive. A positive emf in the generator of Fig. 22-6 will produce
a voltage V = E, with the terminal a at a higher potential than the terminal b.

There is another way to make a generator which is quite different on the
inside but which is indistinguishable from the one we have just described insofar
as what happens beyond its terminals. Suppose we have a coil of wire which is
rotated in a fixed magnetic field, as indicated in Fig. 22-7. We show a bar magnet
to indicate the presence of a magnetic field; it could, of course, be replaced by
any other source of a steady magnetic field, such as an additional coil carrying a
steady current. As shown in the figure, connections from the rotating coil are
made to the outside world by means of sliding contacts or “slip rings.” Again, we
are interested in the potential difference that appears across the two terminals
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Fig. 22-7. A generator consisting of a
coil rotating in a fixed magnetic field.

a

b

V

N

S

a and b, which is of course the integral of the electric field from terminal a to
terminal b along a path outside the generator.

Now in the system of Fig. 22-7 there are no changing magnetic fields, so we
might at first wonder how any voltage could appear at the generator terminals. In
fact, there are no electric fields anywhere inside the generator. We are, as usual,
assuming for our ideal elements that the wires inside are made of a perfectly
conducting material, and as we have said many times, the electric field inside a
perfect conductor is equal to zero. But that is not true. It is not true when a
conductor is moving in a magnetic field. The true statement is that the total
force on any charge inside a perfect conductor must be zero. Otherwise there
would be an infinite flow of the free charges. So what is always true is that the
sum of the electric field E and the cross product of the velocity of the conductor
and the magnetic field B—which is the total force on a unit charge—must have
the value zero inside the conductor:

F /unit charge = E + v ×B = 0 (in a perfect conductor), (22.12)

where v represents the velocity of the conductor. Our earlier statement that
there is no electric field inside a perfect conductor is all right if the velocity v of
the conductor is zero; otherwise the correct statement is given by Eq. (22.12).

Returning to our generator of Fig. 22-7, we now see that the line integral of
the electric field E from terminal a to terminal b through the conducting path of
the generator must be equal to the line integral of v ×B on the same path,∫ b

a
inside

conductor

E · ds = −
∫ b

a
inside

conductor

(v ×B) · ds. (22.13)

It is still true, however, that the line integral of E around a complete loop,
including the return from b to a outside the generator, must be zero, because
there are no changing magnetic fields. So the first integral in Eq. (22.13) is
also equal to V , the voltage between the two terminals. It turns out that the
right-hand integral of Eq. (22.13) is just the rate of change of the flux linkage
through the coil and is therefore—by the flux rule—equal to the emf in the coil.
So we have again that the potential difference across the terminals is equal to
the electromotive force in the circuit, in agreement with Eq. (22.11). So whether
we have a generator in which a magnetic field changes near a fixed coil, or one
in which a coil moves in a fixed magnetic field, the external properties of the
generators are the same. There is a voltage difference V across the terminals,
which is independent of the current in the circuit but depends only on the
arbitrarily assigned conditions inside the generator.

So long as we are trying to understand the operation of generators from
the point of view of Maxwell’s equations, we might also ask about the ordinary
chemical cell, like a flashlight battery. It is also a generator, i.e., a voltage source,
although it will of course only appear in dc circuits. The simplest kind of cell
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to understand is shown in Fig. 22-8. We imagine two metal plates immersed
in some chemical solution. We suppose that the solution contains positive and
negative ions. We suppose also that one kind of ion, say the negative, is much
heavier than the one of opposite polarity, so that its motion through the solution
by the process of diffusion is much slower. We suppose next that by some means
or other it is arranged that the concentration of the solution is made to vary
from one part of the liquid to the other, so that the number of ions of both
polarities near, say, the lower plate is much larger than the concentration of ions
near the upper plate. Because of their rapid mobility the positive ions will drift
more readily into the region of lower concentration, so that there will be a slight
excess of positive charge arriving at the upper plate. The upper plate will become
positively charged and the lower plate will have a net negative charge.

a

b

V

I

+−+−+−+−
+− − −+
+ +

Fig. 22-8. A chemical cell.

As more and more charges diffuse to the upper plate, the potential of this
plate will rise until the resulting electric field between the plates produces forces
on the ions which just compensate for their excess mobility, so the two plates of
the cell quickly reach a potential difference which is characteristic of the internal
construction.

Arguing just as we did for the ideal capacitor, we see that the potential differ-
ence between the terminals a and b is just equal to the line integral of the electric
field between the two plates when there is no longer any net diffusion of the ions.
There is, of course, an essential difference between a capacitor and such a chemical
cell. If we short-circuit the terminals of a condenser for a moment, the capacitor
is discharged and there is no longer any potential difference across the terminals.
In the case of the chemical cell a current can be drawn from the terminals con-
tinuously without any change in the emf—until, of course, the chemicals inside
the cell have been used up. In a real cell it is found that the potential difference
across the terminals decreases as the current drawn from the cell increases. In
keeping with the abstractions we have been making, however, we may imagine an
ideal cell in which the voltage across the terminals is independent of the current.
A real cell can then be looked at as an ideal cell in series with a resistor.

22-3 Networks of ideal elements; Kirchhoff’s rules

a b
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Fig. 22-9. The sum of the voltage drops
around any closed path is zero.

As we have seen in the last section, the description of an ideal circuit element
in terms of what happens outside the element is quite simple. The current and the
voltage are linearly related. But what is actually happening inside the element is
quite complicated, and it is quite difficult to give a precise description in terms of
Maxwell’s equations. Imagine trying to give a precise description of the electric
and magnetic fields of the inside of a radio which contains hundreds of resistors,
capacitors, and inductors. It would be an impossible task to analyze such a
thing by using Maxwell’s equations. But by making the many approximations
we have described in Section 22-2 and summarizing the essential features of the
real circuit elements in terms of idealizations, it becomes possible to analyze an
electrical circuit in a relatively straightforward way. We will now show how that
is done.

Suppose we have a circuit consisting of a generator and several impedances
connected together, as shown in Fig. 22-9. According to our approximations
there is no magnetic field in the region outside the individual circuit elements.
Therefore the line integral of E around any curve which does not pass through
any of the elements is zero. Consider then the curve Γ shown by the broken line
which goes all the way around the circuit in Fig. 22-9. The line integral of E
around this curve is made up of several pieces. Each piece is the line integral
from one terminal of a circuit element to the other. This line integral we have
called the voltage drop across the circuit element. The complete line integral is
then just the sum of the voltage drops across all of the elements in the circuit:∮

E · ds =
∑

Vn.

Since the line integral is zero, we have that the sum of the potential differences
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around a complete loop of a circuit is equal to zero:∑
around
any loop

Vn = 0. (22.14)

This result follows from one of Maxwell’s equations—that in a region where there
are no magnetic fields the line integral of E around any complete loop is zero.

a b c d

e f g h

z1 z2 z3

I1 I2 I3 I4

I1 I2 I3 I4

EV

Fig. 22-10. The sum of the currents into
any node is zero.

Suppose we consider now a circuit like that shown in Fig. 22-10. The horizontal
line joining the terminals a, b, c, and d is intended to show that these terminals
are all connected, or that they are joined by wires of negligible resistance. In
any case, the drawing means that terminals a, b, c, and d are all at the same
potential and, similarly, that the terminals e, f , g, and h are also at one common
potential. Then the voltage drop V across each of the four elements is the same.

Now one of our idealizations has been that negligible electrical charges accu-
mulate on the terminals of the impedances. We now assume further that any
electrical charges on the wires joining terminals can also be neglected. Then the
conservation of charge requires that any charge which leaves one circuit element
immediately enters some other circuit element. Or, what is the same thing, we
require that the algebraic sum of the currents which enter any given junction
must be zero. By a junction, of course, we mean any set of terminals such as
a, b, c, and d which are connected. Such a set of connected terminals is usually
called a “node.” The conservation of charge then requires that for the circuit of
Fig. 22-10,

I1 − I2 − I3 − I4 = 0. (22.15)
The sum of the currents entering the node which consists of the four terminals
e, f , g, and h must also be zero:

− I1 + I2 + I3 + I4 = 0. (22.16)

This is, of course, the same as Eq. (22.15). The two equations are not independent.
The general rule is that the sum of the currents into any node must be zero:∑

into
a node

In = 0. (22.17)

a b c

d e f

g h j

z1 z2

z3

z4

z5 z6

z7

E1

E2

I1 I2

I1 I3

I4 I8

I5 I6

I7

Fig. 22-11. Analyzing a circuit with Kirch-
hoff’s rules.

Our earlier conclusion that the sum of the voltage drops around a closed loop
is zero must apply to any loop in a complicated circuit. Also, our result that the
sum of the currents into a node is zero must be true for any node. These two
equations are known as Kirchhoff’s rules. With these two rules it is possible to
solve for the currents and voltages in any network whatever.

Suppose we consider the more complicated circuit of Fig. 22-11. How shall we
find the currents and voltages in this circuit? We can find them in the following
straightforward way. We consider separately each of the four subsidiary closed
loops, which appear in the circuit. (For instance, one loop goes from terminal a
to terminal b to terminal e to terminal d and back to terminal a.) For each of
the loops we write the equation for the first of Kirchhoff’s rules—that the sum
of the voltages around each loop is equal to zero. We must remember to count
the voltage drop as positive if we are going in the direction of the current and
negative if we are going across an element in the direction opposite to the current;
and we must remember that the voltage drop across a generator is the negative
of the emf in that direction. Thus if we consider the small loop that starts and
ends at terminal a we have the equation

z1I1 + z3I3 + z4I4 − E1 = 0.

Applying the same rule to the remaining loops, we would get three more equations
of the same kind.

Next, we must write the current equation for each of the nodes in the circuit.
For example, summing the currents into the node at terminal b gives the equation

I1 − I3 − I2 = 0.
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Similarly, for the node labeled e we would have the current equation

I3 − I4 + I8 − I5 = 0.

For the circuit shown there are five such current equations. It turns out, however,
that any one of these equations can be derived from the other four; there are,
therefore, only four independent current equations. We thus have a total of eight
independent, linear equations: the four voltage equations and the four current
equations. With these eight equations we can solve for the eight unknown currents.
Once the currents are known the circuit is solved. The voltage drop across any
element is given by the current through that element times its impedance (or, in
the case of the voltage sources, it is already known).

z1 z2

z3

z4 z5

z6 z7 z8E

Fig. 22-12. A circuit which can be ana-
lyzed in terms of series and parallel combi-
nations.

We have seen that when we write the current equations, we get one equation
which is not independent of the others. Generally it is also possible to write down
too many voltage equations. For example, in the circuit of Fig. 22-11, although we
have considered only the four small loops, there are a large number of other loops
for which we could write the voltage equation. There is, for example, the loop
along the path abcfeda. There is another loop which follows the path abcfehgda.
You can see that there are many loops. In analyzing complicated circuits it is
very easy to get too many equations. There are rules which tell us how to proceed
so that only the minimum number of equations is written down, but usually with
a little thought it is possible to see how to get the right number of equations
in the simplest form. Besides, writing an extra equation or two doesn’t do any
harm. They will not lead to any wrong answers, only perhaps a little unnecessary
algebra.

In Chapter 25 of Vol. I we showed that if the two impedances z1 and z2 are
in series, they are equivalent to a single impedance zs given by

zs = z1 + z2. (22.18)

We also showed that if the two impedances are connected in parallel, they are
equivalent to the single impedance zp given by

zp = 1
(1/z1) + (1/z2) = z1z2

z1 + z2
. (22.19)

If you look back you will see that in deriving these results we were in effect
making use of Kirchhoff’s rules. It is often possible to analyze a complicated
circuit by repeated application of the formulas for series and parallel impedances.
For instance, the circuit of Fig. 22-12 can be analyzed that way. First, the
impedances z4 and z5 can be replaced by their parallel equivalent, and so also can
z6 and z7. Then the impedance z2 can be combined with the parallel equivalent
of z6 and z7 by the series rule. Proceeding in this way, the whole circuit can be
reduced to a generator in series with a single impedance Z. The current through
the generator is then just E/Z. Then by working backward one can solve for the
currents in each of the impedances.

There are, however, quite simple circuits which cannot be analyzed by this
method, as for example the circuit of Fig. 22-13. To analyze this circuit we must

a b c

d e f

z1 z2 z3

E1 E2

I1 I2 I3=− (I1+I2)

Fig. 22-13. A circuit that cannot be ana-
lyzed in terms of series and parallel combi-
nations.
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write down the current and voltage equations from Kirchhoff’s rules. Let’s do it.
There is just one current equation:

I1 + I2 + I3 = 0,
so we know immediately that

I3 = −(I1 + I2).

We can save ourselves some algebra if we immediately make use of this result in
writing the voltage equations. For this circuit there are two independent voltage
equations; they are

−E1 + I2z2 − I1z1 = 0

and
E2 − (I1 + I2)z3 − I2z2 = 0.

There are two equations and two unknown currents. Solving these equations for
I1 and I2, we get

I1 = z2E2 − (z2 + z3)E1

z1(z2 + z3) + z2z3
(22.20)

and

I2 = z1E2 + z3E1

z1(z2 + z3) + z2z3
. (22.21)

The third current is obtained from the sum of these two.
E

a

b

z1 z2

z3

z4 z5

z6

Fig. 22-14. A bridge circuit.

Another example of a circuit that cannot be analyzed by using the rules for
series and parallel impedance is shown in Fig. 22-14. Such a circuit is called a
“bridge.” It appears in many instruments used for measuring impedances. With
such a circuit one is usually interested in the question: How must the various
impedances be related if the current through the impedance z3 is to be zero? We
leave it for you to find the conditions for which this is so.

22-4 Equivalent circuits

(a)

a

b

E

I

V

Any
Circuit

of
z ’s

(b)

a

b

E

I

V zeff

Fig. 22-15. Any two-terminal network of
passive elements is equivalent to an effective
impedance.

Suppose we connect a generator E to a circuit containing some complicated
interconnection of impedances, as indicated schematically in Fig. 22-15(a). All
of the equations we get from Kirchhoff’s rules are linear, so when we solve them
for the current I through the generator, we will get that I is proportional to E.
We can write

I = E

zeff
,

where now zeff is some complex number, an algebraic function of all the elements
in the circuit. (If the circuit contains no generators other than the one shown,
there is no additional term independent of E.) But this equation is just what
we would write for the circuit of Fig. 22-15(b). So long as we are interested
only in what happens to the left of the two terminals a and b, the two circuits
of Fig. 22-15 are equivalent. We can, therefore, make the general statement
that any two-terminal network of passive elements can be replaced by a single
impedance zeff without changing the currents and voltages in the rest of the
circuit. This statement is of course, just a remark about what comes out of
Kirchhoff’s rules—and ultimately from the linearity of Maxwell’s equations.

The idea can be generalized to a circuit that contains generators as well as
impedances. Suppose we look at such a circuit “from the point of view” of one of
the impedances, which we will call zn, as in Fig. 22-16(a). If we were to solve
the equation for the whole circuit, we would find that the voltage Vn between
the two terminals a and b is a linear function of I, which we can write

Vn = A−BIn, (22.22)

where A and B depend on the generators and impedances in the circuit to the
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left of the terminals. For instance, for the circuit of Fig. 22-13, we find V1 = I1z1.
This can be written (by rearranging Eq. (22.20)] as

V1 =
[(

z2

z2 + z3

)
E2 − E1

]
− z2z3

z2 + z3
I1. (22.23)

The complete solution is then obtained by combining this equation with the one
for the impedance z1, namely, V1 = I1z1, or in the general case, by combining
Eq. (22.22) with

Vn = Inzn.

(a)

a

b

In

Vn zn

Any
Circuit
of z ’s

and E’s

(b)

a

b

In

Vn
zn

zeff

Eeff

Fig. 22-16. Any two-terminal network
can be replaced by a generator in series with
an impedance.

If now we consider that zn is attached to a simple series circuit of a generator
and a current, as in Fig. 22-15(b), the equation corresponding to Eq. (22.22) is

Vn = Eeff − Inzeff,

which is identical to Eq. (22.22) provided we set Eeff = A and zeff = B. So if we
are interested only in what happens to the right of the terminals a and b, the
arbitrary circuit of Fig. 22-16 can always be replaced by an equivalent combination
of a generator in series with an impedance.

22-5 Energy

We have seen that to build up the current I in an inductance, the energy U =
1
2LI

2 must be provided by the external circuit. When the current falls back to
zero, this energy is delivered back to the external circuit. There is no energy-loss
mechanism in an ideal inductance. When there is an alternating current through
an inductance, energy flows back and forth between it and the rest of the circuit,
but the average rate at which energy is delivered to the circuit is zero. We say that
an inductance is a nondissipative element; no electrical energy is dissipated—that
is, “lost”—in it.

Similarly, the energy of a condenser, U = 1
2CV

2, is returned to the external
circuit when a condenser is discharged. When a condenser is in an ac circuit
energy flows in and out of it, but the net energy flow in each cycle is zero. An
ideal condenser is also a nondissipative element.

We know that an emf is a source of energy. When a current I flows in the direc-
tion of the emf, energy is delivered to the external circuit at the rate dU/dt = EI.
If current is driven against the emf—by other generators in the circuit—the emf
will absorb energy at the rate EI; since I is negative, dU/dt will also be negative.

If a generator is connected to a resistor R, the current through the resistor
is I = E/R. The energy being supplied by the generator at the rate EI is being
absorbed by the resistor. This energy goes into heat in the resistor and is lost
from the electrical energy of the circuit. We say that electrical energy is dissipated
in a resistor. The rate at which energy is dissipated in a resistor is dU/dt = RI2.

z

R

iX

Fig. 22-17. Any impedance is equivalent
to a series combination of a pure resistance
and a pure reactance.

In an ac circuit the average rate of energy lost to a resistor is the average
of RI2 over one cycle. Since I = Îeiωt—by which we really mean that I varies
as cosωt—the average of I2 over one cycle is |Î|2/2, since the peak current is |Î|
and the average of cos2 ωt is 1/2.

What about the energy loss when a generator is connected to an arbitrary
impedance z? (By “loss” we mean, of course, conversion of electrical energy into
thermal energy.) Any impedance z can be written as the sum of its real and
imaginary parts. That is,

z = R+ iX, (22.24)

where R and X are real numbers. From the point of view of equivalent circuits
we can say that any impedance is equivalent to a resistance in series with a pure
imaginary impedance—called a reactance—as shown in Fig. 22-17.

We have seen earlier that any circuit that contains only L’s and C’s has an
impedance that is a pure imaginary number. Since there is no energy loss into any
of the L’s and C’s on the average, a pure reactance containing only L’s and C’s will
have no energy loss. We can see that this must be true in general for a reactance.
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If a generator with the emf E is connected to the impedance z of Fig. 22-17,
the emf must be related to the current I from the generator by

E = I(R+ iX). (22.25)

To find the average rate at which energy is delivered, we want the average of
the product EI. Now we must be careful. When dealing with such products, we
must deal with the real quantities E(t) and I(t). (The real parts of the complex
functions will represent the actual physical quantities only when we have linear
equations; now we are concerned with products, which are certainly not linear.)

Suppose we choose our origin of t so that the amplitude Î is a real number,
let’s say I0; then the actual time variation I is given by

I = I0 cosωt.

The emf of Eq. (22.25) is the real part of

I0e
iωt(R+ iX)

or
E = I0R cosωt− I0X sinωt. (22.26)

The two terms in Eq. (22.26) represent the voltage drops across R and X in
Fig. 22-17. We see that the voltage drop across the resistance is in phase with
the current, while the voltage drop across the purely reactive part is out of phase
with the current.

The average rate of energy loss, 〈P 〉av, from the generator is the integral of
the product EI over one cycle divided by the period T ; in other words,

〈P 〉av = 1
T

∫ T

0
EI dt = 1

T

∫ T

0
I2
0R cos2 ωt dt− 1

T

∫ T

0
I2
0X cosωt sinωt dt.

The first integral is 1
2I

2
0R, and the second integral is zero. So the average

energy loss in an impedance z = R+ iX depends only on the real part of z, and
is I2

0R/2, which is in agreement with our earlier result for the energy loss in a
resistor. There is no energy loss in the reactive part.

22-6 A ladder network

(a)

a

b

z1

z2 =

a

b

z3 z3 = z1 + z2

(b)

a

b

z1

z2

z1

z2 = (c)

a

b

z1

z2 z3

= (d)

a

b

z1

z4

1

z4
=
1

z2
+
1

z3

= (e)

a

b

z5

z5 = z1 + z4

Fig. 22-18. The effective impedance of
a ladder.

We would like now to consider an interesting circuit which can be analyzed
in terms of series and parallel combinations. Suppose we start with the circuit
of Fig. 22-18(a). We can see right away that the impedance from terminal a to
terminal b is simply z1 + z2. Now let’s take a little harder circuit, the one shown
in Fig. 22-18(b). We could analyze this circuit using Kirchhoff’s rules, but it is
also easy to handle with series and parallel combinations. We can replace the
two impedances on the right-hand end by a single impedance z3 = z1 + z2, as in
part (c) of the figure. Then the two impedances z2 and z3 can be replaced by
their equivalent parallel impedance z4, as shown in part (d) of the figure. Finally,
z1 and z4 are equivalent to a single impedance z5, as shown in part (e).

Now we may ask an amusing question: What would happen if in the network
of Fig. 22-18(b) we kept on adding more sections forever—as we indicate by
the dashed lines in Fig. 22-19(a)? Can we solve such an infinite network? Well,

(a)

a

b

c

d

z1

z2

z1

z2

z1

z2 etc. (b)

a

b

c

d

z1

z2 z0 =

a

b

z0

Fig. 22-19. The effective impedance of an infinite ladder.
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that’s not so hard. First, we notice that such an infinite network is unchanged if
we add one more section at the “front” end. Surely, if we add one more section
to an infinite network it is still the same infinite network. Suppose we call the
impedance between the two terminals a and b of the infinite network z0; then
the impedance of all the stuff to the right of the two terminals c and d is also z0.
Therefore, so far as the front end is concerned, we can represent the network
as shown in Fig. 22-19(b). Forming the parallel combination of z2 with z0 and
adding the result in series with z1, we can immediately write down the impedance
of this circuit:

z = z1 + 1
(1/z2) + (1/z0) or z = z1 + z2z0

z2 + z0
.

But this impedance is also equal to z0, so we have the equation

z0 = z1 + z2z0

z2 + z0
.

We can solve for z0 to get

z0 = z1

2 +
√

(z2
1/4) + z1z2. (22.27)

So we have found the solution for the impedance of an infinite ladder of repeated
series and parallel impedances. The impedance z0 is called the characteristic
impedance of such an infinite network.

(a)

a

b

L

C

L

C

L

C etc.

(b)

a

b

a′
L/2 L/2

C

L/2

C

L/2

C etc.

Fig. 22-20. An L-C ladder drawn in two
equivalent ways.

Let’s now consider a specific example in which the series element is an
inductance L and the shunt element is a capacitance C, as shown in Fig. 22-20(a).
In this case we find the impedance of the infinite network by setting z1 = iωL
and z2 = 1/iωC. Notice that the first term, z1/2, in Eq. (22.27) is just one-half
the impedance of the first element. It would therefore seem more natural, or
at least somewhat simpler, if we were to draw our infinite network as shown in
Fig. 22-20(b). Looking at the infinite network from the terminal a′ we would see
the characteristic impedance

z0 =
√

(L/C)− (ω2L2/4). (22.28)
Now there are two interesting cases, depending on the frequency ω. If ω2 is less

than 4/LC, the second term in the radical will be smaller than the first, and the
impedance z0 will be a real number. On the other hand, if ω2 is greater than 4/LC
the impedance z0 will be a pure imaginary number which we can write as

z0 = i
√

(ω2L2/4)− (L/C).
We have said earlier that a circuit which contains only imaginary impedances,

such as inductances and capacitances, will have an impedance which is purely
imaginary. How can it be then that for the circuit we are now studying—which
has only L’s and C’s—the impedance is a pure resistance for frequencies be-
low

√
4/LC? For higher frequencies the impedance is purely imaginary, in

agreement with our earlier statement. For lower frequencies the impedance is
a pure resistance and will therefore absorb energy. But how can the circuit
continuously absorb energy, as a resistance does, if it is made only of inductances
and capacitances? Answer: Because there is an infinite number of inductances
and capacitances, so that when a source is connected to the circuit, it supplies
energy to the first inductance and capacitance, then to the second, to the third,
and so on. In a circuit of this kind, energy is continually absorbed from the
generator at a constant rate and flows constantly out into the network, supplying
energy which is stored in the inductances and capacitances down the line.

This idea suggests an interesting point about what is happening in the circuit.
We would expect that if we connect a source to the front end, the effects of
this source will be propagated through the network toward the infinite end.
The propagation of the waves down the line is much like the radiation from an
antenna which absorbs energy from its driving source; that is, we expect such
a propagation to occur when the impedance is real, which occurs if ω is less
than

√
4/LC. But when the impedance is purely imaginary, which happens for

ω greater than
√

4/LC, we would not expect to see any such propagation.
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22-7 Filters

We saw in the last section that the infinite ladder network of Fig. 22-20
absorbs energy continuously if it is driven at a frequency below a certain critical
frequency

√
4/LC, which we will call the cutoff frequency ω0. We suggested

that this effect could be understood in terms of a continuous transport of energy
down the line. On the other hand, at high frequencies, for w > ω0, there is no
continuous absorption of energy; we should then expect that perhaps the currents
don’t “penetrate” very far down the line. Let’s see whether these ideas are right.

Suppose we have the front end of the ladder connected to some ac generator
and we ask what the voltage looks like at, say, the 754th section of the ladder.
Since the network is infinite, whatever happens to the voltage from one section
to the next is always the same; so let’s just look at what happens when we go
from some section, say the nth to the next. We will define the currents In and
voltages Vn as shown in Fig. 22-21(a).

(a)

z1

z2

z1

z2

z1

z2 etc.

V1 V2 V3 V4

I1 I2 I3

E (b)

z1

z2 z0Vn Vn+1

In In+1

Fig. 22-21. Finding the propagation factor of a ladder.

We can get the voltage Vn+1 from Vn by remembering that we can always re-
place the rest of the ladder after the nth section by its characteristic impedance z0;
then we need only analyze the circuit of Fig. 22-21(b). First, we notice that
any Vn, since it is across z0, must equal Inz0. Also, the difference between Vn
and Vn+1 is just Inz1:

Vn − Vn+1 = Inz1 = Vn
z1

z0
.

So we get the ratio
Vn+1

Vn
= 1− z1

z0
= z0 − z1

z0
.

We can call this ratio the propagation factor for one section of the ladder; we’ll
call it α. It is, of course, the same for all sections:

α = z0 − z1

z0
. (22.29)

The voltage after the nth section is then

Vn = αnE. (22.30)

You can now find the voltage after 754 sections; it is just α to the 754th power
times E.

Suppose we see what α is like for the L-C ladder of Fig. 22-20(a). Using z0
from Eq. (22.27), and z1 = iωL, we get

α =
√

(L/C)− (ω2L2/4)− i(ωL/2)√
(L/C)− (ω2L2/4) + i(ωL/2)

. (22.31)

If the driving frequency is below the cutoff frequency ω0 =
√

4/LC, the radical
is a real number, and the magnitudes of the complex numbers in the numerator
and denominator are equal. Therefore, the magnitude of α is one; we can write

α = eiδ,
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which means that the magnitude of the voltage is the same at every section;
only its phase changes. The phase change δ is, in fact, a negative number and
represents the “delay” of the voltage as it passes along the network.

ω0 ω0

|α|

0

1

Fig. 22-22. The propagation factor of a
section of an L-C ladder.

For frequencies above the cutoff frequency ω0 it is better to factor out an i
from the numerator and denominator of Eq. (22.31) and rewrite it as

α =
√

(ω2L2/4)− (L/C)− (ωL/2)√
(ω2L2/4)− (L/C) + (ωL/2)

. (22.32)

The propagation factor α is now a real number, and a number less than one.
That means that the voltage at any section is always less than the voltage at the
preceding section by the factor α. For any frequency above ω0, the voltage dies
away rapidly as we go along the network. A plot of the absolute value of α as a
function of frequency looks like the graph in Fig. 22-22.

We see that the behavior of α, both above and below ω0, agrees with our
interpretation that the network propagates energy for ω < ω0 and blocks it
for ω > ω0. We say that the network “passes” low frequencies and “rejects” or
“filters out” the high frequencies. Any network designed to have its characteristics
vary in a prescribed way with frequency is called a “filter.” We have been analyzing
a “low-pass filter.”

(a)

E

C

L

C

L

C

L

C

L

(b)

1/ω1/ω0

|α|

0

1

Fig. 22-23. (a) A high-pass filter; (b) its
propagation factor as a function of 1/ω.

You may be wondering why all this discussion of an infinite network which
obviously cannot actually occur. The point is that the same characteristics are
found in a finite network if we finish it off at the end with an impedance equal
to the characteristic impedance z0. Now in practice it is not possible to exactly
reproduce the characteristic impedance with a few simple elements—like R’s, L’s,
and C’s. But it is often possible to do so with a fair approximation for a certain
range of frequencies. In this way one can make a finite filter network whose
properties are very nearly the same as those for the infinite case. For instance,
the L-C ladder behaves much as we have described it if it is terminated in the
pure resistance R =

√
L/C.

If in our L-C ladder we interchange the positions of the L’s and C’s, to make
the ladder shown in Fig. 22-23(a), we can have a filter that propagates high
frequencies and rejects low frequencies. It is easy to see what happens with this
network by using the results we already have. You will notice that whenever we
change an L to a C and vice versa, we also change every iω to 1/iω. So whatever
happened at ω before will now happen at 1/ω. In particular, we can see how α
will vary with frequency by using Fig. 22-22 and changing the label on the axis
to 1/ω, as we have done in Fig. 22-23(b).

The low-pass and high-pass filters we have described have various technical
applications. An L-C low-pass filter is often used as a “smoothing” filter in a
dc power supply. If we want to manufacture dc power from an ac source, we
begin with a rectifier which permits current to flow only in one direction. From
the rectifier we get a series of pulses that look like the function V (t) shown in
Fig. 22-24, which is lousy dc, because it wobbles up and down. Suppose we
would like a nice pure dc, such as a battery provides. We can come close to that
by putting a low-pass filter between the rectifier and the load.

T t

V (t)

0

Fig. 22-24. The output voltage of a full-
wave rectifier.

We know from Chapter 50 of Vol. I that the time function in Fig. 22-24 can
be represented as a superposition of a constant voltage plus a sine wave, plus a
higher-frequency sine wave, plus a still higher-frequency sine wave, etc.—by a
Fourier series. If our filter is linear (if, as we have been assuming, the L’s and C’s
don’t vary with the currents or voltages) then what comes out of the filter is
the superposition of the outputs for each component at the input. If we arrange
that the cutoff frequency ω0 of our filter is well below the lowest frequency in the
function V (t), the dc (for which ω = 0) goes through fine, but the amplitude of
the first harmonic will be cut down a lot. And amplitudes of the higher harmonics
will be cut down even more. So we can get the output as smooth as we wish,
depending only on how many filter sections we are willing to buy.

A high-pass filter is used if one wants to reject certain low frequencies. For
instance, in a phonograph amplifier a high-pass filter may be used to let the
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music through, while keeping out the low-pitched rumbling from the motor of
the turntable.

(a)

ω

(b)

ωω1 ω2

Fig. 22-25. (a) A band-pass filter. (b) A
simple resonant filter.

It is also possible to make “band-pass” filters that reject frequencies below
some frequency ω1 and above another frequency ω2 (greater than ω1), but pass
the frequencies between ω1 and ω2. This can be done simply by putting together
a high-pass and a low-pass filter, but it is more usually done by making a ladder in
which the impedances z1 and z2 are more complicated—being each a combination
of L’s and C’s. Such a band-pass filter might have a propagation constant like
that shown in Fig. 22-25(a). It might be used, for example, in separating signals
that occupy only an interval of frequencies, such as each of the many voice
channels in a high-frequency telephone cable, or the modulated carrier of a radio
transmission.

We have seen in Chapter 25 of Vol. I that such filtering can also be done
using the selectivity of an ordinary resonance curve, which we have drawn for
comparison in Fig. 22-25(b). But the resonant filter is not as good for some
purposes as the band-pass filter. You will remember (Chapter 48, Vol. I) that
when a carrier of frequency ωc is modulated with a “signal” frequency ωs, the
total signal contains not only the carrier frequency but also the two side-band
frequencies ωc + ωs and ωc − ωs. With a resonant filter, these side-bands are
always attenuated somewhat, and the attenuation is more, the higher the signal
frequency, as you can see from the figure. So there is a poor “frequency response.”
The higher musical tones don’t get through. But if the filtering is done with a
band-pass filter designed so that the width ω2 − ω1 is at least twice the highest
signal frequency, the frequency response will be “flat” for the signals wanted.

We want to make one more point about the ladder filter: the L-C ladder
of Fig. 22-20 is also an approximate representation of a transmission line. If
we have a long conductor that runs parallel to another conductor—such as a
wire in a coaxial cable, or a wire suspended above the earth—there will be some
capacitance between the two conductors and also some inductance due to the
magnetic field between them. If we imagine the line as broken up into small
lengths ∆`, each length will look like one section of the L-C ladder with a series
inductance ∆L and a shunt capacitance ∆C. We can then use our results for the
ladder filter. If we take the limit as ∆` goes to zero, we have a good description
of the transmission line. Notice that as ∆` is made smaller and smaller, both ∆L
and ∆C decrease, but in the same proportion, so that the ratio ∆L/∆C remains
constant. So if we take the limit of Eq. (22.28) as ∆L and ∆C go to zero, we
find that the characteristic impedance z0 is a pure resistance whose magnitude
is
√

∆L/∆C. We can also write the ratio ∆L/∆C as L0/C0, where L0 and C0
are the inductance and capacitance of a unit length of the line; then we have

z0 =
√
L0

C0
. (22.33)

You will also notice that as ∆L and ∆C go to zero, the cutoff frequency ω0 =√
4/LC goes to infinity. There is no cutoff frequency for an ideal transmission

line.

22-8 Other circuit elements

(a)

I1

I2

(b)

I1 I2

L1 L2

E1 E2

Fig. 22-26. Equivalent circuit of a mutual
inductance.

We have so far defined only the ideal circuit impedances—the inductance, the
capacitance, and the resistance—as well as the ideal voltage generator. We want
now to show that other elements, such as mutual inductances or transistors or
vacuum tubes, can be described by using only the same basic elements. Suppose
that we have two coils and that on purpose, or otherwise, some flux from one of
the coils links the other, as shown in Fig. 22-26(a). Then the two coils will have
a mutual inductance M such that when the current varies in one of the coils,
there will be a voltage generated in the other. Can we take into account such an
effect in our equivalent circuits? We can in the following way. We have seen that
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the induced emf’s in each of two interacting coils can be written as the sum of
two parts:

E1 = −L1
dI1
dt
±M dI2

dt
,

E2 = −L2
dI2
dt
±M dI1

dt
.

(22.34)

The first term comes from the self-inductance of the coil, and the second term
comes from its mutual inductance with the other coil. The sign of the second term
can be plus or minus, depending on the way the flux from one coil links the other.
Making the same approximations we used in describing an ideal inductance, we
would say that the potential difference across the terminals of each coil is equal
to the electromotive force in the coil. Then the two equations of (22.34) are the
same as the ones we would get from the circuit of Fig. 22-26(b), provided the
electromotive force in each of the two circuits shown depends on the current in
the opposite circuit according to the relations

E1 = ±iωMI2, E2 = ±iωMI1. (22.35)

So what we can do is represent the effect of the self-inductance in a normal way
but replace the effect of the mutual inductance by an auxiliary ideal voltage
generator. We must in addition, of course, have the equation that relates this emf
to the current in some other part of the circuit; but so long as this equation is
linear, we have just added more linear equations to our circuit equations, and all
of our earlier conclusions about equivalent circuits and so forth are still correct.

(a)

A B

C D

+ + + + + +

− − − − − −

− − − − − −

+ + + + + +

(b)

A B

C D

Fig. 22-27. Equivalent circuit of mutual
capacitance.

In addition to mutual inductances there may also be mutual capacitances. So
far, when we have talked about condensers we have always imagined that there
were only two electrodes, but in many situations, for example in a vacuum tube,
there may be many electrodes close to each other. If we put an electric charge on
any one of the electrodes, its electric field will induce charges on each of the other
electrodes and affect its potential. As an example, consider the arrangement of
four plates shown in Fig. 22-27(a). Suppose these four plates are connected to
external circuits by means of the wires A, B, C, and D. So long as we are only
worried about electrostatic effects, the equivalent circuit of such an arrangement
of electrodes is as shown in part (b) of the figure. The electrostatic interaction
of any electrode with each of the others is equivalent to a capacity between the
two electrodes.

Finally, let’s consider how we should represent such complicated devices as
transistors and radio tubes in an ac circuit. We should point out at the start
that such devices are often operated in such a way that the relationship between
the currents and voltages is not at all linear. In such cases, those statements we
have made which depend on the linearity of equations are, of course, no longer
correct. On the other hand, in many applications the operating characteristics
are sufficiently linear that we may consider the transistors and tubes to be linear
devices. By this we mean that the alternating currents in, say, the plate of
a vacuum tube are linearly proportional to the voltages that appear on the
other electrodes, say the grid voltage and the plate voltage. When we have such
linear relationships, we can incorporate the device into our equivalent circuit
representation.

PLATE

GRID

CATHODE

G

P

C

Vg E

Ê = −µVg

Fig. 22-28. A low-frequency equivalent
circuit of a vacuum triode.

As in the case of the mutual inductance, our representation will have to
include auxiliary voltage generators which describe the influence of the voltages
or currents in one part of the device on the currents or voltages in another part.
For example, the plate circuit of a triode can usually be represented by a resistance
in series with an ideal voltage generator whose source strength is proportional to
the grid voltage. We get the equivalent circuit shown in Fig. 22-28.* Similarly,
the collector circuit of a transistor is conveniently represented as a resistor in
series with an ideal voltage generator whose source strength is proportional to the

* The equivalent circuit shown is correct only for low frequencies. For high frequencies the
equivalent circuit gets much more complicated and will include various so-called “parasitic”
capacitances and inductances.
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Fig. 22-29. A low-frequency equivalent
circuit of a transistor.

EMITTER

BASE

COLLECTOR E

B

C

Ie E

Ê = κIe

current from the emitter to the base of the transistor. The equivalent circuit is
then like that in Fig. 22-29. So long as the equations which describe the operation
are linear, we can use such representations for tubes or transistors. Then, when
they are incorporated in a complicated network, our general conclusions about
the equivalent representation of any arbitrary connection of elements is still valid.

There is one remarkable thing about transistor and radio tube circuits which
is different from circuits containing only impedances: the real part of the effective
impedance zeff can become negative. We have seen that the real part of z
represents the loss of energy. But it is the important characteristic of transistors
and tubes that they supply energy to the circuit. (Of course they don’t just
“make” energy; they take energy from the dc circuits of the power supplies and
convert it into ac energy.) So it is possible to have a circuit with a negative
resistance. Such a circuit has the property that if you connect it to an impedance
with a positive real part, i.e., a positive resistance, and arrange matters so that
the sum of the two real parts is exactly zero, then there is no dissipation in
the combined circuit. If there is no loss of energy, any alternating voltage once
started will remain forever. This is the basic idea behind the operation of an
oscillator or signal generator which can be used as a source of alternating voltage
at any desired frequency.
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Cavity Resonators

23-1 Real circuit elements

When 23-1 Real circuit elements
23-2 A capacitor at high frequencies
23-3 A resonant cavity
23-4 Cavity modes
23-5 Cavities and resonant circuits

looked at from any one pair of terminals, any arbitrary circuit made
up of ideal impedances and generators is, at any given frequency, equivalent to a
generator E in series with an impedance z. That comes about because if we put
a voltage V across the terminals and solve all the equations to find the current I,
we must get a linear relation between the current and the voltage. Since all the
equations are linear, the result for I must also depend only linearly on V . The
most general linear form can be expressed as

I = 1
z

(V − E). (23.1)
Review: Chapter 23, Vol. I, Resonance

Chapter 49, Vol. I, ModesIn general, both z and E may depend in some complicated way on the frequency ω.
Equation (23.1), however, is the relation we would get if behind the two terminals
there was just the generator E(ω) in series with the impedance z(ω).

L

R

C

Fig. 23-1. Equivalent circuit of a real
resistor.

There is also the opposite kind of question: If we have any electromagnetic
device at all with two terminals and we measure the relation between I and V to
determine E and z as functions of frequency, can we find a combination of our ideal
elements that is equivalent to the internal impedance z? The answer is that for any
reasonable—that is, physically meaningful—function z(ω), it is possible to approx-
imate the situation to as high an accuracy as you wish with a circuit containing
a finite set of ideal elements. We don’t want to consider the general problem now,
but only look at what might be expected from physical arguments for a few cases.

If we think of a real resistor, we know that the current through it will produce
a magnetic field. So any real resistor should also have some inductance. Also,
when a resistor has a potential difference across it, there must be charges on
the ends of the resistor to produce the necessary electric fields. As the voltage
changes, the charges will change in proportion, so the resistor will also have some
capacitance. We expect that a real resistor might have the equivalent circuit
shown in Fig. 23-1. In a well-designed resistor, the so-called “parasitic” elements
L and C are small, so that at the frequencies for which it is intended, ωL is much
less than R, and 1/ωC is much greater than R. It may therefore be possible to
neglect them. As the frequency is raised, however, they will eventually become
important, and a resistor begins to look like a resonant circuit.

(a) (b)

Fig. 23-2. The equivalent circuit of a real
inductance at low frequencies.

A real inductance is also not equal to the idealized inductance, whose impe-
dance is iωL. A real coil of wire will have some resistance, so at low frequencies the
coil is really equivalent to an inductance in series with some resistance, as shown
in Fig. 23-2(a). But, you are thinking, the resistance and inductance are together
in a real coil—the resistance is spread all along the wire, so it is mixed in with the
inductance. We should probably use a circuit more like the one in Fig. 23-2(b),
which has several little R’s and L’s in series. But the total impedance of such a
circuit is just

∑
R+

∑
iωL, which is equivalent to the simpler diagram of part (a).

As we go up in frequency with a real coil, the approximation of an inductance
plus a resistance is no longer very good. The charges that must build up on the
wires to make the voltages will become important. It is as if there were little
condensers across the turns of the coil, as sketched in Fig. 23-3(a). We might try
to approximate the real coil by the circuit in Fig. 23-3(b). At low frequencies,
this circuit can be imitated fairly well by the simpler one in part (c) of the figure
(which is again the same resonant circuit we found for the high-frequency model
of a resistor). For higher frequencies, however, the more complicated circuit of
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Fig. 23-3(b) is better. In fact, the more accurately you wish to represent the
actual impedance of a real, physical inductance, the more ideal elements you will
have to use in the artificial model of it.

(a)

(b) (c)

Fig. 23-3. The equivalence circuit of a
real inductance at higher frequencies.

Let’s look a little more closely at what goes on in a real coil. The impedance
of an inductance goes as ωL, so it becomes zero at low frequencies—it is a “short
circuit”: all we see is the resistance of the wire. As we go up in frequency, ωL
soon becomes much larger than R, and the coil looks pretty much like an ideal
inductance. As we go still higher, however, the capacities become important.
Their impedance is proportional to 1/ωC, which is large for small ω. For small
enough frequencies a condenser is an “open circuit,” and when it is in parallel
with something else, it draws no current. But at high frequencies, the current
prefers to flow into the capacitance between the turns, rather than through
the inductance. So the current in the coil jumps from one turn to the other
and doesn’t bother to go around and around where it has to buck the emf. So
although we may have intended that the current should go around the loop, it
will take the easier path—the path of least impedance.

If the subject had been one of popular interest, this effect would have been
called “the high-frequency barrier,” or some such name. The same kind of thing
happens in all subjects. In aerodynamics, if you try to make things go faster
than the speed of sound when they were designed for lower speeds, they don’t
work. It doesn’t mean that there is a great “barrier” there; it just means that the
object should be redesigned. So this coil which we designed as an “inductance”
is not going to work as a good inductance, but as some other kind of thing at
very high frequencies. For high frequencies, we have to find a new design.

23-2 A capacitor at high frequencies

Now we want to discuss in detail the behavior of a capacitor—a geometrically
ideal capacitor—as the frequency gets larger and larger, so we can see the
transition of its properties. (We prefer to use a capacitor instead of an inductance,
because the geometry of a pair of plates is much less complicated than the geometry
of a coil.) We consider the capacitor shown in Fig. 23-4(a), which consists of two
parallel circular plates connected to an external generator by a pair of wires. If
we charge the capacitor with dc, there will be a positive charge on one plate and
a negative charge on the other; and there will be a uniform electric field between
the plates.

Now suppose that instead of dc, we put an ac of low frequency on the plates.
(We will find out later what is “low” and what is “high”.) Say we connect the
capacitor to a lower-frequency generator. As the voltage alternates, the positive
charge on the top plate is taken off and negative charge is put on. While that
is happening, the electric field disappears and then builds up in the opposite
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Fig. 23-4. The electric and magnetic fields between the plates of a capacitor.
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direction. As the charge sloshes back and forth slowly, the electric field follows.
At each instant the electric field is uniform, as shown in Fig. 23-4(b), except for
some edge effects which we are going to disregard. We can write the magnitude
of the electric field as

E = E0e
iωt, (23.2)

where E0 is a constant.
Now will that continue to be right as the frequency goes up? No, because as

the electric field is going up and down, there is a flux of electric field through
any loop like Γ1 in Fig. 23-4(a). And, as you know, a changing electric field acts
to produce a magnetic field. One of Maxwell’s equations says that when there is
a varying electric field, as there is here, there has got to be a line integral of the
magnetic field. The integral of the magnetic field around a closed ring, multiplied
by c2, is equal to the time rate-of-change of the electric flux through the area
inside the ring (if there are no currents):

c2
∮

Γ
B · ds = d

dt

∫
inside Γ

E · n da. (23.3)

So how much magnetic field is there? That’s not very hard. Suppose that we
take the loop Γ1, which is a circle of radius r. We can see from symmetry that
the magnetic field goes around as shown in the figure. Then the line integral
of B is 2πrB. And, since the electric field is uniform, the flux of the electric field
is simply E multiplied by πr2, the area of the circle:

c2B · 2πr = ∂

∂t
E · πr2. (23.4)

The derivative of E with respect to time is, for our alternating field, sim-
ply iωE0e

iωt. So we find that our capacitor has the magnetic field

B = iωr

2c2 E0e
iωt. (23.5)

In other words, the magnetic field also oscillates and has a strength proportional
to r.

What is the effect of that? When there is a magnetic field that is varying,
there will be induced electric fields and the capacitor will begin to act a little bit
like an inductance. As the frequency goes up, the magnetic field gets stronger; it
is proportional to the rate of change of E, and so to ω. The impedance of the
capacitor will no longer be simply 1/iωC.

Let’s continue to raise the frequency and to analyze what happens more
carefully. We have a magnetic field that goes sloshing back and forth. But then
the electric field cannot be uniform, as we have assumed! When there is a varying
magnetic field, there must be a line integral of the electric field—because of
Faraday’s law. So if there is an appreciable magnetic field, as begins to happen
at high frequencies, the electric field cannot be the same at all distances from
the center. The electric field must change with r so that the line integral of the
electric field can equal the changing flux of the magnetic field.

Let’s see if we can figure out the correct electric field. We can do that by
computing a “correction” to the uniform field we originally assumed for low
frequencies. Let’s call the uniform field E1, which will still be E0e

iωt, and write
the correct field as

E = E1 + E2,

where E2 is the correction due to the changing magnetic field. For any ω we will
write the field at the center of the condenser as E0e

iωt (thereby defining E0), so
that we have no correction at the center; E2 = 0 at r = 0.

To find E2 we can use the integral form of Faraday’s law:∮
Γ
E · ds = − d

dt
(flux of B).
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The integrals are simple if we take them for the curve Γ2, shown in Fig. 23-4(b),
which goes up along the axis, out radially the distance r along the top plate,
down vertically to the bottom plate, and back to the axis. The line integral of E1
around this curve is, of course, zero; so only E2 contributes, and its integral is
just −E2(r) ·h, where h is the spacing between the plates. (We call E positive if it
points upward.) This is equal to minus the rate of change of the flux of B, which
we have to get by an integral over the shaded area S inside Γ2 in Fig. 23-4(b).
The flux through a vertical strip of width dr is B(r)h dr, so the total flux is

h

∫
B(r) dr.

Setting −∂/∂t of the flux equal to the line integral of E2, we have

E2(r) = ∂

∂t

∫
B(r) dr. (23.6)

Notice that the h cancels out; the fields don’t depend on the separation of the
plates.

r0 c/ω a

E

E1

E1 + E2
E

Fig. 23-5. The electric field between the
capacitor plates at high frequency. (Edge
effects are neglected.)

Using Eq. (23.5) for B(r), we have

E2(r) = ∂

∂t

iωr2

4c2 E0e
iωt.

The time derivative just brings down another factor iω; we get

E2(r) = −ω
2r2

4c2 E0e
iωt. (23.7)

As we expect, the induced field tends to reduce the electric field farther out. The
corrected field E = E1 + E2 is then

E = E1 + E2 =
(

1− 1
4
ω2r2

c2

)
E0e

iωt. (23.8)

The electric field in the capacitor is no longer uniform; it has the parabolic
shape shown by the broken line in Fig. 23-5. You see that our simple capacitor
is getting slightly complicated.

We could now use our results to calculate the impedance of the capacitor
at high frequencies. Knowing the electric field, we could compute the charges
on the plates and find out how the current through the capacitor depends on
the frequency ω, but we are not interested in that problem for the moment. We
are more interested in seeing what happens as we continue to go up with the
frequency—to see what happens at even higher frequencies. Aren’t we already
finished? No, because we have corrected the electric field, which means that
the magnetic field we have calculated is no longer right. The magnetic field of
Eq. (23.5) is approximately right, but it is only a first approximation. So let’s
call it B1. We should then rewrite Eq. (23.5) as

B1 = iωr

2c2 E0e
iωt. (23.9)

You will remember that this field was produced by the variation of E1. Now the
correct magnetic field will be that produced by the total electric field E1 +E2. If
we write the magnetic field as B = B1 +B2, the second term is just the additional
field produced by E2. To find B2 we can go through the same arguments we
have used to find B1; the line integral of B2 around the curve Γ1 is equal to the
rate of change of the flux of E2 through Γ1. We will just have Eq. (23.4) again
with B replaced by B2 and E replaced by E2:

c2B2 · 2πr = d

dt
(flux of E2 through Γ1).
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Since E2 varies with radius, to obtain its flux we must integrate over the circular
surface inside Γ1. Using 2πr dr as the element of area, this integral is∫ r

0
E2(r) · 2πr dr.

So we get for B2(r)

B2(r) = 1
rc2

∂

∂t

∫
E2(r)r dr. (23.10)

Using E2(r) from Eq. (23.7), we need the integral of r3 dr, which is, of course,
r4/4. Our correction to the magnetic field becomes

B2(r) = − iω
3r3

16c4 E0e
iωt. (23.11)

But we are still not finished! If the magnetic field B is not the same as we
first thought, then we have incorrectly computed E2. We must make a further
correction to E, which comes from the extra magnetic field B2. Let’s call this
additional correction to the electric field E3. It is related to the magnetic field B2
in the same way that E2 was related to B1. We can use Eq. (23.6) all over again
just by changing the subscripts:

E3(r) = ∂

∂t

∫
B2(r) dr. (23.12)

Using our result, Eq. (23.11), for B2, the new correction to the electric field is

E3(r) = +ω4r4

64c4 E0e
iωt. (23.13)

Writing our doubly corrected electric field as E = E1 + E2 + E3, we get

E = E0e
iωt

[
1− 1

22

(
ωr

c

)2
+ 1

22 · 42

(
ωr

c

)4]
. (23.14)

The variation of the electric field with radius is no longer the simple parabola we
drew in Fig. 23-5, but at large radii lies slightly above the curve (E1 + E2).

We are not quite through yet. The new electric field produces a new correction
to the magnetic field, and the newly corrected magnetic field will produce a further
correction to the electric field, and on and on. However, we already have all the
formulas that we need. For B3 we can use Eq. (23.10), changing the subscripts
of B and E from 2 to 3.

The next correction to the electric field is

E4 = − 1
22 · 42 · 62

(
ωr

c

)6
E0e

iωt.

So to this order we have that the complete electric field is given by

E = E0e
iωt

[
1− 1

(1!)2

(
ωr

2c

)2
+ 1

(2!)2

(
ωr

2c

)4
− 1

(3!)2

(
ωr

2c

)6
± · · ·

]
. (23.15)

where we have written the numerical coefficients in such a way that it is obvious
how the series is to be continued.

Our final result is that the electric field between the plates of the capacitor,
for any frequency, is given by E0e

iωt times the infinite series which contains only
the variable ωr/c. If we wish, we can define a special function, which we will
call J0(x), as the infinite series that appears in the brackets of Eq. (23.15):

J0(x) = 1− 1
(1!)2

(
x

2

)2
+ 1

(2!)2

(
x

2

)4
− 1

(3!)2

(
x

2

)6
± · · · (23.16)
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Then we can write our solution as E0e
iωt times this function, with x = ωr/c:

E = E0e
iωtJ0

(
ωr

c

)
. (23.17)

The reason we have called our special function J0 is that, naturally, this is
not the first time anyone has ever worked out a problem with oscillations in a
cylinder. The function has come up before and is usually called J0. It always
comes up whenever you solve a problem about waves with cylindrical symmetry.
The function J0 is to cylindrical waves what the cosine function is to waves on a
straight line. So it is an important function, invented a long time ago. Then a
man named Bessel got his name attached to it. The subscript zero means that
Bessel invented a whole lot of different functions and this is just the first of them.

The other functions of Bessel—J1, J2, and so on—have to do with cylindrical
waves which have a variation of their strength with the angle around the axis of
the cylinder.

The completely corrected electric field between the plates of our circular
capacitor, given by Eq. (23.17), is plotted as the solid line in Fig. 23-5. For
frequencies that are not too high, our second approximation was already quite
good. The third approximation was even better—so good, in fact, that if we had
plotted it, you would not have been able to see the difference between it and the
solid curve. You will see in the next section, however, that the complete series is
needed to get an accurate description for large radii, or for high frequencies.

23-3 A resonant cavity

x2 4 6 8 10 12

J0(x)

1.0

0.5

0

−0.5

2.405

5.52

Fig. 23-6. The Bessel function J0(x).

We want to look now at what our solution gives for the electric field between
the plates of the capacitor as we continue to go to higher and higher frequencies.
For large ω, the parameter x = ωr/c also gets large, and the first few terms in
the series for J0 of x will increase rapidly. That means that the parabola we have
drawn in Fig. 23-5 curves downward more steeply at higher frequencies. In fact,
it looks as though the field would fall all the way to zero at some high frequency,
perhaps when c/ω is approximately one-half of a. Let’s see whether J0 does
indeed go through zero and become negative. We begin by trying x = 2:

J0(2) = 1− 1 + 1
4 −

1
36 = 0.22.

The function is still not zero, so let’s try a higher value of x, say, x = 2.5. Putting
in numbers, we write

J0(2.5) = 1− 1.56 + 0.61− 0.11 = −0.06.

The function J0 has already gone through zero by the time we get to x = 2.5.
Comparing the results for x = 2 and x = 2.5, it looks as though J0 goes through
zero at one-fifth of the way from 2.5 to 2. We would guess that the zero occurs
for x approximately equal to 2.4. Let’s see what that value of x gives:

J0(2.4) = 1− 1.44 + 0.52− 0.08 = 0.00.

We get zero to the accuracy of our two decimal places. If we make the calculation
more accurate (or since J0 is a well-known function, if we look it up in a book),
we find that it goes through zero at x = 2.405. We have worked it out by hand
to show you that you too could have discovered these things rather than having
to borrow them from a book.

As long as we are looking up J0 in a book, it is interesting to notice how it
goes for larger values of x; it looks like the graph in Fig. 23-6. As x increases,
J0(x) oscillates between positive and negative values with a decreasing amplitude
of oscillation.

We have gotten the following interesting result: If we go high enough in
frequency, the electric field at the center of our condenser will be one way and
the electric field near the edge will point in the opposite direction. For example,
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suppose that we take an ω high enough so that x = ωr/c at the outer edge of
the capacitor is equal to 4; then the edge of the capacitor corresponds to the
abscissa x = 4 in Fig. 23-6. This means that our capacitor is being operated at
the frequency ω = 4c/a. At the edge of the plates, the electric field will have
a rather high magnitude opposite the direction we would expect. That is the
terrible thing that can happen to a capacitor at high frequencies. If we go to
very high frequencies, the direction of the electric field oscillates back and forth
many times as we go out from the center of the capacitor. Also there are the
magnetic fields associated with these electric fields. It is not surprising that our
capacitor doesn’t look like the ideal capacitance for high frequencies. We may
even start to wonder whether it looks more like a capacitor or an inductance.
We should emphasize that there are even more complicated effects that we have
neglected which happen at the edges of the capacitor. For instance, there will be
a radiation of waves out past the edges, so the fields are even more complicated
than the ones we have computed, but we will not worry about those effects now.

We could try to figure out an equivalent circuit for the capacitor, but perhaps
it is better if we just admit that the capacitor we have designed for low-frequency
fields is just no longer satisfactory when the frequency is too high. If we want to
treat the operation of such an object at high frequencies, we should abandon the
approximations to Maxwell’s equations that we have made for treating circuits
and return to the complete set of equations which describe completely the fields
in space. Instead of dealing with idealized circuit elements, we have to deal with
the real conductors as they are, taking into account all the fields in the spaces in
between. For instance, if we want a resonant circuit at high frequencies we will
not try to design one using a coil and a parallel-plate capacitor.

(a)

LINES OF B

LINES OF E

j j

+ + + + + + +

− − − − − − −

(b)

r
2.405c/ω

Ez

1.0

(c)

r

cBθ

1.0

Fig. 23-7. The electric and magnetic
fields in an enclosed cylindrical can.

We have already mentioned that the parallel-plate capacitor we have been
analyzing has some of the aspects of both a capacitor and an inductance. With
the electric field there are charges on the surfaces of the plates, and with the
magnetic fields there are back emf’s. Is it possible that we already have a resonant
circuit? We do indeed. Suppose we pick a frequency for which the electric field
pattern falls to zero at some radius inside the edge of the disc; that is, we
choose ωa/c greater than 2.405. Everywhere on a circle coaxial with the plates
the electric field will be zero. Now suppose we take a thin metal sheet and cut
a strip just wide enough to fit between the plates of the capacitor. Then we
bend it into a cylinder that will go around at the radius where the electric field
is zero. Since there are no electric fields there, when we put this conducting
cylinder in place, no currents will flow in it; and there will be no changes in
the electric and magnetic fields. We have been able to put a direct short circuit
across the capacitor without changing anything. And look what we have; we
have a complete cylindrical can with electrical and magnetic fields inside and
no connection at all to the outside world. The fields inside won’t change even if
we throw away the edges of the plates outside our can, and also the capacitor
leads. All we have left is a closed can with electric and magnetic fields inside,
as shown in Fig. 23-7(a). The electric fields are oscillating back and forth at
the frequency ω—which, don’t forget, determined the diameter of the can. The
amplitude of the oscillating E field varies with the distance from the axis of the
can, as shown in the graph of Fig. 23-7(b). This curve is just the first arch of the
Bessel function of zero order. There is also a magnetic field which goes in circles
around the axis and oscillates in time 90◦ out of phase with the electric field.

We can also write out a series for the magnetic field and plot it, as shown in
the graph of Fig. 23-7(c).

How is it that we can have an electric and magnetic field inside a can with
no external connections? It is because the electric and magnetic fields maintain
themselves, the changing E makes a B and the changing B makes an E—all
according to the equations of Maxwell. The magnetic field has an inductive
aspect, and the electric field a capacitive aspect; together they make something
like a resonant circuit. Notice that the conditions we have described would only
happen if the radius of the can is exactly 2.405c/ω. For a can of a given radius,
the oscillating electric and magnetic fields will maintain themselves—in the way
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we have described—only at that particular frequency. So a cylindrical can of
radius r is resonant at the frequency

ω0 = 2.405 c
r
. (23.18)

We have said that the fields continue to oscillate in the same way after the can
is completely closed. That is not exactly right. It would be possible if the walls of
the can were perfect conductors. For a real can, however, the oscillating currents
which exist on the inside walls of the can lose energy because of the resistance
of the material. The oscillations of the fields will gradually die away. We can
see from Fig. 23-7 that there must be strong currents associated with electric
and magnetic fields inside the cavity. Because the vertical electrical field stops
suddenly at the top and bottom plates of the can, it has a large divergence there;
so there must be positive and negative electric charges on the inner surfaces of
the can, as shown in Fig. 23-7(a). When the electric field reverses, the charges
must reverse also, so there must be an alternating current between the top and
bottom plates of the can. These charges will flow in the sides of the can, as shown
in the figure. We can also see that there must be currents in the sides of the can
by considering what happens to the magnetic field. The graph of Fig. 23-7(c)
tells us that the magnetic field suddenly drops to zero at the edge of the can.
Such a sudden change in the magnetic field can happen only if there is a current
in the wall. This current is what gives the alternating electric charges on the top
and bottom plates of the can.

E

B

INPUT
LOOP

OUTPUT
LOOP

Fig. 23-8. Coupling into and out of a
resonant cavity.

You may be wondering about our discovery of currents in the vertical sides
of the can. What about our earlier statement that nothing would be changed
when we introduced these vertical sides in a region where the electric field was
zero? Remember, however, that when we first put in the sides of the can, the top
and bottom plates extended out beyond them, so that there were also magnetic
fields on the outside of our can. It was only when we threw away the parts of
the capacitor plates beyond the edges of the can that net currents had to appear
on the insides of the vertical walls.

R-F
SIGNAL

GENERATOR 0 1

DETECTOR &
AMPLIFIER

CAVITY

Fig. 23-9. A setup for observing the cav-
ity resonance.

Although the electric and magnetic fields in the completely enclosed can will
gradually die away because of the energy losses, we can stop this from happening
if we make a little hole in the can and put in a little bit of electrical energy to
make up the losses. We take a small wire, poke it through the hole in the side of
the can, and fasten it to the inside wall so that it makes a small loop, as shown in
Fig. 23-8. If we now connect this wire to a source of high-frequency alternating
current, this current will couple energy into the electric and magnetic fields of
the cavity and keep the oscillations going. This will happen, of course, only if
the frequency of the driving source is at the resonant frequency of the can. If
the source is at the wrong frequency, the electric and magnetic fields will not
resonate, and the fields in the can will be very weak.
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∆ω = ω0/Q

Fig. 23-10. The frequency response curve
of a resonant cavity.

The resonant behavior can easily be seen by making another small hole in the
can and hooking in another coupling loop, as we have also drawn in Fig. 23-8. The
changing magnetic field through this loop will generate an induced electromotive
force in the loop. If this loop is now connected to some external measuring
circuit, the currents will be proportional to the strength of the fields in the cavity.
Suppose we now connect the input loop of our cavity to an RF signal generator,
as shown in Fig. 23-9. The signal generator contains a source of alternating
current whose frequency can be varied by varying the knob on the front of the
generator. Then we connect the output loop of the cavity to a “detector,” which
is an instrument that measures the current from the output loop. It gives a meter
reading proportional to this current. If we now measure the output current as a
function of the frequency of the signal generator, we find a curve like that shown in
Fig. 23-10. The output current is small for all frequencies except those very near
the frequency ω0, which is the resonant frequency of the cavity. The resonance
curve is very much like those we described in Chapter 23 of Vol. I. The width of
the resonance is however, much narrower than we usually find for resonant circuits
made of inductances and capacitors; that is, the Q of the cavity is very high. It
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is not unusual to find Q’s as high as 100,000 or more if the inside walls of the
cavity are made of some material with a very good conductivity, such as silver.

23-4 Cavity modes
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Fig. 23-11. Observed resonant frequen-
cies of a cylindrical cavity.

Suppose we now try to check our theory by making measurements with an
actual can. We take a can which is a cylinder with a diameter of 3.0 inches and
a height of about 2.5 inches. The can is fitted with an input and output loop, as
shown in Fig. 23-8. If we calculate the resonant frequency expected for this can
according to Eq. (23.18), we get that f0 = ω0/2π = 3010 megacycles. When we
set the frequency of our signal generator near 3000 megacycles and vary it slightly
until we find the resonance, we observe that the maximum output current occurs
for a frequency of 3050 megacycles, which is quite close to the predicted resonant
frequency, but not exactly the same. There are several possible reasons for the
discrepancy. Perhaps the resonant frequency is changed a little bit because of the
holes we have cut to put in the coupling loops. A little thought, however, shows
that the holes should lower the resonant frequency a little bit, so that cannot be
the reason. Perhaps there is some slight error in the frequency calibration of the
signal generator, or perhaps our measurement of the diameter of the cavity is
not accurate enough. Anyway, the agreement is fairly close.

(a)

E

B

(b)

r

E

E0

r = 5.52c/ω

Fig. 23-12. A higher-frequency mode.

Much more important is something that happens if we vary the frequency of
our signal generator somewhat further from 3000 megacycles. When we do that
we get the results shown in Fig. 23-11. We find that, in addition to the resonance
we expected near 3000 megacycles, there is also a resonance near 3300 megacycles
and one near 3820 megacycles. What do these extra resonances mean? We might
get a clue from Fig. 23-6. Although we have been assuming that the first zero
of the Bessel function occurs at the edge of the can, it could also be that the
second zero of the Bessel function corresponds to the edge of the can, so that
there is one complete oscillation of the electric field as we move from the center
of the can out to the edge, as shown in Fig. 23-12. This is another possible mode
for the oscillating fields. We should certainly expect the can to resonate in such
a mode. But notice, the second zero of the Bessel function occurs at x = 5.52,
which is over twice as large as the value at the first zero. The resonant frequency
of this mode should therefore be higher than 6000 megacycles. We would, no
doubt, find it there, but it doesn’t explain the resonance we observe at 3300.

The trouble is that in our analysis of the behavior of a resonant cavity we
have considered only one possible geometric arrangement of the electric and
magnetic fields. We have assumed that the electric fields are vertical and that
the magnetic fields lie in horizontal circles. But other fields are possible. The
only requirements are that the fields should satisfy Maxwell’s equations inside
the can and that the electric field should meet the wall at right angles. We have
considered the case in which the top and the bottom of the can are flat, but
things would not be completely different if the top and bottom were curved. In
fact, how is the can supposed to know which is its top and bottom, and which
are its sides? It is, in fact, possible to show that there is a mode of oscillation
of the fields inside the can in which the electric fields go more or less across the
diameter of the can, as shown in Fig. 23-13.

E B

Fig. 23-13. A transverse mode of the
cylindrical cavity.

It is not too hard to understand why the natural frequency of this mode
should be not very different from the natural frequency of the first mode we have
considered. Suppose that instead of our cylindrical cavity we had taken a cavity
which was a cube 3 inches on a side. It is clear that this cavity would have three
different modes, but all with the same frequency. A mode with the electric field
going more or less up and down would certainly have the same frequency as the
mode in which the electric field was directed right and left. If we now distort
the cube into a cylinder, we will change these frequencies somewhat. We would
still expect them not to be changed too much, provided we keep the dimensions
of the cavity more or less the same. So the frequency of the mode of Fig. 23-13
should not be too different from the mode of Fig. 23-8. We could make a detailed
calculation of the natural frequency of the mode shown in Fig. 23-13, but we will
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not do that now. When the calculations are carried through, it is found that, for
the dimensions we have assumed, the resonant frequency comes out very close to
the observed resonance at 3300 megacycles.

By similar calculations it is possible to show that there should be still another
mode at the other resonant frequency we found near 3800 megacycles. For this
mode, the electric and magnetic fields are as shown in Fig. 23-14. The electric
field does not bother to go all the way across the cavity. It goes from the sides
to the ends, as shown.

E

B

Fig. 23-14. Another mode of a cylindrical
cavity.

As you will probably now believe, if we go higher and higher in frequency we
should expect to find more and more resonances. There are many different modes,
each of which will have a different resonant frequency corresponding to some
particular complicated arrangement of the electric and magnetic fields. Each of
these field arrangements is called a resonant mode. The resonance frequency of
each mode can be calculated by solving Maxwell’s equations for the electric and
magnetic fields in the cavity.

When we have a resonance at some particular frequency, how can we know
which mode is being excited? One way is to poke a little wire into the cavity
through a small hole. If the electric field is along the wire, as in Fig. 23-15(a),
there will be relatively large currents in the wire, sapping energy from the
fields, and the resonance will be suppressed. If the electric field is as shown in
Fig. 23-15(b), the wire will have a much smaller effect. We could find which
way the field points in this mode by bending the end of the wire, as shown in
Fig. 23-15(c). Then, as we rotate the wire, there will be a big effect when the
end of the wire is parallel to E and a small effect when it is rotated so as to be
at 90◦ to E.

(a)

E

(b)

E

(c)

E

Fig. 23-15. A short metal wire inserted into a cavity will disturb the
resonance much more when it is parallel to E than when it is at right angles.

23-5 Cavities and resonant circuits

Although the resonant cavity we have been describing seems to be quite
different from the ordinary resonant circuit consisting of an inductance and a
capacitor, the two resonant systems are, of course, closely related. They are both
members of the same family; they are just two extreme cases of electromagnetic
resonators—and there are many intermediate cases between these two extremes.
Suppose we start by considering the resonant circuit of a capacitor in parallel
with an inductance, as shown in Fig. 23-16(a). This circuit will resonate at the
frequency ω0 = 1/

√
LC. If we want to raise the resonant frequency of this circuit,

we can do so by lowering the inductance L. One way is to decrease the number
of turns in the coil. We can, however, go only so far in this direction. Eventually
we will get down to the last turn, and we will have just a piece of wire joining the
top and bottom plates of the condenser. We could raise the resonant frequency
still further by making the capacitance smaller; however, we can also continue to
decrease the inductance by putting several inductances in parallel. Two one-turn
inductances in parallel will have only half the inductance of each turn. So when
our inductance has been reduced to a single turn, we can continue to raise the
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Fig. 23-16. Resonators of progressively higher resonant frequencies.

resonant frequency by adding other single loops from the top plate to the bottom
plate of the condenser. For instance, Fig. 23-16(b) shows the condenser plates
connected by six such “single-turn inductances.” If we continue to add many such
pieces of wire, we can make the transition to the completely enclosed resonant
system shown in part (c) of the figure, which is a drawing of the cross section of a
cylindrically symmetrical object. Our inductance is now a cylindrical hollow can
attached to the edges of the condenser plates. The electric and magnetic fields
will be as shown in the figure. Such an object is, of course, a resonant cavity. It
is called a “loaded” cavity. But we can still think of it as an L-C circuit in which
the capacity section is the region where we find most of the electric field and the
inductance section is that region where we find most of the magnetic field.

If we want to make the frequency of the resonator in Fig. 23-16(c) still higher,
we can do so by continuing to decrease the inductance L. To do that, we must
decrease the geometric dimensions of the inductance section, for example by
decreasing the dimension h in the drawing. As h is decreased, the resonant
frequency will be increased. Eventually, of course, we will get to the situation in
which the height h is just equal to the separation between the condenser plates.
We then have just a cylindrical can; our resonant circuit has become the cavity
resonator of Fig. 23-7.

You will notice that in the original L-C resonant circuit of Fig. 23-16 the
electric and magnetic fields are quite separate. As we have gradually modified the
resonant system to make higher and higher frequencies, the magnetic field has
been brought closer and closer to the electric field until in the cavity resonator
the two are quite intermixed.

Although the cavity resonators we have talked about in this chapter have been
cylindrical cans, there is nothing magic about the cylindrical shape. A can of any
shape will have resonant frequencies corresponding to various possible modes of
oscillations of the electric and magnetic fields. For example, the “cavity” shown
in Fig. 23-17 will have its own particular set of resonant frequencies—although
they would be rather difficult to calculate.

Fig. 23-17. Another resonant cavity.
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guided waves

the last chapter we studied what happened to the lumped elements of
circuits when they were operated at very high frequencies, and we were led to see
that a resonant circuit could be replaced by a cavity with the fields resonating
inside. Another interesting technical problem is the connection of one object
to another, so that electromagnetic energy can be transmitted between them.
In low-frequency circuits the connection is made with wires, but this method
doesn’t work very well at high frequencies because the circuits would radiate
energy into all the space around them, and it is hard to control where the energy
will go. The fields spread out around the wires; the currents and voltages are not
“guided” very well by the wires. In this chapter we want to look into the ways
that objects can be interconnected at high frequencies. At least, that’s one way
of presenting our subject.

Another way is to say that we have been discussing the behavior of waves in
free space. Now it is time to see what happens when oscillating fields are confined
in one or more dimensions. We will discover the interesting new phenomenon
when the fields are confined in only two dimensions and allowed to go free in
the third dimension, they propagate in waves. These are “guided waves”—the
subject of this chapter.

We begin by working out the general theory of the transmission line. The or-
dinary power transmission line that runs from tower to tower over the countryside
radiates away some of its power, but the power frequencies (50–60 cycles/sec) are
so low that this loss is not serious. The radiation could be stopped by surrounding
the line with a metal pipe, but this method would not be practical for power lines
because the voltages and currents used would require a very large, expensive,
and heavy pipe. So simple “open lines” are used.

For somewhat higher frequencies—say a few kilocycles—radiation can already
be serious. However, it can be reduced by using “twisted-pair” transmission lines,
as is done for short-run telephone connections. At higher frequencies, however,
the radiation soon becomes intolerable, either because of power losses or because
the energy appears in other circuits where it isn’t wanted. For frequencies from a
few kilocycles to some hundreds of megacycles, electromagnetic signals and power
are usually transmitted via coaxial lines consisting of a wire inside a cylindrical
“outer conductor” or “shield.” Although the following treatment will apply to a
transmission line of two parallel conductors of any shape, we will carry it out
referring to a coaxial line.

a

b

Fig. 24-1. A coaxial transmission line.

We take the simplest coaxial line that has a central conductor, which we
suppose is a thin hollow cylinder, and an outer conductor which is another thin
cylinder on the same axis as the inner conductor, as in Fig. 24-1. We begin by
figuring out approximately how the line behaves at relatively low frequencies. We
have already described some of the low-frequency behavior when we said earlier
that two such conductors had a certain amount of inductance per unit length or
a certain capacity per unit length. We can, in fact, describe the low-frequency
behavior of any transmission line by giving its inductance per unit length, L0 and
its capacity per unit length, C0. Then we can analyze the line as the limiting case
of the L-C filter as discussed in Section 22-6. We can make a filter which imitates
the line by taking small series elements L0 ∆x and small shunt capacities C0 ∆x,
where ∆x is an element of length of the line. Using our results for the infinite
filter, we see that there would be a propagation of electric signals along the line.
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Rather than following that approach, however, we would now rather look at the
line from the point of view of a differential equation.

Suppose that we see what happens at two neighboring points along the
transmission line, say at the distances x and x+ ∆x from the beginning of the
line. Let’s call the voltage difference between the two conductors V (x), and the
current along the “hot” conductor I(x) (see Fig. 24-2). If the current in the line
is varying, the inductance will give us a voltage drop across the small section of
line from x to x+ ∆x in the amount

∆V = V (x+ ∆x)− V (x) = −L0 ∆x dI
dt
.

Or, taking the limit as ∆x→ 0, we get

∂V

∂x
= −L0

∂I

∂t
. (24.1)

The changing current gives a gradient of the voltage.
WIRE 1

WIRE 2

x x + ∆x

I(x) I(x + ∆x)

V (x) V (x + ∆x)

Fig. 24-2. The currents and voltages of
a transmission line.

Referring again to the figure, if the voltage at x is changing, there must
be some charge supplied to the capacity in that region. If we take the small
piece of line between x and x+ ∆x, the charge on it is q = C0 ∆xV . The time
rate-of-change of this charge is C0 ∆x dV/dt, but the charge changes only if the
current I(x) into the element is different from the current I(x+ ∆x) out. Calling
the difference ∆I, we have

∆I = −C0 ∆x dV
dt
.

Taking the limit as ∆x→ 0, we get

∂I

∂x
= −C0

∂V

∂t
. (24.2)

So the conservation of charge implies that the gradient of the current is propor-
tional to the time rate-of-change of the voltage.

Equations (24.1) and (24.2) are then the basic equations of a transmission
line. If we wish, we could modify them to include the effects of resistance in the
conductors or of leakage of charge through the insulation between the conductors,
but for our present discussion we will just stay with the simple example.

The two transmission line equations can be combined by differentiating one
with respect to t and the other with respect to x and eliminating either V or I.
Then we have either

∂2V

∂x2 = C0L0
∂2V

∂t2
(24.3)

or
∂2I

∂x2 = C0L0
∂2I

∂t2
(24.4)

Once more we recognize the wave equation in x. For a uniform transmission
line, the voltage (and current) propagates along the line as a wave. The voltage
along the line must be of the form V (x, t) = f(x− vt) or V (x, t) = g(x+ vt), or
a sum of both. Now what is the velocity v? We know that the coefficient of the
∂2/∂t2 term is just 1/v2, so

v = 1√
L0C0

. (24.5)

We will leave it for you to show that the voltage for each wave in a line is
proportional to the current of that wave and that the constant of proportionality
is just the characteristic impedance z0. Calling V+ and I+ the voltage and current
for a wave going in the plus x-direction, you should get

V+ = z0I+. (24.6)

Similarly, for the wave going toward minus x the relation is

V− = z0I−.
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The characteristic impedance—as we found out from our filter equations—is
given by

z0 =
√
L0

C0
, (24.7)

and is, therefore, a pure resistance.
To find the propagation speed v and the characteristic impedance z0 of a

transmission line, we have to know the inductance and capacity per unit length.
We can calculate them easily for a coaxial cable, so we will see how that goes.
For the inductance we follow the ideas of Section 17-8, and set 1

2LI
2 equal to the

magnetic energy which we get by integrating ε0c2B2/2 over the volume. Suppose
that the central conductor carries the current I; then we know that B = I/2πε0c2r,
where r is the distance from the axis. Taking as a volume element a cylindrical
shell of thickness dr and of length l, we have for the magnetic energy

U = ε0c
2

2

∫ b

a

(
I

2πε0c2r

)2
l 2πr dr,

where a and b are the radii of the inner and outer conductors, respectively.
Carrying out the integral, we get

U = I2l

4πε0c2
ln b

a
. (24.8)

Setting the energy equal to 1
2LI

2, we find

L = l

2πε0c2
ln b

a
. (24.9)

It is, as it should be, proportional to the length l of the line, so the inductance
per unit length L0 is

L0 = ln(b/a)
2πε0c2

. (24.10)

We have worked out the charge on a cylindrical condenser (see Section 12-2).
Now, dividing the charge by the potential difference, we get

C = 2πε0l
ln(b/a) .

The capacity per unit length C0 is C/l. Combining this result with Eq. (24.10),
we see that the product L0C0 is just equal to 1/c2, so v = 1/

√
L0C0 is equal

to c. The wave travels down the line with the speed of light. We point out
that this result depends on our assumptions: (a) that there are no dielectrics
or magnetic materials in the space between the conductors, and (b) that the
currents are all on the surfaces of the conductors (as they would be for perfect
conductors). We will see later that for good conductors at high frequencies,
all currents distribute themselves on the surfaces as they would for a perfect
conductor, so this assumption is then valid.

Now it is interesting that so long as assumptions (a) and (b) are correct, the
product L0C0 is equal to 1/c2 for any parallel pair of conductors—even, say, for a
hexagonal inner conductor anywhere inside an elliptical outer conductor. So long
as the cross section is constant and the space between has no material, waves are
propagated at the velocity of light.

No such general statement can be made about the characteristic impedance.
For the coaxial line, it is

z0 = ln(b/a)
2πε0c

. (24.11)

The factor 1/ε0c has the dimensions of a resistance and is equal to 120π ohms.
The geometric factor ln(b/a) depends only logarithmically on the dimensions, so
for the coaxial line—and most lines—the characteristic impedance has typical
values of from 50 ohms or so to a few hundred ohms.
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24-2 The rectangular waveguide

x

y

z

Fig. 24-3. Coordinates chosen for the
rectangular waveguide.

The next thing we want to talk about seems, at first sight, to be a striking
phenomenon: if the central conductor is removed from the coaxial line, it can still
carry electromagnetic power. In other words, at high enough frequencies a hollow
tube will work just as well as one with wires. It is related to the mysterious
way in which a resonant circuit of a condenser and inductance gets replaced by
nothing but a can at high frequencies.

Although it may seem to be a remarkable thing when one has been thinking
in terms of a transmission line as a distributed inductance and capacity, we all
know that electromagnetic waves can travel along inside a hollow metal pipe. If
the pipe is straight, we can see through it! So certainly electromagnetic waves go
through a pipe. But we also know that it is not possible to transmit low-frequency
waves (power or telephone) through the inside of a single metal pipe. So it must
be that electromagnetic waves will go through if their wavelength is short enough.
Therefore we want to discuss the limiting case of the longest wavelength (or the
lowest frequency) that can get through a pipe of a given size. Since the pipe is
then being used to carry waves, it is called a waveguide.

(a)
x

y

a

bE

(b) x

Ey

a

Fig. 24-4. The electric field in the wave-
guide at some value of z .

We will begin with a rectangular pipe, because it is the simplest case to
analyze. We will first give a mathematical treatment and come back later to look
at the problem in a much more elementary way. The more elementary approach,
however, can be applied easily only to a rectangular guide. The basic phenomena
are the same for a general guide of arbitrary shape, so the mathematical argument
is fundamentally more sound.

Our problem, then, is to find what kind of waves can exist inside a rectangular
pipe. Let’s first choose some convenient coordinates; we take the z-axis along
the length of the pipe, and the x- and y-axes parallel to the two sides, as shown
in Fig. 24-3.

We know that when light waves go down the pipe, they have a transverse
electric field; so suppose we look first for solutions in which E is perpendicular
to z, say with only a y-component, Ey. This electric field will have some variation
across the guide; in fact, it must go to zero at the sides parallel to the y-axis,
because the currents and charges in a conductor always adjust themselves so that
there is no tangential component of the electric field at the surface of a conductor.
So Ey will vary with x in some arch, as shown in Fig. 24-4. Perhaps it is the
Bessel function we found for a cavity? No, because the Bessel function has to
do with cylindrical geometries. For a rectangular geometry, waves are usually
simple harmonic functions, so we should try something like sin kxx.
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Fig. 24-5. The z-dependence of the field
in the waveguide.

Since we want waves that propagate down the guide, we expect the field to
alternate between positive and negative values as we go along in z, as in Fig. 24-5,
and these oscillations will travel along the guide with some velocity v. If we
have oscillations at some definite frequency ω, we would guess that the wave
might vary with z like cos (ωt−kzz), or to use the more convenient mathematical
form, like ei(ωt−kzz). This z-dependence represents a wave travelling with the
speed v = ω/kz (see Chapter 29, Vol. I).

So we might guess that the wave in the guide would have the following
mathematical form:

Ey = E0e
i(ωt−kzz) sin kxx. (24.12)

Let’s see whether this guess satisfies the correct field equations. First, the
electric field should have no tangential components at the conductors. Our field
satisfies this requirement; it is perpendicular to the top and bottom faces and
is zero at the two side faces. Well, it is if we choose kx so that one-half a cycle
of sin kxx just fits in the width of the guide—that is, if

kxa = π. (24.13)

There are other possibilities, like kxa = 2π, 3π, . . . , or, in general,

kxa = nπ, (24.14)
24-4



where n is any integer. These represent various complicated arrangements of the
field, but for now let’s take only the simplest one, where kx = π/a, where a is
the width of the inside of the guide.

Next, the divergence of E must be zero in the free space inside the guide,
since there are no charges there. Our E has only a y-component, and it doesn’t
change with y, so we do have that ∇ ·E = 0.

Finally, our electric field must agree with the rest of Maxwell’s equations in
the free space inside the guide. That is the same thing as saying that it must
satisfy the wave equation

∂2Ey
∂x2 + ∂2Ey

∂y2 + ∂2Ey
∂z2 −

1
c2
∂2Ey
∂t2

= 0. (24.15)

We have to see whether our guess, Eq. (24.12), will work. The second derivative
of Ey with respect to x is just −k2

xEy. The second derivative with respect to y
is zero, since nothing depends on y. The second derivative with respect to z
is −k2

zEy, and the second derivative with respect to t is −ω2Ey. Equation (24.15)
then says that

k2
xEy + k2

zEy −
ω2

c2
Ey = 0.

Unless Ey is zero everywhere (which is not very interesting), this equation is
correct if

k2
x + k2

z −
ω2

c2
= 0. (24.16)

We have already fixed kx, so this equation tells us that there can be waves of the
type we have assumed if kz is related to the frequency ω so that Eq. (24.16) is
satisfied—in other words, if

kz =
√

(ω2/c2)− (π2/a2). (24.17)

The waves we have described are propagated in the z-direction with this value
of kz.
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Fig. 24-6. The magnetic field in the
waveguide.

The wave number kz we get from Eq. (24.17) tells us, for a given frequency ω,
the speed with which the nodes of the wave propagate down the guide. The
phase velocity is

v = ω

kz
. (24.18)

You will remember that the wavelength λ of a travelling wave is given by λ =
2πv/ω, so kz is also equal to 2π/λg, where λg is the wavelength of the oscillations
along the z-direction—the “guide wavelength.” The wavelength in the guide is
different, of course, from the free-space wavelength of electromagnetic waves
of the same frequency. If we call the free-space wavelength λ0, which is equal
to 2πc/ω, we can write Eq. (24.17) as

λg = λ0√
1− (λ0/2a)2

. (24.19)

Besides the electric fields there are magnetic fields that will travel with the
wave, but we will not bother to work out an expression for them right now.
Since c2∇ × B = ∂E/∂t, the lines of B will circulate around the regions in
which ∂E/∂t is largest, that is, halfway between the maximum and minimum
of E. The loops of B will lie parallel to the xz-plane and between the crests and
troughs of E, as shown in Fig. 24-6.

24-3 The cutoff frequency

In solving Eq. (24.16) for kz, there should really be two roots—one plus and
one minus. We should write

kz = ±
√

(ω2/c2)− (π2/a2). (24.20)
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The two signs simply mean that there can be waves which propagate with a
negative phase velocity (toward −z), as well as waves which propagate in the
positive direction in the guide. Naturally, it should be possible for waves to go
in either direction. Since both types of waves can be present at the same time,
there will be the possibility of standing-wave solutions.

Our equation for kz also tells us that higher frequencies give larger values
of kz, and therefore smaller wavelengths, until in the limit of large ω, k becomes
equal to ω/c, which is the value we would expect for waves in free space. The
light we “see” through a pipe still travels at the speed c. But now notice that if
we go toward low frequencies, something strange happens. At first the wavelength
gets longer and longer, but if ω gets too small the quantity inside the square root
of Eq. (24.20) suddenly becomes negative. This will happen as soon as ω gets to
be less than πc/a—or when λ0 becomes greater than 2a. In other words, when
the frequency gets smaller than a certain critical frequency ωc = πc/a, the wave
number kz (and also λg) becomes imaginary and we haven’t got a solution any
more. Or do we? Who said that kz has to be real? What if it does come out
imaginary? Our field equations are still satisfied. Perhaps an imaginary kz also
represents a wave.

Suppose ω is less than ωc; then we can write

kz = ±ik′, (24.21)

where k′ is a positive real number:

k =
√

(π2/a2)− (ω2/c2). (24.22)

If we now go back to our expression, Eq. (24.12), for Ey, we have

Ey = E0e
i(ωt∓ik′z) sin kxx, (24.23)

which we can write as
Ey = E0e

±k′zeiωt sin kxx. (24.24)

This expression gives an E-field that oscillates with time as eiωt but which
varies with z as e±k′z. It decreases or increases with z smoothly as a real
exponential. In our derivation we didn’t worry about the sources that started the
waves, but there must, of course, be a source someplace in the guide. The sign
that goes with k′ must be the one that makes the field decrease with increasing
distance from the source of the waves.

z0 a

π

2a

π

a

Ey

Fig. 24-7. The variation of Ey with z
for ω � ωc .

So for frequencies below ωc = πc/a, waves do not propagate down the guide;
the oscillating fields penetrate into the guide only a distance of the order of 1/k′.
For this reason, the frequency ωc is called the “cutoff frequency” of the guide.
Looking at Eq. (24.22), we see that for frequencies just a little below ωc, the
number k′ is small and the fields can penetrate a long distance into the guide.
But if ω is much less than ωc, the exponential coefficient k′ is equal to π/a and
the field dies off extremely rapidly, as shown in Fig. 24-7. The field decreases
by 1/e in the distance a/π, or in only about one-third of the guide width. The
fields penetrate very little distance from the source.

We want to emphasize an interesting feature of our analysis of the guided
waves—the appearance of the imaginary wave number kz. Normally, if we
solve an equation in physics and get an imaginary number, it doesn’t mean
anything physical. For waves, however, an imaginary wave number does mean
something. The wave equation is still satisfied; it only means that the solution
gives exponentially decreasing fields instead of propagating waves. So in any
wave problem where k becomes imaginary for some frequency, it means that the
form of the wave changes—the sine wave changes into an exponential.

24-4 The speed of the guided waves

The wave velocity we have used above is the phase velocity, which is the speed
of a node of the wave; it is a function of frequency. If we combine Eqs. (24.17)
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and (24.18), we can write

vphase = c√
1− (ωc/ω)2

. (24.25)

For frequencies above cutoff—where travelling waves exist—ωc/ω is less than one,
and vphase is real and greater than the speed of light. We have already seen in
Chapter 48 of Vol. I that phase velocities greater than light are possible, because
it is just the nodes of the wave which are moving and not energy or information.
In order to know how fast signals will travel, we have to calculate the speed of
pulses or modulations made by the interference of a wave of one frequency with
one or more waves of slightly different frequencies (see Chapter 48, Vol. I). We
have called the speed of the envelope of such a group of waves the group velocity;
it is not ω/k but dω/dk:

vgroup = dω

dk
. (24.26)

Taking the derivative of Eq. (24.17) with respect to ω and inverting to get dω/dk,
we find that

vgroup = c
√

1− (ωc/ω)2, (24.27)

which is less than the speed of light.
The geometric mean of vphase and vgroup is just c, the speed of light:

vphasevgroup = c2. (24.28)

This is curious, because we have seen a similar relation in quantum mechanics. For
a particle with any velocity—even relativistic—the momentum p and energy U
are related by

U2 = p2c2 +m2c4. (24.29)

But in quantum mechanics the energy is ~ω, and the momentum is ~/λ, which
is equal to ~k; so Eq. (24.29) can be written

ω2

c2
= k2 + m2c2

~2 , (24.30)
or

k =
√

(ω2/c2)− (m2c2/~2), (24.31)

which looks very much like Eq. (24.17) . . . Interesting!
The group velocity of the waves is also the speed at which energy is transported

along the guide. If we want to find the energy flow down the guide, we can get it
from the energy density times the group velocity. If the root mean square electric
field is E0, then the average density of electric energy is ε0E2

0/2. There is also
some energy associated with the magnetic field. We will not prove it here, but
in any cavity or guide the magnetic and electric energies are equal, so the total
electromagnetic energy density is ε0E2

0 . The power dU/dt transmitted by the
guide is then

dU

dt
= ε0E

2
0abvgroup. (24.32)

(We will see later another, more general way of getting the energy flow.)

24-5 Observing guided waves

Energy can be coupled into a waveguide by some kind of an “antenna.” For
example, a little vertical wire or “stub” will do. The presence of the guided waves
can be observed by picking up some of the electromagnetic energy with a little
receiving “antenna,” which again can be a little stub of wire or a small loop. In
Fig. 24-8, we show a guide with some cutaways to show a driving stub and a
pickup “probe”. The driving stub can be connected to a signal generator via a
coaxial cable, and the pickup probe can be connected by a similar cable to a
detector. It is usually convenient to insert the pickup probe via a long thin slot
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Fig. 24-8. A waveguide with a driving
stub and a pickup probe.

FROM
SIGNAL

GENERATOR

TO DETECTOR

in the guide, as shown in Fig. 24-8. Then the probe can be moved back and forth
along the guide to sample the fields at various positions.

If the signal generator is set at some frequency ω greater than the cutoff
frequency ωc, there will be waves propagated down the guide from the driving
stub. These will be the only waves present if the guide is infinitely long, which
can effectively be arranged by terminating the guide with a carefully designed
absorber in such a way that there are no reflections from the far end. Then, since
the detector measures the time average of the fields near the probe, it will pick
up a signal which is independent of the position along the guide; its output will
be proportional to the power being transmitted.

If now the far end of the guide is finished off in some way that produces a
reflected wave—as an extreme example, if we closed it off with a metal plate—
there will be a reflected wave in addition to the original forward wave. These
two waves will interfere and produce a standing wave in the guide similar to the
standing waves on a string which we discussed in Chapter 49 of Vol. I. Then,
as the pickup probe is moved along the line, the detector reading will rise and
fall periodically, showing a maximum in the fields at each loop of the standing
wave and a minimum at each node. The distance between two successive nodes
(or loops) is just λg/2. This gives a convenient way of measuring the guide
wavelength. If the frequency is now moved closer to ωc, the distances between
nodes increase, showing that the guide wavelength increases as predicted by
Eq. (24.19).

Suppose now the signal generator is set at a frequency just a little below ωc.
Then the detector output will decrease gradually as the pickup probe is moved
down the guide. If the frequency is set somewhat lower, the field strength will
fall rapidly, following the curve of Fig. 24-7, and showing that waves are not
propagated.

24-6 Waveguide plumbing

An important practical use of waveguides is for the transmission of high-
frequency power, as, for example, in coupling the high-frequency oscillator or
output amplifier of a radar set to an antenna. In fact, the antenna itself usually
consists of a parabolic reflector fed at its focus by a waveguide flared out at the
end to make a “horn” that radiates the waves coming along the guide. Although
high frequencies can be transmitted along a coaxial cable, a waveguide is better
for transmitting large amounts of power. First, the maximum power that can be
transmitted along a line is limited by the breakdown of the insulation (solid or
gas) between the conductors. For a given amount of power, the field strengths in
a guide are usually less than they are in a coaxial cable, so higher powers can be
transmitted before breakdown occurs. Second, the power losses in the coaxial
cable are usually greater than in a waveguide. In a coaxial cable there must be
insulating material to support the central conductor, and there is an energy loss
in this material—particularly at high frequencies. Also, the current densities on
the central conductor are quite high, and since the losses go as the square of the
current density, the lower currents that appear on the walls of the guide result in
lower energy losses. To keep these losses to a minimum, the inner surfaces of the
guide are often plated with a material of high conductivity, such as silver.
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Fig. 24-9. Sections of waveguide connected with
flanges.

GUIDE GUIDE

FLANGE
RESONANT
CAVITY

a

b

Fig. 24-10. A low-loss connection between two
sections of waveguide.

Fig. 24-11. A waveguide “T.” (The
flanges have plastic end caps to keep the
inside clean while the “T” is not being used.

The problem of connecting a “circuit” with waveguides is quite different
from the corresponding circuit problem at low frequencies, and is usually called
microwave “plumbing.” Many special devices have been developed for the purpose.
For instance, two sections of waveguide are usually connected together by means
of flanges, as can be seen in Fig. 24-9. Such connections can, however, cause
serious energy losses, because the surface currents must flow across the joint,
which may have a relatively high resistance. One way to avoid such losses is to
make the flanges as shown in the cross section drawn in Fig. 24-10. A small space
is left between the adjacent sections of the guide, and a groove is cut in the face of
one of the flanges to make a small cavity of the type shown in Fig. 23-16(c). The
dimensions are chosen so that this cavity is resonant at the frequency being used.
This resonant cavity presents a high “impedance” to the currents, so relatively
little current flows across the metallic joints (at a in Fig. 24-10). The high guide
currents simply charge and discharge the “capacity” of the gap (at b in the figure),
where there is little dissipation of energy.

(a)

v v

v

E

(b)

v v

v

E

Fig. 24-12. The electric fields in a wave-
guide “T” for two possible field orientations.

Suppose you want to stop a waveguide in a way that won’t result in reflected
waves. Then you must put something at the end that imitates an infinite length
of guide. You need a “termination” which acts for the guide like the characteristic
impedance does for a transmission line—something that absorbs the arriving
waves without making reflections. Then the guide will act as though it went on
forever. Such terminations are made by putting inside the guide some wedges of
resistance material carefully designed to absorb the wave energy while generating
almost no reflected waves.

If you want to connect three things together—for instance, one source to two
different antennas—then you can use a “T” like the one shown in Fig. 24-11.
Power fed in at the center section of the “T” will be split and go out the two side
arms (and there may also be some reflected waves). You can see qualitatively
from the sketches in Fig. 24-12 that the fields would spread out when they get to
the end of the input section and make electric fields that will start waves going
out the two arms. Depending on whether electric fields in the guide are parallel
or perpendicular to the “top” of the “T,” the fields at the junction would be
roughly as shown in (a) or (b) of Fig. 24-12.

Finally, we would like to describe a device called an “unidirectional coupler,”
which is very useful for telling what is going on after you have connected a
complicated arrangement of waveguides. Suppose you want to know which way
the waves are going in a particular section of guide—you might be wondering,
for instance, whether or not there is a strong reflected wave. The unidirectional
coupler takes out a small fraction of the power of a guide if there is a wave going
one way, but none if the wave is going the other way. By connecting the output
of the coupler to a detector, you can measure the “one-way” power in the guide.
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Figure 24-13 is a drawing of a unidirectional coupler; a piece of waveguide AB
has another piece of waveguide CD soldered to it along one face. The guide CD
is curved away so that there is room for the connecting flanges. Before the
guides are soldered together, two (or more) holes have been drilled in each guide
(matching each other) so that some of the fields in the main guide AB can be
coupled into the secondary guide CD. Each of the holes acts like a little antenna
that produces a wave in the secondary guide. If there were only one hole, waves
would be sent in both directions and would be the same no matter which way
the wave was going in the primary guide. But when there are two holes with a
separation space equal to one-quarter of the guide wavelength, they will make
two sources 90◦ out of phase. Do you remember that we considered in Chapter 29
of Vol. I the interference of the waves from two antennas spaced λ/4 apart and
excited 90◦ out of phase in time? We found that the waves subtract in one
direction and add in the opposite direction. The same thing will happen here.
The wave produced in the guide CD will be going in the same direction as the
wave in AB.

A

B

C D

Fig. 24-13. A unidirectional coupler.

If the wave in the primary guide is travelling from A toward B, there will
be a wave at the output D of the secondary guide. If the wave in the primary
guide goes from B toward A, there will be a wave going toward the end C of the
secondary guide. This end is equipped with a termination, so that this wave is
absorbed and there is no wave at the output of the coupler.

24-7 Waveguide modes

(a) x

y

E

(b)

x

Ey

Fig. 24-14. Another possible variation of
Ey with x

The wave we have chosen to analyze is a special solution of the field equations.
There are many more. Each solution is called a waveguide “mode.” For example,
our x-dependence of the field was just one-half a cycle of a sine wave. There is an
equally good solution with a full cycle; then the variation of Ey with x is as shown
in Fig. 24-14. The kx for such a mode is twice as large, so the cutoff frequency is
much higher. Also, in the wave we studied E has only a y-component, but there
are other modes with more complicated electric fields. If the electric field has
components only in x and y—so that the total electric field is always at right
angles to the z-direction—the mode is called a “transverse electric” (or TE) mode.
The magnetic field of such modes will always have a z-component. It turns out
that if E has a component in the z-direction (along the direction of propagation),
then the magnetic field will always have only transverse components. So such
fields are called transverse magnetic (TM) modes. For a rectangular guide, all
the other modes have a higher cutoff frequency than the simple TE mode we have
described. It is, therefore, possible—and usual—to use a guide with a frequency
just above the cutoff for this lowest mode but below the cutoff frequency for all
the others, so that just the one mode is propagated. Otherwise, the behavior
gets complicated and difficult to control.

24-8 Another way of looking at the guided waves

We want now to show you another way of understanding why a waveguide
attenuates the fields rapidly for frequencies below the cutoff frequency ωc. Then
you will have a more “physical” idea of why the behavior changes so drastically
between low and high frequencies. We can do this for the rectangular guide by
analyzing the fields in terms of reflections—or images—in the walls of the guide.
The approach only works for rectangular guides, however; that’s why we started
with the more mathematical analysis which works, in principle, for guides of any
shape.

For the mode we have described, the vertical dimension (in y) had no effect,
so we can ignore the top and bottom of the guide and imagine that the guide is
extended indefinitely in the vertical direction. We imagine then that the guide
just consists of two vertical plates with the separation a.

Let’s say that the source of the fields is a vertical wire placed in the middle
of the guide, with the wire carrying a current that oscillates at the frequency ω.
In the absence of the guide walls such a wire would radiate cylindrical waves.
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Now we consider that the guide walls are perfect conductors. Then, just as
in electrostatics, the conditions at the surface will be correct if we add to the
field of the wire the field of one or more suitable image wires. The image idea
works just as well for electrodynamics as it does for electrostatics, provided, of
course, that we also include the retardations. We know that is true because we
have often seen a mirror producing an image of a light source. And a mirror is
just a “perfect” conductor for electromagnetic waves with optical frequencies.
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Fig. 24-15. The line source S0 between
the conducting plane walls W1 and W2. The
walls can be replaced by the infinite sequence
of image sources.

Now let’s take a horizontal cross section, as shown in Fig. 24-15, where W1
and W2 are the two guide walls and S0 is the source wire. We call the direction
of the current in the wire positive. Now if there were only one wall, say W1,
we could remove it if we placed an image source (with opposite polarity) at the
position marked S1. But with both walls in place there will also be an image
of S0 in the wall W2, which we show as the image S2. This source, too, will have
an image in W1, which we call S3. Now both S1 and S3 will have images in W2
at the positions marked S4 and S6, and so on. For our two plane conductors
with the source halfway between, the fields are the same as those produced by
an infinite line of sources, all separated by the distance a. (It is, in fact just
what you would see if you looked at a wire placed halfway between two parallel
mirrors.) For the fields to be zero at the walls, the polarity of the currents in the
images must alternate from one image to the next. In other words, they oscillate
180◦ out of phase. The waveguide field is, then, just the superposition of the
fields of such an infinite set of line sources.

We know that if we are close to the sources, the field is very much like the
static fields. We considered in Section 7-5 the static field of a grid of line sources
and found that it is like the field of a charged plate except for terms that decrease
exponentially with the distance from the grid. Here the average source strength
is zero, because the sign alternates from one source to the next. Any fields which
exist should fall off exponentially with distance. Close to the source, we see the
field mainly of the nearest source; at large distances, many sources contribute
and their average effect is zero. So now we see why the waveguide below cutoff
frequency gives an exponentially decreasing field. At low frequencies, in particular,
the static approximation is good, and it predicts a rapid attenuation of the fields
with distance.
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Fig. 24-16. One set of coherent waves
from an array of line sources.

Now we are faced with the opposite question: Why are waves propagated
at all? That is the mysterious part! The reason is that at high frequencies the
retardation of the fields can introduce additional changes in phase which can
cause the fields of the out-of-phase sources to add instead of cancelling. In fact,
in Chapter 29 of Vol. I we have already studied, just for this problem, the fields
generated by an array of antennas or by an optical grating. There we found that
when several radio antennas are suitably arranged, they can give an interference
pattern that has a strong signal in some direction but no signal in another.

Suppose we go back to Fig. 24-15 and look at the fields which arrive at a
large distance from the array of image sources. The fields will be strong only in
certain directions which depend on the frequency—only in those directions for
which the fields from all the sources add in phase. At a reasonable distance from
the sources the field propagates in these special directions as plane waves. We
have sketched such a wave in Fig. 24-16, where the solid lines represent the wave
crests and the dashed lines represent the troughs. The wave direction will be the
one for which the difference in the retardation for two neighboring sources to the
crest of a wave corresponds to one-half a period of oscillation. In other words, the
difference between r2 and r0 in the figure is one-half of the free-space wavelength:

r2 − r0 = λ0

2 .

The angle θ is then given by

sin θ = λ0

2a . (24.33)

There is, of course, another set of waves travelling downward at the symmetric
angle with respect to the array of sources. The complete waveguide field (not
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too close to the source) is the superposition of these two sets of waves, as shown
in Fig. 24-17. The actual fields are really like this, of course, only between the
two walls of the waveguide.

S0

S1

S2

S3

S4

+

−

−

+

+

A B C
vph

W1

W2

λg

λ0
θ

Fig. 24-17. The waveguide field can be
viewed as the superposition of two trains of
plane waves.

At points like A and C, the crests of the two wave patterns coincide, and the
field will have a maximum; at points like B, both waves have their peak negative
value, and the field has its minimum (largest negative) value. As time goes on the
field in the guide appears to be travelling along the guide with a wavelength λg,
which is the distance from A to C. That distance is related to θ by

cos θ = λ0

λg
. (24.34)

Using Eq. (24.33) for θ, we get that

λg = λ0

cos θ = λ0√
1− (λ0/2a)2

, (24.35)

which is just what we found in Eq. (24.19).
Now we see why there is only wave propagation above the cutoff frequency ω0.

If the free-space wavelength is longer than 2a, there is no angle where the waves
shown in Fig. 24-16 can appear. The necessary constructive interference appears
suddenly when λ0 drops below 2a, or when ω goes above ω0 = πc/a.

If the frequency is high enough, there can be two or more possible directions
in which the waves will appear. For our case, this will happen if λ0 <

2
3a. In

general, however, it could also happen when λ0 < a. These additional waves
correspond to the higher guide modes we have mentioned.

It has also been made evident by our analysis why the phase velocity of the
guided waves is greater than c and why this velocity depends on ω. As ω is
changed, the angle of the free waves of Fig. 24-16 changes, and therefore so does
the velocity along the guide.

Although we have described the guided wave as the superposition of the fields
of an infinite array of line sources, you can see that we would arrive at the same
result if we imagined two sets of free-space waves being continually reflected back
and forth between two perfect mirrors—remembering that a reflection means
a reversal of phase. These sets of reflecting waves would all cancel each other
unless they were going at just the angle θ given in Eq. (24.33). There are many
ways of looking at the same thing.
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Electrodynamics in Relativistic Notation

25-1 Four-vectors

We 25-1 Four-vectors
25-2 The scalar product
25-3 The four-dimensional gradient
25-4 Electrodynamics in

four-dimensional notation
25-5 The four-potential of a moving

charge
25-6 The invariance of the equations of

electrodynamics

now discuss the application of the special theory of relativity to electrody-
namics. Since we have already studied the special theory of relativity in Chapters
15 through 17 of Vol. I, we will just review quickly the basic ideas.

It is found experimentally that the laws of physics are unchanged if we move
with uniform velocity. You can’t tell if you are inside a spaceship moving with
uniform velocity in a straight line, unless you look outside the spaceship, or at
least make an observation having to do with the world outside. Any true law of
physics we write down must be arranged so that this fact of nature is built in.

The relationship between the space and time of two systems of coordinates,
one, S′, in uniform motion in the x-direction with speed v relative to the other,
S, is given by the Lorentz transformation:

t′ = t− vx√
1− v2

, y′ = y,

x′ = x− vt√
1− v2

, z′ = z.

(25.1) In this chapter: c = 1

Review: Chapter 15, Vol. I, The Special
Theory of Relativity
Chapter 16, Vol. I, Relativistic
Energy and Momentum
Chapter 17, Vol. I, Space-
Time
Chapter 13, Vol. II, Magneto-
statics

The laws of physics must be such that after a Lorentz transformation, the new
form of the laws looks just like the old form. This is just like the principle that
the laws of physics don’t depend on the orientation of our coordinate system.
In Chapter 11 of Vol. I, we saw that the way to describe mathematically the
invariance of physics with respect to rotations was to write our equations in terms
of vectors.

For example, if we have two vectors

A = (Ax, Ay, Az) and B = (Bx, By, Bz),

we found that the combination

A ·B = AxBx +AyBy +AzBz

was not changed if we transformed to a rotated coordinate system. So we know
that if we have a scalar product like A ·B on both sides of an equation, the
equation will have exactly the same form in all rotated coordinate systems. We
also discovered an operator (see Chapter 2),

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
,

which, when applied to a scalar function, gave three quantities which transform
just like a vector. With this operator we defined the gradient, and in combination
with other vectors, the divergence and the Laplacian. Finally we discovered that
by taking sums of certain products of pairs of the components of two vectors we
could get three new quantities which behaved like a new vector. We called it the
cross product of two vectors. Using the cross product with our operator ∇ we
then defined the curl of a vector.

Since we will be referring back to what we have done in vector analysis, we
have put in Table 25-1 a summary of all the important vector operations in three
dimensions that we have used in the past. The point is that it must be possible to
write the equations of physics so that both sides transform the same way under
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rotations. If one side is a vector, the other side must also be a vector, and both
sides will change together in exactly the same way if we rotate our coordinate
system. Similarly, if one side is a scalar, the other side must also be a scalar, so
that neither side changes when we rotate coordinates, and so on. Table 25-1

The important quantities and operations
of vector analysis in three dimensions

Definition of a
vector A = (Ax, Ay, Az)

Scalar product A ·B
Differential vector
operator ∇

Gradient ∇φ
Divergence ∇ ·A
Laplacian ∇ ·∇ = ∇2

Cross product A×B
Curl ∇×A

Now in the case of special relativity, time and space are inextricably mixed,
and we must do the analogous things for four dimensions. We want our equations
to remain the same not only for rotations, but also for any inertial frame. That
means that our equations should be invariant under the Lorentz transformation
of equations (25.1). The purpose of this chapter is to show you how that can be
done. Before we get started, however, we want to do something that makes our
work a lot easier (and saves some confusion). And that is to choose our units of
length and time so that the speed of light c is equal to 1. You can think of it as
taking our unit of time to be the time that it takes light to go one meter (which
is about 3× 10−9 sec). We can even call this time unit “one meter.” Using this
unit, all of our equations will show more clearly the space-time symmetry. Also,
all the c’s will disappear from our relativistic equations. (If this bothers you, you
can always put the c’s back into any equation by replacing every t by ct, or, in
general, by sticking in a c wherever it is needed to make the dimensions of the
equations come out right.) With this groundwork we are ready to begin. Our
program is to do in the four dimensions of space-time all of the things we did
with vectors for three dimensions. It is really quite a simple game; we just work
by analogy. The only real complications is the notation (we’ve already used up
the vector symbol for three dimensions) and one slight twist of signs.

First, by analogy with vectors in three dimensions, we define a four-vector
as a set of the four quantities at, ax, ay, and az, which transform like t, x, y,
and z when we change to a moving coordinate system. There are several different
notations people use for a four-vector; we will write aµ, by which we mean the
group of four numbers (at, ax, ay, az)—in other words, the subscript µ can take
on the four “values” t, x, y, z. It will also be convenient, at times, to indicate
the three space components by a three-vector, like this: aµ = (at,a).

We have already encountered one four-vector, which consists of the energy
and momentum of a particle (Chapter 17, Vol. I): In our new notation we write

pµ = (E,p), (25.2)

which means that the four-vector pµ is made up of the energy E and the three
components of the three-vector p of a particle.

It looks as though the game is really very simple—for each three-vector in
physics all we have to do is find what the remaining component should be, and
we have a four-vector. To see that this is not the case, consider the velocity
vector with components

vx = dx

dt
, vy = dy

dt
, vz = dz

dt
.

The question is: What is the time component? Instinct should give the right
answer. Since four-vectors are like t, x, y, z, we would guess that the time
component is

vt = dt

dt
= 1.

This is wrong. The reason is that the t in each denominator is not an invari-
ant when we make a Lorentz transformation. The numerators have the right
behavior to make a four-vector, but the dt in the denominator spoils things; it is
unsymmetric and is not the same in two different systems.

It turns out that the four “velocity” components which we have written down
will become the components of a four-vector if we just divide by

√
1− v2. We

can see that that is true because if we start with the momentum four-vector

pµ = (E,p) =
(

m0√
1− v2

,
m0v√
1− v2

)
, (25.3)
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and divide it by the rest mass m0, which is an invariant scalar in four dimensions,
we have

pµ
m0

=
(

1√
1− v2

,
v√

1− v2

)
, (25.4)

which must still be a four-vector. (Dividing by an invariant scalar doesn’t change
the transformation properties.) So we can define the “velocity four-vector” uµ by

ut = 1√
1− v2

, uy = vy√
1− v2

,

ux = vx√
1− v2

, uz = vz√
1− v2

,

(25.5)

The four-velocity is a useful quantity; we can, for instance, write

pµ = m0uµ. (25.6)

This is the typical sort of form an equation which is relativistically correct must
have; each side is a four-vector. (The right-hand side is an invariant times a
four-vector, which is still a four-vector.)

25-2 The scalar product

It is an accident of life, if you wish, that under coordinate rotations the
distance of a point from the origin does not change. This means mathematically
that r2 = x2 + y2 + z2 is an invariant. In other words, after a rotation r′2 = r2,
or

x′2 + y′2 + z′2 = x2 + y2 + z2.

Now the question is: Is there a similar quantity which is invariant under the
Lorentz transformation? There is. From Eq. (25.1) you can see that

t′2 − x′2 = t2 − x2.

That is pretty nice, except that it depends on a particular choice of the x-direction.
We can fix that up by subtracting y2 and z2. Then any Lorentz transformation
plus a rotation will leave the quantity unchanged. So the quantity which is
analogous to r2 for three dimensions, in four dimensions is

t2 − x2 − y2 − z2.

It is an invariant under what is called the “complete Lorentz group”—which
means for transformation of both translations at constant velocity and rotations.

Now since this invariance is an algebraic matter depending only on the
transformation rules of Eq. (25.1)—plus rotations—it is true for any four-vector
(by definition they all transform the same). So for a four-vector aµ we have that

a′2t − a′2x − a′2y − a′2z = a2
t − a2

x − a2
y − a2

z.

We will call this quantity the square of “the length” of the four-vector aµ.
(Sometimes people change the sign of all the terms and call the length a2

x + a2
y +

a2
z − a2

t , so you’ll have to watch out.)
Now if we have two vectors aµ and bµ their corresponding components trans-

form in the same way, so the combination

atbt − axbx − ayby − azbz

is also an invariant (scalar) quantity. (We have in fact already proved this in
Chapter 17 of Vol. I.) Clearly this expression is quite analogous to the dot product
for vectors. We will, in fact, call it the dot product or scalar product of two
four-vectors. It would seem logical to write it as aµ · bµ, so it would look like a dot
product. But, unhappily, it’s not done that way; it is usually written without the
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dot. So we will follow the convention and write the dot product simply as aµbµ.
So, by definition,

aµbµ = atbt − axbx − ayby − azbz. (25.7)

Whenever you see two identical subscripts together (we will occasionally have to
use ν or some other letter instead of µ) it means that you are to take the four
products and sum, remembering the minus sign for the products of the space
components. With this convention the invariance of the scalar product under a
Lorentz transformation can be written as

a′µb
′
µ = aµbµ.

Since the last three terms in (25.7) are just the scalar dot product in three
dimensions, it is often more convenient to write

aµbµ = atbt − a · b.

It is also obvious that the four-dimensional length we described above can be
written as aµaµ:

aµaµ = a2
t − a2

x − a2
y − a2

z = a2
t − a · a. (25.8)

It will also be convenient to sometimes write this quantity as a2
µ:

a2
µ ≡ aµaµ.

We will now give you an illustration of the usefulness of four-vector dot
products. Antiprotons (P) are produced in large accelerators by the reaction

P + P→ P + P + P + P.

That is, an energetic proton collides with a proton at rest (for example, in a
hydrogen target placed in the beam), and if the incident proton has enough
energy, a proton-antiproton pair may be produced, in addition to the two original
protons.* The question is: How much energy must be given to the incident proton
to make this reaction energetically possible?

The easiest way to get the answer is to consider what the reaction looks
like in the center-of-mass (CM) system (see Fig. 25-1). We’ll call the incident

Fig. 25-1. The reaction P+P→ 3P+P
viewed in the laboratory and CM systems.
The incident proton is supposed to have just
barely enough energy to make the reaction
go. Protons are denoted by solid circles;
antiprotons by open circles.
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* You may well ask: Why not consider the reactions

P + P→ P + P + P,
or even

P + P→ P + P

which clearly require less energy? The answer is that a principle called conservation of baryons
tells us the quantity “number of protons minus number of antiprotons” cannot change. This
quantity is 2 on the left side of our reaction. Therefore, if we want an antiproton on the right
side, we must have also three protons (or other baryons).
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proton a and its four-momentum paµ. Similarly, we’ll call the target proton b

and its four-momentum pbµ. If the incident proton has just barely enough energy
to make the reaction go, the final state—the situation after the collision—will
consist of a glob containing three protons and an antiproton at rest in the CM
system. If the incident energy were slightly higher, the final state particles would
have some kinetic energy and be moving apart; if the incident energy were slightly
lower, there would not be enough energy to make the four particles.

If we call pcµ the total four-momentum of the whole glob in the final state,
conservation of energy and momentum tells us that

pa + pb = pc,

and
Ea + Eb = Ec.

Combining these two equations, we can write that
paµ + pbµ = pcµ. (25.9)

Now the important thing is that this is an equation among four-vectors, and
is, therefore, true in any inertial frame. We can use this fact to simplify our
calculations. We start by taking the “length” of each side of Eq. (25.9); they are,
of course, also equal. We get

(paµ + pbµ)(paµ + pbµ) = pcµp
c
µ. (25.10)

Since pcµpcµ is invariant, we can evaluate it in any coordinate system. In the CM
system, the time component of pcµ is the rest energy of four protons, namely 4M ,
and the space part p is zero; so pcµ = (4M,0 ). We have used the fact that the
rest mass of an antiproton equals the rest mass of a proton, and we have called
this common mass M .

Thus, Eq. (25.10) becomes
paµp

a
µ + 2paµpbµ + pbµp

b
µ = 16M2. (25.11)

Now paµp
a
µ and pbµpbµ are very easy, since the “length” of the momentum four-vector

of any particle is just the mass of the particle squared:
pµpµ = E2 − p2 = M2.

This can be shown by direct calculation or, more cleverly, by noting that for a
particle at rest pµ = (M,0 ), so pµpµ = M2. But since it is an invariant, it is
equal to M2 in any frame. Using these results in Eq. (25.11), we have

2paµpbµ = 14M2

or
paµp

b
µ = 7M2. (25.12)

Now we can also evaluate paµpbµ = paµ
′pbµ
′ in the laboratory system. The

four-vector paµ′ can be written (Ea′,pa′), while pbµ
′ = (M,0 ), since it describes

a proton at rest. Thus, paµ′pbµ
′ must also be equal to MEa′; and since we know

the scalar product is an invariant this must be numerically the same as what we
found in (25.12). So we have that

Ea′ = 7M,

which is the result we were after. The total energy of the initial proton must
be at least 7M (about 6.6 Gev since M = 938 MeV) or, subtracting the rest
mass M , the kinetic energy must be at least 6M (about 5.6 Gev). The Bevatron
accelerator at Berkeley was designed to give about 6.2 Gev of kinetic energy to
the protons it accelerates, in order to be able to make antiprotons.

Since scalar products are invariant, they are always interesting to evaluate.
What about the “length” of the four-velocity uµuµ?

uµuµ = u2
t − u2 = 1

1− v2 −
v2

1− v2 = 1.

Thus, uµ is the unit four-vector.
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25-3 The four-dimensional gradient

The next thing that we have to discuss is the four-dimensional analog of the
gradient. We recall (Chapter 14, Vol. I) that the three differential operators
∂/∂x, ∂/∂y, ∂/∂z transform like a three-vector and are called the gradient. The
same scheme ought to work in four dimensions; that is, we might guess that the
four-dimensional gradient should be (∂/∂t, ∂/∂x, ∂/∂y, ∂/∂z). This is wrong.

To see the error, consider a scalar function φ which depends only on x and t.
The change in φ, if we make a small change ∆t in t while holding x constant, is

∆φ = ∂φ

∂t
∆t. (25.13)

On the other hand, according to a moving observer,

∆φ = ∂φ

∂x′
∆x′ + ∂φ

∂t′
∆t′.

We can express ∆x′ and ∆t′ in terms of ∆t by using Eq. (25.1). Remembering
that we are holding x constant, so that ∆x = 0, we write

∆x′ = − v√
1− v2

∆t; ∆t′ = ∆t√
1− v2

.

Thus,

∆φ = ∂φ

∂x′

(
− v√

1− v2
∆t
)

+ ∂φ

∂t′

(
∆t√

1− v2

)

=
(
∂φ

∂t′
− v ∂φ

∂x′

)
∆t√

1− v2
.

Comparing this result with Eq. (25.13), we learn that

∂φ

∂t
= 1√

1− v2

(
∂φ

∂t′
− v ∂φ

∂x′

)
. (25.14)

A similar calculation gives

∂φ

∂x
= 1√

1− v2

(
∂φ

∂x′
− v ∂φ

∂t′

)
. (25.15)

Now we can see that the gradient is rather strange. The formulas for x and t
in terms of x′ and t′ [obtained by solving Eq. (25.1)] are:

t = t′ + vx′√
1− v2

, x = x′ + vt′√
1− v2

.

This is the way a four-vector must transform. But Eqs. (25.14) and (25.15) have
a couple of signs wrong!

The answer is that instead of the incorrect (∂/∂t,∇), we must define the
four-dimensional gradient operator, which we will call ∇µ, by

∇µ =
(
∂

∂t
,−∇

)
=
(
∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
. (25.16)

With this definition, the sign difficulties encountered above go away, and ∇µ
behaves as a four-vector should. (It’s rather awkward to have those minus signs,
but that’s the way the world is.) Of course, what it means to say that ∇µ “behaves
like a four-vector” is simply that the four-gradient of a scalar is a four-vector.
If φ is a true scalar invariant field (Lorentz invariant) then ∇µφ is a four-vector
field.

All right, now that we have vectors, gradients, and dot products, the next
thing is to look for an invariant which is analogous to the divergence of three-
dimensional vector analysis. Clearly, the analog is to form the expression ∇µbµ,
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where bµ is a four-vector field whose components are functions of space and time.
We define the divergence of the four-vector bµ = (bt, b) as the dot product of ∇µ
and bµ:

∇µbµ = ∂

∂t
bt −

(
− ∂

∂x

)
bx −

(
− ∂

∂y

)
by −

(
− ∂

∂z

)
bz

= ∂

∂t
bt +∇ · b,

(25.17)

where ∇ · b is the ordinary three-divergence of the three-vector b. Note that
one has to be careful with the signs. Some of the minus signs come from the
definition of the scalar product, Eq. (25.7); the others are required because the
space components of ∇µ are −∂/∂x, etc., as in Eq. (25.16). The divergence as
defined by (25.17) is an invariant and gives the same answer in all coordinate
systems which differ by a Lorentz transformation.

Let’s look at a physical example in which the four-divergence shows up. We
can use it to solve the problem of the fields around a moving wire. We have already
seen (Section 13-7) that the electric charge density ρ and the current density j
form a four-vector jµ = (ρ, j). If an uncharged wire carries the current jx, then
in a frame moving past it with velocity v (along x), the wire will have the charge
and current density [obtained from the Lorentz transformation Eqs. (25.1)] as
follows:

ρ′ = −vjx√
1− v2

, j′x = jx√
1− v2

.

These are just what we found in Chapter 13. We can then use these sources
in Maxwell’s equations in the moving system to find the fields.

The charge conservation law, Section 13-2, also takes on a simple form in the
four-vector notation. Consider the four divergence of jµ:

∇µjµ = ∂ρ

∂t
+∇ · j. (25.18)

The law of the conservation of charge says that the outflow of current per unit
volume must equal the negative rate of increase of charge density. In other words,
that

∇ · j = −∂ρ
∂t
.

Putting this into Eq. (25.18), the law of conservation of charge takes on the
simple form

∇µjµ = 0. (25.19)
Since ∇µjµ is an invariant scalar, if it is zero in one frame it is zero in all frames.
We have the result that if charge is conserved in one coordinate system, it is
conserved in all coordinate systems moving with uniform velocity.

As our last example we want to consider the scalar product of the gradient
operator ∇µ with itself. In three dimensions, such a product gives the Laplacian

∇2 =∇ ·∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

What do we get in four dimensions? That’s easy. Following our rules for dot
products and gradients, we get

∇µ∇µ = ∂

∂t

∂

∂t
−
(
− ∂

∂x

)(
− ∂

∂x

)
−
(
− ∂

∂y

)(
− ∂

∂y

)
−
(
− ∂

∂z

)(
− ∂

∂z

)
= ∂2

∂t2
−∇2.

This operator, which is the analog of the three-dimensional Laplacian, is called
the D’Alembertian and has a special notation:

�2 = ∇µ∇µ = ∂2

∂t2
−∇2. (25.20)
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From its definition it is an invariant scalar operator; if it operates on a four-vector
field, it produces a new four-vector field. (Some people define the D’Alembertian
with the opposite sign to Eq. (25.20), so you will have to be careful when reading
the literature.)

We have now found four-dimensional equivalents of most of the three-dimen-
sional quantities we had listed in Table 25-1. (We do not yet have the equivalents
of the cross product and the curl operation; we won’t get to them until the next
chapter.) It may help you remember how they go if we put all the important
definitions and results together in one place, so we have made such a summary
in Table 25-2.

Table 25-2

The important quantities of vector analysis in three and four dimensions.

Three dimensions Four dimensions

Vector A = (Ax, Ay, Az) aµ = (at, ax, ay, az) = (at,a)

Scalar product A ·B = AxBx +AyBy +AzBz aµbµ = atbt − axbx − ayby − azbz = atbt − a · b

Vector operator ∇ = (∂/∂x, ∂/∂y, ∂/∂z) ∇µ = (∂/∂t,−∂/∂x,−∂/∂y,−∂/∂z) = (∂/∂t,−∇)

Gradient ∇ψ =
(
∂ψ

∂x
,
∂ψ

∂y
,
∂ψ

∂z

)
∇µϕ =

(
∂ϕ

∂t
,−∂ϕ

∂x
,−∂ϕ

∂y
,−∂ϕ

∂z

)
=
(
∂ϕ

∂t
,−∇ϕ

)

Divergence ∇ ·A = ∂Ax
∂x

+ ∂Ay
∂y

+ ∂Az
∂z

∇µaµ = ∂at
∂t

+ ∂ax
∂x

+ ∂ay
∂y

+ ∂az
∂z

= ∂at
∂t

+∇ · a

Laplacian and ∇ ·∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 = ∇2 ∇µ∇µ = ∂2

∂t2
− ∂2

∂x2 −
∂2

∂y2 −
∂2

∂z2 = ∂2

∂t2
−∇2 = �2

D’Alembertian

25-4 Electrodynamics in four-dimensional notation

We have already encountered the D’Alembertian operator, without giving
it that name, in Section 18-6; the differential equations we found there for the
potentials can be written in the new notations as:

�2φ = ρ

ε0
, �2A = j

ε0
. (25.21)

The four quantities on the right-hand side of the two equations in (25.21) are
ρ, jx, jy, jz divided by ε0, which is a universal constant which will be the same
in all coordinate systems if the same unit of charge is used in all frames. So the
four quantities ρ/ε0, jx/ε0, jy/ε0, jz/ε0 also transform as a four-vector. We can
write them as jµ/ε0. The D’Alembertian doesn’t change when the coordinate
system is changed, so the quantities φ, Ax, Ay, Az must also transform like a
four-vector—which means that they are the components of a four-vector. In
short,

Aµ = (φ,A)

is a four-vector. What we call the scalar and vector potentials are really different
aspects of the same physical thing. They belong together. And if they are
kept together the relativistic invariance of the world is obvious. We call Aµ the
four-potential.

In the four-vector notation Eqs. (25.21) become simply

�2Aµ = jµ
ε0
, (25.22)

25-8



The physics of this equation is just the same as Maxwell’s equations. But there is
some pleasure in being able to rewrite them in an elegant form. The pretty form
is also meaningful; it shows directly the invariance of electrodynamics under the
Lorentz transformation.

Remember that Eqs. (25.21) could be deduced from Maxwell’s equations only
if we imposed the gauge condition

∂φ

∂t
+∇ ·A = 0, (25.23)

which just says ∇µAµ = 0; the gauge condition says that the divergence of the
four-vector Aµ is zero. This condition is called the Lorenz condition. It is very
convenient because it is an invariant condition and therefore Maxwell’s equations
stay in the form of Eq. (25.22) for all frames.

25-5 The four-potential of a moving charge

S

x

y

z

S′

x ′

y ′

z ′

q

P
v

r

r ′

Fig. 25-2. The frame S′ moves with ve-
locity v (in the x-direction) with respect
to S. A charge at rest at the origin of S′ is
at x = vt in S. The potentials at P can be
computed in either frame.

Although it is implicit in what we have already said, let us write down the
transformation laws which give φ and A in a moving system in terms of φ and A
in a stationary system. Since Aµ = (φ,A) is a four-vector, the equations must
look just like Eqs. (25.1), except that t is replaced by φ, and x is replaced by A.
Thus,

φ′ = φ− vAx√
1− v2

, A′y = Ay,

A′x = Ax − vφ√
1− v2

, A′z = Az.

(25.24)

This assumes that the primed coordinate system is moving with speed v in the
positive x-direction, as measured in the unprimed coordinate system.

We will consider one example of the usefulness of the idea of the four-potential.
What are the vector and scalar potentials of a charge q moving with speed v
along the x-axis? The problem is easy in a coordinate system moving with the
charge, since in this system the charge is standing still. Let’s say that the charge
is at the origin of the S′-frame, as shown in Fig. 25-2. The scalar potential in
the moving system is then given by

φ′ = q

4πε0r′
, (25.25)

r′ being the distance from q to the field point, as measured in the moving system.
The vector potential A′ is, of course, zero.

Now it is straightforward to find φ and A, the potentials as measured in the
stationary coordinates. The inverse relations to Eqs. (25.24) are

φ = φ′ + vA′x√
1− v2

, Ay = A′y,

Ax = A′x + vφ′√
1− v2

, Az = A′z.

(25.26)

Using the φ′ given by Eq. (25.25), and A′ = 0, we get

φ = q

4πε0
1

r′
√

1− v2

= q

4πε0
1

√
1− v2

√
x′2 + y′2 + z′2

.

This gives us the scalar potential φ we would see in S, but, unfortunately,
expressed in terms of the S′ coordinates. We can get things in terms of t, x, y, z
by substituting for t′, x′, y′, and z′, using (25.1). We get

φ = q

4πε0
1√

1− v2
1√

[(x− vt)/
√

1− v2]2 + y2 + z2
. (25.27)

25-9



Following the same procedure for the components of A, you can show that

A = vφ. (25.28)

These are the same formulas we derived by a different method in Chapter 21.

25-6 The invariance of the equations of electrodynamics

We have found that the potentials φ and A taken together form a four-
vector which we call Aµ, and that the wave equations—the full equations which
determine the Aµ in terms of the jµ—can be written as in Eq. (25.22). This
equation, together with the conservation of charge, Eq. (25.19), gives us the
fundamental law of the electromagnetic field:

�2Aµ = 1
ε0
jµ, ∇µjµ = 0. (25.29)

There, in one tiny space on the page, are all of the Maxwell equations—beautiful
and simple. Did we learn anything from writing the equations this way, besides
that they are beautiful and simple? In the first place, is it anything different from
what we had before when we wrote everything out in all the various components?
Can we from this equation deduce something that could not be deduced from
the wave equations for the potentials in terms of the charges and currents? The
answer is definitely no. The only thing we have been doing is changing the
names of things—using a new notation. We have written a square symbol to
represent the derivatives, but it still means nothing more nor less than the second
derivative with respect to t, minus the second derivative with respect to x, minus
the second derivative with respect to y, minus the second derivative with respect
to z. And the µ means that we have four equations, one each for µ = t, x, y,
or z. What then is the significance of the fact that the equations can be written
in this simple form? From the point of view of deducing anything directly, it
doesn’t mean anything. Perhaps, though, the simplicity of the equations means
that nature also has a certain simplicity.

Let us show you something interesting that we have recently discovered: All
of the laws of physics can be contained in one equation. That equation is

U = 0. (25.30)

What a simple equation! Of course, it is necessary to know what the symbol means.
U is a physical quantity which we will call the “unworldliness” of the situation.
And we have a formula for it. Here is how you calculate the unworldliness. You
take all of the known physical laws and write them in a special form. For example,
suppose you take the law of mechanics, F = ma, and rewrite it as F −ma = 0.
Then you can call (F −ma)—which should, of course, be zero—the “mismatch”
of mechanics. Next, you take the square of this mismatch and call it U1, which
can be called the “unworldliness of mechanical effects.” In other words, you take

U1 = (F −ma)2. (25.31)

Now you write another physical law, say, ∇ ·E = ρ/ε0 and define

U2 =
(
∇ ·E − ρ

ε0

)2
,

which you might call “the gaussian unworldliness of electricity.” You continue to
write U3, U4, and so on—one for every physical law there is.

Finally you call the total unworldliness U of the world the sum of the various
unworldlinesses Ui from all the subphenomena that are involved; that is, U =

∑
Ui.

Then the great “law of nature” is

U = 0. (25.32)
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This “law” means, of course, that the sum of the squares of all the individual
mismatches is zero, and the only way the sum of a lot of squares can be zero is
for each one of the terms to be zero.

So the “beautifully simple” law in Eq. (25.32) is equivalent to the whole
series of equations that you originally wrote down. It is therefore absolutely
obvious that a simple notation that just hides the complexity in the definitions
of symbols is not real simplicity. It is just a trick. The beauty that appears in
Eq. (25.32)—just from the fact that several equations are hidden within it—is
no more than a trick. When you unwrap the whole thing, you get back where
you were before.

However, there is more to the simplicity of the laws of electromagnetism
written in the form of Eq. (25.29). It means more, just as a theory of vector
analysis means more. The fact that the electromagnetic equations can be written
in a very particular notation which was designed for the four-dimensional geometry
of the Lorentz transformations—in other words, as a vector equation in the four-
space—means that it is invariant under the Lorentz transformations. It is because
the Maxwell equations are invariant under those transformations that they can
be written in a beautiful form.

It is no accident that the equations of electrodynamics can be written in the
beautifully elegant form of Eq. (25.29). The theory of relativity was developed
because it was found experimentally that the phenomena predicted by Maxwell’s
equations were the same in all inertial systems. And it was precisely by studying
the transformation properties of Maxwell’s equations that Lorentz discovered his
transformation as the one which left the equations invariant.

There is, however, another reason for writing our equations this way. It has
been discovered—after Einstein guessed that it might be so—that all of the laws
of physics are invariant under the Lorentz transformation. That is the principle
of relativity. Therefore, if we invent a notation which shows immediately when a
law is written down whether it is invariant or not, we can be sure that in trying
to make new theories we will write only equations which are consistent with the
principle of relativity.

The fact that the Maxwell equations are simple in this particular notation is
not a miracle, because the notation was invented with them in mind. But the
interesting physical thing is that every law of physics—the propagation of meson
waves or the behavior of neutrinos in beta decay, and so forth—must have this
same invariance under the same transformation. Then when you are moving at a
uniform velocity in a spaceship, all of the laws of nature transform together in
such a way that no new phenomenon will show up. It is because the principle of
relativity is a fact of nature that in the notation of four-dimensional vectors the
equations of the world will look simple.
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26

Lorentz Transformations of the Fields

26-1 The four-potential of a moving charge

We 26-1 The four-potential of a moving
charge

26-2 The fields of a point charge with
a constant velocity

26-3 Relativistic transformation of the
fields

26-4 The equations of motion in
relativistic notation

saw in the last chapter that the potential Aµ = (φ,A) is a four-vector.
The time component is the scalar potential φ, and the three space components are
the vector potential A. We also worked out the potentials of a particle moving
with uniform speed on a straight line by using the Lorentz transformation. (We
had already found them by another method in Chapter 21.) For a point charge
whose position at the time t is (vt, 0, 0), the potentials at the point (x, y, z) are

φ = 1

4πε0
√

1− v2

q[
(x− vt)2

1− v2 + y2 + z2
]1/2

Ax = 1

4πε0
√

1− v2

qv[
(x− vt)2

1− v2 + y2 + z2
]1/2

Ay = Az = 0.

(26.1) In this chapter: c = 1

Review: Chapter 20, Vol. II, Solution
of Maxwell’s Equations in Free
Space

x

y

y

(x, y , z)

P ′ P

vt ′

vt

x − vt

r ′

r

RETARDED
POSITION

PRESENT
POSITION

Fig. 26-1. Finding the fields at (x, y , z)

due to a charge q moving along the x-axis
with the constant speed v . The field “now”
at the point (x, y , z) can be expressed in
terms of the “present” position P , as well
as in terms of P ′, the “retarded” position
(at t ′ = t − r ′/c).

Equations (26.1) give the potentials at x, y, and z at the time t, for a charge
whose “present” position (by which we mean the position at the time t) is
at x = vt. Notice that the equations are in terms of (x− vt), y, and z which are
the coordinates measured from the current position P of the moving charge (see
Fig. 26-1). The actual influence we know really travels at the speed c, so it is the
behavior of the charge back at the retarded position P ′ that really counts.* The
point P ′ is at x = vt′ (where t′ = t− r′/c is the retarded time). But we said that
the charge was moving with uniform velocity in a straight line, so naturally the
behavior at P ′ and the current position are directly related. In fact, if we make
the added assumption that the potentials depend only upon the position and the
velocity at the retarded moment, we have in equations (26.1) a complete formula
for the potentials for a charge moving any way. It works this way. Suppose that
you have a charge moving in some arbitrary fashion, say with the trajectory in
Fig. 26-2, and you are trying to find the potentials at the point (x, y, z). First,
you find the retarded position P ′ and the velocity v′ at that point. Then you
imagine that the charge would keep on moving with this velocity during the delay
time (t′ − t), so that it would then appear at an imaginary position Pproj, which
we can call the “projected position,” and would arrive there with the velocity v′.
(Of course, it doesn’t do that; its real position at t is at P .) Then the potentials
at (x, y, z) are just what equations (26.1) would give for the imaginary charge
at the projected position Pproj. What we are saying is that since the potentials
depend only on what the charge is doing at the retarded time, the potentials
will be the same whether the charge continued moving at a constant velocity or
whether it changed its velocity after t′—that is, after the potentials that were
going to appear at (x, y, z) at the time t were already determined.

You know, of course, that the moment that we have the formula for the
potentials from a charge moving in any manner whatsoever, we have the complete
electrodynamics; we can get the potentials of any charge distribution by superpo-
sition. Therefore we can summarize all the phenomena of electrodynamics either

* The primes used here to indicate the retarded positions and times should not be confused
with the primes referring to a Lorentz-transformed frame in the preceding chapter.
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by writing Maxwell’s equations or by the following series of remarks. (Remember
them in case you are ever on a desert island. From them, all can be reconstructed.
You will, of course, know the Lorentz transformation; you will never forget that
on a desert island or anywhere else.)

TRAJECTORY

q

v ′P ′

RETARDED
POSITION v ′ r

′/c Pproj

“PROJECTED”
POSITION

P “PRESENT”
POSITIONv

r ′
rPproj

(x, y , z)

Fig. 26-2. A charge moves on an arbitrary
trajectory. The potentials at (x, y , z) at the
time t are determined by the position P ′

and velocity v ′ at the retarded time t ′−r ′/c .
They are conveniently expressed in terms of
the coordinates from the “projected” posi-
tion Pproj. (The actual position at t is P .)

First, Aµ is a four-vector. Second, the Coulomb potential for a stationary
charge is q/4πε0r. Third, the potentials produced by a charge moving in any
way depend only upon the velocity and position at the retarded time. With
those three facts we have everything. From the fact that Aµ is a four-vector, we
transform the Coulomb potential, which we know, and get the potentials for a
constant velocity. Then, by the last statement that potentials depend only upon
the past velocity at the retarded time, we can use the projected position game to
find them. It is not a particularly useful way of doing things, but it is interesting
to show that the laws of physics can be put in so many different ways.

It is sometimes said, by people who are careless, that all of electrodynamics
can be deduced solely from the Lorentz transformation and Coulomb’s law.
Of course, that is completely false. First, we have to suppose that there is a
scalar potential and a vector potential that together make a four-vector. That
tells us how the potentials transform. Then why is it that the effects at the
retarded time are the only things that count? Better yet, why is it that the
potentials depend only on the position and the velocity and not, for instance,
on the acceleration? The fields E and B do depend on the acceleration. If you
try to make the same kind of an argument with respect to them, you would
say that they depend only upon the position and velocity at the retarded time.
But then the fields from an accelerating charge would be the same as the fields
from a charge at the projected position—which is false. The fields depend not
only on the position and the velocity along the path but also on the acceleration.
So there are several additional tacit assumptions in this great statement that
everything can be deduced from the Lorentz transformation. (Whenever you see
a sweeping statement that a tremendous amount can come from a very small
number of assumptions, you always find that it is false. There are usually a large
number of implied assumptions that are far from obvious if you think about them
sufficiently carefully.)

26-2 The fields of a point charge with a constant velocity

Now that we have the potentials from a point charge moving at constant
velocity, we ought to find the fields—for practical reasons. There are many
cases where we have uniformly moving particles—for instance, cosmic rays going
through a cloud chamber, or even slow-moving electrons in a wire. So let’s at least
see what the fields actually do look like for any speed—even for speeds nearly
that of light—assuming only that there is no acceleration. It is an interesting
question.

We get the fields from the potentials by the usual rules:

E = −∇φ− ∂A

∂t
, B =∇×A.

First, for Ez

Ez = −∂φ
∂z
− ∂Az

∂t
.

But Az is zero; so differentiating φ in equations (26.1), we get

Ez = q

4πε0
√

1− v2

z[
(x− vt)2

1− v2 + y2 + z2
]3/2 . (26.2)

Similarly, for Ey,

Ey = q

4πε0
√

1− v2

y[
(x− vt)2

1− v2 + y2 + z2
]3/2 . (26.3)
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The x-component is a little more work. The derivative of φ is more complicated
and Ax is not zero. First,

− ∂φ

∂x
= q

4πε0
√

1− v2

(x− vt)/(1− v2)[
(x− vt)2

1− v2 + y2 + z2
]3/2 . (26.4)

Then, differentiating Ax with respect to t, we find

− ∂Ax
∂t

= q

4πε0
√

1− v2

−v2(x− vt)/(1− v2)[
(x− vt)2

1− v2 + y2 + z2
]3/2 . (26.5)

And finally, taking the sum,

Ex = q

4πε0
√

1− v2

x− vt[
(x− vt)2

1− v2 + y2 + z2
]3/2 . (26.6)

x

y

y

(x, y , z)

P ′ P

vt ′

vt

x − vt

r

RETARDED
POSITION

PRESENT
POSITION

E

Ex

Ey

Fig. 26-3. For a charge moving with con-
stant speed, the electric field points radially
from the “present” position of the charge.

We’ll look at the physics of E in a minute; let’s first find B. For the z-
component,

Bz = ∂Ay
∂x
− ∂Ax

∂y
.

Since Ay is zero, we have just one derivative to get. Notice, however, that Ax is
just vφ, and ∂/∂y of vφ is just −vEy. So

Bz = vEy. (26.7)
Similarly,

By = ∂Ax
∂z
− ∂Az

∂x
= +v ∂φ

∂z
,

and
By = −vEz. (26.8)

Finally, Bx is zero, since Ay and Az are both zero. We can write the magnetic
field simply as

B = v ×E. (26.9)
Now let’s see what the fields look like. We will try to draw a picture of the

field at various positions around the present position of the charge. It is true that
the influence of the charge comes, in a certain sense, from the retarded position;
but because the motion is exactly specified, the retarded position is uniquely
given in terms of the present position. For uniform velocities, it’s nicer to relate
the fields to the current position, because the field components at (x, y, z) depend
only on (x− vt), y, and z—which are the components of the displacement r from
the present position to (x, y, z) (see Fig. 26-3).

(a) v = 0

E

(b) v = 0.9c

E

v

Fig. 26-4. The electric field of a charge
moving with constant speed v = 0.9c,
part (b), compared with the field of a charge
at rest, part (a).

Consider first a point with z = 0. Then E has only x- and y-components.
From Eqs. (26.3) and (26.6), the ratio of these components is just equal to the
ratio of the x- and y-components of the displacement. That means that E is in
the same direction as r, as shown in Fig. 26-3. Since Ez is also proportional to z,
it is clear that this result holds in three dimensions. In short, the electric field is
radial from the charge, and the field lines radiate directly out of the charge, just
as they do for a stationary charge. Of course, the field isn’t exactly the same
as for the stationary charge, because of all the extra factors of (1− v2). But we
can show something rather interesting. The difference is just what you would
get if you were to draw the Coulomb field with a peculiar set of coordinates in
which the scale of x was squashed up by the factor

√
1− v2. If you do that, the

field lines will be spread out ahead and behind the charge and will be squeezed
together around the sides, as shown in Fig. 26-4.

If we relate the strength of E to the density of the field lines in the conventional
way, we see a stronger field at the sides and a weaker field ahead and behind,
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which is just what the equations say. First, if we look at the strength of the field
at right angles to the line of motion, that is, for (x− vt) = 0, the distance from
the charge is

√
y2 + z2. Here the total field strength is

√
E2
y + E2

z , which is

E = q

4πε0
√

1− v2
1

y2 + z2 . (26.10)

The field is proportional to the inverse square of the distance—just like the
Coulomb field except increased by the constant, extra factor 1/

√
1− v2, which is

always greater than one. So at the sides of a moving charge, the electric field is
stronger than you get from the Coulomb law. In fact, the field in the sidewise
direction is bigger than the Coulomb potential by the ratio of the energy of the
particle to its rest mass.

Ahead of the charge (and behind), y and z are zero and

E = Ex = q(1− v2)
4πε0(x− vt)2 . (26.11)

The field again varies as the inverse square of the distance from the charge but
is now reduced by the factor (1− v2), in agreement with the picture of the field
lines. If v/c is small, v2/c2 is still smaller, and the effect of the (1− v2) terms is
very small; we get back to Coulomb’s law. But if a particle is moving very close
to the speed of light, the field in the forward direction is enormously reduced,
and the field in the sidewise direction is enormously increased.

Our results for the electric field of a charge can be put this way: Suppose
you were to draw on a piece of paper the field lines for a charge at rest, and
then set the picture to travelling with the speed v. Then, of course, the whole
picture would be compressed by the Lorentz contraction; that is, the carbon
granules on the paper would appear in different places. The miracle of it is that
the picture you would see as the page flies by would still represent the field lines
of the point charge. The contraction moves them closer together at the sides and
spreads them out ahead and behind, just in the right way to give the correct
line densities. We have emphasized before that field lines are not real but are
only one way of representing the field. However, here they almost seem to be
real. In this particular case, if you make the mistake of thinking that the field
lines are somehow really there in space, and transform them, you get the correct
field. That doesn’t, however, make the field lines any more real. All you need
do to remind yourself that they aren’t real is to think about the electric fields
produced by a charge together with a magnet; when the magnet moves, new
electric fields are produced, and destroy the beautiful picture. So the neat idea
of the contracting picture doesn’t work in general. It is, however, a handy way
to remember what the fields from a fast-moving charge are like.

v

B

q

Fig. 26-5. The magnetic field near a
moving charge is v × E. [Compare with
Fig. 26-4.]

The magnetic field is v×E [from Eq. (26.9)]. If you take the velocity crossed
into a radial E-field, you get a B which circles around the line of motion, as
shown in Fig. 26-5. If we put back the c’s, you will see that it’s the same result
we had for low-velocity charges. A good way to see where the c’s must go is to
refer back to the force law,

F = q(E + v ×B).

You see that a velocity times the magnetic field has the same dimensions as an
electric field. So the right-hand side of Eq. (26.9) must have a factor 1/c2:

B = v ×E
c2

. (26.12)

For a slow-moving charge (v � c), we can take for E the Coulomb field; then

B = q

4πε0c2
v × r
r3 . (26.13)
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This formula corresponds exactly to equations for the magnetic field of a current
that we found in Section 14-7.

(a)

q1
v1 q2

v2

(b)

v1

v2
B1

q1v1 × B1

q1E1

F1

q2E2 = F2

Fig. 26-6. The forces between two mov-
ing charges are not always equal and oppo-
site. It appears that “action” is not equal to
“reaction.”

We would like to point out, in passing, something interesting for you to think
about. (We will come back to discuss it again later.) Imagine two protons with
velocities at right angles, so that one will cross over the path of the other, but in
front of it, so they don’t collide. At some instant, their relative positions will be
as in Fig. 26-6(a). We look at the force on q1 due to q2 and vice versa. On q2
there is only the electric force from q1, since q1 makes no magnetic field along its
line of motion. On q1, however, there is again the electric force but, in addition,
a magnetic force, since it is moving in a B-field made by q2. The forces are as
drawn in Fig. 26-6(b). The electric forces on q1 and q2 are equal and opposite.
However, there is a sidewise (magnetic) force on q1 and no sidewise force on q2.
Does action not equal reaction? We leave it for you to worry about.

26-3 Relativistic transformation of the fields

In the last section we calculated the electric and magnetic fields from the
transformed potentials. The fields are important, of course, in spite of the
arguments given earlier that there is physical meaning and reality to the potentials.
The fields, too, are real. It would be convenient for many purposes to have a way
to compute the fields in a moving system if you already know the fields in some
“rest” system. We have the transformation laws for φ and A, because Aµ is a
four-vector. Now we would like to know the transformation laws of E and B.
Given E and B in one frame, how do they look in another frame moving past? It
is a convenient transformation to have. We could always work back through the
potentials, but it is useful sometimes to be able to transform the fields directly.
We will now see how that goes.

How can we find the transformation laws of the fields? We know the transfor-
mation laws of the φ and A, and we know how the fields are given in terms of φ
and A—it should be easy to find the transformation for the B and E. (You might
think that with every vector there should be something to make it a four-vector,
so with E there’s got to be something else we can use for the fourth component.
And also for B. But it’s not so. It’s quite different from what you would expect.)
To begin with, let’s take just a magnetic field B, which is, of course ∇×A. Now
we know that the vector potential with its x-, y-, and z-components is only a
piece of something; there is also a t-component. Also we know that for derivatives
like ∇, besides the x, y, z parts, there is also a derivative with respect to t. So
let’s try to figure out what happens if we replace a “y” by a “t”, or a “z” by a “t,”
or something like that.

First, notice the form of the terms in∇×A when we write out the components:

Bx = ∂Az
∂y
− ∂Ay

∂z
, By = ∂Ax

∂z
− ∂Az

∂x
, Bz = ∂Ay

∂x
− ∂Ax

∂y
. (26.14)

The x-component is equal to a couple of terms that involve only y- and z-
components. Suppose we call this combination of derivatives and components a
“zy-thing,” and give it a shorthand name, Fzy. We simply mean that

Fzy ≡
∂Az
∂y
− ∂Ay

∂z
. (26.15)

Similarly, By is equal to the same kind of “thing,” but this time it is an “xz-thing.”
And Bz is, of course, the corresponding “yx-thing.” We have

Bx = Fzy, By = Fxz, Bz = Fyx. (26.16)

Now what happens if we simply try to concoct also some “t”-type things like
Fxt and Ftz (since nature should be nice and symmetric in x, y, z, and t)? For
instance, what is Ftz? It is, of course,

∂At
∂z
− ∂Az

∂t
.
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But remember that At = φ, so it is also

∂φ

∂z
− ∂Az

∂t
.

You’ve seen that before. It is the z-component of E. Well, almost—there is a
sign wrong. But we forgot that in the four-dimensional gradient the t-derivative
comes with the opposite sign from x, y, and z. So we should really have taken
the more consistent extension of Ftz, as

Ftz = ∂At
∂z

+ ∂Az
∂t

(26.17)

Then it is exactly equal to −Ez. Trying also Ftx and Fty, we find that the three
possibilities give

Ftx = −Ex, Fty = −Ey, Ftz = −Ez. (26.18)

What happens if both subscripts are t? Or, for that matter, if both are x?
We get things like

Ftt = ∂At
∂t
− ∂At

∂t
,

and
Fxx = ∂Ax

∂x
− ∂Ax

∂x
,

which give nothing but zero.
We have then six of these F -things. There are six more which you get by

reversing the subscripts, but they give nothing really new, since

Fxy = −Fyx,

and so on. So, out of sixteen possible combinations of the four subscripts taken
in pairs, we get only six different physical objects; and they are the components
of B and E.

Table 26-1

The components of Fµν

Fµν = −Fνµ

Fµµ = 0

Fxy = −Bz Fxt = Ex

Fyz = −Bx Fyt = Ey

Fzx = −By Fzt = Ez

To represent the general term of F , we will use the general subscripts µ and ν,
where each can stand for 0, 1, 2, or 3—meaning in our usual four-vector notation
t, x, y, and z. Also, everything will be consistent with our four-vector notation if
we define Fµν by

Fµν = ∇µAν −∇νAµ, (26.19)
remembering that ∇µ = (∂/∂t,−∂/∂x,−∂/∂y,−∂/∂z) and that Aµ = (φ,Ax, Ay,
Az).

What we have found is that there are six quantities that belong together in
nature—that are different aspects of the same thing. The electric and magnetic
fields which we have considered as separate vectors in our slow-moving world
(where we don’t worry about the speed of light) are not vectors in four-space.
They are parts of a new “thing.” Our physical “field” is really the six-component
object Fµν . That is the way we must look at it for relativity. We summarize our
results on Fµν in Table 26-1.

You see that what we have done here is to generalize the cross product. We
began with the curl operation, and the fact that the transformation properties
of the curl are the same as the transformation properties of two vectors—the
ordinary three-dimensional vector A and the gradient operator which we know
also behaves like a vector. Let’s look for a moment at an ordinary cross product
in three dimensions, for example, the angular momentum of a particle. When an
object is moving in a plane, the quantity (xvy − yvx) is important. For motion
in three dimensions, there are three such important quantities, which we call the
angular momentum:

Lxy = m(xvy − yvx), Lyz = m(yvz − zvy), Lzx = m(zvx − xvz).

Then (although you may have forgotten by now) we discovered in Chapter 20
of Vol. I the miracle that these three quantities could be identified with the
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components of a vector. In order to do so, we had to make an artificial rule with
a right-hand convention. It was just luck. It was luck because Lij (with i and j
equal to x, y, or z) was an antisymmetric object:

Lij = −Lji, Lii = 0.

Of the nine possible quantities, there are only three independent numbers. And
it just happens that when you change coordinate systems these three objects
transform in exactly the same way as the components of a vector.

The same thing lets us represent an element of surface as a vector. A surface
element has two parts—say dx and dy—which we can represent by the vector da
normal to the surface. But we can’t do that in four dimensions. What is the
“normal” to dx dy? Is it along z or along t?

In short, for three dimensions it happens by luck that after you’ve taken a
combination of two vectors like Lij , you can represent it again by another vector
because there are just three terms that happen to transform like the components
of a vector. But in four dimensions that is evidently impossible, because there
are six independent terms, and you can’t represent six things by four things.

Even in three dimensions it is possible to have combinations of vectors that
can’t be represented by vectors. Suppose we take any two vectors a = (ax, ay, az)
and b = (bx, by, bz), and make the various possible combinations of components,
like axbx, axby, etc. There would be nine possible quantities:

axbx, axby, axbz,

aybx, ayby, aybz,

azbx, azby, azbz.

We might call these quantities Tij .
If we now go to a rotated coordinate system (say rotated about the z-axis),

the components of a and b are changed. In the new system, ax, for example,
gets replaced by

a′x = ax cos θ + ay sin θ,
and by gets replaced by

b′y = by cos θ − bx sin θ.
And similarly for other components. The nine components of the product quan-
tity Tij we have invented are all changed too, of course. For instance, Txy = axby
gets changed to

T ′xy = axby(cos2 θ)− axbx(cos θ sin θ) + ayby(sin θ cos θ)− aybx(sin2 θ),

or
T ′xy = Txy cos2 θ − Txx cos θ sin θ + Tyy sin θ cos θ − Tyx sin2 θ.

Each component of T ′ij is a linear combination of the components of Tij .
So we discover that it is not only possible to have a “vector product” like a×b

which has three components that transform like a vector, but we can—artificially—
also make another kind of “product” of two vectors Tij with nine components
that transform under a rotation by a complicated set of rules that we could figure
out. Such an object which has two indices to describe it, instead of one, is called
a tensor . It is a tensor of the “second rank,” because you can play this game
with three vectors too and get a tensor of the third rank—or with four, to get a
tensor of the fourth rank, and so on. A tensor of the first rank is a vector.

The point of all this is that our electromagnetic quantity Fµν is also a tensor
of the second rank, because it has two indices in it. It is, however, a tensor in
four dimensions. It transforms in a special way which we will work out in a
moment—it is just the way a product of vectors transforms. For Fµν it happens
that if you change the indices around, Fµν changes sign. That’s a special case—it
is an antisymmetric tensor. So we say: the electric and magnetic fields are both
part of an antisymmetric tensor of the second rank in four dimensions.
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You’ve come a long way. Remember way back when we defined what a velocity
meant? Now we are talking about “an antisymmetric tensor of the second rank
in four dimensions.”

Now we have to find the law of the transformation of Fµν . It isn’t at all
difficult to do; it’s just laborious—the brains involved are nil, but the work is
not. What we want is the Lorentz transformation of ∇µAν −∇νAµ. Since ∇µ
is just a special case of a vector, we will work with the general antisymmetric
vector combination, which we can call Gµν :

Gµν = aµbν − aνbµ. (26.20)

(For our purposes, aµ will eventually be replaced by ∇µ and bµ will be replaced
by the potential Aµ.) The components of aµ and bµ transform by the Lorentz
formulas, which are

a′t = at − vax√
1− v2

, b′t = bt − vbx√
1− v2

,

a′x = ax − vat√
1− v2

, b′x = bx − vbt√
1− v2

,

a′y = ay, b′y = by,

a′z = az, b′z = bz.

(26.21)

Now let’s transform the components of Gµν . We start with Gtx:

G′tx = a′tb
′
x − a′xb′t

=
(
at − vax√

1− v2

)(
bx − vbt√

1− v2

)
−
(
ax − vat√

1− v2

)(
bt − vbx√

1− v2

)
= atbx − axbt.

But that is just Gtx; so we have the simple result

G′tx = Gtx.

We will do one more.

G′ty = at − vax√
1− v2

by − ay
bt − vbx√

1− v2
= (atby − aybt)− v(axby − aybx)√

1− v2
.

So we get that
G′ty = Gty − vGxy√

1− v2
.

And, of course, in the same way,

G′tz = Gtz − vGxz√
1− v2

.

It is clear how the rest will go. Let’s make a table of all six terms; only now we
may as well write them for Fµν :

F ′tx = Ftx, F ′xy = Fxy − vFty√
1− v2

,

F ′ty = Fty − vFxy√
1− v2

, F ′yz = Fyz,

F ′tz = Ftz − vFxz√
1− v2

, F ′zx = Fzx − vFzt√
1− v2

.

(26.22)

Of course, we still have F ′µν = −F ′νµ and F ′µµ = 0.
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So we have the transformation of the electric and magnetic fields. All we have
to do is look at Table 26-1 to find out what our grand notation in terms of Fµν
means in terms of E and B. It’s just a matter of substitution. So that we can
see how it looks in the ordinary symbols, we’ll rewrite our transformation of the
field components in Table 26-2.

Table 26-2

The Lorentz transformation of the electric and magnetic fields (Note: c = 1)

E′x = Ex B′x = Bx

E′y = Ey − vBz√
1− v2

B′y = By + vEz√
1− v2

E′z = Ez + vBy√
1− v2

B′z = Bz − vEy√
1− v2

The equations in Table 26-2 tell us how E and B change if we go from one
inertial frame to another. If we know E and B in one system, we can find what
they are in another that moves by with the speed v.

We can write these equations in a form that is easier to remember if we notice
that since v is in the x-direction, all the terms with v are components of the cross
products v ×E and v ×B. So we can rewrite the transformations as shown in
Table 26-3.

Table 26-3

An alternative form for the field transformations (Note: c = 1)

E′x = Ex B′x = Bx

E′y = (E + v ×B)y√
1− v2

B′y = (B − v ×E)y√
1− v2

E′z = (E + v ×B)z√
1− v2

B′z = (B − v ×E)z√
1− v2

It is now easier to remember which components go where. In fact, the
transformation can be written even more simply if we define the field components
along x as the “parallel” components E‖ and B‖ (because they are parallel to
the relative velocity of S and S′), and the total transverse components—the
vector sums of the y- and z-components—as the “perpendicular” components
E⊥ and B⊥. Then we get the equations in Table 26-4. (We have also put back
the c’s, so it will be more convenient when we want to refer back later.)

Table 26-4

Still another form for the Lorentz transformation of E and B

E′‖ = E‖ B′‖ = B‖

E′⊥ = (E + v ×B)⊥√
1− v2/c2

B′⊥ =

(
B − v ×E

c2

)
⊥√

1− v2/c2

The field transformations give us another way of solving some problems we
have done before—for instance, for finding the fields of a moving point charge.
We have worked out the fields before by differentiating the potentials. But we
could now do it by transforming the Coulomb field. If we have a point charge at
rest in the S-frame, then there is only the simple radial E-field. In the S′-frame
we will see a point charge moving with the velocity u, if the S′-frame moves by the
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S-frame with the speed v = −u. We will let you show that the transformations
of Tables 26-3 and 26-4 give the same electric and magnetic fields we got in
Section 26-2.

+ + + + + + + +

− − − − − − − −

E
S′

v

Fig. 26-7. The coordinate frame S′ mov-
ing through a static electric field.

The transformation of Table 26-2 gives us an interesting and simple answer for
what we see if we move past any system of fixed charges. For example, suppose
we want to know the fields in our frame S′ if we are moving along between the
plates of a condenser, as shown in Fig. 26-7. (It is, of course, the same thing
if we say that a charged condenser is moving past us.) What do we see? The
transformation is easy in this case because the B-field in the original system
is zero. Suppose, first, that our motion is perpendicular to E; then we will see
an E′ = E/

√
1− v2/c2 which is still completely transverse. We will see, in

addition, a magnetic field B′ = −v×E′/c2. (The
√

1− v2/c2 doesn’t appear in
our formula for B′ because we wrote it in terms of E′ rather than E; but it’s the
same thing.) So when we move along perpendicular to a static electric field, we
see a reduced E and an added transverse B. If our motion is not perpendicular
to E, we break E into E‖ and E⊥. The parallel part is unchanged, E′‖ = E‖,
and the perpendicular component does as just described.

Let’s take the opposite case, and imagine we are moving through a pure static
magnetic field. This time we would see an electric field E′ equal to v ×B′, and
the magnetic field changed by the factor 1/

√
1− v2/c2 (assuming it is transverse).

So long as v is much less than c, we can neglect the change in the magnetic field,
and the main effect is that an electric field appears. As one example of this effect,
consider this once famous problem of determining the speed of an airplane. It’s no
longer famous, since radar can now be used to determine the air speed from ground
reflections, but for many years it was very hard to find the speed of an airplane in
bad weather. You could not see the ground and you didn’t know which way was
up, and so on. Yet it was important to know how fast you were moving relative to
the earth. How can this be done without seeing the earth? Many who knew the
transformation formulas thought of the idea of using the fact that the airplane
moves in the magnetic field of the earth. Suppose that an airplane is flying where
there is a magnetic field more or less known. Let’s just take the simple case
where the magnetic field is vertical. If we were flying through it with a horizontal
velocity v, then, according to our formula, we should see an electric field which
is v ×B, i.e., perpendicular to the line of motion. If we hang an insulated wire
across the airplane, this electric field will induce charges on the ends of the wire.
That is nothing new. From the point of view of someone on the ground, we are
moving a wire through a field, and the v ×B force causes charges to move to
the ends of the wire. The transformation equations just say the same thing in
a different way. (The fact that we can say the thing more than one way doesn’t
mean that one way is better than another. We are getting so many different
methods and tools that we can usually get the same result in 65 different ways!)

So to measure v, all we have to do is measure the voltage between the ends of
the wire. We can’t do it with a voltmeter because the same fields will act on the
wires in the voltmeter, but there are ways of measuring such fields. We talked
about some of them when we discussed atmospheric electricity in Chapter 9. So
it should be possible to measure the speed of the airplane.

This important problem was, however, never solved this way. The reason is
that the electric field that is developed is of the order of millivolts per meter.
It is possible to measure such fields, but the trouble is that these fields are,
unfortunately, not any different from any other electric fields. The field that is
produced by motion through the magnetic field can’t be distinguished from some
electric field that was already in the air from another cause, say from electrostatic
charges in the air, or on the clouds. We described in Chapter 9 that there are,
typically, electric fields above the surface of the earth with strengths of about
100 volts per meter. But they are quite irregular. So as the airplane flies through
the air, it sees fluctuations of atmospheric electric fields which are enormous in
comparison to the tiny fields produced by the v ×B term, and it turns out for
practical reasons to be impossible to measure speeds of an airplane by its motion
through the earth’s magnetic field.
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26-4 The equations of motion in relativistic notation*
It doesn’t do much good to find electric and magnetic fields from Maxwell’s

equations unless we know what the fields do when we have them. You may
remember that the fields are required to find the forces on charges, and that
those forces determine the motion of the charge. So, of course, part of the theory
of electrodynamics is the relation between the motion of charges and the forces.

For a single charge in the fields E and B, the force is

F = q(E + v ×B). (26.23)

This force is equal to the mass times the acceleration for low velocities, but
the correct law for any velocity is that the force is equal to dp/dt. Writing
p = m0v/

√
1− v2/c2, we find that the relativistically correct equation of motion

is
d

dt

(
m0v√

1− v2/c2

)
= F = q(E + v ×B). (26.24)

We would like now to discuss this equation from the point of view of relativ-
ity. Since we have put our Maxwell equations in relativistic form, it would be
interesting to see what the equations of motion would look like in relativistic
form. Let’s see whether we can rewrite the equation in a four-vector notation.

We know that the momentum is part of a four-vector pµ whose time component
is the energy m0c

2/
√

1− v2/c2. So we might think to replace the left-hand side
of Eq. (26.24) by dpµ/dt. Then we need only find a fourth component to go
with F . This fourth component must equal the rate-of-change of the energy, or
the rate of doing work, which is F ·v. We would then like to write the right-hand
side of Eq. (26.24) as a four-vector like (F · v, Fx, Fy, Fz). But this does not
make a four-vector.

The time derivative of a four-vector is no longer a four-vector, because the d/dt
requires the choice of some special frame for measuring t. We got into that trouble
before when we tried to make v into a four-vector. Our first guess was that the
time component would be cdt/dt = c. But the quantities(

c,
dx

dt
,
dy

dt
,
dz

dt

)
= (c,v) (26.25)

are not the components of a four-vector. We found that they could be made into
one by multiplying each component by 1/

√
1− v2/c2. The “four-velocity” uµ is

the four-vector
uµ =

(
c√

1− v2/c2
,

v√
1− v2/c2

)
. (26.26)

So it appears that the trick is to multiply d/dt by 1/
√

1− v2/c2, if we want the
derivatives to make a four-vector.

Our second guess then is that

1√
1− v2/c2

d

dt
(pµ) (26.27)

should be a four-vector. But what is v? It is the velocity of the particle—not of
a coordinate frame! Then the quantity fµ defined by

fµ =
(

F · v√
1− v2/c2

,
F√

1− v2/c2

)
(26.28)

is the extension into four dimensions of a force—we can call it the “four-force.” It
is indeed a four-vector, and its space components are not the components of F
but of F /

√
1− v2/c2.

The question is—why is fµ a four-vector? It would be nice to get a little
understanding of that 1/

√
1− v2/c2 factor. Since it has come up twice now, it

* In this section we will put back all of the c’s
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is time to see why the d/dt can always be fixed by the same factor. The answer
is in the following: When we take the time derivative of some function x, we
compute the increment ∆x in a small interval ∆t in the variable t. But in another
frame, the interval ∆t might correspond to a change in both t′ and x′, so if we
vary only t′, the change in x will be different. We have to find a variable for our
differentiation that is a measure of an “interval” in space-time, which will then
be the same in all coordinate systems. When we take ∆x for that interval, it will
be the same for all coordinate frames. When a particle “moves” in four-space,
there are the changes ∆t, ∆x, ∆y, ∆z. Can we make an invariant interval out of
them? Well, they are the components of the four-vector xµ = (ct, x, y, z) so if we
define a quantity ∆s by

(∆s)2 = 1
c2

∆xµ∆xµ = 1
c2

(c2∆t2 −∆x2 −∆y2 −∆z2) (26.29)

—which is a four-dimensional dot product—we then have a good four-scalar to
use as a measure of a four-dimensional interval. From ∆s—or its limit ds—we
can define a parameter s =

∫
ds. And a derivative with respect to s, d/ds, is a

nice four-dimensional operation, because it is invariant with respect to a Lorentz
transformation.

It is easy to relate ds to dt for a moving particle. For a moving point particle,

dx = vx dt, dy = vy dt, dz = vz dt, (26.30)
and

ds =
√

(dt2/c2)(c2 − v2
x − v2

y − v2
z) = dt

√
1− v2/c2. (26.31)

So the operator
1√

1− v2/c2
d

dt

is an invariant operator. If we operate on any four-vector with it, we get another
four-vector. For instance, if we operate on (ct, x, y, z), we get the four-velocity uµ:

dxµ
ds

= uµ.

We see now why the factor
√

1− v2/c2 fixes things up.
The invariant variable s is a useful physical quantity. It is called the “proper

time” along the path of a particle, because ds is always an interval of time
in a frame that is moving with the particle at any particular instant. (Then,
∆x = ∆y = ∆z = 0, and ∆s = ∆t.) If you can imagine some “clock” whose rate
doesn’t depend on the acceleration, such a clock carried along with the particle
would show the time s.

We can now go back and write Newton’s law (as corrected by Einstein) in
the neat form

dpµ
ds

= fµ, (26.32)

where fµ is given in Eq. (26.28). Also, the momentum pµ can be written as

pµ = m0uµ = m0
dxµ
ds

, (26.33)

where the coordinates xµ = (ct, x, y, z) now describe the trajectory of the particle.
Finally, the four-dimensional notation gives us this very simple form of the
equations of motion:

fµ = m0
d2xµ
ds2 , (26.34)

which is reminiscent of F = ma. It is important to notice that Eq. (26.34) is not
the same as F = ma, because the four-vector formula Eq. (26.34) has in it the
relativistic mechanics which are different from Newton’s law for high velocities.
It is unlike the case of Maxwell’s equations, where we were able to rewrite the
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equations in the relativistic form without any change in the meaning at all—but
with just a change of notation.

Now let’s return to Eq. (26.24) and see how we can write the right-hand side in
four-vector notation. The three components—when divided by

√
1− v2/c2—are

the components of fµ, so

fx = q(E + v ×B)x√
1− v2/c2

= q

[
Ex√

1− v2/c2
+ vyBz√

1− v2/c2
− vzBy√

1− v2/c2

]
. (26.35)

Now we must put all quantities in their relativistic notation. First, c/
√

1− v2/c2

and vy/
√

1− v2/c2 and vz/
√

1− v2/c2 are the t-, y-, and z-components of the
four-velocity uµ. And the components of E and B are components of the second-
rank tensor of the fields Fµν . Looking back in Table 26-1 for the components
of Fµν that correspond to Ex, Bz, and By, we get*

fx = q(utFxt − uyFxy − uzFxz),

which begins to look interesting. Every term has the subscript x, which is
reasonable, since we’re finding an x-component. Then all the others appear in
pairs: tt, yy, zz—except that the xx-term is missing. So we just stick it in, and
write

fx = q(utFxt − uxFxx − uyFxy − uzFxz). (26.36)

We haven’t changed anything because Fµν is antisymmetric, and Fxx is zero.
The reason for wanting to put in the xx-term is so that we can write Eq. (26.36)
in the short-hand form

fµ = quνFµν . (26.37)

This equation is the same as Eq. (26.36) if we make the rule that whenever any
subscript occurs twice (as ν does here), you automatically sum over terms in the
same way as for the scalar product, using the same convention for the signs.

You can easily believe that (26.37) works equally well for µ = y or µ = z, but
what about µ = t? Let’s see, for fun, what it says:

ft = q(utFtt − uxFtx − uyFty − uzFtz).

Now we have to translate back to E’s and B’s. We get

ft = q

(
0 + vx√

1− v2/c2
Ex + vy√

1− v2/c2
Ey + vz√

1− v2/c2
Ez

)
, (26.38)

or
ft = qv ·E√

1− v2/c2
.

But from Eq. (26.28), ft is supposed to be

F · v√
1− v2/c2

= q(E + v ×B) · v√
1− v2/c2

.

This is the same thing as Eq. (26.38), since (v ×B) · v is zero. So everything
comes out all right.

Summarizing, our equation of motion can be written in the elegant form

m0
d2xµ
ds2 = fµ = quνFµν . (26.39)

Although it is nice to see that the equations can be written that way, this form is
not particularly useful. It’s usually more convenient to solve for particle motions
by using the original equations (26.24), and that’s what we will usually do.

* When we put the c’s back in Table 26-1, all components of Fµν , corresponding to
components of E are multiplied by 1/c.
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27

Field Energy and Field Momentum

27-1 Local conservation

It 27-1 Local conservation
27-2 Energy conservation and

electromagnetism
27-3 Energy density and energy flow

in the electromagnetic field
27-4 The ambiguity of the field energy
27-5 Examples of energy flow
27-6 Field momentum

is clear that the energy of matter is not conserved. When an object radiates
light it loses energy. However, the energy lost is possibly describable in some
other form, say in the light. Therefore the theory of the conservation of energy
is incomplete without a consideration of the energy which is associated with
the light or, in general, with the electromagnetic field. We take up now the law
of conservation of energy and, also, of momentum for the fields. Certainly, we
cannot treat one without the other, because in the relativity theory they are
different aspects of the same four-vector.

Very early in Volume I, we discussed the conservation of energy; we said then
merely that the total energy in the world is constant. Now we want to extend
the idea of the energy conservation law in an important way—in a way that
says something in detail about how energy is conserved. The new law will say
that if energy goes away from a region, it is because it flows away through the
boundaries of that region. It is a somewhat stronger law than the conservation
of energy without such a restriction.

To see what the statement means, let’s look at how the law of the conservation
of charge works. We described the conservation of charge by saying that there is
a current density j and a charge density ρ, and that when the charge decreases
at some place there must be a flow of charge away from that place. We call that
the conservation of charge. The mathematical form of the conservation law is

∇ · j = −∂ρ
∂t
. (27.1)

This law has the consequence that the total charge in the world is always constant—
there is never any net gain or loss of charge. However, the total charge in the world
could be constant in another way. Suppose that there is some charge Q1 near
some point (1) while there is no charge near some point (2) some distance away
(Fig. 27-1). Now suppose that, as time goes on, the charge Q1 were to gradually
fade away and that simultaneously with the decrease of Q1 some charge Q2 would
appear near point (2), and in such a way that at every instant the sum of Q1
and Q2 was a constant. In other words, at any intermediate state the amount of
charge lost by Q1 would be added to Q2. Then the total amount of charge in
the world would be conserved. That’s a “world-wide” conservation, but not what
we will call a “local” conservation, because in order for the charge to get from
(1) to (2), it didn’t have to appear anywhere in the space between point (1) and
point (2). Locally, the charge was just “lost.”

(a)

(1) (2)

Q1 Q2

(b)

Q1 Q2

j

Fig. 27-1. Two ways to conserve charge:
(a) Q1 + Q2 is constant; (b) dQ1/dt =

−
∫
j · n da = −dQ2/dt.

There is a difficulty with such a “world-wide” conservation law in the theory of
relativity. The concept of “simultaneous moments” at distant points is one which
is not equivalent in different systems. Two events that are simultaneous in one
system are not simultaneous for another system moving past. For “world-wide”
conservation of the kind described, it is necessary that the charge lost from Q1
should appear simultaneously in Q2. Otherwise there would be some moments
when the charge was not conserved. There seems to be no way to make the
law of charge conservation relativistically invariant without making it a “local”
conservation law. As a matter of fact, the requirement of the Lorentz relativistic
invariance seems to restrict the possible laws of nature in surprising ways. In
modern quantum field theory, for example, people have often wanted to alter the
theory by allowing what we call a “nonlocal” interaction—where something here
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has a direct effect on something there—but we get in trouble with the relativity
principle.

“Local” conservation involves another idea. It says that a charge can get
from one place to another only if there is something happening in the space
between. To describe the law we need not only the density of charge, ρ, but also
another kind of quantity, namely j, a vector giving the rate of flow of charge
across a surface. Then the flow is related to the rate of change of the density
by Eq. (27.1). This is the more extreme kind of a conservation law. It says that
charge is conserved in a special way—conserved “locally.”

It turns out that energy conservation is also a local process. There is not only
an energy density in a given region of space but also a vector to represent the
rate of flow of the energy through a surface. For example, when a light source
radiates, we can find the light energy moving out from the source. If we imagine
some mathematical surface surrounding the light source, the energy lost from
inside the surface is equal to the energy that flows out through the surface.

27-2 Energy conservation and electromagnetism

We want now to write quantitatively the conservation of energy for electro-
magnetism. To do that, we have to describe how much energy there is in any
volume element of space, and also the rate of energy flow. Suppose we think
first only of the electromagnetic field energy. We will let u represent the energy
density in the field (that is, the amount of energy per unit volume in space) and
let the vector S represent the energy flux of the field (that is, the flow of energy
per unit time across a unit area perpendicular to the flow). Then, in perfect
analogy with the conservation of charge, Eq. (27.1), we can write the “local” law
of energy conservation in the field as

∂u

∂t
= −∇ · S. (27.2)

Of course, this law is not true in general; it is not true that the field energy is
conserved. Suppose you are in a dark room and then turn on the light switch. All
of a sudden the room is full of light, so there is energy in the field, although there
wasn’t any energy there before. Equation (27.2) is not the complete conservation
law, because the field energy alone is not conserved, only the total energy in the
world—there is also the energy of matter. The field energy will change if there is
some work being done by matter on the field or by the field on matter.

However, if there is matter inside the volume of interest, we know how much
energy it has: Each particle has the energy m0c

2/
√

1− v2/c2. The total energy
of the matter is just the sum of all the particle energies, and the flow of this
energy through a surface is just the sum of the energy carried by each particle
that crosses the surface. We want now to talk only about the energy of the
electromagnetic field. So we must write an equation which says that the total
field energy in a given volume decreases either because field energy flows out of
the volume or because the field loses energy to matter (or gains energy, which is
just a negative loss). The field energy inside a volume V is∫

V

u dV,

and its rate of decrease is minus the time derivative of this integral. The flow of
field energy out of the volume V is the integral of the normal component of S
over the surface Σ that encloses V ,∫

Σ
S · n da.

So
− d

dt

∫
V

u dV =
∫

Σ
S · n da+ (work done on matter inside V ). (27.3)
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We have seen before that the field does work on each unit volume of matter
at the rate E · j. [The force on a particle is F = q(E + v ×B), and the rate of
doing work is F · v = qE · v. If there are N particles per unit volume, the rate
of doing work per unit volume is NqE · v, but Nqv = j.] So the quantity E · j
must be equal to the loss of energy per unit time and per unit volume by the
field. Equation (27.3) then becomes

− d

dt

∫
V

u dV =
∫

Σ
S · n da+

∫
V

E · j dV. (27.4)

This is our conservation law for energy in the field. We can convert it into a
differential equation like Eq. (27.2) if we can change the second term to a volume
integral. That is easy to do with Gauss’ theorem. The surface integral of the
normal component of S is the integral of its divergence over the volume inside.
So Eq. (27.3) is equivalent to

−
∫
V

∂u

∂t
dV =

∫
V

∇ · S dV +
∫
V

E · j dV,

where we have put the time derivative of the first term inside the integral. Since
this equation is true for any volume, we can take away the integrals and we have
the energy equation for the electromagnetic fields:

− ∂u

∂t
=∇ · S +E · j. (27.5)

Now this equation doesn’t do us a bit of good unless we know what u and S
are. Perhaps we should just tell you what they are in terms of E and B, because
all we really want is the result. However, we would rather show you the kind of
argument that was used by Poynting in 1884 to obtain formulas for S and u,
so you can see where they come from. (You won’t, however, need to learn this
derivation for our later work.)

27-3 Energy density and energy flow in the electromagnetic field

The idea is to suppose that there is a field energy density u and a flux S
that depend only upon the fields E and B. (For example, we know that in
electrostatics, at least, the energy density can be written 1

2ε0E ·E.) Of course,
the u and S might depend on the potentials or something else, but let’s see what
we can work out. We can try to rewrite the quantity E · j in such a way that it
becomes the sum of two terms: one that is the time derivative of one quantity
and another that is the divergence of a second quantity. The first quantity would
then be u and the second would be S (with suitable signs). Both quantities must
be written in terms of the fields only; that is, we want to write our equality as

E · j = −∂u
∂t
−∇ · S. (27.6)

The left-hand side must first be expressed in terms of the fields only. How can
we do that? By using Maxwell’s equations, of course. From Maxwell’s equation
for the curl of B,

j = ε0c
2∇×B − ε0

∂E

∂t
.

Substituting this in (27.6) we will have only E’s and B’s:

E · j = ε0c
2E · (∇×B)− ε0E ·

∂E

∂t
. (27.7)

We are already partly finished. The last term is a time derivative—it is
(∂/∂t)( 1

2ε0E ·E). So 1
2ε0E ·E is at least one part of u. It’s the same thing we

found in electrostatics. Now, all we have to do is to make the other term into
the divergence of something.
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Notice that the first term on the right-hand side of (27.7) is the same as

(∇×B) ·E. (27.8)

And, as you know from vector algebra, (a× b) · c is the same as a · (b× c); so
our term is also the same as

∇ · (B ×E) (27.9)

and we have the divergence of “something,” just as we wanted. Only that’s wrong!
We warned you before that ∇ is “like” a vector, but not “exactly” the same. The
reason it is not is because there is an additional convention from calculus: when
a derivative operator is in front of a product, it works on everything to the right.
In Eq. (27.7), the ∇ operates only on B, not on E. But in the form (27.9), the
normal convention would say that ∇ operates on both B and E. So it’s not the
same thing. In fact, if we work out the components of ∇ · (B ×E) we can see
that it is equal to E · (∇ ×B) plus some other terms. It’s like what happens
when we take a derivative of a product in algebra. For instance,

d

dx
(fg) = df

dx
g + f

dg

dx
.

Rather than working out all the components of ∇ · (B ×E), we would like
to show you a trick that is very useful for this kind of problem. It is a trick
that allows you to use all the rules of vector algebra on expressions with the
∇ operator, without getting into trouble. The trick is to throw out—for a while
at least—the rule of the calculus notation about what the derivative operator
works on. You see, ordinarily, the order of terms is used for two separate purposes.
One is for calculus: f(d/dx)g is not the same as g(d/dx)f ; and the other is for
vectors: a× b is different from b× a. We can, if we want, choose to abandon
momentarily the calculus rule. Instead of saying that a derivative operates on
everything to the right, we make a new rule that doesn’t depend on the order
in which terms are written down. Then we can juggle terms around without
worrying.

Here is our new convention: we show, by a subscript, what a differential
operator works on; the order has no meaning. Suppose we let the operator D
stand for ∂/∂x. Then Df means that only the derivative of the variable quantity f
is taken. Then

Dff = ∂f

∂x
.

But if we have Dffg, it means

Dffg =
(
∂f

∂x

)
g.

But notice now that according to our new rule, fDfg means the same thing. We
can write the same thing any which way:

Dffg = gDff = fDfg = fgDf .

You see, the Df can even come after everything. (It’s surprising that such a
handy notation is never taught in books on mathematics or physics.)

You may wonder: What if I want to write the derivative of fg? I want the
derivative of both terms. That’s easy, you just say so; you write Df (fg) +Dg(fg).
That is just g(∂f/∂x) + f(∂g/∂x), which is what you mean in the old notation
by ∂(fg)/∂x.

You will see that it is now going to be very easy to work out a new expression
for ∇ · (B ×E). We start by changing to the new notation; we write

∇ · (B ×E) =∇B · (B ×E) +∇E · (B ×E). (27.10)

The moment we do that we don’t have to keep the order straight any more. We
always know that ∇E operates on E only, and ∇B operates on B only. In these
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circumstances, we can use ∇ as though it were an ordinary vector. (Of course,
when we are finished, we will want to return to the “standard” notation that
everybody usually uses.) So now we can do the various things like interchanging
dots and crosses and making other kinds of rearrangements of the terms. For
instance, the middle term of Eq. (27.10) can be rewritten as E ·∇×B. (You
remember that a ·b×c = b ·c×a.) And the last term is the same as B ·E×∇E .
It looks freakish, but it is all right. Now if we try to go back to the ordinary
convention, we have to arrange that the ∇ operates only on its “own” variable.
The first one is already that way, so we can just leave off the subscript. The
second one needs some rearranging to put the ∇ in front of the E, which we can
do by reversing the cross product and changing sign:

B · (E ×∇E) = −B · (∇E ×E).

Now it is in a conventional order, so we can return to the usual notation. Equa-
tion (27.10) is equivalent to

∇ · (B ×E) = E · (∇×B)−B · (∇×E). (27.11)

(A quicker way would have been to use components in this special case, but it
was worth taking the time to show you the mathematical trick. You probably
won’t see it anywhere else, and it is very good for unlocking vector algebra from
the rules about the order of terms with derivatives.)

We now return to our energy conservation discussion and use our new result,
Eq. (27.11), to transform the ∇×B term of Eq. (27.7). That energy equation
becomes

E · j = ε0c
2∇ · (B ×E) + ε0c

2B · (∇×E)− ∂

∂t
( 1

2ε0E ·E). (27.12)

Now you see, we’re almost finished. We have one term which is a nice derivative
with respect to t to use for u and another that is a beautiful divergence to
represent S. Unfortunately, there is the center term left over, which is neither
a divergence nor a derivative with respect to t. So we almost made it, but not
quite. After some thought, we look back at the differential equations of Maxwell
and discover that ∇×E is, fortunately, equal to −∂B/∂t, which means that we
can turn the extra term into something that is a pure time derivative:

B · (∇×E) = B ·
(
−∂B
∂t

)
= − ∂

∂t

(
B ·B

2

)
.

Now we have exactly what we want. Our energy equation reads

E · j =∇ · (ε0c2B ×E)− ∂

∂t

(
ε0c

2

2 B ·B + ε0
2 E ·E

)
, (27.13)

which is exactly like Eq. (27.6), if we make the definitions

u = ε0
2 E ·E + ε0c

2

2 B ·B (27.14)

and
S = ε0c

2E ×B. (27.15)

(Reversing the cross product makes the signs come out right.)
Our program was successful. We have an expression for the energy density

that is the sum of an “electric” energy density and a “magnetic” energy density,
whose forms are just like the ones we found in statics when we worked out the
energy in terms of the fields. Also, we have found a formula for the energy flow
vector of the electromagnetic field. This new vector, S = ε0c

2E ×B, is called
“Poynting’s vector,” after its discoverer. It tells us the rate at which the field
energy moves around in space. The energy which flows through a small area da
per second is S ·n da, where n is the unit vector perpendicular to da. (Now that
we have our formulas for u and S, you can forget the derivations if you want.)
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27-4 The ambiguity of the field energy

Before we take up some applications of the Poynting formulas [Eqs. (27.14)
and (27.15)], we would like to say that we have not really “proved” them. All
we did was to find a possible “u” and a possible “S.” How do we know that by
juggling the terms around some more we couldn’t find another formula for “u”
and another formula for “S”? The new S and the new u would be different,
but they would still satisfy Eq. (27.6). It’s possible. It can be done, but the
forms that have been found always involve various derivatives of the field (and
always with second-order terms like a second derivative or the square of a first
derivative). There are, in fact, an infinite number of different possibilities for u
and S, and so far no one has thought of an experimental way to tell which one is
right! People have guessed that the simplest one is probably the correct one, but
we must say that we do not know for certain what is the actual location in space
of the electromagnetic field energy. So we too will take the easy way out and say
that the field energy is given by Eq. (27.14). Then the flow vector S must be
given by Eq. (27.15).

It is interesting that there seems to be no unique way to resolve the indefinite-
ness in the location of the field energy. It is sometimes claimed that this problem
can be resolved by using the theory of gravitation in the following argument. In
the theory of gravity, all energy is the source of gravitational attraction. Therefore
the energy density of electricity must be located properly if we are to know in
which direction the gravity force acts. As yet, however, no one has done such
a delicate experiment that the precise location of the gravitational influence of
electromagnetic fields could be determined. That electromagnetic fields alone
can be the source of gravitational force is an idea it is hard to do without. It has,
in fact, been observed that light is deflected as it passes near the sun—we could
say that the sun pulls the light down toward it. Do you not want to allow that
the light pulls equally on the sun? Anyway, everyone always accepts the simple
expressions we have found for the location of electromagnetic energy and its flow.
And although sometimes the results obtained from using them seem strange,
nobody has ever found anything wrong with them—that is, no disagreement with
experiment. So we will follow the rest of the world—besides, we believe that it is
probably perfectly right.

We should make one further remark about the energy formula. In the first
place, the energy per unit volume in the field is very simple: It is the electrostatic
energy plus the magnetic energy, if we write the electrostatic energy in terms
of E2 and the magnetic energy as B2. We found two such expressions as possible
expressions for the energy when we were doing static problems. We also found
a number of other formulas for the energy in the electrostatic field, such as ρφ,
which is equal to the integral of E ·E in the electrostatic case. However, in an
electrodynamic field the equality failed, and there was no obvious choice as to
which was the right one. Now we know which is the right one. Similarly, we have
found the formula for the magnetic energy that is correct in general. The right
formula for the energy density of dynamic fields is Eq. (27.14).

27-5 Examples of energy flow E

B

S

v

DIRECTION OF WAVE
PROPAGATION

Fig. 27-2. The vectors E, B, and S for
a light wave.

Our formula for the energy flow vector S is something quite new. We want
now to see how it works in some special cases and also to see whether it checks
out with anything that we knew before. The first example we will take is light. In
a light wave we have an E vector and a B vector at right angles to each other and
to the direction of the wave propagation. (See Fig. 27-2.) In an electromagnetic
wave, the magnitude of B is equal to 1/c times the magnitude of E, and since
they are at right angles,

|E ×B| = E2

c
.

Therefore, for light, the flow of energy per unit area per second is

S = ε0cE
2. (27.16)
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For a light wave in which E = E0 cosω(t− x/c), the average rate of energy flow
per unit area, 〈S〉av—which is called the “intensity” of the light—is the mean
value of the square of the electric field times ε0c:

Intensity = 〈S〉av = ε0c〈E2〉av. (27.17)

Believe it or not, we have already derived this result in Section 31-5 of Vol. I,
when we were studying light. We can believe that it is right because it also checks
against something else. When we have a light beam, there is an energy density
in space given by Eq. (27.14). Using cB = E for a light wave, we get that

u = ε0
2 E2 + ε0c

2

2

(
E2

c2

)
= ε0E

2.

But E varies in space, so the average energy density is

〈u〉av = ε0〈E2〉av. (27.18)

Now the wave travels at the speed c, so we should think that the energy that
goes through a square meter in a second is c times the amount of energy in one
cubic meter. So we would say that

〈S〉av = ε0c〈E2〉av.

And it’s right; it is the same as Eq. (27.17). −

+

E

B

S

Fig. 27-3. Near a charging capacitor, the
Poynting vector S points inward toward the
axis.

Now we take another example. Here is a rather curious one. We look at the
energy flow in a capacitor that we are charging slowly. (We don’t want frequencies
so high that the capacitor is beginning to look like a resonant cavity, but we
don’t want dc either.) Suppose we use a circular parallel plate capacitor of our
usual kind, as shown in Fig. 27-3. There is a nearly uniform electric field inside
which is changing with time. At any instant the total electromagnetic energy
inside is u times the volume. If the plates have a radius a and a separation h,
the total energy between the plates is

U =
(
ε0
2 E2

)
(πa2h). (27.19)

This energy changes when E changes. When the capacitor is being charged, the
volume between the plates is receiving energy at the rate

dU

dt
= ε0πa

2hEĖ. (27.20)

So there must be a flow of energy into that volume from somewhere. Of course
you know that it must come in on the charging wires—not at all! It can’t enter
the space between the plates from that direction, because E is perpendicular to
the plates; E ×B must be parallel to the plates.

You remember, of course, that there is a magnetic field that circles around
the axis when the capacitor is charging. We discussed that in Chapter 23. Using
the last of Maxwell’s equations, we found that the magnetic field at the edge of
the capacitor is given by

2πac2B = Ė · πa2,

or
B = a

2c2 Ė.

Its direction is shown in Fig. 27-3. So there is an energy flow proportional
to E × B that comes in all around the edges, as shown in the figure. The
energy isn’t actually coming down the wires, but from the space surrounding the
capacitor.

Let’s check whether or not the total amount of flow through the whole surface
between the edges of the plates checks with the rate of change of the energy
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inside—it had better; we went through all that work proving Eq. (27.15) to make
sure, but let’s see. The area of the surface is 2πah, and S = ε0c

2E ×B is in
magnitude

ε0c
2E

(
a

2c2 Ė
)
,

so the total flux of energy is
πa2hε0EĖ.

It does check with Eq. (27.20). But it tells us a peculiar thing: that when we are
charging a capacitor, the energy is not coming down the wires; it is coming in
through the edges of the gap. That’s what this theory says!

−

+

+++++++++

−−−−−−−−−

Fig. 27-4. The fields outside a capacitor
when it is being charged by bringing two
charges from a large distance.

How can that be? That’s not an easy question, but here is one way of thinking
about it. Suppose that we had some charges above and below the capacitor
and far away. When the charges are far away, there is a weak but enormously
spread-out field that surrounds the capacitor. (See Fig. 27-4.) Then, as the
charges come together, the field gets stronger nearer to the capacitor. So the
field energy which is way out moves toward the capacitor and eventually ends up
between the plates.

As another example, we ask what happens in a piece of resistance wire when
it is carrying a current. Since the wire has resistance, there is an electric field
along it, driving the current. Because there is a potential drop along the wire,
there is also an electric field just outside the wire, parallel to the surface. (See
Fig. 27-5.) There is, in addition, a magnetic field which goes around the wire
because of the current. The E and B are at right angles; therefore there is a
Poynting vector directed radially inward, as shown in the figure. There is a flow
of energy into the wire all around. It is, of course, equal to the energy being lost
in the wire in the form of heat. So our “crazy” theory says that the electrons are
getting their energy to generate heat because of the energy flowing into the wire
from the field outside. Intuition would seem to tell us that the electrons get their
energy from being pushed along the wire, so the energy should be flowing down
(or up) along the wire. But the theory says that the electrons are really being
pushed by an electric field, which has come from some charges very far away,
and that the electrons get their energy for generating heat from these fields. The
energy somehow flows from the distant charges into a wide area of space and
then inward to the wire.

j E
E

BS

Fig. 27-5. The Poynting vector S near a
wire carrying a current.

Finally, in order to really convince you that this theory is obviously nuts,
we will take one more example—an example in which an electric charge and a
magnet are at rest near each other—both sitting quite still. Suppose we take the
example of a point charge sitting near the center of a bar magnet, as shown in
Fig. 27-6. Everything is at rest, so the energy is not changing with time. Also,
E and B are quite static. But the Poynting vector says that there is a flow of
energy, because there is an E ×B that is not zero. If you look at the energy
flow, you find that it just circulates around and around. There isn’t any change
in the energy anywhere—everything which flows into one volume flows out again.
It is like incompressible water flowing around. So there is a circulation of energy
in this so-called static condition. How absurd it gets!

q
N

S

E

B

S

Fig. 27-6. A charge and a magnet pro-
duce a Poynting vector that circulates in
closed loops.

Perhaps it isn’t so terribly puzzling, though, when you remember that what we
called a “static” magnet is really a circulating permanent current. In a permanent
magnet the electrons are spinning permanently inside. So maybe a circulation of
the energy outside isn’t so queer after all.

You no doubt begin to get the impression that the Poynting theory at least
partially violates your intuition as to where energy is located in an electromagnetic
field. You might believe that you must revamp all your intuitions, and, therefore
have a lot of things to study here. But it seems really not necessary. You don’t
need to feel that you will be in great trouble if you forget once in a while that
the energy in a wire is flowing into the wire from the outside, rather than along
the wire. It seems to be only rarely of value, when using the idea of energy
conservation, to notice in detail what path the energy is taking. The circulation
of energy around a magnet and a charge seems, in most circumstances, to be quite
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unimportant. It is not a vital detail, but it is clear that our ordinary intuitions
are quite wrong.

27-6 Field momentum

Next we would like to talk about the momentum in the electromagnetic field.
Just as the field has energy, it will have a certain momentum per unit volume.
Let us call that momentum density g. Of course, momentum has various possible
directions, so that g must be a vector. Let’s talk about one component at a time;
first, we take the x-component. Since each component of momentum is conserved
we should be able to write down a law that looks something like this:

− ∂

∂t

(
momentum
of matter

)
x

= ∂gx
∂t

+
(
momentum
outflow

)
x

.

The left side is easy. The rate-of-change of the momentum of matter is just the
force on it. For a particle, it is F = q(E + v ×B); for a distribution of charges,
the force per unit volume is (ρE + j × B). The “momentum outflow” term,
however, is strange. It cannot be the divergence of a vector because it is not a
scalar; it is, rather, an x-component of some vector. Anyway, it should probably
look something like

∂a

∂x
+ ∂b

∂y
+ ∂c

∂z
,

because the x-momentum could be flowing in any one of the three directions.
In any case, whatever a, b, and c are, the combination is supposed to equal the
outflow of the x-momentum.

Now the game would be to write ρE + j ×B in terms only of E and B—
eliminating ρ and j by using Maxwell’s equations—and then to juggle terms and
make substitutions to get it into a form that looks like

∂gx
∂t

+ ∂a

∂x
+ ∂b

∂y
+ ∂c

∂z
.

Then, by identifying terms, we would have expressions for gx, a, b, and c. It’s a
lot of work, and we are not going to do it. Instead, we are only going to find an
expression for g, the momentum density—and by a different route.

There is an important theorem in mechanics which is this: whenever there
is a flow of energy in any circumstance at all (field energy or any other kind of
energy), the energy flowing through a unit area per unit time, when multiplied
by 1/c2, is equal to the momentum per unit volume in the space. In the special
case of electrodynamics, this theorem gives the result that g is 1/c2 times the
Poynting vector:

g = 1
c2
S. (27.21)

So the Poynting vector gives not only energy flow but, if you divide by c2, also
the momentum density. The same result would come out of the other analysis
we suggested, but it is more interesting to notice this more general result. We
will now give a number of interesting examples and arguments to convince you
that the general theorem is true.

First example: Suppose that we have a lot of particles in a box—let’s say N
per cubic meter—and that they are moving along with some velocity v. Now
let’s consider an imaginary plane surface perpendicular to v. The energy flow
through a unit area of this surface per second is equal to Nv, the number which
flow through the surface per second, times the energy carried by each one. The
energy in each particle is m0c

2/
√

1− v2/c2. So the energy flow per second is

Nv
m0c

2√
1− v2/c2

.
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But the momentum of each particle is m0v/
√

1− v2/c2, so the density of mo-
mentum is

N
m0v√

1− v2/c2
,

which is just 1/c2 times the energy flow—as the theorem says. So the theorem is
true for a bunch of particles.

It is also true for light. When we studied light in Volume I, we saw that when
the energy is absorbed from a light beam, a certain amount of momentum is
delivered to the absorber. We have, in fact, shown in Chapter 34 of Vol. I that
the momentum is 1/c times the energy absorbed [Eq. (34.24) of Vol. I]. If we
let U0 be the energy arriving at a unit area per second, then the momentum
arriving at a unit area per second is U0/c. But the momentum is travelling at
the speed c, so its density in front of the absorber must be U0/c

2. So again the
theorem is right.

(a)

L

M

U

(b)

U

c

v

(c)

U

x

Fig. 27-7. The energy U in motion at the
speed c carries the momentum U/c.

Finally we will give an argument due to Einstein which demonstrates the
same thing once more. Suppose that we have a railroad car on wheels (assumed
frictionless) with a certain big mass M . At one end there is a device which will
shoot out some particles or light (or anything, it doesn’t make any difference what
it is), which are then stopped at the opposite end of the car. There was some
energy originally at one end—say the energy U indicated in Fig. 27-7(a)—and
then later it is at the opposite end, as shown in Fig. 27-7(c). The energy U has
been displaced the distance L, the length of the car. Now the energy U has
the mass U/c2, so if the car stayed still, the center of gravity of the car would
be moved. Einstein didn’t like the idea that the center of gravity of an object
could be moved by fooling around only on the inside, so he assumed that it is
impossible to move the center of gravity by doing anything inside. But if that is
the case, when we moved the energy U from one end to the other, the whole car
must have recoiled some distance x, as shown in part (c) of the figure. You can
see, in fact, that the total mass of the car, times x, must equal the mass of the
energy moved, U/c2 times L (assuming that U/c2 is much less than M):

Mx = U

c2
L. (27.22)

Let’s now look at the special case of the energy being carried by a light flash.
(The argument would work as well for particles, but we will follow Einstein,
who was interested in the problem of light.) What causes the car to be moved?
Einstein argued as follows: When the light is emitted there must be a recoil,
some unknown recoil with momentum p. It is this recoil which makes the car
roll backward. The recoil velocity v of the car will be this momentum divided by
the mass of the car:

v = p

M
.

The car moves with this velocity until the light energy U gets to the opposite
end. Then, when it hits, it gives back its momentum and stops the car. If x is
small, then the time the car moves is nearly equal to L/c; so we have that

x = vt = v
L

c
= p

M

L

c
.

Putting this x in Eq. (27.22), we get that

p = U

c
.

Again we have the relation of energy and momentum for light. Dividing by c to
get the momentum density g = p/c, we get once more that

g = U

c2
. (27.23)

You may well wonder: What is so important about the center-of-gravity
theorem? Maybe it is wrong. Perhaps, but then we would also lose the con-
servation of angular momentum. Suppose that our boxcar is moving along a
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track at some speed v and that we shoot some light energy from the top to the
bottom of the car—say, from A to B in Fig. 27-8. Now we look at the angular
momentum of the system about the point P . Before the energy U leaves A, it has
the mass m = U/c2 and the velocity v, so it has the angular momentum mvrA.
When it arrives at B, it has the same mass and, if the linear momentum of the
whole boxcar is not to change, it must still have the velocity v. It’s angular mo-
mentum about P is then mvrB . The angular momentum will be changed unless
the right recoil momentum was given to the car when the light was emitted—that
is, unless the light carries the momentum U/c. It turns out that the angular
momentum conservation and the theorem of center-of-gravity are closely related
in the relativity theory. So the conservation of angular momentum would also
be destroyed if our theorem were not true. At any rate, it does turn out to be
a true general law, and in the case of electrodynamics we can use it to get the
momentum in the field.

A

B

P

U

c
v

rA

rB

Fig. 27-8. The energy U must carry the
momentum U/c if the angular momentum
about P is to be conserved.

We will mention two further examples of momentum in the electromagnetic
field. We pointed out in Section 26-2 the failure of the law of action and reaction
when two charged particles were moving on orthogonal trajectories. The forces
on the two particles don’t balance out, so the action and reaction are not equal;
therefore the net momentum of the matter must be changing. It is not conserved.
But the momentum in the field is also changing in such a situation. If you
work out the amount of momentum given by the Poynting vector, it is not
constant. However, the change of the particle momenta is just made up by the
field momentum, so the total momentum of particles plus field is conserved.

Finally, another example is the situation with the magnet and the charge,
shown in Fig. 27-6. We were unhappy to find that energy was flowing around
in circles, but now, since we know that energy flow and momentum are pro-
portional, we know also that there is momentum circulating in the space. But
a circulating momentum means that there is angular momentum. So there is
angular momentum in the field. Do you remember the paradox we described in
Section 17-4 about a solenoid and some charges mounted on a disc? It seemed
that when the current turned off, the whole disc should start to turn. The puzzle
was: Where did the angular momentum come from? The answer is that if you
have a magnetic field and some charges, there will be some angular momentum
in the field. It must have been put there when the field was built up. When
the field is turned off, the angular momentum is given back. So the disc in the
paradox would start rotating. This mystic circulating flow of energy, which at
first seemed so ridiculous, is absolutely necessary. There is really a momentum
flow. It is needed to maintain the conservation of angular momentum in the
whole world.
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Electromagnetic Mass

28-1 The field energy of a point charge
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charge
28-3 Electromagnetic mass
28-4 The force of an electron on itself
28-5 Attempts to modify the Maxwell

theory
28-6 The nuclear force field

bringing together relativity and Maxwell’s equations, we have finished our
main work on the theory of electromagnetism. There are, of course, some details
we have skipped over and one large area that we will be concerned with in the
future—the interaction of electromagnetic fields with matter. But we want to
stop for a moment to show you that this tremendous edifice, which is such a
beautiful success in explaining so many phenomena, ultimately falls on its face.
When you follow any of our physics too far, you find that it always gets into some
kind of trouble. Now we want to discuss a serious trouble—the failure of the
classical electromagnetic theory. You can appreciate that there is a failure of all
classical physics because of the quantum-mechanical effects. Classical mechanics
is a mathematically consistent theory; it just doesn’t agree with experience.
It is interesting, though, that the classical theory of electromagnetism is an
unsatisfactory theory all by itself. There are difficulties associated with the
ideas of Maxwell’s theory which are not solved by and not directly associated
with quantum mechanics. You may say, “Perhaps there’s no use worrying about
these difficulties. Since the quantum mechanics is going to change the laws
of electrodynamics, we should wait to see what difficulties there are after the
modification.” However, when electromagnetism is joined to quantum mechanics,
the difficulties remain. So it will not be a waste of our time now to look at what
these difficulties are. Also, they are of great historical importance. Furthermore,
you may get some feeling of accomplishment from being able to go far enough
with the theory to see everything—including all of its troubles.

The difficulty we speak of is associated with the concepts of electromagnetic
momentum and energy, when applied to the electron or any charged particle. The
concepts of simple charged particles and the electromagnetic field are in some
way inconsistent. To describe the difficulty, we begin by doing some exercises
with our energy and momentum concepts.

First, we compute the energy of a charged particle. Suppose we take a simple
model of an electron in which all of its charge q is uniformly distributed on the
surface of a sphere of radius a, which we may take to be zero for the special case
of a point charge. Now let’s calculate the energy in the electromagnetic field. If
the charge is standing still, there is no magnetic field, and the energy per unit
volume is proportional to the square of the electric field. The magnitude of the
electric field is q/4πε0r2, and the energy density is

u = ε0
2 E2 = q2

32π2ε0r4 .

To get the total energy, we must integrate this density over all space. Using the
volume element 4πr2 dr, the total energy, which we will call Uelec, is

Uelec =
∫

q2

8πε0r2 dr.

This is readily integrated. The lower limit is a, and the upper limit is ∞, so

Uelec = 1
2

q2

4πε0
1
a
. (28.1)
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If we use the electronic charge qe for q and the symbol e2 for q2
e/4πε0, then

Uelec = 1
2
e2

a
. (28.2)

It is all fine until we set a equal to zero for a point charge—there’s the great
difficulty. Because the energy of the field varies inversely as the fourth power of
the distance from the center, its volume integral is infinite. There is an infinite
amount of energy in the field surrounding a point charge.

What’s wrong with an infinite energy? If the energy can’t get out, but must
stay there forever, is there any real difficulty with an infinite energy? Of course,
a quantity that comes out infinite may be annoying, but what really matters is
only whether there are any observable physical effects. To answer that question,
we must turn to something else besides the energy. Suppose we ask how the
energy changes when we move the charge. Then, if the changes are infinite, we
will be in trouble.

28-2 The field momentum of a moving charge

+

+

+

+

+

+

+

+

v

r

θ

φ

P
E

B
g

SPHERICAL
ELECTRON

(+)

a

Fig. 28-1. The fields E and B and the
momentum density g for a positive electron.
For a negative electron, E and B are re-
versed but g is not.

Suppose an electron is moving at a uniform velocity through space, assuming
for a moment that the velocity is low compared with the speed of light. Associated
with this moving electron there is a momentum—even if the electron had no
mass before it was charged—because of the momentum in the electromagnetic
field. We can show that the field momentum is in the direction of the velocity v
of the charge and is, for small velocities, proportional to v. For a point P at the
distance r from the center of the charge and at the angle θ with respect to the
line of motion (see Fig. 28-1) the electric field is radial and, as we have seen, the
magnetic field is v ×E/c2. The momentum density, Eq. (27.21), is

g = ε0E ×B.

It is directed obliquely toward the line of motion, as shown in the figure, and has
the magnitude

g = ε0v

c2
E2 sin θ.

q

v
θ

dθ

r

dr

r dθ

r sin θ

Fig. 28-2. The volume element
2πr 2 sin θ dθ dr used for calculating the field
momentum.

The fields are symmetric about the line of motion, so when we integrate over
space, the transverse components will sum to zero, giving a resultant momentum
parallel to v. The component of g in this direction is g sin θ, which we must
integrate over all space. We take as our volume element a ring with its plane
perpendicular to v, as shown in Fig. 28-2. Its volume is 2πr2 sin θ dθ dr. The
total momentum is then

p =
∫
ε0v

c2
E2 sin2 θ 2πr2 sin θ dθ dr.

Since E is independent of θ (for v � c), we can immediately integrate over θ;
the integral is∫

sin3 θ dθ = −
∫

(1− cos2 θ) d(cos θ) = − cos θ + cos3 θ

3 .

The limits of θ are 0 and π, so the θ-integral gives merely a factor of 4/3, and

p = 8π
3
ε0v

c2

∫
E2r2 dr.

The integral (for v � c) is the one we have just evaluated to find the energy; it
is q2/16π2ε20a, and

p = 2
3

q2

4πε0
v

ac2
,

or

p = 2
3
e2

ac2
v. (28.3)
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The momentum in the field—the electromagnetic momentum—is proportional
to v. It is just what we should have for a particle with the mass equal to the
coefficient of v. We can, therefore, call this coefficient the electromagnetic mass,
melec, and write it as

melec = 2
3
e2

ac2
. (28.4)

28-3 Electromagnetic mass

Where does the mass come from? In our laws of mechanics we have supposed
that every object “carries” a thing we call the mass—which also means that it
“carries” a momentum proportional to its velocity. Now we discover that it is
understandable that a charged particle carries a momentum proportional to its
velocity. It might, in fact, be that the mass is just the effect of electrodynamics.
The origin of mass has until now been unexplained. We have at last in the
theory of electrodynamics a grand opportunity to understand something that we
never understood before. It comes out of the blue—or rather, from Maxwell and
Poynting—that any charged particle will have a momentum proportional to its
velocity just from electromagnetic influences.

Let’s be conservative and say, for a moment, that there are two kinds of
mass—that the total momentum of an object could be the sum of a mechanical
momentum and the electromagnetic momentum. The mechanical momentum
is the “mechanical” mass, mmech, times v. In experiments where we measure
the mass of a particle by seeing how much momentum it has, or how it swings
around in an orbit, we are measuring the total mass. We say generally that the
momentum is the total mass (mmech +melec) times the velocity. So the observed
mass can consist of two pieces (or possibly more if we include other fields): a
mechanical piece plus an electromagnetic piece. We know that there is definitely
an electromagnetic piece, and we have a formula for it. And there is the thrilling
possibility that the mechanical piece is not there at all—that the mass is all
electromagnetic.

Let’s see what size the electron must have if there is to be no mechanical
mass. We can find out by setting the electromagnetic mass of Eq. (28.4) equal
to the observed mass me of an electron. We find

a = 2
3

e2

mec2
. (28.5)

The quantity

r0 = e2

mec2
(28.6)

is called the “classical electron radius”; it has the numerical value 2.82×10−13 cm,
about one one-hundred-thousandth of the diameter of an atom.

Why is r0 called the electron radius, rather than our a? Because we could
equally well do the same calculation with other assumed distributions of charges—
the charge might be spread uniformly through the volume of a sphere or it might be
smeared out like a fuzzy ball. For any particular assumption the factor 2/3 would
change to some other fraction. For instance, for a charge uniformly distributed
throughout the volume of a sphere, the 2/3 gets replaced by 4/5. Rather than
to argue over which distribution is correct, it was decided to define r0 as the
“nominal” radius. Then different theories could supply their pet coefficients.

Let’s pursue our electromagnetic theory of mass. Our calculation was for v � c;
what happens if we go to high velocities? Early attempts led to a certain amount
of confusion, but Lorentz realized that the charged sphere would contract into a
ellipsoid at high velocities and that the fields would change in accordance with
the formulas (26.6) and (26.7) we derived for the relativistic case in Chapter 26.
If you carry through the integrals for p in that case, you find that for an arbitrary
velocity v, the momentum is altered by the factor 1/

√
1− v2/c2:

p = 2
3
e2

ac2
v√

1− v2/c2
. (28.7)
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In other words, the electromagnetic mass rises with velocity inversely as√
1− v2/c2—a discovery that was made before the theory of relativity.
Early experiments were proposed to measure the changes with velocity in

the observed mass of a particle in order to determine how much of the mass was
mechanical and how much was electrical. It was believed at the time that the
electrical part would vary with velocity, whereas the mechanical part would not.
But while the experiments were being done, the theorists were also at work. Soon
the theory of relativity was developed, which proposed that no matter what the
origin of the mass, it all should vary as m0/

√
1− v2/c2. Equation (28.7) was

the beginning of the theory that mass depended on velocity.
Let’s now go back to our calculation of the energy in the field, which led

to Eq. (28.2). According to the theory of relativity, the energy U will have the
mass U/c2; Eq. (28.2) then says that the field of the electron should have the
mass

m′elec = Uelec

c2
= 1

2
e2

ac2
, (28.8)

which is not the same as the electromagnetic mass, melec, of Eq. (28.4). In fact,
if we just combine Eqs. (28.2) and (28.4), we would write

Uelec = 3
4 melecc

2.

This formula was discovered before relativity, and when Einstein and others
began to realize that it must always be that U = mc2, there was great confusion.

28-4 The force of an electron on itself

The discrepancy between the two formulas for the electromagnetic mass
is especially annoying, because we have carefully proved that the theory of
electrodynamics is consistent with the principle of relativity. Yet the theory of
relativity implies without question that the momentum must be the same as the
energy times v/c2. So we are in some kind of trouble; we must have made a
mistake. We did not make an algebraic mistake in our calculations, but we have
left something out.

In deriving our equations for energy and momentum, we assumed the conser-
vation laws. We assumed that all forces were taken into account and that any
work done and any momentum carried by other “nonelectrical” machinery was
included. Now if we have a sphere of charge, the electrical forces are all repulsive
and an electron would tend to fly apart. Because the system has unbalanced
forces, we can get all kinds of errors in the laws relating energy and momen-
tum. To get a consistent picture, we must imagine that something holds the
electron together. The charges must be held to the sphere by some kind of rubber
bands—something that keeps the charges from flying off. It was first pointed
out by Poincaré that the rubber bands—or whatever it is that holds the electron
together—must be included in the energy and momentum calculations. For this
reason the extra nonelectrical forces are also known by the more elegant name
“the Poincaré stresses.” If the extra forces are included in the calculations, the
masses obtained in two ways are changed (in a way that depends on the detailed
assumptions). And the results are consistent with relativity; i.e., the mass that
comes out from the momentum calculation is the same as the one that comes
from the energy calculation. However, both of them contain two contributions:
an electromagnetic mass and contribution from the Poincaré stresses. Only when
the two are added together do we get a consistent theory.

It is therefore impossible to get all the mass to be electromagnetic in the
way we hoped. It is not a legal theory if we have nothing but electrodynamics.
Something else has to be added. Whatever you call them—“rubber bands,” or
“Poincaré stresses,” or something else—there have to be other forces in nature to
make a consistent theory of this kind.

Clearly, as soon as we have to put forces on the inside of the electron, the
beauty of the whole idea begins to disappear. Things get very complicated. You
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would want to ask: How strong are the stresses? How does the electron shake?
Does it oscillate? What are all its internal properties? And so on. It might
be possible that an electron does have some complicated internal properties.
If we made a theory of the electron along these lines, it would predict odd
properties, like modes of oscillation, which haven’t apparently been observed. We
say “apparently” because we observe a lot of things in nature that still do not
make sense. We may someday find out that one of the things we don’t understand
today (for example, the muon) can, in fact, be explained as an oscillation of the
Poincaré stresses. It doesn’t seem likely, but no one can say for sure. There
are so many things about fundamental particles that we still don’t understand.
Anyway, the complex structure implied by this theory is undesirable, and the
attempt to explain all mass in terms of electromagnetism—at least in the way
we have described—has led to a blind alley.

We would like to think a little more about why we say we have a mass when
the momentum in the field is proportional to the velocity. Easy! The mass is
the coefficient between momentum and velocity. But we can look at the mass in
another way: a particle has mass if you have to exert a force in order to accelerate
it. So it may help our understanding if we look a little more closely at where the
forces come from. How do we know that there has to be a force? Because we
have proved the law of the conservation of momentum for the fields. If we have a
charged particle and push on it for awhile, there will be some momentum in the
electromagnetic field. Momentum must have been poured into the field somehow.
Therefore there must have been a force pushing on the electron in order to get it
going—a force in addition to that required by its mechanical inertia, a force due
to its electromagnetic interaction. And there must be a corresponding force back
on the “pusher.” But where does that force come from?

(a)

−

−

−

−

−

−

−

−

dF

(b)
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d2F
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β
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−
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−

−

dF

ẍ

Fig. 28-3. The self-force on an accelerating electron is not zero because of the retardation.
(By dF we mean the force on a surface element da; by d2F we mean the force on the surface
element daα from the charge on the surface element daβ.

The picture is something like this. We can think of the electron as a charged
sphere. When it is at rest, each piece of charge repels electrically each other piece,
but the forces all balance in pairs, so that there is no net force. [See Fig. 28-3(a).]
However, when the electron is being accelerated, the forces will no longer be in
balance because of the fact that the electromagnetic influences take time to go
from one piece to another. For instance, the force on the piece α in Fig. 28-3(b)
from a piece β on the opposite side depends on the position of β at an earlier
time, as shown. Both the magnitude and direction of the force depend on the
motion of the charge. If the charge is accelerating, the forces on various parts of
the electron might be as shown in Fig. 28-3(c). When all these forces are added
up, they don’t cancel out. They would cancel for a uniform velocity, even though
it looks at first glance as though the retardation would give an unbalanced force
even for a uniform velocity. But it turns out that there is no net force unless the
electron is being accelerated. With acceleration, if we look at the forces between
the various parts of the electron, action and reaction are not exactly equal, and
the electron exerts a force on itself that tries to hold back the acceleration. It
holds itself back by its own bootstraps.
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It is possible, but difficult, to calculate this self-reaction force; however, we
don’t want to go into such an elaborate calculation here. We will tell you what the
result is for the special case of relatively uncomplicated motion in one dimension,
say x. Then, the self-force can be written in a series. The first term in the series
depends on the acceleration ẍ, the next term is proportional to ˙̇ẋ, and so on.*
The result is

F = α
e2

ac2
ẍ− 2

3
e2

c3
˙̇ẋ+ γ

e2a

c4
˙̇ ˙̇x + · · · , (28.9)

where α and γ are numerical coefficients of the order of 1. The coefficient α
of the ẍ term depends on what charge distribution is assumed; if the charge is
distributed uniformly on a sphere, then α = 2/3. So there is a term, proportional
to the acceleration, which varies inversely as the radius a of the electron and agrees
exactly with the value we got in Eq. (28.4) for melec. If the charge distribution
is chosen to be different, so that α is changed, the fraction 2/3 in Eq. (28.4)
would be changed in the same way. The term in ˙̇ẋ is independent of the assumed
radius a, and also of the assumed distribution of the charge; its coefficient is
always 2/3. The next term is proportional to the radius a, and its coefficient γ
depends on the charge distribution. You will notice that if we let the electron
radius a go to zero, the last term (and all higher terms) will go to zero; the second
term remains constant, but the first term—the electromagnetic mass—goes to
infinity. And we can see that the infinity arises because of the force of one part of
the electron on another—because we have allowed what is perhaps a silly thing,
the possibility of the “point” electron acting on itself.

28-5 Attempts to modify the Maxwell theory

We would like now to discuss how it might be possible to modify Maxwell’s
theory of electrodynamics so that the idea of an electron as a simple point charge
could be maintained. Many attempts have been made, and some of the theories
were even able to arrange things so that all the electron mass was electromagnetic.
But all of these theories have died. It is still interesting to discuss some of the
possibilities that have been suggested—to see the struggles of the human mind.

We started out our theory of electricity by talking about the interaction of
one charge with another. Then we made up a theory of these interacting charges
and ended up with a field theory. We believe it so much that we allow it to tell
us about the force of one part of an electron on another. Perhaps the entire
difficulty is that electrons do not act on themselves; perhaps we are making too
great an extrapolation from the interaction of separate electrons to the idea that
an electron interacts with itself. Therefore some theories have been proposed
in which the possibility that an electron acts on itself is ruled out. Then there
is no longer the infinity due to the self-action. Also, there is no longer any
electromagnetic mass associated with the particle; all the mass is back to being
mechanical, but there are new difficulties in the theory.

We must say immediately that such theories require a modification of the
idea of the electromagnetic field. You remember we said at the start that the
force on a particle at any point was determined by just two quantities—E and B.
If we abandon the “self-force” this can no longer be true, because if there is an
electron in a certain place, the force isn’t given by the total E and B, but by
only those parts due to other charges. So we have to keep track always of how
much of E and B is due to the charge on which you are calculating the force
and how much is due to the other charges. This makes the theory much more
elaborate, but it gets rid of the difficulty of the infinity.

So we can, if we want to, say that there is no such thing as the electron acting
upon itself, and throw away the whole set of forces in Eq. (28.9). However, we
have then thrown away the baby with the bath! Because the second term in
Eq. (28.9), the term in ˙̇ẋ, is needed. That force does something very definite.
If you throw it away, you’re in trouble again. When we accelerate a charge,

* We are using the notation: ẋ = dx/dt, ẍ = d2x/dt2, ˙̇ẋ = d3x/dt3, etc.
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it radiates electromagnetic waves, so it loses energy. Therefore, to accelerate
a charge, we must require more force than is required to accelerate a neutral
object of the same mass; otherwise energy wouldn’t be conserved. The rate at
which we do work on an accelerating charge must be equal to the rate of loss
of energy by radiation. We have talked about this effect before—it is called the
radiation resistance. We still have to answer the question: Where does the extra
force, against which we must do this work, come from? When a big antenna is
radiating, the forces come from the influence of one part of the antenna current
on another. For a single accelerating electron radiating into otherwise empty
space, there would seem to be only one place the force could come from—the
action of one part of the electron on another part.

We found back in Chapter 32 of Vol. I that an oscillating charge radiates
energy at the rate

dW

dt
= 2

3
e2(ẍ)2

c3
. (28.10)

Let’s see what we get for the rate of doing work on an electron against the
bootstrap force of Eq. (28.9). The rate of work is the force times the velocity,
or Fẋ:

dW

dt
= α

e2

ac2
ẍẋ− 2

3
e2

c3
˙̇ẋẋ+ · · · (28.11)

The first term is proportional to dẋ2/dt, and therefore just corresponds to the rate
of change of the kinetic energy 1

2mv
2 associated with the electromagnetic mass.

The second term should correspond to the radiated power in Eq. (28.10). But it
is different. The discrepancy comes from the fact that the term in Eq. (28.11) is
generally true, whereas Eq. (28.10) is right only for an oscillating charge. We
can show that the two are equivalent if the motion of the charge is periodic. To
do that, we rewrite the second term of Eq. (28.11) as

−2
3
e2

c3
d

dt
(ẋẍ) + 2

3
e2

c3
(ẍ)2,

which is just an algebraic transformation. If the motion of the electron is periodic,
the quantity ẋẍ returns periodically to the same value, so that if we take the
average of its time derivative, we get zero. The second term, however, is always
positive (it’s a square), so its average is also positive. This term gives the net
work done and is just equal to Eq. (28.10).

The term in ˙̇ẋ of the bootstrap force is required in order to have energy
conservation in radiating systems, and we can’t throw it away. It was, in fact,
one of the triumphs of Lorentz to show that there is such a force and that it
comes from the action of the electron on itself. We must believe in the idea of
the action of the electron on itself, and we need the term in ˙̇ẋ. The problem is
how we can get that term without getting the first term in Eq. (28.9), which
gives all the trouble. We don’t know how. You see that the classical electron
theory has pushed itself into a tight corner.

There have been several other attempts to modify the laws in order to
straighten the thing out. One way, proposed by Born and Infeld, is to change
the Maxwell equations in a complicated way so that they are no longer linear.
Then the electromagnetic energy and momentum can be made to come out finite.
But the laws they suggest predict phenomena which have never been observed.
Their theory also suffers from another difficulty we will come to later, which is
common to all the attempts to avoid the troubles we have described.

The following peculiar possibility was suggested by Dirac. He said: Let’s
admit that an electron acts on itself through the second term in Eq. (28.9) but
not through the first. He then had an ingenious idea for getting rid of one but not
the other. Look, he said, we made a special assumption when we took only the
retarded wave solutions of Maxwell’s equations; if we were to take the advanced
waves instead, we would get something different. The formula for the self-force
would be

F = α
e2

ac2
ẍ+ 2

3
e2

c3
˙̇ẋ+ γ

e2a

c4
˙̇ ˙̇x + · · · (28.12)
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This equation is just like Eq. (28.9) except for the sign of the second term—and
some higher terms—of the series. [Changing from retarded to advanced waves is
just changing the sign of the delay which, it is not hard to see, is equivalent to
changing the sign of t everywhere. The only effect on Eq. (28.9) is to change the
sign of all the odd time derivatives.] So, Dirac said, let’s make the new rule that
an electron acts on itself by one-half the difference of the retarded and advanced
fields which it produces. The difference of Eqs. (28.9) and (28.12), divided by
two, is then

F = −2
3
e2

c3
˙̇ẋ+ higher terms.

In all the higher terms, the radius a appears to some positive power in the
numerator. Therefore, when we go to the limit of a point charge, we get only the
one term—just what is needed. In this way, Dirac got the radiation resistance
force and none of the inertial forces. There is no electromagnetic mass, and the
classical theory is saved—but at the expense of an arbitrary assumption about
the self-force.

The arbitrariness of the extra assumption of Dirac was removed, to some
extent at least, by Wheeler and Feynman, who proposed a still stranger theory.
They suggest that point charges interact only with other charges, but that the
interaction is half through the advanced and half through the retarded waves. It
turns out, most surprisingly, that in most situations you won’t see any effects of
the advanced waves, but they do have the effect of producing just the radiation
reaction force. The radiation resistance is not due to the electron acting on itself,
but from the following peculiar effect. When an electron is accelerated at the
time t, it shakes all the other charges in the world at a later time t′ = t+ r/c
(where r is the distance to the other charge), because of the retarded waves.
But then these other charges react back on the original electron through their
advanced waves, which will arrive at the time t′′, equal to t′ minus r/c, which is, of
course, just t. (They also react back with their retarded waves too, but that just
corresponds to the normal “reflected” waves.) The combination of the advanced
and retarded waves means that at the instant it is accelerated an oscillating
charge feels a force from all the charges that are “going to” absorb its radiated
waves. You see what tight knots people have gotten into in trying to get a theory
of the electron!

We’ll describe now still another kind of theory, to show the kind of things
that people think of when they are stuck. This is another modification of the
laws of electrodynamics, proposed by Bopp. You realize that once you decide
to change the equations of electromagnetism you can start anywhere you want.
You can change the force law for an electron, or you can change the Maxwell
equations (as we saw in the examples we have described), or you can make a
change somewhere else. One possibility is to change the formulas that give the
potentials in terms of the charges and currents. One of our formulas has been
that the potentials at some point are given by the current density (or charge)
at each other point at an earlier time. Using our four-vector notation for the
potentials, we write

Aµ(1, t) = 1
4πε0c2

∫
jµ(2, t− r12/c)

r12
dV2. (28.13)

Bopp’s beautifully simple idea is that: Maybe the trouble is in the 1/r factor in
the integral. Suppose we were to start out by assuming only that the potential
at one point depends on the charge density at any other point as some function
of the distance between the points, say as f(r12). The total potential at point (1)
will then be given by the integral of jµ times this function over all space:

Aµ(1, t) =
∫
jµ(2, t− r12/c)f(r12) dV2.

That’s all. No differential equation, nothing else. Well, one more thing. We also
ask that the result should be relativistically invariant. So by “distance” we should
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take the invariant “distance” between two points in space-time. This distance
squared (within a sign which doesn’t matter) is

s2
12 = c2(t1 − t2)2 − r2

12

= c2(t1 − t2)2 − (x1 − x2)2 − (y1 − y2)2 − (z1 − z2)2. (28.14)

So, for a relativistically invariant theory, we should take some function of the
magnitude of s12, or what is the same thing, some function of s2

12. So Bopp’s
theory is that

Aµ(1, t1) =
∫
jµ(2, t2)F (s2

12) dV2 dt2. (28.15)

(The integral must, of course, be over the four-dimensional volume dt2 dx2 dy2 dz2.)

(a)

s2
0

a2

F (s2)

(b)

1

2

a

r12

Fig. 28-4. The function F (s2) used in
the nonlocal theory of Bopp.

All that remains is to choose a suitable function for F . We assume only one
thing about F—that it is very small except when its argument is near zero—so
that a graph of F would be a curve like the one in Fig. 28-4. It is a narrow
spike with a finite area centered at s2 = 0, and with a width which we can say is
roughly a2. We can say, crudely, that when we calculate the potential at point (1),
only those points (2) produce any appreciable effect if s2

12 = c2(t1 − t2)2 − r2
12 is

within ±a2 of zero. We can indicate this by saying that F is important only for

s2
12 = c2(t1 − t2)2 − r2

12 ≈ ±a2. (28.16)

You can make it more mathematical if you want to, but that’s the idea.
Now suppose that a is very small in comparison with the size of ordinary

objects like motors, generators, and the like so that for normal problems r12 � a.
Then Eq. (28.16) says that charges contribute to the integral of Eq. (28.15) only
when t1 − t2 is in the small range

c(t1 − t2) ≈
√
r2
12 ± a2 = r12

√
1± a2

r2
12
.

Since a2/r2
12 � 1, the square root can be approximated by 1± a2/2r2

12, so

t1 − t2 = r12

c

(
1± a2

2r2
12

)
= r12

c
± a2

2r12c
.

What is the significance? This result says that the only times t2 that are
important in the integral of Aµ are those which differ from the time t1, at which
we want the potential, by the delay r12/c—with a negligible correction so long
as r12 � a. In other words, this theory of Bopp approaches the Maxwell theory—
so long as we are far away from any particular charge—in the sense that it gives
the retarded wave effects.

We can, in fact, see approximately what the integral of Eq. (28.15) is going
to give. If we integrate first over t2 from −∞ to +∞—keeping r12 fixed—then
s2

12 is also going to go from −∞ to +∞. The integral will all come from t2’s in
a small interval of width ∆t2 = 2 × a2/2r12c, centered at t1 − r12/c. Say that
the function F (s2) has the value K at s2 = 0; then the integral over t2 gives
approximately Kjµ∆t2, or

Ka2

c

jµ
r12

.

We should, of course, take the value of jµ at t2 = t1 − r12/c, so that Eq. (28.15)
becomes

Aµ(1, t1) = Ka2

c

∫
jµ(2, t1 − r12/c)

r12
dV2.

If we pick K = 1/4πε0ca2, we are right back to the retarded potential solution of
Maxwell’s equations—including automatically the 1/r dependence! And it all
came out of the simple proposition that the potential at one point in space-time
depends on the current density at all other points in space-time, but with a
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weighting factor that is some narrow function of the four-dimensional distance
between the two points. This theory again predicts a finite electromagnetic mass
for the electron, and the energy and mass have the right relation for the relativity
theory. They must, because the theory is relativistically invariant from the start,
and everything seems to be all right.

There is, however, one fundamental objection to this theory and to all the
other theories we have described. All particles we know obey the laws of quantum
mechanics, so a quantum-mechanical modification of electrodynamics has to be
made. Light behaves like photons. It isn’t 100 percent like the Maxwell theory.
So the electrodynamic theory has to be changed. We have already mentioned
that it might be a waste of time to work so hard to straighten out the classical
theory, because it could turn out that in quantum electrodynamics the difficulties
will disappear or may be resolved in some other fashion. But the difficulties
do not disappear in quantum electrodynamics. That is one of the reasons that
people have spent so much effort trying to straighten out the classical difficulties,
hoping that if they could straighten out the classical difficulty and then make
the quantum modifications, everything would be straightened out. The Maxwell
theory still has the difficulties after the quantum mechanics modifications are
made.

The quantum effects do make some changes—the formula for the mass is
modified, and Planck’s constant ~ appears—but the answer still comes out infinite
unless you cut off an integration somehow—just as we had to stop the classical
integrals at r = a. And the answers depend on how you stop the integrals. We
cannot, unfortunately, demonstrate for you here that the difficulties are really
basically the same, because we have developed so little of the theory of quantum
mechanics and even less of quantum electrodynamics. So you must just take our
word that the quantized theory of Maxwell’s electrodynamics gives an infinite
mass for a point electron.

It turns out, however, that nobody has ever succeeded in making, a self-
consistent quantum theory out of any of the modified theories. Born and Infeld’s
ideas have never been satisfactorily made into a quantum theory. The theories
with the advanced and retarded waves of Dirac, or of Wheeler and Feynman,
have never been made into a satisfactory quantum theory. The theory of Bopp
has never been made into a satisfactory quantum theory. So today, there is no
known solution to this problem. We do not know how to make a consistent
theory—including the quantum mechanics—which does not produce an infinity
for the self-energy of an electron, or any point charge. And at the same time,
there is no satisfactory theory that describes a non-point charge. It’s an unsolved
problem.

In case you are deciding to rush off to make a theory in which the action
of an electron on itself is completely removed, so that electromagnetic mass is
no longer meaningful, and then to make a quantum theory of it, you should be
warned that you are certain to be in trouble. There is definite experimental
evidence of the existence of electromagnetic inertia—there is evidence that some
of the mass of charged particles is electromagnetic in origin.

It used to be said in the older books that since Nature will obviously not
present us with two particles—one neutral and the other charged, but otherwise
the same—we will never be able to tell how much of the mass is electromagnetic
and how much is mechanical. But it turns out that Nature has been kind enough
to present us with just such objects, so that by comparing the observed mass of
the charged one with the observed mass of the neutral one, we can tell whether
there is any electromagnetic mass. For example, there are the neutrons and
protons. They interact with tremendous forces—the nuclear forces—whose origin
is unknown. However, as we have already described, the nuclear forces have one
remarkable property. So far as they are concerned, the neutron and proton are
exactly the same. The nuclear forces between neutron and neutron, neutron and
proton, and proton and proton are all identical as far as we can tell. Only the
little electromagnetic forces are different; electrically the proton and neutron are
as different as night and day. This is just what we wanted. There are two particles,
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identical from the point of view of the strong interactions, but different electrically.
And they have a small difference in mass. The mass difference between the proton
and the neutron—expressed as the difference in the rest-energy mc2 in units of
MeV—is about 1.3 MeV, which is about 2.6 times the electron mass. The classical
theory would then predict a radius of about 1

3 to 1
2 the classical electron radius,

or about 10−13 cm. Of course, one should really use the quantum theory, but by
some strange accident, all the constants—2π’s and ~’s, etc.—come out so that
the quantum theory gives roughly the same radius as the classical theory. The
only trouble is that the sign is wrong! The neutron is heavier than the proton.

Table 28-1

Particle Masses

Particle Charge Mass ∆m1

(electronic) (MeV) (MeV)

n (neutron) 0 939.5
p (proton) +1 938.2 −1.3

π (π-meson) 0 135.0
±1 139.6 +4.6

K (K-meson) 0 497.8
±1 493.9 −3.9

Σ (sigma) 0 1191.5
+1 1189.4 −2.1
−1 1196.0 +4.5

1 ∆m = (mass of charged)− (mass of neutral).

Nature has also given us several other pairs—or triplets—of particles which
appear to be exactly the same except for their electrical charge. They interact
with protons and neutrons, through the so-called “strong” interactions of the
nuclear forces. In such interactions, the particles of a given kind—say the π-
mesons—behave in every way like one object except for their electrical charge. In
Table 28-1 we give a list of such particles, together with their measured masses.
The charged π-mesons—positive or negative—have a mass of 139.6 MeV, but
the neutral π-meson is 4.6 MeV lighter. We believe that this mass difference is
electromagnetic; it would correspond to a particle radius of 3 to 4× 10−14 cm.
You will see from the table that the mass differences of the other particles are
usually of the same general size.

+

PROTON

Negative
π-meson

Fig. 28-5. A neutron may exist, at times,
as a proton surrounded by a negative π-
meson.

Now the size of these particles can be determined by other methods, for
instance by the diameters they appear to have in high-energy collisions. So the
electromagnetic mass seems to be in general agreement with electromagnetic
theory, if we stop our integrals of the field energy at the same radius obtained by
these other methods. That’s why we believe that the differences do represent
electromagnetic mass.

You are no doubt worried about the different signs of the mass differences
in the table. It is easy to see why the charged ones should be heavier than
the neutral ones. But what about those pairs like the proton and the neutron,
where the measured mass comes out the other way? Well, it turns out that
these particles are complicated, and the computation of the electromagnetic mass
must be more elaborate for them. For instance, although the neutron has no net
charge, it does have a charge distribution inside it—it is only the net charge that
is zero. In fact, we believe that the neutron looks—at least sometimes—like a
proton with a negative π-meson in a “cloud” around it, as shown in Fig. 28-5.
Although the neutron is “neutral,” because its total charge is zero, there are still
electromagnetic energies (for example, it has a magnetic moment), so it’s not
easy to tell the sign of the electromagnetic mass difference without a detailed
theory of the internal structure.
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We only wish to emphasize here the following points: (1) the electromagnetic
theory predicts the existence of an electromagnetic mass, but it also falls on its
face in doing so, because it does not produce a consistent theory—and the same
is true with the quantum modifications; (2) there is experimental evidence for
the existence of electromagnetic mass; and (3) all these masses are roughly the
same as the mass of an electron. So we come back again to the original idea of
Lorentz—maybe all the mass of an electron is purely electromagnetic, maybe the
whole 0.511 MeV is due to electrodynamics. Is it or isn’t it? We haven’t got a
theory, so we cannot say.

We must mention one more piece of information, which is the most annoying.
There is another particle in the world called a muon—or µ-meson—which, so far
as we can tell, differs in no way whatsoever from an electron except for its mass.
It acts in every way like an electron: it interacts with neutrinos and with the
electromagnetic field, and it has no nuclear forces. It does nothing different from
what an electron does—at least, nothing which cannot be understood as merely
a consequence of its higher mass (206.77 times the electron mass). Therefore,
whenever someone finally gets the explanation of the mass of an electron, he will
then have the puzzle of where a muon gets its mass. Why? Because whatever the
electron does, the muon does the same—so the mass ought to come out the same.
There are those who believe faithfully in the idea that the muon and the electron
are the same particle and that, in the final theory of the mass, the formula for the
mass will be a quadratic equation with two roots—one for each particle. There
are also those who propose it will be a transcendental equation with an infinite
number of roots, and who are engaged in guessing what the masses of the other
particles in the series must be, and why these particles haven’t been discovered
yet.

28-6 The nuclear force field

We would like to make some further remarks about the part of the mass
of nuclear particles that is not electromagnetic. Where does this other large
fraction come from? There are other forces besides electrodynamics—like nuclear
forces—that have their own field theories, although no one knows whether the
current theories are right. These theories also predict a field energy which gives
the nuclear particles a mass term analogous to electromagnetic mass; we could
call it the “π-mesic-field-mass.” It is presumably very large, because the forces
are great, and it is the possible origin of the mass of the heavy particles. But
the meson field theories are still in a most rudimentary state. Even with the
well-developed theory of electromagnetism, we found it impossible to get beyond
first base in explaining the electron mass. With the theory of the mesons, we
strike out.

We may take a moment to outline the theory of the mesons, because of its
interesting connection with electrodynamics. In electrodynamics, the field can
be described in terms of a four-potential that satisfies the equation

�2Aµ = sources.

Now we have seen that pieces of the field can be radiated away so that they
exist separated from the sources. These are the photons of light, and they are
described by a differential equation without sources:

�2Aµ = 0.

People have argued that the field of nuclear forces ought also to have its own
“photons”—they would presumably be the π-mesons—and that they should be
described by an analogous differential equation. (Because of the weakness of the
human brain, we can’t think of something really new; so we argue by analogy
with what we know.) So the meson equation might be

�2φ = 0,
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where φ could be a different four-vector or perhaps a scalar. It turns out that the
pion has no polarization, so φ should be a scalar. With the simple equation �2φ =
0, the meson field would vary with distance from a source as 1/r2, just as the
electric field does. But we know that nuclear forces have much shorter distances
of action, so the simple equation won’t work. There is one way we can change
things without disrupting the relativistic invariance: we can add or subtract
from the D’Alembertian a constant, times φ. So Yukawa suggested that the free
quanta of the nuclear force field might obey the equation

−�2φ− µ2φ = 0, (28.17)

where µ2 is a constant—that is, an invariant scalar. (Since �2 is a scalar
differential operator in four dimensions, its invariance is unchanged if we add
another scalar to it.)

Let’s see what Eq. (28.17) gives for the nuclear force when things are not
changing with time. We want a spherically symmetric solution of

∇2φ− µ2φ = 0

around some point source at, say, the origin. If φ depends only on r, we know
that

∇2φ = 1
r

∂2

∂r2 (rφ).

So we have the equation
1
r

∂2

∂r2 (rφ)− µ2φ = 0
or

∂2

∂r2 (rφ) = µ2(rφ).

Thinking of (rφ) as our dependent variable, this is an equation we have seen
many times. Its solution is

rφ = Ke±µr.

Clearly, φ cannot become infinite for large r, so the + sign in the exponent is
ruled out. The solution is

φ = K
e−µr

r
. (28.18)

This function is called the Yukawa potential. For an attractive force, K is a
negative number whose magnitude must be adjusted to fit the experimentally
observed strength of the forces.

r0 1/µ 2/µ 3/µ

φ

0

1/r

e−µr

r

Fig. 28-6. The Yukawa potential e−µr/r ,
compared with the Coulomb potential 1/r .

The Yukawa potential of the nuclear forces dies off more rapidly than 1/r
by the exponential factor. The potential—and therefore the force—falls to zero
much more rapidly than 1/r for distances beyond 1/µ, as shown in Fig. 28-6.
The “range” of nuclear forces is much less than the “range” of electrostatic forces.
It is found experimentally that the nuclear forces do not extend beyond about
10−13 cm, so µ ≈ 1015 m−1.

Finally, let’s look at the free-wave solution of Eq. (28.17). If we substitute

φ = φ0e
i(ωt−kz)

into Eq. (28.17), we get that

ω2

c2
− k2 − µ2 = 0.

Relating frequency to energy and wave number to momentum, as we did at the
end of Chapter 34 of Vol. I, we get that

E2

c2
− p2 = µ2~2,

which says that the Yukawa “photon” has a mass equal to µ~/c. If we use for µ
the estimate 1015 m−1, which gives the observed range of the nuclear forces, the
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mass comes out to 3× 10−25 g, or 170 MeV, which is roughly the observed mass
of the π-meson. So, by an analogy with electrodynamics, we would say that the
π-meson is the “photon” of the nuclear force field. But now we have pushed the
ideas of electrodynamics into regions where they may not really be valid—we
have gone beyond electrodynamics to the problem of the nuclear forces.
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29

The Motion of Charges in Electric and
Magnetic Fields

29-1 Motion in a uniform electric or magnetic field

We 29-1 Motion in a uniform electric or
magnetic field

29-2 Momentum analysis
29-3 An electrostatic lens
29-4 A magnetic lens
29-5 The electron microscope
29-6 Accelerator guide fields
29-7 Alternating-gradient focusing
29-8 Motion in crossed electric and

magnetic fields

want now to describe—mainly in a qualitative way—the motions of charges
in various circumstances. Most of the interesting phenomena in which charges are
moving in fields occur in very complicated situations, with many, many charges
all interacting with each other. For instance, when an electromagnetic wave
goes through a block of material or a plasma, billions and billions of charges are
interacting with the wave and with each other. We will come to such problems
later, but now we just want to discuss the much simpler problem of the motions of
a single charge in a given field. We can then disregard all other charges—except,
of course, those charges and currents which exist somewhere to produce the fields
we will assume.

We should probably ask first about the motion of a particle in a uniform
electric field. At low velocities, the motion is not particularly interesting—it is just
a uniform acceleration in the direction of the field. However, if the particle picks
up enough energy to become relativistic, then the motion gets more complicated.
But we will leave the solution for that case for you to play with.

Review: Chapter 30, Vol. I, Diffraction

Next, we consider the motion in a uniform magnetic field with zero electric
field. We have already solved this problem—one solution is that the particle goes
in a circle. The magnetic force qv ×B is always at right angles to the motion,
so dp/dt is perpendicular to p and has the magnitude vp/R, where R is the
radius of the circle:

F = qvB = vp

R
.

The radius of the circular orbit is then

R = p

qB
. (29.1)

(a)

x

y

v⊥

R

(b)

B

v

Fig. 29-1. Motion of a particle in a uni-
form magnetic field.

That is only one possibility. If the particle has a component of its motion
along the field direction, that motion is constant, since there can be no component
of the magnetic force in the direction of the field. The general motion of a particle
in a uniform magnetic field is a constant velocity parallel to B and a circular
motion at right angles to B—the trajectory is a cylindrical helix (Fig. 29-1). The
radius of the helix is given by Eq. (29.1) if we replace p by p⊥, the component of
momentum at right angles to the field.

29-2 Momentum analysis

A uniform magnetic field is often used in making a “momentum analyzer,” or
“momentum spectrometer,” for high-energy charged particles. Suppose that
charged particles are shot into a uniform magnetic field at the point A in
Fig. 29-2(a), the magnetic field being perpendicular to the plane of the drawing.
Each particle will go into an orbit which is a circle whose radius is proportional
to its momentum. If all the particles enter perpendicular to the edge of the field,
they will leave the field at a distance x (from A) which is proportional to their
momentum p. A counter placed at some point such as C will detect only those
particles whose momentum is in an interval ∆p near the momentum p = qBx/2.

It is, of course, not necessary that the particles go through 180◦ before they
are counted, but the so-called “180◦ spectrometer” has a special property. It is not
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necessary that all the particles enter at right angles to the field edge. Figure 29-2(b)
shows the trajectories of three particles, all with the same momentum but entering
the field at different angles. You see that they take different trajectories, but
all leave the field very close to the point C. We say that there is a “focus.”
Such a focusing property has the advantage that larger angles can be accepted
at A—although some limit is usually imposed, as shown in the figure. A larger
angular acceptance usually means that more particles are counted in a given
time, decreasing the time required for a given measurement.

(a)

A C DETECTOR

UNIFORM MAGNETIC FIELD

x

(b)
POINT SOURCE

Fig. 29-2. A uniform-field momentum
spectrometer with 180◦ focusing: (a) dif-
ferent momenta; (b) different angles. (The
magnetic field is directed perpendicular to
the plane of the figure.)

By varying the magnetic field, or moving the counter along in x, or by using
many counters to cover a range of x, the “spectrum” of momenta in the incoming
beam can be measured. [By the “momentum spectrum” f(p), we mean that
the number of particles with momenta between p and (p+ dp) is f(p) dp.] Such
measurements have been made, for example, to determine the distribution of
energies in the β-decay of various nuclei.

There are many other forms of momentum spectrometers, but we will describe
just one more, which has an especially large solid angle of acceptance. It is based
on the helical orbits in a uniform field, like the one shown in Fig. 29-1. Let’s
think of a cylindrical coordinate system—ρ, θ, z—set up with the z-axis along
the direction of the field. If a particle is emitted from the origin at some angle α
with respect to the z-axis, it will move along a spiral whose equation is

ρ = a sin kz, θ = bz,

where a, b, and k are parameters you can easily work out in terms of p, α, and
the magnetic field B. If we plot the distance ρ from the axis as a function of z
for a given momentum, but for several starting angles, we will get curves like the
solid ones drawn in Fig. 29-3. (Remember that this is just a kind of projection of
a helical trajectory.) When the angle between the axis and the starting direction
is larger, the peak value of ρ is large but the longitudinal velocity is less, so the
trajectories for different angles tend to come to a kind of “focus” near the point A
in the figure. If we put a narrow aperture of A, particles with a range of initial
angles can still get through and pass on to the axis, where they can be counted
by the long detector D.

z

ρ

0

B
A

A′

D

Fig. 29-3. An axial-field spectrometer.

Particles which leave the source at the origin with a higher momentum but
at the same angles, follow the paths shown by the broken lines and do not get
through the aperture at A. So the apparatus selects a small interval of momenta.
The advantage over the first spectrometer described is that the aperture A—and
the aperture A′—can be an annulus, so that particles which leave the source in a
rather large solid angle are accepted. A large fraction of the particles from the
source are used—an important advantage for weak sources or for very precise
measurements.

One pays a price for this advantage, however, because a large volume of
uniform magnetic field is required, and this is usually only practical for low-
energy particles. One way of making a uniform field, you remember, is to wind a
coil on a sphere, with a surface current density proportional to the sine of the
angle. You can also show that the same thing is true for an ellipsoid of rotation.
So such spectrometers are often made by winding an elliptical coil on a wooden
(or aluminum) frame. All that is required is that the current in each interval of
axial distance ∆x be the same, as shown in Fig. 29-4.

B

∆x

Fig. 29-4. An ellipsoidal coil with equal
currents in each axial interval ∆x produces
a uniform magnetic field inside.

29-3 An electrostatic lens

Particle focusing has many applications. For instance, the electrons that leave
the cathode in a TV picture tube are brought to a focus at the screen—to make
a fine spot. In this case, one wants to take electrons all of the same energy but
with different initial angles and bring them together in a small spot. The problem
is like focusing light with a lens, and devices which do the corresponding job for
particles are also called lenses.

One example of an electron lens is sketched in Fig. 29-5. It is an “electrostatic”
lens whose operation depends on the electric field between two adjacent electrodes.
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Fig. 29-5. An electronic lens. The field lines shown are “lines of force,”
that is, of qE.

Its operation can be understood by considering what happens to a parallel beam
that enters from the left. When the electrons arrive at the region a, they feel
a force with a sidewise component and get a certain impulse that bends them
toward the axis. You might think that they would get an equal and opposite
impulse in the region b, but that is not so. By the time the electrons reach b
they have gained energy and so spend less time in the region b. The forces are
the same, but the time is shorter, so the impulse is less. In going through the
regions a and b, there is a net axial impulse, and the electrons are bent toward
a common point. In leaving the high-voltage region, the particles get another
kick toward the axis. The force is outward in region c and inward in region d,
but the particles stay longer in the latter region, so there is again a net impulse.
For distances not too far from the axis, the total impulse through the lens is
proportional to the distance from the axis (Can you see why?), and this is just
the condition necessary for lens-type focusing.
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Fig. 29-6. A magnetic lens.You can use the same arguments to show that there is focusing if the potential
of the middle electrode is either positive or negative with respect to the other
two. Electrostatic lenses of this type are commonly used in cathode-ray tubes
and in some electron microscopes.

29-4 A magnetic lens
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Fig. 29-7. Electron motion in the mag-
netic lens.

Another kind of lens—often found in electron microscopes—is the magnetic
lens sketched schematically in Fig. 29-6. A cylindrically symmetric electromagnet
has very sharp circular pole tips which produce a strong, nonuniform field in a
small region. Electrons which travel vertically through this region are focused.
You can understand the mechanism by looking at the magnified view of the
pole-tip region drawn in Fig. 29-7. Consider two electrons a and b that leave
the source S at some angle with respect to the axis. As electron a reaches the
beginning of the field, it is deflected away from you by the horizontal component
of the field. But then it will have a lateral velocity, so that when it passes through
the strong vertical field, it will get an impulse toward the axis. Its lateral motion
is taken out by the magnetic force as it leaves the field, so the net effect is an
impulse toward the axis, plus a “rotation” about the axis. All the forces on
particle b are opposite, so it also is deflected toward the axis. In the figure, the
divergent electrons are brought into parallel paths. The action is like a lens with
an object at the focal point. Another similar lens upstream can be used to focus
the electrons back to a single point, making an image of the source S.

29-5 The electron microscope

You know that electron microscopes can “see” objects too small to be seen by
optical microscopes. We discussed in Chapter 30 of Vol. I the basic limitations
of any optical system due to diffraction of the lens opening. If a lens opening
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subtends the angle 2θ from a source (see Fig. 29-8), two neighboring spots at the
source cannot be seen as separate if they are closer than about

δ ≈ λ

sin θ ,

where λ is the wavelength of the light. With the best optical microscope, θ
approaches the theoretical limit of 90◦, so δ is about equal to λ, or approximately
5000 angstroms.

SOURCE

θ

LENS
OPENING

Fig. 29-8. The resolution of a microscope
is limited by the angle subtended from the
source.

The same limitation would also apply to an electron microscope, but there
the wavelength is—for 50-kilovolt electrons—about 0.05 angstrom. If one could
use a lens opening of near 30◦, it would be possible to see objects only 1

5 of an
angstrom apart. Since the atoms in molecules are typically 1 or 2 angstroms
apart, we could get photographs of molecules. Biology would be easy; we would
have a photograph of the DNA structure. What a tremendous thing that would
be! Most of present-day research in molecular biology is an attempt to figure out
the shapes of complex organic molecules. If we could only see them!

S POINT SOURCE

D

LENS
OPENING

BLURRED
IMAGE

Fig. 29-9. Spherical aberration of a lens.

Unfortunately, the best resolving power that has been achieved in an electron
microscope is more like 20 angstroms. The reason is that no one has yet designed
a lens with a large opening. All lenses have “spherical aberration,” which means
that rays at large angles from the axis have a different point of focus than the rays
nearer the axis, as shown in Fig. 29-9. By special techniques, optical microscope
lenses can be made with a negligible spherical aberration, but no one has yet
been able to make an electron lens which avoids spherical aberration.

In fact, one can show that any electrostatic or magnetic lens of the types we
have described must have an irreducible amount of spherical aberration. This
aberration—together with diffraction—limits the resolving power of electron
microscopes to their present value.

The limitation we have mentioned does not apply to electric and magnetic
fields which are not axially symmetric or which are not constant in time. Perhaps
some day someone will think of a new kind of electron lens that will overcome
the inherent aberration of the simple electron lens. Then we will be able to
photograph atoms directly. Perhaps one day chemical compounds will be analyzed
by looking at the positions of the atoms rather than by looking at the color of
some precipitate!

29-6 Accelerator guide fields

FIELD STRONGER
HERE

Fig. 29-10. Particle motion in a slightly
nonuniform field.

Magnetic fields are also used to produce special particle trajectories in high
energy particle accelerators. Machines like the cyclotron and synchrotron bring
particles to high energies by passing the particles repeatedly through a strong
electric field. The particles are held in their cyclic orbits by a magnetic field.

We have seen that a particle in a uniform magnetic field will go in a circular
orbit. This, however, is true only for a perfectly uniform field. Imagine a field B
which is nearly uniform over a large area but which is slightly stronger in one
region than in another. If we put a particle of momentum p in this field, it will go
in a nearly circular orbit with the radius R = p/qB. The radius of curvature will,
however, be slightly smaller in the region where the field is stronger. The orbit is
not a closed circle but will “walk” through the field, as shown in Fig. 29-10. We
can, if we wish, consider that the slight “error” in the field produces an extra
angular kick which sends the particle off on a new track. If the particles are to
make millions of revolutions in an accelerator, some kind of “radial focusing” is
needed which will tend to keep the trajectories close to some design orbit.

Another difficulty with a uniform field is that the particles do not remain in
a plane. If they start out with the slightest angle—or are given a slight angle by
any small error in the field—they will go in a helical path that will eventually
take them into the magnet pole or the ceiling or floor of the vacuum tank. Some
arrangement must be made to inhibit such vertical drifts; the field must provide
“vertical focusing” as well as radial focusing.
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Fig. 29-11. Radial motion of a particle in
a magnetic field with a large positive slope.
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Fig. 29-12. Radial motion of a particle in
a magnetic field with a small negative slope.
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Fig. 29-13. Radial motion of a particle in
a magnetic field with a large negative slope.

One would, at first, guess that radial focusing could be provided by making a
magnetic field which increases with increasing distance from the center of the
design path. Then if a particle goes out to a large radius, it will be in a stronger
field which will bend it back toward the correct radius. If it goes to too small a
radius, the bending will be less, and it will be returned toward the design radius.
If a particle is once started at some angle with respect to the ideal circle, it
will oscillate about the ideal circular orbit, as shown in Fig. 29-11. The radial
focusing would keep the particles near the circular path.

Actually there is still some radial focusing even with the opposite field slope.
This can happen if the radius of curvature of the trajectory does not increase
more rapidly than the increase in the distance of the particle from the center of
the field. The particle orbits will be as drawn in Fig. 29-12. If the gradient of
the field is too large, however, the orbits will not return to the design radius but
will spiral inward or outward, as shown in Fig. 29-13.
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Fig. 29-14. A vertical guide field as seen
in a cross section perpendicular to the orbits.

We usually describe the slope of the field in terms of the “relative gradient”
or field index, n:

n = dB/B

dr/r
. (29.2)

A guide field gives radial focusing if this relative gradient is greater than −1.
A radial field gradient will also produce vertical forces on the particles.

Suppose we have a field that is stronger nearer to the center of the orbit and
weaker at the outside. A vertical cross section of the magnet at right angles to
the orbit might be as shown in Fig. 29-14. (For protons the orbits would be
coming out of the page.) If the field is to be stronger to the left and weaker to
the right, the lines of the magnetic field must be curved as shown. We can see
that this must be so by using the law that the circulation of B is zero in free
space. If we take coordinates as shown in the figure, then

(∇×B)y = ∂Bx
∂z
− ∂Bz

∂x
= 0,

or
∂Bx
∂z

= ∂Bz
∂x

. (29.3)

Since we assume that ∂Bz/∂x is negative, there must be an equal negative ∂Bx/∂z.
If the “nominal” plane of the orbit is a plane of symmetry where Bx = 0, then
the radial component Bx will be negative above the plane and positive below.
The lines must be curved as shown.
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Such a field will have vertical focusing properties. Imagine a proton that is
travelling more or less parallel to the central orbit but above it. The horizontal
component of B will exert a downward force on it. If the proton is below the
central orbit, the force is reversed. So there is an effective “restoring force” toward
the central orbit. From our arguments there will be vertical focusing, provided
that the vertical field decreases with increasing radius; but if the field gradient
is positive, there will be “vertical defocusing.” So for vertical focusing, the field
index n must be less than zero. We found above that for radial focusing n had
to be greater than −1. The two conditions together give the condition that

−1 < n < 0

if the particles are to be kept in stable orbits. In cyclotrons, values very near zero
are used; in betatrons and synchrotrons, the value n = −0.6 is typically used.

29-7 Alternating-gradient focusing

Such small values of n give rather “weak” focusing. It is clear that much more
effective radial focusing would be given by a large positive gradient (n� 1), but
then the vertical forces would be strongly defocusing. Similarly, large negative
slopes (n � −1) would give stronger vertical forces but would cause radial
defocusing. It was realized about 10 years ago, however, that a force that
alternates between strong focusing and strong defocusing can still have a net
focusing force.

To explain how alternating-gradient focusing works, we will first describe the
operation of a quadrupole lens, which is based on the same principle. Imagine
that a uniform negative magnetic field is added to the field of Fig. 29-14, with
the strength adjusted to make zero field at the orbit. The resulting field—for
small displacements from the neutral point—would be like the field shown in
Fig. 29-15. Such a four-pole magnet is called a “quadrupole lens.” A positive
particle that enters (from the reader) to the right or left of the center is pushed
back toward the center. If the particle enters above or below, it is pushed away
from the center. This is a horizontal focusing lens. If the horizontal gradient
is reversed—as can be done by reversing all the polarities—the signs of all the
forces are reversed and we have a vertical focusing lens, as in Fig. 29-16. For such
lenses, the field strength—and therefore the focusing forces—increase linearly
with the distance of the lens from the axis.

Now imagine that two such lenses are placed in series. If a particle enters
with some horizontal displacement from the axis, as shown in Fig. 29-17(a), it
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Fig. 29-15. A horizontal focusing quad-
rupole lens.
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Fig. 29-16. A vertical focusing quadru-
pole lens.
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Fig. 29-17. Horizontal and vertical focusing with a pair of quadrupole lenses.

will be deflected toward the axis in the first lens. When it arrives at the second
lens it is closer to the axis, so the force outward is less and the outward deflection
is less. There is a net bending toward the axis; the average effect is horizontally
focusing. On the other hand, if we look at a particle which enters off the axis in
the vertical direction, the path will be as shown in Fig. 29-17(b). The particle is
first deflected away from the axis, but then it arrives at the second lens with a
larger displacement, feels a stronger force, and so is bent toward the axis. Again
the net effect is focusing. Thus a pair of quadrupole lenses acts independently
for horizontal and vertical motion—very much like an optical lens. Quadrupole
lenses are used to form and control beams of particles in much the same way
that optical lenses are used for light beams.

Fig. 29-18. A pendulum with an oscillat-
ing pivot can have a stable position with the
bob above the pivot.

We should point out that an alternating-gradient system does not always
produce focusing. If the gradients are too large (in relation to the particle
momentum or to the spacing between the lenses), the net effect can be a defocusing
one. You can see how that could happen if you imagine that the spacing between
the two lenses of Fig. 29-17 were increased, say, by a factor of three or four.

Let’s return now to the synchrotron guide magnet. We can consider that it
consists of an alternating sequence of “positive” and “negative” lenses with a
superimposed uniform field. The uniform field serves to bend the particles, on
the average, in a horizontal circle (with no effect on the vertical motion), and
the alternating lenses act on any particles that might tend to go astray—pushing
them always toward the central orbit (on the average).

There is a nice mechanical analog which demonstrates that a force which
alternates between a “focusing” force and a “defocusing” force can have a net
“focusing” effect. Imagine a mechanical “pendulum” which consists of a solid
rod with a weight on the end, suspended from a pivot which is arranged to be
moved rapidly up and down by a motor driven crank. Such a pendulum has
two equilibrium positions. Besides the normal, downward-hanging position, the
pendulum is also in equilibrium “hanging upward”—with its “bob” above the
pivot! Such a pendulum is drawn in Fig. 29-18.

Fig. 29-19. A downward acceleration of
the pivot causes the pendulum to move to-
ward the vertical.

By the following argument you can see that the vertical pivot motion is
equivalent to an alternating focusing force. When the pivot is accelerated
downward, the “bob” tends to move inward, as indicated in Fig. 29-19. When
the pivot is accelerated upward, the effect is reversed. The force restoring the
“bob” toward the axis alternates, but the average effect is a force toward the axis.
So the pendulum will swing back and forth about a neutral position which is just
opposite the normal one.

There is, of course, a much easier way of keeping a pendulum upside down,
and that is by balancing it on your finger! But try to balance two independent
sticks on the same finger ! Or one stick with your eyes closed! Balancing involves
making a correction for what is going wrong. And this is not possible, in general,
if there are several things going wrong at once. In a synchrotron there are billions
of particles going around together, each one of which may start out with a different
“error.” The kind of focusing we have been describing works on them all.
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29-8 Motion in crossed electric and magnetic fields

So far we have talked about particles in electric fields only or in magnetic
fields only. There are some interesting effects when there are both kinds of
fields at the same time. Suppose we have a uniform magnetic field B and an
electric field E at right angles. Particles that start out perpendicular to B will
move in a curve like the one in Fig. 29-20. (The figure is a plane curve, not a
helix!) We can understand this motion qualitatively. When the particle (assumed
positive) moves in the direction of E, it picks up speed, and so it is bent less
by the magnetic field. When it is going against the E-field, it loses speed and
is continually bent more by the magnetic field. The net effect is that it has an
average “drift” in the direction of E ×B. B

E

v0

vd

Fig. 29-20. Path of a particle in crossed
electric and magnetic fields.

We can, in fact, show that the motion is a uniform circular motion super-
imposed on a uniform sidewise motion at the speed vd = E/B—the trajectory
in Fig. 29-20 is a cycloid. Imagine an observer who is moving to the right at
a constant speed. In his frame our magnetic field gets transformed to a new
magnetic field plus an electric field in the downward direction. If he has just the
right speed, his total electric field will be zero, and he will see the electron going
in a circle. So the motion we see is a circular motion, plus a translation at the
drift speed vd = E/B. The motion of electrons in crossed electric and magnetic
fields is the basis of the magnetron tubes, i.e., oscillators used for generating
microwave energy.

There are many other interesting examples of particle motions in electric and
magnetic fields—such as the orbits of the electrons and protons trapped in the
Van Allen belts—but we do not, unfortunately, have the time to deal with them
here.
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have finished the study of the basic laws of electricity and magnetism,
and we are now going to study the electromagnetic properties of matter. We
begin by describing solids—that is, crystals. When the atoms of matter are not
moving around very much, they get stuck together and arrange themselves in a
configuration with as low an energy as possible. If the atoms in a certain place
have found a pattern which seems to be of low energy, then the atoms somewhere
else will probably make the same arrangement. For these reasons, we have in a
solid material a repetitive pattern of atoms.

In other words, the conditions in a crystal are this way: The environment of
a particular atom in a crystal has a certain arrangement, and if you look at the
same kind of an atom at another place farther along, you will find one whose
surroundings are exactly the same. If you pick an atom farther along by the
same distance, you will find the conditions exactly the same once more. The
pattern is repeated over and over again—and, of course, in three dimensions.

Reference: C. Kittel, Introduction to
Solid State Physics, John
Wiley and Sons, Inc., New
York, 2nd ed., 1956.

(a)

(b)
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β

Fig. 30-1. A repeating pattern in two
dimensions.

Imagine the problem of designing a wallpaper—or a cloth, or some geometric
design for a plane area—in which you are supposed to have a design element
which repeats and repeats and repeats, so that you can make the area as large as
you want. This is the two-dimensional analog of a problem which a crystal solves
in three dimensions. For example, Fig. 30-1(a) shows a common kind of wallpaper
design. There is a single element repeated in a pattern that can go on forever. The
geometric characteristics of this wallpaper design, considering only its repetition
properties and not worrying about the geometry of the flower itself or its artistic
merit, are contained in Fig. 30-1(b). If you start at any point, you can find the
corresponding point by moving the distance a along the direction of arrow 1. You
can also get to a corresponding point if you move the distance b in the direction
of the other arrow. There are, of course, many other directions. You can go, for
example, from point α to point β and reach a corresponding position, but such a
step can be considered as a combination of a step along direction 1, followed by a
step along direction 2. One of the basic properties of the pattern can be described
by the two shortest steps to nearby equal positions. By “equal” positions we mean
that if you were to stand in any one of them and look around you, you would
see exactly the same thing as if you were to stand in another one. That’s the
fundamental property of a crystal. The only difference is that a crystal is a three-
dimensional arrangement instead of a two-dimensional arrangement; and naturally,
instead of flowers, each element of the lattice is some kind of an arrangement
of atoms—perhaps six hydrogen atoms and two carbon atoms—in some kind of
pattern. The pattern of atoms in a crystal can be found out experimentally by
x-ray diffraction. We have mentioned this method briefly before, and won’t say
any more now except that the precise arrangement of the atoms in space has
been worked out for most simple crystals and also for some fairly complex ones.

The internal pattern of a crystal shows up in several ways. First, the binding
strength of the atoms in certain directions is usually stronger than in other
directions. This means that there are certain planes through the crystal where it
is more easily broken than others. They are called the cleavage planes. If you
crack a crystal with a knife blade it will often split apart along such a plane.
Second, the internal structure often appears at the surface because of the way the
crystal was formed. Imagine a crystal being deposited out of a solution. There
are the atoms floating around in the solution and finally settling down when they
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find a position of lowest energy. (It’s as if the wallpaper got made by flowers
drifting around until one drifted accidentally into place and got stuck, and then
the next, and the next so that the pattern gradually grows.) You can appreciate
that there will be certain directions in which it will grow at a different speed
than in other directions, thereby growing into some kind of geometrical shape.
Because of such effects, the outside surfaces of many crystals show some of the
character of the internal arrangement of the atoms.

(a)

(b)

(c)

Fig. 30-2. Natural crystals: (a) quartz,
(b) sodium chloride, (c) mica.

For example, Fig. 30-2(a) shows the shape of a typical quartz crystal whose
internal pattern is hexagonal. If you look closely at such a crystal, you will notice
that the outside does not make a very good hexagon because the sides are not
all of equal length—they are, in fact, often very unequal. But in one respect it
is a very good hexagon: the angles between the faces are exactly 120◦. Clearly,
the size of any particular face is an accident of the growth, but the angles are a
representation of the internal geometry. So every crystal of quartz has a different
shape, even though the angles between corresponding faces are always the same.

The internal geometry of a crystal of sodium chloride is also evident from its
external shape. Figure 30-2(b) shows the shape of a typical grain of salt. Again
the crystal is not a perfect cube, but the faces are exactly at right angles to one
another.

A more complicated crystal is mica, which has the shape shown in Fig. 30-2(c).
It is a highly anisotropic crystal, as is easily seen from the fact that it is very tough
if you try to pull it apart in one direction (horizontally in the figure), but very
easy to split by pulling apart in the other direction (vertically). It has commonly
been used to obtain very tough, thin sheets. Mica and quartz are two examples
of natural minerals containing silica. A third example of a mineral with silica is
asbestos, which has the interesting property that it is easily pulled apart in two
directions but not in the third. It appears to be made of very strong, linear fibers.

30-2 Chemical bonds in crystals

The mechanical properties of crystals clearly depend on the kind of chemical
bindings between the atoms. The strikingly different strength of mica along
different directions depends on the kinds of interatomic binding in the different
directions. You have already learned in chemistry, no doubt, about the different
kinds of chemical bonds. First, there are ionic bonds, as we have already discussed
for sodium chloride. Roughly speaking, the sodium atoms have lost an electron
and become positive ions; the chlorine atoms have gained an electron and become
negative ions. The positive and negative ions are arranged in a three-dimensional
checkerboard and are held together by electrical forces.

Fig. 30-3. The lattice of a molecular crystal.

The covalent bond—in which electrons are shared between two atoms—is more
common and is usually very strong. In a diamond, for example, the carbon atoms
have covalent bonds in all four directions to the nearest neighbors, so the crystal
is very hard indeed. There is also covalent bonding between silicon and oxygen
in a quartz crystal, but there the bond is really only partially covalent. Because
there is not complete sharing of the electrons, the atoms are partly charged, and
the crystal is somewhat ionic. Nature is not as simple as we try to make it; there
are really all possible gradations between covalent and ionic bonding.

A sugar crystal has still another kind of binding. In it there are large molecules
in which the atoms are held strongly together by covalent bonds, so that the
molecule is a tough structure. But since the strong bonds are completely satis-
fied, there are only relatively weak attractions between the separate, individual
molecules. In such molecular crystals the molecules keep their individual identity,
so to speak, and the internal arrangement might be as shown in Fig. 30-3. Since
the molecules are not held strongly to each other, the crystals are easy to break.
They are quite different from something like diamond, which is really one giant
molecule that cannot be broken anywhere without disrupting strong covalent
bonds. Paraffin is another example of a molecular crystal.

An extreme example of a molecular crystal occurs in a substance like solid
argon. There is very little attraction between the atoms—each atom is a com-
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pletely saturated monatomic molecule. But at very low temperatures, the thermal
motion is very small, so the slight interatomic forces can cause the atoms to
settle down into a regular array like a pile of closely packed spheres.

The metals form a completely different class of substances. The bonding is of
an entirely different kind. In a metal the bonding is not between adjacent atoms
but is a property of the whole crystal. The valence electrons are not attached
to one atom or to a pair of atoms but are shared throughout the crystal. Each
atom contributes an electron to a universal pool of electrons, and the atomic
positive ions reside in the sea of negative electrons. The electron sea holds the
ions together like some kind of glue.

In the metals, since there are no special bonds in any particular direction,
there is no strong directionality in the binding. They are still crystalline, however,
because the total energy is lowest when the atomic ions are arranged in some
definite array—although the energy of the preferred arrangement is not usually
much lower than other possible ones. To a first approximation, the atoms of
many metals are like small spheres packed in as tightly as possible.

30-3 The growth of crystals

Try to imagine the natural formation of crystals in the earth. In the earth’s
surface there is a big mixture of all kinds of atoms. They are being continually
churned about by volcanic action, by wind, and by water—continually being
moved about and mixed. Yet, by some trick, silicon atoms gradually begin to
find each other, and to find oxygen atoms, to make silica. One atom at a time
is added to the others to build up a crystal—the mixture gets unmixed. And
somewhere nearby, sodium and chlorine atoms are finding each other and building
up a crystal of salt.

(a)

(b)

Fig. 30-4. The unit cell of cubic crystals:
(a) body-centered, (b) face-centered.

How does it happen that once a crystal is started, it permits only a particular
kind of atom to join on? It happens because the whole system is working toward
the lowest possible energy. A growing crystal will accept a new atom if it is
going to make the energy as low as possible. But how does it know that a
silicon—or an oxygen—atom at some particular spot is going to result in the
lowest possible energy? It does it by trial and error. In the liquid, all of the
atoms are in perpetual motion. Each atom bounces against its neighbors about
1013 times every second. If it hits against the right spot of growing crystal, it
has a somewhat smaller chance of jumping off again if the energy is low. By
continually testing over periods of millions of years at a rate of 1013 tests per
second, the atoms gradually build up at the places where they find their lowest
energy. Eventually they grow into big crystals.

30-4 Crystal lattices

The arrangement of the atoms in a crystal—the crystal lattice—can take on
many geometric forms. We would like to describe first the simplest lattices, which
are characteristic of most of the metals and of the solid form of the inert gases.
They are the cubic lattices which can occur in two forms: the body-centered
cubic, shown in Fig. 30-4(a), and the face-centered cubic shown in Fig. 30-4(b).
The drawings show, of course, only one cube of the lattice; you are to imagine
that the pattern is repeated indefinitely in three dimensions. Also, to make the
drawing clearer, only the “centers” of the atoms are shown. In an actual crystal,
the atoms are more like spheres in contact with each other. The dark and light
spheres in the drawings may, in general, stand for different kinds of atoms or
may be the same kind. For instance, iron has a body-centered cubic lattice at
low temperatures, but a face-centered cubic lattice at higher temperatures. The
physical properties are quite different in the two crystalline forms.

How do such forms come about? Imagine that you have the problem of packing
spherical atoms together as tightly as possible. One way would be to start by
making a layer in a “hexagonal close-packed array,” as shown in Fig. 30-5(a).
Then you could build up a second layer like the first, but displaced horizontally,
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(a) (b)

A B

Fig. 30-5. Building up a hexagonal close-packed lattice.

as shown in Fig. 30-5(b). Next, you can put on the third layer. But notice!
There are two distinct ways of placing the third layer. If you start the third layer
by placing an atom at A in Fig. 30-5(b), each atom in the third layer is directly
above an atom of the bottom layer. On the other hand, if you start the third
layer by putting an atom at the position B, the atoms of the third layer will be
centered at points exactly in the middle of a triangle formed by three atoms of
the bottom layer. Any other starting place is equivalent to A or B, so there are
only two ways of placing the third layer.

Fig. 30-6. Is this a hexagon or a cube
seen from one corner?

If the third layer has an atom at point B, the crystal lattice is a face-centered
cubic—but seen at an angle. It seems funny that starting with hexagons you
can end up with cubes. But notice that a cube looked at from a corner has a
hexagonal outline. For instance, Fig. 30-6 could represent a plane hexagon or a
cube seen in perspective!

If a third layer is added to Fig. 30-5(b) by starting with an atom at A, there
is no cubical structure, and the lattice has instead only a hexagonal symmetry.
It is clear that both possibilities we have described are equally close-packed.

Some metals—for example, copper and silver—choose the first alternative, the
face-centered cubic. Others—for example, beryllium and magnesium—choose the
other alternatives; they form hexagonal crystals. Clearly, which crystal lattice
appears cannot depend only on the packing of little spheres, but must also be
determined in part by other factors. In particular, it depends on the slight
remaining angular dependence of the interatomic forces (or, in the case of the
metals, on the energy of the electron pool). You will, no doubt, learn all about
such things in your chemistry courses.

30-5 Symmetries in two dimensions

We would now like to discuss some of the properties of crystals from the point
of view of their internal symmetries. The main feature of a crystal is that if you
start at one atom and move to a corresponding atom one lattice unit away, you are
again in the same kind of an environment. That’s the fundamental proposition.
But if you were an atom, there would be another kind of change that could
take you again to the same environment—that is, another possible “symmetry.”
Figure 30-7(a) shows another possible “wallpaper-type” design (though one you
have probably never seen). Suppose we compare the environments for points A
and B. You might, at first, think that they are the same—but not quite. Points
C and D are equivalent to A, but the environment of B is like that of A only if
the surroundings are reversed, as in a mirror reflection.
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Fig. 30-7. A pattern of high symmetry.

There are other kinds of “equivalent” points in the pattern. For instance, the
points E and F have the “same” environments except that one is rotated 90◦
with respect to the other. The pattern is quite special. A rotation of 90◦—or any
multiple of it—about a vertex such as A gives the same pattern all over again.
A crystal with such a structure would have square corners on the outside, but
inside it is more complicated than a simple cube.

Now that we have described some special examples, let’s try to figure out all
the possible symmetries a crystal can have. First, we consider what happens in
a plane. A plane lattice can be defined by the two so-called primitive vectors
that go from one point of the lattice to the two nearest equivalent points. The
two vectors 1 and 2 are the primitive vectors of the lattice of Fig. 30-1. The two
vectors a and b of Fig. 30-7(a) are the primitive vectors of the pattern there. We
could, of course, equally well replace a by −a, or b by −b. Since a and b are
equal in magnitude and at right angles, a rotation of 90◦ turns a into b, and b
into −a, giving the same lattice once again.

We see that there are lattices which have a “four-sided” symmetry. And we
have described earlier a close-packed array based on a hexagon which could have
a six-sided symmetry. A rotation of the array of circles in Fig. 30-5(a) by an
angle of 60◦ about the center of any circle brings the pattern back to itself.

(a)

A B

CD

a

b

b′

60◦

(b)

A B

C

D

E a

b

b′

72◦

72◦

36◦

Fig. 30-8. (a) Rotational symmetries
greater than sixfold are not possible.
(b) Fivefold rotational symmetry is not
possible.

What other kinds of rotational symmetry are there? Can we have, for example,
a fivefold or an eightfold rotational symmetry? It is easy to see that they are
impossible. The only symmetry with more sides than four is a six-sided symmetry.
First, let’s show that more than sixfold symmetry is impossible. Suppose we
try to imagine a lattice with two equal primitive vectors with an enclosed angle
less than 60◦, as in Fig. 30-8(a). We are to suppose that points B and C are
equivalent to A, and that a and b are the two shortest vectors from A to its
equivalent neighbors. But that is clearly wrong, because the distance between
B and C is shorter than from either one to A. There must be a neighbor at D
equivalent to A which is closer than B or C. We should have chosen b′ as one
of our primitive vectors. So the angle between the two primitive vectors must
be 60◦ or larger. Octagonal symmetry is not possible.

What about fivefold symmetry? If we assume that the primitive vectors a
and b have equal lengths and make an angle of 2π/5 = 72◦, as in Fig. 30-8(b),
then there should also be an equivalent lattice point at D, at 72◦ from C. But the
vector b′ from E to D is then less than b, so b is not a primitive vector. There can
be no fivefold symmetry. The only possibilities that do not get us into this kind
of difficulty are θ = 60◦, 90◦, or 120◦. Zero or 180◦ are also clearly possible. One
way of stating our result is that the pattern can be left unchanged by a rotation
of one full turn (no change at all), one-half of a turn, one-third, one-fourth, or
one-sixth of a turn. And those are all the possible rotational symmetries in a
plane—a total of five. If θ = 2π/n, we speak of an “n-fold” symmetry. We say
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(a) (b)

A

−R

R

(c) (d)

Fig. 30-9. Symmetry under inversion. Pattern (b) is unchanged if R → −R, but pattern (a) is
changed. In three dimensions pattern (d) is symmetric under an inversion but (c) is not.

that a pattern with n equal to 4 or to 6 has a “higher symmetry” than one with
n equal to 1 or to 2.

Returning to Fig. 30-7(a), we see that the pattern has a fourfold rotational
symmetry. We have drawn in Fig. 30-7(b) another design which has the same
symmetry properties as part (a). The little comma-like figures are asymmetric
objects which serve to define the symmetry of the design inside of each square.
Notice that the commas are reversed in alternate squares, so that the unit cell is
larger than one of the small squares. If there were no commas, the pattern would
still have fourfold symmetry, but the unit cell would be smaller. The patterns of
Fig. 30-7 also have other symmetry properties. For instance, a reflection about
any of the broken lines R–R reproduces the same pattern.

The patterns of Fig. 30-7 have still another kind of symmetry. If the pattern
is reflected about the line Y –Y and shifted one square to the right (or left), we
get back the original pattern. The line Y –Y is called a “glide” line.

These are all the possible symmetries in two dimensions. There is one more
spatial symmetry operation which is equivalent in two dimensions to a 180◦ rota-
tion, but which is a quite distinct operation in three dimensions. It is inversion.
By an inversion we mean that any point at the vector displacement R from some
origin [for instance, the point A in Fig. 30-9(b)] is moved to the point at −R.

An inversion of pattern (a) of Fig. 30-9 produces a new pattern, but an
inversion of pattern (b) reproduces the same pattern. For a two-dimensional
pattern (as you can see from the figure), an inversion of the pattern (b) through
the point A is equivalent to a rotation of 180◦ about the same point. Suppose,
however, we make the pattern in Fig. 30-9(b) three dimensional by imagining
that the little 6’s and 9’s each have an “arrow” pointing out of the page. After
an inversion in three dimensions all the arrows will be reversed, so the pattern
is not reproduced. If we indicate the heads and tails of the arrows by dots and
crosses, respectively, we can make a three-dimensional pattern, as in Fig. 30-9(c),
which is not symmetric under an inversion, or we can make a pattern like the
one shown in(d), which does have such a symmetry. Notice that it is not possible
to imitate a three-dimensional inversion by any combination of rotations.

If we characterize the “symmetry” of a pattern—or lattice—by the kinds of
symmetry operations we have been describing, it turns out that for two dimensions
17 distinct patterns are possible. We have drawn one pattern of the lowest possible
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symmetry in Fig. 30-1, and one of high symmetry in Fig. 30-7. We will leave you
with the game of trying to figure out all of the 17 possible patterns.

It is peculiar how few of the 17 possible patterns are used in making wallpaper
and fabrics. One always sees the same three or four basic patterns. Is this because
of a lack of imagination of designers, or because many of the possible patterns
are not pleasing to the eye?

30-6 Symmetries in three dimensions

CUBIC
a

aa

TETRAGONAL
a

a
c

ORTHORHOMBIC
a

b
c

HEXAGONAL
a

ac

60◦

MONOCLINIC
a

b

c

TRIGONAL
a

a
a

TRICLINIC
a

b
c

Fig. 30-10. The seven classes of crystal
lattices.

So far we have talked only about patterns in two dimensions. What we are
really interested in, however, are patterns of atoms in three dimensions. First, it is
clear that a three-dimensional crystal will have three primitive vectors. If we then
ask about the possible symmetry operations in three dimensions, we find that
there are 230 different possible symmetries! For some purposes, these 230 types
can be grouped into seven classes, which are drawn in Fig. 30-10. The lattice with
the least symmetry is called the triclinic. Its unit cell is a parallelepiped. The
primitive vectors are of different lengths, and no two of the angles between them
are equal. There is no possibility of any rotational or reflection symmetry. There
are, however, still two possible symmetries—the unit cell is, or is not, changed by
an inversion through the vertex. (By an inversion in three dimensions, we again
mean that spatial displacements R are replaced by −R—in other words, that
(x, y, z) goes into (−x,−y,−z)). So the triclinic lattice has only two possible
symmetries, unless there is some special relation among the primitive vectors.
For example, if all the vectors are equal and are separated by equal angles, one
has the trigonal lattice shown in the figure. This figure can have an additional
symmetry; it may be unchanged by a rotation about the long, body diagonal.

If one of the primitive vectors, say c, is at right angles to the other two, we get
a monoclinic unit cell. A new symmetry is possible—a rotation by 180◦ about c.
The hexagonal cell is a special case in which the vectors a and b are equal and
the angle between them is 60◦, so that a rotation of 60◦, or 120◦, or 180◦ about
the vector c repeats the same lattice (for certain internal symmetries).

If all three primitive vectors are at right angles, but of different lengths, we
get the orthorhombic cell. The figure is symmetric for rotations of 180◦ about
the three axes. Higher-order symmetries are possible with the tetragonal cell,
which has all right angles and two equal primitive vectors. Finally, there is the
cubic cell, which is the most symmetric of all.

The point of all this discussion about symmetries is that the internal sym-
metries of the crystals show up—sometimes in subtle ways—in the macroscopic
physical properties of the crystal. For instance, a crystal will, in general, have a
tensor electric polarizability. If we describe the tensor in terms of the ellipsoid of
polarization, we should expect that some of the crystal symmetries should show
up also in the ellipsoid. For example, a cubic crystal is symmetric with respect
to a rotation of 90◦ about any one of three orthogonal directions. Clearly, the
only ellipsoid with this property is a sphere. A cubic crystal must be an isotropic
dielectric.

On the other hand, a tetragonal crystal has a fourfold rotational symmetry.
Its ellipsoid must have two of its principal axes equal, and the third must be
parallel to the axis of the crystal. Similarly, since the orthorhombic crystal has
twofold rotational symmetry about three orthogonal axes, its axes must coincide
with the axes of the polarization ellipsoid. In a like manner, one of the axes of a
monoclinic crystal must be parallel to one of the principal axes of the ellipsoid,
though we can’t say anything about the other axes. Since a triclinic crystal has
no rotational symmetry, the ellipsoid can have any orientation at all.

As you can see, we can make a big game of figuring out the possible symmetries
and relating them to the possible physical tensors. We have considered only the
polarization tensor, but things get more complicated for others—for instance, for
the tensor of elasticity. There is a branch of mathematics called “group theory”
that deals with such subjects, but usually you can figure out what you want with
common sense.
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1 2 3 4

Fig. 30-11. Slippage of crystal planes.

30-7 The strength of metals

Fig. 30-12. A photograph of a small crys-
tal of copper after stretching. [Courtesy
of S. S. Brenner, Senior Scientist, United
States Steel Research Center, Monroeville,
Pa.]

We have said that metals usually have a simple cubic crystal structure; we
want now to discuss their mechanical properties—which depend on this structure.
Metals are, generally speaking, very “soft,” because it is easy to slide one layer of
the crystal over the next. You may think: “That’s ridiculous; metals are strong.”
Not so, a single crystal of a metal can be distorted very easily.

Suppose we look at two layers of a crystal subjected to a shear force, as shown
in the diagram of Fig. 30-11(a). You might at first think the whole layer would
resist motion until the force was big enough to push the whole layer “over the
hump,” so that it shifted one notch to the left. Although slipping does occur along
a plane, it doesn’t happen that way. (If it did, you would calculate that the metal
is much stronger than it really is.) What happens is more like one atom going
at a time; first the atom on the left makes its jump, then the next, and so on, as
indicated in Fig. 30-11(b). In effect it is the vacant space between two atoms that
quickly travels to the right, with the net result that the whole second layer has
moved over one atomic spacing. The slipping goes this way because it takes much
less energy to lift one atom at a time over the hump than to lift a whole row.
Once the force is enough to start the process, it goes the rest of the way very fast.

It turns out that in a real crystal, slipping will occur repeatedly at one plane,
then will stop there and start at some other plane. The details of why it starts
and stops are quite mysterious. It is, in fact, quite strange that successive regions
of slip are often fairly evenly spaced. Figure 30-12 shows a photograph of a tiny
thin copper crystal that has been stretched. You can see the various planes where
slipping has occurred.

The sudden slipping of individual crystal planes is quite apparent if you take
a piece of tin wire that has large crystals in it and stretch it while holding it
next to your ear. You can hear a rush of “ticks” as the planes snap to their new
positions, one after the other.

Fig. 30-13. A dislocation in a crystal.

The problem of having a “missing” atom in one row is somewhat more difficult
than it might appear from Fig. 30-11. When there are more layers, the situation
must be something like that shown in Fig. 30-13. Such an imperfection in a
crystal is called a dislocation. It is presumed that such dislocations are either
present when the crystal was formed or are generated at some notch or crack at
the surface. Once they are produced, they can move relatively freely through the
crystal. The gross distortions result from the motions of many of such dislocations.

Dislocations can move freely—that is, they require little extra energy—so
long as the rest of the crystal has a perfect lattice. But they may get “stuck”
if they encounter some other kind of imperfection in the crystal. If it takes a
lot of energy for them to pass the imperfection, they will be stopped. This is
precisely the mechanism that gives strength to imperfect metal crystals. Pure
iron crystals are quite soft, but a small concentration of impurity atoms may
cause enough imperfections to effectively immobilize the dislocations. As you
know, steel, which is primarily iron, is very hard. To make steel, a small amount
of carbon is dissolved in the iron melt; if the melt is cooled rapidly, the carbon
precipitates out in little grains, making many microscopic distortions in the
lattice. The dislocations can no longer move about, and the metal is hard.

Pure copper is very soft, but can be “work-hardened.” This is done by ham-
mering on it or bending it back and forth. In this case, many new dislocations
of various kinds are made which interfere with one another, cutting down their
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mobility. Perhaps you’ve seen the trick of taking a bar of “dead soft” copper and
gently bending it around someone’s wrist as a bracelet. In the process, it becomes
work-hardened and cannot easily be unbent again! A work-hardened metal like
copper can be made soft again by annealing at a high temperature. The thermal
motion of the atoms “irons out” the dislocations and makes large single crystals
again. We have, so far, described only the so-called slip dislocation. There are
many other kinds, one of which is the screw dislocation shown in Fig. 30-14.
Such dislocations often play an important part in crystal growth.

Fig. 30-14. A screw dislocation. [From
Charles Kittel, Introduction to Solid State
Physics, John Wiley and Sons, Inc., New
York, 2nd ed., 1956.]

30-8 Dislocations and crystal growth

A

B

Fig. 30-15. Crystal growth.

One of the great puzzles for a long time was how crystals can possibly grow.
We have described how it is that each atom might, by repeated testing, determine
whether it was better to be in the crystal or not. But that means that each atom
must find a place of low energy. However, an atom put on a new surface is only
bound by one or two bonds from below, and doesn’t have the same energy it
would have if it were placed in a corner, where it would have atoms on three sides.
Suppose we imagine a growing crystal as a stack of blocks, as shown in Fig. 30-15.
If we try a new block at, say, position A, it will have only one of the six neighbors
it should ultimately get. With so many bonds lacking, its energy is not very low.
It would be better off at position B, where it already has one-half of its quota
of bonds. Crystals do indeed grow by attaching new atoms at places like B.

What happens, though, when that line is finished? To start a new line, an
atom must come to rest with only two sides attached, and that is again not very
likely. Even if it did, what would happen when the layer was finished? How
could a new layer get started? One answer is that the crystal prefers to grow
at a dislocation, for instance around a screw dislocation like the one shown in
Fig. 30-14. As blocks are added to this crystal, there is always some place where
there are three available bonds. The crystal prefers, therefore, to grow with a
dislocation built in. Such a spiral pattern of growth is shown in Fig. 30-16, which
is a photograph of a single crystal of paraffin.

Fig. 30-16. A paraffin crystal which has
grown around a screw dislocation. [From
Charles Kittel, Introduction to Solid State
Physics, John Wiley and Sons, Inc., New
York, 2nd ed., 1956.]

30-9 The Bragg-Nye crystal model

We cannot, of course, see what goes on with the individual atoms in a crystal.
Also, as you realize by now, there are many complicated phenomena that are not
easy to treat quantitatively. Sir Lawrence Bragg and J. F. Nye have devised a
scheme for making a model of a metallic crystal which shows in a striking way
many of the phenomena that are believed to occur in a real metal. In the following
pages we have reproduced their original article, which describes their method
and shows some of the results they obtained with it. (The article is reprinted
from the Proceedings of the Royal Society of London, Vol. 190, September 1947,
pp. 474–481—with the permission of the authors and of the Royal Society.)
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A dynamical model of a crystal structure
By Sir Lawrence Bragg, F.R.S. and J. F. Nye

Cavendish Laboratory, University of Cambridge

(Received 9 January 1947—Read 19 June 1947)

[Plates 8 to 21]

The crystal structure of a metal is represented by an assemblage
of bubbles, a millimetre or less in diameter, floating on the surface
of a soap solution. The bubbles are blown from a fine pipette be-
neath the surface with a constant air pressure, and are remarkably
uniform in size. They are held together by surface tension, either
in single layer on the surface or in a three-dimensional mass. An
assemblage may contain hundreds of thousands of bubbles and per-
sists for an hour or more. The assemblages show structures which
have been supposed to exist in metals, and simulate effects which
have been observed, such as, grain boundaries, dislocations and
other types of fault, slip, recrystallization, annealing, and strains
due to ‘foreign’ atoms.

1. The bubble model

Models of crystal structure have been described from time to time
in which the atoms are represented by small floating or suspended
magnets, or by circular disks floating on a water surface and held
together by the forces of capillary attraction. These models have
certain disadvantages; for instance, in the case of floating objects in
contact, frictional forces impede their free relative movement. A more
serious disadvantage is that the number of components is limited,
for a large number of components is required in order to approach
the state of affairs in a real crystal. The present paper describes the
behaviour of a model in which the atoms are represented by small
bubbles from 2·0 to 0·1mm. in diameter floating on the surface of
a soap solution. These small bubbles are sufficiently persistent for
experiments lasting an hour or more, they slide past each other without
friction, and they can be produced in large numbers. Some of the
illustrations in this paper were taken from assemblages of bubbles
numbering 100,000 or more. The model most nearly represents the
behaviour of a metal structure, because the bubbles are of one type
only and are held together by a general capillary attraction, which
represents the binding force of the free electrons in the metal. A brief
description of the model has been given in the Journal of Scientific
Instruments (Bragg 1942b).

Figure 1. Apparatus for producing rafts of bubbles.

2. Method of formation

The bubbles are blown from a fine orifice, beneath the surface
of a soap solution. We have had the best results with a solution the
formula of which was given to us by Mr Green of the Royal Institution.
15·2 c.c. of oleic acid (pure redistilled) is well shaken in 50 c.c. of
distilled water. This is mixed thoroughly with 73 c.c. of 10% solution
of tri-ethanolamine and the mixture made up to 200 c.c. To this is
added 164 c.c. of pure glycerine. It is left to stand and the clear liquid
is drawn off from below. In some experiments this was diluted in three
times its volume of water to reduce viscosity. The orifice of the jet is
about 5mm. below the surface. A constant air pressure of 50 to 200 cm.
of water is supplied by means of two Winchester flasks. Normally the
bubbles are remarkably uniform in size. Occasionally they issue in
an irregular manner, but this can be corrected by a change of jet or

Figure 3. Apparatus for producing bubbles of small size.

of pressure. Unwanted bubbles can easily be destroyed by playing a
small flame over the surface. Figure 1 shows the apparatus. We have
found it of advantage to blacken the bottom of the vessel, because
details of structure, such as grain boundaries and dislocations, then
show up more clearly.

Figure 2, plate 8, shows a portion of a raft or two-dimensional
crystal of bubbles. Its regularity can be judged by looking at the
figure in a glancing direction. The size of the bubbles varies with the
aperture, but does not appear to vary to any marked degree with the
pressure or the depth of the orifice beneath the surface. The main
effect of increasing the pressure is to increase the rate of issue of the
bubbles. As an example, a thick-walled jet of 49µ bore with a pressure
of 100 cm. produced bubbles of 1·2mm. in diameter. A thin-walled
jet of 27µ diameter and a pressure of 180 cm. produced bubbles of
0·6mm. diameter. It is convenient to refer to bubbles of 2·0 to 1·0mm.
diameter as ‘large’ bubbles, those from 0·8 to 0·6mm. diameter as
‘medium’ bubbles, and those from 0·3 to 0·1mm. diameter as ‘small’
bubbles, since their behaviour varies with their size.

With this apparatus we have not found it possible to reduce the size
of the jet and so produce bubbles of smaller diameter than 0·6mm. As
it was desired to experiment with very small bubbles, we had recourse
to placing the soap solution in a rotating vessel and introducing a fine
jet as nearly as possible parallel to a stream line. The bubbles are
swept away as they form, and under steady conditions are reasonably
uniform. They issue at a rate of one thousand or more per second,
giving a high-pitched note. The soap solution mounts up in a steep
wall around the perimeter of the vessel while it is rotating, but carries
back most of the bubbles with it when rotation ceases. With this
device, illustrated in figure 3, bubbles down to 0·12mm. in diameter
can be obtained. As an example, an orifice 38µ across in a thin-walled
jet, with a pressure of 190 cm. of water, and a speed of the fluid of
180 cm./sec. past the orifice, produced bubbles of 0·14mm. diameter.
In this case a dish of diameter 9·5 cm. and speed of 6 rev./sec. was
used. Figure 4, plate 8, is an enlarged picture of these ‘small’ bubbles
and shows their degree of regularity; the pattern is not as perfect
with a rotating as with a stationary vessel, the rows being seen to be
slightly irregular when viewed in a glancing direction.

These two-dimensional crystals show structures which have been
supposed to exist in metals, and simulate effects which have been
observed, such as grain boundaries, dislocations and other types of
fault, slip, recrystallization, annealing, and strains due to ‘foreign’
atoms.

3. Grain boundaries

Figures 5a, 5b and 5c, plates 9 and 10, show typical grain bound-
aries for bubbles of 1·87, 0·76 and 0·30mm. diameter respectively.
The width of the disturbed area at the boundary, where the bubbles
have an irregular distribution, is in general greater the smaller the
bubbles. In figure 5a, which shows portions of several adjacent grains,
bubbles at a boundary between two grains adhere definitely to one
crystalline arrangement or the other. In figure 5c there is a marked
‘Beilby layer’ between the two grains. The small bubbles, as will be
seen, have a greater rigidity than the large ones, and this appears to
give rise to more irregularity at the interface.

Separate grains show up distinctly when photographs of polycrys-
talline rafts such as figures 5a to 5c, plates 9 and 10, and figures 12a
to 12e, plates 14 to 16, are viewed obliquely. With suitable lighting,
the floating raft of bubbles itself when viewed obliquely resembles a
polished and etched metal in a remarkable way.
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It often happens that some ‘impurity atoms’, or bubbles which
are markedly larger or smaller than the average, are found in a poly-
crystalline raft, and when this is so a large proportion of them are
situated at the grain boundaries. It would be incorrect to say that
the irregular bubbles make their way to the boundaries; it is a defect
of the model that no diffusion of bubbles through the structure can
take place, mutual adjustments of neighbours alone being possible.
It appears that the boundaries tend to readjust themselves by the
growth of one crystal at the expense of another till they pass through
the irregular atoms.

4. Dislocations

When a single crystal or polycrystalline raft is compressed, ex-
tended, or otherwise deformed it exhibits a behaviour very similar
to that which has been pictured for metals subjected to strain. Up
to a certain limit the model is within its elastic range. Beyond that
point it yields by slip along one of the three equally inclined directions
of closely packed rows. Slip takes place by the bubbles in one row
moving forward over those in the next row by an amount equal to
the distance between neighbours. It is very interesting to watch this
process taking place. The movement is not simultaneous along the
whole row but begins at one end with the appearance of a ‘dislocation’,
where there is locally one more bubble in the rows on one side of
the slip line as compared with those on the other. This dislocation
then runs along the slip line from one side of the crystal to the other,
the final result being a slip by one ‘inter-atomic’ distance. Such a
process has been invoked by Orowan, by Polanyi and by Taylor to
explain the small forces required to produce plastic gliding in metal
structures. The theory put forward by Taylor (1934) to explain the
mechanism of plastic deformation of crystals considers the mutual
action and equilibrium of such dislocations. The bubbles afford a very
striking picture of what has been supposed to take place in the metal.
Sometimes the dislocations run along quite slowly, taking a matter of
seconds to cross a crystal; stationary dislocations also are to be seen
in crystals which are not homogeneously strained. They appear as
short black lines, and can be seen in the series of photographs, figures
12a to 12e, plates 14 to 16. When a polycrystalline raft is compressed,
these dark lines are seen to be dashing about in all directions across
the crystals.

Figures 6a, 6b and 6c, plates 10 and 11, show examples of disloca-
tions. In figure 6a, where the diameter of the bubbles is 1·9mm., the
dislocation is very local, extending over about six bubbles. In figure 6b
(diameter 0·76mm.) it extends over twelve bubbles, and in figure 6c
(diameter 0·30mm.) its influence can be traced for a length of about
fifty bubbles. The greater rigidity of the small bubbles leads to longer
dislocations. The study of any mass of bubbles shows, however, that
there is not a standard length of dislocation for each size. The length
depends upon the nature of the strain in the crystal. A boundary
between two crystals with corresponding axes at approximately 30◦
(the maximum angle which can occur) may be regarded as a series of
dislocations in alternate rows, and in this case the dislocations are
very short. As the angle between the neighbouring crystals decreases,
the dislocations occur at wider intervals and at the same time become
longer, till one finally has single dislocations in a large body of perfect
structure as shown in figures 6a, 6b and 6c.

Figure 7, plate 11, shows three parallel dislocations. If we call them
positive and negative (following Taylor) they are positive, negative,
positive, reading from left to right. The strip between the last two has
three bubbles in excess, as can be seen by looking along the rows in a
horizontal direction. Figure 8, plate 12, shows a dislocation projecting
from a grain boundary, an effect often observed.

Figure 9, plate 12, shows a place where two bubbles take the
place of one. This may be regarded as a limiting case of positive and
negative dislocations on neighbouring rows, with the compressive sides
of the dislocations facing each other. The contrary case would lead to
a hole in the structure, one bubble being missing at the point where
the dislocations met.

5. Other types of fault

Figure 10, plate 12, shows a narrow strip between two crystals of
parallel orientation, the strip being crossed by a number of fault lines
where the bubbles are not in close packing. It is in such places as these

that recrystallization may be expected. The boundaries approach and
the strip is absorbed into a wider area of perfect crystal.

Figures 11a to 11g, plates 13 and 14 are examples of arrangements
which frequently appear in places where there is a local deficiency of
bubbles. While a dislocation is seen as a dark stripe in a general view,
these structures show up in the shape of the letter V or as triangles.
A typical V structure is seen in figure 11a. When the model is being
distorted, a V structure is formed by two dislocations meeting at an
inclination of 60◦; it is destroyed by the dislocations continuing along
their paths. Figure 11b shows a small triangle, which also embodies a
dislocation, for it will be noticed that the rows below the fault have
one more bubble than these below. If a mild amount of ‘thermal
movement’ is imposed by gentle agitation of one side of the crystal,
such faulty places disappear and a perfect structure is formed.

Here and there in the crystals there is a blank space where a bubble
is missing, showing as a black dot in a general view. Examples occur
in figure 11g. Such a gap cannot be closed by a local readjustment,
since filling the hole causes another to appear. Such holes both appear
and disappear when the crystal is ‘cold-worked’. These structures
in the model suggest that similar local faults may exist in an actual
metal. They may play a part in processes such as diffusion or the order-
disorder change by reducing energy barriers in their neighbourhood,
and act as nuclei for crystallization in an allotropic change.

6. Recrystallization and annealing
Figures 12a to 12e, plates 14 to 16, show the same raft of bubbles

at successive times. A raft covering the surface of the solution was
given a vigorous stirring with a glass rake, and then left to adjust
itself. Figure 12a shows its aspect about 1 sec. after stirring has ceased.
The raft is broken into a number of small ‘crystallites’; these are in a
high state of non-homogeneous strain as is shown by the numerous
dislocations and other faults. The following photograph (figure 12b)
shows the same raft 32 sec. later. The small grains have coalesced
to form larger grains, and much of the strain has disappeared in the
process. Recrystallization takes place right through the series, the
last three photographs of which show the appearance of the raft 2, 14
and 25min. after the initial stirring. It is not possible to follow the
rearrangement for much longer times, because the bubbles shrink after
long standing, apparently due to the diffusion of air through their
walls, and they also become thin and tend to burst. No agitation
was given to the model during this process. An ever slower process
of rearrangement goes on, the movement of the bubbles in one part
of the raft setting up strains which activate a rearrangement in a
neighbouring part, and that in its turn still another.

A number of interesting points are to be seen in this series. Note
the three small grains at the points indicated by the co-ordinates AA,
BB, CC. A persists, though changed in form, throughout the whole
series. B is still present after 14min., but has disappeared in 25min.,
leaving behind it four dislocations marking internal strain in the grain.
Grain C shrinks and finally disappears in figure 12d, leaving a hole
and a V which has disappeared in figure 12e. At the same time the
ill-defined boundary in figure 12d at DD has become a definite one in
figure 12e. Note also the straightening out of the grain boundary in
the neighbourhood of EE in figures 12b to 12e. Dislocations of various
lengths can be seen, marking all stages between a slight warping of the
structure and a definite boundary. Holes where bubbles are missing
show up as black dots. Some of these holes are formed or filled up by
movements of dislocations, but others represent places where a bubble
has burst. Many examples of V’s and some of triangles can be seen.
Other interesting points will be apparent from a study of this series
of photographs.

Figures 13a, 13b and 13c, plate 17, show a portion of a raft
1 sec., 4 sec. and 4min. after the stirring process, and is interesting
as showing two successive stages in the relaxation towards a more
perfect arrangement. The changes show up well when one looks in a
glancing direction across the page. The arrangement is very broken in
figure 13a. In figure 13b the bubbles have grouped themselves in rows,
but the curvature of these rows indicates a high degree of internal
strain. In figure 13c this strain has been relieved by the formation of
a new boundary at A–A, the rows on either side now being straight.
It would appear that the energy of this strained crystal is greater
than that of the intercrystalline boundary. We are indebted to Messrs
Kodak for the photographs of figure 13, which were taken when the
cinematograph film referred to below was produced.
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7. Effect of impurity atom

Figure 14, plate 18, shows the widespread effect of a bubble which
is of the wrong size. If this figure is compared with the perfect rafts
shown in figures 2 and 4, plate 8, it will be seen that three bubbles, one
larger and two smaller than normal, disturb the regularity of the rows
over the whole of the figure. As has been mentioned above, bubbles
of the wrong size are generally found in the grain boundaries, where
holes of irregular size occur which can accommodate them.

8. Mechanical properties of the two-dimensional model

The mechanical properties of a two-dimensional perfect raft have
been described in the paper referred to above (Bragg 1942b). The raft
lies between two parallel springs dipping horizontally in the surface
of the soap solution. The pitch of the springs is adjusted to fit the
spacing of the rows of bubbles, which then adhere firmly to them. One
spring can be translated parallel to itself by a micrometer screw, and
the other is supported by two thin vertical glass fibres. The shearing
stress can be measured by noting the deflexion of the glass fibres.
When subjected to a shearing strain, the raft obeys Hooke’s law of
elasticity up to the point where the elastic limit is reached. It then
slips along some intermediate row by an amount equal to the width of
one bubble. The elastic shear and slip can be repeated several times.
The elastic limit is approximately reached when one side of the raft
has been sheared by an amount equal to a bubble width past the other
side. This feature supports the basic assumption made by one of us in
the calculation of the elastic limit of a metal (Bragg 1942a), in which
it is supposed that each crystallite in a cold-worked metal only yields
when the strain in it has reached such a value that energy is released
by the slip.

A calculation has been made by M. M. Nicolson of the forces
between the bubbles, and will be published shortly. It shows two
interesting points. The curve for the variation of potential energy
with distance between centres is very similar to those which have
been plotted for atoms. It has a minimum for a distance between
centres slightly less than a free bubble diameter, and rises sharply
for smaller distances. Further, the rise is extremely sharp for bubbles
of 0·1mm. diameter but much less so for bubbles of 1mm. diameter,
thus confirming the impression given by the model that the small
bubbles behave as if they were much more rigid than the large ones.

9. Three-dimensional assemblages

If the bubbles are allowed to accumulate in multiple layers on the
surface, they form a mass of three-dimensional ‘crystals’ with one of
the arrangements of closest packing. Figure 15, plate 18, shows an
oblique view of such a mass; its resemblance to a polished and etched
metal surface is noticeable. In figure 16, plate 20, a similar mass is
seen viewed normally. Parts of the structure are definitely in cubic
closest packing, the outer surface being the (111) face or (100) face.
Figure 17a, plate 19, shows a (111) face. The outlines of the three
bubbles on which each upper bubble rests can be clearly seen, and the
next layer of these bubbles is faintly visible in a position not beneath
the uppermost layer, showing that the packing of the (111) planes
has the well-known cubic succession. Figure 17b, plate 19, shows a
(100) face with each bubble resting on four others. The cubic axes
are of course inclined at 45◦ to the close-packed rows of the surface
layer. Figure 17c, plate 19, shows a twin in the cubic structure across
the face (111). The uppermost faces are (111) and (100), and they
make a small angle with each other, though this is not apparent in the
figure; it shows up in an oblique view. Figure 17d, plate 19, appears
to show both the cubic and hexagonal succession of closely packed
planes, but it is difficult to verify whether the left-hand side follows
the true hexagonal close-packed structure because it is not certain
that the assemblage had a depth of more than two layers at this point.
Many instances of twins, and of intercrystalline boundaries, can be
seen in figure 16, plate 20.

Figure 18, plate 21, shows several dislocations in a three-dimen-
sional structure subjected to a bending strain.

10. Demonstration of the model

With the co-operation of Messrs Kodak, a 16mm. cinematograph
film has been made of the movements of the dislocations and grain

boundaries when single crystal and polycrystalline rafts are sheared,
compressed, or extended. Moreover, if the soap solution is placed in a
glass vessel with a flat bottom, the model lends itself to projection on
a large scale by transmitted light. Since a certain depth is required
for producing the bubbles, and the solution is rather opaque, it is
desirable to make the projection through a glass block resting on the
bottom of the vessel and just submerged beneath the surface.

In conclusion, we wish to express our thanks to Mr C. E. Harrold,
of King’s College, Cambridge, who made for us some of the pipettes
which were used to produce the bubbles.
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Figure 2. Perfect crystalline raft of bubbles. Diameter 1·41mm.

Figure 4. Perfect crystalline raft of bubbles. Diameter 0·30mm.
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Grain boundaries

Figure 5a. Diameter 1·87mm.

Figure 5b. Diameter 0·76mm.
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Figure 5c. A grain boundary. Diameter 0·30mm.

Figure 6a. A dislocation. Diameter 1·9mm.
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Dislocations

Figure 6b. Diameter 0·76mm.

Figure 6c. Diameter 0·30mm.

Figure 7. Parallel dislocations. Diameter 0·76mm.
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Figure 8. Dislocation projecting from a grain boundary. Diameter 0·30mm.

Figure 9. Dislocations in adjacent rows. Diameter 1·9mm.

Figure 10. Series of fault lines between two areas of parallel orientation. Diameter 0·30mm.
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Diameter 0·68mm.
a

Diameter 0·68mm.
b

Diameter 0·6mm.
c

Diameter 0·30mm.
d

Diameter 0·6mm.
e

Diameter 0·6mm.
f

Figure 11. Types of fault.
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g

Figure 11. Types of fault. Diameter 0·68mm.

a. Immediately after stirring.
Figure 12. Recrystallization. Diameter 0·60mm.
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b. After 33 sec.

c. After 2 min.
Figure 12
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d. After 14 min.

e. After 25 min.
Figure 12
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a. After 1 sec.

b. After 4 sec.

c. After 4 min.
Figure 13. Two stages of recrystallization. Diameter 1·64mm.
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Figure 14. Effect of atoms of impurity. Diameter of uniform bubbles about 1·3mm.

Figure 15. Oblique view of three-dimensional raft.
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a. (111) face. b. (100) face.
Face-centered cubic structure.

c. Twin across (111), cubic structure. d. Possible example of hexagonal close-
packing.Diameter 0·70mm.

Figure 17
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Figure 16. A three-dimensional raft viewed normally. Diameter 0·70mm.
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Figure 18. Dislocations in three-dimensional structure. Diameter 0·70mm.
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31

Tensors

31-1 The tensor of polarizability

Physicists 31-1 The tensor of polarizability
31-2 Transforming the tensor

components
31-3 The energy ellipsoid
31-4 Other tensors; the tensor of

inertia
31-5 The cross product
31-6 The tensor of stress
31-7 Tensors of higher rank
31-8 The four-tensor of

electromagnetic momentum

always have a habit of taking the simplest example of any phe-
nomenon and calling it “physics,” leaving the more complicated examples to
become the concern of other fields—say of applied mathematics, electrical engi-
neering, chemistry, or crystallography. Even solid-state physics is almost only half
physics because it worries too much about special substances. So in these lectures
we will be leaving out many interesting things. For instance, one of the important
properties of crystals—or of most substances—is that their electric polarizability
is different in different directions. If you apply a field in any direction, the atomic
charges shift a little and produce a dipole moment, but the magnitude of the
moment depends very much on the direction of the field. That is, of course, quite
a complication. But in physics we usually start out by talking about the special
case in which the polarizability is the same in all directions, to make life easier.
We leave the other cases to some other field. Therefore, for our later work, we
will not need at all what we are going to talk about in this chapter.

Review: Chapter 11, Vol. I, Vectors
Chapter 20, Vol. I, Rotation
in Space

The mathematics of tensors is particularly useful for describing properties of
substances which vary in direction—although that’s only one example of their use.
Since most of you are not going to become physicists, but are going to go into the
real world, where things depend severely upon direction, sooner or later you will
need to use tensors. In order not to leave anything out, we are going to describe
tensors, although not in great detail. We want the feeling that our treatment of
physics is complete. For example, our electrodynamics is complete—as complete
as any electricity and magnetism course, even a graduate course. Our mechanics
is not complete, because we studied mechanics when you didn’t have a high level
of mathematical sophistication, and we were not able to discuss subjects like the
principle of least action, or Lagrangians, or Hamiltonians, and so on, which are
more elegant ways of describing mechanics. Except for general relativity, however,
we do have the complete laws of mechanics. Our electricity and magnetism is
complete, and a lot of other things are quite complete. The quantum mechanics,
naturally, will not be—we have to leave something for the future. But you should
at least know what a tensor is.

We emphasized in Chapter 30 that the properties of crystalline substances
are different in different directions—we say they are anisotropic. The variation
of the induced dipole moment with the direction of the applied electric field is
only one example, the one we will use for our example of a tensor. Let’s say
that for a given direction of the electric field the induced dipole moment per
unit volume P is proportional to the strength of the applied field E. (This is
a good approximation for many substances if E is not too large.) We will call
the proportionality constant α.* We want now to consider substances in which
α depends on the direction of the applied field, as, for example, in crystals like
calcite, which make double images when you look through them.

Suppose, in a particular crystal, we find that an electric field E1 in the
x-direction produces the polarization P 1 in the x-direction. Then we find that
an electric field E2 in the y-direction, with the same strength, as E1 produces a
different polarization P 2 in the y-direction. What would happen if we put an

* In Chapter 10 we followed the usual convention and wrote P = ε0χE and called χ (“khi”)
the “susceptibility.” Here, it will be more convenient to use a single letter, so we write α for ε0χ.
For isotropic dielectrics, α = (κ− 1)ε0, where κ is the dielectric constant (see Section 10-4).
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electric field at 45◦? Well, that’s a superposition of two fields along x and y, so
the polarization P will be the vector sum of P 1 and P 2, as shown in Fig. 31-1(a).
The polarization is no longer in the same direction as the electric field. You can
see how that might come about. There may be charges which can move easily
up and down, but which are rather stiff for sidewise motions. When a force is
applied at 45◦, the charges move farther up than they do toward the side. The
displacements are not in the direction of the external force, because there are
asymmetric internal elastic forces.

(a)

E1

E2

E

P1

P2

P

(b)

E1

E2

E

P1

P2

P

Fig. 31-1. The vector addition of polar-
izations in an anisotropic crystal.

There is, of course, nothing special about 45◦. It is generally true that the
induced polarization of a crystal is not in the direction of the electric field. In our
example above, we happened to make a “lucky” choice of our x- and y-axes, for
which P was along E for both the x- and y-directions. If the crystal were rotated
with respect to the coordinate axes, the electric field E2 in the y-direction would
have produced a polarization P with both an x- and a y-component. Similarly,
the polarization due to an electric field in the x-direction would have produced a
polarization with an x-component and a y-component. Then the polarizations
would be as shown in Fig. 31-1(b), instead of as in part (a). Things get more
complicated—but for any field E, the magnitude of P is still proportional to the
magnitude of E.

We want now to treat the general case of an arbitrary orientation of a crystal
with respect to the coordinate axes. An electric field in the x-direction will
produce a polarization P with x-, y-, and z-components; we can write

Px = αxxEx, Py = αyxEx, Pz = αzxEx. (31.1)

All we are saying here is that if the electric field is in the x-direction, the
polarization does not have to be in that same direction, but rather has an x-, a
y-, and a z-component—each proportional to Ex. We are calling the constants of
proportionality αxx, αyx, and αzx, respectively (the first letter to tell us which
component of P is involved, the last to refer to the direction of the electric field).

Similarly, for a field in the y-direction, we can write

Px = αxyEy, Py = αyyEy, Pz = αzyEy; (31.2)

and for a field in the z-direction,

Px = αxzEz, Py = αyzEz, Pz = αzzEz. (31.3)

Now we have said that polarization depends linearly on the fields, so if there
is an electric field E that has both an x- and a y-component, the resulting
x-component of P will be the sum of the two Px’s of Eqs. (31.1) and (31.2). If
E has components along x, y, and z, the resulting components of P will be the
sum of the three contributions in Eqs. (31.1), (31.2), and (31.3). In other words,
P will be given by

Px = αxxEx + αxyEy + αxzEz,

Py = αyxEx + αyyEy + αyzEz,

Pz = αzxEx + αzyEy + αzzEz.

(31.4)

The dielectric behavior of the crystal is then completely described by the nine
quantities (αxx, αxy, αxz, αyx, . . . ), which we can represent by the symbol αij .
(The subscripts i and j each stand for any one of the three possible letters x, y,
and z.) Any arbitrary electric field E can be resolved with the components
Ex, Ey, and Ez; from these we can use the αij to find Px, Py, and Pz, which
together give the total polarization P . The set of nine coefficients αij is called a
tensor—in this instance, the tensor of polarizability. Just as we say that the three
numbers (Ex, Ey, Ez) “form the vector E,” we say that the nine numbers (αxx,
αxy, . . . ) “form the tensor αij .”
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31-2 Transforming the tensor components

You know that when we change to a different coordinate system x′, y′, and z′,
the components Ex′ , Ey′ , and Ez′ of the vector will be quite different—as will
also the components of P . So all the coefficients αij will be different for a
different set of coordinates. You can, in fact, see how the α’s must be changed by
changing the components of E and P in the proper way, because if we describe
the same physical electric field in the new coordinate system we should get the
same polarization. For any new set of coordinates, Px′ is a linear combination of
Px, Py, and Pz:

Px′ = aPx + bPy + cPz,

and similarly for the other components. If you substitute for Px, Py, and Pz in
terms of the E’s, using Eq. (31.4), you get

Px′ = a(αxxEx + αxyEy + αxzEz)
+ b(αyxEx + αyyEy + αyzEz)
+ c(αzxEx + αzyEy + αzzEz).

Then you write Ex, Ey, and Ez in terms of Ex′ , Ey′ , and Ez′ ; for instance,

Ex = a′Ex′ + b′Ey′ + c′Ez′ ,

where a′, b′, c′ are related to, but not equal to, a, b, c. So you have Px′ , expressed
in terms of the components Ex′ , Ey′ , and Ez′ ; that is, you have the new αij . It
is fairly messy, but quite straightforward.

When we talk about changing the axes we are assuming that the crystal
stays put in space. If the crystal were rotated with the axes, the α’s would not
change. Conversely, if the orientation of the crystal were changed with respect
to the axes, we would have a new set of α’s. But if they are known for any one
orientation of the crystal, they can be found for any other orientation by the
transformation we have just described. In other words, the dielectric property of
a crystal is described completely by giving the components of the polarization
tensor αij with respect to any arbitrarily chosen set of axes. Just as we can
associate a vector velocity v = (vx, vy, vz) with a particle, knowing that the three
components will change in a certain definite way if we change our coordinate axes,
so with a crystal we associate its polarization tensor αij , whose nine components
will transform in a certain definite way if the coordinate system is changed.

The relation between P and E written in Eq. (31.4) can be put in the more
compact notation:

Pi =
∑
j

αijEj , (31.5)

where it is understood that i represents either x, y, or z and that the sum is
taken on j = x, y, and z. Many special notations have been invented for dealing
with tensors, but each of them is convenient only for a limited class of problems.
One common convention is to omit the sum sign (

∑
) in Eq. (31.5), leaving it

understood that whenever the same subscript occurs twice (here j), a sum is to
be taken over that index. Since we will be using tensors so little, we will not
bother to adopt any such special notations or conventions.

31-3 The energy ellipsoid

We want now to get some experience with tensors. Suppose we ask the
interesting question: What energy is required to polarize the crystal (in addition
to the energy in the electric field which we know is ε0E2/2 per unit volume)?
Consider for a moment the atomic charges that are being displaced. The work
done in displacing the charge the distance dx is qEx dx, and if there are N charges
per unit volume, the work done is qExN dx. But qN dx is the change dPx in the
dipole moment per unit volume. So the energy required per unit volume is

Ex dPx.
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Combining the work for the three components of the field, the work per unit
volume is found to be

E · dP .

Since the magnitude of P is proportional to E, the work done per unit volume
in bringing the polarization from 0 to P is the integral of E · dP . Calling this
work uP ,* we write

uP = 1
2E · P = 1

2

∑
i

EiPi. (31.6)

Now we can express P in terms of E by Eq. (31.5), and we have that

uP = 1
2

∑
i

∑
j

αijEiEj . (31.7)

The energy density uP is a number independent of the choice of axes, so it is a
scalar. A tensor has then the property that when it is summed over one index
(with a vector), it gives a new vector; and when it is summed over both indexes
(with two vectors), it gives a scalar.

The tensor αij should really be called a “tensor of second rank,” because it
has two indexes. A vector—with one index—is a tensor of the first rank, and
a scalar—with no index—is a tensor of zero rank. So we say that the electric
field E is a tensor of the first rank and that the energy density uP is a tensor of
zero rank. It is possible to extend the ideas of a tensor to three or more indexes,
and so to make tensors of ranks higher than two.

The subscripts of the polarization tensor range over three possible values—
they are tensors in three dimensions. The mathematicians consider tensors in four,
five, or more dimensions. We have already used a four-dimensional tensor Fµν in
our relativistic description of the electromagnetic field (Chapter 26).

The polarization tensor αij has the interesting property that it is symmetric,
that is, that αxy = αyx, and so on for any pair of indexes. (This is a physical
property of a real crystal and not necessary for all tensors.) You can prove for
yourself that this must be true by computing the change in energy of a crystal
through the following cycle: (1) Turn on a field in the x-direction; (2) turn on
a field in the y-direction; (3) turn off the x-field; (4) turn off the y-field. The
crystal is now back where it started, and the net work done on the polarization
must be back to zero. You can show, however, that for this to be true, αxy must
be equal to αyx. The same kind of argument can, of course, be given for αxz,
etc. So the polarization tensor is symmetric.

This also means that the polarization tensor can be measured by just measuring
the energy required to polarize the crystal in various directions. Suppose we apply
an E-field with only an x- and a y-component; then according to Eq. (31.7),

uP = 1
2 [αxxE2

x + (αxy + αyx)ExEy + αyyE
2
y ]. (31.8)

With an Ex alone, we can determine αxx; with an Ey alone, we can determine αyy;
with both Ex and Ey, we get an extra energy due to the term with (αxy + αyx).
Since the αxy and αyx are equal, this term is 2αxy and can be related to the
energy.

The energy expression, Eq. (31.8), has a nice geometric interpretation. Sup-
pose we ask what fields Ex and Ey correspond to some given energy density—
say u0. That is just the mathematical problem of solving the equation

αxxE
2
x + 2αxyExEy + αyyE

2
y = 2u0.

This is a quadratic equation, so if we plot Ex and Ey the solutions of this equation
are all the points on an ellipse (Fig. 31-2). (It must be an ellipse, rather than
a parabola or a hyperbola, because the energy for any field is always positive
and finite.) The vector E with components Ex and Ey can be drawn from the

* This work done in producing the polarization by an electric field is not to be confused
with the potential energy −p0 ·E of a permanent dipole moment p0.
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origin to the ellipse. So such an “energy ellipse” is a nice way of “visualizing” the
polarization tensor.

E

Ex

Ey

Fig. 31-2. Locus of the vector E =

(Ex , Ey ) that gives a constant energy of
polarization.

If we now generalize to include all three components, the electric vector E in
any direction required to give a unit energy density gives a point which will be
on the surface of an ellipsoid, as shown in Fig. 31-3. The shape of this ellipsoid
of constant energy uniquely characterizes the tensor polarizability.

Now an ellipsoid has the nice property that it can always be described simply
by giving the directions of three “principal axes” and the diameters of the ellipse
along these axes. The “principal axes” are the directions of the longest and
shortest diameters and the direction at right angles to both. They are indicated
by the axes a, b, and c in Fig. 31-3. With respect to these axes, the ellipsoid has
the particularly simple equation

αaaE
2
a + αbbE

2
b + αccE

2
c = 2u0.

a

b

c

Fig. 31-3. The energy ellipsoid of the
polarization tensor.

So with respect to these axes, the dielectric tensor has only three components
that are not zero: αaa, αbb, and αcc. That is to say, no matter how complicated a
crystal is, it is always possible to choose a set of axes (not necessarily the crystal
axes) for which the polarization tensor has only three components. With such a
set of axes, Eq. (31.4) becomes simply

Pa = αaaEa, Pb = αbbEb, Pc = αccEc. (31.9)

An electric field along any one of the principal axes produces a polarization along
the same axis, but the coefficients for the three axes may, of course, be different.

Often, a tensor is described by listing the nine coefficients in a table inside of
a pair of brackets: αxx αxy αxz

αyx αyy αyz
αzx αzy αzz

 . (31.10)

For the principal axes a, b, and c, only the diagonal terms are not zero; we say
then that “the tensor is diagonal.” The complete tensor isαaa 0 0

0 αbb 0
0 0 αcc

 . (31.11)

The important point is that any polarization tensor (in fact, any symmetric
tensor of rank two in any number of dimensions) can be put in this form by
choosing a suitable set of coordinate axes.

If the three elements of the polarization tensor in diagonal form are all equal,
that is, if

αaa = αbb = αcc = α, (31.12)

the energy ellipsoid becomes a sphere, and the polarizability is the same in all
directions. The material is isotropic. In the tensor notation,

αij = αδij (31.13)

where δij is the unit tensor

δij =

1 0 0
0 1 0
0 0 1

 . (31.14)

That means, of course,
δij = 1, if i = j;

δij = 0, if i 6= j.
(31.15)

The tensor δij is often called the “Kronecker delta.” You may amuse yourself
by proving that the tensor (31.14) has exactly the same form if you change
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the coordinate system to any other rectangular one. The polarization tensor of
Eq. (31.13) gives

Pi = α
∑
j

δijEj = αEi,

which means the same as our old result for isotropic dielectrics:

P = αE.

The shape and orientation of the polarization ellipsoid can sometimes be
related to the symmetry properties of the crystal. We have said in Chapter 30 that
there are 230 different possible internal symmetries of a three-dimensional lattice
and that they can, for many purposes, be conveniently grouped into seven classes,
according to the shape of the unit cell. Now the ellipsoid of polarizability must
share the internal geometric symmetries of the crystal. For example, a triclinic
crystal has low symmetry—the ellipsoid of polarizability will have unequal axes,
and its orientation will not, in general, be aligned with the crystal axes. On
the other hand, a monoclinic crystal has the property that its properties are
unchanged if the crystal is rotated 180◦ about one axis. So the polarization
tensor must be the same after such a rotation. It follows that the ellipsoid of
the polarizability must return to itself after a 180◦ rotation. That can happen
only if one of the axes of the ellipsoid is in the same direction as the symmetry
axis of the crystal. Otherwise, the orientation and dimensions of the ellipsoid are
unrestricted.

For an orthorhombic crystal, however, the axes of the ellipsoid must correspond
to the crystal axes, because a 180◦ rotation about any one of the three axes
repeats the same lattice. If we go to a tetragonal crystal, the ellipse must have
the same symmetry, so it must have two equal diameters. Finally, for a cubic
crystal, all three diameters of the ellipsoid must be equal; it becomes a sphere,
and the polarizability of the crystal is the same in all directions.

There is a big game of figuring out the possible kinds of tensors for all the
possible symmetries of a crystal. It is called a “group-theoretical” analysis. But
for the simple case of the polarizability tensor, it is relatively easy to see what
the relations must be.

31-4 Other tensors; the tensor of inertia

There are many other examples of tensors appearing in physics. For example,
in a metal, or in any conductor, one often finds that the current density j is
approximately proportional to the electric field E; the proportionality constant
is called the conductivity σ:

j = σE.

For crystals, however, the relation between j and E is more complicated; the
conductivity is not the same in all directions. The conductivity is a tensor, and
we write

ji =
∑

σijEj .

Another example of a physical tensor is the moment of inertia. In Chapter 18
of Volume I we saw that a solid object rotating about a fixed axis has an
angular momentum L proportional to the angular velocity ω, and we called the
proportionality factor I, the moment of inertia:

L = Iω.

For an arbitrarily shaped object, the moment of inertia depends on its orientation
with respect to the axis of rotation. For instance, a rectangular block will have
different moments about each of its three orthogonal axes. Now angular velocity ω
and angular momentum L are both vectors. For rotations about one of the axes
of symmetry, they are parallel. But if the moment of inertia is different for the
three principal axes, then ω and L are, in general, not in the same direction
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(see Fig. 31-4). They are related in a way analogous to the relation between E
and P . In general, we must write

ω

L

Fig. 31-4. The angular momentum L of
a solid object is not, in general, parallel to
its angular velocity ω.

Lx = Ixxωx + Ixyωy + Ixzωz,

Ly = Iyxωx + Iyyωy + Iyzωz,

Lz = Izxωx + Izyωy + Izzωz.

(31.16)

The nine coefficients Iij are called the tensor of inertia. Following the analogy
with the polarization, the kinetic energy for any angular momentum must be
some quadratic form in the components ωx, ωy, and ωz:

KE = 1
2

∑
ij

Iijωiωj . (31.17)

We can use the energy to define the ellipsoid of inertia. Also, energy arguments
can be used to show that the tensor is symmetric—that Iij = Iji.

The tensor of inertia for a rigid body can be worked out if the shape of the
object is known. We need only to write down the total kinetic energy of all
the particles in the body. A particle of mass m and velocity v has the kinetic
energy 1

2mv
2, and the total kinetic energy is just the sum∑

1
2mv

2

over all of the particles of the body. The velocity v of each particle is related to
the angular velocity ω of the solid body. Let’s assume that the body is rotating
about its center of mass, which we take to be at rest. Then if r is the displacement
of a particle from the center of mass, its velocity v is given by ω × r. So the
total kinetic energy is

KE =
∑

1
2m(ω × r)2. (31.18)

Now all we have to do is write ω × r out in terms of the components ωx, ωy, ωz,
and x, y, z, and compare the result with Eq. (31.17); we find Iij by identifying
terms. Carrying out the algebra, we write

(ω × r)2 = (ω × r)2
x + (ω × r)2

y + (ω × r)2
z

= (ωyz − ωzy)2 + (ωzx− ωxz)2 + (ωxy − ωyx)2

= + ω2
yz

2 − 2ωyωzzy + ω2
zy

2

+ ω2
zx

2 − 2ωzωxxz + ω2
xz

2

+ ω2
xy

2 − 2ωxωyyx+ ω2
yx

2.

Multiplying this equation by m/2, summing over all particles, and comparing
with Eq. (31.17), we see that Ixx, for instance, is given by

Ixx =
∑

m(y2 + z2).

This is the formula we have had before (Chapter 19, Vol. I) for the moment of
inertia of a body about the x-axis. Since r2 = x2 + y2 + z2, we can also write
this term as

Ixx =
∑

m(r2 − x2).

Working out all of the other terms, the tensor of inertia can be written as

Iij =

∑m(r2 − x2) −
∑
mxy −

∑
mxz

−
∑
myx

∑
m(r2 − y2) −

∑
myz

−
∑
mzx −

∑
mzy

∑
m(r2 − z2)

 . (31.19)

If you wish, this may be written in “tensor notation” as

Iij =
∑

m(r2δij − rirj), (31.20)
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where the ri are the components (x, y, z) of the position vector of a particle and
the

∑
means to sum over all the particles. The moment of inertia, then, is a

tensor of the second rank whose terms are a property of the body and relate L
to ω by

Li =
∑
j

Iijωj . (31.21)

For a body of any shape whatever, we can find the ellipsoid of inertia and,
therefore, the three principal axes. Referred to these axes, the tensor will be
diagonal, so for any object there are always three orthogonal axes for which
the angular velocity and angular momentum are parallel. They are called the
principal axes of inertia.

31-5 The cross product

We should point out that we have been using tensors of the second rank since
Chapter 20 of Volume I. There, we defined a “torque in a plane,” such as τxy by

τxy = xFy − yFx.

Generalized to three dimensions, we could write

τij = riFj − rjFi. (31.22)

The quantity τij is a tensor of the second rank. One way to see that this is so is
by combining τij with some vector, say the unit vector e, according to∑

j

τijej .

If this quantity is a vector, then τij must transform as a tensor—this is our
definition of a tensor. Substituting for τij , we have∑

j

τijej =
∑
j

riFjej −
∑
j

rjejFi

= ri(F · e)− (r · e)Fi.

Since the dot products are scalars, the two terms on the right-hand side are
vectors, and likewise their difference. So τij is a tensor.

But τij is a special kind of tensor; it is antisymmetric, that is,

τij = −τji,

so it has only three nonzero terms—τxy, τyz, and τzx. We were able to show in
Chapter 20 of Volume I that these three terms, almost “by accident,” transform
like the three components of a vector, so that we could define

τ = (τx, τy, τz) = (τyz, τzx, τxy)

We say “by accident,” because it happens only in three dimensions. In four
dimensions, for instance, an antisymmetric tensor of the second rank has up
to six nonzero terms and certainly cannot be replaced by a vector with four
components.

Just as the axial vector τ = r × F is a tensor, so also is every cross product
of two polar vectors—all the same arguments apply. By luck, however, they are
also representable by vectors (really pseudo vectors), so our mathematics has
been made easier for us.

Mathematically, if a and b are any two vectors, the nine quantities aibj form
a tensor (although it may have no useful physical purpose). Thus, for the position
vector r, rirj is a tensor, and since δij is also, we see that the right side of
Eq. (31.20) is indeed a tensor. Likewise Eq. (31.22) is a tensor, since the two
terms on the right-hand side are tensors.
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31-6 The tensor of stress

(a)

x

σ

(b)

σ

∆F1

−∆F1

∆y

∆z

Fig. 31-5. The material to the left of the
plane σ exerts across the area ∆y ∆z the
force ∆F1 on the material to the right of
the plane.

The symmetric tensors we have described so far arose as coefficients in relating
one vector to another. We would like to look now at a tensor which has a different
physical significance—the tensor of stress. Suppose we have a solid object with
various forces on it. We say that there are various “stresses” inside, by which we
mean that there are internal forces between neighboring parts of the material.
We have talked a little about such stresses in a two-dimensional case when we
considered the surface tension in a stretched diaphragm in Section 12-3. We will
now see that the internal forces in the material of a three-dimensional body can
be described in terms of a tensor.

Consider a body of some elastic material—say a block of jello. If we make a
cut through the block, the material on each side of the cut will, in general, get
displaced by the internal forces. Before the cut was made, there must have been
forces between the two parts of the block that kept the material in place; we can
define the stresses in terms of these forces. Suppose we look at an imaginary
plane perpendicular to the x-axis—like the plane σ in Fig. 31-5—and ask about
the force across a small area ∆y∆z in this plane. The material on the left of the
area exerts the force ∆F 1 on the material to the right, as shown in part (b) of
the figure. There is, of course, the opposite reaction force −∆F 1 exerted on the
material to the left of the surface. If the area is small enough, we expect that
∆F 1 is proportional to the area ∆y∆z.

You are already familiar with one kind of stress—the pressure in a static
liquid. There the force is equal to the pressure times the area and is at right
angles to the surface element. For solids—also for viscous liquids in motion—the
force need not be normal to the surface; there are shear forces in addition to
pressures (positive or negative). (By a “shear” force we mean the tangential
components of the force across a surface.) All three components of the force
must be taken into account. Notice also that if we make our cut on a plane with
some other orientation, the forces will be different. A complete description of the
internal stress requires a tensor.

∆F1

∆Fx1

∆Fy1

∆Fz1

∆y

∆z

Fig. 31-6. The force ∆F1 across an el-
ement of area ∆y ∆z perpendicular to the
x-axis is resolved into three components
∆Fx1, ∆Fy1, and ∆Fz1.

We define the stress tensor in the following way: First, we imagine a cut
perpendicular to the x-axis and resolve the force ∆F 1 across the cut into its
components ∆Fx1, ∆Fy1, ∆Fz1, as in Fig. 31-6. The ratio of these forces to the
area ∆y∆z, we call Sxx, Syx, and Szx. For example,

Syx = ∆Fx1

∆y∆z .

The first index y refers to the direction force component; the second index x is
normal to the area. If you wish, you can write the area ∆y∆z as ∆ax, meaning
an element of area perpendicular to x. Then

Syx = ∆Fx1

∆ax
.

Next, we think of an imaginary cut perpendicular to the y-axis. Across a small
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area ∆x∆z there will be a force ∆F 2. Again we resolve this force into three
components, as shown in Fig. 31-7, and define the three components of the stress,
Sxy, Syy, Szy, as the force per unit area in the three directions. Finally, we make
an imaginary cut perpendicular to z and define the three components Sxz, Syz,
and Szz. So we have the nine numbers

∆F2

∆Fx2

∆Fy2

∆Fz2

∆x

∆z

Fig. 31-7. The force across an element
of area perpendicular to y is resolved into
three rectangular components.

Sij =

Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

 . (31.23)

We want to show now that these nine numbers are sufficient to describe
completely the internal state of stress, and that Sij is indeed a tensor. Suppose
we want to know the force across a surface oriented at some arbitrary angle. Can
we find it from Sij? Yes, in the following way: We imagine a little solid figure
which has one face N in the new surface, and the other faces parallel to the
coordinate axes. If the face N happened to be parallel to the z-axis, we would
have the triangular piece shown in Fig. 31-8. (This is a somewhat special case,
but will illustrate well enough the general method.) Now the stress forces on
the little solid triangle in Fig. 31-8 are in equilibrium (at least in the limit of
infinitesimal dimensions), so the total force on it must be zero. We know the
forces on the faces parallel to the coordinate axes directly from Sij . Their vector
sum must equal the force on the face N , so we can express this force in terms
of Sij .

∆Fn

∆Fxn

∆Fyn

∆Fzn

n

∆x

∆y

∆z

θ

Fig. 31-8. The force Fn across the face N
(whose unit normal is n) is resolved into
components.

Our assumption that the surface forces on the small triangular volume are in
equilibrium neglects any other body forces that might be present, such as gravity
or pseudo forces if our coordinate system is not an inertial frame. Notice, however,
that such body forces will be proportional to the volume of the little triangle
and, therefore, to ∆x∆y∆z, whereas all the surface forces are proportional to
the areas such as ∆x∆y, ∆y∆z, etc. So if we take the scale of the little wedge
small enough, the body forces can always be neglected in comparison with the
surface forces.

Let’s now add up the forces on the little wedge. We take first the x-component,
which is the sum of five parts—one from each face. However, if ∆z is small
enough, the forces on the triangular faces (perpendicular to the z-axis) will be
equal and opposite, so we can forget them. The x-component of the force on the
bottom rectangle is

∆Fx2 = Sxy ∆x∆z.
The x-component of the force on the vertical rectangle is

∆Fx1 = Sxx ∆y∆z.

These two must be equal to the x-component of the force outward across the
face N . Let’s call n the unit vector normal to the face N , and the force on it F n;
then we have

∆Fxn = Sxx ∆y∆z + Sxy ∆x∆z.
The x-component Sxn, of the stress across this plane is equal to ∆Fxn divided
by the area, which is ∆z

√
∆x2 + ∆y2, or

Sxn = Sxx
∆y√

∆x2 + ∆y2
+ Sxy

∆x√
∆x2 + ∆y2

.

Now ∆x/
√

∆x2 + ∆y2 is the cosine of the angle θ between n and the y-axis,
as shown in Fig. 31-8, so it can also be written as ny, the y-component of n.
Similarly, ∆y/

√
∆x2 + ∆y2 is sin θ = nx. We can write

Sxn = Sxxnx + Sxyny.

If we now generalize to an arbitrary surface element, we would get that

Sxn = Sxxnx + Sxyny + Sxznz
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or, in general,
Sin =

∑
j

Sijnj . (31.24)

We can find the force across any surface element in terms of the Sij , so it does
describe completely the state of internal stress of the material.

Equation (31.24) says that the tensor Sij relates the stress Sn to the unit
vector n, just as αij relates P to E. Since n and Sn are vectors, the components
of Sij must transform as a tensor with changes in coordinate axes. So Sij is
indeed a tensor.

Syy

Syx

Sxy

Sxx

Syy

Syx

Sxy

Sxx

Fig. 31-9. The x- and y -forces on four
faces of a small unit cube.

We can also show that Sij is a symmetric tensor by looking at the forces
on a little cube of material. Suppose we take a little cube, oriented with its
faces parallel to our coordinate axes, and look at it in cross section, as shown
in Fig. 31-9. If we let the edge of the cube be one unit, the x- and y-components
of the forces on the faces normal to the x- and y-axes might be as shown in the
figure. If the cube is small, the stresses do not change appreciably from one side
of the cube to the opposite side, so the force components are equal and opposite
as shown. Now there must be no torque on the cube, or it would start spinning.
The total torque about the center is (Syx−Sxy) (times the unit edge of the cube),
and since the total is zero, Syx is equal to Sxy, and the stress tensor is symmetric.

Since Sij is a symmetric tensor, it can be described by an ellipsoid which
will have three principal axes. For surfaces normal to these axes, the stresses
are particularly simple—they correspond to pushes or pulls perpendicular to the
surfaces. There are no shear forces along these faces. For any stress, we can
always choose our axes so that the shear components are zero. If the ellipsoid
is a sphere, there are only normal forces in any direction. This corresponds to
a hydrostatic pressure (positive or negative). So for a hydrostatic pressure, the
tensor is diagonal and all three components are equal; they are, in fact, just equal
to the pressure p. We can write

Sij = pδij . (31.25)

The stress tensor—and also its ellipsoid—will, in general, vary from point
to point in a block of material; to describe the whole block we need to give the
value of each component of Sij as a function of position. So the stress tensor is a
field. We have had scalar fields, like the temperature T (x, y, z), which give one
number for each point in space, and vector fields like E(x, y, z), which give three
numbers for each point. Now we have a tensor field which gives nine numbers
for each point in space—or really six for the symmetric tensor Sij . A complete
description of the internal forces in an arbitrarily distorted solid requires six
functions of x, y, and z.

31-7 Tensors of higher rank

The stress tensor Sij describes the internal forces of matter. If the material
is elastic, it is convenient to describe the internal distortion in terms of another
tensor Tij—called the strain tensor. For a simple object like a bar of metal, you
know that the change in length, ∆L, is approximately proportional to the force,
so we say it obeys Hooke’s law:

∆L = γF.

For a solid elastic body with arbitrary distortions, the strain Tij is related to the
stress Sij by a set of linear equations:

Tij =
∑
k,l

γijklSkl. (31.26)

Also, you know that the potential energy of a spring (or bar) is
1
2F ∆L = 1

2γF
2.
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The generalization for the elastic energy density in a solid body is

Uelastic =
∑
ijkl

1
2γijklSijSkl. (31.27)

The complete description of the elastic properties of a crystal must be given in
terms of the coefficients γijkl. This introduces us to a new beast. It is a tensor of
the fourth rank. Since each index can take on any one of three values, x, y, or z,
there are 34 = 81 coefficients. But there are really only 21 different numbers.
First, since Sij is symmetric, it has only six different values, and only 36 different
coefficients are needed in Eq. (31.27). But also, Sij can be interchanged with Skl
without changing the energy, so γijkl must be symmetric if we interchange ij
and kl. This reduces the number of different coefficients to 21. So to describe the
elastic properties of a crystal of the lowest possible symmetry requires 21 elastic
constants! This number is, of course, reduced for crystals of higher symmetry.
For example, a cubic crystal has only three elastic constants, and an isotropic
substance has only two.

That the latter is true can be seen as follows. How can the components of γijkl
be independent of the direction of the axes, as they must be if the material is
isotropic? Answer: They can be independent only if they are expressible in terms
of the tensor δij . There are two possible expressions, δijδkl and δikδjl + δilδjk,
which have the required symmetry, so γijkl must be a linear combination of them.
Therefore, for isotropic materials,

γijkl = a(δijδkl) + b(δikδjl + δilδjk),

and the material requires two constants, a and b, to describe its elastic properties.
We will leave it for you to show that a cubic crystal needs only three.

As a final example, this time of a third-rank tensor, we have the piezoelectric
effect. Under stress, a crystal generates an electric field proportional to the stress;
hence, in general, the law is

Ei =
∑
j,k

PijkSjk,

where Ei is the electric field, and the Pijk are the piezoelectric coefficients—or
the piezoelectric tensor. Can you show that if the crystal has a center of inversion
(invariant under x, y, z → −x,−y,−z) the piezoelectric coefficients are all zero?

31-8 The four-tensor of electromagnetic momentum

All the tensors we have looked at so far in this chapter relate to the three
dimensions of space; they are defined to have a certain transformation property
under spatial rotations. In Chapter 26 we had occasion to use a tensor in the
four dimensions of relativistic space-time—the electromagnetic field tensor Fµν .
The components of such a four-tensor transform under a Lorentz transformation
of the coordinates in a special way that we worked out. (Although we did not do
it that way, we could have considered the Lorentz transformation as a “rotation”
in a four-dimensional “space” called Minkowski space; then the analogy with
what we are doing here would have been clearer.)

As our last example, we want to consider another tensor in the four di-
mensions (t, x, y, z) of relativity theory. When we wrote the stress tensor, we
defined Sij as a component of a force across a unit area. But a force is equal to
the time rate of change of a momentum. Therefore, instead of saying “Sxy is the
x-component of the force across a unit area perpendicular to y,” we could equally
well say, “Sxy is the rate of flow of the x-component of momentum through a
unit area perpendicular to y.” In other words, each term of Sij also represents
the flow of the i-component of momentum through a unit area perpendicular
to the j-direction. These are pure space components, but they are parts of a
“larger” tensor Sµν in four dimensions (µ and ν = t, x, y, z) containing additional
components like Stx, Syt, Stt, etc. We will now try to find the physical meaning
of these extra components.
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We know that the space components represent flow of momentum. We can
get a clue on how to extend this to the time dimension by studying another kind
of “flow”—the flow of electric charge. For the scalar quantity, charge, the rate
of flow (per unit area perpendicular to the flow) is a space vector—the current
density vector j. We have seen that the time component of this flow vector is
the density of the stuff that is flowing. For instance, j can be combined with a
time component, jt = ρ, the charge density, to make the four-vector jµ = (ρ, j);
that is, the µ in jµ takes on the values t, x, y, z to mean “density, rate of flow in
the x-direction, rate of flow in y, rate of flow in z” of the scalar charge.

Now by analogy with our statement about the time component of the flow of
a scalar quantity, we might expect that with Sxx, Sxy, and Sxz, describing the
flow of the x-component of momentum, there should be a time component Sxt
which would be the density of whatever is flowing; that is, Sxt should be the
density of x-momentum. So we can extend our tensor horizontally to include a
t-component. We have

Sxt = density of x-momentum,

Sxx = x-flow of x-momentum,

Sxy = y-flow of x-momentum,

Sxz = z-flow of x-momentum.

Similarly, for the y-component of momentum we have the three components of
flow—Syx, Syy, Syz—to which we should add a fourth term:

Syt = density of y-momentum.

And, of course, to Szx, Szy, Szz we would add

Szt = density of z-momentum.

In four dimensions there is also a t-component of momentum, which is, we
know, energy. So the tensor Sij should be extended vertically with Stx, Sty,
and Stz, where

Stx = x-flow of energy,

Sty = y-flow of energy,

Stz = z-flow of energy;

(31.28)

that is, Stx is the flow of energy per unit area and per unit time across a surface
perpendicular to the x-axis, and so on. Finally, to complete our tensor we need Stt,
which would be the density of energy. We have extended our stress tensor Sij of
three dimensions to the four-dimensional stress-energy tensor Sµν . The index µ
can take on the four values t, x, y, and z, meaning, respectively, “density,” “flow
per unit area in the x-direction,” “flow per unit area in the y-direction,” and
“flow per unit area in the z-direction.” In the same way, ν takes on the four values
t, x, y, z to tell us what flows, namely, “energy,” “momentum in the x-direction,”
“momentum in the y-direction,” and “momentum in the z-direction.”

As an example, we will discuss this tensor not in matter, but in a region of
free space in which there is an electromagnetic field. We know that the flow of
energy is the Poynting vector S = ε0c

2E ×B. So the x-, y-, and z-components
of S are, from the relativistic point of view, the components Stx, Sty, and Stz
of our four-dimensional stress-energy tensor. The symmetry of the tensor Sij
carries over into the time components as well, so the four-dimensional tensor Sµν
is symmetric:

Sµν = Sνµ. (31.29)
In other words, the components Sxt, Syt, Szt, which are the densities of x, y,
and z momentum, are also equal to the x-, y-, and z-components of the Poynting
vector S, the energy flow—as we have already shown in an earlier chapter by a
different kind of argument.
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The remaining components of the electromagnetic stress tensor Sµν can also
be expressed in terms of the electric and magnetic fields E and B. That is to
say, we must admit stress or, to put it less mysteriously, flow of momentum in
the electromagnetic field. We discussed this in Chapter 27 in connection with
Eq. (27.21), but did not work out the details.

Those who want to exercise their prowess in tensors in four dimensions might
like to see the formula for Sµν in terms of the fields:

Sµν = −ε0
(∑

α

FµαFνα − 1
4δµν

∑
α,β

FβαFβα

)
,

where sums on α, β are on t, x, y, z but (as usual in relativity) we adopt a special
meaning for the sum sign

∑
and for the symbol δ. In the sums the x, y, z terms are

to be subtracted and δtt = +1, while δxx = δyy = δzz = −1 and δµν = 0 for µ 6= ν
(c = 1). Can you verify that it gives the energy density Stt = (ε0/2) (E2 +B2)
and the Poynting vector ε0E ×B? Can you show that in an electrostatic field
with B = 0 the principal axes of stress are in the direction of the electric field,
that there is a tension (ε0/2)E2 along the direction of the field, and that there is
an equal pressure in directions perpendicular to the field direction?
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want now to discuss the phenomenon of the refraction of light—and also,
therefore, the absorption of light—by dense materials. In Chapter 31 of Volume I
we discussed the theory of the index of refraction, but because of our limited
mathematical abilities at that time, we had to restrict ourselves to finding the
index only for materials of low density, like gases. The physical principles that
produced the index were, however, made clear. The electric field of the light wave
polarizes the molecules of the gas, producing oscillating dipole moments. The
acceleration of the oscillating charges radiates new waves of the field. This new
field, interfering with the old field, produces a changed field which is equivalent
to a phase shift of the original wave. Because this phase shift is proportional to
the thickness of the material, the effect is equivalent to having a different phase
velocity in the material. When we looked at the subject before, we neglected the
complications that arise from such effects as the new wave changing the fields at
the oscillating dipoles. We assumed that the forces on the charges in the atoms
came just from the incoming wave, whereas, in fact, their oscillations are driven
not only by the incoming wave but also by the radiated waves of all the other
atoms. It would have been difficult for us at that time to include this effect, so
we studied only the rarefied gas, where such effects are not important. Review: See Table 32-1.

Now, however, we will find that it is very easy to treat the problem by the
use of differential equations. This method obscures the physical origin of the
index (as coming from the re-radiated waves interfering with the original waves),
but it makes the theory for dense materials much simpler. This chapter will
bring together a large number of pieces from our earlier work. We’ve taken up
practically everything we will need, so there are relatively few really new ideas
to be introduced. Since you may need to refresh your memory about what we
are going to need, we give in Table 32-1 a list of the equations we are going to
use, together with a reference to the place where each can be found. In most
instances, we will not take the time to give the physical arguments again, but
will just use the equations.

Table 32-1

Our work in this chapter will be based on the following material,
already covered in earlier chapters

Subject Reference Equation

Damped oscillations Vol. I, Chap. 23 m(ẍ+ γẋ+ ω2
0x) = F

Index of gases Vol. I, Chap. 31 n = 1+ 1
2

Nq2
e

ε0(ω2
0 − ω2)

n = n′ − in′′

Mobility Vol. I, Chap. 41 mẍ+ µẋ = F

Electrical conductivity Vol. I, Chap. 43 µ = τ

m
; σ = Nq2

eτ

m

Polarizability Vol. II, Chap. 10 ρpol = −∇ · P

Inside dielectrics Vol. II, Chap. 11 Elocal = E + 1
3ε0

P
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We begin by recalling the machinery of the index of refraction for a gas. We
suppose that there are N particles per unit volume and that each particle behaves
as a harmonic oscillator. We use a model of an atom or molecule in which the
electron is bound with a force proportional to its displacement (as though the
electron were held in place by a spring). We emphasized that this was not a
legitimate classical model of an atom, but we will show later that the correct
quantum mechanical theory gives results equivalent to this model (in simple
cases). In our earlier treatment, we did not include the possibility of a damping
force in the atomic oscillators, but we will do so now. Such a force corresponds
to a resistance to the motion, that is, to a force proportional to the velocity of
the electron. Then the equation of motion is

F = qeE = m(ẍ+ γẋ+ ω2
0x), (32.1)

where x is the displacement parallel to the direction of E. (We are assuming an
isotropic oscillator whose restoring force is the same in all directions. Also, we
are taking, for the moment, a linearly polarized wave, so that E doesn’t change
direction.) If the electric field acting on the atom varies sinusoidally with time,
we write

E = E0e
iωt. (32.2)

The displacement will then oscillate with the same frequency, and we can let

x = x0e
iωt.

Substituting ẋ = iωx and ẍ = −ω2x, we can solve for x in terms of E:

x = qe/m

−ω2 + iγω + ω2
0
E. (32.3)

Knowing the displacement, we can calculate the acceleration ẍ and find the
radiated wave responsible for the index. This was the way we computed the
index in Chapter 31 of Volume I.

Now, however, we want to take a different approach. The induced dipole
moment p of an atom is qex or, using Eq. (32.3),

p = q2
e/m

−ω2 + iγω + ω2
0
E. (32.4)

Since p is proportional to E, we write

p = ε0α(ω)E, (32.5)

where α is called the atomic polarizability.* With this definition, we have

α = q2
e/mε0

−ω2 + iγω + ω2
0
. (32.6)

The quantum mechanical solution for the motions of electrons in atoms gives
a similar answer except with the following modifications. The atoms have several
natural frequencies, each frequency with its own dissipation constant γ. Also
the effective “strength” of each mode is different, which we can represent by
multiplying the polarizability for each frequency by a strength factor f , which is
a number we expect to be of the order of 1. Representing the three parameters
ω0, γ, and f by ω0k, γk, and fk for each mode of oscillation, and summing over
the various modes, we modify Eq. (32.6) to read

α(ω) = q2
e

ε0m

∑
k

fk
−ω2 + iγkω + ω2

0k
. (32.7)

* Throughout this chapter we follow the notation of Chapter 31 of Volume I, and let α
represent the atomic polarizability as defined here. In the last chapter, we used α to represent
the volume polarizability—the ratio of P to E. In the notation of this chapter P = Nαε0E
(see Eq. 32.8).
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IfN is the number of atoms per unit volume in the material, the polarization P
is just Np = ε0NαE, and is proportional to E:

P = ε0Nα(ω)E. (32.8)

In other words, when there is a sinusoidal electric field acting in a material,
there is an induced dipole moment per unit volume which is proportional to the
electric field—with a proportionality constant α that, we emphasize, depends
upon the frequency. At very high frequencies, α is small; there is not much
response. However, at low frequencies there can be a strong response. Also, the
proportionality constant is a complex number, which means that the polarization
does not exactly follow the electric field, but may be shifted in phase to some
extent. At any rate, there is a polarization per unit volume whose magnitude is
proportional to the strength of the electric field.

32-2 Maxwell’s equations in a dielectric

The existence of polarization in matter means that there are polarization
charges and currents inside of the material, and these must be put into the
complete Maxwell equations in order to find the fields. We are going to solve
Maxwell’s equations this time in a situation in which the charges and currents
are not zero, as in a vacuum, but are given implicitly by the polarization vector.
Our first step is to find explicitly the charge density ρ and current density j,
averaged over a small volume of the same size we had in mind when we defined P .
Then the ρ and j we need can be obtained from the polarization.

We have seen in Chapter 10 that when the polarization P varies from place
to place, there is a charge density given by

ρpol = −∇ · P . (32.9)

At that time, we were dealing with static fields, but the same formula is valid
also for time-varying fields. However, when P varies with time, there are charges
in motion, so there is also a polarization current. Each of the oscillating charges
contributes a current equal to its charge qe, times its velocity v. With N such
charges per unit volume, the current density j is

j = Nqev.

Since we know that v = dx/dt, then j = Nqe(dx/dt), which is just dP/dt.
Therefore the current density from the varying polarization is

jpol = ∂P

∂t
. (32.10)

Our problem is now direct and simple. We write Maxwell’s equations with
the charge density and current density expressed in terms of P , using Eqs. (32.9)
and (32.10). (We assume that there are no other currents and charges in the
material.) We then relate P to E with Eq. (32.8), and we solve the equation for
E and B—looking for the wave solutions.

Before we do this, we would like to make an historical note. Maxwell originally
wrote his equations in a form which was different from the one we have been using.
Because the equations were written in this different form for many years—and
are still written that way by many people—we will explain the difference. In the
early days, the mechanism of the dielectric constant was not fully and clearly
appreciated. The nature of atoms was not understood, nor that there was a
polarization of the material. So people did not appreciate that there was a
contribution to the charge density ρ from ∇ · P . They thought only in terms of
charges that were not bound to atoms (such as the charges that flow in wires or
are rubbed off surfaces).

Today, we prefer to let ρ represent the total charge density, including the part
from the bound atomic charges. If we call that part ρpol, we can write

ρ = ρpol + ρother,
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where ρother is the charge density considered by Maxwell and refers not bound to
individual atoms. We would then write

∇ ·E = ρpol + ρother
ε0

.

Substituting ρpol from Eq. (32.9),

∇ ·E = ρother
ε0
− 1
ε0
∇ · P

or
∇ · (ε0E + P ) = ρother. (32.11)

The current density in the Maxwell equations for ∇×B also has, in general,
contributions from bound atomic currents. We can therefore write

j = jpol + jother,

and the Maxwell equation becomes

c2∇×B = jother
ε0

+
jpol
ε0

+ ∂E

∂t
. (32.12)

Using Eq. (32.10), we get

ε0c
2∇×B = jother + ∂

∂t
(ε0E + P ). (32.13)

Now you can see that if we were to define a new vector D by

D = ε0E + P , (32.14)

the two field equations would become

∇ ·D = ρother (32.15)
and

ε0c
2∇×B = jother + ∂D

∂t
. (32.16)

These are actually the forms that Maxwell used for dielectrics. His two remaining
equations were

∇×E = −∂B
∂t

,

and
∇ ·B = 0,

which are the same as we have been using.
Maxwell and the other early workers also had a problem with magnetic

materials (which we will take up soon). Because they did not know about the
circulating currents responsible for atomic magnetism, they used a current density
that was missing still another part. Instead of Eq. (32.16), they actually wrote

∇×H = j′ + ∂D

∂t
, (32.17)

where H differs from ε0c
2B because it includes the effects of atomic currents.

(Then j′ represents what is left of the currents.) So Maxwell had four field
vectors—E, D, B, and H—the D and H were hidden ways of not paying
attention to what was going on inside the material. You will find the equations
written this way in many places.

To solve the equations, it is necessary to relate D and H to the other fields,
and people used to write

D = εE and B = µH. (32.18)
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However, these relations are only approximately true for some materials and
even then only if the fields are not changing rapidly with time. (For sinusoidally
varying fields one often can write the equations this way by making ε and µ
complex functions of the frequency, but not for an arbitrary time variation of
the fields.) So there used to be all kinds of cheating in solving the equations.
We think the right way is to keep the equations in terms of the fundamental
quantities as we now understand them—and that’s how we have done it.

32-3 Waves in a dielectric

We want now to find out what kind of electromagnetic waves can exist in a
dielectric material in which there are no extra charges other than those bound
in atoms. So we take ρ = −∇ · P and j = ∂P /∂t. Maxwell’s equations then
become

(a) ∇ ·E = −∇ · P
ε0

(b) c2∇×B = ∂

∂t

(
P

ε0
+E

)

(c) ∇×E = −∂B
∂t

(d) ∇ ·B = 0

(32.19)

We can solve these equations as we have done before. We start by taking the
curl of Eq. (32.19c):

∇× (∇×E) = − ∂

∂t
∇×B.

Next, we make use of the vector identity

∇× (∇×E) =∇(∇ ·E)−∇2E,

and also substitute for ∇×B, using Eq. (32.19b); we get

∇(∇ ·E)−∇2E = − 1
ε0c2

∂2P

∂t2
− 1
c2
∂2E

∂t2
.

Using Eq. (32.19a) for ∇ ·E, we get

∇2E − 1
c2
∂2E

∂t2
= − 1

ε0
∇(∇ · P ) + 1

ε0c2
∂2P

∂t2
. (32.20)

So instead of the wave equation, we now get that the D’Alembertian of E is
equal to two terms involving the polarization P .

Since P depends on E, however, Eq. (32.20) can still have wave solutions. We
will now limit ourselves to isotropic dielectrics, so that P is always in the same
direction as E. Let’s try to find a solution for a wave going in the z-direction.
Then, the electric field might vary as ei(ωt−kz). We will also suppose that the wave
is polarized in the x-direction—that the electric field has only an x-component.
We write

Ex = E0e
i(ωt−kz). (32.21)

You know that any function of (z − vt) represents a wave that travels with
the speed v. The exponent of Eq. (32.21) can be written as

−ik
(
z − ω

k
t

)
,

so, Eq. (32.21) represents a wave with the phase velocity

vph = ω/k.

The index of refraction n is defined (see Chapter 31, Vol. I) by letting

vph = c

n
.
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Thus Eq. (32.21) becomes

Ex = E0e
iω(t−nz/c).

So we can find n by finding what value of k is required if Eq. (32.21) is to satisfy
the proper field equations, and then using

n = kc

ω
. (32.22)

In an isotropic material, there will be only an x-component of the polarization;
then P has no variation with the x-coordinate, so ∇ · P = 0, and we get rid of
the first term on the right-hand side of Eq. (32.20). Also, since we are assuming
a linear dielectric, Px will vary as eiωt, and ∂2Px/∂t

2 = −ω2Px. The Laplacian
in Eq. (32.20) becomes simply ∂2Ex/∂z

2 = −k2Ex, so we get

− k2Ex + ω2

c2
Ex = − ω2

ε0c2
Px. (32.23)

Now let us assume for the moment that since E is varying sinusoidally, we
can set P proportional to E, as in Eq. (32.8). (We’ll come back to discuss this
assumption later.) We write

Px = ε0NαEx.

Then Ex drops out of Eq. (32.23), and we find

k2 = ω2

c2
(1 +Nα). (32.24)

We have found that a wave like Eq. (32.21), with the wave number k given by
Eq. (32.24), will satisfy the field equations. Using Eq. (32.22), the index n is
given by

n2 = 1 +Nα. (32.25)

Let’s compare this formula with what we obtained in our theory of the index
of a gas (Chapter 31, Vol. I). There, we got Eq. (31.19), which is

n = 1 + 1
2
Nq2

e

mε0

1
−ω2 + ω2

0
. (32.26)

Taking α from Eq. (32.6), Eq. (32.25) would give us

n2 = 1 + Nq2
e

mε0

1
−ω2 + iγω + ω2

0
. (32.27)

First, we have the new term in iγω, because we are including the dissipation
of the oscillators. Second, the left-hand side is n instead of n2, and there is an
extra factor of 1/2. But notice that if N is small enough so that n is close to
one (as it is for a gas), then Eq. (32.27) says that n2 is one plus a small number:
n2 = 1 + ε. We can then write n =

√
1 + ε ≈ 1 + ε/2, and the two expressions

are equivalent. Thus our new method gives for a gas the same result we found
earlier.

Now you might think that Eq. (32.27) should give the index of refraction
for dense materials also. It needs to be modified, however, for several reasons.
First, the derivation of this equation assumes that the polarizing field on each
atom is the field Ex. That assumption is not right, however, because in dense
materials there is also the field produced by other atoms in the vicinity, which
may be comparable to Ex. We considered a similar problem when we studied
the static fields in dielectrics. (See Chapter 11.) You will remember that we
estimated the field at a single atom by imagining that it sat in a spherical hole
in the surrounding dielectric. The field in such a hole—which we called the local
field—is increased over the average field E by the amount P/3ε0. (Remember,
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however, that this result is only strictly true in isotropic materials—including
the special case of a cubic crystal.)

The same arguments will hold for the electric field in a wave, so long as the
wavelength of the wave is much longer than the spacing between atoms. Limiting
ourselves to such cases, we write

Elocal = E + P

3ε0
. (32.28)

This local field is the one that should be used for E in Eq. (32.3); that is, Eq. (32.8)
should be rewritten:

P = ε0NαElocal. (32.29)

Using Elocal from Eq. (32.28), we find

P = ε0Nα

(
E + P

3ε0

)
or

P = Nα

1− (Nα/3) ε0E. (32.30)

In other words, for dense materials P is still proportional to E (for sinusoidal
fields). However, the constant of proportionality is not ε0Nα, as we wrote below
Eq. (32.23), but should be ε0Nα/[1− (Nα/3)]. So we should correct Eq. (32.25)
to read

n2 = 1 + Nα

1− (Nα/3) . (32.31)

It will be more convenient if we rewrite this equation as

3 n
2 − 1
n2 + 2 = Nα, (32.32)

which is algebraically equivalent. This is known as the Clausius-Mossotti equation.
There is another complication in dense materials. Because neighboring atoms

are so close, there are strong interactions between them. The internal modes
of oscillation are, therefore, modified. The natural frequencies of the atomic
oscillations are spread out by the interactions, and they are usually quite heavily
damped—the resistance coefficient becomes quite large. So the ω0’s and γ’s of the
solid will be quite different from those of the free atoms. With these reservations,
we can still represent α, at least approximately, by Eq. (32.7). We have then that

3 n
2 − 1
n2 + 2 = Nq2

e

mε0

∑
k

fk
−ω2 + iγkω + ω2

0k
. (32.33)

One final complication. If the dense material is a mixture of several compo-
nents, each will contribute to the polarization. The total α will be the sum of
the contributions from each component of the mixture [except for the inaccuracy
of the local field approximation, Eq. (32.28), in ordered crystals—effects we
discussed when analyzing ferroelectrics]. Writing Nj as the number of atoms of
each component per unit volume, we should replace Eq. (32.32) by

3
(
n2 − 1
n2 + 2

)
=
∑
j

Njαj , (32.34)

where each αj will be given by an expression like Eq. (32.7). Equation (32.34)
completes our theory of the index of refraction. The quantity 3(n2 − 1)/(n2 + 2)
is given by some complex function of frequency, which is the mean atomic
polarizability α(ω). The precise evaluation of α(ω) (that is, finding fk, γk
and ω0k) in dense substances is a difficult problem of quantum mechanics. It has
been done from first principles only for a few especially simple substances.
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32-4 The complex index of refraction

z

e−ωnI z/c

e−ωnI z/ce iω(t−nRz/c)

Fig. 32-1. A graph of Ex for some in-
stant t, if nI ≈ nR/2π.

We want to look now at the consequences of our result, Eq. (32.33). First,
we notice that α is complex, so the index n is going to be a complex number.
What does that mean? Let’s say that we write n as the sum of a real and an
imaginary part:

n = nR − inI , (32.35)
where nR and nI are real functions of ω. We write inI with a minus sign, so
that nI will be a positive quantity in all ordinary optical materials. (In ordinary
inactive materials—that are not, like lasers, light sources themselves—γ is a
positive number, and that makes the imaginary part of n negative.) Our plane
wave of Eq. (32.21) is written in terms of n as

Ex = E0e
iω(t−nz/c).

Writing n as in Eq. (32.35), we would have

Ex = E0e
−ωnIz/ceiω(t−nRz/c). (32.36)

The term eiω(t−nRz/c) represents a wave travelling with the speed c/nR, so nR
represents what we normally think of as the index of refraction. But the amplitude
of this wave is

E0e
−ωnIz/c,

which decreases exponentially with z. A graph of the strength of the electric field
at some instant as a function of z is shown in Fig. 32-1, for nI ≈ nR/2π. The
imaginary part of the index represents the attenuation of the wave due to the
energy losses in the atomic oscillators. The intensity of the wave is proportional
to the square of the amplitude, so

Intensity ∝ e−2ωnIz/c.

This is often written as
Intensity ∝ e−βz.

where β = 2ωnI/c is called the absorption coefficient. Thus we have in Eq. (32.33)
not only the theory of the index of refraction of materials, but the theory of their
absorption of light as well.

In what we usually consider to be transparent material, the quantity c/ωnI—
which has the dimensions of a length—is quite large in comparison with the
thickness of the material.

32-5 The index of a mixture

There is another prediction of our theory of the index of refraction that we
can check against experiment. Suppose we consider a mixture of two materials.
The index of the mixture is not the average of the two indexes, but should be
given in terms of the sum of the two polarizabilities, as in Eq. (32.34). If we
ask about the index of, say, a sugar solution, the total polarizability is the sum
of the polarizability of the water and that of the sugar. Each must, of course,
be calculated using for N the number per unit volume of the molecules of the
particular kind. In other words, if a given solution has N1 molecules of water,
whose polarizability is α1, and N2 molecules of sucrose (C12H22O11), whose
polarizability is α2, we should have that

3
(
n2 − 1
n2 + 2

)
= N1α1 +N2α2. (32.37)

We can use this formula to test our theory against experiment by measuring
the index for various concentrations of sucrose in water. We are making several
assumptions here, however. Our formula assumes that there is no chemical
action when the sucrose is dissolved and that the disturbances to the individual
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Table 32-2

Refractive index of sucrose solutions, and comparison with predictions of Eq. (32.37).

Data from Handbook

A B C D E F G H J
Moles of Moles of

3
(
n2 − 1
n2 + 2

)
N1α1 N2α2

Fraction of sucrose density n sucrosed watere N0α2
by weight (g/cm3) at 20◦C per liter, per liter, (g/liter)

N2/N0 N1/N0

0a 0.9982 1.333 0 55.5 0.617 0.617 0 —
0.30 1.1270 1.3811 0.970 43.8 0.698 0.487 0.211 0.213
0.50 1.2296 1.4200 1.798 34.15 0.759 0.379 0.380 0.211
0.85 1.4454 1.5033 3.59 12.02 0.886 0.1335 0.752 0.210
1.00b 1.588 1.5577c 4.64 0 0.960 0 0.960 0.207

a pure water b sugar crystals c average (see text) d molecular weight of sucrose = 342
e molecular weight of water = 18

atomic oscillators are not too different for various concentrations. So our result
is certainly only approximate. Anyway, let’s see how good it is.

We have picked the example of a sugar solution because there is a good table
of measurements of the index of refraction in the Handbook of Chemistry and
Physics and also because sugar is a molecular crystal that goes into solution
without ionizing or otherwise changing its chemical state.

We give in the first three columns of Table 32-2 the data from the handbook.
Column A is the percent of sucrose by weight, column B is the measured density
(g/cm3), and column C is the measured index of refraction for light whose
wavelength is 589.3 millimicrons. For pure sugar we have taken the measured
index of sugar crystals. The crystals are not isotropic, so the measured index is
different along different directions. The handbook gives three values:

n1 = 1.5376, n2 = 1.5651, n3 = 1.5705.

We have taken the average.
Now we could try to compute n for each concentration, but we don’t know

what value to take for α1 or α2. Let’s test the theory this way: We will assume
that the polarizability of water (α1) is the same at all concentrations and compute
the polarizability of sucrose by using the experiment of values for n and solving
Eq. (32.37) for α2. If the theory is correct, we should get the same α2 for all
concentrations.

First, we need to know N1 and N2: let’s express them in terms of Avogadro’s
number, N0. Let’s take one liter (1000 cm3) for our unit of volume. Then Ni/N0
is the weight per liter divided by the gram-molecular weight. And the weight per
liter is the density (multiplied by 1000 to get grams per liter) times the fractional
weight of either the sucrose or the water. In this way, we get N2/N0 and N1/N0
as in columns D and E of the table.

In column F we have computed 3(n2 − 1)/(n2 + 2) from the experimental
values of n in column C. For pure water, 3(n2 − 1)/(n2 + 2) is 0.617, which is
equal to just N1α1. We can then fill in the rest of Column G, since for each row
G/E may be in the same ratio—namely, 0.617 : 55.5. Subtracting column G
from column F, we get the contribution N2α2 of the sucrose, shown in column H.
Dividing these entries by the values of N2/N0 in column D, we get the value
of N0α2 shown in column J.

From our theory we would expect all the values of N0α2 to be the same. They
are not exactly equal, but pretty close. We can conclude that our ideas are fairly
correct. Even more, we find that the polarizability of the sugar molecule doesn’t
seem to depend much on its surroundings—its polarizability is nearly the same
in a dilute solution as it is in the crystal.
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32-6 Waves in metals

The theory we have worked out in this chapter for solid materials can also be
applied to good conductors, like metals, with very little modification. In metals
some of the electrons have no binding force holding them to any particular atom;
it is these “free” electrons which are responsible for the conductivity. There are
other electrons which are bound, and the theory above is directly applicable
to them. Their influence, however, is usually swamped by the effects of the
conduction electrons. We will consider now only the effects of the free electrons.

If there is no restoring force on an electron—but still some resistance to its
motion—its equation of motion differs from Eq. (32.1) only because the term
in ω2

0x is lacking. So all we have to do is set ω2
0 = 0 in the rest of our derivations—

except that there is one more difference. The reason that we had to distinguish
between the average field and the local field in a dielectric is that in an insulator
each of the dipoles is fixed in position, so that it has a definite relationship to
the position of the others. But because the conduction electrons in a metal move
around all over the place, the field on them on the average is just the average
field E. So the correction we made to Eq. (32.8) by using Eq. (32.28) should
not be made for conduction electrons. Therefore the formula for the index of
refraction for metals should look like Eq. (32.27), except with ω0 set equal to
zero, namely,

n2 = 1 + Nq2
e

mε0

1
−ω2 + iγω

. (32.38)

This is only the contribution from the conduction electrons, which we will assume
is the major term for metals.

vdrift

AVERAGE TIME BETWEEN
COLLISIONS IS τ

Fig. 32-2. The motion of a free electron.

Now we even know how to find what value to use for γ, because it is related
to the conductivity of the metal. In Chapter 43 of Volume I we discussed how
the conductivity of a metal comes from the diffusion of the free electrons through
the crystal. The electrons go on a jagged path from one scattering to the next,
and between scatterings they move freely except for an acceleration due to any
average electric field (as shown in Fig. 32-2). We found in Chapter 43 of Volume I
that the average drift velocity is just the acceleration times the average time τ
between collisions. The acceleration is qeE/m, so

vdrift = qeE

m
τ. (32.39)

This formula assumed that E was constant, so that vdrift was a steady velocity.
Since there is no average acceleration, the drag force is equal to the applied force.
We have defined γ by saying that γmv is the drag force [see Eq. (32.1)], which
is qeE; therefore we have that

γ = 1
τ
. (32.40)

Although we cannot easily measure τ directly, we can determine it by mea-
suring the conductivity of the metal. It is found experimentally that an electric
field E in a metal produces a current with the density j proportional to E (for
isotropic materials):

j = σE.

The proportionality constant σ is called the conductivity. This is just what we
expect from Eq. (32.39) if we set

j = Nqevdrift.

Then

σ = Nq2
e

m
τ. (32.41)

So τ—and therefore γ—can be related to the observed electrical conductivity. Us-
ing Eqs. (32.40) and (32.41), we can rewrite our formula for the index, Eq. (32.38),
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in the following form:

n2 = 1 + σ/ε0
iω(1 + iωτ) , (32.42)

where
τ = 1

γ
= mσ

Nq2
e

. (32.43)

This is a convenient formula for the index of refraction of metals.

32-7 Low-frequency and high-frequency approximations; the skin depth and
the plasma frequency

z

AMPLITUDE

0 δ 2δ 3δ
0

1

SURFACE

e−z/δ

Fig. 32-3. The amplitude of a transverse
electromagnetic wave as a function of dis-
tance into a metal.

Our result, Eq. (32.42), for the index of refraction for metals predicts quite
different characteristics for wave propagation at different frequencies. Let’s
first see what happens at very low frequencies. If ω is small enough, we can
approximate Eq. (32.42) by

n2 = −i σ

ε0ω
. (32.44)

Now, as you can check by taking the square,*
√
−i = 1− i√

2
;

so for low frequencies,
n =

√
σ/2ε0ω (1− i). (32.45)

The real and imaginary parts of n have the same magnitude. With such a large
imaginary part to n, the wave is rapidly attenuated in the metal. Referring to
Eq. (32.36), the amplitude of a wave going in the z-direction decreases as

exp[−
√
σω/2ε0c2 z]. (32.46)

Let’s write this as
e−z/δ, (32.47)

where δ is then the distance in which the wave amplitude decreases by the
factor e−1 = 1/2.72—or roughly one-third. The amplitude of such a wave as a
function of z is shown in Fig. 32-3. Since electromagnetic waves will penetrate
into a metal only this distance, δ is called the skin depth. It is given by

δ =
√

2ε0c2/σω. (32.48)

Now what do we mean by “low” frequencies? Looking at Eq. (32.42), we see
that it can be approximated by Eq. (32.44) only if ωτ is much less than one and
if ωε0/σ is also much less than one—that is, our low-frequency approximation
applies when

ω � 1
τ

and
ω � σ

ε0
. (32.49)

Let’s see what frequencies these correspond to for a typical metal like copper.
We compute τ by using Eq. (32.43), and σ/ε0, by using the measured conductivity.
We take the following data from a handbook:

σ = 5.76× 107 (ohm·meter)−1
,

atomic weight = 63.5 grams,
density = 8.9 grams·cm−3,

Avogadro’s number = 6.02× 1023 (gram atomic weight)−1.

* Or writing −i = e−iπ/2;
√
−i = e−iπ/4 = cosπ/4− i sinπ/4, which gives the same result.
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If we assume that there is one free electron per atom, then the number of electrons
per cubic meter is

N = 8.5× 1028 meter−3.

Using
qe = 1.6× 10−19 coulomb,
ε0 = 8.85× 10−12 farad ·meter−1,

m = 9.11× 10−31 kg,
we get

τ = 2.4× 10−12 sec,
1
τ

= 4.1× 1013 sec−1,

σ

ε0
= 6.5× 1018 sec−1.

So for frequencies less than about 1012 cycles per second, copper will have the
“low-frequency” behavior we describe (that means for waves whose free-space
wavelength is longer than 0.3 millimeters—very short radio waves!).

For these waves, the skin depth in copper is

δ =
√

0.028 m2 · sec−1

ω

For microwaves of 10,000 megacycles per second (3-cm waves)

δ = 6.7× 10−5 cm.

The wave penetrates a very small distance.
We can see from this why in studying cavities (or waveguides) we needed to

worry only about the fields inside the cavity, and not in the metal or outside the
cavity. Also, we see why the losses in a cavity are reduced by a thin plating of
silver or gold. The losses come from the current, which are appreciable only in a
thin layer equal to the skin depth.

Suppose we look now at the index of a metal like copper at high frequencies.
For very high frequencies ωτ is much greater than one, and Eq. (32.42) is well
approximated by

n2 = 1− σ

ε0ω2τ
. (32.50)

For waves of high frequencies the index of a metal becomes real—and less than
one! This is also evident from Eq. (32.38) if the dissipation term with γ is
neglected, as can be done for very large ω. Equation (32.38) gives

n2 = 1− Nq2
e

mε0ω2 , (32.51)

which is, of course, the same as Eq. (32.50). We have seen before the quan-
tity Nq2

e/mε0, which we called the square of the plasma frequency (Section 7-3):

ω2
p = Nq2

e

ε0m
,

so we can write Eq. (32.50) or Eq. (32.51) as

n2 = 1−
(
ωp
ω

)2
.

The plasma frequency is a kind of “critical” frequency.
For ω < ωp the index of a metal has an imaginary part, and waves are

attenuated; but for ω � ωp the index is real, and the metal becomes transparent.
You know, of course, that metals are reasonably transparent to x-rays. But
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some metals are even transparent in the ultraviolet. In Table 32-3 we give
for several metals the experimental observed wavelength at which they begin
to become transparent. In the second column we give the calculated critical
wavelength λp = 2πc/ωp. Considering that the experimental wavelength is not
too well defined, the fit of the theory is fairly good.

You may wonder why the plasma frequency ωp should have anything to do
with the propagation of electromagnetic waves in metals. The plasma frequency
came up in Chapter 7 as the natural frequency of density oscillations of the free
electrons. (A clump of electrons is repelled by electric forces, and the inertia of
the electrons leads to an oscillation of density.) So longitudinal plasma waves are
resonant at ωp. But we are now talking about transverse electromagnetic waves,
and we have found that transverse waves are absorbed for frequencies below ωp.
(It’s an interesting and not accidental coincidence.)

Table 32-3

Wavelengths below which the metal
becomes transparent*

Metal λ (experimental) λp = 2πc/ωp
Li 1550 Å 1550 Å
Na 2100 2090
K 3150 2870
Rb 3400 3220
* From: C. Kittel, Introduction to Solid
State Physics, John Wiley and Sons,
Inc., New York, 2nd ed., 1956, p. 266.

Although we have been talking about wave propagation in metals, you appre-
ciate by this time the universality of the phenomena of physics—that it doesn’t
make any difference whether the free electrons are in a metal or whether they
are in the plasma of the ionosphere of the earth, or in the atmosphere of a
star. To understand radio propagation in the ionosphere, we can use the same
expressions—using, of course, the proper values for N and τ . We can see now
why long radio waves are absorbed or reflected by the ionosphere, whereas short
waves go right through. (Short waves must be used for communication with
satellites.)

We have talked about the high- and low-frequency extremes for wave prop-
agation in metals. For the in-between frequencies the full-blown formula of
Eq. (32.42) must be used. In general, the index will have real and imaginary
parts; the wave is attenuated as it propagates into the metal. For very thin layers,
metals are somewhat transparent even at optical frequencies. As an example,
special goggles for people who work around high-temperature furnaces are made
by evaporating a thin layer of gold on glass. The visible light is transmitted fairly
well—with a strong green tinge—but the infrared is strongly absorbed.

Finally, it cannot have escaped the reader that many of these formulas resemble
in some ways those for the dielectric constant κ discussed in Chapter 10. The
dielectric constant κ measures the response of the material to a constant field,
that is, for ω = 0. If you look carefully at the definition of n and κ you see
that κ is simply the limit of n2 as ω → 0. Indeed, placing ω = 0 and n2 = κ
in equations of this chapter will reproduce the equations of the theory of the
dielectric constant of Chapter 11.
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33

Reflection from Surfaces

33-1 Reflection and refraction of light

The 33-1 Reflection and refraction of light
33-2 Waves in dense materials
33-3 The boundary conditions
33-4 The reflected and transmitted

waves
33-5 Reflection from metals
33-6 Total internal reflection

subject of this chapter is the reflection and refraction of light—or elec-
tromagnetic waves in general—at surfaces. We have already discussed the laws
of reflection and refraction in Chapters 26 and 33 of Volume I. Here’s what we
found out there:

1. The angle of reflection is equal to the angle of incidence. With the angles
defined as shown in Fig. 33-1,

θr = θi. (33.1)

2. The product n sin θ is the same for the incident and transmitted beams
(Snell’s law):

n1 sin θi = n2 sin θt. (33.2)

3. The intensity of the reflected light depends on the angle of incidence and
also on the direction of polarization. For E perpendicular to the plane of
incidence, the reflection coefficient R⊥ is

Review: Chapter 33, Vol. I, Polariza-
tion

R⊥ = Ir
Ii

= sin2(θi − θt)
sin2(θi + θt)

. (33.3)

For E parallel to the plane of incidence, the reflection coefficient R‖ is

R‖ = Ir
Ii

= tan2(θi − θt)
tan2(θi + θt)

. (33.4)

4. For normal incidence (any polarization, of course!),

Ir
Ii

=
(
n2 − n1

n2 + n1

)2
. (33.5)

(Earlier, we used i for the incident angle and r for the refracted angle. Since
we can’t use r for both “refracted” and “reflected” angles, we are now using
θi = incident angle, θr = reflected angle, and θt = transmitted angle.)

n1 n2

SURFACE

INC
IDE
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REFLECTED
WAVE T
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N
SM
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T
ED
W
AV
E

θi

θr
θt

Fig. 33-1. Reflection and refraction of
light waves at a surface. (The wave direc-
tions are normal to the wave crests.)

Our earlier discussion is really about as far as anyone would normally need to
go with the subject, but we are going to do it all over again a different way. Why?
One reason is that we assumed before that the indexes were real (no absorption
in the materials). But another reason is that you should know how to deal with
what happens to waves at surfaces from the point of view of Maxwell’s equations.
We’ll get the same answers as before, but now from a straightforward solution of
the wave problem, rather than by some clever arguments.

We want to emphasize that the amplitude of a surface reflection is not a
property of the material, as is the index of refraction. It is a “surface property,”
one that depends precisely on how the surface is made. A thin layer of extraneous
junk on the surface between two materials of indices n1 and n2 will usually change
the reflection. (There are all kinds of possibilities of interference here—like the
colors of oil films. Suitable thickness can even reduce the reflected amplitude to
zero for a given frequency; that’s how coated lenses are made.) The formulas we
will derive are correct only if the change of index is sudden—within a distance very
small compared with one wavelength. For light, the wavelength is about 5000 Å,
so by a “smooth” surface we mean one in which the conditions change in going
a distance of only a few atoms (or a few angstroms). Our equations will work
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for light for highly polished surfaces. In general, if the index changes gradually
over a distance of several wavelengths, there is very little reflection at all.

33-2 Waves in dense materials

x

y

P

rk

WAVE CRESTS

r

k λ

Fig. 33-2. For a wave moving in the
direction k, the phase at any point P

is (ωt − k · r).

First, we remind you about the convenient way of describing a sinusoidal
plane wave we used in Chapter 34 of Volume I. Any field component in the wave
(we use E as an example) can be written in the form

E = E0e
i(ωt−k·r), (33.6)

where E represents the amplitude at the point r (from the origin) at the time t.
The vector k points in the direction the wave is travelling, and its magnitude |k| =
k = 2π/λ is the wave number. The phase velocity of the wave is vph = ω/k; for
a light wave in a material of index n, vph = c/n, so

k = ωn

c
. (33.7)

Suppose k is in the z-direction; then k · r is just kz, as we have often used it.
For k in any other direction, we should replace z by rk, the distance from the
origin in the k-direction; that is, we should replace kz by krk, which is just k · r.
(See Fig. 33-2.) So Eq. (33.6) is a convenient representation of a wave in any
direction.

We must remember, of course, that

k · r = kxx+ kyy + kzz,

where kx, ky, and kz are the components of k along the three axes. In fact, we
pointed out once that (ω, kx, ky, kz) is a four-vector, and that its scalar product
with (t, x, y, z) is an invariant. So the phase of a wave is an invariant, and
Eq. (33.6) could be written

E = E0e
ikµxµ .

But we don’t need to be that fancy now.
For a sinusoidal E, as in Eq. (33.6), ∂E/∂t is the same as iωE, and ∂E/∂x

is −ikxE, and so on for the other components. You can see why it is very
convenient to use the form in Eq. (33.6) when working with differential equations—
differentiations are replaced by multiplications. One further useful point: The
operation ∇ = (∂/∂x, ∂/∂y, ∂/∂z) gets replaced by the three multiplications
(−ikx,−iky,−ikz). But these three factors transform as the components of the
vector k, so the operator ∇ gets replaced by multiplication with −ik:

∂

∂t
→ iω,

∇→ −ik. (33.8)

This remains true for any ∇ operation—whether it is the gradient, or the
divergence, or the curl. For instance, the z-component of ∇×E is

∂Ey
∂x
− ∂Ex

∂y
.

If both Ey and Ex vary as e−ik·r, then we get

−ikxEy + ikyEx,

which is, you see, the z-component of −ik ×E.
So we have the very useful general fact that whenever you have to take the

gradient of a vector that varies as a wave in three dimensions (they are an
important part of physics), you can always take the derivations quickly and
almost without thinking by remembering that the operation ∇ is equivalent to
multiplication by −ik.
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For instance, the Faraday equation

∇×E = −∂B
∂t

becomes for a wave
−ik ×E = −iωB.

This tells us that
B = k ×E

ω
, (33.9)

which corresponds to the result we found earlier for waves in free space—that
B, in a wave, is at right angles to E and to the wave direction. (In free space,
ω/k = c.) You can remember the sign in Eq. (33.9) from the fact that k is in the
direction of Poynting’s vector S = ε0c

2E ×B.
If you use the same rule with the other Maxwell equations, you get again the

results of the last chapter and, in particular, that

k · k = k2 = ω2n2

c2
. (33.10)

But since we know that, we won’t do it again.
If you want to entertain yourself, you can try the following terrifying problem

that was the ultimate test for graduate students back in 1890: solve Maxwell’s
equations for plane waves in an anisotropic crystal, that is, when the polariza-
tion P is related to the electric field E by a tensor of polarizability. You should,
of course, choose your axes along the principal axes of the tensor, so that the
relations are simplest (then Px = αaEx, Py = αbEy, and Pz = αcEz), but let
the waves have an arbitrary direction and polarization. You should be able
to find the relations between E and B, and how k varies with direction and
wave polarization. Then you will understand the optics of an anisotropic crystal.
It would be best to start with the simpler case of a birefringent crystal—like
calcite—for which two of the polarizabilities are equal (say, αb = αc), and see if
you can understand why you see double when you look through such a crystal.
If you can do that, then try the hardest case, in which all three α’s are different.
Then you will know whether you are up to the level of a graduate student of 1890.
In this chapter, however, we will consider only isotropic substances.

x

y

n1 n2

Ei

Er
Et

k

kx

ky

k ′

k ′x

k ′y
k ′′

k ′′x

k ′′y

θi

θr
θt

Fig. 33-3. The propagation vectors k , k ′,
and k ′′ for the incident, reflected, and trans-
mitted waves.

We know from experience that when a plane wave arrives at the boundary
between two different materials—say, air and glass, or water and oil—there is a
wave reflected and a wave transmitted. Suppose we assume no more than that and
see what we can work out. We choose our axes with the yz-plane in the surface and
the xy-plane perpendicular to the incident wave surfaces, as shown in Fig. 33-3.
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The electric vector of the incident wave can then be written as

Ei = E0e
i(ωt−k·r). (33.11)

Since k is perpendicular to the z-axis,

k · r = kxx+ kyy. (33.12)

We write the reflected wave as

Er = E′0e
i(ω′t−k′·r), (33.13)

so that its frequency is ω′, its wave number is k′, and its amplitude is E′0. (We
know, of course, that the frequency is the same and the magnitude of k′ is the
same as for the incident wave, but we are not going to assume even that. We
will let it come out of the mathematical machinery.) Finally, we write for the
transmitted wave,

Et = E′′0e
i(ω′′t−k′′·r). (33.14)

We know that one of Maxwell’s equations gives Eq. (33.9), so for each of the
waves we have

Bi = k ×Ei

ω
, Br = k′ ×Er

ω′
, Bt = k′′ ×Et

ω′′
. (33.15)

Also, if we call the indexes of the two media n1 and n2, we have from Eq. (33.10)

k2 = k2
x + k2

y = ω2n2
1

c2
. (33.16)

Since the reflected wave is in the same material, then

k′2 = ω′2n2
1

c2
(33.17)

whereas for the transmitted wave,

k′′2 = ω′′2n2
2

c2
. (33.18)

33-3 The boundary conditions

x

y

n1 n2

Γ

Ey1 Ey2

Fig. 33-4. A boundary condition Ey2 =

Ey1 is obtained from
∮

Γ
E · ds = 0.

All we have done so far is to describe the three waves; our problem now is to
work out the parameters of the reflected and transmitted waves in terms of those
of the incident wave. How can we do that? The three waves we have described
satisfy Maxwell’s equations in the uniform material, but Maxwell’s equations
must also be satisfied at the boundary between the two different materials. So
we must now look at what happens right at the boundary. We will find that
Maxwell’s equations demand that the three waves fit together in a certain way.

As an example of what we mean, the y-component of the electric field E must
be the same on both sides of the boundary. This is required by Faraday’s law,

∇×E = −∂B
∂t

, (33.19)

as we can see in the following way. Consider a little rectangular loop Γ which
straddles the boundary, as shown in Fig. 33-4. Equation (33.19) says that the
line integral of E around Γ is equal to the rate of change of the flux of B through
the loop: ∮

Γ
E · ds = − ∂

∂t

∫
B · n da.

Now imagine that the rectangle is very narrow, so that the loop encloses an
infinitesimal area. If B remains finite (and there’s no reason it should be infinite
at the boundary!) the flux through the area is zero. So the line integral of E
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must be zero. If Ey1 and Ey2 are the components of the field on the two sides of
the boundary and if the length of the rectangle is l, we have

Ey1l − Ey2l = 0
or

Ey1 = Ey2, (33.20)

as we have said. This gives us one relation among the fields of the three waves.
The procedure of working out the consequences of Maxwell’s equations at the

boundary is called “determining the boundary conditions.” Ordinarily, it is done
by finding as many equations like Eq. (33.20) as one can, by making arguments
about little rectangles like Γ in Fig. 33-4, or by using little gaussian surfaces that
straddle the boundary. Although that is a perfectly good way of proceeding, it
gives the impression that the problem of dealing with a boundary is different for
every different physical problem.

For example, in a problem of heat flow across a boundary, how are the
temperatures on the two sides related? Well, you could argue, for one thing, that
the heat flow to the boundary from one side would have to equal the flow away
from the other side. It is usually possible, and generally quite useful, to work
out the boundary conditions by making such physical arguments. There may be
times, however, when in working on some problem you have only some equations,
and you may not see right away what physical arguments to use. So although we
are at the moment interested only in an electromagnetic problem, where we can
make the physical arguments, we want to show you a method that can be used
for any problem—a general way of finding what happens at a boundary directly
from the differential equations.

We begin by writing all the Maxwell equations for a dielectric—and this time
we are very specific and write out explicitly all the components:

∇ ·E = −∇ · P
ε0

ε0

(
∂Ex
∂x

+ ∂Ey
∂y

+ ∂Ez
∂z

)
= −

(
∂Px
∂x

+ ∂Py
∂y

+ ∂Pz
∂z

)
(33.21)

∇×E = −∂B
∂t

∂Ez
∂y
− ∂Ey

∂z
= −∂Bx

∂t
(33.22a)

∂Ex
∂z
− ∂Ez

∂x
= −∂By

∂t
(33.22b)

∂Ey
∂x
− ∂Ex

∂y
= −∂Bz

∂t
(33.22c)

∇ ·B = 0

∂Bx
∂x

+ ∂By
∂y

+ ∂Bz
∂z

= 0 (33.23)

c2∇×B = 1
ε0

∂P

∂t
+ ∂E

∂t

c2
(
∂Bz
∂y
− ∂By

∂z

)
= 1
ε0

∂Px
∂t

+ ∂Ex
∂t

(33.24a)

c2
(
∂Bx
∂z
− ∂Bz

∂x

)
= 1
ε0

∂Py
∂t

+ ∂Ey
∂t

(33.24b)

c2
(
∂By
∂x
− ∂Bx

∂y

)
= 1
ε0

∂Pz
∂t

+ ∂Ez
∂t

(33.24c)
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Now these equations must all hold in region 1 (to the left of the boundary)
and in region 2 (to the right of the boundary). We have already written the
solutions in regions 1 and 2. Finally, they must also be satisfied in the boundary,
which we can call region 3. Although we usually think of the boundary as being
sharply discontinuous, in reality it is not. The physical properties change very
rapidly but not infinitely fast. In any case, we can imagine that there is a very
rapid, but continuous, transition of the index between region 1 and 2, in a short
distance we can call region 3. Also, any field quantity like Px, or Ey, etc., will
make a similar kind of transition in region 3. In this region, the differential
equations must still be satisfied, and it is by following the differential equations
in this region that we can arrive at the needed “boundary conditions.”

(a)

x

Px

Px1 = 0

Px2

REGION 1 REGION 3 REGION 2

(b)

x

∂Px

∂x

(c)

x

−ε0
∂Ex

∂x

Fig. 33-5. The fields in the transition
region 3 between two different materials in
regions 1 and 2.

For instance, suppose that we have a boundary between vacuum (region 1)
and glass (region 2). There is nothing to polarize in the vacuum, so P 1 = 0. Let’s
say there is some polarization P 2 in the glass. Between the vacuum and the glass
there is a smooth, but rapid, transition. If we look at any component of P , say Px,
it might vary as drawn in Fig. 33-5(a). Suppose now we take the first of our
equations, Eq. (33.21). It involves derivatives of the components of P with respect
to x, y, and z. The y- and z-derivatives are not interesting; nothing spectacular is
happening in those directions. But the x-derivative of Px will have some very large
values in region 3, because of the tremendous slope of Px. The derivative ∂Px/∂x
will have a sharp spike at the boundary, as shown in Fig. 33-5(b). If we imagine
squashing the boundary to an even thinner layer, the spike would get much higher.
If the boundary is really sharp for the waves we are interested in, the magnitude
of ∂Px/∂x in region 3 will be much, much greater than any contributions we
might have from the variation of P in the wave away from the boundary—so
we ignore any variations other than those due to the boundary.

Now how can Eq. (33.21) be satisfied if there is a whopping big spike on the
right-hand side? Only if there is an equally whopping big spike on the other side.
Something on the left-hand side must also be big. The only candidate is ∂Ex/∂x,
because the variations with y and z are only those small effects in the wave we
just mentioned. So −ε0(∂Ex/∂x) must be as drawn in Fig. 33-5(c)—just a copy
of ∂Px/∂x. We have that

ε0
∂Ex
∂x

= −∂Px
∂x

.

If we integrate this equation with respect to x across region 3, we conclude that

ε0(Ex2 − Ex1) = −(Px2 − Px1). (33.25)

In other words, the jump in ε0Ex in going from region 1 to region 2 must be
equal to the jump in −Px.

We can rewrite Eq. (33.25) as

ε0Ex2 + Px2 = ε0Ex1 + Px1, (33.26)

which says that the quantity (ε0Ex+Px) has equal values in region 2 and region 1.
People say: the quantity (ε0Ex + Px) is continuous across the boundary. We
have, in this way, one of our boundary conditions.

Although we took as an illustration the case in which P 1 was zero because
region 1 was a vacuum, it is clear that the same argument applies for any two
materials in the two regions, so Eq. (33.26) is true in general.

Let’s now go through the rest of Maxwell’s equations and see what each of
them tells us. We take next Eq. (33.22a). There are no x-derivatives, so it doesn’t
tell us anything. (Remember that the fields themselves do not get especially
large at the boundary; only the derivatives with respect to x can become so huge
that they dominate the equation.) Next, we look at Eq. (33.22b). Ah! There is
an x-derivative! We have ∂Ez/∂x on the left-hand side. Suppose it has a huge
derivative. But wait a moment! There is nothing on the right-hand side to match
it with; therefore Ez cannot have any jump in going from region 1 to region 2. [If
it did, there would be a spike on the left of Eq. (33.22b) but none on the right,
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and the equation would be false.] So we have a new condition:

Ez2 = Ez1. (33.27)

By the same argument, Eq. (33.22c) gives

Ey2 = Ey1. (33.28)

This last result is just what we got in Eq. (33.20) by a line integral argument.
We go on to Eq. (33.23). The only term that could have a spike is ∂Bx/∂x.

But there’s nothing on the right to match it, so we conclude that

Bx2 = Bx1. (33.29)

On to the last of Maxwell’s equations! Equation (33.24a) gives nothing,
because there are no x-derivatives. Equation (33.24b) has one, −c2 ∂Bz/∂x, but
again, there is nothing to match it with. We get

Bz2 = Bz1. (33.30)

The last equation is quite similar, and gives

By2 = By1. (33.31)

The last three equations gives us that B2 = B1. We want to emphasize,
however, that we get this result only when the materials on both sides of the
boundary are nonmagnetic—or rather, when we can neglect any magnetic effects
of the materials. This can usually be done for most materials, except ferromagnetic
ones. (We will treat the magnetic properties of materials in some later chapters.)

Table 33-1

Boundary conditions at the surface of a
dielectric

(ε0E1 + P 1)x = (ε0E2 + P 2)x
(E1)y = (E2)y
(E1)z = (E2)z
B1 = B2

(The surface is in the yz-plane)

Our program has netted us the six relations between the fields in region 1
and those in region 2. We have put them all together in Table 33-1. We can now
use them to match the waves in the two regions. We want to emphasize, however,
that the idea we have just used will work in any physical situation in which you
have differential equations and you want a solution that crosses a sharp boundary
between two regions where some property changes. For our present purposes,
we could have easily derived the same equations by using arguments about the
fluxes and circulations at the boundary. (You might see whether you can get the
same result that way.) But now you have seen a method that will work in case
you ever get stuck and don’t see any easy argument about the physics of what is
happening at the boundary—you can just work with the equations.

33-4 The reflected and transmitted waves

Now we are ready to apply our boundary conditions to the waves we wrote
down in Section 33-2. We had:

Ei = E0e
i(ωt−kxx−kyy), (33.32)

Er = E′0e
i(ω′t−k′

xx−k
′
yy), (33.33)

Et = E′′0e
i(ω′′t−k′′

xx−k
′′
y y), (33.34)

Bi = k ×Ei

ω
, (33.35)

Br = k′ ×Er

ω′
, (33.36)

Bt = k′′ ×Et

ω′′
. (33.37)

We have one further bit of knowledge: E is perpendicular to its propagation
vector k for each wave.
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The results will depend on the direction of the E-vector (the “polarization”) of
the incoming wave. The analysis is much simplified if we treat separately the case
of an incident wave with its E-vector parallel to the “plane of incidence” (that is,
the xy-plane) and the case of an incident wave with the E-vector perpendicular
to the plane of incidence. A wave of any other polarization is just a linear
combination of two such waves. In other words, the reflected and transmitted
intensities are different for different polarizations, and it is easiest to pick the
two simplest cases and treat them separately.

x

y

SURFACE

n1 n2

k

Ei

Bi

k ′

Er

Br

k ′′

Et

Bt

Fig. 33-6. Polarization of the reflected
and transmitted waves when the E-field of
the incident wave is perpendicular to the
plane of incidence.

We will carry through the analysis for an incoming wave polarized perpendic-
ular to the plane of incidence and then just give you the result for the other. We
are cheating a little by taking the simplest case, but the principle is the same for
both. So we take that Ei has only a z-component, and since all the E-vectors
are in the same direction we can leave off the vector signs.

So long as both materials are isotropic, the induced oscillations of charges in
the material will also be in the z-direction, and the E-field of the transmitted
and radiated waves will have only z-components. So for all the waves, Ex and Ey
and Px and Py are zero. The waves will have their E- and B-vectors as drawn in
Fig. 33-6. (We are cutting a corner here on our original plan of getting everything
from the equations. This result would also come out of the boundary conditions,
but we can save a lot of algebra by using the physical argument. When you have
some spare time, see if you can get the same result from the equations. It is clear
that what we have said agrees with the equations; it is just that we have not
shown that there are no other possibilities.)

Now our boundary conditions, Eqs. (33.26) through (33.31), give relations
between the components of E and B in regions 1 and 2. For region 2 we have
only the transmitted wave, but in region 1 we have two waves. Which one do we
use? The fields in region 1 are, of course, the superposition of the fields of the
incident and reflected waves. (Since each satisfies Maxwell’s equations, so does
the sum.) So when we use the boundary conditions, we must use that

E1 = Ei +Er, E2 = Et,

and similarly for the B’s.
For the polarization we are considering, Eqs. (33.26) and (33.28) give us no

new information; only Eq. (33.27) is useful. It says that

Ei + Er = Et,

at the boundary, that is, for x = 0. So we have that

E0e
i(ωt−kyy) + E′0e

i(ω′t−k′
yy) = E′′0 e

i(ω′′t−k′′
y y), (33.38)

which must be true for all t and for all y. Suppose we look first at y = 0. Then
we have

E0e
iωt + E′0e

iω′t = E′′0 e
iω′′t.

This equation says that two oscillating terms are equal to a third oscillation. That
can happen only if all the oscillations have the same frequency. (It is impossible
for three—or any number—of such terms with different frequencies to add to
zero for all times.) So

ω′′ = ω′ = ω. (33.39)
As we knew all along, the frequencies of the reflected and transmitted waves are
the same as that of the incident wave.

We should really have saved ourselves some trouble by putting that in at the
beginning, but we wanted to show you that it can also be got out of the equations.
When you are doing a real problem, it is usually the best thing to put everything
you know into the works right at the start and save yourself a lot of trouble.

By definition, the magnitude of k is given by k2 = n2ω2/c2, so we have also
that

k′′2

n2
2

= k′2

n2
1

= k2

n2
1
. (33.40)
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Now look at Eq. (33.38) for t = 0. Using again the same kind of argument
we have just made, but this time based on the fact that the equation must hold
for all values of y, we get that

k′′y = k′y = ky. (33.41)

From Eq. (33.40), k′2 = k2, so

k′2x + k′2y = k2
x + k2

y.

Combining this with Eq. (33.41), we have that

k′2x = k2
x,

or that k′x = ±kx. The positive sign makes no sense; that would not give a
reflected wave, but another incident wave, and we said at the start that we were
solving the problem of only one incident wave. So we have

k′x = −kx. (33.42)

The two equations (33.41) and (33.42) give us that the angle of reflection is equal
to the angle of incidence, as we expected. (See Fig. 33-3.) The reflected wave is

Er = E′0e
i(ωt+kxx−kyy). (33.43)

For the transmitted wave we already have that

k′′y = ky,

and
k′′2

n2
2

= k2

n2
1

; (33.44)

so we can solve these to find k′′x . We get

k′′2x = k′′2 − k′′2y = n2
2
n2

1
k2 − k2

y. (33.45)

Suppose for a moment that n1 and n2 are real numbers (that the imaginary
parts of the indexes are very small). Then all the k’s are also real numbers, and
from Fig. 33-3 we find that

ky
k

= sin θi,
k′′y
k′′

= sin θt. (33.46)

From (33.44) we get that
n2 sin θt = n1 sin θi, (33.47)

which is Snell’s law of refraction—again, something we already knew. If the
indexes are not real, the wave numbers are complex, and we have to use Eq. (33.45).
[We could still define the angles θi and θt by Eq. (33.46), and Snell’s law,
Eq. (33.47), would be true in general. But then the “angles” also are complex
numbers, thereby losing their simple geometrical interpretation as angles. It is
best then to describe the behavior of the waves by their complex kx or k′′x values.]

So far, we haven’t found anything new. We have just had the simple-minded
delight of getting some obvious answers from a complicated mathematical ma-
chinery. Now we are ready to find the amplitudes of the waves which we have
not yet known. Using our results for the ω’s and k’s, the exponential factors in
Eq. (33.38) can be cancelled, and we get

E0 + E′0 = E′′0 . (33.48)

Since both E′0 and E′′0 are unknown, we need one more relationship. We must use
another of the boundary conditions. The equations for Ex and Ey are no help,
because all the E’s have only a z-component. So we must use the conditions
on B. Let’s try Eq. (33.29):

Bx2 = Bx1.
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From Eqs. (33.35) through (33.37),

Bxi = kyEi
ω

, Bxr =
k′yEr

ω′
, Bxt =

k′′yEt

ω′′
.

Recalling that ω′′ = ω′ = ω and k′′y = k′y = ky, we get that

E0 + E′0 = E′′0 .

But this is just Eq. (33.48) all over again! We’ve just wasted time getting
something we already knew.

We could try Eq. (33.30), Bz2 = Bz1, but there are no z-components of B!
So there’s only one equation left: Eq. (33.31), By2 = By1. For the three waves:

Byi = −kxEi
ω

, Byr = −k
′
xEr
ω′

, Byt = −k
′′
xEt
ω′′

. (33.49)

Putting for Ei, Er, and Et the wave expression for x = 0 (to be at the boundary),
the boundary condition is

kx
ω
E0e

i(ωt−kyy) + k′x
ω′
E′0e

i(ω′t−k′
yy) = k′′x

ω′′
E′′0 e

i(ω′′t−k′′
y y).

Again all ω’s and ky’s are equal, so this reduces to

kxE0 + k′xE
′
0 = k′′xE

′′
0 . (33.50)

This gives us an equation for the E’s that is different from Eq. (33.48). With
the two, we can solve for E′0 and E′′0 . Remembering that k′x = −kx, we get

E′0 = kx − k′′x
kx + k′′x

E0, (33.51)

E′′0 = 2kx
kx + k′′x

E0. (33.52)

These, together with Eq. (33.45) or Eq. (33.46) for k′′x , give us what we wanted
to know. We will discuss the consequences of this result in the next section.
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y
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n1 n2

kEi

Bi

k ′

Er

Br

k ′′

Et

Bt

Fig. 33-7. Polarization of the waves when
the E-field of the incident wave is parallel
to the plane of incidence.

If we begin with a wave polarized with its E-vector parallel to the plane of
incidence, E will have both x- and y-components, as shown in Fig. 33-7. The
algebra is straightforward but more complicated. (The work can be somewhat
reduced by expressing things in this case in terms of the magnetic fields, which
are all in the z-direction.) One finds that

|E′0| =
n2

2kx − n2
1k
′′
x

n2
2kx + n2

1k
′′
x

|E0| (33.53)

and
|E′′0 | =

2n1n2kx
n2

2kx + n2
1k
′′
x

|E0|. (33.54)

Let’s see whether our results agree with those we got earlier. Equation (33.3)
is the result we worked out in Chapter 33 of Volume I for the ratio of the intensity
of the reflected wave to the intensity of the incident wave. Then, however, we
were considering only real indexes. For real indexes (and k’s), we can write

kx = k cos θi = ωn1

c
cos θi,

k′′x = k′′ cos θt = ωn2

c
cos θt.

Substituting in Eq. (33.51), we have

E′0
E0

= n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

, (33.55)
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which does not look the same as Eq. (33.3). It will, however, if we use Snell’s law
to get rid of the n’s. Setting n2 = n1 sin θi/ sin θt, and multiplying the numerator
and denominator by sin θt, we get

E′0
E0

= cos θi sin θt − sin θi cos θt
cos θi sin θt + sin θi cos θt

.

The numerator and denominator are just the sines of −(θi − θt) and (θi + θt); we
get

E′0
E0

= − sin(θi − θt)
sin(θi + θt)

. (33.56)

Since E′0 and E0 are in the same material, the intensities are proportional to
the squares of the electric fields, and we get the same result as before. Similarly,
Eq. (33.53) is the same as Eq. (33.4).

For waves which arrive at normal incidence, θi = 0 and θt = 0. Equa-
tion (33.56) gives 0/0, which is not very useful. We can, however, go back to
Eq. (33.55), which gives

Ir
Ii

=
(
E′0
E0

)2
=
(
n1 − n2

n1 + n2

)2
. (33.57)

This result, naturally, applies for “either” polarization, since for normal incidence
there is no special “plane of incidence.”

33-5 Reflection from metals

DRIED RED INK

GLASS PLATE
W
HI
TE

GREEN
RED

Fig. 33-8. A material which absorbs light
strongly at the frequency ω also reflects
light of that frequency.

We can now use our results to understand the interesting phenomenon of
reflection from metals. Why is it that metals are shiny? We saw in the last
chapter that metals have an index of refraction which, for some frequencies, has
a large imaginary part. Let’s see what we would get for the reflected intensity
when light shines from air (with n = 1) onto a material with n = −inI . Then
Eq. (33.55) gives (for normal incidence)

E′0
E0

= 1 + inI
1− inI

.

For the intensity of the reflected wave, we want the square of the absolute values
of E′0 and E0:

Ir
Ii

= |E
′
0|2

|E0|2
= |1 + inI |2

|1− inI |2
, (33.58)

or
Ir
Ii

= 1 + n2
I

1 + n2
I

= 1. (33.59)

For a material with an index which is a pure imaginary number, there is 100 per-
cent reflection!

Metals do not reflect 100 percent, but many do reflect visible light very well.
In other words, the imaginary part of their indexes is very large. But we have
seen that a large imaginary part of the index means a strong absorption. So
there is a general rule that if any material gets to be a very good absorber at
any frequency, the waves are strongly reflected at the surface and very little gets
inside to be absorbed. You can see this effect with strong dyes. Pure crystals of
the strongest dyes have a “metallic” shine. Probably you have noticed that at the
edge of a bottle of purple ink the dried dye will give a golden metallic reflection,
or that dried red ink will sometimes give a greenish metallic reflection. Red ink
absorbs out the greens of transmitted light, so if the ink is very concentrated, it
will exhibit a strong surface reflection for the frequencies of green light.

You can easily show this effect by coating a glass plate with red ink and
letting it dry. If you direct a beam of white light at the back of the plate, as
shown in Fig. 33-8, there will be a transmitted beam of red light and a reflected
beam of green light.
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Fig. 33-9. Total internal reflection.

33-6 Total internal reflection

If light goes from a material like glass, with a real index n greater than 1,
toward, say, air, with an index n2 equal to 1, Snell’s law says that

sin θt = n sin θi.

The angle θt of the transmitted wave becomes 90◦ when the incident angle θi is
equal to the “critical angle” θc given by

n sin θc = 1. (33.60)

What happens for θi greater than the critical angle? You know that there is total
internal reflection. But how does that come about?

n1 = n n2 = 1 n3 = n

Fig. 33-10. If there is a small gap, internal
reflection is not “total;” a transmitted wave
appears beyond the gap.

Let’s go back to Eq. (33.45) which gives the wave number k′′x for the trans-
mitted wave. We would have

k′′2x = k2

n2 − k
2
y.

Now ky = k sin θi and k = ωn/c, so

k′′2x = ω2

c2
(1− n2 sin2 θi).

If n sin θi is greater than one, k′′2x is negative and k′′x is a pure imaginary, say ±ikI .
You know by now what that means! The “transmitted” wave (Eq. 33.34) will
have the form

Et = E′′0e
±kIxei(ωt−kyy).

The wave amplitude either grows or drops off exponentially with increasing x.
Clearly, what we want here is the negative sign. Then the amplitude of the
wave to the right of the boundary will go as shown in Fig. 33-9. Notice that kI
is ω/c—which is of the order 1/λ0, the reciprocal of the free-space wavelength of
the light. When light is totally reflected from the inside of a glass-air surface,
there are fields in the air, but they extend beyond the surface only a distance of
the order of the wavelength of the light.

We can now see how to answer the following question: If a light wave in glass
arrives at the surface at a large enough angle, it is reflected; if another piece
of glass is brought up to the surface (so that the “surface” in effect disappears)
the light is transmitted. Exactly when does this happen? Surely there must be
continuous change from total reflection to no reflection! The answer, of course,
is that if the air gap is so small that the exponential tail of the wave in the
air has an appreciable strength at the second piece of glass, it will shake the
electrons there and generate a new wave, as shown in Fig. 33-10. Some light
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Fig. 33-11. A demonstration of the penetration of internally reflected waves.

will be transmitted. (Clearly, our solution is incomplete; we should solve all the
equations again for a thin layer of air between two regions of glass.)

This transmission effect can be observed with ordinary light only if the air
gap is very small (of the order of the wavelength of light, like 10−5 cm), but
it is easily demonstrated with three-centimeter waves. Then the exponentially
decreasing field extends several centimeters. A microwave apparatus that shows
the effect is drawn in Fig. 33-11. Waves from a small three-centimeter transmitter
are directed at a 45◦ prism of paraffin. The index of refraction of paraffin for
these frequencies is 1.50, and therefore the critical angle is 41.5◦. So the wave is
totally reflected from the 45◦ face and is picked up by detector A, as indicated
in Fig. 33-11(a). If a second paraffin prism is placed in contact with the first, as
shown in part (b) of the figure, the wave passes straight through and is picked
up at detector B. If a gap of a few centimeters is left between the two prisms,
as in part (c), there are both transmitted and reflected waves. The electric field
outside the 45◦ face of the prism in Fig. 33-11(a) can also be shown by bringing
detector B to within a few centimeters of the surface.
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34

The Magnetism of Matter

34-1 Diamagnetism and paramagnetism

In 34-1 Diamagnetism and
paramagnetism

34-2 Magnetic moments and angular
momentum

34-3 The precession of atomic magnets
34-4 Diamagnetism
34-5 Larmor’s theorem
34-6 Classical physics gives neither

diamagnetism nor
paramagnetism

34-7 Angular momentum in quantum
mechanics

34-8 The magnetic energy of atoms

this chapter we are going to talk about the magnetic properties of materials.
The material which has the most striking magnetic properties is, of course, iron.
Similar magnetic properties are shared also by the elements nickel, cobalt, and—
at sufficiently low temperatures (below 16◦C)—by gadolinium, as well as by a
number of peculiar alloys. That kind of magnetism, called ferromagnetism, is
sufficiently striking and complicated that we will discuss it in a special chapter.
However, all ordinary substances do show some magnetic effects, although very
small ones—a thousand to a million times less than the effects in ferromagnetic
materials. Here we are going to describe ordinary magnetism, that is to say, the
magnetism of substances other than the ferromagnetic ones.

This small magnetism is of two kinds. Some materials are attracted toward
magnetic fields; others are repelled. Unlike the electrical effect in matter, which
always causes dielectrics to be attracted, there are two signs to the magnetic effect.
These two signs can be easily shown with the help of a strong electromagnet
which has one sharply pointed pole piece and one flat pole piece, as drawn in
Fig. 34-1. The magnetic field is much stronger near the pointed pole than near
the flat pole. If a small piece of material is fastened to a long string and suspended
between the poles, there will, in general, be a small force on it. This small force
can be seen by the slight displacement of the hanging material when the magnet
is turned on. The few ferromagnetic materials are attracted very strongly toward
the pointed pole; all other materials feel only a very weak force. Some are weakly
attracted to the pointed pole; and some are weakly repelled.

Review: Section 15-1, “The forces on
a current loop; energy of a
dipole.”

STRING

SMALL PIECE OF MATERIAL
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POLES OF A STRONG
ELECTROMAGNET

Fig. 34-1. A small cylinder of bismuth is
weakly repelled by the sharp pole; a piece of
aluminum is attracted.

The effect is most easily seen with a small cylinder of bismuth, which is
repelled from the high-field region. Substances which are repelled in this way
are called diamagnetic. Bismuth is one of the strongest diamagnetic materials,
but even with it, the effect is still quite weak. Diamagnetism is always very
weak. If a small piece of aluminum is suspended between the poles, there is
also a weak force, but toward the pointed pole. Substances like aluminum are
called paramagnetic. (In such an experiment, eddy-current forces arise when the
magnet is turned on and off, and these can give off strong impulses. You must be
careful to look for the net displacement after the hanging object settles down.)
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We want now to describe briefly the mechanisms of these two effects. First, in
many substances the atoms have no permanent magnetic moments, or rather, all
the magnets within each atom balance out so that the net moment of the atom is
zero. The electron spins and orbital motions all exactly balance out, so that any
particular atom has no average magnetic moment. In these circumstances, when
you turn on a magnetic field little extra currents are generated inside the atom by
induction. According to Lenz’s law, these currents are in such a direction as to
oppose the increasing field. So the induced magnetic moments of the atoms are
directed opposite to the magnetic field. This is the mechanism of diamagnetism.

Then there are some substances for which the atoms do have a permanent
magnetic moment—in which the electron spins and orbits have a net circulating
current that is not zero. So besides the diamagnetic effect (which is always
present), there is also the possibility of lining up the individual atomic magnetic
moments. In this case, the moments try to line up with the magnetic field (in
the way the permanent dipoles of a dielectric are lined up by the electric field),
and the induced magnetism tends to enhance the magnetic field. These are the
paramagnetic substances. Paramagnetism is generally fairly weak because the
lining-up forces are relatively small compared with the forces from the thermal
motions which try to derange the order. It also follows that paramagnetism is
usually sensitive to the temperature. (The paramagnetism arising from the spins
of the electrons responsible for conduction in a metal constitutes an exception.
We will not be discussing this phenomenon here.) For ordinary paramagnetism,
the lower the temperature, the stronger the effect. There is more lining-up at low
temperatures when the deranging effects of the collisions are less. Diamagnetism,
on the other hand, is more or less independent of the temperature. In any
substance with built-in magnetic moments there is a diamagnetic as well as a
paramagnetic effect, but the paramagnetic effect usually dominates.

In Chapter 11 we described a ferroelectric material, in which all the electric
dipoles get lined up by their own mutual electric fields. It is also possible to
imagine the magnetic analog of ferroelectricity, in which all the atomic moments
would line up and lock together. If you make calculations of how this should
happen, you will find that because the magnetic forces are so much smaller than
the electric forces, thermal motions should knock out this alignment even at
temperatures as low as a few tenths of a degree Kelvin. So it would be impossible
at room temperature to have any permanent lining up of the magnets.

On the other hand, this is exactly what does happen in iron—it does get lined
up. There is an effective force between the magnetic moments of the different
atoms of iron which is much, much greater than the direct magnetic interaction.
It is an indirect effect which can be explained only by quantum mechanics. It is
about ten thousand times stronger than the direct magnetic interaction, and is
what lines up the moments in ferromagnetic materials. We discuss this special
interaction in a later chapter.

Now that we have tried to give you a qualitative explanation of diamagnetism
and paramagnetism, we must correct ourselves and say that it is not possible to
understand the magnetic effects of materials in any honest way from the point
of view of classical physics. Such magnetic effects are a completely quantum-
mechanical phenomenon. It is, however, possible to make some phoney classical
arguments and to get some idea of what is going on. We might put it this way.
You can make some classical arguments and get guesses as to the behavior of the
material, but these arguments are not “legal” in any sense because it is absolutely
essential that quantum mechanics be involved in every one of these magnetic
phenomena. On the other hand, there are situations, such as in a plasma or a
region of space with many free electrons, where the electrons do obey the laws
of classical mechanics. And in those circumstances, some of the theorems from
classical magnetism are worth while. Also, the classical arguments are of some
value for historical reasons. The first few times that people were able to guess at
the meaning and behavior of magnetic materials, they used classical arguments.
Finally, as we have already illustrated, classical mechanics can give us some useful
guesses as to what might happen—even though the really honest way to study
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this subject would be to learn quantum mechanics first and then to understand
the magnetism in terms of quantum mechanics.

On the other hand, we don’t want to wait until we learn quantum mechanics
inside out to understand a simple thing like diamagnetism. We will have to
lean on the classical mechanics as kind of half showing what happens, realizing,
however, that the arguments are really not correct. We therefore make a series
of theorems about classical magnetism that will confuse you because they will
prove different things. Except for the last theorem, every one of them will be
wrong. Furthermore, they will all be wrong as a description of the physical world,
because quantum mechanics is left out.

34-2 Magnetic moments and angular momentum

m, q
v

J

µ

r

Fig. 34-2. For any circular orbit the mag-
netic moment µ is q/2m times the angular
momentum J.

The first theorem we want to prove from classical mechanics is the following:
If an electron is moving in a circular orbit (for example, revolving around a
nucleus under the influence of a central force), there is a definite ratio between
the magnetic moment and the angular momentum. Let’s call J the angular
momentum and µ the magnetic moment of the electron in the orbit. The
magnitude of the angular momentum is the mass of the electron times the
velocity times the radius. (See Fig. 34-2.) It is directed perpendicular to the
plane of the orbit.

J = mvr. (34.1)
(This is, of course, a nonrelativistic formula, but it is a good approximation for
atoms, because for the electrons involved v/c is generally of the order of e2/~c ≈
1/137, or about 1 percent.)

The magnetic moment of the same orbit is the current times the area. (See
Section 14-5.) The current is the charge per unit time which passes any point on
the orbit, namely, the charge q times the frequency of rotation. The frequency is
the velocity divided by the circumference of the orbit; so

I = q
v

2πr .

The area is πr2, so the magnetic moment is

µ = qvr

2 . (34.2)

It is also directed perpendicular to the plane of the orbit. So J and µ are in the
same direction:

µ = q

2m J (orbit). (34.3)

Their ratio depends neither on the velocity nor on the radius. For any particle
moving in a circular orbit the magnetic moment is equal to q/2m times the
angular momentum. For an electron, the charge is negative—we can call it −qe;
so for an electron

µ = − qe
2m J (electron orbit). (34.4)

That’s what we would expect classically and, miraculously enough, it is also
true quantum-mechanically. It’s one of those things. However, if you keep going
with the classical physics, you find other places where it gives the wrong answers,
and it is a great game to try to remember which things are right and which things
are wrong. We might as well give you immediately what is true in general in
quantum mechanics. First, Eq. (34.4) is true for orbital motion, but that’s not
the only magnetism that exists. The electron also has a spin rotation about its
own axis (something like the earth rotating on its axis), and as a result of that
spin it has both an angular momentum and a magnetic moment. But for reasons
that are purely quantum-mechanical—there is no classical explanation—the ratio
of µ to J for the electron spin is twice as large as it is for orbital motion of the
spinning electron:

µ = −qe
m
J (electron spin). (34.5)
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In any atom there are, generally speaking, several electrons and some combi-
nation of spin and orbit rotations which builds up a total angular momentum and
a total magnetic moment. Although there is no classical reason why it should be
so, it is always true in quantum mechanics that (for an isolated atom) the direc-
tion of the magnetic moment is exactly opposite to the direction of the angular
momentum. The ratio of the two is not necessarily either −qe/m or −qe/2m,
but somewhere in between, because there is a mixture of the contributions from
the orbits and the spins. We can write

µ = −g
(
qe
2m

)
J , (34.6)

where g is a factor which is characteristic of the state of the atom. It would be 1
for a pure orbital moment, or 2 for a pure spin moment, or some other number
in between for a complicated system like an atom. This formula does not, of
course, tell us very much. It says that the magnetic moment is parallel to the
angular momentum, but can have any magnitude. The form of Eq. (34.6) is
convenient, however, because g—called the “Landé g-factor”—is a dimensionless
constant whose magnitude is of the order of one. It is one of the jobs of quantum
mechanics to predict the g-factor for any particular atomic state.

You might also be interested in what happens in nuclei. In nuclei there are
protons and neutrons which may move around in some kind of orbit and at the
same time, like an electron, have an intrinsic spin. Again the magnetic moment
is parallel to the angular momentum. Only now the order of magnitude of the
ratio of the two is what you would expect for a proton going around in a circle,
with m in Eq. (34.3) equal to the proton mass. Therefore it is usual to write for
nuclei

µ = g

(
qe

2mp

)
J , (34.7)

where mp is the mass of the proton, and g—called the nuclear g-factor—is a
number near one, to be determined for each nucleus.

Another important difference for a nucleus is that the spin magnetic moment
of the proton does not have a g-factor of 2, as the electron does. For a proton,
g = 2 · (2.79). Surprisingly enough, the neutron also has a spin magnetic moment,
and its magnetic moment relative to its angular momentum is 2 · (−1.91). The
neutron, in other words, is not exactly “neutral” in the magnetic sense. It is like
a little magnet, and it has the kind of magnetic moment that a rotating negative
charge would have.

34-3 The precession of atomic magnets

One of the consequences of having the magnetic moment proportional to
the angular momentum is that an atomic magnet placed in a magnetic field
will precess. First we will argue classically. Suppose that we have the magnetic
moment µ suspended freely in a uniform magnetic field. It will feel a torque τ ,
equal to µ×B, which tries to bring it in line with the field direction. But the
atomic magnet is a gyroscope—it has the angular momentum J . Therefore the
torque due to the magnetic field will not cause the magnet to line up. Instead, the
magnet will precess, as we saw when we analyzed a gyroscope in Chapter 20 of
Volume I. The angular momentum—and with it the magnetic moment—precesses
about an axis parallel to the magnetic field. We can find the rate of precession
by the same method we used in Chapter 20 of the first volume.

Suppose that in a small time ∆t the angular momentum changes from J
to J ′, as drawn in Fig. 34-3, staying always at the same angle θ with respect
to the direction of the magnetic field B. Let’s call ωp the angular velocity of
the precession, so that in the time ∆t the angle of precession is ωp ∆t. From
the geometry of the figure, we see that the change of angular momentum in the
time ∆t is

∆J = (J sin θ)(ωp ∆t).
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So the rate of change of the angular momentum is

dJ

dt
= ωpJ sin θ, (34.8)

which must be equal to the torque:

τ = µB sin θ. (34.9)

The angular velocity of precession is then

ωp = µ

J
B. (34.10)

B

ωp

θ

J

J ′ ∆J

|J| sin θ

Fig. 34-3. An object with angular momen-
tum J and a parallel magnetic moment µ
placed in a magnetic field B precesses with
the angular velocity ωp.

Substituting µ/J from Eq. (34.6), we see that for an atomic system

ωp = g
qeB

2m ; (34.11)

the precession frequency is proportional to B. It is handy to remember that for
an atom (or electron)

fp = ωp
2π = (1.4 megacycles/gauss)gB, (34.12)

and that for a nucleus

fp = ωp
2π = (0.76 kilocycles/gauss)gB. (34.13)

(The formulas for atoms and nuclei are different only because of the different
conventions for g for the two cases.)

According to the classical theory, then, the electron orbits—and spins—in an
atom should precess in a magnetic field. Is it also true quantum-mechanically? It
is essentially true, but the meaning of the “precession” is different. In quantum
mechanics one cannot talk about the direction of the angular momentum in the
same sense as one does classically; nevertheless, there is a very close analogy—so
close that we continue to call it “precession.” We will discuss it later when we
talk about the quantum-mechanical point of view.

34-4 Diamagnetism

B

r

Path Γ

q
F

Fig. 34-4. The induced electric forces on
the electrons in an atom.

Next we want to look at diamagnetism from the classical point of view. It
can be worked out in several ways, but one of the nice ways is the following.
Suppose that we slowly turn on a magnetic field in the vicinity of an atom. As
the magnetic field changes an electric field is generated by magnetic induction.
From Faraday’s law, the line integral of E around any closed path is the rate of
change of the magnetic flux through the path. Suppose we pick a path Γ which is
a circle of radius r concentric with the center of the atom, as shown in Fig. 34-4.
The average tangential electric field E around this path is given by

E2πr = − d

dt
(Bπr2),

and there is a circulating electric field whose strength is

E = −r2
dB

dt
.

The induced electric field acting on an electron in the atom produces a
torque equal to −qeEr, which must equal the rate of change of the angular
momentum dJ/dt:

dJ

dt
= qer

2

2
dB

dt
. (34.14)
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Integrating with respect to time from zero field, we find that the change in angular
momentum due to turning on the field is

∆J = qer
2

2 B. (34.15)

This is the extra angular momentum from the twist given to the electrons as the
field is turned on.

This added angular momentum makes an extra magnetic moment which,
because it is an orbital motion, is just −qe/2m times the angular momentum.
The induced diamagnetic moment is

∆µ = − qe
2m ∆J = −q

2
er

2

4m B. (34.16)

The minus sign (as you can see is right by using Lenz’s law) means that the
added moment is opposite to the magnetic field.

We would like to write Eq. (34.16) a little differently. The r2 which appears
is the radius from an axis through the atom parallel to B, so if B is along the
z-direction, it is x2 + y2. If we consider spherically symmetric atoms (or average
over atoms with their natural axes in all directions) the average of x2 + y2 is 2/3
of the average of the square of the true radial distance from the center point of
the atom. It is therefore usually more convenient to write Eq. (34.16) as

∆µ = − q2
e

6m 〈r
2〉avB. (34.17)

In any case, we have found an induced atomic moment proportional to the
magnetic field B and opposing it. This is diamagnetism of matter. It is this
magnetic effect that is responsible for the small force on a piece of bismuth in a
nonuniform magnetic field. (You could compute the force by working out the
energy of the induced moments in the field and seeing how the energy changes as
the material is moved into or out of the high-field region.)

We are still left with the problem: What is the mean square radius, 〈r2〉av?
Classical mechanics cannot supply an answer. We must go back and start over
with quantum mechanics. In an atom we cannot really say where an electron is,
but only know the probability that it will be at some place. If we interpret 〈r2〉av to
mean the average of the square of the distance from the center for the probability
distribution, the diamagnetic moment given by quantum mechanics is just the
same as formula (34.17). This equation, of course, is the moment for one electron.
The total moment is given by the sum over all the electrons in the atom. The
surprising thing is that the classical argument and quantum mechanics give
the same answer, although, as we shall see, the classical argument that gives
Eq. (34.17) is not really valid in classical mechanics.

The same diamagnetic effect occurs even when an atom already has a per-
manent moment. Then the system will precess in the magnetic field. As the
whole atom precesses, it takes up an additional small angular velocity, and that
slow turning gives a small current which represents a correction to the magnetic
moment. This is just the diamagnetic effect represented in another way. But we
don’t really have to worry about that when we talk about paramagnetism. If
the diamagnetic effect is first computed, as we have done here, we don’t have
to worry about the fact that there is an extra little current from the precession.
That has already been included in the diamagnetic term.

34-5 Larmor’s theorem

We can already conclude something from our results so far. First of all, in
the classical theory the moment µ was always proportional to J , with a given
constant of proportionality for a particular atom. There wasn’t any spin of the
electrons, and the constant of proportionality was always −qe/2m; that is to
say, in Eq. (34.6) we should set g = 1. The ratio of µ to J was independent
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of the internal motion of the electrons. Thus, according to the classical theory,
all systems of electrons would precess with the same angular velocity. (This is
not true in quantum mechanics.) This result is related to a theorem in classical
mechanics that we would now like to prove. Suppose we have a group of electrons
which are all held together by attraction toward a central point—as the electrons
are attracted by a nucleus. The electrons will also be interacting with each other,
and can, in general, have complicated motions. Suppose you have solved for
the motions with no magnetic field and then want to know what the motions
would be with a weak magnetic field. The theorem says that the motion with a
weak magnetic field is always one of the no-field solutions with an added rotation,
about the axis of the field, with the angular velocity ωL = qeB/2m. (This is the
same as ωp, if g = 1.) There are, of course, many possible motions. The point is
that for every motion without the magnetic field there is a corresponding motion
in the field, which is the original motion plus a uniform rotation. This is called
Larmor’s theorem, and ωL is called the Larmor frequency.

We would like to show how the theorem can be proved, but we will let you
work out the details. Take, first, one electron in a central force field. The force on
it is just F (r), directed toward the center. If we now turn on a uniform magnetic
field, there is an additional force, qv ×B; so the total force is

F (r) + qv ×B. (34.18)

Now let’s look at the same system from a coordinate system rotating with angular
velocity ω about an axis through the center of force and parallel to B. This is
no longer an inertial system, so we have to put in the proper pseudo forces—the
centrifugal and Coriolis forces we talked about in Chapter 19 of Volume I. We
found there that in a frame rotating with angular velocity ω, there is an apparent
tangential force proportional to vr, the radial component of velocity:

Ft = −2mωvr. (34.19)

And there is an apparent radial force which is given by

Fr = mω2r + 2mωvt, (34.20)

where vt is the tangential component of the velocity, measured in the rotating
frame. (The radial component vr for rotating and inertial frames is the same.)

Now for small enough angular velocities (that is, if ωr � vt), we can neglect
the first term (centrifugal) in Eq. (34.20) in comparison with the second (Coriolis).
Then Eqs. (34.19) and (34.20) can be written together as

F = −2mω × v. (34.21)

If we now combine a rotation and a magnetic field, we must add the force in
Eq. (34.21) to that in Eq. (34.18). The total force is

F (r) + qv ×B + 2mv × ω (34.22)

[we reverse the cross product and the sign of Eq. (34.21) to get the last term].
Looking at our result, we see that if

2mω = −qB

the two terms on the right cancel, and in the moving frame the only force is F (r).
The motion of the electron is just the same as with no magnetic field—and, of
course, no rotation. We have proved Larmor’s theorem for one electron. Since
the proof assumes a small ω, it also means that the theorem is true only for weak
magnetic fields. The only thing we could ask you to improve on is to take the
case of many electrons mutually interacting with each other, but all in the same
central field, and prove the same theorem. So no matter how complex an atom
is, if it has a central field the theorem is true. But that’s the end of the classical
mechanics, because it isn’t true in fact that the motions precess in that way. The
precession frequency ωp of Eq. (34.11) is only equal to ωL if g happens to be
equal to 1.
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34-6 Classical physics gives neither diamagnetism nor paramagnetism

Now we would like to demonstrate that according to classical mechanics there
can be no diamagnetism and no paramagnetism at all. It sounds crazy—first,
we have proved that there are paramagnetism, diamagnetism, precessing orbits,
and so on, and now we are going to prove that it is all wrong. Yes!—We are
going to prove that if you follow the classical mechanics far enough, there are no
such magnetic effects—they all cancel out. If you start a classical argument in a
certain place and don’t go far enough, you can get any answer you want. But the
only legitimate and correct proof shows that there is no magnetic effect whatever.

It is a consequence of classical mechanics that if you have any kind of system—
a gas with electrons, protons, and whatever—kept in a box so that the whole thing
can’t turn, there will be no magnetic effect. It is possible to have a magnetic effect
if you have an isolated system, like a star held together by itself, which can start
rotating when you put on the magnetic field. But if you have a piece of material
that is held in place so that it can’t start spinning, then there will be no magnetic
effects. What we mean by holding down the spin is summarized this way: At a
given temperature we suppose that there is only one state of thermal equilibrium.
The theorem then says that if you turn on a magnetic field and wait for the system
to get into thermal equilibrium, there will be no paramagnetism or diamagnetism—
there will be no induced magnetic moment. Proof: According to statistical
mechanics, the probability that a system will have any given state of motion is
proportional to e−U/kT , where U is the energy of that motion. Now what is the
energy of motion? For a particle moving in a constant magnetic field, the energy is
the ordinary potential energy plusmv2/2, with nothing additional for the magnetic
field. [You know that the forces from electromagnetic fields are q(E+v×B), and
that the rate of work F · v is just qE · v, which is not affected by the magnetic
field.] So the energy of a system, whether it is in a magnetic field or not, is always
given by the kinetic energy plus the potential energy. Since the probability of any
motion depends only on the energy—that is, on the velocity and position—it is the
same whether or not there is a magnetic field. For thermal equilibrium, therefore,
the magnetic field has no effect. If we have one system in a box, and then have
another system in a second box, this time with a magnetic field, the probability
of any particular velocity at any point in the first box is the same as in the second.
If the first box has no average circulating current (which it will not have if it is
in equilibrium with the stationary walls), there is no average magnetic moment.
Since in the second box all the motions are the same, there is no average magnetic
moment there either. Hence, if the temperature is kept constant and thermal
equilibrium is re-established after the field is turned on, there can be no magnetic
moment induced by the field—according to classical mechanics. We can only get
a satisfactory understanding of magnetic phenomena from quantum mechanics.

Unfortunately, we cannot assume that you have a thorough understanding
of quantum mechanics, so this is hardly the place to discuss the matter. On the
other hand, we don’t always have to learn something first by learning the exact
rules and then by learning how they are applied in different cases. Almost every
subject that we have taken up in this course has been treated in a different way.
In the case of electricity, we wrote the Maxwell equations on “Page One” and then
deduced all the consequences. That’s one way. But we will not now try to begin
a new “Page One,” writing the equations of quantum mechanics and deducing
everything from them. We will just have to tell you some of the consequences
of quantum mechanics, before you learn where they come from. So here we go.

34-7 Angular momentum in quantum mechanics

We have already given you a relation between the magnetic moment and the
angular momentum. That’s pleasant. But what do the magnetic moment and
the angular momentum mean in quantum mechanics? In quantum mechanics it
turns out to be best to define things like magnetic moments in terms of the other
concepts such as energy, in order to make sure that one knows what it means.
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Now, it is easy to define a magnetic moment in terms of energy, because the
energy of a moment in a magnetic field is, in the classical theory, µ ·B. Therefore,
the following definition has been taken in quantum mechanics: If we calculate
the energy of a system in a magnetic field and we find that it is proportional
to the field strength (for small field), the coefficient is called the component of
magnetic moment in the direction of the field. (We don’t have to get so elegant
for our work now; we can still think of the magnetic moment in the ordinary, to
some extent classical, sense.)

Now we would like to discuss the idea of angular momentum in quantum
mechanics—or rather, the characteristics of what, in quantum mechanics, is
called angular momentum. You see, when you go to new kinds of laws, you
can’t just assume that each word is going to mean exactly the same thing. You
may think, say, “Oh, I know what angular momentum is. It’s that thing that
is changed by a torque.” But what’s a torque? In quantum mechanics we have
to have new definitions of old quantities. It would, therefore, be legally best to
call it by some other name such as “quantangular momentum,” or something
like that, because it is the angular momentum as defined in quantum mechanics.
But if we can find a quantity in quantum mechanics which is identical to our old
idea of angular momentum when the system becomes large enough, there is no
use in inventing an extra word. We might as well just call it angular momentum.
With that understanding, this odd thing that we are about to describe is angular
momentum. It is the thing which in a large system we recognize as angular
momentum in classical mechanics.

First, we take a system in which angular momentum is conserved, such as an
atom all by itself in empty space. Now such a thing (like the earth spinning on
its axis) could, in the ordinary sense, be spinning around any axis one wished to
choose. And for a given spin, there could be many different “states,” all of the
same energy, each “state” corresponding to a particular direction of the axis of the
angular momentum. So in the classical theory, with a given angular momentum,
there is an infinite number of possible states, all of the same energy.

It turns out in quantum mechanics, however, that several strange things
happen. First, the number of states in which such a system can exist is limited—
there is only a finite number. If the system is small, the finite number is very
small, and if the system is large, the finite number gets very, very large. Second,
we cannot describe a “state” by giving the direction of its angular momentum, but
only by giving the component of the angular momentum along some direction—say
in the z-direction. Classically, an object with a given total angular momentum J
could have, for its z-component, any value from +J to −J . But quantum-
mechanically, the z-component of angular momentum can have only certain
discrete values. Any given system—a particular atom, or a nucleus, or anything—
with a given energy, has a characteristic number j, and its z-component of angular
momentum can only be one of the following set of values:

j~
(j − 1)~
(j − 2)~

...

−(j − 2)~
−(j − 1)~

−j~

(34.23)

The largest z-component is j times ~; the next smaller is one unit of ~ less, and so
on down to−j~. The number j is called “the spin of the system.” (Some people call
it the “total angular momentum quantum number”; but we’ll call it the “spin.”)

You may be worried that what we are saying can only be true for some
“special” z-axis. But that is not so. For a system whose spin is j, the component
of angular momentum along any axis can have only one of the values in (34.23).
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Although it is quite mysterious, we ask you just to accept it for the moment. We
will come back and discuss the point later. You may at least be pleased to hear
that the z-component goes from some number to minus the same number, so
that we at least don’t have to decide which is the plus direction of the z-axis.
(Certainly, if we said that it went from +j to minus a different amount, that
would be infinitely mysterious, because we wouldn’t have been able to define the
z-axis, pointing the other way.)

Now if the z-component of angular momentum must go down by integers
from +j to −j, then j must be an integer. No! Not quite; twice j must be an
integer. It is only the difference between +j and −j that must be an integer.
So, in general, the spin j is either an integer or a half-integer, depending on
whether 2j is even or odd. Take, for instance, a nucleus like lithium, which has a
spin of three-halves, j = 3/2. Then the angular momentum around the z-axis, in
units of ~, is one of the following:

+3/2
+1/2
−1/2
−3/2.

There are four possible states, each of the same energy, if the nucleus is in empty
space with no external fields. If we have a system whose spin is two, then the
z-component of angular momentum has only the values, in units of ~,

2
1
0
−1
−2.

If you count how many states there are for a given j, there are (2j+1) possibilities.
In other words, if you tell me the energy and also the spin j, it turns out that
there are exactly (2j + 1) states with that energy, each state corresponding to
one of the different possible values of the z-component of the angular momentum.

We would like to add one other fact. If you pick out any atom of known j
at random and measure the z-component of the angular momentum, then you
may get any one of the possible values, and each of the values is equally likely.
All of the states are in fact single states, and each is just as good as any other.
Each one has the same “weight” in the world. (We are assuming that nothing
has been done to sort out a special sample.) This fact has, incidentally, a simple
classical analog. If you ask the same question classically: What is the likelihood
of a particular z-component of angular momentum if you take a random sample
of systems, all with the same total angular momentum?—the answer is that all
values from the maximum to the minimum are equally likely. (You can easily
work that out.) The classical result corresponds to the equal probability of the
(2j + 1) possibilities in quantum mechanics.

From what we have so far, we can get another interesting and somewhat
surprising conclusion. In certain classical calculations the quantity that appears
in the final result is the square of the magnitude of the angular momentum J—in
other words, J · J . It turns out that it is often possible to guess at the correct
quantum-mechanical formula by using the classical calculation and the following
simple rule: Replace J2 = J · J by j(j + 1)~2. This rule is commonly used,
and usually gives the correct result, but not always. We can give the following
argument to show why you might expect this rule to work.

The scalar product J · J can be written as

J · J = J2
x + J2

y + J2
z .

Since it is a scalar, it should be the same for any orientation of the spin. Suppose
we pick samples of any given atomic system at random and make measurements
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of J2
x , or J2

y , or J2
z , the average value should be the same for each. (There is no

special distinction for any one of the directions.) Therefore, the average of J · J
is just equal to three times the average of any component squared, say of J2

z ;

〈J · J〉av = 3〈J2
z 〉av.

But since J · J is the same for all orientations, its average is, of course, just its
constant value; we have

J · J = 3〈J2
z 〉av. (34.24)

If we now say that we will use the same equation for quantum mechanics,
we can easily find 〈J2

z 〉av. We just have to take the sum of the (2j + 1) possible
values of J2

z , and divide by the total number;

〈J2
z 〉av = j2 + (j − 1)2 + · · ·+ (−j + 1)2 + (−j)2

2j + 1 ~2. (34.25)

For a system with a spin of 3/2, it goes like this:

〈J2
z 〉av = (3/2)2 + (1/2)2 + (−1/2)2 + (−3/2)2

4 ~2 = 5
4 ~2.

We conclude that
J · J = 3〈J2

z 〉av = 3 5
4~

2 = 3
2 ( 3

2 + 1)~2.

We will leave it for you to show that Eq. (34.25), together with Eq. (34.24), gives
the general result

J · J = j(j + 1)~2. (34.26)
Although we would think classically that the largest possible value of the z-
component of J is just the magnitude of J—namely,

√
J · J—quantum mechan-

ically the maximum of Jz is always a little less than that, because j~ is always
less than

√
j(j + 1)~. The angular momentum is never “completely along the

z-direction.”

34-8 The magnetic energy of atoms

Now we want to talk again about the magnetic moment. We have said that
in quantum mechanics the magnetic moment of a particular atomic system can
be written in terms of the angular momentum by Eq. (34.6);

µ = −g
(
qe
2m

)
J , (34.27)

where −qe and m are the charge and mass of the electron.
An atomic magnet placed in an external magnetic field will have an extra

magnetic energy which depends on the component of its magnetic moment along
the field direction. We know that

Umag = −µ ·B. (34.28)

Choosing our z-axis along the direction of B,

Umag = −µzB. (34.29)

Using Eq. (34.27), we have that

Umag = g

(
qe
2m

)
JzB.

Quantum mechanics says that Jz can have only certain values: j~, (j − 1)~,
. . . , −j~. Therefore, the magnetic energy of an atomic system is not arbitrary;
it can have only certain values. Its maximum value, for instance, is

g

(
qe
2m

)
~jB.
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The quantity qe~/2m is usually given the name “the Bohr magneton” and
written µB :

µB = qe~
2m.

The possible values of the magnetic energy are

Umag = gµBB
Jz
~
,

where Jz/~ takes on the possible values j, (j − 1), (j − 2), . . . , (−j + 1), −j.

B

Umag

0

Jz= + 3
2
h̄

Jz= + 1
2
h̄

Jz=− 1
2
h̄

Jz=− 3
2
h̄

Fig. 34-5. The possible magnetic energies
of an atomic system with a spin of 3/2 in a
magnetic filed B.

In other words, the energy of an atomic system is changed when it is put in a
magnetic field by an amount that is proportional to the field, and proportional
to Jz. We say that the energy of an atomic system is “split into 2j+1 levels” by a
magnetic field. For instance, an atom whose energy is U0 outside a magnetic field
and whose j is 3/2, will have four possible energies when placed in a field. We
can show these energies by an energy-level diagram like that drawn in Fig. 34-5.
Any particular atom can have only one of the four possible energies in any given
field B. That is what quantum mechanics says about the behavior of an atomic
system in a magnetic field.

B

Umag

0

Jz= + 1
2
h̄

Jz=− 1
2
h̄

Fig. 34-6. The two possible energy states
of an electron in a magnetic field B.

The simplest “atomic” system is a single electron. The spin of an electron
is 1/2, so there are two possible states: Jz = ~/2 and Jz = −~/2. For an electron,
at rest (no orbital motion), the spin magnetic moment has a g-value of 2, so the
magnetic energy can be either ±µBB. The possible energies in a magnetic field
are shown in Fig. 34-6. Speaking loosely we say that the electron either has its
spin “up” (along the field) or “down” (opposite the field).

For systems with higher spins, there are more states. We can think that the
spin is “up” or “down” or cocked at some “angle” in between, depending on the
value of Jz.

We will use these quantum mechanical results to discuss the magnetic prop-
erties of materials in the next chapter.
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the last chapter we described how in quantum mechanics the angular
momentum of a thing does not have an arbitrary direction, but its component
along a given axis can take on only certain equally spaced, discrete values. It
is a shocking and peculiar thing. You may think that perhaps we should not go
into such things until your minds are more advanced and ready to accept this
kind of an idea. Actually, your minds will never become more advanced—in the
sense of being able to accept such a thing easily. There isn’t any descriptive way
of making it intelligible that isn’t so subtle and advanced in its own form that
it is more complicated than the thing you were trying to explain. The behavior
of matter on a small scale—as we have remarked many times—is different from
anything that you are used to and is very strange indeed. As we proceed with
classical physics, it is a good idea to try to get a growing acquaintance with the
behavior of things on a small scale, at first as a kind of experience without any
deep understanding. Understanding of these matters comes very slowly, if at
all. Of course, one does get better able to know what is going to happen in a
quantum-mechanical situation—if that is what understanding means—but one
never gets a comfortable feeling that these quantum-mechanical rules are “natural.”
Of course they are, but they are not natural to our own experience at an ordinary
level. We should explain that the attitude that we are going to take with regard
to this rule about angular momentum is quite different from many of the other
things we have talked about. We are not going to try to “explain” it, but we must
at least tell you what happens; it would be dishonest to describe the magnetic
properties of materials without mentioning the fact that the classical description
of magnetism—of angular momentum and magnetic moments—is incorrect.

Review: Chapter 11, Inside Dielectrics

One of the most shocking and disturbing features about quantum mechanics
is that if you take the angular momentum along any particular axis you find that
it is always an integer or half-integer times ~. This is so no matter which axis
you take. The subtleties involved in that curious fact—that you can take any
other axis and find that the component for it is also locked to the same set of
values—we will leave to a later chapter, when you will experience the delight of
seeing how this apparent paradox is ultimately resolved.

We will now just accept the fact that for every atomic system there is a
number j, called the spin of the system—which must be an integer or a half-
integer—and that the component of the angular momentum along any particular
axis will always have one of the following values between +j~ and −j~:

Jz = one of



j
j − 1
j − 2
...

−j + 2
−j + 1
−j


· ~. (35.1)

We have also mentioned that every simple atomic system has a magnetic
moment which has the same direction as the angular momentum. This is true
not only for atoms and nuclei but also for the fundamental particles. Each
fundamental particle has its own characteristic value of j and its magnetic
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(a)

U

U0 B

j = 1/2

Jz = +~/2

Jz = −~/2

(b)

U

U0 B

j = 1

Jz = +~

Jz = 0~

Jz = −~

(c)

U

U0 B

j = 3/2 Jz
=

+3~/
2

Jz = +~/2

Jz = −~/2

J
z = −3~/2

~ωp

~ωp

~ωp

Fig. 35-1. An atomic system with spin j
has (2j + 1) possible energy values in a
magnetic field B. The energy splitting is
proportional to B for small fields.

moment. (For some particles, both are zero.) What we mean by “the magnetic
moment” in this statement is that the energy of the system in a magnetic field,
say in the z-direction, can be written as −µzB for small magnetic fields. We
must have the condition that the field should not be too great, otherwise it could
disturb the internal motions of the system and the energy would not be a measure
of the magnetic moment that was there before the field was turned on. But if
the field is sufficiently weak, the field changes the energy by the amount

∆U = −µzB, (35.2)
with the understanding that in this equation we are to replace µz by

µz = g

(
q

2m

)
Jz, (35.3)

where Jz has one of the values in Eq. (35.1).
Suppose we take a system with a spin j = 3/2. Without a magnetic field,

the system has four different possible states corresponding to the different values
of Jz, all of which have exactly the same energy. But the moment we turn on
the magnetic field, there is an additional energy of interaction which separates
these states into four slightly different energy levels. The energies of these levels
are given by a certain energy proportional to B, multiplied by ~ times 3/2, 1/2,
−1/2, and −3/2—the values of Jz. The splitting of the energy levels for atomic
systems with spins of 1/2, 1, and 3/2 are shown in the diagrams of Fig. 35-1.
(Remember that for any arrangement of electrons the magnetic moment is always
directed opposite to the angular momentum.)

You will notice from the diagrams that the “center of gravity” of the energy
levels is the same with and without a magnetic field. Also notice that the spacings
from one level to the next are always equal for a given particle in a given magnetic
field. We are going to write the energy spacing, for a given magnetic field B,
as ~ωp—which is just a definition of ωp. Using Eqs. (35.2) and (35.3), we have

~ωp = g
q

2m ~B
or

ωp = g
q

2m B. (35.4)
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The quantity g(q/2m) is just the ratio of the magnetic moment to the angular
momentum—it is a property of the particle. Equation (35.4) is the same formula
that we got in Chapter 34 for the angular velocity of precession in a magnetic
field, for a gyroscope whose angular momentum is J and whose magnetic moment
is µ.

OVEN

HOLE

VACUUM

MAGNET

GLASS
PLATE

Fig. 35-2. The experiment of Stern and Gerlach.

35-2 The Stern-Gerlach experiment

The fact that the angular momentum is quantized is such a surprising thing
that we will talk a little bit about it historically. It was a shock from the moment
it was discovered (although it was expected theoretically). It was first observed
in an experiment done in 1922 by Stern and Gerlach. If you wish, you can
consider the experiment of Stern-Gerlach as a direct justification for a belief in
the quantization of angular momentum. Stern and Gerlach devised an experiment
for measuring the magnetic moment of individual silver atoms. They produced a
beam of silver atoms by evaporating silver in a hot oven and letting some of them
come out through a series of small holes. This beam was directed between the
pole tips of a special magnet, as shown in Fig. 35-2. Their idea was the following.
If the silver atom has a magnetic moment µ, then in a magnetic field B it has
an energy −µzB, where z is the direction of the magnetic field. In the classical
theory, µz would be equal to the magnetic moment times the cosine of the angle
between the moment and the magnetic field, so the extra energy in the field
would be

∆U = −µB cos θ. (35.5)

Of course, as the atoms come out of the oven, their magnetic moments would
point in every possible direction, so there would be all values of θ. Now if the
magnetic field varies very rapidly with z—if there is a strong field gradient—then
the magnetic energy will also vary with position, and there will be a force on the
magnetic moments whose direction will depend on whether cosine θ is positive
or negative. The atoms will be pulled up or down by a force proportional to the
derivative of the magnetic energy; from the principle of virtual work,

Fz = −∂U
∂z

= µ cos θ ∂B
∂z

. (35.6)

Stern and Gerlach made their magnet with a very sharp edge on one of the pole
tips in order to produce a very rapid variation of the magnetic field. The beam
of silver atoms was directed right along this sharp edge, so that the atoms would
feel a vertical force in the inhomogeneous field. A silver atom with its magnetic
moment directed horizontally would have no force on it and would go straight past
the magnet. An atom whose magnetic moment was exactly vertical would have a
force pulling it up toward the sharp edge of the magnet. An atom whose magnetic
moment was pointed downward would feel a downward push. Thus, as they left the
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magnet, the atoms would be spread out according to their vertical components of
magnetic moment. In the classical theory all angles are possible, so that when the
silver atoms are collected by deposition on a glass plate, one should expect a smear
of silver along a vertical line. The height of the line would be proportional to the
magnitude of the magnetic moment. The abject failure of classical ideas was com-
pletely revealed when Stern and Gerlach saw what actually happened. They found
on the glass plate two distinct spots. The silver atoms had formed two beams.

That a beam of atoms whose spins would apparently be randomly oriented
gets split up into two separate beams is most miraculous. How does the magnetic
moment know that it is only allowed to take on certain components in the direction
of the magnetic field? Well, that was really the beginning of the discovery of the
quantization of angular momentum, and instead of trying to give you a theoretical
explanation, we will just say that you are stuck with the result of this experiment
just as the physicists of that day had to accept the result when the experiment
was done. It is an experimental fact that the energy of an atom in a magnetic
field takes on a series of individual values. For each of these values the energy
is proportional to the field strength. So in a region where the field varies, the
principle of virtual work tells us that the possible magnetic force on the atoms
will have a set of separate values; the force is different for each state, so the beam
of atoms is split into a small number of separate beams. From a measurement of
the deflection of the beams, one can find the strength of the magnetic moment.

35-3 The Rabi molecular-beam method

We would now like to describe an improved apparatus for the measurement
of magnetic moments which was developed by I. I. Rabi and his collaborators.
In the Stern-Gerlach experiment the deflection of atoms is very small, and the
measurement of the magnetic moment is not very precise. Rabi’s technique
permits a fantastic precision in the measurement of the magnetic moments. The
method is based on the fact that the original energy of the atoms in a magnetic
field is split up into a finite number of energy levels. That the energy of an atom
in the magnetic field can have only certain discrete energies is really not more
surprising than the fact that atoms in general have only certain discrete energy
levels—something we mentioned often in Volume I. Why should the same thing
not hold for atoms in a magnetic field? It does. But it is the attempt to correlate
this with the idea of an oriented magnetic moment that brings out some of the
strange implications of quantum mechanics.

When an atom has two levels which differ in energy by the amount ∆U , it
can make a transition from the upper level to the lower level by emitting a light
quantum of frequency ω, where

~ω = ∆U. (35.7)

The same thing can happen with atoms in a magnetic field. Only then, the energy
differences are so small that the frequency does not correspond to light, but to mi-
crowaves or to radiofrequencies. The transitions from the lower energy level to an
upper energy level of an atom can also take place with the absorption of light or, in
the case of atoms in a magnetic field, by the absorption of microwave energy. Thus
if we have an atom in a magnetic field, we can cause transitions from one state to
another by applying an additional electromagnetic field of the proper frequency.
In other words, if we have an atom in a strong magnetic field and we “tickle” the
atom with a weak varying electromagnetic field, there will be a certain probability
of knocking it to another level if the frequency is near to the ω in Eq. (35.7). For
an atom in a magnetic field, this frequency is just what we have earlier called ωp
and it is given in terms of the magnetic field by Eq. (35.4). If the atom is tickled
with the wrong frequency, the chance of causing a transition is very small. Thus
there is a sharp resonance at ωp in the probability of causing a transition. By
measuring the frequency of this resonance in a known magnetic field B, we can
measure the quantity g(q/2m)—and hence the g-factor—with great precision.
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ωp

J

µ

Fig. 35-3. The classical precession of an
atom with the magnetic moment µ and the
angular momentum J.

It is interesting that one comes to the same conclusion from a classical point
of view. According to the classical picture, when we place a small gyroscope
with a magnetic moment µ and an angular momentum J in an external magnetic
field, the gyroscope will precess about an axis parallel to the magnetic field.
(See Fig. 35-3.) Suppose we ask: How can we change the angle of the classical
gyroscope with respect to the field—namely, with respect to the z-axis? The
magnetic field produces a torque around a horizontal axis. Such a torque you
would think is trying to line up the magnet with the field, but it only causes
the precession. If we want to change the angle of the gyroscope with respect to
the z-axis, we must exert a torque on it about the z-axis. If we apply a torque
which goes in the same direction as the precession, the angle of the gyroscope
will change to give a smaller component of J in the z-direction. In Fig. 35-3, the
angle between J and the z-axis would increase. If we try to hinder the precession,
J moves toward the vertical.

(a)

B

J

µ

B′

(b)

B

J

µ

B′ = b cosωpt

Fig. 35-4. The angle of precession of an
atomic magnet can be changed by a hori-
zontal magnetic field always at right angles
to µ, as in (a), or by an oscillating field, as
in (b).

For our precessing atom in a uniform magnetic field, how can we apply the
kind of torque we want? The answer is: with a weak magnetic field from the
side. You might at first think that the direction of this magnetic field would have
to rotate with the precession of the magnetic moment, so that it was always at
right angles to the moment, as indicated by the field B′ in Fig. 35-4(a). Such
a field works very well, but an alternating horizontal field is almost as good. If
we have a small horizontal field B′, which is always in the x-direction (plus or
minus) and which oscillates with the frequency ωp, then on each one-half cycle
the torque on the magnetic moment reverses, so that it has a cumulative effect
which is almost as effective as a rotating magnetic field. Classically, then, we
would expect the component of the magnetic moment along the z-direction to
change if we have a very weak oscillating magnetic field at a frequency which is
exactly ωp. Classically, of course, µz would change continuously, but in quantum
mechanics the z-component of the magnetic moment cannot adjust continuously.
It must jump suddenly from one value to another. We have made the comparison
between the consequences of classical mechanics and quantum mechanics to give
you some clue as to what might happen classically and how it is related to what
actually happens in quantum mechanics. You will notice, incidentally, that the
expected resonant frequency is the same in both cases.

One additional remark: From what we have said about quantum mechanics,
there is no apparent reason why there couldn’t also be transitions at the fre-
quency 2ωp. It happens that there isn’t any analog of this in the classical case,
and also it doesn’t happen in the quantum theory either—at least not for the
particular method of inducing the transitions that we have described. With an
oscillating horizontal magnetic field, the probability that a frequency 2ωp would
cause a jump of two steps at once is zero. It is only at the frequency ωp that
transitions, either upward or downward, are likely to occur.

Now we are ready to describe Rabi’s method for measuring magnetic moments.
We will consider here only the operation for atoms with a spin of 1/2. A diagram
of the apparatus is shown in Fig. 35-5. There is an oven which gives out a stream
of neutral atoms which passes down a line of three magnets. Magnet 1 is just

OVEN
a

b

SLIT S1

b

a

SLIT S2

DETECTOR

Jz = +h̄/2

Jz = −h̄/2
MAGNET 1 MAGNET

2
MAGNET 3

∂Bz

∂z

∂Bz

∂z

B0

B′ b′

a′

Fig. 35-5. The Rabi molecular-beam apparatus.

35-5



like the one in Fig. 35-2, and has a field with a strong field gradient—say, with
∂Bz/∂z positive. If the atoms have a magnetic moment, they will be deflected
downward if Jz = +~/2, or upward if Jz = −~/2 (since for electrons µ is directed
opposite to J). If we consider only those atoms which can get through the slit S1,
there are two possible trajectories, as shown. Atoms with Jz = +~/2 must go
along curve a to get through the slit, and those with Jz = −~/2 must go along
curve b. Atoms which start out from the oven along other paths will not get
through the slit.

Magnet 2 has a uniform field. There are no forces on the atoms in this region,
so they go straight through and enter magnet 3. Magnet 3 is just like magnet 1
but with the field inverted, so that ∂Bz/∂z has the opposite sign. The atoms
with Jz = +~/2 (we say “with spin up”), that felt a downward push in magnet 1,
get an upward push in magnet 3; they continue on the path a and go through
slit S2 to a detector. The atoms with Jz = −~/2 (“with spin down”) also have
opposite forces in magnets 1 and 3 and go along the path b, which also takes
them through slit S2 to the detector.

The detector may be made in various ways, depending on the atom being
measured. For example, for atoms of an alkali metal like sodium, the detector
can be a thin, hot tungsten wire connected to a sensitive current meter. When
sodium atoms land on the wire, they are evaporated off as Na+ ions, leaving an
electron behind. There is a current from the wire proportional to the number of
sodium atoms arriving per second.

In the gap of magnet 2 there is a set of coils that produces a small horizontal
magnetic fieldB′. The coils are driven with a current which oscillates at a variable
frequency ω. So between the poles of magnet 2 there is a strong, constant, vertical
field B0 and a weak, oscillating, horizontal field B′.

ωωp

DETECTOR
CURRENT

Fig. 35-6. The current of atoms in the
beam decreases when ω = ωp.

Suppose now that the frequency ω of the oscillating field is set at ωp—the
“precession” frequency of the atoms in the field B. The alternating field will
cause some of the atoms passing by to make transitions from one Jz to the
other. An atom whose spin was initially “up” (Jz = +~/2) may be flipped “down”
(Jz = −~/2). Now this atom has the direction of its magnetic moment reversed,
so it will feel a downward force in magnet 3 and will move along the path a′,
shown in Fig. 35-5. It will no longer get through the slit S2 to the detector.
Similarly, some of the atoms whose spins were initially down (Jz = −~/2) will
have their spins flipped up (Jz = +~/2) as they pass through magnet 2. They
will then go along the path b′ and will not get to the detector.

If the oscillating field B′ has a frequency appreciably different from ωp, it
will not cause any spin flips, and the atoms will follow their undisturbed paths
to the detector. So you can see that the “precession” frequency ωp of the atoms
in the field B0 can be found by varying the frequency ω of the field B′ until a
decrease is observed in the current of atoms arriving at the detector. A decrease
in the current will occur when ω is “in resonance” with ωp. A plot of the detector
current as a function of ω might look like the one shown in Fig. 35-6. Knowing
ωp, we can obtain the g-value of the atom.

Such atomic-beam or, as they are usually called, “molecular” beam resonance
experiments are a beautiful and delicate way of measuring the magnetic properties
of atomic objects. The resonance frequency ωp can be determined with great
precision—in fact, with a greater precision than we can measure the magnetic
field B0, which we must know to find g.

35-4 The paramagnetism of bulk materials

We would like now to describe the phenomenon of the paramagnetism of bulk
materials. Suppose we have a substance whose atoms have permanent magnetic
moments, for example a crystal like copper sulfate. In the crystal there are copper
ions whose inner electron shells have a net angular momentum and a net magnetic
moment. So the copper ion is an object which has a permanent magnetic moment.
Let’s say just a word about which atoms have magnetic moments and which ones
don’t. Any atom, like sodium for instance, which has an odd number of electrons,
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will have a magnetic moment. Sodium has one electron in its unfilled shell. This
electron gives the atom a spin and a magnetic moment. Ordinarily, however,
when compounds are formed the extra electrons in the outside shell are coupled
together with other electrons whose spin directions are exactly opposite, so that
all the angular momenta and magnetic moments of the valence electrons usually
cancel out. That’s why, in general, molecules do not have a magnetic moment.
Of course if you have a gas of sodium atoms, there is no such cancellation.* Also,
if you have what is called in chemistry a “free radical”—an object with an odd
number of valence electrons—then the bonds are not completely satisfied, and
there is a net angular momentum.

In most bulk materials there is a net magnetic moment only if there are atoms
present whose inner electron shell is not filled. Then there can be a net angular
momentum and a magnetic moment. Such atoms are found in the “transition
element” part of the periodic table—for instance, chromium, manganese, iron,
nickel, cobalt, palladium, and platinum are elements of this kind. Also, all of the
rare earth elements have unfilled inner shells and permanent magnetic moments.
There are a couple of other strange things that also happen to have magnetic
moments, such as liquid oxygen, but we will leave it to the chemistry department
to explain the reason.

Now suppose that we have a box full of atoms or molecules with permanent
moments—say a gas, or a liquid, or a crystal. We would like to know what
happens if we apply an external magnetic field. With no magnetic field, the
atoms are kicked around by the thermal motions, and the moments wind up
pointing in all directions. But when there is a magnetic field, it acts to line up
the little magnets; then there are more moments lying toward the field than away
from it. The material is “magnetized.”

We define the magnetization M of a material as the net magnetic moment
per unit volume, by which we mean the vector sum of all the atomic magnetic
moments in a unit volume. If there are N atoms per unit volume and their
average moment is 〈µ〉av then M can be written as N times the average atomic
moment:

M = N〈µ〉av. (35.8)

The definition of M corresponds to the definition of the electric polarization P
of Chapter 10.

The classical theory of paramagnetism is just like the theory of the dielectric
constant we showed you in Chapter 11. One assumes that each of the atoms has a
magnetic moment µ, which always has the same magnitude but which can point
in any direction. In a field B, the magnetic energy is −µ ·B = −µB cos θ, where
θ is the angle between the moment and the field. From statistical mechanics, the
relative probability of having any angle is e−energy/kT , so angles near zero are
more likely than angles near π. Proceeding exactly as we did in Section 11-3,
we find that for small magnetic fields M is directed parallel to B and has the
magnitude

M = Nµ2B

3kT . (35.9)

[See Eq. (11.20).] This approximate formula is correct only for µB/kT much less
than one.

We find that the induced magnetization—the magnetic moment per unit
volume—is proportional to the magnetic field. This is the phenomenon of
paramagnetism. You will see that the effect is stronger at lower temperatures and
weaker at higher temperatures. When we put a field on a substance, it develops,
for small fields, a magnetic moment proportional to the field. The ratio of M
to B (for small fields) is called the magnetic susceptibility.

Now we want to look at paramagnetism from the point of view of quantum
mechanics. We take first the case of an atom with a spin of 1/2. In the absence
of a magnetic field the atoms have a certain energy, but in a magnetic field there

* Ordinary Na vapor is mostly monatomic, although there are also some molecules of Na2.
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are two possible energies, one for each value of Jz. For Jz = +~/2, the energy is
changed by the magnetic field by the amount

∆U1 = +g
(
qe~
2m

)
· 1

2 ·B. (35.10)

(The energy shift ∆U is positive for an atom because the electron charge is
negative.) For Jz = −~/2, the energy is changed by the amount

∆U2 = −g
(
qe~
2m

)
· 1

2 ·B. (35.11)

To save writing, let’s set

µ0 = g

(
qe~
2m

)
· 1

2 ; (35.12)

then
∆U = ±µ0B. (35.13)

The meaning of µ0 is clear: −µ0 is the z-component of the magnetic moment in
the up-spin case, and +µ0 is the z-component of the magnetic moment in the
down-spin case.

Now statistical mechanics tells us that the probability that an atom is in one
state or another is proportional to

e−(Energy of state)/kT .

With no magnetic field the two states have the same energy; so when there is
equilibrium in a magnetic field, the probabilities are proportional to

e−∆U/kT . (35.14)

The number of atoms per unit volume with spin up is

Nup = ae−µ0B/kT , (35.15)

and the number with spin down is

Ndown = ae+µ0B/kT . (35.16)

The constant a is to be determined so that

Nup +Ndown = N, (35.17)

the total number of atoms per unit volume. So we get that

a = N

e+µ0B/kT + e−µ0B/kT
. (35.18)

What we are interested in is the average magnetic moment along the z-axis.
The atoms with spin up will contribute a moment of −µ0, and those with spin
down will have a moment of +µ0; so the average moment is

〈µ〉av = Nup(−µ0) +Ndown(+µ0)
N

. (35.19)

The magnetic moment per unit volumeM is then N〈µ〉av. Using Eqs. (35.15),
(35.16), and (35.17), we get that

M = Nµ0
e+µ0B/kT − e−µ0B/kT

e+µ0B/kT + e−µ0B/kT
. (35.20)

This is the quantum-mechanical formula for M for atoms with j = 1/2. Inciden-
tally, this formula can also be written somewhat more concisely in terms of the
hyperbolic tangent function:

M = Nµ0 tanh µ0B

kT
. (35.21)
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A plot of M as a function of B is given in Fig. 35-7. When B gets very large,
the hyperbolic tangent approaches 1, and M approaches the limiting value Nµ0.
So at high fields, the magnetization saturates. We can see why that is; at high
enough fields the moments are all lined up in the same direction. In other words,
they are all in the spin-down state, and each atom contributes the moment µ0.

µ0B/kT

0 1 2 3 4

M

Nµ0

Fig. 35-7. The variation of the paramag-
netic magnetization with the magnetic field
strength B.

In most normal cases—say, for typical moments, room temperatures, and the
fields one can normally get (like 10,000 gauss)—the ratio µ0B/kT is about 0.002.
One must go to very low temperatures to see the saturation. For normal temper-
atures, we can usually replace tanh x by x, and write

M = Nµ2
0B

kT
. (35.22)

Just as we saw in the classical theory, M is proportional to B. In fact, the
formula is almost exactly the same, except that there seems to be a factor of 1/3
missing. But we still need to relate the µ0 in our quantum formula to the µ that
appears in the classical result, Eq. (35.9).

In the classical formula, what appears is µ2 = µ · µ, the square of the vector
magnetic moment, or

µ · µ =
(
g
qe
2m

)2
J · J . (35.23)

We pointed out in the last chapter that you can very likely get the right answer
from a classical calculation by replacing J · J by j(j + 1)~2. In our particular
example, we have j = 1/2, so

j(j + 1)~2 = 3
4~

2.

Substituting this for J · J in Eq. (35.23), we get

µ · µ =
(
g
qe
2m

)2 3~2

4 ,

or in terms of µ0, defined in Eq. (35.12), we get

µ · µ = 3µ2
0.

Substituting this for µ2 in the classical formula, Eq. (35.9), does indeed reproduce
the correct quantum formula, Eq. (35.22).

The quantum theory of paramagnetism is easily extended to atoms of any
spin j. The low-field magnetization is

M = Ng2 j(j + 1)
3

µ2
BB

kT
, (35.24)

where
µB = qe~

2m (35.25)

is a combination of constants with the dimensions of a magnetic moment. Most
atoms have moments of roughly this size. It is called the Bohr magneton. The
spin magnetic moment of the electron is almost exactly one Bohr magneton.

35-5 Cooling by adiabatic demagnetization

There is a very interesting special application of paramagnetism. At very low
temperatures it is possible to line up the atomic magnets in a strong field. It
is then possible to get down to extremely low temperatures by a process called
adiabatic demagnetization. We can take a paramagnetic salt (for example, one
containing a number of rare-earth atoms like praseodymium-ammonium-nitrate),
and start by cooling it down with liquid helium to one or two degrees absolute in
a strong magnetic field. Then the factor µB/kT is larger than 1—say more like
2 or 3. Most of the spins are lined up, and the magnetization is nearly saturated.
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Let’s say, to make it easy, that the field is very powerful and the temperature
is very low, so that nearly all the atoms are lined up. Then you isolate the salt
thermally (say, by removing the liquid helium and leaving a good vacuum) and
turn off the magnetic field. The temperature of the salt goes way down.

Now if you were to turn off the field suddenly, the jiggling and shaking,
of the atoms in the crystal lattice would gradually knock all the spins out of
alignment. Some of them would be up and some down. But if there is no field
(and disregarding the interactions between the atomic magnets, which will make
only a slight error), it takes no energy to turn over the atomic magnets. They
could randomize their spins without any energy change and, therefore, without
any temperature change.

Suppose, however, that while the atomic magnets are being flipped over by
the thermal motion there is still some magnetic field present. Then it requires
some work to flip them over opposite to the field—they must do work against the
field. This takes energy from the thermal motions and lowers the temperature.
So if the strong magnetic field is not removed too rapidly, the temperature of
the salt will decrease—it is cooled by the demagnetization. From the quantum-
mechanical view, when the field is strong all the atoms are in the lowest state,
because the odds against any being in the upper state are impossibly big. But as
the field is lowered, it gets more and more likely that thermal fluctuations will
knock an atom into the upper state. When that happens, the atom absorbs the
energy ∆U = µ0B. So if the field is turned off slowly, the magnetic transitions
can take energy out of the thermal vibrations of the crystal, cooling it off. It is
possible in this way to go from a temperature of a few degrees absolute down to
a temperature of a few thousandths of a degree.

Would you like to make something even colder than that? It turns out that
Nature has provided a way. We have already mentioned that there are also
magnetic moments for the atomic nuclei. Our formulas for paramagnetism work
just as well for nuclei, except that the moments of nuclei are roughly a thousand
times smaller. [They are of the order of magnitude of q~/2mp, where mp is
the proton mass, so they are smaller by the ratio of the masses of the electron
and proton.] With such magnetic moments, even at a temperature of 2◦K, the
factor µB/kT is only a few parts in a thousand. But if we use the paramagnetic
demagnetization process to get down to a temperature of a few thousandths of
a degree, µB/kT becomes a number near 1—at these low temperatures we can
begin to saturate the nuclear moments. That is good luck, because we can then
use the adiabatic demagnetization of the nuclear magnetism to reach still lower
temperatures. Thus it is possible to do two stages of magnetic cooling. First we
use adiabatic demagnetization of paramagnetic ions to reach a few thousandths
of a degree. Then we use the cold paramagnetic salt to cool some material which
has a strong nuclear magnetism. Finally, when we remove the magnetic field
from this material, its temperature will go down to within a millionth of a degree
of absolute zero—if we have done everything very carefully.

35-6 Nuclear magnetic resonance

We have said that atomic paramagnetism is very small and that nuclear
magnetism is even a thousand times smaller. Yet it is relatively easy to observe
the nuclear magnetism by the phenomenon of “nuclear magnetic resonance.”
Suppose we take a substance like water, in which all of the electron spins are
exactly balanced so that their net magnetic moment is zero. The molecules
will still have a very, very tiny magnetic moment due to the nuclear magnetic
moment of the hydrogen nuclei. Suppose we put a small sample of water in a
magnetic field B. Since the protons (of the hydrogen) have a spin of 1/2, they
will have two possible energy states. If the water is in thermal equilibrium, there
will be slightly more protons in the lower energy states—with their moments
directed parallel to the field. There is a small net magnetic moment per unit
volume. Since the proton moment is only about one-thousandth of an atomic
moment, the magnetization which goes as µ2—using Eq. (35.22)—is only about
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one-millionth as strong as typical atomic paramagnetism. (That’s why we have
to pick a material with no atomic magnetism.) If you work it out, the difference
between the number of protons with spin up and with spin down is only one part
in 108, so the effect is indeed very small! It can still be observed, however, in the
following way.

Suppose we surround the water sample with a small coil that produces a small
horizontal oscillating magnetic field. If this field oscillates at the frequency ωp,
it will induce transitions between the two energy states—just as we described
for the Rabi experiment in Section 35-3. When a proton flips from an upper
energy state to a lower one, it will give up the energy µzB which, as we have
seen, is equal to ~ωp. If it flips from the lower energy state to the upper one, it
will absorb the energy ~ωp from the coil. Since there are slightly more protons in
the lower state than in the upper one, there will be a net absorption of energy
from the coil. Although the effect is very small, the slight energy absorption can
be seen with a sensitive electronic amplifier.

Just as in the Rabi molecular-beam experiment, the energy absorption will
be seen only when the oscillating field is in resonance, that is, when

ω = ωp = g

(
qe

2mp

)
B.

It is often more convenient to search for the resonance by varying B while keeping
ω fixed. The energy absorption will evidently appear when

B = 2mp

gqe
ω.
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Fig. 35-8. A nuclear magnetic resonance
apparatus.

A typical nuclear magnetic resonance apparatus is shown in Fig. 35-8. A
high-frequency oscillator drives a small coil placed between the poles of a large
electromagnet. Two small auxiliary coils around the pole tips are driven with
a 60-cycle current so that the magnetic field is “wobbled” about its average
value by a very small amount. As an example, say that the main current of the
magnet is set to give a field of 5000 gauss, and the auxiliary coils produce a
variation of ±1 gauss about this value. If the oscillator is set at 21.2 megacycles
per second, it will then be at the proton resonance each time the field sweeps
through 5000 gauss [using Eq. (34.13) with g = 5.58 for the proton].

The circuit of the oscillator is arranged to give an additional output signal
proportional to any change in the power being absorbed from the oscillator. This
signal is fed to the vertical deflection amplifier of an oscilloscope. The horizontal
sweep of the oscilloscope is triggered once during each cycle of the field-wobbling
frequency. (More usually, the horizontal deflection is made to follow in proportion
to the wobbling field.)

Before the water sample is placed inside the high-frequency coil, the power
drawn from the oscillator is some value. (It doesn’t change with the magnetic
field.) When a small bottle of water is placed in the coil, however, a signal appears
on the oscilloscope, as shown in the figure. We see a picture of the power being
absorbed by the flipping over of the protons!

In practice, it is difficult to know how to set the main magnet to exactly
5000 gauss. What one does is to adjust the main magnet current until the
resonance signal appears on the oscilloscope. It turns out that this is now the
most convenient way to make an accurate measurement of the strength of a
magnetic field. Of course, at some time someone had to measure accurately the
magnetic field and frequency to determine the g-value of the proton. But now
that this has been done, a proton resonance apparatus like that of the figure can
be used as a “proton resonance magnetometer.”

We should say a word about the shape of the signal. If we were to wobble
the magnetic field very slowly, we would expect to see a normal resonance curve.
The energy absorption would read a maximum when ωp arrived exactly at the
oscillator frequency. There would be some absorption at nearby frequencies
because all the protons are not in exactly the same field—and different fields
mean slightly different resonant frequencies.
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One might wonder, incidentally, whether at the resonance frequency we should
see any signal at all. Shouldn’t we expect the high-frequency field to equalize the
populations of the two states—so that there should be no signal except when the
water is first put in? Not exactly, because although we are trying to equalize the
two populations, the thermal motions on their part are trying to keep the proper
ratios for the temperature T . If we sit at the resonance, the power being absorbed
by the nuclei is just what is being lost to the thermal motions. There is, however,
relatively little “thermal contact” between the proton magnetic moments and
the atomic motions. The protons are relatively isolated down in the center of the
electron distributions. So in pure water, the resonance signal is, in fact, usually
too small to be seen. To increase the absorption, it is necessary to increase the
“thermal contact.” This is usually done by adding a little iron oxide to the water.
The iron atoms are like small magnets; as they jiggle around in their thermal
dance, they make tiny jiggling magnetic fields at the protons. These varying
fields “couple” the proton magnets to the atomic vibrations and tend to establish
thermal equilibrium. It is through this “coupling” that protons in the higher
energy states can lose their energy so that they are again capable of absorbing
energy from the oscillator.

In practice the output signal of a nuclear resonance apparatus does not look
like a normal resonance curve. It is usually a more complicated signal with
oscillations—like the one drawn in the figure. Such signal shapes appear because
of the changing fields. The explanation should be given in terms of quantum
mechanics, but it can be shown that in such experiments the classical ideas of
precessing moments always give the correct answer. Classically, we would say
that when we arrive at resonance we start driving a lot of the precessing nuclear
magnets synchronously. In so doing, we make them precess together. These
nuclear magnets, all rotating together, will set up an induced emf in the oscillator
coil at the frequency ωp. But because the magnetic field is increasing with time,
the precession frequency is increasing also, and the induced voltage is soon at a
frequency a little higher than the oscillator frequency. As the induced emf goes
alternately in phase and out of phase with the oscillator, the “absorbed” power
goes alternately positive and negative. So on the oscilloscope we see the beat
note between the proton frequency and the oscillator frequency. Because the
proton frequencies are not all identical (different protons are in slightly different
fields) and also possibly because of the disturbance from the iron oxide in the
water, the freely precessing moments soon get out of phase, and the beat signal
disappears.

These phenomena of magnetic resonance have been put to use in many ways
as tools for finding out new things about matter—especially in chemistry and
nuclear physics. It goes without saying that the numerical values of the magnetic
moments of nuclei tell us something about their structure. In chemistry, much has
been learned from the structure (or shape) of the resonances. Because of magnetic
fields produced by nearby nuclei, the exact position of a nuclear resonance is
shifted somewhat, depending on the environment in which any particular nucleus
finds itself. Measuring these shifts helps determine which atoms are near which
other ones and helps to elucidate the details of the structure of molecules. Equally
important is the electron spin resonance of free radicals. Although not present to
any very large extent in equilibrium, such radicals are often intermediate states
of chemical reactions. A measurement of an electron spin resonance is a delicate
test for the presence of free radicals and is often the key to understanding the
mechanism of certain chemical reactions.
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Ferromagnetism
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this chapter we will discuss some materials in which the net effect of
the magnetic moments in the material is much greater than in the case of
paramagnetism or diamagnetism. The phenomenon is called ferromagnetism.
In paramagnetic and diamagnetic materials the induced magnetic moments are
usually so weak that we don’t have to worry about the additional fields produced
by the magnetic moments. For ferromagnetic materials, however, the magnetic
moments induced by applied magnetic fields are quite enormous and have a
great effect on the fields themselves. In fact, the induced moments are so strong
that they are often the dominant effect in producing the observed fields. So one
of the things we will have to worry about is the mathematical theory of large
induced magnetic moments. That is, of course, just a technical question. The
real problem is, why are the magnetic moments so strong—how does it all work?
We will come to that question in a little while. Review: Chapter 10, Dielectrics

Chapter 17, The Laws of In-
duction

Finding the magnetic fields of ferromagnetic materials is something like the
problem of finding the electrostatic field in the presence of dielectrics. You will
remember that we first described the internal properties of a dielectric in terms
of a vector field P , the dipole moment per unit volume. Then we figured out
that the effects of this polarization are equivalent to a charge density ρpol given
by the divergence of P :

ρpol = −∇ · P . (36.1)
The total charge in any situation can be written as the sum of this polarization
charge plus all other charges, whose density we write* ρother. Then the Maxwell
equation which relates the divergence of E to the charge density becomes

∇ ·E = ρ

ε0
= ρpol + ρother

ε0
,

or
∇ ·E = −∇ · P

ε0
+ ρother

ε0
.

We can then pull out the polarization part of the charge and put it on the other
side of the equation, to get the new law

∇ · (ε0E + P ) = ρother. (36.2)

The new law says the divergence of the quantity (ε0E+P ) is equal to the density
of the other charges.

Pulling E and P together as in Eq. (36.2), of course, is useful only if we know
some relation between them. We have seen that the theory which relates the
induced electric dipole moment to the field was a relatively complicated business
and can really only be applied to certain simple situations, and even then as an
approximation. We would like to remind you of one of the approximate ideas
we used. To find the induced dipole moment of an atom inside a dielectric, it is
necessary to know the electric field that acts on an individual atom. We made the
approximation—which is not too bad in many cases—that the field on the atom
is the same as it would be at the center of the small hole which would be left if
we took out the atom (keeping the dipole moments of all the neighboring atoms

* If all of the “other” charges were on conductors, ρother would be the same as our ρfree of
Chapter 10.

36-1



the same). You will also remember that the electric field in a hole in a polarized
dielectric depends on the shape of the hole. We summarize our earlier results
in Fig. 36-1. For a thin, disc-shaped hole perpendicular to the polarization, the
electric field in the hole is given by

E

P

Ehole = E + P/ε0

E

P

Ehole = E

E

P

Ehole = E + P/3ε0

Fig. 36-1. The electric field in a cavity
in a dielectric depends on the shape of the
cavity.

Ehole = Edielectric + P

ε0
,

which we showed by using Gauss’ law. On the other hand, in a needle-shaped slot
parallel to the polarization, we showed—by using the fact that the curl of E is
zero—that the electric fields inside and outside of the slot are the same. Finally,
we found that for a spherical hole the electric field was one-third of the way
between the field of the slot and the field of the disc:

Ehole = Edielectric + 1
3
P

ε0
(spherical hole). (36.3)

This was the field we used in thinking about what happens to an atom inside a
polarized dielectric.

Now we have to discuss the analog of all this for the case of magnetism. One
simple, short-cut way of doing this is to say the M , the magnetic moment per
unit volume, is just like P , the electric dipole moment per unit volume, and
that, therefore, the negative of the divergence of M is equivalent to a “magnetic
charge density” ρm—whatever that may mean. The trouble is, of course, that
there isn’t any such thing as a “magnetic charge” in the physical world. As we
know, the divergence of B is always zero. But that does not stop us from making
an artificial analog and writing

∇ ·M = −ρm, (36.4)

where it is to be understood that ρm is purely mathematical. Then we could
make a complete analogy with the electrostatic case and use all our old equations
from electrostatics. People have often done something like that. In fact, histori-
cally, people even believed that the analogy was right. They believed that the
quantity ρm represented the density of “magnetic poles.” These days, however, we
know that the magnetization of materials comes from circulating currents within
the atoms—either from the spinning electrons or from the motion of the electrons
in the atom. It is therefore nicer from a physical point of view to describe things
realistically in terms of the atomic currents, rather than in terms of a density
of some mythical “magnetic poles.” Incidentally, these currents are sometimes
called “Ampèrian” currents, because Ampère first suggested that the magnetism
of matter came from circulating atomic currents.

The actual microscopic current density in magnetized matter is, of course,
very complicated. Its value depends on where you look in the atom—it’s large in
some places and small in others; it goes one way in one part of the atom and
the opposite way in another part (just as the microscopic electric field varies
enormously inside a dielectric). In many practical problems, however, we are
interested only in the fields outside of the matter or in the average magnetic field
inside of the matter—where we mean an average taken over many, many atoms.
It is only for such macroscopic problems that it is convenient to describe the
magnetic state of the matter in terms of M , the average dipole moment per unit
volume. What we want to show now is that the atomic currents of magnetized
matter can give rise to certain large-scale currents which are related to M .

What we are going to do, then, is to separate the current density j—which is
the real source of the magnetic fields—into various parts: one part to describe
the circulating currents of the atomic magnets, and the other parts to describe
what other currents there may be. It is usually most convenient to separate the
currents into three parts. In Chapter 32 we made a distinction between the
currents which flow freely on conductors and the ones which are due to the back
and forth motions of the bound charges in dielectrics. In Section 32-2 we wrote

j = jpol + jother,
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where jpol represented the currents from the motion of the bound charges in
dielectrics and jother took care of all other currents. Now we want to go further.
We want to separate jother into one part, jmag, which describes the average
currents inside of magnetized materials, and an additional term which we can
call jcond for whatever is left over. The last term will generally refer to currents
in conductors, but it may also include other currents—for example the currents
from charges moving freely through empty space. So we will write for the total
current density:

j = jpol + jmag + jcond. (36.5)

Of course it is this total current which belongs in the Maxwell equation for the
curl of B:

c2∇×B = j

ε0
+ ∂E

∂t
. (36.6)

Now we have to relate the current jmag to the magnetization vector M . So
that you can see where we are going, we will tell you that the result is going to
be that

jmag =∇×M . (36.7)

If we are given the magnetization vector M everywhere in a magnetic material,
the circulation current density is given by the curl of M . Let’s see if we can
understand why this is so.

x

y

A B

C

Fig. 36-2. Schematic diagram of the cir-
culating atomic currents as seen in a cross
section of an iron rod magnetized in the
z-direction.

First, let’s take the case of a cylindrical rod which has a uniform magnetization
parallel to its axis. Physically, we know that such a uniform magnetization really
means a uniform density of atomic circulating currents everywhere inside the
material. Suppose we try to imagine what the actual currents would look like in
a cross section of the material. We would expect to see currents something like
those shown in Fig. 36-2. Each atomic current goes around and around in a little
circle, with all the circulating currents going around in the same direction. Now
what is the effective current of such a thing? Well, in most of the bar there is no
effect at all, because right next to each current there is another current going
in the opposite direction. If we imagine a small surface—but one still quite a
bit larger than a single atom—such as is indicated in Fig. 36-2 by the line AB,
the net current through such a surface is zero. There is no net current anywhere
inside the material. Note, however, that at the surface of the material there are
atomic currents which are not cancelled by neighboring currents going the other
way. At the surface there is a net current always going in the same direction
around the rod. Now you see why we said earlier that a uniformly magnetized
rod is equivalent to a long solenoid carrying an electric current.

How does this view fit with Eq. (36.7)? First, inside the material the mag-
netization M is constant, so all its derivatives are zero. This agrees with our
geometric picture. At the surface, however, M is not really constant—it is
constant up to the edge and then suddenly collapses to zero. So, right at the
surface there are terrific gradients which, according to (36.7), will give a high
current density. Suppose we look at what happens near the point C in Fig. 36-2.
Taking the x- and y-directions as in the figure, the magnetization M is in the
z-direction. Writing out the components of Eq. (36.7), we have

∂Mz

∂y
= (jmag)x,

−∂Mz

∂x
= (jmag)y.

(36.8)

At the point C, the derivative ∂Mz/∂y is zero, but ∂Mz/∂x is large and positive.
Equation (36.7) says that there is a large current density in the minus y-direction.
This agrees with our picture of a surface current going around the bar.

Now we want to find the current density for a more complicated case in which
the magnetization varies from point to point in a material. It is easy to see
qualitatively that if the magnetization is different in two neighboring regions,
there will not be a perfect cancellation of the circulating currents so that there
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will be a net current in the volume of the material. It is this effect that we want
to work out quantitatively.

µ

I

SURFACE AREA A

Fig. 36-3. The dipole moment µ of a
current loop is IA.
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Fig. 36-4. A small magnetized block is
equivalent to a circulating surface current.

First, we need to recall the results of Section 14-5 that a circulating current I
has a magnetic moment µ given by

µ = IA, (36.9)

where A is the area of the current loop (see Fig. 36-3). Now let’s consider a small
rectangular block inside of a magnetized material, as sketched in Fig. 36-4. We
take the block so small that we can consider that the magnetization is uniform
inside it. If this block has a magnetization Mz in the z-direction, the net effect
will be the same as a surface current going around on the vertical faces, as shown.
We can find the magnitude of these currents from Eq. (36.9). The total magnetic
moment of the block is equal to the magnetization times the volume:

µ = Mz(abc),

from which we get (remembering that the area of the loop is ac)

I = Mzb.

In other words, the current per unit length (vertically) on each of the vertical
surfaces is equal to Mz.
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Fig. 36-5. If the magnetization of two
neighboring blocks is not the same, there is
a net surface current in between.

Now suppose that we imagine two such little blocks next to each other, as
shown in Fig. 36-5. Because block 2 is slightly displaced from block 1, it will have
a slightly different vertical component of magnetization, which we callMz +∆Mz.
Now on the surface between the two blocks there will be two contributions to the
total current. Block 1 will produce a current I1 flowing in the positive y-direction,
and block 2 will produce a surface current I2 flowing in the negative y-direction.
The total surface current in the positive y-direction is the sum:

I = I1 − I2 = Mzb− (Mz + ∆Mz)b
= −∆Mzb.

We can write ∆Mz, as the derivative of Mz in the x-direction times the displace-
ment from block 1 to block 2, which is just a:

∆Mz = ∂Mz

∂x
a.

The current flowing between the two blocks is then

I = −∂Mz

∂x
ab.

To relate the current I to an average volume current density j, we must realize
that this current I is really spread over a certain cross-sectional area. If we
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imagine the whole volume of the material to be filled with such little blocks, one
such side face (perpendicular to the x-axis) can be associated with each block.*
Then we see that the area to be associated with the current I is just the area ab
of one of the front faces. We get the result

jy = I

ab
= −∂Mz

∂x
.

We have at least the beginning of the curl of M .
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Fig. 36-6. Two blocks, one above the
other, may also contribute to jy .

There should be another term in jy from the variation of the x-component
of the magnetization with z. This contribution to j will come from the surface
between two little blocks stacked one on top of the other, as shown in Fig. 36-6.
Using the same arguments we have just made, you can show that this surface
will contribute to jy the amount ∂Mx/∂z. These are the only surfaces which can
contribute to the y-component of the current so we have that the total current
density in the y-direction is

jy = ∂Mx

∂z
− ∂Mz

∂x
.

Working out the currents on the remaining faces of a cube—or using the fact
that our z-direction is completely arbitrary—we can conclude that the vector
current density is indeed given by the equation

j =∇×M .

So if we choose to describe the magnetic situation in matter in terms of
the average magnetic moment per unit volume M , we find that the circulating
atomic currents are equivalent to an average current density in matter given
by Eq. (36.7). If the material is also a dielectric, there may be, in addition, a
polarization current jpol = ∂P /∂t. And if the material is also a conductor, we
may have a conduction current jcond as well. We can write the total current as

j = jcond +∇×M + ∂P

∂t
. (36.10)

36-2 The field H

Next, we want to insert the current as written in Eq. (36.10) into Maxwell’s
equations. We get

c2∇×B = j

ε0
+ ∂E

∂t
= 1
ε0

(
jcond +∇×M + ∂P

∂t

)
+ ∂E

∂t
.

We can move the term in M to the left-hand side:

c2∇×
(
B − M

ε0c2

)
= jcond

ε0
+ ∂

∂t

(
E + P

ε0

)
. (36.11)

As we remarked in Chapter 32, many people like to write (E + P /ε0) as a new
vector field D/ε0. Similarly, it is often convenient to write (B −M/ε0c

2) as a
single vector field. We choose to define a new vector field H by

H = B − M

ε0c2
. (36.12)

Then Eq. (36.11) becomes

ε0c
2∇×H = jcond + ∂D

∂t
. (36.13)

It looks simple, but all the complexity is just hidden in the letters D and H.
* Or, if you prefer, the current I in each face should be split 50–50 with the blocks on the

two sides.
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Now we have to give you a warning. Most people who use the mks units have
chosen to use a different definition of H. Calling their field H ′ (of course, they
still call it H without the prime), it is defined by

H ′ = ε0c
2B −M . (36.14)

(Also, they usually write ε0c2 as a new number 1/µ0; then they have one more
constant to keep track of!) With this definition, Eq. (36.13) looks even simpler:

∇×H ′ = jcond + ∂D

∂t
. (36.15)

But the difficulties with this definition of H ′ are, first, that it doesn’t agree with
the definition of people who don’t use the mks units, and second, that it makes
H ′ and B have different units. We think it is more convenient for H to have
the same units as B—rather than the units of M , as H ′ does. But if you are
going to be an engineer and work on the design of transformers, magnets, and
such, you will have to watch out. You will find many books which use for H the
definition of Eq. (36.14) rather than our definition of Eq. (36.12), and many other
books—especially handbooks about magnetic materials—that relate B and H
the way we have done. You’ll have to be careful to figure out which convention
they are using.

Table 36-1

Units of magnetic quantities

[B] = weber/meter2 = 104 gauss
[H] = weber/meter2 = 104 gauss

or 104 oersted
[M ] = ampere/meter
[H ′] = ampere/meter

Convenient conversions

B (gauss) = 104B (weber/meter2)
H (gauss) = H (oersted)

= 0.0126H ′ (amp/meter)

One way to tell is by the units they use. Remember that in the mks system,
B—and therefore our H—are measured with the unit: one weber per square
meter, equal to 10,000 gauss. In the mks system, a magnetic moment (a current
times an area) has the unit: one ampere-meter2. The magnetization M , then,
has the unit: one ampere per meter. For H ′ the units are the same as for M .
You can see that this also agrees with Eq. (36.15), since ∇ has the dimensions
of one over a length. People who are working with electromagnets also get in
the habit of calling the unit of H (with the H ′ definition) “one ampere turn
per meter”—thinking of the turns of wire on a winding. But a “turn” is really a
dimensionless number, so that doesn’t need to confuse you. Since our H is equal
to H ′/ε0c2, if you are using the mks system, H (in webers/meter2) is equal to
4π × 10−7 times H ′ (in amperes per meter). It is perhaps more convenient to
remember that H (in gauss) = 0.0126H ′ (in amp/meter).

There is one more horrible thing. Many people who use our definition of H
have decided to call the units of H and B by different names! Even though they
have the same dimensions, they call the unit of B one gauss, and the unit of H
one oersted (after Gauss and Oersted, of course). So, in many books you will
find graphs with B plotted in gauss and H in oersteds. They are really the same
unit—10−4 of the mks unit. We have summarized the confusion about magnetic
units in Table 36-1.

36-3 The magnetization curve

Now we will look at some simple situations in which the magnetic field is
constant, or in which the fields change slowly enough that we can neglect ∂D/∂t
in comparison with jcond. Then the fields obey the equations

∇ ·B = 0, (36.16)

∇×H = jcond/ε0c
2, (36.17)

H = B −M/ε0c
2. (36.18)

Suppose we have a torus (a donut) of iron wrapped with a coil of copper wire,
as shown in Fig. 36-7(a). A current I flows in the wire. What is the magnetic
field? The magnetic field will be mainly inside the iron; there, the lines of B
will be circles, as drawn in Fig. 36-7(b). Since the flux of B is continuous, its
divergence is zero, and Eq. (36.16) is satisfied. Next, we write Eq. (36.17) in
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another form by integrating around the closed loop Γ drawn in Fig. 36-7(b).
From Stokes’ theorem, we have that

(a)

I

(b)
CURVE Γ

LINES OF B

Fig. 36-7. (a) A torus of iron wound with
a coil of insulated wire. (b) Cross section
of torus showing field lines.

∮
Γ
H · ds = 1

ε0c2

∫
S

jcond · n da, (36.19)

where the integral of j is to be carried out over any surface S bounded by Γ.
This surface is cut once by each turn of the winding. Each turn contributes the
current I to the integral, and, if there are N turns in all, the integral is NI.
From the symmetry of our problem, B is the same all around the curve Γ; if
we assume that the magnetization, and therefore, the field H is also constant
along Γ, Eq. (36.19) becomes

Hl = NI

ε0c2
,

where l is the length of the curve Γ. So,

H = 1
ε0c2

NI

l
. (36.20)

It is because H is directly proportional to the magnetizing current in cases like
this one that H is sometimes called the magnetizing field.

Now all we need is an equation which relates H to B. But there isn’t any
such equation! There is, of course, Eq. (36.18), but it is no help because there is
no direct relation between M and B for a ferromagnetic material like iron. The
magnetization M depends on the whole past history of the iron, and not only
on what B is at the moment.

All is not lost, though. We can get solutions in certain simple cases. If we start
out with unmagnetized iron—let’s say with iron that has been annealed at high
temperatures—then in the simple geometry of the torus, all the iron will have
the same magnetic history. Then we can say something about M—and therefore
about the relation between B and H—from experimental measurements. The
field H in the torus is, from Eq. (36.20), given as a constant times the current I
in the winding. The field B can be measured by integrating over time the emf in
the coil (or in an extra coil wound over the magnetizing coil shown in the figure).
This emf is equal to the rate of change of the flux of B, so the integral of the
emf with time is equal to B times the cross-sectional area of the torus.

H (gauss)
−4 −3 −2 −1 1 2 3 4 5

B
(gauss)

−15,000

−10,000

5,000

10,000

15,000

a

b

c

c

Fig. 36-8. Typical magnetization and hys-
teresis curve for soft iron.

Figure 36-8 shows the relation between B and H, observed with a torus of
soft iron. When the current is first turned on, B increases with increasing H
along the curve a. Note the different scales on B and H; initially, it takes only
a relatively small H to make a large B. Why is B so much larger with the iron
than it would be with air? Because there is a large magnetization M which is
equivalent to a large surface current on the iron—the field B comes from the
sum of this current and the conduction current in the winding. Why M should
be so large, we will discuss later.

At higher values ofH , the magnetization curve levels off. We say that the iron
saturates. With the scales of our figure, the curve appears to become horizontal.
Actually, it continues to rise slightly—for large fields, B becomes proportional
to H , and with a unit slope. There is no further increase of M . Incidentally, we
should point out that if the torus were made of some nonmagnetic material, M
would be zero and B would equal H for all fields.

The first thing we notice is that curve a in Fig. 36-8—which is the so-called
magnetization curve—is highly nonlinear. But it’s worse than that. If, after
reaching saturation, we decrease the current in the coil to bring H back to zero,
the magnetic field B falls along curve b. When H reaches zero, there is still
some B left. Even with no magnetizing current there is a magnetic field in the
iron—it has become permanently magnetized. If we now turn on a negative
current in the coil, the B-H curve continues along b until the iron is saturated in
the negative direction. If we then bring the current back to zero again, B goes
along curve c. If we alternate the current between large positive and negative
values, the B-H curve goes back and forth along very nearly the curves b and c.
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If we varyH in some arbitrary way, however, we can get more complicated curves
which will, in general, lie somewhere between the curves b and c. The loop made
by repeated oscillation of the fields is called a hysteresis loop of the iron.

We see then that we cannot write a functional relationship like B = f(H),
because the value of B at any instant depends not only on what H is at that
time, but on its whole past history. Naturally, the magnetization and hysteresis
curves are different for different substances. The shape of the curves depends
critically on the chemical composition of the material, and also on the details of
its preparation and subsequent physical treatment. We will discuss some of the
physical explanations for these complications in the next chapter.

36-4 Iron-core inductances

One of the most important applications of magnetic materials is in electrical
circuits—for example, in transformers, electric motors, and so on. One reason is
that with iron we can control where the magnetic fields go, and also get much
larger fields for a given electric current. For example, the typical “toroidal”
inductance is made very much like the object shown in Fig. 36-7. For a given
inductance, it can be much smaller in volume and use much less copper than an
equivalent “air-core” inductance. For a given inductance, we get a much smaller
resistance in the winding, so the inductance is more nearly “ideal”—particularly
for low frequencies. It is very easy to understand, qualitatively, how such an
inductance works. If I is the current in the winding, then the field H which
is produced in the inside is proportional to I—as given by Eq. (36.20). The
voltage V across the terminals is related to the magnetic field B. Neglecting
the resistance of the winding, the voltage V is proportional to ∂B/∂t. The
inductance L, which is the ratio of V to dI/dt (see Section 17-7), thus involves
the relation between B and H in the iron. Since the B is so much bigger than
the H , we get a large factor in the inductance. Physically, what happens is that
a small current in the coil, which would ordinarily produce a small magnetic field,
causes the little “slave” magnets in the iron to line up and produce a tremendously
greater “magnetic” current than the external current in the winding. It is as if
we had a lot more current going through the coil than we really have. When we
reverse the current, all the little magnets flip over—all those internal currents
reverse—and we get a much higher induced emf than we would get without the
iron. If we want to calculate the inductance, we can do so through the energy—as
described in Section 17-8. The rate at which energy is delivered from the current
source is IV. The voltage V is the cross-sectional area A of the core, times N ,
times dB/dt. From Eq. (36.20), I = (ε0c2l/N)H. So we have

dU

dt
= VI = (ε0c2lA)H dB

dt
.

Integrating over time, we have

U = (ε0c2lA)
∫
H dB. (36.21)

Notice that lA is the volume of the torus, so we have shown that the energy
density u = U/vol in a magnetic material is given by

u = ε0c
2
∫
H dB. (36.22)

An interesting feature is involved here. When we use alternating currents, the
iron is driven around a hysteresis loop. Since B is not a single-valued function
of H, the integral of

∫
H dB around one complete cycle is not equal to zero. It

is the area enclosed inside the hysteresis curve. Thus, the driving source delivers
a certain net energy each cycle—an energy proportional to the area inside the
hysteresis loop. And that energy is “lost.” It is lost from the electromagnetic
goings on, but turns up as heat in the iron. It is called the hysteresis loss. To
keep such energy losses small, we would like the hysteresis loop to be as narrow as
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possible. One way to decrease the area of the loop is to reduce the maximum field
that is reached during each cycle. For smaller maximum fields, we get a hysteresis
curve like the one shown in Fig. 36-9. Also, special materials are designed to
have a very narrow loop. The so-called transformer irons—which are iron alloys
with a small amount of silicon—have been developed to have this property.

H (gauss)
−4 −3 −2 −1 1 2 3 4

B
(gauss)

10,000

Fig. 36-9. A hysteresis loop that doesn’t
reach saturation.

When an inductance is run over a small hysteresis loop, the relationship
between B and H can be approximated by a linear equation. People usually
write

B = µH. (36.23)
The constant µ is not the magnetic moment we have used before. It is called the
permeability of the iron. (It is also sometimes called the “relative permeability.”)
The permeability of ordinary irons is typically several thousand. There are special
alloys alike “supermalloy” which can have permeabilities as high as a million.

If we use the approximation that B = µH in Eq. (36.21), we can write the
energy in a toroidal inductance as

U = (ε0c2lA)µ
∫
H dH = (ε0c2lA) µH

2

2 . (36.24)

So the energy density is approximately

u ≈ ε0c
2

2 µH2.

We can now set the energy of Eq. (36.24) equal to the energy LI2/2 of an
inductance, and solve for L. We get

L = (ε0c2lA)µ
(
H

I

)2
.

Using H/I from Eq. (36.20), we have

L = µN2A

ε0c2l
. (36.25)

The inductance is proportional to µ. If you want inductances for such things
as audio amplifiers, you will try to operate them on a hysteresis loop where the
B-H relationship is as linear as possible. (You will remember that we spoke in
Chapter 50, Vol. I, about the generation of harmonics in nonlinear systems.) For
such purposes, Eq. (36.23) is a useful approximation. On the other hand, if you
want to generate harmonics, you may use an inductance which is intentionally
operated in a highly nonlinear way. Then you will have to use the complete
B-H curves, and analyze what happens by graphical or numerical methods.

I

Fig. 36-10. An electromagnet.

A “transformer” is often made by putting two coils on the same torus—or
core—of a magnetic material. (For the larger transformers, the core is made with
rectangular proportions for convenience.) Then a varying current in the “primary”
winding causes the magnetic field in the core to change, which induces an emf
in the “secondary” winding. Since the flux through each turn of both windings
is the same, the emf’s in the two windings are in the same ratio as the number
of turns on each. A voltage applied to the primary is transformed to a different
voltage at the secondary. Since a certain net current around the core is needed
to produce the required change in the magnetic field, the algebraic sum of the
currents in the two windings will be fixed and equal to the required “magnetizing”
current. If the current drawn from the secondary increases, the primary current
must increase in proportion—there is a “transformation” of currents as well as
voltage.

36-5 Electromagnets

Now let’s discuss a practical situation which is a little more complicated. Sup-
pose we have an electromagnet of the rather standard form shown in Fig. 36-10—
there is a “C-shaped” yoke of iron, with a coil of many turns of wire wrapped
around the yoke. What is the magnetic field B in the gap?
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(a)

IRON

COPPER CURRENT

B1, H1 B2, H2

(b)
NI

NI

SURFACE S
CURVE Γ

ℓ2

ℓ1

Fig. 36-11. Cross section of an electromagnet.

If the gap thickness is small compared with all the other dimensions, we can,
as a first approximation, assume that the lines of B will go around through the
loop, just as they did in the torus. They will look more or less as shown in
Fig. 36-11(a). They tend to spread out somewhat in the gap, but if the gap is
narrow, this will be a small effect. It is a fair approximation to assume that the
flux of B through any cross section of the yoke is a constant. If the yoke has a
uniform cross-sectional area A—and if we neglect any edge effects at the gaps or
at the corners—we can say that B is uniform around the yoke.

Also, B will have the same value in the gap. This follows from Eq. (36.16).
Imagine the closed surface S, shown in Fig. 36-11(b), which has one face in the
gap and the other in the iron. The total flux of B out of this surface must be
zero. Calling B1 the field in the gap and B2 the field in the iron, we have (to our
approximation) that

B1A−B2A = 0.
It follows that B1 = B2.

HNI

ε0c2l2

B

Eq. (36.27)

I = 0

I > 0

a

b

c

d

Fig. 36-12. Solving for the field in an
electromagnet.

Now let’s look at H. We can again use Eq. (36.19), taking the line integral
around the curve Γ in Fig. 36-11(b). As before, the integral on the right-hand
side is NI, the number of turns times the current. Now, however, H will be
different in the iron and in the air. Calling H2 the field in the iron and l2 the path
length around the yoke, this part of the curve will contribute the amount H2l2
to the integral. Calling H1 the field in the gap and l1 the gap thickness, we get
the contribution H1l1 from the gap. We have that

H1l1 +H2l2 = NI

ε0c2
. (36.26)

Now we know something else: that in the air gap, the magnetization is
negligible, so that B1 = H1. Since B1 = B2, Eq. (36.26) becomes

B2l1 +H2l2 = NI

ε0c2
. (36.27)

We still have two unknowns. To find B2 and H2, we need another relationship—
namely, the one which relates B to H in the iron.

If we can make the approximation that B2 = µH2, we can solve the equation
algebraically. However, let’s do the general case, in which the magnetization curve
of the iron is one like that shown in Fig. 36-8. What we want is the simultaneous
solution of this functional relationship together with Eq. (36.27). We can find
it by plotting a graph of Eq. (36.27) on the same graph with the magnetization
curve, as is done in Fig. 36-12. Where the two curves intersect, we have our
solution.

For a given current I, the function (36.27) is the straight line marked I > 0 in
Fig. 36-12. The line intersects the H-axis (B2 = 0) at H2 = NI/ε0c

2l2, and the
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slope is −l2/l1. Different currents just shift the line horizontally. From Fig. 36-12,
we see that for a given current there are several different solutions, depending
on how you got there. If you have just built the magnet and turned the current
up to I, the field B2 (which is also B1) will have the value given by point a. If
you have run the current to some very high value and come down to I, the field
will be given by point b. Or, if you have just had a high negative current in the
magnet and then come up to I, the field is the one at point c. The field in the
gap will depend on what you have done in the past.

When the current in the magnet is zero, the relation between B2 and H2
in Eq. (36.27) is shown by the line marked I = 0 in the figure. There are still
various possible solutions. If you have first saturated the iron, there may be a
considerable residual field in the magnet as given by point d. You can take the coil
off, and you have a permanent magnet. You can see that for a good permanent
magnet, you would want a material with a wide hysteresis loop. Special alloys,
such as Alnico V, have very wide loops.

36-6 Spontaneous magnetization

We now turn to the question of why it is that in ferromagnetic materials a
small magnetic field produces such a large magnetization. The magnetization of
ferromagnetic materials like iron and nickel comes from the magnetic moment
of the electrons in the inner shell of the atom. Each electron has a magnetic
moment µ equal to q/2m times its g-factor, times its angular momentum J . For
a single electron with no net orbital motion, g = 2, and the component of J in
any direction—say the z-direction—is ±~/2, so the component of µ along the
z-axis is

µz = q~
2m = 0.928× 10−23 amp·m2. (36.28)

In an iron atom, there are actually two electrons that contribute to the ferro-
magnetism, so to keep the discussion simpler we will talk about nickel, which is
ferromagnetic like iron but which has only one electron in the inner shell. (It is
easy to extend the arguments to iron.)

Now the point is that in the presence of an external field B, the atomic
magnets tend to line up with the field, but are knocked about by thermal motions
just as we described for paramagnetic materials. In the last chapter we found out
that the balance between a magnetic field trying to line up the atomic magnets
and the thermal motions trying to derange them produced the result that the
mean magnetic moment per unit volume will end up as

M = Nµ tanh µBa
kT

. (36.29)

By Ba we mean the field acting at the atom, and kT is the Boltzmann energy.
In the theory of paramagnetism we used for Ba just B itself, neglecting the
part of the field at any given atom contributed by the atoms nearby. In the
ferromagnetic case, there is a complication. We shouldn’t use the average field in
the iron for the Ba acting on an individual atom. Instead, we must do as we did
in the case of dielectrics—we have to find the local field acting at a single atom.
For an exact calculation we should add up the fields at the atom in question
contributed by all of the other atoms in the crystal lattice. But as we did for
dielectrics, we will make the approximation that the field at an atom is the same
as we would find in a small spherical hole in the material—assuming that the
moments of the atoms in the neighborhood are not changed by the presence of
the hole.

Following the arguments we made in Chapter 11, we might think that we
could write

Bhole = B + 1
3
M

ε0c2
(wrong!).

But that is not right. We can, however, make use of the results of Chapter 11 if we
make a careful comparison of the equations of Chapter 11 with the equations for
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ferromagnetism in this chapter. Let’s put together the corresponding equations.
For regions where there are no conduction currents or charges we have:

Electrostatics Static ferromagnetism

∇ ·
(
E + P

ε0

)
= 0 ∇ ·B = 0

∇×E = 0 ∇×
(
B − M

ε0c2

)
= 0

(36.30)

These two sets of equations can be thought of as analogous if we make the
following purely mathematical correspondences:

E → B − M

ε0c2
, E + P

ε0
→ B.

This is the same as making the analogy

E →H, P →M/c2. (36.31)

In other words, if we write the equations of ferromagnetism as

∇ ·
(
H + M

ε0c2

)
= 0,

∇×H = 0,
(36.32)

they look like the equations of electrostatics.
This purely algebraic correspondence has led to some confusion in the past.

People tended to think that H was “the magnetic field.” But, as we have seen,
B and E are physically the fundamental fields, and H is a derived idea. So
although the equations are analogous, the physics is not analogous. However,
that doesn’t need to stop us from using the principle that the same equations
have the same solutions.

We can use our earlier results for the electric field inside of holes of various
shapes in dielectrics—summarized in Fig. 36-1—to find the field H inside of
corresponding holes. Knowing H, we can determine B. For instance (using
the results we summarized in Section 36-1), the field H in a needle-shaped hole
parallel to M is the same as the H in the material,

Hhole = Hmaterial.

But since M in the hole is zero, we have

Bhole = Bmaterial −
M

ε0c2
. (36.33)

On the other hand, for a disc-shaped hole, perpendicular to M , we have

Ehole = Edielectric + P

ε0
,

which translates into
Hhole = Hmaterial + M

ε0c2
.

Or, in terms of B,
Bhole = Bmaterial. (36.34)

Finally, for a spherical hole, by making our analogy with Eq. (36.3) we would
have

Hhole = Hmaterial + M

3ε0c2
or

Bhole = Bmaterial −
2
3
M

ε0c2
. (36.35)

This result is quite different from what we got for E.
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It is, of course, possible to get these results in a more physical way, by using
the Maxwell equations directly. For example, Eq. (36.34) follows directly from
∇ ·B = 0. (You use a gaussian surface that is half in the material and half out.)
Similarly, you can get Eq. (36.33) by using a line integral along a curve that goes
up inside the hole and returns through the material. Physically, the field in the
hole is reduced because of the surface currents—which are given by ∇×M . We
will leave it for you to show that Eq. (36.35) can also be obtained by considering
the effects of the surface currents on the boundary of the spherical cavity.

x0 0.5 1.0 1.5µH

kT

M

Msat

0

0.5

1.0

a b
Eq. (36.37)

Eq. (36.38)

SOLUTION

Fig. 36-13. A graphical solution of Eqs.
(36.37) and (36.38).

In finding the equilibrium magnetization from Eq. (36.29), it turns out to be
most convenient to deal with H; so write

Ba = H + λ
M

ε0c2
. (36.36)

In the spherical hole approximation, we would have λ = 1
3 , but, as you will see, we

will want later to use some other value, so we leave it as an adjustable parameter.
Also, we will take all the fields in the same direction so that we won’t need to
worry about the vector directions. If we were now to substitute Eq. (36.36) into
Eq. (36.29), we would have one equation that relates the magnetization M to
the magnetizing field H:

M = Nµ tanh
(
µ
H + λM/ε0c

2

kT

)
.

It is however, an equation that cannot be solved explicitly, so we will do it
graphically.

Let’s put the problem in a generalized form by writing Eq. (36.29) as
M

Msat
= tanh x, (36.37)

where Msat is the saturation value of the magnetization, namely, Nµ, and x
represents µBa/kT . The dependence of M/Msat on x is shown by curve a in
Fig. 36-13. We can also write x as a function of M—using Eq. (36.36) for Ba—as

x = µBa
kT

= µH

kT
+
(
µλMsat

ε0c2kT

)
M

Msat
. (36.38)

For any given value of H, this is a straight-line relationship between M/Msat
and x. The x intercept is at x = µH/kT , and the slope is ε0c2kT/µλMsat. For
any particular H, we would have a line like the one marked b in Fig. 36-13. The
intersection of curves a and b gives us the solution for M/Msat. We have solved
the problem.
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Fig. 36-14. Finding the magnetization
when H = 0.

Let’s look at how the solutions will go for various circumstances. We start
with H = 0. There are two possible situations, shown by the lines b1 and b2
in Fig. 36-14. You will notice from Eq. (36.38) that the slope of the line is
proportional to the absolute temperature T . So, at high temperatures we would
have a line like b1. The solution is M/Msat = 0. When the magnetizing field H
is zero, the magnetization is also zero. But at low temperatures, we would have
a line like b2, and there are two solutions for M/Msat—one with M/Msat = 0
and one with M/Msat near one. It turns out that only the upper solution is
stable—as you can see by considering small variations about these solutions.

According to these ideas, then, a magnetic material should magnetize itself
spontaneously at sufficiently low temperatures. In short, when the thermal
motions are small enough, the coupling between the atomic magnets causes them
all to line up parallel to each other—we have a permanently magnetized material
analogous to the ferroelectrics we discussed in Chapter 11.

If we start at high temperatures and come down, there is a critical temperature,
called the Curie temperature Tc, where the ferromagnetic behavior suddenly sets
in. This temperature corresponds to the line b3 of Fig. 36-14, which is tangent to
the curve a, and has, therefore, a slope of 1. The Curie temperature is given by

ε0c
2kTc

µλMsat
= 1. (36.39)
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We can, if we wish, write Eq. (36.38) more simply in terms of Tc as

x = µH

kT
+ Tc
T

(
M

Msat

)
. (36.40)

Now we want to see what happens for small magnetizing fields H. We can
see from Fig. 36-14 how things will go if we shift our straight lines a little to the
right. For the low-temperature case, the intersection point will move out a little
bit along the low-slope part of curve a, and M will change relatively little. For
the high-temperature case, however, the intersection point runs up the steep part
of curve a, and M will change relatively rapidly. In fact, we can approximate
this part of curve a by a straight line of unit slope, and write:

M

Msat
= x = µH

kT
+ Tc
T

(
M

Msat

)
.

Now we can solve for M/Msat:

M

Msat
= µH

k(T − Tc)
. (36.41)

We have a law that is something like the one we had for paramagnetism. For
paramagnetism, we had

M

Msat
= µB

kT
. (36.42)

One difference now is that we have the magnetization in terms of H, which
includes some of the effects of the interaction of the atomic magnets, but the
main difference is that the magnetization is inversely proportional to the difference
between T and Tc, instead of to the absolute temperate T , alone. Neglecting
the interactions between neighboring atoms corresponds to taking λ = 0, which
from Eq. (36.39) means taking Tc = 0. Then the results are just what we had in
Chapter 35.

We can check our theoretical picture with the experimental data for nickel. It
is observed experimentally that the ferromagnetic behavior of nickel disappears
when its temperature is raised above 631◦K. We can compare this with Tc
calculated from Eq. (36.39). Remembering that Msat = µN , we have

Tc = λ
Nµ2

kε0c2
.

From the density and atomic weight of nickel, we get

N = 9.1× 1028 m−3.

Taking µ from Eq. (36.28), and setting λ = 1
3 , we get

Tc = 0.24◦K.

There is a discrepancy of a factor of about 2600! Our theory of ferromagnetism
fails completely.

We can try to “patch up” the theory as Weiss did by saying that for some
unknown reason λ is not one-third, but (2600)× 1

3—or about 900. It turns out
that one gets similar values for other ferromagnetic materials like iron. To see
what this means, let’s go back to Eq. (36.36). We see that a large λ means that
Ba, the local field on the atom, appears to be much, much larger than we would
think. In fact, writing H = B −M/ε0c

2, we have

Ba = B + (λ− 1)M
ε0c2

.

According to our original idea—with λ = 1
3 the local magnetization M reduces

the effective field Ba by the amount − 2
3M/ε0c

2. Even if our model of a spherical
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hole were not very good, we would still expect some reduction. Instead, to explain
the phenomenon of ferromagnetism, we have to imagine that the magnetization
of the field enhances the local field by some large factor—like one thousand
or more. There doesn’t seem to be any reasonable way to manufacture such
tremendous fields at an atom—nor even fields of the proper sign! Clearly, our
“magnetic” theory of ferromagnetism is a dismal failure. We must conclude, then,
that ferromagnetism has to do with some nonmagnetic interaction between the
spinning electrons in neighboring atoms. This interaction must generate a strong
tendency for all of the nearby spins to line up in one direction. We will see later
that it has to do with quantum mechanics and the Pauli exclusion principle.

T/Tc

0 0.5 1.0

M

Msat

0.5

1.0

EXPERIMENT

THEORY

Fig. 36-15. Spontaneous magnetization
as a function of temperature for nickel.

Finally, we look at what happens at low temperatures—for T < Tc. We have
seen that there will then be a spontaneous magnetization—even with H = 0—
given by the intersection of the curves a and b2 of Fig. 36-14. If we solve forM for
various temperatures—by varying the slope of the line b2—we get the theoretical
curve shown in Fig. 36-15. This curve should be the same for all ferromagnetic
materials for which the atomic moment comes from a single electron. The curves
for other materials are only slightly different.

In the limit, as T goes to absolute zero, M goes to Msat. As the temperature
is increased, the magnetization decreases, falling to zero at the Curie temperature.
The points in Fig. 36-15 are the experimental observations for nickel. They fit
the theoretical curve fairly well. Even though we don’t understand the basic
mechanism, the general features of the theory seem to be correct.

Finally, there is one more disturbing discrepancy in our attempt to understand
ferromagnetism. We have found that above some temperature the material should
behave like a paramagnetic substance with a magnetization M proportional
to H (or B), and that below that temperature it should become spontaneously
magnetized. But that’s not what we found when we measured the magnetization
curve for iron. It only became permanently magnetized after we had “magnetized”
it. According to the ideas just discussed, it would magnetize itself! What is
wrong? Well, it turns out that if you look at a small enough crystal of iron or
nickel, it is indeed completely magnetized! But in large pieces of iron, there are
many small regions or “domains” that are magnetized in different directions, so
that on a large scale the average magnetization appears to be zero. In each small
domain, however, the iron has a locked-in magnetization with M nearly equal
to Msat. The consequences of this domain structure are that gross properties of
large pieces of material are quite different from the microscopic properties that
we have really been treating. We will take up in the next lecture the story of the
practical behavior of bulk magnetic materials.
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37

Magnetic Materials

37-1 Understanding ferromagnetism

In 37-1 Understanding ferromagnetism
37-2 Thermodynamic properties
37-3 The hysteresis curve
37-4 Ferromagnetic materials
37-5 Extraordinary magnetic

materials

this chapter we will discuss the behavior and peculiarities of ferromagnetic
materials and of other strange magnetic materials. Before proceeding to study
magnetic materials, however, we will review very quickly some of the things about
the general theory of magnets that we learned in the last chapter.

References: Bozorth, R. M., “Magne-
tism,” Encyclopaedia Bri-
tannica, Vol. 14, 1957,
pp. 636–667.

Kittel, C., Introduction to
Solid State Physics, John
Wiley and Sons, Inc., New
York, 2nd ed., 1956.

First, we imagine the atomic currents inside the material that are responsible
for the magnetism, and then describe them in terms of a volume current den-
sity jmag = ∇×M . We emphasize that this is not supposed to represent the
actual currents. When the magnetization is uniform the currents do not really
cancel out precisely; that is, the whirling currents of one electron in one atom
and the whirling currents of an electron in another atom do not overlap in such
a way that the sum is exactly zero. Even within a single atom the distribution
of magnetism is not smooth. For instance, in an iron atom the magnetization
is distributed in a more or less spherical shell, not too close to the nucleus and
not too far away. Thus, magnetism in matter is quite a complicated thing in its
details; it is very irregular. However, we are obliged now to ignore this detailed
complexity and discuss phenomena from a gross, average point of view. Then
it is true that the average current in the interior region, over any finite area
that is big compared with an atom, is zero when M = 0. So, what we mean
by magnetization per unit volume and jmag and so on, at the level we are now
considering, is an average over regions that are large compared with the space
occupied by a single atom.

In the last chapter, we also discovered that a ferromagnetic material has the
following interesting property: above a certain temperature it is not strongly
magnetic, whereas below this temperature it becomes magnetic. This fact is
easily demonstrated. A piece of nickel wire at room temperature is attracted
by a magnet. However, if we heat it above its Curie temperature with a gas
flame, it becomes nonmagnetic and is not attracted toward the magnet—even
when brought quite close to the magnet. If we let it lie near the magnet while it
cools off, at the instant its temperature falls below the critical temperature it is
suddenly attracted again by the magnet!

The general theory of ferromagnetism that we will use supposes that the
spin of the electron is responsible for the magnetization. The electron has spin
one-half and carries one Bohr magneton of magnetic moment µ = µB = qe~/2m.
The electron spin can be pointed either “up” or “down.” Because the electron
has a negative charge, when its spin is “up” it has a negative moment, and when
its spin is “down” it has a positive moment. With our usual conventions, the
moment µ of the electron is opposite its spin. We have found that the energy of
orientation of a magnetic dipole in a given applied field B is −µ ·B, but the
energy of the spinning electrons depends on the neighboring spin alignments as
well. In iron, if the moment of a nearby atom is “up,” there is a very strong
tendency that the moment of the one next to it will also be “up.” That is what
makes iron, cobalt, and nickel so strongly magnetic—the moments all want to be
parallel. The first question we have to discuss is why.

Soon after the development of quantum mechanics, it was noticed that there
is a very strong apparent force—not a magnetic force or any other kind of actual
force, but only an apparent force—trying to line the spins of nearby electrons
opposite to one another. These forces are closely related to chemical valence forces.
There is a principle in quantum mechanics—called the exclusion principle—that
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two electrons cannot occupy exactly the same state, that they cannot be in
exactly the same condition as to location and spin orientation.* For example, if
they are at the same point, the only alternative is to have their spins opposite.
So, if there is a region of space between atoms where electrons like to congregate
(as in a chemical bond) and we want to put another electron on top of one
already there, the only way to do it is to have the spin of the second one pointed
opposite to the spin of the first one. To have the spins parallel is against the law,
unless the electrons stay away from each other. This has the effect that a pair
of parallel-spin electrons near to each other have much more energy than a pair
of opposite-spin electrons; the net effect is as though there were a force trying
to turn the spin over. Sometimes this spin-turning force is called the exchange
force, but that only makes it more mysterious—it is not a very good term. It is
just because of the exclusion principle that electrons have a tendency to make
their spins opposite. In fact, that is the explanation of the lack of magnetism in
almost all substances! The spins of the free electrons on the outside of the atoms
have tremendous tendency to balance in opposite directions. The problem is to
explain why for materials like iron it is just the reverse of what we should expect.

We have summarized the supposed alignment effect by adding a suitable term
in the energy equation, by saying that if the electron magnets in the neighborhood
have a mean magnetization M , then the moment of an electron has a strong
tendency to be in the same direction as the average magnetization of the atoms
in the neighborhood. Thus, we may write for the two possible spin orientations,†

Spin “up” energy = +µ
(
H + λM

ε0c2

)
,

Spin “down” energy = −µ
(
H + λM

ε0c2

)
.

(37.1)

When it was clear that quantum mechanics could supply a tremendous
spin-orientating force—even if, apparently, of the wrong sign—it was suggested
that ferromagnetism might have its origin in this same force, that due to the
complexities of iron and the large number of electrons involved, the sign of the
interaction energy would come out the other way around. Since the time this was
thought of—in about 1927 when quantum mechanics was first being understood—
many people have been making various estimates and semicalculations, trying
to get a theoretical prediction for λ. The most recent calculations of the energy
between the two electron spins in iron—assuming that the interaction is a direct
one between the two electrons in neighboring atoms—still give the wrong sign.
The present understanding of this is again to assume that the complexity of the
situation is somehow responsible and to hope that the next man who makes the
calculation with a more complicated situation will get the right answer!

It is believed that the up-spin of one of the electrons in the inside shell, which
is making the magnetism, tends to make the conduction electrons which fly
around the outside have the opposite spin. One might expect this to happen
because the conduction electrons come into the same region as the “magnetic”
electrons. Since they move around, they can carry their prejudice for being upside
down over to the next atom; that is, one “magnetic” electron tries to force the
conduction electrons to be opposite, and the conduction electron then makes
the next “magnetic” electron opposite to it. The double interaction is equivalent
to an interaction which tries to line up the two “magnetic” electrons. In other
words, the tendency to make parallel spins is the result of an intermediary that
tends to some extent to be opposite to both. This mechanism does not require
that the conduction electrons be completely “upside down.” They could just have
a slight prejudice to be down, just enough to load the “magnetic” odds the other
way. This is the mechanism that the people who have calculated such things now

* See Chapter 4 of Vol. III (section 4-7).
† We write these equations with H = B −M/ε0c2 instead of B to agree with the work of

the last chapter. You might prefer to write U = ±µBa = ±µ(B+λ′M/ε0c2), where λ′ = λ− 1.
It’s the same thing.
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believe is responsible for ferromagnetism. But we must emphasize that to this day
nobody can calculate the magnitude of λ simply by knowing that the material is
number 26 in the periodic table. In short, we don’t thoroughly understand it.

Now let us continue with the theory, and then come back later to discuss a
certain error involved in the way we have set it up. If the magnetic moment of a
certain electron is “up,” energy comes both from the external field and also from
the tendency of the spins to be parallel. Since the energy is lower when the spins
are parallel, the effect is sometimes thought of as due to an “effective internal
field.” But remember, it is not due to a true magnetic force; it is an interaction
that is more complicated. In any case, we take Eqs. (37.1) as the formulas for
the energies of the two spin states of a “magnetic” electron. At a temperature T ,
the relative probability of these two states is proportional to e−energy/kT , which
we can write as e±x, with x = µ(H + λM/ε0c

2)/kT . Then, if we calculate the
mean value of the magnetic moment, we find (as in the last chapter) that it is

M = Nµ tanh x. (37.2)

Now we would like to calculate the internal energy of the material. We note
that the energy of an electron is exactly proportional to the magnetic moment, so
that the calculation of the mean moment and the calculation of the mean energy
are the same—except that in place of µ in Eq. (37.2) we would write −µB, which
is −µ(H + λM/ε0c

2). The mean energy is then

〈U〉av = −Nµ
(
H + λM

ε0c2

)
tanh x.

Now this is not quite correct. The term λM/ε0c
2 represents interactions of

all possible pairs of atoms, and we must remember to count each pair only once.
(When we consider the energy of one electron in the field of the rest and then
the energy of a second electron in the field of the rest, we have counted part of
the first energy once more.) Thus, we must divide the mutual interaction term
by two, and our formula for the energy then turns out to be

〈U〉av = −Nµ
(
H + λM

2ε0c2

)
tanh x. (37.3)

In the last chapter we discovered an interesting thing—that below a certain
temperature the material finds a solution to the equations in which the magnetic
moment is not zero, even with no external magnetizing field. When we set H = 0
in Eq. (37.2), we found that

M

Msat
= tanh

(
Tc
T

M

Msat

)
, (37.4)

where Msat = Nµ, and Tc = µλMsat/kε0c
2. When we solve this equation

(graphically or otherwise), we find that the ratio M/Msat as a function of T/Tc is
a curve like that labeled “quantum theory” in Fig. 37-1. The dashed curve marked
“cobalt, nickel” shows the experimental results for crystals of these elements. The
theory and experiment are in reasonably good agreement. The figure also shows
the result of the classical theory in which the calculation is carried out assuming
that the atomic magnets can have all possible orientations in space. You can see
that this assumption gives a prediction that is not even close to the experimental
facts.

Even the quantum theory deviates from the observed behavior at both high
and low temperatures. The reason for the deviations is that we have made a
rather sloppy approximation in the theory: We have assumed that the energy
of an atom depends upon the mean magnetization of its neighboring atoms. In
other words, for each one that is “up” in the neighborhood of a given atom, there
will be a contribution of energy due to that quantum mechanical alignment effect.
But how many are there pointed “up”? On the average, that is measured by
the magnetization M—but only on the average. A particular atom somewhere
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Fig. 37-1. The spontaneous magnetiza-
tion (H = 0) of ferromagnetic crystals as a
function of temperature. [Permission from
Encyclopaedia Britannica.]
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might find all its neighbors “up.” Then its energy will be larger than the average.
Another one might find some up and some down, perhaps averaging to zero, and
it would have no energy from that term, and so on. What we ought to do is to
use some more complicated kind of average, because the atoms in different places
have different environments, and the numbers up and down are different for
different ones. Instead of just taking one atom subjected to the average influence,
we should take each one in its actual situation, compute its energy, and find
the average energy. But how do we find out how many are “up” and how many
are “down” in the neighborhood? That is, of course, just what we are trying
to calculate—the number “up” and “down”—so we have a very complicated
interconnected problem of correlations, a problem which has never been solved.
It is an intriguing and exciting one which has existed for years and on which
some of the greatest names in physics have written papers, but even they have
not completely solved it.

It turns out that at low temperatures, when almost all the atomic magnets are
“up” and only a few are “down,” it is easy to solve; and at high temperatures, far
above the Curie temperature Tc when they are almost all random, it is again easy.
It is often easy to calculate small departures from some simple, idealized situation,
so it is fairly well understood why there are deviations from the simple theory at
low temperature. It is also understood physically that for statistical reasons the
magnetization should deviate at high temperatures. But the exact behavior near
the Curie point has never been thoroughly figured out. That’s an interesting
problem to work out some day if you want a problem that has never been solved.

37-2 Thermodynamic properties
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Fig. 37-2. The energy per unit volume
and specific heat of a ferromagnetic crystal.

In the last chapter we laid the groundwork necessary for calculating the
thermodynamic properties of ferromagnetic materials. These are, naturally,
related to the internal energy of the crystal, which includes interactions of
the various spins, given by Eq. (37.3). For the energy of the spontaneous
magnetization below the Curie point, we can set H = 0 in Eq. (37.3), and—
noticing that tanh x = M/Msat—we find a mean energy proportional to M2:

〈U〉av = − NµλM2

2ε0c2Msat
. (37.5)

If we now plot the energy due to the magnetism as a function of temperature, we
get a curve which is the negative of the square of the curve of Fig. 37-1, as drawn
in Fig. 37-2(a). If we were to measure then the specific heat of such a material we
would obtain a curve which is the derivative of 37-2(a). It is shown in Fig. 37-2(b).
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It rises slowly with increasing temperature, but falls suddenly to zero at T = Tc.
The sharp drop is due to the change in slope of the magnetic energy and is
reached right at the Curie point. So without any magnetic measurements at all
we could have discovered that something was going on inside of iron or nickel
by measuring this thermodynamic property. However, both experiment and
improved theory (with fluctuations included) suggest that this simple curve is
wrong and that the true situation is really more complicated. The curve goes
higher at the peak and falls to zero somewhat slowly. Even if the temperature is
high enough to randomize the spins on the average, there are still local regions
where there is a certain amount of polarization, and in these regions the spins
still have a little extra energy of interaction—which only dies out slowly as things
get more and more random with further increases in temperature. So the actual
curve looks like Fig. 37-2(c). One of the challenges of theoretical physics today
is to find an exact theoretical description of the character of the specific heat
near the Curie transition—an intriguing problem which has not yet been solved.
Naturally, this problem is very closely related to the shape of the magnetization
curve in the same region.

ELECTRON
SPINS

Fig. 37-3. When the magnetization of a
bar of iron is reversed, the bar is given some
angular momentum.

Now we want to describe some experiments, other than thermodynamic ones,
which show that there is something right about our interpretation of magnetism.
When the material is magnetized to saturation at low enough temperatures, M
is very nearly equal to Msat—nearly all the spins are parallel, as well as their
magnetic moments. We can check this by an experiment. Suppose we suspend a
bar magnet by a thin fiber and then surround it by a coil so that we can reverse
the magnetic field without touching the magnet or putting any torque on it.
This is a very difficult experiment because the magnetic forces are so enormous
that any irregularities, any lopsidedness, or any lack of perfection in the iron
will produce accidental torques. However, the experiment has been done under
careful conditions in which such accidental torques are minimized. By means
of the magnetic field from a coil that surrounds the bar, we turn all the atomic
magnets over at once. When we do this we also change the angular momenta of
all the spins from “up” to “down” (see Fig. 37-3). If angular momentum is to be
conserved when the spins all turn over, the rest of the bar must have an opposite
change in angular momentum. The whole magnet will start to spin. And sure
enough, when we do the experiment, we find a slight turning of the magnet.
We can measure the total angular momentum given to the whole magnet, and
this is simply N times ~, the change in the angular momentum of each spin.
The ratio of angular momentum to magnetic moment measured this way comes
out to within about 10 percent of what we calculate. Actually, our calculations
assume that the atomic magnets are due purely to the electron spin, but there
is, in addition, some orbital motion also in most materials. The orbital motion
is not completely free of the lattice and does not contribute much more than
a few percent to the magnetism. As a matter of fact, the saturation magnetic
field that one gets taking Msat = Nµ and using the density of iron of 7.9 and
the moment µ of the spinning electron is about 20,000 gauss. But according to
experiment, it is actually in the neighborhood of 21,500 gauss. This is a typical
magnitude of error—5 or 10 percent—due to neglecting the contributions of the
orbital moments that have not been included in making the analysis. Thus, a
slight discrepancy with the gyromagnetic measurements is quite understandable.

37-3 The hysteresis curve

(a)

N N N N

S S S S

(b)

N N S S

S S N N

(c)

S N S N

N S N S

(d) (e)

Fig. 37-4. The formation of domains in a
single crystal of iron. [From Charles Kittel,
Introduction to Solid State Physics, John
Wiley and Sons, Inc., New York, 2nd ed.,
1956.]

We have concluded from our theoretical analysis that a ferromagnetic material
should spontaneously become magnetized below a certain temperature so that all
the magnetism would be in the same direction. But we know that this is not true
for an ordinary piece of unmagnetized iron. Why isn’t all iron magnetized? We
can explain it with the help of Fig. 37-4. Suppose the iron were all a big single
crystal of the shape shown in Fig. 37-4(a) and spontaneously magnetized all in
one direction. Then there would be a considerable external magnetic field, which
would have a lot of energy. We can reduce that field energy if we arrange that
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one side of the block is magnetized “up” and the other side magnetized “down,”
as in Fig. 37-4(b). Then, of course, the fields outside the iron would extend over
less volume, so there would be less energy there.

Ah, but wait! In the layer between the two regions we have up-spinning
electrons adjacent to down-spinning electrons. But ferromagnetism appears only
in those materials for which the energy is reduced if the electrons are parallel
rather than opposite. So, we have added some extra energy along the dotted
line in Fig. 37-4(b); this energy is sometimes called wall energy. A region having
only one direction of magnetization is called a domain. At the interface—the
“wall”—between two domains, where we have atoms on opposite sides which are
spinning in different directions, there is an energy per unit area of the wall. We
have described it as though two adjacent atoms were spinning exactly opposite,
but it turns out that nature adjusts things so that the transition is more gradual.
But we don’t need to worry about such fine details at this point.

Now the question is: When is it better or worse to make a wall? The answer
is that it depends on the size of the domains. Suppose that we were to scale up a
block so that the whole thing was twice as big. The volume in the space outside
filled with a given magnetic field strength would be eight times bigger, and the
energy in the magnetic field, which is proportional to the volume, would also be
eight times greater. But the surface area between two domains, which will give
the wall energy, would be only four times as big. Therefore, if the piece of iron
is big enough, it will pay to split it into more domains. This is why only the very
tiny crystals can have but a single domain. Any large object—one more than
about a hundredth of a millimeter in size—will have at least one domain wall;
and any ordinary, “centimeter-size” object will be split into many domains, as
shown in the figure. Splitting into domains goes on until the energy needed to put
in one extra wall is as large as the energy decrease in the magnetic field outside
the crystal.

Actually nature has discovered still another way to lower the energy: It is
not necessary to have the field go outside at all, if a little triangular region
is magnetized sideways, as in Fig. 37-4(d).* Then with the arrangement of
Fig. 37-4(d) we see that there is no external field, but instead only a little more
domain wall.

But that introduces a new kind of problem. It turns out that when a single
crystal of iron is magnetized, it changes its length in the direction of magnetization,
so an “ideal” cube with its magnetization, say, “up,” is no longer a perfect cube.
The “vertical” dimension will be different from the “horizontal” dimension. This
effect is called magnetostriction. Because of such geometric changes, the little
triangular pieces of Fig. 37-4(d) do not, so to speak, “fit” into the available space
anymore—the crystal has got too long one way and too short the other way. Of
course, it does fit, really, but only by being squashed in; and this involves some
mechanical stresses. So, this arrangement also introduces an extra energy. It is
the balance of all these various energies which determines how the domains finally
arrange themselves in their complicated fashion in a piece of unmagnetized iron.

Now, what happens when we put on an external magnetic field? To take a
simple case, consider a crystal whose domains are as shown in Fig. 37-4(d). If we
apply an external magnetic field in the upward direction, in what manner does
the crystal become magnetized? First, the middle domain wall can move over
sideways (to the right) and reduce the energy. It moves over so that the region
which is “up” becomes bigger than the region which is “down.” There are more
elementary magnets lined up with the field, and this gives a lower energy. So, for a
piece of iron in weak fields—at the very beginning of magnetization—the domain
walls begin to move and eat into the regions which are magnetized opposite to
the field. As the field continues to increase, a whole crystal shifts gradually into

* You may be wondering how spins that have to be either “up” or “down” can also be
“sideways”! That’s a good question, but we won’t worry about it right now. We’ll simply adopt
the classical point of view, thinking of the atomic magnets as classical dipoles which can be
polarized sideways. Quantum mechanics requires considerable expertness to understand how
things can be quantized both “up-and-down,” and “right-and-left,” all at the same time.
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a single large domain which the external field helps to keep lined up. In a strong
field the crystal “likes” to be all one way just because its energy in the applied field
is reduced—it is no longer merely the crystal’s own external field which matters.

H

M

H

M

H
M

Fig. 37-5. A magnetizing field H at an
angle with respect to the crystal axis will
gradually change the direction of the mag-
netization without changing its magnitude.

What if the geometry is not so simple? What if the axes of the crystal and
its spontaneous magnetization are in one direction, but we apply the magnetic
field in some other direction—say at 45◦? We might think that domains would
reform themselves with their magnetization parallel to the field, and then as
before, they could all grow into one domain. But this is not easy for the iron
to do, for the energy needed to magnetize a crystal depends on the direction of
magnetization relative to the crystal axis. It is relatively easy to magnetize iron
in a direction parallel to the crystal axes, but it takes more energy to magnetize
it in some other direction—like 45◦ with respect to one of the axes. Therefore,
if we apply a magnetic field in such a direction, what happens first is that the
domains which point along one of the preferred directions which is near to the
applied field grow until the magnetization is all along one of these directions.
Then with much stronger fields, the magnetization is gradually pulled around
parallel to the field, as sketched in Fig. 37-5.

In Fig. 37-6 are shown some observations of the magnetization curves of single
crystals of iron. To understand them, we must first explain something about
the notation that is used in describing directions in a crystal. There are many
ways in which a crystal can be sliced so as to produce a face which is a plane
of atoms. Everyone who has driven past an orchard or vineyard knows this—it
is fascinating to watch. If you look one way, you see lines of trees—if you look
another way, you see different lines of trees, and so on. In a similar way, a crystal
has definite families of planes that hold many atoms, and the planes have this
important characteristic (we consider a cubic crystal to make it easier): If we
observe where the planes intersect the three coordinate axes—we find that the
reciprocals of the three distances from the origin are in the ratio of simple whole
numbers. These three whole numbers are taken as the definition of the planes.
For example, in Fig. 37-7(a), a plane parallel to the yz-plane is shown. This
is called a [100] plane; the reciprocals of its intersection of the y- and z-axes
are both zero. The direction perpendicular to such a plane (in a cubic crystal)
is given the same set of numbers. It is easy to understand the idea in a cubic
crystal, for then the indices [100] mean a vector which has a unit component in
the x-direction and none in the y- or z-directions. The [110] direction is in a
direction 45◦ from the x- and y-axes, as in Fig. 37-7(b); and the [111] direction
is in the direction of the cube diagonal, as in Fig. 37-7(c).
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Fig. 37-6. The components of M parallel
to H, for different directions of H (with
respect to the crystal axes). [From F. Bitter,
Introduction to Ferromagnetism, McGraw-
Hill Book Co., Inc., 1937.]

Returning now to Fig. 37-6, we see the magnetization curves of a single crystal
of iron for various directions. First, note that for very tiny fields—so weak that
it is hard to see them on the scale at all—the magnetization increases extremely
rapidly to quite large values. If the field is in the [100] direction—namely along
one of those nice, easy directions of magnetization—the curve goes up to a high
value, curves around a little, and then is saturated. What happened is that the

37-7



x

y

z

(a)

100 plane

[100]

x

y

z

(b)

[110]

x

y

z

(c)

[111]

Fig. 37-7. The way crystal planes are labeled.

domains which were already there are very easily removed. Only a small field
is required to make the domain walls move and eat up all of the “wrong-way”
domains. Single crystals of iron are enormously permeable (magnetic sense),
much more so than ordinary polycrystalline iron. A perfect crystal magnetizes
extremely easily. Why is it curved at all? Why doesn’t it just go right up to
saturation? We are not sure. You might study that some day. We do understand
why it is flat for high fields. When the whole block is a single domain, the extra
magnetic field cannot make any more magnetization—it is already at Msat, with
all the electrons lines up.

Now, if we try to do the same thing in the [110] direction—which is at 45◦
to the crystal axes—what will happen? We turn on a little bit of field and the
magnetization leaps up as the domains grow. Then as we increase the field some
more, we find that it takes quite a lot of field to get up to saturation, because now
the magnetization is turning away from an “easy” direction. If this explanation
is correct, the point at which the [110] curve extrapolates back to the vertical
axis should be at 1/

√
2 of the saturation value. It turns out, in fact, to be

very, very close to 1/
√

2. Similarly, in the [111] direction—which is along the
cube diagonal—we find, as we would expect, that the curve extrapolates back to
nearly 1/

√
3 of saturation.

Figure 37-8 shows the corresponding situation for two other materials, nickel
and cobalt. Nickel is different from iron. In nickel, it turns out that the [111] di-
rection is the easy direction of magnetization. Cobalt has a hexagonal crystal
form, and people have botched up the system of nomenclature for this case. They
want to have three axes on the bottom of the hexagon and one perpendicular
to these, so they have used four indices. The [0001] direction is the direction of
the axis of the hexagon, and [1010] is perpendicular to that axis. We see that
crystals of different metals behave in different ways.

Now we must discuss a polycrystalline material, such as an ordinary piece
of iron. Inside such materials there are many, many little crystals with their
crystalline axes pointing every which way. These are not the same as domains.
Remember that the domains were all part of a single crystal, but in a piece of iron

Fig. 37-8. Magnetization curves for single
crystals of iron, nickel, and cobalt. [From
Charles Kittel, Introduction to Solid State
Physics, John Wiley and Sons, Inc., New
York, 2nd ed., 1956.]
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there are many different crystals with axes at different orientations, as shown in
Fig. 37-9. Within each of these crystals, there will also generally be some domains.
When we apply a small magnetic field to a piece of polycrystalline material, what
happens is that the domain walls begin to move, and the domains which have a
favorable direction of easy magnetization grow larger. This growth is reversible so
long as the field stays very small—if we turn the field off, the magnetization will
return to zero. This part of the magnetization curve is marked a in Fig. 37-10.

Fig. 37-9. The microscopic structure
of an unmagnetized ferromagnetic material.
Each crystal grain has an easy direction of
magnetization and is broken up into domains
which are spontaneously magnetized (usu-
ally) parallel to this direction.

For larger fields—in the region b of the magnetization curve shown—things
get much more complicated. In every small crystal of the material, there are
strains and dislocations; there are impurities, dirt, and imperfections. And at all
but the smallest fields, the domain wall, in moving, gets stuck on these. There
is an interaction energy between the domain wall and a dislocation, or a grain
boundary, or an impurity. So when the wall gets to one of them, it gets stuck;
it sticks there at a certain field. But then if the field is raised some more, the
wall suddenly snaps past. So the motion of the domain wall is not smooth the
way it is in a perfect crystal—it gets hung up every once in a while and moves in
jerks. If we were to look at the magnetization on a microscopic scale, we would
see something like the insert of Fig. 37-10.

H

B

a

b

c

Fig. 37-10. The magnetization curve for
polycrystalline iron.

Now the important thing is that these jerks in the magnetization can cause an
energy loss. In the first place, when a boundary finally slips past an impediment,
it moves very quickly to the next one, since the field is already above what would
be required for the unimpeded motion. The rapid motion means that there are
rapidly changing magnetic fields which produce eddy currents in the crystal.
These currents lose energy in heating the metal. A second effect is that when a
domain suddenly changes, part of the crystal changes its dimensions from the
magnetostriction. Each sudden shift of a domain wall sets up a little sound wave
that carries away energy. Because of such effects, the second part of magnetization
curve is irreversible, and there is energy being lost. This is the origin of the
hysteresis effect, because to move a boundary wall forward—snap—and then to
move it backward—snap—produces a different result. It’s like “jerky” friction,
and it takes energy.

Eventually, for high enough fields, when we have moved all the domain walls
and magnetized each crystal in its best direction, there are still some crystallites
which happen to have their easy directions of magnetization not in the direction
of our external magnetic field. Then it takes a lot of extra field to turn those
magnetic moments around. So the magnetization increases slowly, but smoothly,
for high fields—namely in the region marked c in the figure. The magnetization
does not come sharply to its saturation value, because in the last part of the
curve the atomic magnets are turning in the strong field. So we see why the
magnetization curve of an ordinary polycrystalline materials, such as the one
shown in Fig. 37-10, rises a little bit and reversibly at first, then rises irreversibly,
and then curves over slowly. Of course, there is no sharp break-point between
the three regions—they blend smoothly, one into the other.

COIL
SILICON
STEEL STRIP

BAR MAGNET

N S

MOTION

AMPLIFIER

SPEAKER

Fig. 37-11. The sudden changes in the
magnetization of the steel strip are heard
as clicks in the loudspeaker.

It is not hard to show that the magnetization process in the middle part of the
magnetization curve is jerky—that the domain walls jerk and snap as they shift.
All you need is a coil of wire—with many thousands of turns—connected to an
amplifier and a loudspeaker, as shown in Fig. 37-11. If you put a few silicon steel
sheets (of the type used in transformers) at the center of the coil and bring a bar
magnet slowly near the stack, the sudden changes in magnetization will produce
impulses of emf in the coil, which are heard as distinct clicks in the loudspeaker.
As you move the magnet nearer to the iron you will hear a whole rush of clicks
that sound something like the noise of sand grains falling over each other as a
can of sand is tilted. The domain walls are jumping, snapping, and jiggling as
the field is increased. This phenomenon is called the Barkhausen effect.

As you move the magnet even closer to the iron sheets, the noise grows louder
and louder for a while but then there is relatively little noise when the magnet
gets very close. Why? Because nearly all the domain walls have moved as far
as they can go. Any greater field is merely turning the magnetization in each
domain, which is a smooth process.
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If you now withdraw the magnet, so as to come back on the downward branch
of the hysteresis loop, the domains all try to get back to low energy again, and
you hear another rush of backward-going jerks. You can also note that if you
bring the magnet to a given place and move it back and forth a little bit, there is
relatively little noise. It is again like tilting a can of sand—once the grains shift
into place, small movements of the can don’t disturb them. In the iron the small
variations in the magnetic field aren’t enough to move any boundaries over any
of the “humps.”

37-4 Ferromagnetic materials

Now we would like to talk about the various kinds of magnetic materials that
there are in the technical world and to consider some of the problems involved in
designing magnetic materials for different purposes. First, the term “the magnetic
properties of iron,” which one often hears, is a misnomer—there is no such thing.
“Iron” is not a well-defined material—the properties of iron depend critically on
the amount of impurities and also on how the iron is formed. You can appreciate
that the magnetic properties will depend on how easily the domain walls move and
that this is a gross property, not a property of the individual atoms. So practical
ferromagnetism is not really a property of an iron atom—it is a property of solid
iron in a certain form. For example, iron can take on two different crystalline
forms. The common form has a body-centered cubic lattice, but it can also
have a face-centered cubic lattice, which is, however, stable only at temperatures
above 1100◦C. Of course, at that temperature the body-centered cubic structure
is already past the Curie point. However, by alloying chromium and nickel with
the iron (one possible mixture is 18 percent chromium and 8 percent nickel) we
can get what is called stainless steel, which, although it is mainly iron, retains the
face-centered lattice even at low temperatures. Because its crystal structure is
different, it has completely different magnetic properties. Most kinds of stainless
steel are not magnetic to any appreciable degree, although there are some kinds
which are somewhat magnetic—it depends on the composition of the alloy. Even
when such an alloy is magnetic, it is not ferromagnetic like ordinary iron—even
though it is mostly just iron.
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Fig. 37-12. The hysteresis curve of
Alnico V.

We would like now to describe a few of the special materials which have
been developed for their particular magnetic properties. First, if we want to
make a permanent magnet, we would like material with an enormously wide
hysteresis loop so that, when we turn the current off and come down to zero
magnetizing field, the magnetization will remain large. For such materials the
domain boundaries should be “frozen” in place as much as possible. One such
material is the remarkable alloy “Alnico V” (51% Fe, 8% Al, 14% Ni, 24% Co,
3% Cu). (The rather complex composition of this alloy is indicative of the kind of
detailed effort that has gone into making good magnets. What patience it takes
to mix five things together and test them until you find the most ideal substance!)
When Alnico solidifies, there is a “second phase” which precipitates out, making
many tiny grains and very high internal strains. In this material, the domain
boundaries have a hard time moving at all. In addition to having a precise
composition, Alnico is mechanically “worked” in a way that makes the crystals
appear in the form of long grains along the direction in which the magnetization is
going to be. Then the magnetization will have a natural tendency to be lined up in
these directions and will be held there from the anisotropic effects. Furthermore,
the material is even cooled in an external magnetic field when it is manufactured,
so that the grains will grow with the right crystal orientation. The hysteresis loop
of Alnico V is shown in Fig. 37-12. You see that it is about 700 times wider than
the hysteresis curve for soft iron that we showed in the last chapter in Fig. 36-8.

Let’s turn now to a different kind of material. For building transformers
and motors, we want a material which is magnetically “soft”—one in which the
magnetism is easily changed so that an enormous amount of magnetization results
from a very small applied field. To arrange this, we need pure, well-annealed
material which will have very few dislocations and impurities so that the domain

37-10



walls can move easily. It would also be nice if we could make the anisotropy
small. Then, even if a grain of the material sits at the wrong angle with respect
to the field, it will still magnetize easily. Now we have said that iron prefers to
magnetize along the [100] direction, whereas nickel prefers the [111] direction;
so if we mix iron and nickel in various proportions, we might hope to find that
with just the right proportions the alloy wouldn’t prefer any direction—the [100]
and [111] directions would be equivalent. It turns out that this happens with
a mixture of 70 percent nickel and 30 percent iron. In addition—possibly by
luck or maybe because of some physical relationship between the anisotropy and
the magnetostriction effects—it turns out that the magnetostriction of iron and
nickel has the opposite sign. And in an alloy of the two metals, this property
goes through zero at about 80 percent nickel. So somewhere between 70 and
80 percent nickel we get very “soft” magnetic materials—alloys that are very easy
to magnetize. They are called the permalloys. Permalloys are useful for high-
quality transformers (at low signal levels), but they would be no good at all for
permanent magnets. Permalloys must be very carefully made and handled. The
magnetic properties of a piece of permalloy are drastically changed if it is stressed
beyond its elastic limit—it mustn’t be bent. Then, its permeability is reduced
because of the dislocations, slip bands, and so on, which are produced by the
mechanical deformations. The domain boundaries are no longer easy to move. The
high permeability can, however, be restored by annealing at high temperatures.

Table 37-1

Properties of some ferromagnetic
materials

Br Hc
Residual Coercive
magnetic force

field (gauss)
Material (gauss)

Supermalloy (≈ 5000) 0.004
Silicon steel
(transformer) 12,000 0.05

Armco iron 4,000 0.6
Alnico V 13,000 550.

It is often convenient to have some numbers to characterize the various
magnetic materials. Two useful numbers are the intercepts of the hysteresis loop
with the B- and H-axes, as indicated in Fig. 37-12. These intercepts are called
the remanent magnetic field Br and the coercive force Hc. In Table 37-1 we list
these numbers for a few magnetic materials.

(a) (b)

(c) (d)

Fig. 37-13. Relative orientation of elec-
tron spins in various materials: (a) ferro-
magnetic, (b) antiferromagnetic, (c) ferrite,
(d) yttrium-iron alloy. (Broken arrows show
direction of total angular momentum, in-
cluding orbital motion.

37-5 Extraordinary magnetic materials

We would now like to discuss some of the more exotic magnetic materials.
There are many elements in the periodic table which have incomplete inner
electron shells and hence have atomic magnetic moments. For instance, right next
to the ferromagnetic elements iron, nickel, and cobalt you will find chromium and
manganese. Why aren’t they ferromagnetic? The answer is that the λ term in
Eq. (37.1) has the opposite sign for these elements. In the chromium lattice, for
example, the spins of the chromium atoms alternate atom by atom, as shown in
Fig. 37-13(b). So chromium is “magnetic” from its own point of view, but it is not
technically interesting because there are no external magnetic effects. Chromium,
then, is an example of a material in which quantum mechanical effects make
the spins alternate. Such a material is called antiferromagnetic. The alignment
in antiferromagnetic materials is also temperature dependent. Below a critical
temperature, all the spins are lined up in the alternating array, but when the
material is heated above a certain temperature—which is again called the Curie
temperature—the spins suddenly become random. There is, internally, a sudden
transition. This transition can be seen in the specific heat curve. Also it shows up
in some special “magnetic” effects. For instance, the existence of the alternating
spins can be verified by scattering neutrons from a crystal of chromium. Because
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a neutron itself has a spin (and a magnetic moment), it has a different amplitude
to be scattered, depending on whether its spin is parallel or opposite to the spin
of the scatterer. Thus, we get a different interference pattern when the spins in
a crystal are alternating than we do when they have a random distribution.

O2−

Mg2+

Al3+

Fig. 37-14. Crystal structure of the min-
eral spinel (MgAl2O4); the Mg+2 ions oc-
cupy tetrahedral sites, each surrounded by
four oxygen ions; the Al+3 ions occupy octa-
hedral sites, each surrounded by six oxygen
ions. [From Charles Kittel, Introduction to
Solid State Physics, John Wiley and Sons,
Inc., New York, 2nd ed., 1956.]

There is another kind of substance in which quantum mechanical effects make
the electron spins alternate, but which is nevertheless ferromagnetic—that is,
the crystal has a permanent net magnetization. The idea behind such materials
is shown in Fig. 37-14. The figure shows the crystal structure of spinel, a
magnesium-aluminum oxide, which—as it is shown—is not magnetic. The oxide
has two kinds of metal atoms: magnesium and aluminum. Now if we replace the
magnesium and the aluminum by two magnetic elements like iron and zinc, or
by zinc and manganese—in other words, if we put in magnetic atoms instead
of the nonmagnetic ones—an interesting thing happens. Let’s call one kind of
metal atom a and the other kind of metal atom b; then the following combination
of forces must be considered. There is an a-b interaction which tries to make
the a atoms and the b atoms have opposite spins—because quantum mechanics
always gives the opposite sign (except for the mysterious crystals of iron, nickel,
and cobalt). Then, there is a direct a-a interaction which tries to make the a’s
opposite, and also a b-b interaction which tries to make the b’s opposite. Now,
of course we cannot have everything opposite everything else—a opposite b, a
opposite a, and b opposite b. Presumably because of the distances between the a’s
and the presence of the oxygen (although we really don’t know why), it turns
out that the a-b interaction is stronger than the a-a or the b-b. So the solution
that nature uses in this case is to make all the a’s parallel to each other, and
all the b’s parallel to each other, but the two systems opposite. That gives the
lowest energy because of the stronger a-b interaction. The result: all the a’s are
spinning up and all the b’s are spinning down—or vice versa, of course. But if the
magnetic moments of the a-type atom and the b-type atom are not equal, we can
get the situation shown in Fig. 37-13(c), and there can be a net magnetization
in the material. The material will then be ferromagnetic—although somewhat
weak. Such materials are called ferrites. They do not have as high a saturation
magnetization as iron—for obvious reasons—so they are only useful for smaller
fields. But they have a very important difference—they are insulators; the ferrites
are ferromagnetic insulators. In high-frequency fields, they will have very small
eddy currents and so can be used, for example, in microwave systems. The
microwave fields will be able to get inside such an insulating material, whereas
they would be kept out by the eddy currents in a conductor like iron.

There is another class of magnetic materials which has only recently been
discovered—members of the family of the orthosilicates called garnets. They are
again crystals in which the lattice contains two kinds of metallic atoms, and we
have again a situation in which two kinds of atoms can be substituted almost at
will. Among the many compounds of interest there is one which is completely
ferromagnetic. It has yttrium and iron in the garnet structure, and the reason
it is ferromagnetic is very curious. Here again quantum mechanics is making
the neighboring spins opposite, so that there is a locked-in system of spins with
the electron spins of the iron one way and the electron spins of the yttrium the
opposite way. But the yttrium atom is complicated. It is a rare-earth element
and gets a large contribution to its magnetic moment from orbital motion of the
electrons. For yttrium, the orbital motion contribution is opposite that of the
spin and also is bigger. Thus, although quantum mechanics, working through
the exclusion principle, makes the spins of the yttrium opposite those of the
iron, it makes the total magnetic moment of the yttrium atom parallel to the
iron because of the orbital effect—as sketched in Fig. 37-13(d). The compound
is therefore a regular ferromagnet.

Another interesting example of ferromagnetism occurs in some of the rare-
earth elements. It has to do with a still more peculiar arrangement of the spins.
The material is not ferromagnetic in the sense that the spins are all parallel, nor
is it antiferromagnetic in the sense that every atom is opposite. In these crystals
all of the spins in one layer are parallel and lie in the plane of the layer. In the
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next layer all spins are again parallel to each other, but point in a somewhat
different direction. In the following layer they are in still another direction, and
so on. The result is that the local magnetization vector varies in the form of a
spiral—the magnetic moments of the successive layers rotate as we proceed along
a line perpendicular to the layers. It is interesting to try to analyze what happens
when a field is applied to such a spiral—all the twistings and turnings that must
go on in all those atomic magnets. (Some people like to amuse themselves with
the theory of these things!) Not only are there cases of “flat” spirals, but there are
also cases in which the directions the magnetic moments of successive layers map
out a cone, so that it has a spiral component and also a uniform ferromagnetic
component in one direction!

The magnetic properties of materials, worked out on a more advanced level
than we have been able to do here, have fascinated physicists of all kinds. In the
first place, there are those practical people who love to work out ways of making
things in a better way—they love to design better and more interesting magnetic
materials. The discovery of things like ferrites, or their application, immediately
delights people who like to see clever new ways of doing things. Besides this, there
are those who find a fascination in the terrible complexity that nature can produce
using a few basic laws. Starting with one and the same general idea, nature goes
from the ferromagnetism of iron and its domains, to the antiferromagnetism of
chromium, to the magnetism of ferrites and garnets, to the spiral structure of the
rare earth elements, and on, and on. It is fascinating to discover experimentally all
the strange things that go on in these special substances. Then, to the theoretical
physicists, ferromagnetism presents a number of very interesting, unsolved, and
beautiful challenges. One challenge is to understand why it exists at all. Another
is to predict the statistics of the interacting spins in an ideal lattice. Even
neglecting any possible extraneous complications, this problem has, so far, defied
full understanding. The reason that it is so interesting is that it is such an easily
stated problem: Given a lot of electron spins in a regular lattice, interacting
with such-and-such a law, what do they do? It is simply stated, but it has defied
complete analysis for years. Although it has been analyzed rather carefully for
temperatures not too close to the Curie point, the theory of the sudden transition
at the Curie point still needs to be completed.

Finally, the whole subject of the system of spinning atomic magnets—in
ferromagnetic, or in paramagnetic materials and in nuclear magnetism, has also
been a fascinating thing to advanced students in physics. The system of spins
can be pushed on and pulled on with external magnetic fields, so one can do
many tricks with resonances, with relaxation effects, with spin-echoes, and with
other effects. It serves as a prototype of many complicated thermodynamic
systems. But in paramagnetic materials the situation is often fairly simple, and
people have been delighted both to do experiments and to explain the phenomena
theoretically.

We now close our study of electricity and magnetism. In the first chapter, we
spoke of the great strides that have been made since the early Greek observation of
the strange behaviors of amber and of lodestone. Yet in all our long and involved
discussion we have never explained why it is that when we rub a piece of amber
we get a charge on it, nor have we explained why a lodestone is magnetized! You
may say, “Oh, we just didn’t get the right sign.” No, it is worse than that. Even
if we did get the right sign, we would still have the question: Why is the piece
of lodestone in the ground magnetized? There is the earth’s magnetic field, of
course, but where does the earth’s field come from? Nobody really knows—there
have only been some good guesses. So you see, this physics of ours is a lot of
fakery—we start out with the phenomena of lodestone and amber, and we end up
not understanding either of them very well. But we have learned a tremendous
amount of very exciting and very practical information in the process!
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38

Elasticity

38-1 Hooke’s law

The 38-1 Hooke’s law
38-2 Uniform strains
38-3 The torsion bar; shear waves
38-4 The bent beam
38-5 Buckling

subject of elasticity deals with the behavior of those substances which
have the property of recovering their size and shape when the forces producing
deformations are removed. We find this elastic property to some extent in all
solid bodies. If we had the time to deal with the subject at length, we would want
to look into many things: the behavior of materials, the general laws of elasticity,
the general theory of elasticity, the atomic machinery that determine the elastic
properties, and finally the limitations of elastic laws when the forces become so
great that plastic flow and fracture occur. It would take more time than we have
to cover all these subjects in detail, so we will have to leave out some things.
For example, we will not discuss plasticity or the limitations of the elastic laws.

Review: Chapter 47, Vol. I, Sound; the
Wave Equation.

(We touched on these subjects briefly when we were talking about dislocations in
metals.) Also, we will not be able to discuss the internal mechanisms of elasticity—
so our treatment will not have the completeness we have tried to achieve in the
earlier chapters. Our aim is mainly to give you an acquaintance with some of
the ways of dealing with such practical problems as the bending of beams.

When you push on a piece of material, it “gives”—the material is deformed.
If the force is small enough, the relative displacements of the various points in
the material are proportional to the force—we say the behavior is elastic. We will
discuss only the elastic behavior. First, we will write down the fundamental laws
of elasticity, and then we will apply them to a number of different situations.
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Fig. 38-1. The stretching of a bar under
uniform tension.

Suppose we take a rectangular block of material of length l, width w, and
height h, as shown in Fig. 38-1. If we pull on the ends with a force F , then
the length increases by an amount ∆l. We will suppose in all cases that the
change in length is a small fraction of the original length. As a matter of fact, for
materials like wood and steel, the material will break if the change in length is
more than a few percent of the original length. For a large number of materials,
experiments show that for sufficiently small extensions the force is proportional
to the extension

F ∝ ∆l. (38.1)

This relation is known as Hooke’s law.
The lengthening ∆l of the bar will also depend on its length. We can figure

out how by the following argument. If we cement two identical blocks together,
end to end, the same forces act on each block; each will stretch by ∆l. Thus,
the stretch of a block of length 2l would be twice as big as a block of the same
cross section, but of length l. In order to get a number more characteristic of the
material, and less of any particular shape, we choose to deal with the ratio ∆l/l
of the extension to the original length. This ratio is proportional to the force but
independent of l:

F ∝ ∆l
l
. (38.2)

The force F will also depend on the area of the block. Suppose that we put
two blocks side by side. Then for a given stretch ∆l we would have the force F
on each block, or twice as much on the combination of the two blocks. The
force, for a given amount of stretch, must be proportional to the cross-sectional
area A of the block. To obtain a law in which the coefficient of proportionality is
independent of the dimensions of the body, we write Hooke’s law for a rectangular
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block in the form
F = Y A

∆l
l
. (38.3)

The constant Y is a property only of the nature of the material; it is known as
Young’s modulus. (Usually you will see Young’s modulus called E. But we’ve
used E for electric fields, energy, and emf’s, so we prefer to use a different letter.)

The force per unit area is called the stress, and the stretch per unit length—
the fractional stretch—is called the strain. Equation (38.3) can therefore be
rewritten in the following way:

F

A
= Y × ∆l

l
, (38.4)

Stress = (Young’s modulus)× (Strain).

pp

p

p

p

Fig. 38-2. A bar under uniform hydro-
static pressure.

There is another part to Hooke’s law: When you stretch a block of material
in one direction it contracts at right angles to the stretch. The contraction in
width is proportional to the width w and also to ∆l/l. The sideways contraction
is in the same proportion for both width and height, and is usually written

∆w
w

= ∆h
h

= −σ ∆l
l
, (38.5)

where the constant σ is another property of the material called Poisson’s ratio.
It is always positive in sign and is a number less than 1/2. (It is “reasonable”
that σ should be generally positive, but it is not quite clear that it must be so.)

The two constants Y and σ specify completely the elastic properties of a
homogeneous’ isotropic (that is, noncrystalline) material. In crystalline materials
the stretches and contractions can be different in different directions, so there
can be many more elastic constants. We will restrict our discussion temporarily
to homogeneous’ isotropic materials whose properties can be described by Y
and σ. As usual there are different ways of describing things—some people like
to describe the elastic properties of materials by different constants. It always
takes two, and they can be related to σ and Y .

F1F1

F2

F2

F3

Fig. 38-3. Hydrostatic pressure is the
superposition of three longitudinal compres-
sions.

The last general law we need is the principle of superposition. Since the
two laws (38.4) and (38.5) are linear in the forces and in the displacements,
superposition will work. If you have one set of forces and get some displacements,
and then you add a new set of forces and get some additional displacements, the
resulting displacements will be the sum of the ones you would get with the two
sets of forces acting independently.

Now we have all the general principles—the superposition principle and Eqs.
(38.4) and (38.5)—and that’s all there is to elasticity. But that is like saying that
once you have Newton’s laws that’s all there is to mechanics. Or, given Maxwell’s
equations, that’s all there is to electricity. It is, of course, true that with these
principles you have a great deal, because with your present mathematical ability
you could go a long way. We will, however, work out a few special applications.

38-2 Uniform strains

As our first example let’s find out what happens to a rectangular block under
uniform hydrostatic pressure. Let’s put a block under water in a pressure tank.
Then there will be a force acting inward on every face of the block proportional
to the area (see Fig. 38-2). Since the hydrostatic pressure is uniform, the stress
(force per unit area) on each face of the block is the same. We will work out first
the change in the length. The change in length of the block can be thought of as
the sum of changes in length that would occur in the three independent problems
which are sketched in Fig. 38-3.

Problem 1. If we push on the ends of the block with a pressure p, the
compressional strain is p/Y , and it is negative,

∆l1
l

= − p
Y
.
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Problem 2. If we push on the two sides of the block with pressure p, the
compressional strain is again p/Y , but now we want the lengthwise strain. We
can get that from the sideways strain multiplied by −σ. The sideways strain is

∆w
w

= − p
Y

;
so

∆l2
l

= +σ p

Y
.

Problem 3. If we push on the top of the block, the compressional strain is once
more p/Y , and the corresponding strain in the sideways direction is again −σp/Y .
We get

∆l3
l

= +σ p

Y
.

Combining the results of the three problems—that is, taking ∆l = ∆l1 +
∆l2 + ∆l3—we get

∆l
l

= − p
Y

(1− 2σ). (38.6)

The problem is, of course, symmetrical in all three directions; it follows that

∆w
w

= ∆h
h

= − p
Y

(1− 2σ). (38.7) G

Fig. 38-4. A cube in uniform shear.

FF

F

F

Fig. 38-5. A cube with compressing
forces on top and bottom and equal stretch-
ing forces on two sides.

The change in the volume under hydrostatic pressure is also of some interest.
Since V = lwh, we can write, for small displacements,

∆V
V

= ∆l
l

+ ∆w
w

+ ∆h
h
.

Using (38.6) and (38.7), we have

∆V
V

= −3 p

Y
(1− 2σ). (38.8)

People like to call ∆V/V the volume strain and write

p = −K ∆V
V

.

The volume stress p is proportional to the volume strain—Hooke’s law once more.
The coefficient K is called the bulk modulus; it is related to the other constants
by

K = Y

3(1− 2σ) . (38.9)

Since K is of some practical interest, many handbooks give Y and K instead of
Y and σ. If you want σ you can always get it from Eq. (38.9). We can also see
from Eq. (38.9) that Poisson’s ratio, σ, must be less than one-half. If it were not,
the bulk modulus K would be negative, and the material would expand under
increasing pressure. That would allow us to get mechanical energy out of any old
block—it would mean that the block was in unstable equilibrium. If it started to
expand it would continue by itself with a release of energy.

Now we want to consider what happens when you put a “shear” strain on
something. By shear strain we mean the kind of distortion shown in Fig. 38-4.
As a preliminary to this, let us look at the strains in a cube of material subjected
to the forces shown in Fig. 38-5. Again we can break it up into two problems:
the vertical pushes, and the horizontal pulls. Calling A the area of the cube face,
we have for the change in horizontal length

∆l
l

= 1
Y

F

A
+ σ

1
Y

F

A
= 1 + σ

Y

F

A
. (38.10)

The change in the vertical height is just the negative of this.
38-3



(a)

AREA A
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G

G

G

G

(b)
D

√
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√
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√
2G√

2G

AREA =
√
2A

Fig. 38-6. The two pairs of shear forces in (a) produce the same stress as the
compressing and stretching forces of (b).

Now suppose we have the same cube and subject it to the shearing forces
shown in Fig. 38-6(a). Note that all the forces have to be equal if there are to be
no net torques and the cube is to be in equilibrium. (Similar forces must also
exist in Fig. 38-4, since the block is in equilibrium. They are provided through
the “glue” that holds the block to the table.) The cube is then said to be in a
state of pure shear. But note that if we cut the cube by a plane at 45◦—say along
the diagonal A in the figure—the total force acting across the plane is normal to
plane and is equal to

√
2G. The area over which this force acts is

√
2A; therefore,

the tensile stress normal to this plane is simply G/A. Similarly, if we examine a
plane at an angle of 45◦ the other way—the diagonal B in the figure—we see
that there is a compressional stress normal to this plane of −G/A. From this,
we see that the stress in a “pure shear” is equivalent to a combination of tension
and compression stresses of equal strength and at right angles to each other, and
at 45◦ to the original faces of the cube. The internal stresses and strains are the
same as we would find in the larger block of material with the forces shown in
Fig. 38-6(b). But this is the problem we have already solved. The change in
length of the diagonal is given by Eq. (38.10),

∆D
D

= 1 + σ

Y

G

A
. (38.11)

(One diagonal is shortened; the other is elongated.)

`

`D

θ

δ

∆D
G

Fig. 38-7. The shear strain θ is 2 ∆D/D.

It is often convenient to express a shear strain in terms of the angle by which
the cube is twisted—the angle θ in Fig. 38-7. From the geometry of the figure
you can see that the horizontal shift δ of the top edge is equal to

√
2 ∆D. So

θ = δ

l
=
√

2 ∆D
l

= 2 ∆D
D

. (38.12)

The shear stress g is defined as the tangential force on one face divided by the
area, g = G/A. Using Eq. (38.11) in (38.12), we get

θ = 2 1 + σ

Y
g.

Or, writing this in the form “stress = constant times strain,”

g = µθ. (38.13)

The proportionality coefficient µ is called the shear modulus (or, sometimes, the
coefficient of rigidity). It is given in terms of Y and σ by

µ = Y

2(1 + σ) . (38.14)
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Incidentally, the shear modulus must be positive—otherwise you could get work
out of a self-shearing block. From Eq. (38.14), σ must be greater than −1. We
know, then, that σ must be between −1 and + 1

2 ; in practice, however, it is always
greater than zero.

Fx Fx

Fy

Fy

Fz

Fig. 38-8. Stretching without lateral con-
traction.

As a last example of the type of situation where the stresses are uniform
through the material, let’s consider the problem of a block which is stretched,
while it is at the same time constrained so that no lateral contraction can take
place. (Technically, it’s a little easier to compress it while keeping the sides from
bulging out—but it’s the same problem.) What happens? Well, there must be
sideways forces which keep it from changing its thickness—forces we don’t know
off-hand but will have to calculate. It’s the same kind of problem we have already
done, only with a little different algebra. We imagine forces on all three sides, as
shown in Fig. 38-8; we calculate the changes in dimensions, and we choose the
transverse forces to make the width and height remain constant. Following the
usual arguments, we get for the three strains:

∆lx
lx

= 1
Y

Fx
Ax
− σ

Y

Fy
Ay
− σ

Y

Fz
Az

= 1
Y

[
Fx
Ax
− σ

(
Fy
Ay

+ Fz
Az

)]
, (38.15)

∆ly
ly

= 1
Y

[
Fy
Ay
− σ

(
Fx
Ax

+ Fz
Az

)]
, (38.16)

∆lz
lz

= 1
Y

[
Fz
Az
− σ

(
Fx
Ax

+ Fy
Ay

)]
. (38.17)

Now since ∆ly and ∆lz are supposed to be zero, Eqs. (38.16) and (38.17) give
two equations relating Fy and Fz to Fx. Solving them together, we get that

Fy
Ay

= Fz
Az

= σ

1− σ
Fx
Ax

. (38.18)

Substituting in (38.15), we have

∆lx
lx

= 1
Y

(
1− 2σ2

1− σ

)
Fx
Ax

= 1
Y

(
1− σ − 2σ2

1− σ

)
Fx
Ax

. (38.19)

Often, you will see this turned around, and with the quadratic in σ factored out,
it is then written

F

A
= 1− σ

(1 + σ)(1− 2σ) Y
∆l
l
. (38.20)

When we constrain the sides, Young’s modulus gets multiplied by a complicated
function of σ. As you can most easily see from Eq. (38.19), the factor in front
of Y is always greater than 1. It is harder to stretch the block when the sides
are held—which also means that a block is stronger when the sides are held than
when they are not.

38-3 The torsion bar; shear waves

Let’s now turn our attention to an example which is more complicated because
different parts of the material are stressed by different amounts. We consider a
twisted rod such as you would find in a drive shaft of some machinery, or in a
quartz fiber suspension used in a delicate instrument. As you probably know
from experiments with the torsion pendulum, the torque on a twisted rod is
proportional to the angle—the constant of proportionality obviously depending
upon the length of the rod, on the radius of the rod, and on the properties of the
material. The question is: In what way? We are now in a position to answer this
question; it’s just a matter of working out some geometry.

Fig. 38-9(a) shows a cylindrical rod of length L, and radius a, with one end
twisted by the angle φ with respect to the other. If we want to relate the strains
to what we already know, we can think of the rod as being made up of many
cylindrical shells and work out separately what happens to each shell. We start
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L
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(b)

r

∆r
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θ

(c)

∆`

∆r

∆F ∆F

θ

Fig. 38-9. (a) A cylindrical bar in torsion. (b) A cylindrical shell in torsion. (c) Each
small piece of the shell is in shear.

by looking at a thin, short cylinder of radius r (less than a) and thickness ∆r—as
drawn in Fig. 38-9(b). Now if we look at a piece of this cylinder that was originally
a small square, we see that it has been distorted into a parallelogram. Each such
element of the cylinder is in shear, and the shear angle θ is

θ = rφ

L
.

The shear stress g in the material is, therefore [from Eq. (38.13)],

g = µθ = µ
rφ

L
. (38.21)

The shear stress is the tangential force ∆F on the end of the square divided
by the area ∆l∆r of the end [see Fig. 38-9(c)]

g = ∆F
∆l∆r .

The force ∆F on the end of such a square contributes a torque ∆τ around the
axis of the rod equal to

∆τ = r∆F = rg∆l∆r. (38.22)

The total torque τ is the sum of such torques around a complete circumference of
the cylinder. So putting together enough pieces so that the ∆l’s add up to 2πr,
we find that the total torque, for a hollow tube, is

rg(2πr) ∆r. (38.23)
Or, using (38.21),

τ = 2πµ r
3 ∆rφ
L

. (38.24)

We get that the rotational stiffness, τ/φ, of a hollow tube is proportional to the
cube of the radius r and to the thickness ∆r, and inversely proportional to the
length L.

We can now imagine a solid rod to be made up of a series of concentric tubes,
each twisted by the same angle φ (although the internal stresses are different for
each tube). The total torque is the sum of the torques required to rotate each
shell; for the solid rod

τ = 2πµ φ
L

∫
r3 dr,

where the integral goes from r = 0 to r = a, the radius of the rod. Integrating,
we have

τ = µ
πa4

2L φ. (38.25)
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For a rod in torsion, the torque is proportional to the angle and is proportional
to the fourth power of the diameter—a rod twice as thick is sixteen times as stiff
for torsion.

Before leaving the subject of torsion, let us apply what we have just learned to
an interesting problem: torsional waves. If you take a long rod and suddenly twist
one end, a wave of twist works it way along the rod, as sketched in Fig. 38-10(a).
That’s a little more exciting than a steady twist—let’s see whether we can work
out what happens.

(a)

z

(b)

τ −(τ + ∆τ)

END 1 END 2

z z + ∆z

Fig. 38-10. (a) A torsional wave on a rod. (b) A volume element of the rod.

Let z be the distance to some point down the rod. For a static torsion the
torque is the same everywhere along the rod, and is proportional to φ/L, the
total torsion angle over the total length. What matters to the material is the
local torsional strain, which is, you will appreciate, ∂φ/∂z. When the torsion
along the rod is not uniform, we should replace Eq. (38.25) by

τ(z) = µ
πa4

2
∂φ

∂z
. (38.26)

Now let’s look at what happens to an element of length ∆z shown magnified in
Fig. 38-10(b). There is a torque τ(z) at end 1 of the little hunk of rod, and a
different torque τ(z + ∆z) at end 2. If ∆z is small enough, we can use a Taylor
expansion and write

τ(z + ∆z) = τ(z) +
(
∂τ

∂z

)
∆z. (38.27)

The net torque ∆τ acting on the little piece of rod between z and z + ∆z
is clearly the difference between τ(z) and τ(z + ∆z), or ∆τ = (∂τ/∂z) ∆z.
Differentiating Eq. (38.26), we get

∆τ = µ
πa4

2
∂2φ

∂z2 ∆z. (38.28)

The effect of this net torque is to give an angular acceleration to the little
slice of the rod. The mass of the slice is

∆M = (πa2 ∆z)ρ,

where ρ is the density of the material. We worked out in Chapter 19, Vol. I,
that the moment of inertia of a circular cylinder is mr2/2; calling the moment of
inertia of our piece ∆I, we have

∆I = π

2 ρa
4 ∆z. (38.29)

Newton’s law says the torque is equal to the moment of inertia times the angular
acceleration, or

∆τ = ∆I ∂
2φ

∂t2
. (38.30)

Pulling everything together, we get

µ
πa4

2
∂2φ

∂z2 ∆z = π

2 ρa
4 ∆z ∂

2φ

∂t2
,
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or
∂2φ

∂z2 −
ρ

µ

∂2φ

∂t2
= 0. (38.31)

You will recognize this as the one-dimensional wave equation. We have found
that waves of torsion will propagate down the rod with the speed

Cshear =
√
µ

ρ
. (38.32)

The denser the rod—for the same stiffness—the slower the waves; and the stiffer
the rod, the quicker the waves work their way down. The speed does not depend
upon the diameter of the rod.

Torsional waves are a special example of shear waves. In general, shear waves
are those in which the strains do not change the volume of any part of the material.
In torsional waves, we have a particular distribution of such shear stresses—namely,
distributed on a circle. But for any arrangement of shear stresses, waves will
propagate with the same speed—the one given in Eq. (38.32). For example, the
seismologists find such shear waves travelling in the interior of the earth.

We can have another kind of a wave in the elastic world inside a solid
material. If you push something, you can start “longitudinal” waves—also called
“compressional” waves. They are like the sound waves in air or in water—the
displacements are in the same direction as the wave propagation. (At the surfaces
of an elastic body there can also be other types of waves—called “Rayleigh waves”
or “Love waves.” In them, the strains are neither purely longitudinal nor purely
transverse. We will not have time to study them.)

While we’re on the subject of waves, what is the velocity of the pure com-
pressional waves in a large solid body like the earth? We say “large” because the
speed of sound in a thick body is different from what it is, for instance, along a
thin rod. By a “thick” body we mean one in which the transverse dimensions are
much larger than the wavelength of the sound. Then, when we push on the object,
it cannot expand sideways—it can only compress in one dimension. Fortunately,
we have already worked out the special case of the compression of a constrained
elastic material. We have also worked out in Chapter 47, Vol. I, the speed of
sound waves in a gas. Following the same arguments you can see that the speed
of sound in a solid is equal to

√
Y ′/ρ, where Y ′ is the “longitudinal modulus”—or

pressure divided by the relative change in length—for the constrained case. This
is just the ratio of ∆l/l to F/A we got in Eq. (38.20). So the speed of the
longitudinal waves is given by

C2
long = Y ′

ρ
= 1− σ

(1 + σ)(1− 2σ)
Y

ρ
. (38.33)

So long as σ is between zero and 1/2, the shear modulus µ is less than Young’s
modulus Y , and also Y ′ is greater than Y , so

µ < Y < Y ′.

This means that longitudinal waves travel faster than shear waves. One of
the most precise ways of measuring the elastic constants of a substance is by
measuring the density of the material and the speeds of the two kinds of waves.
From this information one can get both Y and σ. It is, incidentally, by measuring
the difference in the arrival times of the two kinds of waves from an earthquake
that a seismologist can estimate—even from the signals at only one station—the
distance to the quake.

38-4 The bent beam

We want now to look at another practical matter—the bending of a rod or a
beam. What are the forces when we bend a bar of some arbitrary cross section?
We will work it out thinking of a bar with a circular cross section, but our answer
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will be good for any shape. To save time, however, we will cut some corners, so
our theory we will work out is only approximate. Our results will be correct only
when the radius of the bend is much larger than the thickness of the beam.

L

R

Fig. 38-11. A bent beam.

Suppose you grab the two ends of a straight bar and bend it into some curve
like the one shown in Fig. 38-11. What goes on inside the bar? Well, if it is
curved, that means that the material on the inside of the curve is compressed
and the material on the outside is stretched. There is some surface which goes
along more or less parallel to the axis of the bar that is neither stretched nor
compressed. This is called the neutral surface. You would expect this surface
to be near the “middle” of the cross section. It can be shown (but we won’t
do it here) that, for small bending of simple beams, the neutral surface goes
through the “center of gravity” of the cross section. This is true only for “pure”
bending—if you are not stretching or compressing the beam at the same time.

For pure bending, then, a thin transverse slice of the bar is distorted as shown
in Fig. 38-12(a). The material below the neutral surface has a compressional
strain which is proportional to the distance from the neutral surface; and the
material above is stretched, also in proportion to its distance from the neutral
surface. So the longitudinal stretch ∆l is proportional to the height y. The
constant of proportionality is just l over the radius of curvature of the bar—see
Fig. 38-12:

∆l
l

= y

R
.

So the force per unit area—the stress—in a small strip at y is also proportional
to the distance from the neutral surface

∆F
∆A = Y

y

R
. (38.34)

(a)

R

ℓ

θ

ℓ+∆ℓ F

NEUTRAL
SURFACE

(b)

y

∆y

NEUTRAL
SURFACE

Fig. 38-12. (a) Small segment of a bent
beam. (b) Cross section of the beam.

Now let’s look at the forces that would produce such a strain. The forces
acting on the little segment drawn in Fig. 38-12 are shown in the figure. If we
think of any transverse cut, the forces acting across it are one way above the
neutral surface and the other way below. They come in pairs to make a “bending
moment” M—by which we mean the torque about the neutral line. We can
compute the total moment by integrating the force times the distance from the
neutral surface for one of the faces of the segment of Fig. 38-12:

M =
∫
cross
sect

y dF. (38.35)

From Eq. (38.34), dF = Y y/R dA, so

M = Y

R

∫
y2 dA.

The integral of y2 dA is what we can call the “moment of inertia” of the geometric
cross section about a horizontal axis through its “center of mass”;* we will call
it I:

M = Y I

R
(38.36)

I =
∫
y2 dA. (38.37)

Equation (38.36), then, gives us the relation between the bending moment M
and the curvature 1/R of the beam. The “stiffness” of the beam is proportional
to Y and to the moment of inertia I. In other words, if you want the stiffest
possible beam with a given amount of, say, aluminum, you want to put as much of
it as possible as far as you can from the neutral surface, to make a large moment
of inertia. You can’t carry this to an extreme, however, because then the thing

* It is, of course, really the moment of inertia of a slice with unit mass per unit area.
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will not curve as we have supposed—it will buckle or twist and become weaker
again. But now you see why structural beams are made in the form of an I or an
H—as shown in Fig. 38-13.

Fig. 38-13. An “I” beam.

L

x
z

W

Fig. 38-14. A cantilevered beam with a
weight at one end.

As an example of the use of our beam equation (38.36), let’s work out the
deflection of a cantilevered beam with a concentrated force W acting at the free
end, as sketched in Fig. 38-14. (By “cantilevered” we simply mean that the beam
is supported in such a way that both the position and the slope are fixed at one
end—it is stuck into a cement wall.) What is the shape of the beam? Let’s call
the deflection at the distance x from the fixed end z; we want to know z(x). We’ll
work it out only for small deflections. We will also assume that the beam is long
in comparison with its cross section. Now, as you know from your mathematics
courses, the curvature 1/R of any curve z(x) is given by

1
R

= d2z/dx2

[1 + (dz/dx)2]3/2 . (38.38)

Since we are interested only in small slopes—this is usually the case in engineering
structures—we neglect (dz/dx)2 in comparison with 1, and take

1
R

= d2z

dx2 . (38.39)

We also need to know the bending moment M. It is a function of x because it
is equal to the torque about the neutral axis of any cross section. Let’s neglect
the weight of the beam and take only the downward force W at the end of the
beam. (You can put in the beam weight yourself if you want.) Then the bending
moment at x is

M(x) = W (L− x),

because that is the torque about the point at x, exerted by the weight W—the
torque which the beam must support of x. We get

W (L− x) = Y I

R
= Y I

d2z

dx2
or

d2z

dx2 = W

Y I
(L− x). (38.40)

This one we can integrate without any tricks; we get

z = W

Y I

(
Lx2

2 − x3

6

)
, (38.41)

using our assumptions that z(0) = 0 and that dz/dx is also zero at x = 0. That
is the shape of the beam. The displacement of the end is

z(L) = W

Y I

L3

3 ; (38.42)

the displacement of the end of a beam increases as the cube of the length.

(a)

S

S

(b)

Fig. 38-15. (a) A bent eraser; (b) cross
section.

In deriving our approximate beam theory, we have assumed that the cross
section of the beam did not change when the beam was bent. When the thickness
of the beam is small compared to the radius of curvature, the cross section
changes very little and our result is O.K. In general, however, this effect cannot
be neglected, as you can easily demonstrate for yourselves by bending a soft-
rubber eraser in your fingers. If the cross section was originally rectangular,
you will find that when it is bent it bulges at the bottom (see Fig. 38-15). This
happens because when we compress the bottom, the material expands sideways—
as described by Poisson’s ratio. Rubber is easy to bend or stretch, but it is
somewhat like a liquid in that it’s hard to change the volume—as shows up nicely
when you bend the eraser. For an incompressible material, Poisson’s ratio would
be exactly 1/2—for rubber it is nearly that.
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38-5 Buckling

We want now to use our beam theory to understand the theory of the “buckling”
of beams, or columns, or rods. Consider the situation sketched in Fig. 38-16 in
which a rod that would normally be straight is held in its bent shape by two
opposite forces that push on the ends of the rod. We would like to calculate the
shape of the rod and the magnitude of the forces on the ends.

L

x

y

P

F F

Fig. 38-16. A buckled beam.

Let the deflection of the rod from the straight line between the ends be y(x),
where x is the distance from one end. The bending moment M at the point P in
the figure is equal to the force F multiplied by the moment arm, which is the
perpendicular distance y,

M(x) = Fy. (38.43)

Using the beam equation (38.36), we have

Y I

R
= Fy. (38.44)

For small deflections, we can take 1/R = −d2y/dx2 (the minus sign because the
curvature is downward). We get

d2y

dx2 = − F

Y I
y, (38.45)

which is the differential equation of a sine wave. So for small deflections, the
curve of such a bent beam is a sine curve. The “wavelength” λ of the sine wave
is twice the distance L between the ends. If the bending is small, this is just
twice the unbent length of the rod. So the curve is

y = K sin πx/L.

Taking the second derivative, we get

d2y

dx2 = −π
2

L2 y.

Comparing this to Eq. (38.45), we see that the force is

F = π2 Y I

L2 . (38.46)

For small bendings the force is independent of the bending displacement y!
We have, then, the following thing physically. If the force is less than the F

given in Eq. (38.46), there will be no bending at all. But if it is slightly greater
than this force, the material will suddenly bend a large amount—that is, for
forces above the critical force π2Y I/L2 (often called the “Euler force” the beam
will “buckle.” If the loading on the second floor of a building exceeds the Euler
force” for the supporting columns, the building will collapse. Another place
where the buckling force is most important is in space rockets. On one hand,
the rocket must be able to hold its own weight on the launching pad and endure
the stresses during acceleration; on the other hand, it is important to keep the
weight of the structure to a minimum, so that the payload and fuel capacity may
be made as large as possible.

Actually a beam will not necessarily collapse completely when the force
exceeds the Euler force. When the displacements get large, the force is larger
than what we have found because of the terms in 1/R in Eq. (38.38) that we
have neglected. To find the forces for a large bending of the beam, we have to
go back to the exact equation, Eq. (38.44), which we had before we used the
approximate relation between R and y. Equation (38.44) has a rather simple
geometrical property.* It’s a little complicated to work out, but rather interesting.

* The same equation appears, incidentally, in other physical situations—for example, the
meniscus at the surface of a liquid contained between parallel planes—and the same geometrical
solution can be used.
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TANGENT
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θ

R

Fig. 38-17. The coordinates S and θ for
the curve of a bent beam.

Instead of describing the curve in terms of x and y, we can use two new variables:
S, the distance along the curve, and θ the slope of the tangent to the curve. See
Fig. 38-17. The curvature is the rate of change of angle with distance:

1
R

= dθ

dS
.

We can, therefore write the exact equation (38.44) as

dθ

dS
= − F

Y I
y.

If we take the derivative of this equation with respect to S and replace dy/dS
by sin θ, we get

d2θ

dS2 = − F

Y I
sin θ. (38.47)

[If θ is small, we get back Eq. (38.45). Everything is O.K.]

F1 F1

F2 F2

F3 F3

Fig. 38-18. Curves of a bent rod.

Now it may or may not delight you to know that Eq. (38.47) is exactly the
same one you get for the large amplitude oscillations of a pendulum—with F/Y I
replaced by another constant, of course. We learned way back in Chapter 9,
Vol. I, how to find the solution of such an equation by a numerical calculation.*
The answers you get are some fascinating curves—known as the curves of the
“Elastica.” Figure 38-18 shows three curves for different values of F/Y I.

* The solutions can also be expressed in terms of some functions, called the “Jacobian
elliptic functions,” that someone else has already computed.
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39

Elastic Materials

39-1 The tensor of strain

In 39-1 The tensor of strain
39-2 The tensor of elasticity
39-3 The motions in an elastic body
39-4 Nonelastic behavior
39-5 Calculating the elastic constants

the last chapter we talked about the distortions of particular elastic objects.
In this chapter we want to look at what can happen in general inside an elastic
material. We would like to be able to describe the conditions of stress and strain
inside some big glob of jello which is twisted and squashed in some complicated
way. To do this, we need to be able to describe the local strain at every point
in an elastic body; we can do it by giving a set of six numbers—which are the
components of a symmetric tensor—for each point. Earlier, we spoke of the stress
tensor (Chapter 31); now we need the tensor of strain.

Imagine that we start with the material initially unstrained and watch the
motion of a small speck of “dirt” embedded in the material when the strain is
applied. Reference: C. Kittel, Introduction to

Solid State Physics, John
Wiley and Sons, Inc., New
York, 2nd ed., 1956.

A speck that was at the point P located at r = (x, y, z) moves to a new
position P ′ at r′ = (x′, y′, z′) as shown in Fig. 39-1. We will call u the vector
displacements from P to P ′. Then

u = r′ − r. (39.1)

The displacement u depends, of course, on which point P we start with, so u is
a vector function of r—or, if you prefer, of (x, y, z).

BEFORE

P

`
∆`

AFTER

P P ′
u

x

ux

Fig. 39-2. A homogenous stretch-type
strain.

Let’s look first at a simple situation in which the strain is constant over the
material—so we have what is called a homogeneous strain. Suppose, for instance,
that we have a block of material and we stretch it uniformly. We just change
its dimensions uniformly in one direction—say, in the x-direction, as shown in
Fig. 39-2. The motion ux of a speck at x is proportional to x. In fact,

ux
x

= ∆l
l
.

We will write ux this way:
ux = exxx.

The proportionality constant exx is, of course, the same thing as ∆l/l. (You will
see shortly why we use a double subscript.)

BEFORE

P

r

SPECK

AFTER

P
P ′u

r ′

SPECK

Fig. 39-1. A speck of the material at the point P in an unstrained block moves to P ′

where the block is strained.
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If the strain is not uniform, the relation between ux and x will vary from
place to place in the material. For the general situation, we define the exx by a
kind of local ∆l/l, namely by

exx = ∂ux/∂x. (39.2)

This number—which is now a function of x, y, and z—describes the amount of
stretching in the x-direction throughout the hunk of jello. There may, of course,
also be stretching in the y- and z-directions. We describe them by the numbers

eyy = ∂uy
∂y

, ezz = ∂uz
∂z

. (39.3)

We need to be able to describe also the shear-type strains. Suppose we
imagine a little cube marked out in the initially undisturbed jello. When the
jello is pushed out of shape, this cube may get changed into a parallelogram, as
sketched in Fig. 39-3.* In this kind of a strain, the x-motion of each particle is
proportional to its y-coordinate,

ux = θ

2 y. (39.4)

And there is also a y-motion proportional to x,

uy = θ

2 x. (39.5)

So we can describe such a shear-type strain by writing

ux = exyy, uy = eyxx

with
exy = eyx = θ

2 .

Now you might think that when the strains are not homogeneous we could
describe the generalized shear strains by defining the quantities exy and eyx by

exy = ∂ux
∂y

, eyx = ∂uy
∂x

. (39.6)

BEFORE

P

AFTER

P
P ′

u

θ

2

θ

2

Fig. 39-3. A homogenous shear strain.

But there is one difficulty. Suppose that the displacements ux and uy were given
by

ux = θ

2 y, uy = −θ2 x

* We choose for the moment to split the total shear angle θ into two equal parts and make
the strain symmetric with respect to x and y.
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P

AFTER

θ

2

θ

2

P
P ′

u

Fig. 39-4. A homogenous rotation—there is no strain.

They are like Eqs. (39.4) and (39.5) except that the sign of uy is reversed. With
these displacements a little cube in the jello simply gets shifted by the angle θ/2,
as shown in Fig. 39-4. There is no strain at all—just a rotation in space. There
is no distortion of the material; the relative positions of all the atoms are not
changed at all. We must somehow make our definitions so that pure rotations are
not included in our definitions of a shear strain. The key point is that if ∂uy/∂x
and ∂ux/∂y are equal and opposite, there is no strain; so we can fix things up by
defining

exy = eyx = 1
2 (∂uy/∂x+ ∂ux/∂y).

For a pure rotation they are both zero, but for a pure shear we get that exy is
equal to eyx, as we would like.

In the most general distortion—which may include stretching or compression
as well as shear—we define the state of strain by giving the nine numbers

exx = ∂ux
∂x

,

eyy = ∂uy
∂y

,

...

exy = 1
2 (∂uy/∂x+ ∂ux/∂y),
...

(39.7)

These are the terms of a tensor of strain. Because it is a symmetric tensor—our
definitions make exy = eyx, always—there are really only six different numbers.
You remember (see Chapter 31) that the general characteristic of a tensor is that
the terms transform like the products of the components of two vectors. (If A
and B are vectors, Cij = AiBj is a tensor.) Each term of eij is a product (or the
sum of such products) of the components of the vector u = (ux, uy, uz), and of
the operator ∇ = (∂/∂x, ∂/∂y, ∂/∂z), which we know transforms like a vector.
Let’s let x1, x2, and x3 stand for x, y, and z and u1, u2, and u3 stand for ux, uy,
and uz; then we can write the general term eij of the strain tensor as

eij = 1
2 (∂uj/∂xi + ∂ui/∂xj), (39.8)

where i and j can be 1, 2, or 3.
When we have a homogeneous strain—which may include both stretching

and shear—all of the eij are constants, and we can write

ux = exxx+ exyy + exzz. (39.9)

(We choose our origin of x, y, z at the point where u is zero.) In this case,
the strain tensor eij gives the relationship between two vectors: the coordinate
vector r = (x, y, z) and the displacement vector u = (ux, uy, uz).

39-3



When the strains are not homogeneous, any piece of the jello may also get
somewhat twisted—there will be a local rotation. If the distortions are all small,
we would have

∆ui =
∑
j

(eij − ωij) ∆xj , (39.10)

where ωij is an antisymmetric tensor,

ωij = 1
2 (∂uj/∂xi − ∂ui/∂xj), (39.11)

which describes the rotation. We will, however, not worry any more about
rotations, but only about the strains described by the symmetric tensor eij .

39-2 The tensor of elasticity

Now that we have described the strains, we want to relate them to the internal
forces—the stresses in the material. For each small piece of the material, we
assume Hooke’s law holds and write that the stresses are proportional to the
strains. In Chapter 31 we defined the stress tensor Sij as the ith component of the
force across a unit-area perpendicular to the j-axis. Hooke’s law says that each
component of Sij is linearly related to each of the components of strain. Since
S and e each have nine components, there are 9 × 9 = 81 possible coefficients
which describe the elastic properties of the material. They are constants if the
material itself is homogeneous. We write these coefficients as Cijkl and define
them by the equation

Sij =
∑
k,l

Cijklekl, (39.12)

where i, j, k, l all take on the values 1, 2, or 3. Since the coefficients Cijkl relate
one tensor to another, they also form a tensor—a tensor of the fourth rank. We
can call it the tensor of elasticity.

Suppose that all the C’s are known and that you put a complicated force on
an object of some peculiar shape. There will be all kinds of distortion, and the
thing will settle down with some twisted shape. What are the displacements?
You can see that it is a complicated problem. If you knew the strains, you could
find the stresses from Eq. (39.12)—or vice versa. But the stresses and strains you
end up with at any point depend on what happens in all the rest of the material.

The easiest way to get at the problem is by thinking of the energy. When there
is a force F proportional to a displacement x, say F = kx, the work required for
any displacement x is kx2/2. In a similar way, the work w that goes into each
unit volume of a distorted material turns out to be

w = 1
2

∑
ijkl

Cijkleijekl. (39.13)

The total work W done in distorting the body is the integral of w over its volume:

W =
∫

1
2

∑
ijkl

Cijkleijekl dV. (39.14)

This is then the potential energy stored in the internal stresses of the material.
Now when a body is in equilibrium, this internal energy must be at a minimum.
So the problem of finding the strains in a body can be solved by finding the set
of displacements u throughout the body which will make W a minimum. In
Chapter 19 we gave some of the general ideas of the calculus of variations that
are used in tackling minimization problems like this. We cannot go into the
problem in any more detail here.

What we are mainly interested in now is what we can say about the general
properties of the tensor of elasticity. First, it is clear that there are not really
81 different terms in Cijkl. Since both Sij and eij are symmetric tensors, each
with only six different terms, there can be at most 36 different terms in Cijkl.
There are, however, usually many fewer than this.
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Let’s look at the special case of a cubic crystal. In it, the energy density w
starts out like this:

w = 1
2{Cxxxxe

2
xx + Cxxxyexxexy + Cxxxzexxexz

+ Cxxyxexxexy + Cxxyyexxeyy . . . etc . . .
+ Cyyyye

2
yy + . . . etc . . . etc . . .}, (39.15)

with 81 terms in all! Now a cubic crystal has certain symmetries. In particular,
if the crystal is rotated 90◦, it has the same physical properties. It has the
same stiffness for stretching in the y-direction as for stretching in the x-direction.
Therefore, if we change our definition of the coordinate directions x and y in
Eq. (39.15), the energy wouldn’t change. It must be that for a cubic crystal

Cxxxx = Cyyyy = Czzzz. (39.16)

Next we can show that the terms like Cxxxy must be zero. A cubic crystal has
the property that it is symmetric under a reflection about any plane perpendicular
to one of the axes. If we replace y by −y, nothing is different. But changing
y to −y changes exy to −exy—a displacement which was toward +y is now
toward −y. If the energy is not to change, Cxxxy must go into −Cxxxy when we
make a reflection. But a reflected crystal is the same as before, so Cxxxy must
be the same as −Cxxxy. This can happen only if both are zero.

You say, “But the same argument will make Cyyyy = 0!” No, because there are
four y’s. The sign changes once for each y, and four minuses make a plus. If there
are two or four y’s, the term does not have to be zero. It is zero only when there is
one, or three. So, for a cubic crystal, any nonzero term of C will have only an even
number of identical subscripts. (The arguments we have made for y obviously
hold also for x and z.) We might then have terms like Cxxyy, Cxyxy, Cxyyx, and
so on. We have already shown, however, that if we change all x’s to y’s and vice
versa (or all z’s and x’s, and so on) we must get—for a cubic crystal—the same
number. This means that there are only three different nonzero possibilities:

Cxxxx (= Cyyyy = Czzzz),
Cxxyy (= Cyyxx = Cxxzz, etc.),
Cxyxy (= Cyxyx = Cxzxz, etc.).

(39.17)

For a cubic crystal, then, the energy density will look like this:

w = 1
2{Cxxxx(e2

xx + e2
yy + e2

zz)
+ 2Cxxyy(exxeyy + eyyezz + ezzexx)
+ 4Cxyxy(e2

xy + e2
yz + e2

zx)}.
(39.18)

For an isotropic—that is, noncrystalline—material, the symmetry is still
higher. The C’s must be the same for any choice of the coordinate system. Then
it turns out that there is another relation among the C’s, namely, that

Cxxxx = Cxxyy + 2Cxyxy. (39.19)

We can see that this is so by the following general argument. The stress tensor Sij
has to be related to eij in a way that doesn’t depend at all on the coordinate
directions—it must be related only by scalar quantities. “That’s easy,” you say.
“The only way to obtain Sij from eij is by multiplication by a scalar constant.
It’s just Hooke’s law. It must be that Sij = (const)eij .” But that’s not quite
right; there could also be the unit tensor δij multiplied by some scalar, linearly
related to eij . The only invariant you can make that is linear in the e’s is

∑
eii.

(It transforms like x2 + y2 + z2, which is a scalar.) So the most general form for
the equation relating Sij to eij—for isotropic materials—is

Sij = 2µeij + λ
(∑

k

ekk

)
δij . (39.20)

(The first constant is usually written as two times µ; then the coefficient µ is
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equal to the shear modulus we defined in the last chapter.) The constants µ and λ
are called the Lamé elastic constants. Comparing Eq. (39.20) with Eq. (39.12),
you see that

Cxxyy = λ,

Cxyxy = µ,

Cxxxx = 2µ+ λ.

(39.21)

So we have proved that Eq. (39.19) is indeed true. You also see that the elastic
properties of an isotropic material are completely given by two constants, as we
said in the last chapter.

The C’s can be put in terms of any two of the elastic constants we have used
earlier—for instance, in terms of Young’s modulus Y and Poisson’s ratio σ. We
will leave it for you to show that

Cxxxx = Y

1 + σ

(
1 + σ

1− 2σ

)
,

Cxxyy = Y

1 + σ

(
σ

1− 2σ

)
,

Cxyxy = Y

2(1 + σ) .

(39.22)

39-3 The motions in an elastic body VOLUME V

SURFACE A

Fig. 39-5. A small volume element V
bounded by the surface A.

We have pointed out that for an elastic body in equilibrium the internal
stresses adjust themselves to make the energy a minimum. Now we take a look
at what happens when the internal forces are not in equilibrium. Let’s say we
have a small piece of the material inside some surface A. See Fig. 39-5. If the
piece is in equilibrium, the total force F acting on it must be zero. We can think
of this force as being made up of two parts. There could be one part due to
“external” forces like gravity, which act from a distance on the matter in the piece
to produce a force per unit volume f ext. The total external force F ext is the
integral of f ext over the volume of the piece:

F ext =
∫
f ext dV. (39.23)

In equilibrium, this force would be balanced by the total force F int from the
neighboring material which acts across the surface A. When the piece is not in
equilibrium—if it is moving—the sum of the internal and external forces is equal
to the mass times the acceleration. We would have

F ext + F int =
∫
ρr̈ dV, (39.24)

where ρ is the density of the material, and r̈ is its acceleration. We can now
combine Eqs. (39.23) and (39.24), writing

F int =
∫
v

(−f ext + ρr̈) dV. (39.25)

We will simplify our writing by defining

f = −f ext + ρr̈. (39.26)
Then Eq. (39.25) is written

F int =
∫
v

f dV. (39.27)

What we have called F int is related to the stresses in the material. The stress
tensor Sij was defined (Chapter 31) so that the x-component of the force dF
across a surface element da, whose unit normal is n, is given by

dFx = (Sxxnx + Sxyny + Sxznz) da. (39.28)
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The x-component of F int on our little piece is then the integral of dFx over the
surface. Substituting this into the x-component of Eq. (39.27), we get∫

A

(Sxxnx + Sxyny + Sxznz) da =
∫
v

fx dV. (39.29)

We have a surface integral related to a volume integral—and that reminds us
of something we learned in electricity. Note that if you ignore the first subscript x
on each of the S’s in the left-hand side of Eq. (39.29), it looks just like the integral
of a quantity “S” ·n—that is, the normal component of a vector—over the surface.
It would be the flux of “S” out of the volume. And this could be written, using
Gauss law, as the volume integral of the divergence of “S”. It is, in fact, true
whether the x-subscript is there or not—it is just a mathematical theorem you
get by integrating by parts. In other words, we can change Eq. (39.29) into∫

v

(
∂Sxx
∂x

+ ∂Sxy
∂y

+ ∂Sxz
∂z

)
dV =

∫
v

fx dV. (39.30)

Now we can leave off the volume integrals and write the differential equation for
the general component of f as

fi =
∑
j

∂Sij
∂xj

. (39.31)

This tells us how the force per unit volume is related to the stress tensor Sij .
The theory of the motions inside a solid works this way. If we start out knowing

the initial displacements—given by, say, u—we can work out the strains eij . From
the strains we can get the stresses from Eq. (39.12). From the stresses we can
get the force density f in Eq. (39.31). Knowing f , we can get, from Eq. (39.26),
the acceleration r̈ of the material, which tells us how the displacements will be
changing. Putting everything together, we get the horrible equation of motion for
an elastic solid. We will just write down the results that come out for an isotropic
material. If you use (39.20) for Sij , and write the eij as 1

2 (∂ui/∂xj + ∂uj/∂xi),
you end up with the vector equation

f = (λ+ µ)∇(∇ · u) + µ∇2u. (39.32)

You can, in fact, see that the equation relating f and u must have this form.
The force must depend on the second derivatives of the displacements u. What
second derivatives of u are there that are vectors? One is ∇(∇ ·u); that’s a true
vector. The only other one is ∇2u. So the most general form is

f = a∇(∇ · u) + b∇2u,

which is just (39.32) with a different definition of the constants. You may be
wondering why we don’t have a third term using ∇ ×∇ × u, which is also a
vector. But remember that ∇×∇× u is the same thing as ∇(∇ · u)−∇2u,
so it is a linear combination of the two terms we have. Adding it would add
nothing new. We have proved once more that isotropic material has only two
elastic constants.

For the equation of motion of the material, we can set (39.32) equal to
ρ ∂2u/∂t2—neglecting for now any body forces like gravity—and get

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u. (39.33)

It looks something like the wave equation we had in electromagnetism, except that
there is an additional complicating term. For materials whose elastic properties
are everywhere the same we can see what the general solutions look like in the
following way. You will remember that any vector field can be written as the
sum of two vectors: one whose divergence is zero, and the other whose curl is
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zero. In other words, we can put

u = u1 + u2, (39.34)
where

∇ · u1 = 0, ∇× u2 = 0. (39.35)

Substituting u1 + u2 for u in (39.33), we get

ρ ∂2/∂t2[u1 + u2] = (λ+ µ)∇(∇ · u2) + µ∇2(u1 + u2). (39.36)

We can eliminate u1 by taking the divergence of this equation,

ρ ∂2/∂t2(∇ · u2) = (λ+ µ)∇2(∇ · u2) + µ∇ · ∇2(u2).

Since the operators (∇2) and (∇·) can be interchanged, we can factor out the
divergence to get

∇ · {ρ ∂2u2/∂t
2 − (λ+ 2µ)∇2u2} = 0. (39.37)

Since ∇× u2 is zero by definition, the curl of the bracket {} is also zero; so the
bracket itself is identically zero, and

ρ ∂2u2/∂t
2 = (λ+ 2µ)∇2u2. (39.38)

This is the vector wave equation for waves which move at the speed C2 =√
(λ+ 2µ)/ρ. Since the curl of u2 is zero, there is no shearing associated with

this wave; this wave is just the compressional—sound-type—wave we discussed
in the last chapter, and the velocity is just what we found for Clong.

BRIGHT SCREEN

POLAROIDS

LUCITE MODEL
UNDER STRESS

Fig. 39-6. Measuring internal stresses
with polarized light.

In a similar way—by taking the curl of Eq. (39.36)—we can show that u1
satisfies the equation

ρ ∂2u1/∂t
2 = µ∇2u1. (39.39)

This is again a vector wave equation for waves with the speed C2 =
√
µ/ρ. Since

∇ · u1 is zero, u1 produces no changes in density; the vector u1 corresponds to
the transverse, or shear-type, wave we saw in the last chapter, and C2 = Cshear.

Fig. 39-7. A stressed plastic model as
seen between crossed polaroids. [From F. W.
Sears, Optics, Addison-Wesley Publishing
Co., Mass., 1949.]

If we wished to know the static stresses in an isotropic material, we could,
in principle, find them by solving Eq. (39.32) with f equal to zero—or equal
to the static body forces from gravity such as ρg—under certain conditions
which are related to the forces acting on the surfaces of our large block of
material. This is somewhat more difficult to do than the corresponding problems
in electromagnetism. It is more difficult, first, because the equations are a little
more difficult to handle, and second, because the shape of the elastic bodies we are
likely to be interested in are usually much more complicated. In electromagnetism,
we are often interested in solving Maxwell’s equations around relatively simple
geometric shapes such as cylinders, spheres, and so on, since these are convenient
shapes for electrical devices. In elasticity, the objects we would like to analyze may
have quite complicated shapes—like a crane hook, or an automobile crankshaft,
or the rotor of a gas turbine. Such problems can sometimes be worked out
approximately by numerical methods, using the minimum energy principle we
mentioned earlier. Another way is to use a model of the object and measure the
internal strains experimentally, using polarized light.

It works this way: When a transparent isotropic material—for example, a
clear plastic like lucite—is put under stress, it becomes birefringent. If you put
polarized light through it, the plane of polarization will be rotated by an amount
related to the stress: by measuring the rotation, you can measure the stress.
Figure 39-6 shows how such a setup might look. Figure 39-7 is a photograph of
a photoelastic model of a complicated shape under stress.

39-4 Nonelastic behavior

In all that has been said so far, we have assumed that stress is proportional
to strain; in general, that is not true. Figure 39-8 shows a typical stress-strain
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curve for a ductile material. For small strains, the stress is proportional to the
strain. Eventually, however, after a certain point, the relationship between stress
and strain begins to deviate from a straight line. For many materials—the ones
we would call “brittle”—the object breaks for strains only a little above the point
where the curve starts to bend over. In general, there are other complications in
the stress-strain relationship. For example, if you strain an object, the stresses
may be high at first, but decrease slowly with time. Also if you go to high stresses,
but still not to the “breaking” point, when you lower the strain the stress will
return along a different curve. There is a small hysteresis effect (like the one we
saw between B and H in magnetic materials).

STRAIN

STRESS

LINEAR
REGION

FRACTURE
OCCURRED
HERE

Fig. 39-8. A typical stress-strain relation
for large strains.

The stress at which a material will break varies widely from one material to
another. Some materials will break when the maximum tensile stress reaches a
certain value. Other materials will fail when the maximum shear stress reaches
a certain value. Chalk is an example of a material which is much weaker in
tension than in shear. If you pull on the ends of a piece of blackboard chalk, the
chalk will break perpendicular to the direction of the applied stress, as shown
in Fig. 39-9(a). It breaks perpendicular to the applied force because it is only a
bunch of particles packed together which are easily pulled apart. The material
is, however, much harder to shear, because the particles get in each other’s way.
Now you will remember that when we had a rod in torsion there was a shear
all around it. Also, we showed that a shear was equivalent to a combination
of a tension and compression at 45◦. For these reasons, if you twist a piece
of blackboard chalk, it will break along a complicated surface which starts out
at 45◦ to the axis. A photograph of a piece of chalk broken in this way is shown
in Fig. 39-9(b). The chalk breaks where the material is in maximum tension.

(a) (b)

Fig. 39-9. (a) A piece of chalk broken by pulling on the ends; (b) a piece broken by twisting.

Other materials behave in strange and complicated ways. The more compli-
cated the materials are, the more interesting their behavior. If we take a sheet of
“Saran-Wrap” and crumple it up into a ball and throw it on the table, it slowly
unfolds itself and returns toward its original flat form. At first sight, we might be
tempted to think that it is inertia which prevents it from returning to its original
form. However, a simple calculation shows that the inertia is several orders of
magnitude too small to account for the effect. There appear to be two important
competing effects: “something” inside the material “remembers” the shape it
had initially and “tries” to get back there, but something else “prefers” the new
shape and “resists” the return to the old shape.

We will not attempt to describe the mechanism at play in the Saran plastic,
but you can get an idea of how such an effect might come about from the following
model. Suppose you imagine a material made of long, flexible, but strong, fibers
mixed together with some hollow cells filled with a viscous liquid. Imagine also
that there are narrow pathways from one cell to the next so the liquid can leak
slowly from a cell to its neighbor. When we crumple a sheet of this stuff, we
distort the long fibers, squeezing the liquid out of the cells in one place and
forcing it into other cells which are being stretched. When we let go, the long
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fibers try to return to their original shape. But to do this, they have to force the
liquid back to its original location—which will happen relatively slowly because
of the viscosity. The forces we apply in crumpling the sheet are much larger
than the forces exerted by the fibers. We can crumple the sheet quickly, but it
will return more slowly. It is undoubtedly a combination of large stiff molecules
and smaller, movable ones in the Saran-Wrap that is responsible for its behavior.
This idea also fits with the fact that the material returns more quickly to its
original shape when it’s warmed up than when it’s cold—the heat increases the
mobility (decreases the viscosity) of the smaller molecules.

Although we have been discussing how Hooke’s law breaks down, the remark-
able thing is perhaps not that Hooke’s law breaks down for large strains but that
it should be so generally true. We can get some idea of why this might be by
looking at the strain energy in a material. To say that the stress is proportional
to the strain is the same thing as saying that the strain energy varies as the
square of the strain. Suppose we have a rod and we twist it through a small
angle θ. If Hooke’s law holds, the strain energy should be proportional to the
square of θ. Suppose we were to assume that the energy were some arbitrary
function of the angle; we could write it as a Taylor expansion about zero angle

U(θ) = U(0) + U ′(0)θ + 1
2U
′′(0)θ2 + 1

6U
′′′(0)θ3 + · · · (39.40)

The torque τ is the derivative of U with respect to angle; we would have

τ(θ) = U ′(0) + U ′′(0)θ + 1
2U
′′′(0)θ2 + · · · (39.41)

Now if we measure our angles from the equilibrium position, the first term is zero.
So the first remaining term is proportional to θ; and for small enough angles,
it will dominate the term in θ2. [Actually, materials are sufficiently symmetric
internally so that τ(θ) = −τ(−θ); the term in θ2 will be zero, and the departures
from linearity would come only from the θ3 term. There is, however, no reason
why this should be true for compressions and tensions.] The thing we have not
explained is why materials usually break soon after the higher-order terms become
significant.

39-5 Calculating the elastic constants

As our last topic on elasticity we would like to show how one could try to
calculate the elastic constants of a material, starting with some knowledge of
the properties of the atoms which make up the material. We will take only the
simple case of an ionic cubic crystal like sodium chloride. When a crystal is
strained, its volume or its shape is changed. Such changes result in an increase
in the potential energy of the crystal. To calculate the change in strain energy,
we have to know where each atom goes. In complicated crystals, the atoms will
rearrange themselves in the lattice in very complicated ways to make the total
energy as small as possible. This makes the computation of the strain energy
rather difficult. In the case of a simple cubic crystal, however, it is easy to see
what will happen. The distortions inside the crystal will be geometrically similar
to the distortions of the outside boundaries of the crystal.

We can calculate the elastic constants for a cubic crystal in the following way.
First, we assume some force law between each pair of atoms in the crystal. Then,
we calculate the change in the internal energy of the crystal when it is distorted
from its equilibrium shape. This gives us a relation between the energy and the
strains which is quadratic in all the strains. Comparing the energy obtained this
way with Eq. (39.13), we can identify the coefficient of each term with the elastic
constants Cijkl.

For our example we will assume a simple force law: that the force between
neighboring atoms is a central force, by which we mean that it acts along the
line between the two atoms. We would expect the forces in ionic crystals to be
like this, since they are just primarily Coulomb forces. (The forces of covalent
bonds are usually more complicated, since they can exert a sideways push on a
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nearby atom; we will leave out this complication.) We are also going to include
only the forces between each atom and its nearest and next-nearest neighbors.
In other words, we will make an approximation which neglects all forces beyond
the next-nearest neighbor. The forces we will include are shown for the xy-plane
in Fig. 39-10(a). The corresponding forces in the yz- and zx-planes also have to
be included. (a)

Na Cl Na

Cl Na Cl

Na Cl Na

(b) Na Cl Na

Cl Na Cl

Na Cl Na

k1

k1

k1 k1

k2 k2

k2

k2 k2

k2

Fig. 39-10. (a) The interatomic forces
we are taking into account; (b) a model in
which the atoms are connected by springs.

Since we are only interested in the elastic coefficients which apply to small
strains, and therefore only want the terms in the energy which vary quadratically
with the strains, we can imagine that the force between each atom pair varies
linearly with the displacements. We can then imagine that each pair of atoms is
joined by a linear spring, as drawn in Fig. 39-10(b). All of the springs between a
sodium atom and a chlorine atom should have the same spring constant, say k1.
The springs between two sodiums and between two chlorines could have different
constants, but we will make our discussion simpler by taking them equal; we call
them k2. (We could come back later and make them different after we have seen
how the calculations go.)

Now we assume that the crystal is distorted by a homogeneous strain described
by the strain tensor eij . In general, it will have components involving x, y, and z;
but we will consider now only a strain with the three components exx, exy,
and eyy so that it will be easy to visualize. If we pick one atom as our origin, the
displacement of every other atom is given by equations like Eq. (39.9):

ux = exxx+ exyy,

uy = exyx+ eyyy.
(39.42)

Suppose we call the atom at x = y = 0 “atom 1” and number its neighbors in
the xy-plane as shown in Fig. 39-11. Calling the lattice constant a, we get the x
and y displacements ux and uy listed in Table 39-1.

Now we can calculate the energy stored in the springs, which is k/2 times the
square of the extension for each spring. For example, the energy in the horizontal
spring between atom 1 and atom 2 is

k1(exxa)2

2 . (39.43)

Note that to first order, the y-displacement of atom 2 does not change the length
of the spring between atom 1 and atom 2. To get the strain energy in a diagonal
spring, such as that to atom 3, however, we need to calculate the change in length

Na
1

2

3

4

5

6

7
8

9

a

a

exxa

eyxa

exya

eyya

Fig. 39-11. The displacements of
the nearest and next-nearest neighbors of
atom 1 (exaggerated).
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Table 39-1

Location
Atom x, y ux uy k

1 0, 0 0 0 —
2 a, 0 exxa eyxa k1
3 a, a (exx + exy)a (eyx + eyy)a k2
4 0, a exya eyya k1
5 −a, a (−exx + exy)a (−eyx + eyy)a k2
6 −a, 0 −exxa −eyxa k1
7 −a,−a −(exx + exy)a −(eyx + eyy)a k2
8 0,−a −exya −eyya k1
9 a,−a (exx − exy)a (eyx − eyy)a k2

due to both the horizontal and vertical displacements. For small displacements
from the original cube, we can write the change in the distance to atom 3 as the
sum of the components of ux and uy in the diagonal direction, namely as

1√
2

(ux + uy).

Using the values of ux and uy from the table, we get the energy

k2

2

(
ux + uy√

2

)2
= k2a

2

4 (exx + eyx + exy + eyy)2. (39.44)

For the total energy for all the springs in the xy-plane, we need the sum of
eight terms like (39.43) and (39.44). Calling this energy U0, we get

U0 = a2

2

{
k1e

2
xx + k2

2 (exx + eyx + exy + eyy)2

+ k1e
2
yy + k2

2 (exx − eyx − exy + eyy)2

+ k1e
2
xx + k2

2 (exx + eyx + exy + eyy)2

+ k1e
2
yy + k2

2 (exx − eyx − exy + eyy)2
}
. (39.45)

To get the total energy of all the springs connected to atom 1, we must make
one addition to the energy in Eq. (39.45). Even though we have only x- and y-
components of the strain, there are still some energies associated with the next-
nearest neighbors off the xy-plane. This additional energy is

k2(e2
xxa

2 + e2
yya

2). (39.46)

The elastic constants are related to the energy density w by Eq. (39.13). The
energy we have calculated is the energy associated with one atom, or rather, it is
twice the energy per atom, since one-half of the energy of each spring should be
assigned to each of the two atoms it joins. Since there are 1/a3 atoms per unit
volume, w and U0 are related by

w = U0

2a3 .

To find the elastic constants Cijkl, we need only to expand out the squares in
Eq. (39.45)—adding the terms of (39.46)—and compare the coefficients of eijekl
with the corresponding coefficient in Eq. (39.13). For example, collecting the
terms in e2

xx and in e2
yy, we get the factor

(k1 + 2k2)a2,
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so
Cxxxx = Cyyyy = k1 + 2k2

a
.

For the remaining terms, there is a slight complication. Since we cannot dis-
tinguish the product of two terms like exxeyy, from eyyexx, the coefficient of
such terms in our energy is equal to the sum of two terms in Eq. (39.13). The
coefficient of exxeyy in Eq. (39.45) is 2k2, so we have that

(Cxxyy + Cyyxx) = 2k2

a
.

But because of the symmetry in our crystal, Cxxyy = Cyyxx, so we have that

Cxxyy = Cyyxx = k2

a
.

By a similar process, we can also get

Cxyxy = Cyxyx = k2

a
.

Finally, you will notice that any term which involves either x or y only once
is zero—as we concluded earlier from symmetry arguments. Summarizing our
results:

Cxxxx = Cyyyy = k1 + 2k2

a
,

Cxyxy = Cyxyx = k2

a
,

Cxxyy = Cyyxx = Cxyyx = Cyxxy = k2

a
,

Cxxxy = Cxyyy = etc. = 0.

(39.47)

Table 39-2

Elastic Moduli of Cubic Crystals
in 1012 dynes·cm2*

Cxxxx Cxxyy Cxyxy

Na 0.055 0.042 0.049
K 0.046 0.037 0.026
Fe 2.37 1.41 1.16
Diamond 10.76 1.25 5.76
Al 1.08 0.62 0.28
LiF 1.19 0.54 0.53
NaCl 0.486 0.127 0.128
KCl 0.40 0.062 0.062
NaBr 0.33 0.13 0.13
KI 0.27 0.043 0.042
AgCl 0.60 0.36 0.062

* From: C. Kittel, Introduction to Solid
State Physics, John Wiley and Sons,
Inc., New York, 2nd ed., 1956, p. 93.

We have been able to relate the bulk elastic constants to the atomic properties
which appear in the constants k1 and k2. In our particular case, Cxyxy = Cxxyy.
It turns out—as you can perhaps see from the way the calculations went—that
these terms are always equal for a cubic crystal, no matter how many force terms
are taken into account, provided only that the forces act along the line joining
each pair of atoms—that is, so long as the forces between atoms are like springs
and don’t have a sideways part such as you might get from a cantilevered beam
(and you do get in covalent bonds).

We can check this conclusion with the experimental measurements of the
elastic constants. In Table 39-2 we give the observed values of the three elastic
coefficients for several cubic crystals.* You will notice that Cxxyy and Cxyxy are,
in general, not equal. The reason is that in metals like sodium and potassium the
interatomic forces are not along the line joining the atoms, as we assumed in our
model. Diamond does not obey the law either, because the forces in diamond are
covalent forces and have some directional properties—the bonds would prefer to be
at the tetrahedral angle. The ionic crystals like lithium fluoride, sodium chloride,
and so on, do have nearly all the physical properties assumed in our model, and
the table shows that the constants Cxxyy and Cxyxy are almost equal. It is not
clear why silver chloride should not satisfy the condition that Cxxyy = Cxyxy.

* In the literature you will often find that a different notation is used. For instance, people
usually write Cxxxx = C11, Cxxyy = C12, and Cxyxy = C44.
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40

The Flow of Dry Water

40-1 Hydrostatics

The 40-1 Hydrostatics
40-2 The equations of motion
40-3 Steady flow—Bernoulli’s

theorem
40-4 Circulation
40-5 Vortex lines

subject of the flow of fluids, and particularly of water, fascinates everybody.
We can all remember, as children, playing in the bathtub or in mud puddles with
the strange stuff. As we get older, we watch streams, waterfalls, and whirlpools,
and we are fascinated by this substance which seems almost alive relative to solids.
The behavior of fluids is in many ways very unexpected and interesting—it is the
subject of this chapter and the next. The efforts of a child trying to dam a small
stream flowing in the street and his surprise at the strange way the water works
its way out has its analog in our attempts over the years to understand the flow of
fluids. We have tried to dam the water up—in our understanding—by getting the
laws and the equations that describe the flow. We will describe these attempts
in this chapter. In the next chapter, we will describe the unique way in which
water has broken through the dam and escaped our attempts to understand it.

F

F

F F

F

F

Fig. 40-1. In a static fluid the force per
unit area across any surface is normal to the
surface and is the same for all orientations
of the surface.

We suppose that the elementary properties of water are already known to you.
The main property that distinguishes a fluid from a solid is that a fluid cannot
maintain a shear stress for any length of time. If a shear is applied to a fluid, it
will move under the shear. Thicker liquids like honey move less easily than fluids
like air or water. The measure of the ease with which a fluid yields is its viscosity.
In this chapter we will consider only situations in which the viscous effects can
be ignored. The effects of viscosity will be taken up in the next chapter.

We begin by considering hydrostatics, the theory of liquids at rest. When
liquids are at rest, there are no shear forces (even for viscous liquids). The law
of hydrostatics, therefore, is that the stresses are always normal to any surface
inside the fluid. The normal force per unit area is called the pressure. From the
fact that there is no shear in a static fluid it follows that the pressure stress is the
same in all directions (Fig. 40-1). We will let you entertain yourself by proving
that if there is no shear on any plane in a fluid, the pressure must be the same
in any direction.

SURFACE

p = p0 − ρgh

p = p0; h = 0

h
STATIC
LIQUID

Fig. 40-2. The pressure in a static liquid.

The pressure in a fluid may vary from place to place. For example, in a static
fluid at the earth’s surface the pressure will vary with height because of the
weight of the fluid. If the density ρ of the fluid is considered constant, and if the
pressure at some arbitrary zero level is called p0 (Fig. 40-2), then the pressure at
a height h above this point is p = p0 − ρgh, where g is the gravitational force
per unit mass. The combination

p+ ρgh

is, therefore, a constant in the static fluid. This relation is familiar to you, but
we will now derive a more general result of which it is a special case.

If we take a small cube of water, what is the net force on it from the pressure?
Since the pressure at any place is the same in all directions, there can be a
net force per unit volume only because the pressure varies from one point to
another. Suppose that the pressure is varying in the x-direction—and we take the
coordinate directions parallel to the cube edges. The pressure on the face at x
gives the force p∆y∆z (Fig. 40-3), and the pressure on the face at x+∆x gives the
force −[p+(∂p/∂x) ∆x] ∆y∆z, so that the resultant force is −(∂p/∂x) ∆x∆y∆z.
If we take the remaining pairs of faces of the cube, we easily see that the pressure
force per unit volume is −∇p. If there are other forces in addition—such as
gravity—then the pressure must balance them to give equilibrium.
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Let’s take a circumstance in which such an additional force can be described
by a potential energy, as would be true in the case of gravitation; we will let
φ stand for the potential energy per unit mass. (For gravity, for instance, φ is
just gz.) The force per unit mass is given in terms of the potential by −∇φ, and if
ρ is the density of the fluid, the force per unit volume is −ρ∇φ. For equilibrium
this force per unit volume added to the pressure force per unit volume must give
zero:

−∇p− ρ∇φ = 0. (40.1)

Equation (40.1) is the equation of hydrostatics. In general, it has no solution. If
the density varies in space in an arbitrary way, there is no way for the forces to
be in balance, and the fluid cannot be in static equilibrium. Convection currents
will start up. We can see this from the equation since the pressure term is a pure
gradient, whereas for variable ρ the other term is not. Only when ρ is a constant
is the potential term a pure gradient. Then the equation has a solution

p+ ρφ = const.

Another possibility which allows hydrostatic equilibrium is for ρ to be a function
only of p. However, we will leave the subject of hydrostatics because it is not
nearly so interesting as the situation when fluids are in motion.

x ∆x x + ∆x

∆y

∆z

p
p +

∂p

∂x
∆x

Fig. 40-3. The net pressure force on a
cube is −∇p per unit volume.

40-2 The equations of motion

First, we will discuss fluid motions in a purely abstract, theoretical way and
then consider special examples. To describe the motion of a fluid, we must give its
properties at every point. For example, at different places, the water (let us call
the fluid “water”) is moving with different velocities. To specify the character of
the flow, therefore, we must give the three components of velocity at every point
and for any time. If we can find the equations that determine the velocity, then
we would know how the liquid moves at all times. The velocity, however, is not
the only property that the fluid has which varies from point to point. We have
just discussed the variation of the pressure from point to point. And there are
still other variables. There may also be a variation of density from point to point.
In addition, the fluid may be a conductor and carry an electric current whose
density j varies from point to point in magnitude and direction. There may be
a temperature which varies from point to point, or a magnetic field, and so on.
So the number of fields needed to describe the complete situation will depend on
how complicated the problem is. There are interesting phenomena when currents
and magnetism play a dominant part in determining the behavior of the fluid; the
subject is called magnetohydrodynamics, and great attention is being paid to it at
the present time. However, we are not going to consider these more complicated
situations because there are already interesting phenomena at a lower level of
complexity, and even the more elementary level will be complicated enough.

We will take the situation where there is no magnetic field and no conductivity,
and we will not worry about the temperature because we will suppose that the
density and pressure determine in a unique manner the temperature at any point.
As a matter of fact, we will reduce the complexity of our work by making the
assumption that the density is a constant—we imagine that the fluid is essentially
incompressible. Putting it another way, we are supposing that the variations of
pressure are so small that the changes in density produced thereby are negligible.
If that is not the case, we would encounter phenomena additional to the ones
we will be discussing here—for example, the propagation of sound or of shock
waves. We have already discussed the propagation of sound and shocks to some
extent, so we will now isolate our consideration of hydrodynamics from these
other phenomena by making the approximation that the density ρ is a constant.
It is easy to determine when the approximation of constant ρ is a good one. We
can say that if the velocities of flow are much less than the speed of a sound
wave in the fluid, we do not have to worry about variations in density. The
escape that water makes in our attempts to understand it is not related to the
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approximation of constant density. The complications that do permit the escape
will be discussed in the next chapter.

In the general theory of fluids one must begin with an equation of state for
the fluid which connects the pressure to the density. In our approximation this
equation of state is simply

ρ = const.

This then is the first relation for our variables. The next relation expresses the
conservation of matter—if matter flows away from a point, there must be a
decrease in the amount left behind. If the fluid velocity is v, then the mass which
flows in a unit time across a unit area of surface is the component of ρv normal
to the surface. We have had a similar relation in electricity. We also know from
electricity that the divergence of such a quantity gives the rate of decrease of the
density per unit time. In the same way, the equation

∇ · (ρv) = −∂ρ
∂t

(40.2)

expresses the conservation of mass for a fluid; it is the hydrodynamic equation of
continuity. In our approximation, which is the incompressible fluid approximation,
ρ is a constant, and the equation of continuity is simply

∇ · v = 0. (40.3)

The fluid velocity v—like the magnetic field B—has zero divergence. (The hydro-
dynamic equations are often closely analogous to the electrodynamic equations;
that’s why we studied electrodynamics first. Some people argue the other way;
they think that one should study hydrodynamics first so that it will be easier
to understand electricity afterwards. But electrodynamics is really much easier
than hydrodynamics.)

We will get our next equation from Newton’s law which tells us how the
velocity changes because of the forces. The mass of an element of volume of the
fluid times its acceleration must be equal to the force on the element. Taking an
element of unit volume, and writing the force per unit volume as f , we have

ρ× (acceleration) = f .

We will write the force density as the sum of three terms. We have already con-
sidered the pressure force per unit volume, −∇p. Then there are the “external”
forces which act at a distance—like gravity or electricity. When they are conser-
vative forces with a potential per unit mass, φ, they give a force density −ρ∇φ.
(If the external forces are not conservative, we would have to write f ext for the
external force per unit volume.) Then there is another “internal” force per unit
volume, which is due to the fact that in a flowing fluid there can also be a shearing
stress. This is called the viscous force, which we will write fvisc. Our equation
of motion is

ρ× (acceleration) = −∇p− ρ∇φ+ fvisc. (40.4)

For this chapter we are going to suppose that the liquid is “thin” in the sense
that the viscosity is unimportant, so we will omit fvisc. When we drop the
viscosity term, we will be making an approximation which describes some ideal
stuff rather than real water. John von Neumann was well aware of the tremendous
difference between what happens when you don’t have the viscous terms and
when you do, and he was also aware that, during most of the development of
hydrodynamics until about 1900, almost the main interest was in solving beautiful
mathematical problems with this approximation which had almost nothing to
do with real fluids. He characterized the theorist who made such analyses as a
man who studied “dry water.” Such analyses leave out an essential property of
the fluid. It is because we are leaving this property out of our calculations in
this chapter that we have given it the title “The Flow of Dry Water.” We are
postponing a discussion of real water to the next chapter.
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Fig. 40-4. The acceleration of a fluid
particle.

PARTICLE
PATH

P1

P2

v ∆t

v(x, y , z, t)

v + ∆v

If we leave out fvisc, we have in Eq. (40.4) everything we need except an
expression for the acceleration. You might think that the formula for the acceler-
ation of a fluid particle would be very simple, for it seems obvious that if v is the
velocity of a fluid particle at some place in the fluid, the acceleration would just
be ∂v/∂t. It is not—and for a rather subtle reason. The derivative ∂v/∂t, is the
rate at which the velocity v(x, y, z, t) changes at a fixed point in space. What
we need is how fast the velocity changes for a particular piece of fluid. Imagine
that we mark one of the drops of water with a colored speck so we can watch it.
In a small interval of time ∆t, this drop will move to a different location. If the
drop is moving along some path as sketched in Fig. 40-4, it might in ∆t move
from P1 to P2. In fact, it will move in the x-direction by an amount vx ∆t, in
the y-direction by the amount vy ∆t, and in the z-direction by the amount vz ∆t.
We see that, if v(x, y, z, t) is the velocity of the fluid particle which is at (x, y, z)
at the time t, then the velocity of the same particle, at the time t+ ∆t is given
by v(x+ ∆x, y + ∆y, z + ∆z, t+ ∆t)—with

∆x = vx ∆t, ∆y = vy ∆t, and ∆z = vz ∆t.

From the definition of the partial derivatives—recall Eq. (2.7)—we have, to first
order, that

v(x+ vx ∆t, y + vy ∆t, z + vz ∆t, t+ ∆t)

= v(x, y, z, t) + ∂v

∂x
vx ∆t+ ∂v

∂y
vy ∆t+ ∂v

∂z
vz ∆t+ ∂v

∂t
∆t.

The acceleration ∆v/∆t is

vx
∂v

∂x
+ vy

∂v

∂y
+ vz

∂v

∂z
+ ∂v

∂t
.

We can write this symbolically—treating ∇ as a vector—as

(v ·∇)v + ∂v

∂t
. (40.5)

Note that there can be an acceleration even though ∂v/∂t = 0 so that velocity
at a given point is not changing. As an example, water flowing in a circle at a
constant speed is accelerating even though the velocity at a given point is not
changing. The reason is, of course, that the velocity of a particular piece of water
which is initially at one point on the circle has a different direction a moment
later; there is a centripetal acceleration.

The rest of our theory is just mathematical—finding solutions of the equation
of motion we get by putting the acceleration (40.5) into Eq. (40.4). We get

∂v

∂t
+ (v ·∇)v = −∇p

ρ
−∇φ, (40.6)

where viscosity has been omitted. We can rearrange this equation by using the
following identity from vector analysis:

(v ·∇)v = (∇× v)× v + 1
2∇(v · v).
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If we now define a new vector field Ω, as the curl of v,

Ω =∇× v, (40.7)

the vector identity can be written as

(v ·∇)v = Ω× v + 1
2∇v

2,

and our equation of motion (40.6) becomes

∂v

∂t
+ Ω× v + 1

2∇v
2 = −∇p

ρ
−∇φ. (40.8)

You can verify that Eqs. (40.6) and (40.8) are equivalent by checking that the
components of the two sides of the equation are equal—and making use of (40.7).

The vector field Ω is called the vorticity. If the vorticity is zero everywhere,
we say that the flow is irrotational. We have already defined in Section 3-5 a
thing called the circulation of a vector field. The circulation around any closed
loop in a fluid is the line integral of the fluid velocity, at a given instant of time,
around that loop:

(Circulation) =
∮
v · ds.

The circulation per unit area for an infinitesimal loop is then—using Stokes’
theorem—equal to ∇ × v. So the vorticity Ω is the circulation around a unit
area (perpendicular to the direction of Ω). It also follows that if you put a little
piece of dirt—not an infinitesimal point—at any place in the liquid it will rotate
with the angular velocity Ω/2. Try to see if you can prove that. You can also
check it out that for a bucket of water on a turntable, Ω is equal to twice the
local angular velocity of the water.

If we are interested only in the velocity field, we can eliminate the pressure
from our equations. Taking the curl of both sides of Eq. (40.8), remembering that
ρ is a constant and that the curl of any gradient is zero, and using Eq. (40.3), we
get

∂Ω
∂t

+∇× (Ω× v) = 0. (40.9)

This equation, together with the equations

Ω =∇× v (40.10)
and

∇ · v = 0, (40.11)

describes completely the velocity field v. Mathematically speaking, if we know
Ω at some time, then we know the curl of the velocity vector, and we also know
that its divergence is zero, so given the physical situation we have all we need
to determine v everywhere. (It is just like the situation in magnetism where we
had ∇ ·B = 0 and ∇ ×B = j/ε0c

2.) Thus, a given Ω determines v just as a
given j determines B. Then, knowing v, Eq. (40.9) tells us the rate of change
of Ω from which we can get the new Ω for the next instant. Using Eq. (40.10),
again we find the new v, and so on. You see how these equations contain all the
machinery for calculating the flow. Note, however, that this procedure gives the
velocity field only; we have lost all information about the pressure.

We point out one special consequence of our equation. If Ω = 0 everywhere
at any time t, ∂Ω/∂t also vanishes, so that Ω is still zero everywhere at t+ ∆t.
We have a solution to the equation; the flow is permanently irrotational. If a flow
was started with zero rotation, it would always have zero rotation. The equations
to be solved then are

∇ · v = 0, ∇× v = 0.

They are just like the equations for the electrostatic or magnetostatic fields in
free space. We will come back to them and look at some special problems later.
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40-3 Steady flow—Bernoulli’s theorem

v

Fig. 40-5. Streamlines in steady fluid
flow.

Now we want to return to the equation of motion, Eq. (40.8), but limit
ourselves to situations in which the flow is “steady.” By steady flow we mean
that at any one place in the fluid the velocity never changes. The fluid at any
point is always replaced by new fluid moving in exactly the same way. The
velocity picture always looks the same—v is a static vector field. In the same
way that we drew “field lines” in magnetostatics, we can now draw lines which
are always tangent to the fluid velocity as shown in Fig. 40-5. These lines are
called streamlines. For steady flow, they are evidently the actual paths of fluid
particles. (In unsteady flow the streamline pattern changes in time, and the
streamline pattern at any instant does not represent the path of a fluid particle.)

A steady flow does not mean that nothing is happening—atoms in the fluid
are moving and changing their velocities. It only means that ∂v/∂t = 0. Then if
we take the dot product of v into the equation of motion, the term v · (Ω× v)
drops out, and we are left with

v ·∇
{
p

ρ
+ φ+ 1

2 v
2
}

= 0. (40.12)

This equation says that for a small displacement in the direction of the fluid
velocity the quantity inside the brackets doesn’t change. Now in steady flow all
displacements are along streamlines, so Eq. (40.12) tells us that for all the points
along a streamline, we can write

p

ρ
+ 1

2 v
2 + φ = const (streamline). (40.13)

This is Bernoulli’s theorem. The constant may in general be different for different
streamlines; all we know is that the left-hand side of Eq. (40.13) is the same all
along a given streamline. Incidentally, we may notice that for steady irrotational
motion for which Ω = 0, the equation of motion (40.8) gives us the relation

∇
{
p

ρ
+ 1

2 v
2 + φ

}
= 0,

so that
p

ρ
+ 1

2 v
2 + φ = const (everywhere). (40.14)

It’s just like Eq. (40.13) except that now the constant has the same value through-
out the fluid.

(a)

A1

A2v1

v2

(b)

∆M

∆M

v1∆t

v2∆t

Fig. 40-6. Fluid motion in a flow tube.

The theorem of Bernoulli is in fact nothing more than a statement of the
conservation of energy. A conservation theorem such as this gives us a lot
of information about a flow without our actually having to solve the detailed
equations. Bernoulli’s theorem is so important and so simple that we would like
to show you how it can be derived in a way that is different from the formal
calculations we have just used. Imagine a bundle of adjacent streamlines which
form a stream tube as sketched in Fig. 40-6. Since the walls of the tube consist
of streamlines, no fluid flows out through the wall. Let’s call the area at one end
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of the stream tube A1, the fluid velocity there v1, the density of the fluid ρ1, and
the potential energy φ1. At the other end of the tube, we have the corresponding
quantities A2, v2, ρ2, and φ2. Now after a short interval of time ∆t, the fluid
at A1 has moved a distance v1 ∆t, and the fluid at A2 has moved a distance v2 ∆t
[Fig. 40-6(b)]. The conservation of mass requires that the mass which enters
through A1 must be equal to the mass which leaves through A2. These masses
at these two ends must be the same:

∆M = ρ1A1v1 ∆t = ρ2A2v2 ∆t.

So we have the equality
ρ1A1v1 = ρ2A2v2. (40.15)

This equation tells us that the velocity varies inversely with the area of the stream
tube if ρ is constant.

Now we calculate the work done by the fluid pressure. The work done on
the fluid entering at A1 is p1A1v1 ∆t, and the work given up at A2 is p2A2v2 ∆t.
The net work on the fluid between A1 and A2 is, therefore,

p1A1v1 ∆t− p2A2v2 ∆t,

which must equal the increase in the energy of a mass ∆M of fluid in going from
A1 to A2. In other words,

p1A1v1 ∆t− p2A2v2 ∆t = ∆M(E2 − E1), (40.16)

where E1 is the energy per unit mass of fluid at A1, and E2 is the energy per
unit mass at A2. The energy per unit mass of the fluid can be written as

E = 1
2v

2 + φ+ U,

where 1
2v

2 is the kinetic energy per unit mass, φ is the potential energy per unit
mass, and U is an additional term which represents the internal energy per unit
mass of fluid. The internal energy might correspond, for example, to the thermal
energy in a compressible fluid, or to chemical energy. All these quantities can
vary from point to point. Using this form for the energies in (40.16), we have

p1A1v1 ∆t
∆M − p2A2v2 ∆t

∆M = 1
2 v

2
2 + φ2 + U2 −

1
2 v

2
1 − φ1 − U1.

But we have seen that ∆M = ρAv∆t, so we get

p1

ρ1
+ 1

2 v
2
1 + φ1 + U1 = p2

ρ2
+ 1

2 v
2
2 + φ2 + U2, (40.17)

which is the Bernoulli result with an additional term for the internal energy. If
the fluid is incompressible, the internal energy term is the same on both sides,
and we get again that Eq. (40.14) holds along any streamline.

We consider now some simple examples in which the Bernoulli integral gives
us a description of the flow. Suppose we have water flowing out of a hole near the
bottom of a tank, as drawn in Fig. 40-7. We take a situation in which the flow
speed vout at the hole is much larger than the flow speed near the top of the tank;
in other words, we imagine that the diameter of the tank is so large that we can
neglect the drop in the liquid level. (We could make a more accurate calculation
if we wished.) At the top of the tank the pressure is p0, the atmospheric pressure,
and the pressure at the sides of the jet is also p0. Now we write our Bernoulli
equation for a streamline, such as the one shown in the figure. At the top of the
tank, we take v equal to zero and we also take the gravity potential φ to be zero.
At the speed vout, and φ = −gh, so that

p0 = p0 + 1
2ρv

2
out − ρgh,

or
vout =

√
2gh. (40.18)
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p0

p0

WATER

STREAM LINE

vout

Fig. 40-7. Flow from a tank. Fig. 40-8. With a re-entrant discharge
tube, the stream contracts to one-half the
area of the opening.

This velocity is just what we would get for something which falls the distance h. It
is not too surprising, since the water at the exit gains kinetic energy at the expense
of the potential energy of the water at the top. Do not get the idea, however, that
you can figure out the rate that the fluid flows out of the tank by multiplying this
velocity by the area of the hole. The fluid velocities as the jet leaves the hole are
not all parallel to each other but have components inward toward the center of the
stream—the jet is converging. After the jet has gone a little way, the contraction
stops and the velocities do become parallel. So the total flow is the velocity times
the area at that point. In fact, if we have a discharge opening which is just a round
hole with a sharp edge, the jet contracts to 62 percent of the area of the hole.
The reduced effective area of the discharge varies for different shapes of discharge
tubes, and experimental contractions are available as tables of efflux coefficients.

v1
v2 v1

Fig. 40-9. The pressure is lowest where
the velocity is highest.

If the discharge tube is re-entrant, as shown in Fig. 40-8, it is possible to
prove in a most beautiful way that the efflux coefficient is exactly 50 percent.
We will give just a hint of how the proof goes. We have used the conservation of
energy to get the velocity, Eq. (40.18), but there is also momentum conservation
to consider. Since there is an outflow of momentum in the discharge jet, there
must be a force applied over the cross section of the discharge tube. Where does
the force come from? The force must come from the pressure on the walls. As
long as the efflux hole is small and away from the walls, the fluid velocity near
the walls of the tank will be very small. Therefore, the pressure on every face is
almost exactly the same as the static pressure in a fluid at rest—from Eq. (40.14).
Then the static pressure at any point on the side of the tank must be matched
by an equal pressure at the point on the opposite wall, except at the points on
the wall opposite the charge tube. If we calculate the momentum poured out
through the jet by this pressure, we can show that the efflux coefficient is 1/2.
We cannot use this method for a discharge hole like that shown in Fig. 40-7,
however, because the velocity increase along the wall right near the discharge
area gives a pressure fall which we are not able to calculate.

Let’s look at another example—a horizontal pipe with changing cross section,
as shown in Fig. 40-9, with water flowing in one end and out the other. The
conservation of energy, namely Bernoulli’s formula, says that the pressure is lower
in the constricted area where the velocity is higher. We can easily demonstrate
this effect by measuring the pressure at different cross sections with small vertical
columns of water attached to the flow tube through holes small enough so that
they do not disturb the flow. The pressure is then measured by the height of water
in these vertical columns. The pressure is found to be less at the constriction
than it is on either side. If the area beyond the constriction comes back to the
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same value it had before the constriction, the pressure rises again. Bernoulli’s
formula would predict that the pressure downstream of the constriction should
be the same as it was upstream, but actually it is noticeably less. The reason
that our prediction is wrong is that we have neglected the frictional, viscous
forces which cause a pressure drop along the tube. Despite this pressure drop the
pressure is definitely lower at the constriction (because of the increased speed)
than it is on either side of it—as predicted by Bernoulli. The speed v2 must
certainly exceed v1 to get the same amount of water through the narrower tube.
So the water accelerates in going from the wide to the narrow part. The force
that gives this acceleration comes from the drop in pressure.

Fig. 40-10. Proof that v is not equal
to
√

2gh.

We can check our results with another simple demonstration. Suppose we
have on a tank a discharge tube which throws a jet of water upward as shown in
Fig. 40-10. If the efflux velocity were exactly

√
2gh, the discharge water should

rise to a level even with the surface of the water in the tank. Experimentally, it
falls somewhat short. Our prediction is roughly right, but again viscous friction
which has not been included in our energy conservation formula has resulted in a
loss of energy.

Have you ever held two pieces of paper close together and tried to blow them
apart? Try it! They come together. The reason, of course, is that the air has a
higher speed going through the constricted space between the sheets than it does
when it gets outside. The pressure between the sheets is lower than atmospheric
pressure, so they come together rather than separating.

40-4 Circulation

(a)

(b)

(c)

F

Fig. 40-11. (a) Ideal fluid flow past a
cylinder. (b) Circulation around a cylinder.
(c) The superposition of (a) and (b).

We saw at the beginning of the last section that if we have an incompressible
fluid with no circulation, the flow satisfies the following two equations:

∇ · v = 0, ∇× v = 0. (40.19)

They are the same as the equations of electrostatics or magnetostatics in empty
space. The divergence of the electric field is zero when there are no charges, and
the curl of the electrostatic field is always zero. The curl of the magnetostatic field
is zero if there are no currents, and the divergence of the magnetic field is always
zero. Therefore, Eqs. (40.19) have the same solutions as the equations for E in
electrostatics or for B in magnetostatics. As a matter of fact, we have already
solved the problem of the flow of a fluid past a sphere, as an electrostatic analogy, in
Section 12-5. The electrostatic analog is a uniform electric field plus a dipole field.
The dipole field is so adjusted that the flow velocity normal to the surface of the
sphere is zero. The same problem for the flow past a cylinder can be worked out in
a similar way by using a suitable line dipole with a uniform flow field. This solution
holds for a situation in which the fluid velocity at large distances is constant—both
in magnitude and direction. The solution is sketched in Fig. 40-11(a).

There is another solution for the flow around a cylinder when the conditions
are such that the fluid at large distances moves in circles around the cylinder.
The flow is, then, circular everywhere, as in Fig. 40-11(b). Such a flow has a
circulation around the cylinder, although ∇×v is still zero in the fluid. How can
there be circulation without a curl? We have a circulation around the cylinder
because the line integral of v around any loop enclosing the cylinder is not zero.
At the same time, the line integral of v around any closed path which does not
include the cylinder is zero. We saw the same thing when we found the magnetic
field around a wire. The curl of B was zero outside of the wire, although a line
integral of B around a path which encloses the wire did not vanish. The velocity
field in an irrotational circulation around a cylinder is precisely the same as the
magnetic field around a wire. For a circular path with its center at the center of
the cylinder, the line integral of the velocity is∮

v · ds = 2πrv.

For irrotational flow the integral must be independent of r. Let’s call the constant
40-9



value C, then we have that
v = C

2πr , (40.20)

where v is the tangential velocity, and r is the distance from the axis.

Fig. 40-12. Water with circulation drain-
ing from a tank.

There is a nice demonstration of a fluid circulating around a hole. You take a
transparent cylindrical tank with a drain hole in the center of the bottom. You
fill it with water, stir up some circulation with a stick, and pull the drain plug.
You get the pretty effect shown in Fig. 40-12. (You’ve seen a similar thing many
times in the bathtub!) Although you put in some ω at beginning, it soon dies
down because of viscosity and the flow becomes irrotational—although still with
some circulation around the hole.

From the theory, we can calculate the shape of the inner surface of the water.
As a particle of the water moves inward it picks up speed. From Eq. (40.20)
the tangential velocity goes as 1/r—it’s just from the conservation of angular
momentum, like the skater pulling in her arms. Also the radial velocity goes
as 1/r. Ignoring the tangential motion, we have water going radially inward
toward a hole; from ∇ · v = 0, it follows that the radial velocity is proportional
to 1/r. So the total velocity also increases as 1/r, and the water goes in along
Archimedean spirals. The air-water surface is all at atmospheric pressure, so it
must have—from Eq. (40.14)—the property that

gz + 1
2v

2 = const.

But v is proportional to 1/r, so the shape of the surface is

(z − z0) = k

r2 .

An interesting point—which is not true in general but is true for incompress-
ible, irrotational flow—is that if we have one solution and a second solution, then
the sum is also a solution. This is true because the equations in (40.19) are linear.
The complete equations of hydrodynamics, Eqs. (40.9), (40.10), and (40.11), are
not linear, which makes a vast difference. For the irrotational flow about the
cylinder, however, we can superpose the flow of Fig. 40-11(a) on the flow of
Fig. 40-11(b) and get the new flow pattern shown in Fig. 40-11(c). This flow is
of special interest. The flow velocity is higher on the upper side of the cylinder
than on the lower side. The pressures are therefore lower on the upper side than
on the lower side. So when we have a combination of a circulation around a
cylinder and a net horizontal flow, there is a net vertical force on the cylinder—it
is called a lift force. Of course, if there is no circulation, there is no net force on
any body according to our theory of “dry” water.

40-5 Vortex lines

We have already written down the general equations for the flow of an
incompressible fluid when there may be vorticity. They are

I. ∇ · v = 0,

II. Ω =∇× v,

III. ∂Ω
∂t

+∇× (Ω× v) = 0.

The physical content of these equations has been described in words by Helmholtz
in terms of three theorems. First, imagine that in the fluid we were to draw vortex
lines rather than streamlines. By vortex lines we mean field lines that have the
direction of Ω and have a density in any region proportional to the magnitude
of Ω. From II the divergence of Ω is always zero (remember—Section 3-7—that
the divergence of a curl is always zero). So vortex lines are like lines of B—
they never start or stop, and will tend to go in closed loops. Now Helmholtz
described III in words by the following statement: the vortex lines move with
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the fluid. This means that if you were to mark the fluid particles along some
vortex lines—by coloring them with ink, for example—then as the fluid moves
and carries those particles along, they will always mark the new positions of the
vortex lines. In whatever way the atoms of the liquid move, the vortex lines move
with them. That is one way to describe the laws.

It also suggests a method for solving any problems. Given the initial flow
pattern—say v everywhere—then you can calculate Ω. From the v you can also
tell where the vortex lines are going to be a little later—they move with the
speed v. With the new Ω you can use I and II to find the new v. (That’s just like
the problem of finding B, given the currents.) If we are given the flow pattern at
one instant we can in principle calculate it for all subsequent times. We have the
general solution for nonviscous flow.

(a)

Ω1

AREA A1

(b) Ω2

AREA A2

Fig. 40-13. (a) A group of vortex lines
at t; (b) the same lines at a later time t ′.

We would like to show how Helmholtz’s statement—and, therefore, III—can
be at least partly understood. It is really just the law of conservation of angular
momentum applied to the fluid. Suppose we imagine a small cylinder of the liquid
whose axis is parallel to the vortex lines, as in Fig. 40-13(a). At some time later,
this same piece of fluid will be somewhere else. Generally it will occupy a cylinder
with a different diameter and be in a different place. It may also have a different
orientation, say as in Fig. 40-13(b). If, however, the diameter has decreased as
shown in Fig. 40-13, the length will have increased to keep the volume constant
(since we are assuming an incompressible fluid). Also, since the vortex lines are
stuck with the material, their density will go up as the cross-sectional area goes
down. The product of the vorticity Ω and area A of the cylinder will remain
constant, so according to Helmholtz, we should have

Ω2A2 = Ω1A1. (40.21)

Now notice that with zero viscosity all the forces on the surface of the
cylindrical volume (or any volume, for that matter) are perpendicular to the
surface. The pressure forces can cause the volume to be moved from place to place,
or can cause it to change shape; but with no tangential forces the magnitude
of the angular momentum of the material inside cannot change. The angular
momentum of the liquid in the little cylinder is its moment of inertia I times the
angular velocity of the liquid, which is proportional to the vorticity Ω. For a
cylinder, the moment of inertia is proportional to mr2. So from the conservation
of angular momentum, we would conclude that

(M1R
2
1)Ω1 = (M2R

2
2)Ω2.

But the mass is the same, M1 = M2, and the areas are proportional to R2,
so we get again just Eq. (40.21). Helmholtz’s statement—which is equivalent
to III—is just a consequence of the fact that in the absence of viscosity the
angular momentum of an element of the fluid cannot change.

Fig. 40-14. Making a travelling vortex ring.

There is a nice demonstration of a moving vortex which is made with the
simple apparatus of Fig. 40-14. It is a “drum” two feet in diameter and two feet
long made by stretching a thick rubber sheet over the open end of a cylindrical
“box.” The “bottom”—the drum is tipped on its side—is solid except for a 3-inch
diameter hole. If you give a sharp blow on the rubber diaphragm with your hand,
a vortex ring is projected out of the hole. Although the vortex is invisible, you
can tell it’s there because it will blow out a candle 10 to 20 feet away. By the
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delay in the effect, you can tell that “something” is travelling at a finite speed.
You can see better what is going on if you first blow some smoke into the box.
Then you see the vortex as a beautiful round “smoke ring.”

The smoke ring is a torus-shaped bundle of vortex lines, as shown in
Fig. 40-15(a). Since Ω = ∇ × v, these vortex lines represent also a circula-
tion of v as shown in part (b) of the figure. We can understand the forward
motion of the ring in the following way: The circulating velocity around the
bottom of the ring extends up to the top of the ring, having there a forward
motion. Since the lines of Ω move with the fluid, they also move ahead with the
velocity v. (Of course, the circulation of v around the top part of the ring is
responsible for the forward motion of the vortex lines at the bottom.)

(a)

VORTEX
LINES

DIRECTION OF
MOTION

(b)
VORTEX
LINES

DIRECTION OF
MOTION

v

v

v

v

Fig. 40-15. A moving vortex ring (a
smoke ring). (a) The vortex lines. (b) A
cross section of the ring.

We must now mention a serious difficulty. We have already noted that
Eq. (40.9) says that, if Ω is initially zero, it will always be zero. This result is a
great failure of the theory of “dry” water, because it means that once Ω is zero it
is always zero—it is impossible to produce any vorticity under any circumstance.
Yet, in our simple demonstration with the drum, we can generate a vortex ring
starting with air which was initially at rest. (Certainly, v = 0, Ω = 0 everywhere
in the box before we hit it.) Also, we all know that we can start some vorticity
in a lake with a paddle. Clearly, we must go to a theory of “wet” water to get a
complete understanding of the behavior of a fluid.

Another feature of the dry water theory which is incorrect is the supposition
we make regarding the flow at the boundary between it and the surface of a solid.
When we discussed the flow past a cylinder—as in Fig. 40-11, for example—we
permitted the fluid to slide along the surface of the solid. In our theory, the
velocity at a solid surface could have any value depending on how it got started,
and we did not consider any “friction” between the fluid and the solid. It is an
experimental fact, however, that the velocity of a real fluid always goes to zero
at the surface of a solid object. Therefore, our solution for the cylinder, with
or without circulation, is wrong—as is our result regarding the generation of
vorticity. We will tell you about the more correct theories in the next chapter.
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41

The Flow of Wet Water

41-1 Viscosity

In 41-1 Viscosity
41-2 Viscous flow
41-3 The Reynolds number
41-4 Flow past a circular cylinder
41-5 The limit of zero viscosity
41-6 Couette flow

the last chapter we discussed the behavior of water, disregarding the
phenomenon of viscosity. Now we would like to discuss the phenomena of the
flow of fluids, including the effects of viscosity. We want to look at the real
behavior of fluids. We will describe qualitatively the actual behavior of the
fluids under various different circumstances so that you will get some feel for
the subject. Although you will see some complicated equations and hear about
some complicated things, it is not our purpose that you should learn all these
things. This is, in a sense, a “cultural” chapter which will give you some idea of
the way the world is. There is only one item which is worth learning, and that is
the simple definition of viscosity which we will come to in a moment. The rest is
only for your entertainment.

In the last chapter we found that the laws of motion of a fluid are contained
in the equation

∂v

∂t
+ (v ·∇)v = −∇p

ρ
−∇φ+ fvisc

ρ
. (41.1)

In our “dry” water approximation we left out the last term, so we were neglecting
all viscous effects. Also, we sometimes made an additional approximation by
considering the fluid as incompressible; then we had the additional equation

∇ · v = 0.

This last approximation is often quite good—particularly when flow speeds are
much slower than the speed of sound. But in real fluids it is almost never true that
we can neglect the internal friction that we call viscosity; most of the interesting
things that happen come from it in one way or another. For example, we saw
that in “dry” water the circulation never changes—if there is none to start out
with, there will never be any. Yet, circulation in fluids is an everyday occurrence.
We must fix up our theory.

We begin with an important experimental fact. When we worked out the flow
of “dry” water around or past a cylinder—the so-called “potential flow”—we had
no reason not to permit the water to have a velocity tangent to the surface; only
the normal component had to be zero. We took no account of the possibility
that there might be a shear force between the liquid and the solid. It turns
out—although it is not at all self-evident—that in all circumstances where it has
been experimentally checked, the velocity of a fluid is exactly zero at the surface
of a solid. You have noticed, no doubt, that the blade of a fan will collect a thin
layer of dust—and that it is still there after the fan has been churning up the
air. You can see the same effect even on the great fan of a wind tunnel. Why
isn’t the dust blown off by the air? In spite of the fact that the fan blade is
moving at high speed through the air, the speed of the air relative to the fan
blade goes to zero right at the surface. So the very smallest dust particles are
not disturbed.* We must modify the theory to agree with the experimental fact
that in all ordinary fluids, the molecules next to a solid surface have zero velocity
(relative to the surface).†

* You can blow large dust particles from a table top, but not the very finest ones. The large
ones stick up into the breeze.

† You can imagine circumstances when it is not true: glass is theoretically a “liquid,” but
it can certainly be made to slide along a steel surface. So our assertion must break down
somewhere.
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Fig. 41-1. Viscous drag between two par-
allel plates.
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We originally characterized a liquid by the fact that if you put a shearing stress
on it—no matter how small—it would give way. It flows. In static situations,
there are no shear stresses. But before equilibrium is reached—as long as you
still push on it—there can be shear forces. Viscosity describes these shear forces
which exist in a moving fluid. To get a measure of the shear forces during the
motion of a fluid, we consider the following kind of experiment. Suppose that we
have two solid plane surfaces with water between them, as in Fig. 41-1, and we
keep one stationary while moving the other parallel to it at the slow speed v0. If
you measure the force required to keep the upper plate moving, you find that
it is proportional to the area of the plates and to v0/d, where d is the distance
between the plates. So the shear stress F/A is proportional to v0/d:

F

A
= η

v0

d
.

The constant of proportionality η is called the coefficient of viscosity.

∆A

∆y

∆F

vx

vx + ∆vx

Fig. 41-2. The shear stress in a viscous
fluid.

If we have a more complicated situation, we can always consider a little, flat,
rectangular cell in the water with its faces parallel to the flow, as in Fig. 41-2.
The shear force across this cell is given by

∆F
∆A = η

∆vx
∆y = η

∂vx
∂y

. (41.2)

Now, ∂vx/∂y is the rate of change of the shear strain we defined in Chapter 39,
so for a liquid, the shear stress is proportional to the rate of change of the shear
strain.
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FLUID

Fig. 41-3. The flow in a fluid between
two concentric cylinders rotating at different
angular velocities.

In the general case we write

Sxy = η

(
∂vy
∂x

+ ∂vx
∂y

)
. (41.3)

If there is a uniform rotation of the fluid, ∂vx/∂y is the negative of ∂vy/∂x and
Sxy is zero—as it should be since there are no stresses in a uniformly rotating
fluid. (We did a similar thing in defining exy in Chapter 39.) There are, of course,
the corresponding expressions for Syz and Szx.

As an example of the application of these ideas, we consider the motion of a
fluid between two coaxial cylinders. Let the inner one have the radius a and the
peripheral velocity va, and let the outer one have radius b and velocity vb. See
Fig. 41-3. We might ask, what is the velocity distribution between the cylinders?
To answer this question, we begin by finding a formula for the viscous shear in the
fluid at a distance r from the axis. From the symmetry of the problem, we can
assume that the flow is always tangential and that its magnitude depends only
on r; v = v(r). If we watch a speck in the water at the radius r, its coordinates
as a function of time are

x = r cosωt, y = r sinωt,

where ω = v/r. Then the x- and y-components of velocity are

vx = −rω sinωt = −ωy and vy = rω cosωt = ωx. (41.4)

From Eq. (41.3), we have

Sxy = η

[
∂

∂x
(xω)− ∂

∂y
(yω)

]
= η

[
x
∂ω

∂x
− y ∂ω

∂y

]
. (41.5)
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For a point at y = 0, ∂ω/∂y = 0, and x ∂ω/∂x is the same as r dω/dr. So at that
point

(Sxy)y=0 = ηr
dω

dr
. (41.6)

(It is reasonable that S should depend on ∂ω/∂r; when there is no change in ω
with r, the liquid is in uniform rotation and there are no stresses.)

The stress we have calculated is the tangential shear which is the same all
around the cylinder. We can get the torque acting across a cylindrical surface
at the radius r by multiplying the shear stress by the moment arm r and the
area 2πrl (where l is the length of the cylinder). We get

τ = 2πr2l(Sxy)y=0 = 2πηlr3 dω

dr
. (41.7)

Since the motion of the water is steady—there is no angular acceleration—the
net torque on the cylindrical shell of water between r and r+dr must be zero; that
is, the torque at r must be balanced by an equal and opposite torque at r + dr,
so that τ must be independent of r. In other words, r3 dω/dr is equal to some
constant, say A, and

dω

dr
= A

r3 . (41.8)

Integrating, we find that ω varies with r as

ω = − A

2r2 +B. (41.9)

The constants A and B are to be determined to fit the conditions that ω = ωa
at r = a, and ω = ωb at r = b. We get that

A = 2a2b2

b2 − a2 (ωb − ωa),

B = b2ωb − a2ωa
b2 − a2 .

(41.10)

So we know ω as a function of r, and from it v = ωr.
If we want the torque, we can get it from Eqs. (41.7) and (41.8):

τ = 2πηlA
or

τ = 4πηla2b2

b2 − a2 (ωb − ωa). (41.11)

It is proportional to the relative angular velocities of the two cylinders. One
standard apparatus for measuring the coefficients of viscosity is built this way. One
cylinder—say the outer one—is on pivots but is held stationary by a spring balance
which measures the torque on it, while the inner one is rotated at a constant
angular velocity. The coefficient of viscosity is then determined from Eq. (41.11).

From its definition, you see that the units of η are newton·sec/m2. For water
at 20◦C,

η = 10−3 newton·sec/m2.

It is usually more convenient to use the specific viscosity, which is η divided by
the density ρ. The values for water and air are then comparable:

water at 20◦C, η/ρ = 10−6 m2/sec,
air at 20◦C, η/ρ = 15× 10−6 m2/sec.

(41.12)

Viscosities usually depend strongly on temperature. For instance, for water just
above the freezing point, η/ρ is 1.8 times larger than it is at 20◦C.
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41-2 Viscous flow

We now go to a general theory of viscous flow—at least in the most general
form known to man. We already understand that the shear stress components
are proportional to the spatial derivatives of the various velocity components
such as ∂vx/∂y or ∂vy/∂x. However, in the general case of a compressible fluid
there is another term in the stress which depends on other derivatives of the
velocity. The general expression is

Sij = η

(
∂vi
∂xj

+ ∂vj
∂xi

)
+ η′ δij(∇ · v), (41.13)

where xi is any one of the rectangular coordinates x, y, or z, and vi is any one
of the rectangular coordinates of the velocity. (The symbol δij is the Kronecker
delta which is 1 when i = j and 0 for i 6= j.) The additional term adds η′∇ ·v to
all the diagonal elements Sii of the stress tensor. If the liquid is incompressible
∇ ·v = 0, and this extra term doesn’t appear. So it has to do with internal forces
during compression. So two constants are required to describe the liquid, just as
we had two constants to describe a homogeneous elastic solid. The coefficient η
is the “ordinary” coefficient of viscosity which we have already encountered. It
is also called the first coefficient of viscosity or the “shear viscosity coefficient,”
and the new coefficient η′ is called the second coefficient of viscosity.

Now we want to determine the viscous force per unit volume, fvisc, so we can
put it into Eq. (41.1) to get the equation of motion for a real fluid. The force
on a small cubical volume element of a fluid is the resultant of the forces on all
the six faces. Taking them two at a time, we will get differences that depend
on the derivatives of the stresses, and, therefore, on the second derivatives of
the velocity. This is nice because it will get us back to a vector equation. The
component of the viscous force per unit volume in the direction of the rectangular
coordinate xi is

(fvisc)i =
3∑
j=1

∂Sij
∂xj

=
3∑
j=1

∂

∂xj

{
η

(
∂vi
∂xj

+ ∂vj
∂xi

)}
+ ∂

∂xi
(η′∇ · v). (41.14)

Usually, the variation of the viscosity coefficients with position is not significant
and can be neglected. Then, the viscous force per unit volume contains only
second derivatives of the velocity. We saw in Chapter 39 that the most general
form of second derivatives that can occur in a vector equation is the sum of
a term in the Laplacian (∇ ·∇v = ∇2v), and a term in the gradient of the
divergence

(
∇(∇ · v)

)
. Equation (41.14) is just such a sum with the coefficients

η and (η + η′). We get

fvisc = η∇2v + (η + η′)∇(∇ · v). (41.15)

In the incompressible case, ∇ · v = 0, and the viscous force per unit volume is
just η∇2v. That is all that many people use; however, if you should want to
calculate the absorption of sound in a fluid, you would need the second term.

We can now complete our general equation of motion for a real fluid. Substi-
tuting Eq. (41.15) into Eq. (41.1), we get

ρ

{
∂v

∂t
+ (v ·∇)v

}
= −∇p− ρ∇φ+ η∇2v + (η + η′)∇(∇ · v).

It’s complicated. But that’s the way nature is.
If we introduce the vorticity Ω =∇× v, as we did before, we can write our

equation as

ρ

{
∂v

∂t
+ Ω× v + 1

2∇v
2
}

= −∇p− ρ∇φ+ η∇2v

+ (η + η′)∇(∇ · v). (41.16)
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We are supposing again that the only body forces acting are conservative forces
like gravity. To see what the new term means, let’s look at the incompressible
fluid case. Then, if we take the curl of Eq. (41.16), we get

∂Ω
∂t

+∇× (Ω× v) = η

ρ
∇2Ω. (41.17)

This is like Eq. (40.9) except for the new term on the right-hand side. When
the right-hand side was zero, we had the Helmholtz theorem that the vorticity
stays with the fluid. Now, we have the rather complicated nonzero term on the
right-hand side which, however, has straightforward physical consequences. If we
disregard for the moment the term ∇× (Ω× v), we have a diffusion equation.
The new term means that the vorticity Ω diffuses through the fluid. If there is a
large gradient in the vorticity, it will spread out into the neighboring fluid.

This is the term that causes the smoke ring to get thicker as it goes along.
Also, it shows up nicely if you send a “clean” vortex (a “smokeless” ring made by
the apparatus described in the last chapter) through a cloud of smoke. When
it comes out of the cloud, it will have picked up some smoke, and you will see
a hollow shell of a smoke ring. Some of the Ω diffuses outward into the smoke,
while still maintaining its forward motion with the vortex.

41-3 The Reynolds number

We will now describe the changes which are made in the character of fluid
flow as a consequence of the new viscosity term. We will look at two problems in
some detail. The first of these is the flow of a fluid past a cylinder—a flow which
we tried to calculate in the previous chapter using the theory for nonviscous flow.
It turns out that the viscous equations can be solved by man today only for a
few special cases. So some of what we will tell you is based on experimental
measurements—assuming that the experimental model satisfies Eq. (41.17).

The mathematical problem is this: We would like the solution for the flow
of an incompressible, viscous fluid past a long cylinder of diameter D. The flow
should be given by Eq. (41.17) and by

Ω =∇× v (41.18)

with the conditions that the velocity at large distances is some constant velocity,
say V (parallel to the x-axis), and at the surface of the cylinder is zero. That is,

vx = vy = vz = 0 (41.19)
for

x2 + y2 = D2

4 .

That specifies completely the mathematical problem.
If you look at the equations, you see that there are four different parameters

to the problem: η, ρ, D, and V . You might think that we would have to give a
whole series of cases for different V ’s, different D’s, and so on. However, that is
not the case. All the different possible solutions correspond to different values
of one parameter. This is the most important general thing we can say about
viscous flow. To see why this is so, notice first that the viscosity and density
appear only in the ratio η/ρ—the specific viscosity. That reduces the number of
independent parameters to three. Now suppose we measure all distances in the
only length that appears in the problem, the diameter D of the cylinder; that is,
we substitute for x, y, z, the new variables x′, y′, z′ with

x = x′D, y = y′D, z = z′D.

Then D disappears from (41.19). In the same way, if we measure all velocities in
terms of V—that is, we set v = v′V—we get rid of the V , and v′ is just equal
to 1 at large distances. Since we have fixed our units of length and velocity, our
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unit of time is now D/V ; so we should set

t = t′
D

V
. (41.20)

With our new variables, the derivatives in Eq. (41.18) get changed from ∂/∂x
to (1/D) ∂/∂x′, and so on; so Eq. (41.18) becomes

Ω =∇× v = V

D
∇′ × v′ = V

D
Ω′. (41.21)

Our main equation (41.17) then reads

∂Ω′

∂t′
+∇′ × (Ω′ × v′) = η

ρV D
∇′2Ω′.

All the constants condense into one factor which we write, following tradition,
as 1/R:

R = ρ

η
V D. (41.22)

If we just remember that all of our equations are to be written with all quantities
in the new units, we can omit all the primes. Our equations for the flow are then

∂Ω
∂t

+∇× (Ω× v) = 1
R
∇2Ω. (41.23)

and
Ω =∇× v

with the conditions
v = 0

for
x2 + y2 = 1/4 (41.24)

and
vx = 1, vy = vz = 0

for
x2 + y2 + z2 � 1.

What this all means physically is very interesting. It means, for example,
that if we solve the problem of the flow for one velocity V1 and a certain cylinder
diameter D1, and then ask about the flow for a different diameter D2 and a
different fluid, the flow will be the same for the velocity V2 which gives the same
Reynolds number—that is, when

R1 = ρ1

η1
V1D1 = R2 = ρ2

η2
V2D2. (41.25)

For any two situations which have the same Reynolds number, the flows will
“look” the same—in terms of the appropriate scaled x′, y′, z′, and t′. This is
an important proposition because it means that we can determine what the
behavior of the flow of air past an airplane wing will be without having to build
an airplane and try it. We can, instead, make a model and make measurements
using a velocity that gives the same Reynolds number. This is the principle which
allows us to apply the results of “wind-tunnel” measurements on small-scale
airplanes, or “model-basin” results on scale model boats, to the full-scale objects.
Remember, however, that we can only do this provided the compressibility of the
fluid can be neglected. Otherwise, a new quantity enters—the speed of sound.
And different situations will really correspond to each other only if the ratio of V
to the sound speed is also the same. This latter ratio is called the Mach number.
So, for velocities near the speed of sound or above, the flows are the same in two
situations if both the Mach number and the Reynolds number are the same for
both situations.
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Fig. 41-4. The drag coefficient CD of a circular cylinder as a function of the Reynolds number.

41-4 Flow past a circular cylinder

Fig. 41-5. Viscous flow (low velocities)
around a circular cylinder.

Let’s go back to the problem of low-speed (nearly incompressible) flow over the
cylinder. We will give a qualitative description of the flow of a real fluid. There
are many things we might want to know about such a flow—for instance, what is
the drag force on the cylinder? The drag force on a cylinder is plotted in Fig. 41-4
as a function of R—which is proportional to the air speed V if everything else is
held fixed. What is actually plotted is the so-called drag coefficient CD, which is
a dimensionless number equal to the force divided by 1

2ρV
2Dl, where D is the

diameter, l is the length of the cylinder, and ρ is the density of the liquid:

CD = F
1
2ρV

2Dl
.

The coefficient of drag varies in a rather complicated way, giving us a pre-hint that
something rather interesting and complicated is happening in the flow. We will
now describe the nature of flow for the different ranges of the Reynolds number.
First, when the Reynolds number is very small, the flow is quite steady; that
is, the velocity is constant at any place, and the flow goes around the cylinder.
The actual distribution of the flow lines is, however, not like it is in potential
flow. They are solutions of a somewhat different equation. When the velocity
is very low or, what is equivalent, when the viscosity is very high so the stuff is
like honey, then the inertial terms are negligible and the flow is described by the
equation

∇2Ω = 0.

This equation was first solved by Stokes. He also solved the same problem for a
sphere. If you have a small sphere moving under such conditions of low Reynolds
number, the force needed to drag it is equal to 6πηaV , where a is the radius of
the sphere and V is its velocity. This is a very useful formula because it tells the
speed at which tiny grains of dirt (or other particles which can be approximated as
spheres) move through a fluid under a given force—as, for instance, in a centrifuge,
or in sedimentation, or diffusion. In the low Reynolds number region—for R less
than 1—the lines of v around a cylinder are as drawn in Fig. 41-5.

If we now increase the fluid speed to get a Reynolds number somewhat greater
than 1, we find that the flow is different. There is a circulation behind the
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(a)
R ≈ 10−2

(b)
R ≈ 20

(c)
R ≈ 100

(d)
R ≈ 104

(e)
R ≈ 106

Fig. 41-6. Flow past a cylinder for various Reynolds numbers.

sphere, as shown in Fig. 41-6(b). It is still an open question as to whether there
is always a circulation there even at the smallest Reynolds number or whether
things suddenly change at a certain Reynolds number. It used to be thought
that the circulation grew continuously. But it is now thought that it appears
suddenly, and it is certain that the circulation increases with R. In any case,
there is a different character to the flow for R in the region from about 10 to 30.
There is a pair of vortices behind the cylinder.

The flow changes again by the time we get to a number of 40 or so. There
is suddenly a complete change in the character of the motion. What happens
is that one of the vortices behind the cylinder gets so long that it breaks off
and travels downstream with the fluid. Then the fluid curls around behind the
cylinder and makes a new vortex. The vortices peel off alternately on each side,
so an instantaneous view of the flow looks roughly as sketched in Fig. 41-6(c).
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Fig. 41-7. Photograph by Ludwig Prandtl
of the “vortex street” in the flow behind a
cylinder.

The stream of vortices is called a “Kármán vortex street.” They always appear
for R > 40. We show a photograph of such a flow in Fig. 41-7.

The difference between the two flows in Fig. 41-6(c) and 41-6(b) or 41-6(a)
is almost a complete difference in regime. In Fig. 41-6(a) or (b), the velocity
is constant, whereas in Fig. 41-6(c), the velocity at any point varies with time.
There is no steady solution above R = 40—which we have marked on Fig. 41-4
by a dashed line. For these higher Reynolds numbers, the flow varies with time
but in a regular, cyclic fashion.

We can get a physical idea of how these vortices are produced. We know that
the fluid velocity must be zero at the surface of the cylinder and that it also
increases rapidly away from that surface. Vorticity is created by this large local
variation in fluid velocity. Now when the main stream velocity is low enough,
there is sufficient time for this vorticity to diffuse out of the thin region near the
solid surface where it is produced and to grow into a large region of vorticity.
This physical picture should help to prepare us for the next change in the nature
of the flow as the main stream velocity, or R, is increased still more.

As the velocity gets higher and higher, there is less and less time for the
vorticity to diffuse into a larger region of fluid. By the time we reach a Reynolds
number of several hundred, the vorticity begins to fill in a thin band, as shown
in Fig. 41-6(d). In this layer the flow is chaotic and irregular. The region is
called the boundary layer and this irregular flow region works its way farther and
farther upstream as R is increased. In the turbulent region, the velocities are
very irregular and “noisy”; also the flow is no longer two-dimensional but twists
and turns in all three dimensions. There is still a regular alternating motion
superimposed on the turbulent one.

As the Reynolds number is increased further, the turbulent region works its
way forward until it reaches the point where the flow lines leave the cylinder—for
flows somewhat above R = 105. The flow is as shown in Fig. 41-6(e), and we
have what is called a “turbulent boundary layer.” Also, there is a drastic change
in, the drag force; it drops by a large factor, as shown in Fig. 41-4. In this speed
region, the drag force actually decreases with increasing speed. There seems to
be little evidence of periodicity.

What happens for still larger Reynolds numbers? As we increase the speed
further, the wake increases in size again and the drag increases. The latest
experiments—which go up to R = 107 or so—indicate that a new periodicity
appears in the wake, either because the whole wake is oscillating back and forth
in a gross motion or because some new kind of vortex is occurring together with
an irregular noisy motion. The details are as yet not entirely clear, and are still
being studied experimentally.

41-5 The limit of zero viscosity

We would like to point out that none of the flows we have described are
anything like the potential flow solution we found in the preceding chapter. This
is, at first sight, quite surprising. After all, R is proportional to 1/η. So η going
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to zero is equivalent to R going to infinity. And if we take the limit of large R in
Eq. (41.23), we get rid of the right-hand side and get just the equations of the
last chapter. Yet, you would find it hard to believe that the highly turbulent
flow at R = 107 was approaching the smooth flow computed from the equations
of “dry” water. How can it be that as we approach R =∞, the flow described
by Eq. (41.23) gives a completely different solution from the one we obtained
taking η = 0 to start out with? The answer is very interesting. Note that the
right-hand term of Eq. (41.23) has 1/R times a second derivative. It is a higher
derivative than any other derivative in the equation. What happens is that
although the coefficient 1/R is small, there are very rapid variations of Ω in
the space near the surface. These rapid variations compensate for the small
coefficient, and the product does not go to zero with increasing R. The solutions
do not approach the limiting case as the coefficient of ∇2Ω goes to zero.

You may be wondering, “What is the fine-grain turbulence and how does it
maintain itself? How can the vorticity which is made somewhere at the edge of
the cylinder generate so much noise in the background?” The answer is again
interesting. Vorticity has a tendency to amplify itself. If we forget for a moment
about the diffusion of vorticity which causes a loss, the laws of flow say (as we
have seen) that the vortex lines are carried along with the fluid, at the velocity v.
We can imagine a certain number of lines of Ω which are being distorted and
twisted by the complicated flow pattern of v. This pulls the lines closer together
and mixes them all up. Lines that were simple before will get knotted and pulled
close together. They will be longer and tighter together. The strength of the
vorticity will increase and its irregularities—the pluses and minuses—will, in
general, increase. So the magnitude of vorticity in three dimensions increases as
we twist the fluid about.

You might well ask, “When is the potential flow a satisfactory theory at all?”
In the first place, it is satisfactory outside the turbulent region where the vorticity
has not entered appreciably by diffusion. By making special streamlined bodies,
we can keep the turbulent region as small as possible; the flow around airplane
wings—which are carefully designed—is almost entirely true potential flow.

41-6 Couette flow

(a) (b)

(c) (d)

Fig. 41-8. Liquid flow patterns between
two transparent rotating cylinders.

It is possible to demonstrate that the complex and shifting character of the
flow past a cylinder is not special but that the great variety of flow possibilities
occurs generally. We have worked out in Section 41-1 a solution for the viscous
flow between two cylinders, and we can compare the results with what actually
happens. If we take two concentric cylinders with an oil in the space between
them and put a fine aluminum powder as a suspension in the oil, the flow is easy
to see. Now if we turn the outer cylinder slowly, nothing unexpected happens;
see Fig. 41-8(a). Alternatively, if we turn the inner cylinder slowly, nothing very
striking occurs. However, if we turn the inner cylinder at a higher rate, we get
a surprise. The fluid breaks into horizontal bands, as indicated in Fig. 41-8(b).
When the outer cylinder rotates at a similar rate with the inner one at rest, no
such effect occurs. How can it be that there is a difference between rotating the
inner or the out cylinder? After all, the flow pattern we derived in Section 41-1
depended only on ωb−ωa. We can get the answer by looking at the cross sections
shown in Fig. 41-9. When the inner layers of the fluid are moving more rapidly
than the outer ones, they tend to move outward—the centrifugal force is larger
than the pressure holding them in place. A whole layer cannot move out uniformly
because the outer layers are in the way. It must break into cells and circulate, as
shown in Fig. 41-9(b). It is like the convection currents in a room which has hot
air at the bottom. When the inner cylinder is at rest and the outer cylinder has
a high velocity, the centrifugal forces build up a pressure gradient which keeps
everything in equilibrium—see Fig. 41-9(c) (as in a room with hot air at the top).

Now let’s speed up the inner cylinder. At first, the number of bands increases.
Then suddenly you see the bands become wavy, as in Fig. 41-8(c), and the waves
travel around the cylinder. The speed of these waves is easily measured. For high
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Fig. 41-9. Why the flow breaks up into bands.

rotation speeds they approach 1/3 the speed of the inner cylinder. And no one
knows why! There’s a challenge. A simple number like 1/3, and no explanation.
In fact, the whole mechanism of the wave formation is not very well understood;
yet it is steady laminar flow.

If we now start rotating the outer cylinder also—but in the opposite direction—
the flow pattern starts to break up. We get wavy regions alternating with
apparently quiet regions, as sketched in Fig. 41-8(d), making a spiral pattern. In
these “quiet” regions, however, we can see that the flow is really quite irregular;
it is, in fact completely turbulent. The wavy regions also begin to show irregular
turbulent flow. If the cylinders are rotated still more rapidly, the whole flow
becomes chaotically turbulent.

In this simple experiment we see many interesting regimes of flow which are
quite different, and yet which are all contained in our simple equation for various
values of the one parameter R. With our rotating cylinders, we can see many of
the effects which occur in the flow past a cylinder: first, there is a steady flow;
second, a flow sets in which varies in time but in a regular, smooth way; finally,
the flow becomes completely irregular. You have all seen the same effects in the
column of smoke rising from a cigarette in quiet air. There is a smooth steady
column followed by a series of twistings as the stream of smoke begins to break
up, ending finally in an irregular churning cloud of smoke.

The main lesson to be learned from all of this is that a tremendous variety of
behavior is hidden in the simple set of equations in (41.23). All the solutions are
for the same equations, only with different values of R. We have no reason to
think that there are any terms missing from these equations. The only difficulty
is that we do not have the mathematical power today to analyze them except for
very small Reynolds numbers—that is, in the completely viscous case. That we
have written an equation does not remove from the flow of fluids its charm or
mystery or its surprise.

If such variety is possible in a simple equation with only one parameter, how
much more is possible with more complex equations! Perhaps the fundamental
equation that describes the swirling nebulae and the condensing, revolving, and
exploding stars and galaxies is just a simple equation for the hydrodynamic
behavior of nearly pure hydrogen gas. Often, people in some unjustified fear of
physics say you can’t write an equation for life. Well, perhaps we can. As a matter
of fact, we very possibly already have the equation to a sufficient approximation
when we write the equation of quantum mechanics:

Hψ = −~
i

∂ψ

∂t
.

We have just seen that the complexities of things can so easily and dramatically
escape the simplicity of the equations which describe them. Unaware of the scope
of simple equations, man has often concluded that nothing short of God, not
mere equations, is required to explain the complexities of the world.
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We have written the equations of water flow. From experiment, we find a set
of concepts and approximations to use to discuss the solution—vortex streets,
turbulent wakes, boundary layers. When we have similar equations in a less
familiar situation, and one for which we cannot yet experiment, we try to solve
the equations in a primitive, halting, and confused way to try to determine what
new qualitative features may come out, or what new qualitative forms are a
consequence of the equations. Our equations for the sun, for example, as a ball of
hydrogen gas, describe a sun without sunspots, without the rice-grain structure
of the surface, without prominences, without coronas. Yet, all of these are really
in the equations; we just haven’t found the way to get them out.

There are those who are going to be disappointed when no life is found on
other planets. Not I—I want to be reminded and delighted and surprised once
again, through interplanetary exploration, with the infinite variety and novelty
of phenomena that can be generated from such simple principles. The test of
science is its ability to predict. Had you never visited the earth, could you predict
the thunderstorms, the volcanos, the ocean waves, the auroras, and the colorful
sunset? A salutary lesson it will be when we learn of all that goes on on each of
those dead planets—those eight or ten balls, each agglomerated from the same
dust cloud and each obeying exactly the same laws of physics.

The next great era of awakening of human intellect may well produce a method
of understanding the qualitative content of equations. Today we cannot. Today
we cannot see that the water flow equations contain such things as the barber
pole structure of turbulence that one sees between rotating cylinders. Today we
cannot see whether Schrödinger’s equation contains frogs, musical composers, or
morality—or whether it does not. We cannot say whether something beyond it
like God is needed, or not. And so we can all hold strong opinions either way.
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to Newton everything attracts everything else with a force inversely
proportional to the square of the distance from it, and objects respond to forces
with accelerations proportional to the forces. They are Newton’s laws of universal
gravitation and of motion. As you know, they account for the motions of balls,
planets, satellites, galaxies, and so forth.

Einstein had a different interpretation of the law of gravitation. According
to him, space and time—which must be put together as space-time—are curved
near heavy masses. And it is the attempt of things to go along “straight lines”
in this curved space-time which makes them move the way they do. Now that is
a complex idea—very complex. It is the idea we want to explain in this chapter.

Our subject has three parts. One involves the effects of gravitation. Another
involves the ideas of space-time which we already studied. The third involves the
idea of curved space-time. We will simplify our subject in the beginning by not
worrying about gravity and by leaving out the time—discussing just curved space.
We will talk later about the other parts, but we will concentrate now on the idea
of curved space—what is meant by curved space, and, more specifically, what
is meant by curved space in this application of Einstein. Now even that much
turns out to be somewhat difficult in three dimensions. So we will first reduce
the problem still further and talk about what is meant by the words “curved
space” in two dimensions.

Fig. 42-1. A bug on a plane surface.

In order to understand this idea of curved space in two dimensions you really
have to appreciate the limited point of view of the character who lives in such a
space. Suppose we imagine a bug with no eyes who lives on a plane, as shown in
Fig. 42-1. He can move only on the plane, and he has no way of knowing that
there is anyway to discover any “outside world.” (He hasn’t got your imagination.)
We are, of course, going to argue by analogy. We live in a three-dimensional
world, and we don’t have any imagination about going off our three-dimensional
world in a new direction; so we have to think the thing out by analogy. It is as
though we were bugs living on a plane, and there was a space in another direction.
That’s why we will first work with the bug, remembering that he must live on
his surface and can’t get out.

As another example of a bug living in two dimensions, let’s imagine one who
lives on a sphere. We imagine that he can walk around on the surface of the
sphere, as in Fig. 42-2 but that he can’t look “up,” or “down,” or “out.”

Fig. 42-2. A bug on a sphere.

Now we want to consider still a third kind of creature. He is also a bug like
the others, and also lives on a plane, as our first bug did, but this time the plane
is peculiar. The temperature is different at different places. Also, the bug and
any rulers he uses are all made of the same material which expands when it is
heated. Whenever he puts a ruler somewhere to measure something the ruler
expands immediately to the proper length for the temperature at that place.
Wherever he puts any object—himself, a ruler, a triangle, or anything—the thing
stretches itself because of the thermal expansion. Everything is longer in the hot
places than it is in the cold places, and everything has the same coefficient of
expansion. We will call the home of our third bug a “hot plate,” although we
will particularly want to think of a special kind of hot plate that is cold in the
center and gets hotter as we go out toward the edges (Fig. 42-3).

Now we are going to imagine that our bugs begin to study geometry. Although
we imagine that they are blind so that they can’t see any “outside” world, they
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30◦

40◦

50◦

Fig. 42-3. A bug on a hot plate.

A

B

Fig. 42-4. Making a “straight” line on a
plane.

A

B

Fig. 42-5. Making a “straight line” on a
sphere.

can do a lot with their legs and feelers. They can draw lines, and they can make
rulers, and measure off lengths. First, let’s suppose that they start with the
simplest idea in geometry. They learn how to make a straight line—defined as
the shortest line between two points. Our first bug—see Fig. 42-4—learns to
make very good lines. But what happens to the bug on the sphere? He draws
his straight line as the shortest distance—for him—between two points, as in
Fig. 42-5. It may look like a curve to us, but he has no way of getting off the
sphere and finding out that there is “really” a shorter line. He just knows that if
he tries any other path in his world it is always longer than his straight line. So
we will let him have his straight line as the shortest arc between two points. (It
is, of course an arc of a great circle.)

A

B

30◦
40◦
50◦

Fig. 42-6. Making a “straight line” on the
hot plate.

Finally, our third bug—the one in Fig. 42-3—will also draw “straight lines”
that look like curves to us. For instance, the shortest distance between A and B
in Fig. 42-6 would be on a curve like the one shown. Why? Because when his line
curves out toward the warmer parts of his hot plate, the rulers get longer (from
our omniscient point of view) and it takes fewer “yardsticks” laid end-to-end to
get from A to B. So for him the line is straight—he has no way of knowing that
there could be someone out in a strange three-dimensional world who would call
a different line “straight.” (a)

100 inches

100
inches

100 inches

100
inches

90◦

90◦ 90◦

90◦

(b)

a

b

c

a + b + c = 180◦

(c)

r
r

r

r

r

Fig. 42-7. A square, triangle, and circle
in flat space.

We think you get the idea now that all the rest of the analysis will always be
from the point of view of the creatures on the particular surfaces and not from
our point of view. With that in mind let’s see what the rest of their geometries
looks like. Let’s assume that the bugs have all learned how to make two lines
intersect at right angles. (You can figure out how they could do it.) Then our
first bug (the one on the normal plane) finds an interesting fact. If he starts
at the point A and makes a line 100 inches long, then makes a right angle and
marks off another 100 inches, then makes another right angle and goes another
100 inches, then makes a third right angle and a fourth line 100 inches long, he
ends up right at the starting point as shown in Fig. 42-7(a). It is a property of
his world—one of the facts of his “geometry.”

Then he discovers another interesting thing. If he makes a triangle—a figure
with three straight lines—the sum of the angles is equal to 180◦, that is, to the
sum of two right angles. See Fig. 42-7(b).

Then he invents the circle. What’s a circle? A circle is made this way: You
rush off on straight lines in many many directions from a single point, and lay
out a lot of dots that are all the same distance from that point. See Fig. 42-7(c).
(We have to be careful how we define these things because we’ve got to be able to
make the analogs for the other fellows.) Of course, its equivalent to the curve you
can make by swinging a ruler around a point. Anyway, our bug learns how to
make circles. Then one day he thinks of measuring the distance around a circle.
He measures several circles and finds a neat relationship: The distance around
is always the same number times the radius r (which is, of course, the distance
from the center out to the curve). The circumference and the radius always have
the same ratio—approximately 6.283—independent of the size of the circle.

Now let’s see what our other bugs have been finding out about their geometries.
First, what happens to the bug on the sphere when he tries to make a “square”?
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Fig. 42-8. Trying to make a “square” on
a sphere.

A

30◦
40◦

50◦

Fig. 42-9. Trying to make a “square” on
the hot plate.

90◦

90◦

90◦

Fig. 42-10. On a sphere a “triangle” can
have three 90◦ angles.

If he follows the prescription we gave above, he would probably think that the
result was hardly worth the trouble. He gets a figure like the one shown in
Fig. 42-8. His endpoint B isn’t on top of the starting point A. It doesn’t work
out to a closed figure at all. Get a sphere and try it. A similar thing would
happen to our friend on the hot plate. If he lays out four straight lines of equal
length—as measured with his expanding rulers—joined by right angles he gets a
picture like the one in Fig. 42-9.

Now suppose that our bugs had each had their own Euclid who had told them
what geometry “should” be like, and that they had checked him out roughly
by making crude measurements on a small scale. Then as they tried to make
accurate squares on a larger scale they would discover that something was wrong.
The point is, that just by geometrical measurements they would discover that
something was the matter with their space. We define a curved space to be a
space in which the geometry is not what we expect for a plane. The geometry
of the bugs on the sphere or on the hot plate is the geometry of a curved space.
The rules of Euclidean geometry fail. And it isn’t necessary to be able to lift
yourself out of the plane in order to find out that the world that you live in is
curved. It isn’t necessary to circumnavigate the globe in order to find out that it
is a ball. You can find out that you live on a ball by laying out a square. If the
square is very small you will need a lot of accuracy, but if the square is large the
measurement can be done more crudely.

Let’s take the case of a triangle on a plane. The sum of the angles is 180 degrees.
Our friend on the sphere can find triangles that are very peculiar. He can, for
example, find triangles which have three right angles. Yes indeed! One is shown
in Fig. 42-10. Suppose our bug starts at the north pole and makes a straight
line all the way down to the equator. Then he makes a right angle and another
perfect straight line the same length. Then he does it again. For the very special
length he has chosen he gets right back to his starting point, and also meets the
first line with a right angle. So there is no doubt that for him this triangle has
three right angles, or 270 degrees in the sum. It turns out that for him the sum of
the angles of the triangle is always greater than 180 degrees. In fact, the excess
(for the special case shown, the extra 90 degrees) is proportional to how much
area the triangle has. If a triangle on a sphere is very small, its angles add up
to very nearly 180 degrees, only a little bit over. As the triangle gets bigger the
discrepancy goes up. The bugs on the hot plate would discover similar difficulties
with their triangles.

rpred
rmeas

Fig. 42-11. Making a circle on a sphere.Let’s look next at what our other bugs find out about circles. They make
circles and measure their circumferences. For example, the bug on the sphere
might make a circle like the one shown in Fig. 42-11. And he would discover that
the circumference is less than 2π times the radius. (You can see that because
from the wisdom of our three-dimensional view it is obvious that what he calls
the “radius” is a curve which is longer than the true radius of the circle.) Suppose
that the bug on the sphere had read Euclid, and decided to predict a radius by
dividing the circumference C by 2π, taking

rpred = C

2π . (42.1)
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Then he would find that the measured radius was larger than the predicted radius.
Pursuing the subject, he might define the difference to be the “excess radius,”
and write 30◦

40◦
50◦

Fig. 42-12. Making a circle on the hot
plate.

rmeas − rpred = rexcess, (42.2)

and study how the excess radius effect depended on the size of the circle.
Our bug on the hot plate would discover a similar phenomenon. Suppose he

was to draw a circle centered at the cold spot on the plate as in Fig. 42-12. If
we were to watch him as he makes the circle we would notice that his rulers are
short near the center and get longer as they are moved outward—although the
bug doesn’t know it, of course. When he measures the circumference the ruler is
long all the time, so he, too, finds out that the measured radius is longer than
the predicted radius, C/2π. The hot-plate bug also finds an “excess radius effect.”
And again the size of the effect depends on the radius of the circle.

We will define a “curved space” as one in which these types of geometrical
errors occur: The sum of the angles of a triangle is different from 180 degrees;
the circumference of a circle divided by 2π is not equal to the radius; the rule for
making a square doesn’t give a closed figure. You can think of others.

We have given two different examples of curved space: the sphere and the hot
plate. But it is interesting that if we choose the right temperature variation as a
function of distance on the hot plate, the two geometries will be exactly the same.
It is rather amusing. We can make the bug on the hot plate get exactly the same
answers as the bug on the ball. For those who like geometry and geometrical
problems we’ll tell you how it can be done. If you assume that the length of the
rulers (as determined by the temperature) goes in proportion to one plus some
constant times the square of the distance away from the origin, then you will
find that the geometry of that hot plate is exactly the same in all details* as the
geometry of the sphere.

Fig. 42-13. Making a “circle” on a saddle-
shaped surface.

There are, of course, other kinds of geometry. We could ask about the geometry
of a bug who lived on a pear, namely something which has a sharper curvature in
one place and a weaker curvature in the other place, so that the excess in angles
in triangles is more severe when he makes little triangles in one part of his world
than when he makes them in another part. In other words, the curvature of a
space can vary from place to place. That’s just a generalization of the idea. It
can also be imitated by a suitable distribution of temperature on a hot plate.

We may also point out that the results could come out with the opposite
kind of discrepancies. You could find out, for example, that all triangles when
they are made too large have the sum of their angles less than 180 degrees. That
may sound impossible, but it isn’t at all. First of all, we could have a hot plate
with the temperature decreasing with the distance from the center. Then all
the effects would be reversed. But we can also do it purely geometrically by
looking at the two-dimensional geometry of the surface of a saddle. Imagine a
saddle-shaped surface like the one sketched in Fig. 42-13. Now draw a “circle”
on the surface, defined as the locus of all points the same distance from a center.
This circle is a curve that oscillates up and down with a scallop effect. So its
circumference is larger than you would expect from calculating 2πrmeas. So C/2π
is now greater than rmeas. The “excess radius” would be negative.

Spheres and pears and such are all surfaces of positive curvatures; and the
others are called surfaces of negative curvature. In general, a two-dimensional
world will have a curvature which varies from place to place and may be positive
in some places and negative in other places. In general, we mean by a curved
space simply one in which the rules of Euclidean geometry break down with one
sign of discrepancy or the other. The amount of curvature—defined, say, by the
excess radius—may vary from place to place.

Fig. 42-14. A two-dimensional space with
zero intrinsic curvature.

We might point out that, from our definition of curvature, a cylinder is,
surprisingly enough, not curved. If a bug lived on a cylinder, as shown in
Fig. 42-14, he would find out that triangles, squares, and circles would all have
the same behavior they have on a plane. This is easy to see, by just thinking

* Except for the one point at infinity.
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about how all the figures will look if the cylinder is unrolled onto a plane. Then
all the geometrical figures can be made to correspond exactly to the way they
are in a plane. So there is no way for a bug living on a cylinder (assuming that
he doesn’t go all the way around, but just makes local measurements) to discover
that his space is curved. In our technical sense, then, we consider that his space
is not curved. What we want to talk about is more precisely called intrinsic
curvature; that is, a curvature which can be found by measurements only in a
local region. (A cylinder has no intrinsic curvature.) This was the sense intended
by Einstein when he said that our space is curved. But we as yet only have
defined a curved space in two dimensions; we must go onward to see what the
idea might mean in three dimensions.

42-2 Curvature in three-dimensional space

We live in three-dimensional space and we are going to consider the idea that
three-dimensional space is curved. You say, “But how can you imagine it being
bent in any direction?” Well, we can’t imagine space being bent in any direction
because our imagination isn’t good enough. (Perhaps it’s just as well that we
can’t imagine too much, so that we don’t get too free of the real world.) But we
can still define a curvature without getting out of our three-dimensional world.
All we have been talking about in two dimensions was simply an exercise to show
how we could get a definition of curvature which didn’t require that we be able
to “look in” from the outside.

We can determine whether our world is curved or not in a way quite analogous
to the one used by the gentlemen who live on the sphere and on the hot plate.
We may not be able to distinguish between two such cases but we certainly can
distinguish those cases from the flat space, the ordinary plane. How? Easy
enough: We lay out a triangle and measure the angles. Or we make a great big
circle and measure the circumference and the radius. Or we try to lay out some
accurate squares, or try to make a cube. In each case we test whether the laws of
geometry work. If they don’t work, we say that our space is curved. If we lay out
a big triangle and the sum of its angles exceeds 180 degrees, we can say our space
is curved. Or if the measured radius of a circle is not equal to its circumference
over 2π, we can say our space is curved.

Fig. 42-15. The excess radius may be dif-
ferent for circles with different orientations.

You will notice that in three dimensions the situation can be much more
complicated than in two. At any one place in two dimensions there is a certain
amount of curvature. But in three dimensions there can be several components
to the curvature. If we lay out a triangle in some plane, we may get a different
answer than if we orient the plane of the triangle in a different way. Or take
the example of a circle. Suppose we draw a circle and measure the radius and
it doesn’t check with C/2π so that there is some excess radius. Now we draw
another circle at right angles—as in Fig. 42-15. There’s no need for the excess to
be exactly the same for both circles. In fact, there might be a positive excess for
a circle in one plane, and a defect (negative excess) for a circle in the other plane.

Perhaps you are thinking of a better idea: Can’t we get around all of these
components by using a sphere in three dimensions? We can specify a sphere
by taking all the points that are the same distance from a given point in space.
Then we can measure the surface area by laying out a fine scale rectangular grid
on the surface of the sphere and adding up all the bits of area. According to
Euclid the total area A is supposed to be 4π times the square of the radius; so we
can define a “predicted radius” as

√
A/4π. But we can also measure the radius

directly by digging a hole to the center and measuring the distance. Again, we
can take the measured radius minus the predicted radius and call the difference
the radius excess,

rexcess = rmeas −
(
measured area

4π

)1/2
,

which would be a perfectly satisfactory measure of the curvature. It has the great
advantage that it doesn’t depend upon how we orient a triangle or a circle.
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But the excess radius of a sphere also has a disadvantage; it doesn’t completely
characterize the space. It gives what is called the mean curvature of the three-
dimensional world, since there is an averaging effect over the various curvatures.
Since it is an average, however, it does not solve completely the problem of defining
the geometry. If you know only this number you can’t predict all properties of
the geometry of the space, because you can’t tell what would happen with circles
of different orientation. The complete definition requires the specification of six
“curvature numbers” at each point. Of course the mathematicians know how to
write all those numbers. You can read someday in a mathematics book how to
write them all in a high-class and elegant form, but it is first a good idea to know
in a rough way what it is that you are trying to write about. For most of our
purposes the average curvature will be enough.*

42-3 Our space is curved

Now comes the main question. Is it true? That is, is the actual physical
three-dimensional space we live in curved? Once we have enough imagination to
realize the possibility that space might be curved, the human mind naturally gets
curious about whether the real world is curved or not. People have made direct
geometrical measurements to try to find out, and haven’t found any deviations.
On the other hand, by arguments about gravitation, Einstein discovered that
space is curved, and we’d like to tell you what Einstein’s law is for the amount
of curvature, and also tell you a little bit about how he found out about it.

Einstein said that space is curved and that matter is the source of the curvature.
(Matter is also the source of gravitation, so gravity is related to the curvature—
but that will come later in the chapter.) Let us suppose, to make things a little
easier, that the matter is distributed continuously with some density, which may
vary, however, as much as you want from place to place.† The rule that Einstein
gave for the curvature is the following: If there is a region of space with matter
in it and we take a sphere small enough that the density ρ of matter inside it is
effectively constant, then the radius excess for the sphere is proportional to the
mass inside the sphere. Using the definition of excess radius, we have

Radius excess = rmeas −
√
A

4π = G

3c2 ·M. (42.3)

Here, G is the gravitational constant (of Newton’s theory), c is the velocity of
light, and M = 4πρr3/3 is the mass of the matter inside the sphere. This is
Einstein’s law for the mean curvature of space.

Suppose we take the earth as an example and forget that the density varies
from point to point—so we won’t have to do any integrals. Suppose we were
to measure the surface of the earth very carefully, and then dig a hole to the
center and measure the radius. From the surface area we could calculate the
predicted radius we would get from setting the area equal to 4πr2. When we
compared the predicted radius with the actual radius, we would find that the
actual radius exceeded the predicted radius by the amount given in Eq. (42.3).
The constant G/3c2 is about 2.5×10−29 cm per gram, so for each gram of material
the measured radius is off by 2.5× 10−29 cm. Putting in the mass of the earth,
which is about 6× 1027 grams, it turns out that the earth has 1.5 millimeters
more radius than it should have for its surface area.‡ Doing the same calculation
for the sun, you find that the sun’s radius is one-half a kilometer too long.

* We should mention one additional point for completeness. If you want to carry the
hot-plate model of curved space over into three dimensions you must imagine that the length
of the ruler depends not only on where you put it, but also on which orientation the ruler
has when it is laid down. It is a generalization of the simple case in which the length of the
ruler depends on where it is, but is the same if set north-south, or east-west, or up-down. This
generalization is needed if you want to represent a three-dimensional space with any arbitrary
geometry with such a model, although it happens not to be necessary for two dimensions.

† Nobody—not even Einstein—knows how to do it if mass comes concentrated at points.
‡ Approximately, because the density is not independent of radius as we are assuming.
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You should note that the law says that the average curvature above the surface
area of the earth is zero. But that does not mean that all the components of the
curvature are zero. There may still be—and, in fact, there is—some curvature
above the earth. For a circle in a plane there will be an excess radius of one
sign for some orientations and of the opposite sign for other orientations. It just
turns out that the average over a sphere is zero when there is no mass inside it.
Incidentally, it turns out that there is a relation between the various components
of the curvature and the variation of the average curvature from place to place.
So if you know the average curvature everywhere, you can figure out the details
of the curvature components at each place. The average curvature inside the
earth varies with altitude, and this means that some curvature components are
nonzero both inside the earth and outside. It is that curvature that we see as a
gravitational force.

Suppose we have a bug on a plane, and suppose that the “plane” has little
pimples in the surface. Wherever there is a pimple the bug would conclude that
his space had little local regions of curvature. We have the same thing in three
dimensions. Wherever there is a lump of matter, our three-dimensional space
has a local curvature—a kind of three-dimensional pimple.

If we make a lot of bumps on a plane there might be an overall curvature
besides all the pimples—the surface might become like a ball. It would be
interesting to know whether our space has a net average curvature as well as
the local pimples due to the lumps of matter like the earth and the sun. The
astrophysicists have been trying to answer that question by making measurements
of galaxies at very large distances. For example, if the number of galaxies we see
in a spherical shell at a large distance is different from what we would expect from
our knowledge of the radius of the shell, we would have a measure of the excess
radius of a tremendously large sphere. From such measurements it is hoped to
find out whether our whole universe is flat on the average, or round—whether
it is “closed,” like a sphere, or “open” like a plane. You may have heard about
the debates that are going on about this subject. There are debates because the
astronomical measurements are still completely inconclusive; the experimental
data are not precise enough to give a definite answer. Unfortunately, we don’t
have the slightest idea about the overall curvature of our universe on a large scale.

42-4 Geometry in space-time

Now we have to talk about time. As you know from the special theory of
relativity, measurements of space and measurements of time are interrelated. And
it would be kind of crazy to have something happening to the space, without the
time being involved in the same thing. You will remember that the measurement
of time depends on the speed at which you move. For instance, if we watch a guy
going by in a spaceship we see that things happen more slowly for him than for
us. Let’s say he takes off on a trip and returns in 100 seconds flat by our watches;
his watch might say that he had been gone for only 95 seconds. In comparison
with ours, his watch—and all other processes, like his heart beat—have been
running slow.

Now let’s consider an interesting problem. Suppose you are the one in the
spaceship. We ask you to start off at a given signal and return to your starting
place just in time to catch a later signal—at, say, exactly 100 seconds later
according to our clock. And you are also asked to make the trip in such a way
that your watch will show the longest possible elapsed time. How should you
move? You should stand still. If you move at all your watch will read less than
100 sec when you get back.

Suppose, however, we change the problem a little. Suppose we ask you to
start at point A on a given signal and go to point B (both fixed relative to us),
and to do it in such a way that you arrive back just at the time of a second
signal (say 100 seconds later according to our fixed clock). Again you are asked
to make the trip in the way that lets you arrive with the latest possible reading
on your watch. How would you do it? For which path and schedule will your
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watch show the greatest elapsed time when you arrive? The answer is that you
will spend the longest time from your point of view if you make the trip by going
at a uniform speed along a straight line. Reason: Any extra motions and any
extra-high speeds will make your clock go slower. (Since the time deviations
depend on the square of the velocity, what you lose by going extra fast at one
place you can never make up by going extra slowly in another place.)

The point of all this is that we can use the idea to define “a straight line” in
space-time. The analog of a straight line in space is for space-time a motion at
uniform velocity in a constant direction.

The curve of shortest distance in space corresponds in space-time not to the
path of shortest time, but to the one of longest time, because of the funny things
that happen to signs of the t-terms in relativity. “Straight-line” motion—the
analog of “uniform velocity along a straight line”—is then that motion which
takes a watch from one place at one time to another place at another time in the
way that gives the longest time reading for the watch. This will be our definition
for the analog of a straight line in space-time.

42-5 Gravity and the principle of equivalence

Now we are ready to discuss the laws of gravitation. Einstein was trying
to generate a theory of gravitation that would fit with the relativity theory
that he had developed earlier. He was struggling along until he latched onto
one important principle which guided him into getting the correct laws. That
principle is based on the idea that when a thing is falling freely everything inside
it seems weightless. For example, a satellite in orbit is falling freely in the earth’s
gravity, and an astronaut in it feels weightless. This idea, when stated with
greater precision, is called Einstein’s principle of equivalence. It depends on the
fact that all objects fall with exactly the same acceleration no matter what their
mass, or what they are made of. If we have a spaceship that is “coasting”—so
it’s in a free fall—and there is a man inside, then the laws governing the fall of
the man and the ship are the same. So if he puts himself in the middle of the
ship he will stay there. He doesn’t fall with respect to the ship. That’s what we
mean when we say he is “weightless.”

Now suppose you are in a rocket ship which is accelerating. Accelerating with
respect to what? Let’s just say that its engines are on and generating a thrust so
that it is not coasting in a free fall. Also imagine that you are way out in empty
space so that there are practically no gravitational forces on the ship. If the ship
is accelerating with “1 g” you will be able to stand on the “floor” and will feel
your normal weight. Also if you let go of a ball, it will “fall” toward the floor.
Why? Because the ship is accelerating “upward,” but the ball has no forces on
it, so it will not accelerate; it will get left behind. Inside the ship the ball will
appear to have a downward acceleration of “1 g.”

Now let’s compare that with the situation in a spaceship sitting at rest on
the surface of the earth. Everything is the same! You would be pressed toward
the floor, a ball would fall with an acceleration of 1 g, and so on. In fact, how
could you tell inside a space ship whether you are sitting on the earth or are
accelerating in free space? According to Einstein’s equivalence principle there is
no way to tell if you only make measurements of what happens to things inside!

To be strictly correct, that is true only for one point inside the ship. The
gravitational field of the earth is not precisely uniform, so a freely falling ball has
a slightly different acceleration at different places—the direction changes and the
magnitude changes. But if we imagine a strictly uniform gravitational field, it is
completely imitated in every respect by a system with a constant acceleration.
That is the basis of the principle of equivalence.

42-6 The speed of clocks in a gravitational field

Now we want to use the principle of equivalence for figuring out a strange thing
that happens in a gravitational field. We’ll show you something that happens
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in a rocket ship which you probably wouldn’t have expected to happen in a
gravitational field. Suppose we put a clock at the “head” of the rocket ship—that
is, at the “front” end—and we put another identical clock at the “tail,” as in
Fig. 42-16. Let’s call the two clocks A and B. If we compare these two clocks
when the ship is accelerating, the clock at the head seems to run fast relative
to the one at the tail. To see that, imagine that the front clock emits a flash
of light each second, and that you are sitting at the tail comparing the arrival
of the light flashes with the ticks of clock B. Let’s say that the rocket is in the
position a of Fig. 42-17 when clock A emits a flash, and at the position b when
the flash arrives at clock B. Later on the ship will be at position c when the
clock A emits its next flash, and at position d when you see it arrive at clock B.

CLOCK A

CLOCK B

A
C
C
E
L
E
R
A
T
IO
N

Fig. 42-16. An accelerating rocket ship
with two clocks.

The first flash travels the distance L1 and the second flash travels the shorter
distance L2. It is a shorter distance because the ship is accelerating and has a
higher speed at the time of the second flash. You can see, then, that if the two
flashes were emitted from clock A one second apart, they would arrive at clock B
with a separation somewhat less than one second, since the second flash doesn’t
spend as much time on the way. The same thing will also happen for all the later
flashes. So if you were sitting in the tail you would conclude that clock A was
running faster than clock B. If you were to do the same thing in reverse—letting
clock B emit light and observing it at clock A—you would conclude that B was
running slower than A. Everything fits together and there is nothing mysterious
about it all.

POSITION a

POSITION b

POSITION c

POSITION d

A

B

A

B

L1

L2

Fig. 42-17. A clock at the head of an ac-
celerating rocket ship appears to run faster
than a clock at the tail.

But now let’s think of the rocket ship at rest in the earth’s gravity. The same
thing happens. If you sit on the floor with one clock and watch another one which
is sitting on a high shelf, it will appear to run faster than the one on the floor!
You say, “But that is wrong. The times should be the same. With no acceleration
there’s no reason for the clocks to appear to be out of step.” But they must if
the principle of equivalence is right. And Einstein insisted that the principle was
right, and went courageously and correctly ahead. He proposed that clocks at
different places in a gravitational field must appear to run at different speeds.
But if one always appears to be running at a different speed with respect to the
other, then so far as the first is concerned the other is running at a different rate.

But now you see we have the analog for clocks of the hot ruler we were talking
about earlier, when we had the bug on a hot plate. We imagined that rulers and
bugs and everything changed lengths in the same way at various temperatures so
they could never tell that their measuring sticks were changing as they moved
around on the hot plate. It’s the same with clocks in a gravitational field. Every
clock we put at a higher level is seen to go faster. Heartbeats go faster, all
processes run faster.

If they didn’t you would be able to tell the difference between a gravitational
field and an accelerating reference system. The idea that time can vary from place
to place is a difficult one, but it is the idea Einstein used, and it is correct—believe
it or not.

Using the principle of equivalence we can figure out how much the speed
of a clock changes with height in a gravitational field. We just work out the
apparent discrepancy between the two clocks in the accelerating rocket ship. The
easiest way to do this is to use the result we found in Chapter 34 of Vol. I for
the Doppler effect. There, we found—see Eq. (34.14)—that if v is the relative
velocity of a source and a receiver, the received frequency ω is related to the
emitted frequency ω0 by

ω = ω0
1 + v/c√
1− v2/c2

. (42.4)

Now if we think of the accelerating rocket ship in Fig. 42-17 the emitter and
receiver are moving with equal velocities at any one instant. But in the time that
it takes the light signals to go from clock A to clock B the ship has accelerated. It
has, in fact, picked up the additional velocity gt, where g is the acceleration and
t is time it takes light to travel the distance H from A to B. This time is very
nearly H/c. So when the signals arrive at B, the ship has increased its velocity
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by gH/c. The receiver always has this velocity with respect to the emitter at the
instant the signal left it. So this is the velocity we should use in the Doppler
shift formula, Eq. (42.4). Assuming that the acceleration and the length of the
ship are small enough that this velocity is much smaller than c, we can neglect
the term in v2/c2. We have that

ω = ω0

(
1 + gH

c2

)
. (42.5)

So for the two clocks in the spaceship we have the relation

(Rate at the receiver) = (Rate of emission)
(

1 + gH

c2

)
, (42.6)

where H is the height of the emitter above the receiver.
From the equivalence principle the same result must hold for two clocks

separated by the height H in a gravitational field with the free fall acceleration g.
This is such an important idea we would like to demonstrate that it also

follows from another law of physics—from the conservation of energy. We know
that the gravitational force on an object is proportional to its mass M , which is
related to its total internal energy E by M = E/c2. For instance, the masses of
nuclei determined from the energies of nuclear reactions which transmute one
nucleus into another agree with the masses obtained from atomic weights.

Now think of an atom which has a lowest energy state of total energy E0 and
a higher energy state E1, and which can go from the state E1 to the state E0 by
emitting light. The frequency ω of the light will be given by

~ω = E1 − E0. (42.7)

Now suppose we have such an atom in the state E1 sitting on the floor, and
we carry it from the floor to the height H. To do that we must do some work in
carrying the mass m1 = E1/c

2 up against the gravitational force. The amount
of work done is

E1

c2
gH. (42.8)

Then we let the atom emit a photon and go into the lower energy state E0.
Afterward we carry the atom back to the floor. On the return trip the mass
is E0/c

2; we get back the energy

E0

c2
gH, (42.9)

so we have done a net amount of work equal to

∆U = E1 − E0

c2
gH. (42.10)

When the atom emitted the photon it gave up the energy E1 − E0. Now
suppose that the photon happened to go down to the floor and be absorbed.
How much energy would it deliver there? You might at first think that it would
deliver just the energy E1 − E0. But that can’t be right if energy is conserved,
as you can see from the following argument. We started with the energy E1 at
the floor. When we finish, the energy at the floor level is the energy E0 of the
atom in its lower state plus the energy Eph received from the photon. In the
meantime we have had to supply the additional energy ∆U of Eq. (42.10). If
energy is conserved, the energy we end up with at the floor must be greater than
we started with by just the work we have done. Namely, we must have that

Eph + E0 = E1 + ∆U,
or (42.11)

Eph = (E1 − E0) + ∆U.
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It must be that the photon does not arrive at the floor with just the energy E1−E0
it started with, but with a little more energy. Otherwise some energy would have
been lost. If we substitute in Eq. (42.11) the ∆U we got in Eq. (42.10) we get
that the photon arrives at the floor with the energy

Eph = (E1 − E0)
(

1 + gH

c2

)
. (42.12)

But a photon of energy Eph has the frequency ω = Eph/~. Calling the frequency
of the emitted photon ω0—which is by Eq. (42.7) equal to (E1 − E0)/~—our
result in Eq. (42.12) gives again the relation of (42.5) between the frequency of
the photon when it is absorbed on the floor and the frequency with which it was
emitted.

The same result can be obtained in still another way. A photon of frequency ω0
has the energy E0 = ~ω0. Since the energy E0 has the gravitational mass E0/c

2

the photon has a mass (not rest mass) ~ω0/c
2, and is “attracted” by the earth. In

falling the distance H it will gain an additional energy (~ω0/c
2)gH, so it arrives

with the energy
E = ~ω0

(
1 + gH

c2

)
.

But its frequency after the fall is E/~, giving again the result in Eq. (42.5). Our
ideas about relativity, quantum physics, and energy conservation all fit together
only if Einstein’s predictions about clocks in a gravitational field are right. The
frequency changes we are talking about are normally very small. For instance, for
an altitude difference of 20 meters at the earth’s surface the frequency difference
is only about two parts in 1015. However, just such a change has recently been
found experimentally using the Mössbauer effect.* Einstein was perfectly correct.

42-7 The curvature of space-time
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Fig. 42-18. Trying to make a rectangle
in space-time.

Now we want to relate what we have just been talking about to the idea of
curved space-time. We have already pointed out that if the time goes at different
rates in different places, it is analogous to the curved space of the hot plate. But
it is more than an analogy; it means that space-time is curved. Let’s try to do
some geometry in space-time. That may at first sound peculiar, but we have
often made diagrams of space-time with distance plotted along one axis and time
along the other. Suppose we try to make a rectangle in space-time. We begin by
plotting a graph of height H versus t as in Fig. 42-18(a). To make the base of
our rectangle we take an object which is at rest at the height H1 and follow its
world line for 100 seconds. We get the line BD in part (b) of the figure which is
parallel to the t-axis. Now let’s take another object which is 100 feet above the
first one at t = 0. It starts at the point A in Fig. 42-18(c). Now we follow its
world line for 100 seconds as measured by a clock at A. The object goes from A
to C, as shown in part (d) of the figure. But notice that since time goes at a
different rate at the two heights—we are assuming that there is a gravitational
field—the two points C and D are not simultaneous. If we try to complete the
square by drawing a line to the point C ′ which is 100 feet above D at the same
time, as in Fig. 42-18(e), the pieces don’t fit. And that’s what we mean when we
say that space-time is curved.

42-8 Motion in curved space-time

Let’s consider an interesting little puzzle. We have two identical clocks, A
and B, sitting together on the surface of the earth as in Fig. 42-19. Now we lift
clock A to some height H, hold it there awhile, and return it to the ground so
that it arrives at just the instant when clock B has advanced by 100 seconds.
Then clock A will read something like 107 seconds, because it was running faster
when it was up in the air. Now here is the puzzle. How should we move clock A

* R. V. Pound and G. A. Rebka, Jr., Physical Review Letters Vol. 4, p. 337 (1960).
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so that it reads the latest possible time—always assuming that it returns when
B reads 100 seconds? You say, “That’s easy. Just take A as high as you can.
Then it will run as fast as possible, and be the latest when you return.” Wrong.
You forgot something—we’ve only got 100 seconds to go up and back. If we go
very high, we have to go very fast to get there and back in 100 seconds. And
you mustn’t forget the effect of special relativity which causes moving clocks to
slow down by the factor

√
1− v2/c2. This relativity effect works in the direction

of making clock A read less time than clock B. You see that we have a kind of
game. If we stand still with clock A we get 100 seconds. If we go up slowly to a
small height and come down slowly we can get a little more than 100 seconds. If
we go a little higher, maybe we can gain a little more. But if we go too high we
have to move fast to get there, and we may slow down the clock enough that we
end up with less than 100 seconds. What program of height versus time—how
high to go and with what speed to get there, carefully adjusted to bring us back
to clock B when it has increased by 100 seconds—will give us the largest possible
time reading on clock A?

Answer: Find out how fast you have to throw a ball up into the air so that
it will fall back to earth in exactly 100 seconds. The ball’s motion—rising fast,
slowing down, stopping, and coming back down—is exactly the right motion to
make the time the maximum on a wrist watch strapped to the ball.

A B

EARTH

Fig. 42-19. In a uniform gravitational
field the trajectory with the maximum proper
time for a fixed elapsed time is a parabola.

Now consider a slightly different game. We have two points A and B both
on the earth’s surface at some distance from one another. We play the same
game that we did earlier to find what we call the straight line. We ask how
we should go from A to B so that the time on our moving watch will be the
longest—assuming we start at A on a given signal and arrive at B on another
signal at B which we will say is 100 seconds later by a fixed clock. Now you say,
“Well we found out before that the thing to do is to coast along a straight line at
a uniform speed chosen so that we arrive at B exactly 100 seconds later. If we
don’t go along a straight line it takes more speed, and our watch is slowed down.”
But wait! That was before we took gravity into account. Isn’t it better to curve
upward a little bit and then come down? Then during part of the time we are
higher up and our watch will run a little faster? It is, indeed. If you solve the
mathematical problem of adjusting the curve of the motion so that the elapsed
time of the moving watch is the most it can possibly be, you will find that the
motion is a parabola—the same curve followed by something that moves on a
free ballistic path in the gravitational field, as in Fig. 42-19. Therefore the law
of motion in a gravitational field can also be stated: An object always moves
from one place to another so that a clock carried on it gives a longer time than it
would on any other possible trajectory—with, of course, the same starting and
finishing conditions. The time measured by a moving clock is often called its
“proper time.” In free fall, the trajectory makes the proper time of an object a
maximum.

Let’s see how this all works out. We begin with Eq. (42.5) which says that
the excess rate of the moving watch is

ω0gH

c2
. (42.13)

Besides this, we have to remember that there is a correction of the opposite sign
for the speed. For this effect we know that

ω = ω0
√

1− v2/c2.

Although the principle is valid for any speed, we take an example in which the
speeds are always much less than c. Then we can write this equation as

ω = ω0(1− v2/2c2),

and the defect in the rate of our clock is

− ω0
v2

2c2 . (42.14)
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Combining the two terms in (42.13) and (42.14) we have that

∆ω = ω0

c2

(
gH − v2

2

)
. (42.15)

Such a frequency shift of our moving clock means that if we measure a time dt
on a fixed clock, the moving clock will register the time

dt

[
1 +

(
gH

c2
− v2

2c2

)]
, (42.16)

The total time excess over the trajectory is the integral of the extra term with
respect to time, namely

1
c2

∫ (
gH − v2

2

)
dt, (42.17)

which is supposed to be a maximum.
The term gH is just the gravitational potential φ. Suppose we multiply the

whole thing by a constant factor −mc2, where m is the mass of the object. The
constant won’t change the condition for the maximum, but the minus sign will
just change the maximum to a minimum. Equation (42.16) then says that the
object will move so that∫ (

mv2

2 −mφ
)
dt = a minimum. (42.18)

But now the integrand is just the difference of the kinetic and potential energies.
And if you look in Chapter 19 of Volume II you will see that when we discussed
the principle of least action we showed that Newton’s laws for an object in any
potential could be written exactly in the form of Eq. (42.18).

42-9 Einstein’s theory of gravitation

Einstein’s form of the equations of motion—that the proper time should be
a maximum in curved space-time—gives the same results as Newton’s laws for
low velocities. As he was circling around the earth, Gordon Cooper’s watch was
reading later than it would have in any other path you could have imagined for
his satellite.*

So the law of gravitation can be stated in terms of the ideas of the geometry of
space-time in this remarkable way. The particles always take the longest proper
time—in space-time a quantity analogous to the “shortest distance.” That’s the
law of motion in a gravitational field. The great advantage of putting it this way
is that the law doesn’t depend on any coordinates, or any other way of defining
the situation.

Now let’s summarize what we have done. We have given you two laws for
gravity:

(1) How the geometry of space-time changes when matter is present—namely,
that the curvature expressed in terms of the excess radius is proportional
to the mass inside a sphere, Eq. (42.3).

(2) How objects move if there are only gravitational forces—namely, that
objects move so that their proper time between two end conditions is a
maximum.

Those two laws correspond to similar pairs of laws we have seen earlier. We
originally described motion in a gravitational field in terms of Newton’s inverse
square law of gravitation and his laws of motion. Now laws (1) and (2) take

* Strictly speaking it is only a local maximum. We should have said that the proper time is
larger than for any nearby path. For example, the proper time on an elliptical orbit around the
earth need not be longer than on a ballistic path of an object which is shot to a great height
and falls back down.
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their places. Our new pair of laws also correspond to what we have seen in
electrodynamics. There we had our law—the set of Maxwell’s equations—which
determines the fields produced by charges. It tells how the character of “space”
is changed by the presence of charged matter, which is what law (1) does for
gravity. In addition, we had a law about how particles move in the given
fields—d(mv)/dt = q(E + v ×B). This, for gravity, is done by law (2).

In the laws (1) and (2) you have a precise statement of Einstein’s theory
of gravitation—although you will usually find it stated in a more complicated
mathematical form. We should, however, make one further addition. Just as time
scales change from place to place in a gravitational field, so do also the length
scales. Rulers change lengths as you move around. It is impossible with space
and time so intimately mixed to have something happen with time that isn’t in
some way reflected in space. Take even the simplest example: You are riding
past the earth. What is “time” from your point of view is partly space from our
point of view. So there must also be changes in space. It is the entire space-time
which is distorted by the presence of matter, and this is more complicated than a
change only in time scale. However, the rule that we gave in Eq. (42.3) is enough
to determine completely all the laws of gravitation, provided that it is understood
that this rule about the curvature of space applies not only from one man’s
point of view but is true for everybody. Somebody riding by a mass of material
sees a different mass content because of the kinetic energy he calculates for its
motion past him, and he must include the mass corresponding to that energy.
The theory must be arranged so that everybody—no matter how he moves—will,
when he draws a sphere, find that the excess radius is G/3c2 times the total
mass (or, better, G/3c4 times the total energy content) inside the sphere. That
this law—law (1)—should be true in any moving system is one of the great laws
of gravitation, called Einstein’s field equation. The other great law is (2)—that
things must move so that the proper time is a maximum—and is called Einstein’s
equation of motion.

To write these laws in a complete algebraic form, to compare them with
Newton’s laws, or to relate them to electrodynamics is difficult mathematically.
But it is the way our most complete laws of the physics of gravity look today.

Although they gave a result in agreement with Newton’s mechanics for the
simple example we considered, they do not always do so. The three discrepancies
first derived by Einstein have been experimentally confirmed: The orbit of
Mercury is not a fixed ellipse; starlight passing near the sun is deflected twice
as much as you would think; and the rates of clocks depend on their location in
a gravitational field. Whenever the predictions of Einstein have been found to
differ from the ideas of Newtonian mechanics Nature has chosen Einstein’s.

Let’s summarize everything that we have said in the following way. First,
time and distance rates depend on the place in space you measure them and on
the time. This is equivalent to the statement that space-time is curved. From
the measured area of a sphere we can define a predicted radius,

√
A/4π, but

the actual measured radius will have an excess over this which is proportional
(the constant is G/c2) to the total mass contained inside the sphere. This fixes
the exact degree of the curvature of space-time. And the curvature must be
the same no matter who is looking at the matter or how it is moving. Second,
particles move on “straight lines” (trajectories of maximum proper time) in this
curved space-time. This is the content of Einstein’s formulation of the laws of
gravitation.
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Astronomy and physics, I-3-6 f
Atom, I-1-2 ff

Metastable ∼, I-42-10
Rutherford-Bohr model, 5-3
Stability of ∼s, 5-3
Thomson model, 5-3

Atomic clock, I-5-5, III-9-14
Atomic currents, 13-4 ff, 32-4, 36-2 f
Atomic hypothesis, I-1-2 ff
Atomic orbits, 1-8
Atomic particles, I-2-8 ff
Atomic polarizability, 32-2
Atomic processes, I-1-5 f

and parity conservation, III-18-2
Attenuation, I-31-8
Avogadro’s number, I-41-10, 8-5
Axial vector, I-20-4, I-52-6 f, I-52-10

B
Bar (unit), I-47-4
Barkhausen effect, 37-9
Baryons, III-11-13

Base states, III-5-8 ff, III-12-1 ff
of the world, III-8-5 ff

Battery, 22-6
Benzene molecule, III-10-10 ff, III-15-7 ff
Bernoulli’s theorem, 40-6 ff
Bessel function, 23-6 f, 23-9, 24-4
Betatron, 17-4 f, 29-6
Binocular vision, I-36-4 f
Biology and physics, I-3-2 ff
Biot-Savart law, 14-9 f, 21-7
Birefringence, I-33-3 ff, I-33-9
Birefringent material, I-33-9 f, 33-3, 39-8
Blackbody radiation, I-41-3 ff
Blackbody spectrum, III-4-8 ff
Bohr magneton, 34-12, 35-9, 37-1,

III-12-11, III-34-12, III-35-9
Bohr radius, I-38-6, III-2-6, III-19-3,

III-19-5
Boltzmann energy, 36-11
Boltzmann factor, III-14-4
Boltzmann’s constant, I-41-10, 7-8, III-14-3
Boltzmann’s law, I-40-2 f
Boltzmann theory, III-21-7
Boron, III-19-16
Bose particles, III-4-1 ff, III-15-6 f
Boundary layer, 41-9
Boundary-value problems, 7-1
Boyle’s law, I-40-8
“Boys” camera, 9-10
Bragg-Nye crystal model, 30-9, 31-1
Breaking-drop theory, 9-9
Bremsstrahlung, I-34-6 f
Brewster’s angle, I-33-6
Brownian motion, I-1-8, I-6-5, I-41-1 ff,

I-46-2, I-46-5
Brush discharge, 9-10
Bulk modulus, 38-3

C
Calculus
Differential ∼, 2-1 ff
Integral ∼, 3-1 ff
of variations, 19-3

Cantilever beam, 38-10
Capacitance, I-23-5
Mutual ∼, 22-17

Capacitor, I-23-5, 22-3 f
at high frequencies, 23-2 ff
Parallel-plate ∼, I-14-10, 6-11 ff, 8-3

Capacity, 6-12
of a condenser, 8-2

Capillary action, I-51-8
Carnot cycle, I-44-5 f, I-45-2 ff
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Carriers
Negative ∼, III-14-2
Positive ∼, III-14-2

Carrier signal, I-48-3
Catalyst, I-42-8
Cavendish’s experiment, I-7-9
Cavity resonators, 23-1 ff
Cells
Cone ∼, I-35-1 ff, I-35-5, I-35-8 f,

I-36-1 f, I-36-4
Rod ∼, I-35-1 ff, I-35-5, I-35-9, I-36-4,

I-36-6, III-13-10
Center of mass, I-18-1 f, I-19-1 ff
Centrifugal force, I-7-5, I-12-11, I-16-2,

I-19-8, I-20-8, I-43-4, I-52-3, 34-7,
41-10, III-19-11, III-19-13, III-34-7

Centripetal force, I-19-9
Charge
Conservation of ∼, I-4-7, 13-1 f
Image ∼, 6-9
Line of ∼, 5-3 f
Motion of ∼, 29-1 ff
on electron, I-12-7
Point ∼, 1-2
Polarization ∼s, 10-3 ff
Sheet of ∼, 5-4
Sphere of ∼, 5-4 f

Charged conductor, 6-8, 8-2 ff
Charge separation in a thunder cloud,

9-7 ff
Chemical bonds, 30-2 f
Chemical energy, I-4-2
Chemical kinetics, I-42-7 f
Chemical reaction, I-1-6 ff
Chemistry and physics, I-3-1 f
Cherenkov radiation, I-51-2
Chlorophyll molecule, III-15-11
Chromatic aberration, I-27-7
Chromaticity, I-35-6 f
Circuit elements, 23-1 f
Active ∼, 22-5
Passive ∼, 22-5

Circuits
Alternating-current ∼, 22-1 ff
Equivalent ∼, 22-10 f

Circular motion, I-21-4
Circular polarization, I-33-2
Circulation, 1-5, 3-8 ff
Classical electron radius, I-32-4, 28-3
Classical limit, III-7-9 f
Clausius-Clapeyron equation, I-45-6 ff
Clausius-Mossotti equation, 11-7 f, 32-7
Cleavage plane, 30-1
Clebsch-Gordan coefficients, III-18-15,

III-18-18
Coaxial line, 24-1
Coefficient
Absorption ∼, 32-8
Clebsch-Gordan ∼s, III-18-15, III-18-18
Drag ∼, 41-7
Einstein ∼s, III-9-15
of coupling, 17-14
of friction, I-12-4
of viscosity, 41-2

Collision, I-16-6
Elastic ∼, I-10-7 f

Collision cross section, I-43-3 f
Colloidal particles, 7-8 ff
Color vision, I-35-1 ff, I-36-1 ff

Physiochemistry of ∼, I-35-9 f
Commutation rule, III-20-15
Complex impedance, I-23-7
Complex numbers, I-22-7 ff

and harmonic motion, I-23-1 ff
Complex variable, 7-2 ff
Compound (insect) eye, I-36-6 ff
Compression

Adiabatic ∼, I-39-5
Isothermal ∼, I-44-5

Condensor
Energy of a ∼, 8-2 ff
Parallel-plate ∼, 6-11 ff, 8-3

Conduction band, III-14-1
Conductivity, 32-10

Ionic ∼, I-43-6 f
Thermal ∼, 2-8, 12-2 ff
of a gas, I-43-9 f

Conductor, 1-2
Cone cells, I-35-1 ff, I-35-5, I-35-8 f,

I-36-1 f, I-36-4
Conservation

of angular momentum, I-4-7, I-18-6 ff,
I-20-5

of baryon number, III-11-13
of charge, I-4-7, 13-1 f
of energy, I-3-2, I-4-1 ff, 27-1 ff, 42-11,

III-7-6 ff
of linear momentum, I-4-7, I-10-1 ff
of strangeness, III-11-12

Conservative force, I-14-3 ff
Constant

Boltzmann’s ∼, I-41-10, 7-8, III-14-3
Dielectric ∼, 10-1 f
Gravitational ∼, I-7-9
Planck’s ∼, I-4-7, I-5-10, I-17-8, I-37-11,

15-9, 19-9, 28-10, III-1-11, III-20-15,
III-21-2

Stefan-Boltzmann ∼, I-45-8
Constrained motion, I-14-3
Contraction hypothesis, I-15-5
Coriolis force, I-19-8 f, I-20-5, I-51-6,

I-52-3, 34-7, III-34-7
Cornea, I-35-1, I-36-3, I-36-9
Cornu’s spiral, I-30-9
Cosmic rays, I-2-5, 9-2
Cosmic synchrotron radiation, I-34-6
Couette flow, 41-10 ff
Coulomb’s law, I-28-1 f, 1-2 f, 1-5, 4-2 ff,

4-10, 5-5 f
Coupling, coefficient of, 17-14
Covalent bonds, 30-2
Cross product, 2-8, 31-8
Cross section, I-5-9
Collision ∼, I-43-3 f
Nuclear ∼, I-5-9
Scattering ∼, I-32-7
Thomson scattering ∼, I-32-8

Crystal, 30-1 ff

Geometry of ∼s, 30-1 ff
Ionic ∼, 8-4 ff
Molecular ∼, 30-2

Crystal diffraction, I-38-4 f, III-2-4 f
Crystal lattice, 30-3 f
Cubic ∼, 30-7
Hexagonal ∼, 30-7
Imperfections in a ∼, III-13-10 ff
Monoclinic ∼, 30-7
Orthorhombic ∼, 30-7
Propagation in a ∼, III-13-1 ff
Tetragonal ∼, 30-7
Triclinic ∼, 30-7
Trigonal ∼, 30-7

Cubic lattice, 30-7
Curie point, 37-4 f, 37-10, 37-13
Curie’s law, 11-5
Curie temperature, 36-13, 36-15, 37-1,

37-4, 37-11
Curie-Weiss law, 11-10
Curl operator, 2-8, 3-1
Current
Ampèrian ∼, 36-2
Atomic ∼s, 13-4 ff, 32-4, 36-2 f
Eddy ∼, 16-6
Electric ∼, 13-1 f
in the atmosphere, 9-2 ff

Induced ∼s, 16-5 ff
Current density, 13-1
Curtate cycloid, I-34-3, I-34-5
Curvature
in three-dimensional space, 42-5 ff
Intrinsic ∼, 42-5
Mean ∼, 42-6
Negative ∼, 42-4
Positive ∼, 42-4

Curved space, 42-1 ff
Cutoff frequency, 22-14
Cyclotron, 29-4, 29-6
Cytosine, I-3-6

D
D’Alembertian operator, 25-7
Damped oscillation, I-24-3 f
Debye length, 7-9
Definite energy, states of, III-13-3 ff
Degrees of freedom, I-25-2, I-39-12, I-40-1
Demagnetization, adiabatic, 35-9 f,

III-35-9 f
Density, I-1-4
Current ∼, 13-1
Energy ∼, 27-2
Probability ∼, I-6-8 f, III-16-6

Derivative, I-8-5 ff
Partial ∼, I-14-9

Diamagnetism, 34-1 ff, 34-5 f, III-34-1 ff,
III-34-5 f

Diamond lattice, III-14-1
Dielectric, 10-1 ff, 11-1 ff
Dielectric constant, 10-1 f
Differential calculus, I-8-4, 2-1 ff
Diffraction, I-30-1 ff
by a screen, I-31-10 f
X-ray ∼, I-30-8, I-38-5, 8-4, 30-1, III-2-5
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Diffraction grating, I-30-3 ff
Resolving power of a ∼, I-30-5 f

Diffusion, I-43-1 ff
Molecular ∼, I-43-7 ff
of neutrons, 12-6 ff

Dipole
Electric ∼, 6-2 ff
Magnetic ∼, 14-7 f
Molecular ∼, 11-1
Oscillating ∼, 21-5 ff

Dipole moment, I-12-6, 6-3
Magnetic ∼, 14-8

Dipole potential, 6-4 ff
Dipole radiator, I-28-5 f, I-29-3 ff
Dirac equation, I-20-6
Dislocations, 30-8
and crystal growth, 30-9
Screw ∼, 30-9
Slip ∼, 30-9

Dispersion, I-31-6 ff
Anomalous ∼, I-31-8
Normal ∼, I-31-8

Dispersion equation, I-31-6
Distance, I-5-1 ff
Distance measurement
by the color-brightness relationship of

stars, I-5-6
by triangulation, I-5-6 f

Distribution
Normal (Gaussian) ∼, I-6-9, III-16-8 f
Probability ∼, I-6-7 ff

Divergence
of four-vectors, 25-7

Divergence operator, 2-7, 3-1
DNA, I-3-5 f
Domain, 37-6
Donor site, III-14-4
Doppler effect, I-17-8, I-23-9, I-34-7 f,

I-38-6, 42-9, III-2-6, III-12-9
Dot product, 2-4
of four-vectors, 25-3

Double stars, I-7-6
Drag coefficient, 41-7
“Dry” water, 40-1 ff
Dyes, III-10-12
Dynamical (p-) momentum, III-21-5
Dynamics, I-9-1 ff
Development of ∼, I-7-2 f
of rotation, I-18-3 f
Relativistic ∼, I-15-9 f

E
Eddy current, 16-6
Effect
Barkhausen ∼, 37-9
Doppler ∼, I-17-8, I-23-9, I-34-7 f, I-38-6,

42-9, III-2-6, III-12-9
Hall ∼, III-14-7 f
Kerr ∼, I-33-5
Meissner ∼, III-21-8 ff, III-21-12
Mössbauer ∼, 42-11
Purkinje ∼, I-35-2

Effective mass, III-13-7
Efficiency of an ideal engine, I-44-7 ff

Eigenstates, III-11-22
Eigenvalues, III-11-22
Einstein coefficients, III-4-8, III-9-15
Einstein-Podolsky-Rosen paradox, III-18-8
Einstein’s equation of motion, 42-14
Einstein’s field equation, 42-14
Elastica, curves of the, 38-12
Elastic collision, I-10-7 f
Elastic constants, 39-6, 39-10 ff
Elastic energy, I-4-2, I-4-6
Elasticity, 38-1 ff
Elasticity tensor, 39-4 ff
Elastic materials, 39-1 ff
Electret, 11-8
Electrical energy, I-4-2, I-4-6 f, I-10-8,

15-3 ff
Electrical forces, I-2-3 ff, 1-1 ff, 13-1

in relativistic notation, 25-1 ff
Electric charge density, 2-8, III-21-6
Electric current, 13-1 f

in the atmosphere, 9-2 ff
Electric current density, 2-8
Electric dipole, 6-2 ff
Electric dipole matrix element, III-9-15
Electric field, I-2-4, I-12-7 f, 1-2 ff, 6-1 ff,

7-1 ff
Relativity of ∼, 13-6 ff

Electric flux, 1-4
Electric generator, 16-1 ff, 22-5 ff
Electric motor, 16-1 ff
Electric potential, 4-4 ff
Electric susceptibility, 10-4
Electrodynamics, 1-3
Electromagnetic energy, I-29-2
Electromagnetic field, I-2-2, I-2-5, I-10-9
Electromagnetic mass, 28-1 ff
Electromagnetic radiation, I-26-1, I-28-1,

I-29-1
Electromagnetic waves, I-2-5, 21-1 f
Electromagnetism, 1-1 ff

Laws of ∼, 1-5 ff
Electromotive force (EMF), 16-2
Electron, I-2-4, I-37-1, I-37-4 f, III-1-1,

III-1-4 f
Charge on ∼, I-12-7
Classical ∼ radius, I-32-4, 28-3

Electron cloud, I-6-11
Electron configuration, III-19-15
Electronic polarization, 11-1 ff
Electron microscope, 29-3 f
Electron-ray tube, I-12-9
Electron volt (unit), I-34-4
Electrostatic energy, 8-1 ff

in nuclei, 8-6 ff
of a point charge, 8-12
of charges, 8-1 f
of ionic crystals, 8-4 ff

Electrostatic equations
with dielectrics, 10-6 f

Electrostatic field, 5-1 f, 7-1 ff
Energy in the ∼, 8-9 ff
of a grid, 7-10 f

Electrostatic lens, 29-2 f

Electrostatic potential, equations of the,
6-1

Electrostatics, 4-1 ff, 5-1 f
Ellipse, I-7-1
Emission of photons, III-4-7 f
Emissivity, 6-14
Energy, I-4-1 f, 22-11 f
Activation ∼, I-3-4, I-42-7 f
Boltzmann ∼, 36-11
Chemical ∼, I-4-2
Conservation of ∼, I-3-2, I-4-1 ff, 27-1 ff,

42-11, III-7-6 ff
Elastic ∼, I-4-2, I-4-6
Electrical ∼, I-4-2, I-4-6 f, I-10-8, 15-3 ff
Electromagnetic ∼, I-29-2
Electrostatic ∼, 8-1 ff
in nuclei, 8-6 ff
of a point charge, 8-12
of charges, 8-1 f
of ionic crystals, 8-4 ff

Field ∼, 27-1 ff
Gravitational ∼, I-4-2 ff
Heat ∼, I-4-2, I-4-6, I-10-8
in the electrostatic field, 8-9 ff
Kinetic ∼, I-1-7, I-2-6, I-4-2, I-4-5 f

and temperature, I-39-6 ff
Magnetic ∼, 17-12 ff
Mass ∼, I-4-2, I-4-7
Mechanical ∼, 15-3 ff
Nuclear ∼, I-4-2
of a condensor, 8-2 ff
Potential ∼, I-4-4, I-13-1 ff, I-14-1 ff,

III-7-6 ff
Radiant ∼, I-4-2, I-4-6 f, I-7-11, I-10-8
Relativistic ∼, I-16-1 ff
Rotational kinetic ∼, I-19-7 ff
Rydberg ∼, III-10-4, III-19-3
Wall ∼, 37-6

Energy density, 27-2
Energy diagram, III-14-1
Energy flux, 27-2
Energy level diagram, III-14-3
Energy levels, I-38-7 f, III-2-7 f, III-12-7 ff
of a harmonic oscillator, I-40-9

Energy theorem, I-50-7 f
Enthalpy, I-45-5
Entropy, I-44-10 ff, I-46-6 ff
Equation
Clausius-Mossotti ∼, 11-7 f, 32-7
Diffusion ∼

Heat ∼,
Neutron ∼, 12-7

Dirac ∼, I-20-6
Dispersion ∼, I-31-6
Einstein’s field ∼, 42-14
Einstein’s ∼ of motion, 42-14
Laplace ∼, 7-1
Maxwell’s ∼s, I-46-7, I-47-7, 2-1, 2-8,

4-1, 6-1, 7-6, 8-11, 10-6, 13-3, 13-6,
13-11, 15-14, 18-1 ff, 22-1, 22-6 ff,
22-10, 23-3, 23-7, 23-9 f, 24-5, 25-7,
25-9, 25-11, 26-2, 26-11 f, 27-3, 27-5,
27-7, 27-9, 28-1, 32-5, 33-1, 33-3 ff,
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34-8, 36-1, 36-3, 36-5, 36-13, 38-2,
39-8, 42-14, III-34-8

for four-vectors, 25-10
General solution of ∼, 21-4 f
in a dielectric, 32-3 ff
Modifications of ∼, 28-6 ff
Solutions of ∼ in free space, 20-1 ff
Solutions of ∼ with currents and
charges, 21-1 ff

Solving ∼, 18-9 ff
Poisson ∼, 6-1
Saha ∼, I-42-6
Schrödinger ∼, 15-12, 41-12, III-16-4,

III-16-11 ff
for the hydrogen atom, III-19-1 f
in a classical context, III-21-1 ff

Wave ∼, I-47-1 ff, 18-9 ff
Equilibrium, I-1-6
Equipotential surfaces, 4-11 f
Equivalent circuits, 22-10 f
Ethylene molecule, III-15-8
Euclidean geometry, I-1-1, I-12-3, I-12-12,

I-17-2
Euler force, 38-11
Evaporation, I-1-6
of a liquid, I-40-3 f, I-42-1 ff

Excess radius, 42-4 ff, 42-13 f
Exchange force, 37-2
Excited state, 8-7, III-13-9
Exciton, III-13-9 f
Exclusion principle, III-4-12 ff
Expansion
Adiabatic ∼, I-44-5
Isothermal ∼, I-44-5

Exponential atmosphere, I-40-1 f
Eye
Compound (insect) ∼, I-36-6 ff
Human ∼, I-35-1 f

F
Farad (unit), I-25-7, 6-13
Faraday’s law of induction, 17-2 f, 18-1,

18-8 f
Fermat’s principle, I-26-3 ff
Fermi (unit), I-5-10
Fermi particles, III-4-1 ff, III-15-7
Ferrites, 37-12 f
Ferroelectricity, 11-8 ff
Ferromagnetic insulators, 37-12
Ferromagnetic materials, 37-10 f
Ferromagnetism, 36-1 ff, 37-1 ff
Field, I-14-7 ff
Electric ∼, I-2-4, I-12-7 f, 1-2 ff, 6-1 ff,

7-1 ff
Electromagnetic ∼, I-2-2, I-2-5, I-10-9
Electrostatic ∼, 5-1 f, 7-1 ff
of a grid, 7-10 f

Flux of a vector ∼, 3-2 ff
Gravitational ∼, I-12-8 f, I-13-8 f
in a cavity, 5-8 f
Magnetic ∼, I-12-9 f, 1-2 ff, 13-1, 14-1 ff
of steady currents, 13-3 ff

Magnetizing ∼, 36-7
of a charged conductor, 6-8

of a conductor, 5-7 f
Relativity of electric ∼, 13-6 ff
Relativity of magnetic ∼, 13-6 ff
Scalar ∼, 2-2 ff
Superposition of ∼s, I-12-9
Two-dimensional ∼s, 7-2 ff
Vector ∼, 1-4 f, 2-2 ff

Field-emission microscope, 6-14
Field energy, 27-1 ff

of a point charge, 28-1 f
Field index, 29-5
Field-ion microscope, 6-14
Field lines, 4-11 f
Field momentum, 27-1 ff

of a moving charge, 28-2 f
Field strength, 1-4
Filter, 22-14 ff
Flow

Fluid ∼, 12-8 ff
Heat ∼, 2-8 f, 12-2 ff
Irrotational ∼, 12-8 ff, 40-5 ff
Steady ∼, 40-6 ff
Viscous ∼, 41-4 f

Fluid flow, 12-8 ff
Flux, 4-7 ff

Electric ∼, 1-4
Energy ∼, 27-2
of a vector field, 3-2 ff

Flux quantization, III-21-10 ff
Flux rule, 17-1
Focal length

of a lens, I-27-4 f
of a spherical surface, I-27-1 ff

Focus, I-26-5, I-27-2
Force

Centrifugal ∼, I-7-5, I-12-11, I-16-2,
I-19-8, I-20-8, I-43-4, I-52-3, 34-7,
41-10, III-19-11, III-19-13, III-34-7

Centripetal ∼, I-19-9
Components of ∼, I-9-3
Conservative ∼, I-14-3 ff
Coriolis ∼, I-19-8 f, I-20-5, I-51-6, I-52-3,

34-7, III-34-7
Electrical ∼s, I-2-3 ff, 1-1 ff, 13-1
in relativistic notation, 25-1 ff

Electromotive ∼ (EMF), 16-2
Euler ∼, 38-11
Exchange ∼, 37-2
Gravitational ∼, I-2-3
Lorentz ∼, 13-1, 15-14
Magnetic ∼, I-12-9 f, 1-2, 13-1
on a current, 13-2 f

Molecular ∼s, I-12-6 f
Moment of ∼, I-18-5
Nonconservative ∼, I-14-6 f
Nuclear ∼s, I-12-12, 1-1 f, 8-6 f, 28-10,

28-12 ff, III-10-6 ff
Pseudo ∼, I-12-10 ff

Fortune teller, I-17-4
Foucault pendulum, I-16-2
Fourier analysis, I-25-4, I-50-2 f, I-50-5 ff
Fourier theorem, 7-11
Fourier transforms, I-25-4
Four-potential, 25-8

Four-vector algebra, I-17-7 f
Four-vectors, I-15-8 f, I-17-5 ff, 25-1 ff
Fovea, I-35-1, I-35-3, I-35-9
Frequency
Angular ∼, I-21-3, I-29-2 f, I-49-3
Larmor ∼, 34-7, III-34-7
of oscillation, I-2-5
Plasma ∼, 7-7, 32-11 ff

Fresnel’s reflection formulas, I-33-8
Friction, I-10-5, I-12-3 ff
Coefficient of ∼, I-12-4
Origin of ∼, I-12-6

G
Galilean relativity, I-10-3, I-10-6
Galilean transformation, I-12-11, I-15-2 f
Gallium, III-19-17 f
Galvanometer, 1-8, 16-1
Gamma rays, I-2-5
Garnets, 37-12 f
Gauss (unit), I-34-4, 36-6
Gaussian distribution, I-6-9, III-16-8 f
Gauss’ law, 4-9 f
Applications of ∼, 5-1 ff
for field lines, 4-11

Gauss’ theorem, 3-4 f, III-21-4
Generator
Alternating-current ∼, 17-6 ff
Electric ∼, 16-1 ff, 22-5 ff
Van de Graaff ∼, 5-9, 8-7

Geology and physics, I-3-7 f
Geometrical optics, I-26-1, I-27-1 ff
Gradient operator, 2-4 ff, 3-1
Gravitation, I-2-3, I-7-1 ff, I-12-2, 42-1
Theory of ∼, 42-13 f

Gravitational acceleration, I-9-4
Gravitational constant, I-7-9
Gravitational energy, I-4-2 ff
Gravitational field, I-12-8 f, I-13-8 f
Gravitational force, I-2-3
Gravity, I-13-3 ff, 42-8 ff
Acceleration of ∼, I-9-4

Greeks’ difficulties with speed, I-8-2 f
Green’s function, I-25-4
Ground state, 8-7, III-7-2
Group velocity, I-48-6 f
Guanine, I-3-6
Gyroscope, I-20-5 ff

H
Haidinger’s brush, I-36-7
Hall effect, III-14-7 f
Hamiltonian, III-8-10
Hamiltonian matrix, III-8-1 ff
Hamilton’s first principal function, 19-8
Harmonic motion, I-21-4, I-23-1 ff
Harmonic oscillator, I-10-1, I-21-1 ff
Energy levels of a ∼, I-40-9
Forced ∼, I-21-6, I-23-3 ff

Harmonics, I-50-1 ff
Heat, I-1-3, I-13-3
Specific ∼, I-40-7 f, 37-4
and the failure of classical physics,
I-40-8 ff
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at constant volume, I-45-2
Heat conduction, 3-6 ff
Heat diffusion equation, 3-6 ff
Heat energy, I-4-2, I-4-6, I-10-8
Heat engines, I-44-1 ff
Heat flow, 2-8 f, 12-2 ff
Helium, I-1-5, I-3-7, I-49-6, III-19-14

Liquid ∼, III-4-12
Helmholtz’s theorem, 40-11
Henry (unit), I-25-7
Hermitian adjoint, III-20-3
Hexagonal lattice, 30-7
High-voltage breakdown, 6-13
Hooke’s law, I-12-6 f, 10-7, 30-12, 31-11,

38-1 ff, 39-4, 39-10
Human eye, I-35-1 f
Hydrodynamics, 40-2 ff
Hydrogen, III-19-14

Hyperfine splitting in ∼, III-12-1 ff
Hydrogen atom, III-19-1 ff
Hydrogen molecular ion, III-10-1 ff
Hydrogen molecule, III-10-8 ff
Hydrogen wave functions, III-19-12 f
Hydrostatic pressure, 40-1
Hydrostatics, 40-1 f
Hyperfine splitting in hydrogen, III-12-1 ff
Hysteresis curve, 37-5 ff
Hysteresis loop, 36-8

I
Ideal gas law, I-39-10 ff
Identical particles, III-3-9 ff, III-4-1 ff
Illumination, 12-10 ff
Image charge, 6-9
Impedance, I-25-8 f, 22-1 ff

Complex ∼, I-23-7
of a vacuum, I-32-2

Impure semiconductors, III-14-4 ff
Incidence, angle of, I-26-3, 33-1
Inclined plane, I-4-4
Independent particle approximation,

III-15-1 ff
Index
Field ∼, 29-5
of refraction, I-31-1 ff, 32-1 ff

Induced currents, 16-5 ff
Inductance, I-23-6, 16-4 f, 17-9 ff, 22-2 f
Mutual ∼, 17-9 ff, 22-16 f
Self-∼, 16-4, 17-11 f

Induction, laws of, 17-1 ff
Inductor, I-25-7
Inertia, I-2-3, I-7-11
Moment of ∼, I-18-7 f, I-19-1 ff
Principle of ∼, I-9-1

Infrared radiation, I-2-5, I-23-8, I-26-1
Insulator, 1-2, 10-1
Integral, I-8-7 f
Line ∼, 3-1 f

Integral calculus, 3-1 ff
Interference, I-28-6 f
and diffraction, I-30-1
Two-slit ∼, III-3-5 ff

Interfering amplitudes, III-5-10 ff
Interfering waves, I-37-4, III-1-4

Interferometer, I-15-5
Ion, I-1-6
Ionic bonds, 30-2
Ionic conductivity, I-43-6 f
Ionic crystal, 8-4 ff
Ionic polarizability, 11-8
Ionization energy, I-42-5

of hydrogen, I-38-6, III-2-6
Ionosphere, 7-6 f, 9-3, 32-13
Irreversibility, I-46-5 ff
Irrotational flow, 12-8 ff, 40-5 ff
Isotherm, 2-3
Isothermal atmosphere, I-40-2
Isothermal compression, I-44-5
Isothermal expansion, I-44-5
Isothermal surfaces, 2-3
Isotopes, I-3-4 f, I-3-7, I-39-10

J
Johnson noise, I-41-2, I-41-8
Josephson junction, III-21-14 ff
Joule (unit), I-13-3
Joule heating, I-24-2

K
Kármán vortex street, 41-9
Kepler’s laws, I-7-1 ff, I-9-1, I-18-6
Kerr cell, I-33-5
Kerr effect, I-33-5
Kilocalorie (unit), 8-5
Kinematic (mv-) momentum, III-21-5
Kinetic energy, I-1-7, I-2-6, I-4-2, I-4-5 f

and temperature, I-39-6 ff
Rotational ∼, I-19-7 ff

Kinetic theory
Applications of ∼, I-42-1 ff
of gases, I-39-1 ff

Kirchhoff’s laws, I-25-9, 22-7 ff, 22-12
Kronecker delta, 31-5
Krypton, III-19-17 f

L
Lagrangian, 19-8
Lamé elastic constants, 39-6
Lamb-Retherford measurement, 5-6
Landé g-factor, 34-4, III-34-4
Laplace equation, 7-1
Laplacian operator, 2-10
Larmor frequency, 34-7, III-34-7
Larmor’s theorem, 34-6 f, III-34-6 f
Laser, I-5-3, I-32-6, I-42-10 f, I-50-10,

III-9-13
Law

Ampère’s ∼, 13-3 f
Applications of Gauss’ ∼, 5-1 ff
Biot-Savart ∼, 14-9 f, 21-7
Boltzmann’s ∼, I-40-2 f
Boyle’s ∼, I-40-8
Coulomb’s ∼, I-28-1 f, 1-2 f, 1-5, 4-2 ff,

4-10, 5-5 f
Curie’s ∼, 11-5
Curie-Weiss ∼, 11-10
Faraday’s ∼ of induction, 17-2 f, 18-1,

18-8 f

Gauss’ ∼, 4-9 f
for field lines, 4-11

Hooke’s ∼, I-12-6 f, 10-7, 30-12, 31-11,
38-1 ff, 39-4, 39-10

Ideal gas ∼, I-39-10 ff
Kepler’s ∼s, I-7-1 ff, I-9-1, I-18-6
Kirchhoff’s ∼s, I-25-9, 22-7 ff, 22-12
Lenz’s ∼, 16-4 f, 34-2, III-34-2
Newton’s ∼s, I-2-6, I-7-6, I-9-1 ff,

I-10-1 ff, I-11-2, I-11-4 f, I-12-1 ff,
I-12-11 f, I-13-1, I-14-6, I-15-1 ff,
I-15-9, I-16-2, I-16-8, I-18-1, I-19-2 f,
I-20-1, I-28-3, I-39-1 f, I-39-10,
I-41-1, I-46-1, I-46-5, I-47-2 f, 7-5,
19-1, 42-1, 42-13

in vector notation, I-11-7 f
of reflection, I-26-2
Ohm’s ∼, I-23-5, I-25-7, I-43-7, 19-14,

III-14-6
Rayleigh’s ∼, I-41-6
Snell’s ∼, I-26-3 f, I-26-6 f, I-31-2, 33-1

Laws
of electromagnetism, 1-5 ff
of induction, 17-1 ff

Least action, principle of, 19-1 ff
Least time, principle of, I-26-1 ff
Legendre functions, associated, III-19-9
Legendre polynomials, III-18-12, III-19-9
Lens
Electrostatic ∼, 29-2 f
Magnetic ∼, 29-3
Quadrupole ∼, 7-4, 29-6 f

Lens formula, I-27-6
Lenz’s rule, 16-4 f, 34-2, III-34-2
Liénard-Wiechert potentials, 21-9 ff
Light, I-2-5, 21-1 f
Absorption of ∼, III-9-14 f
Momentum of ∼, I-34-10 f
Polarized ∼, I-32-9
Reflection of ∼, 33-1 f
Refraction of ∼, 33-1 f
Scattering of ∼, I-32-1 ff
Speed of ∼, I-15-1, 18-8 f

Light cone, I-17-4
Lightning, 9-10 f
Light pressure, I-34-11
Light waves, I-48-1
Linear momentum
Conservation of ∼, I-4-7, I-10-1 ff

Linear systems, I-25-1 ff
Linear transformation, I-11-6
Line integral, 3-1 f
Line of charge, 5-3 f
Liquid helium, III-4-12
Lithium, III-19-14 ff
Lodestone, 1-10, 37-13
Logarithms, I-22-2
Lorentz contraction, I-15-7
Lorentz force, 13-1, 15-14
Lorentz formula, 21-12 f
Lorentz group, 25-3
Lorentz transformation, I-15-3, I-17-1,

I-34-8, I-52-2, 25-1
of fields, 26-1 ff
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Lorenz condition, 25-9
Lorenz gauge, 18-11, 25-9

M
Mach number, 41-6
Magenta, III-10-12
Magnetic dipole, 14-7 f
Magnetic dipole moment, 14-8
Magnetic energy, 17-12 ff
Magnetic field, I-12-9 f, 1-2 ff, 13-1, 14-1 ff
of steady currents, 13-3 ff
Relativity of ∼, 13-6 ff

Magnetic force, I-12-9 f, 1-2, 13-1
on a current, 13-2 f

Magnetic induction, I-12-10
Magnetic lens, 29-3
Magnetic materials, 37-1 ff
Magnetic moments, 34-3 f, III-11-4,

III-34-3 f
Magnetic resonance, 35-1 ff, III-35-1 ff
Nuclear ∼, 35-10 ff, III-35-10 ff

Magnetic susceptibility, 35-7, III-35-7
Magnetism, I-2-4, 34-1 ff, III-34-1 ff
Dia∼, 34-1 ff, 34-5 f, III-34-1 ff,

III-34-5 f
Ferro∼, 36-1 ff, 37-1 ff
Para∼, 34-1 ff, 35-1 ff, III-34-1 ff,

III-35-1 ff
Magnetization currents, 36-1 ff
Magnetizing field, 36-7
Magnetostatics, 4-1, 13-1 ff
Magnetostriction, 37-6, 37-11
Magnification, I-27-5 f
Magnons, III-15-4
Maser, I-42-10
Ammonia ∼, III-9-1 ff

Mass, I-9-1, I-15-1
Center of ∼, I-18-1 f, I-19-1 ff
Effective ∼, III-13-7
Electromagnetic ∼, 28-1 ff
Relativistic ∼, I-16-6 ff

Mass energy, I-4-2, I-4-7
Mass-energy equivalence, I-15-10 f
Mathematics and physics, I-3-1
Matrix, III-5-5
Matrix algebra, III-5-14, III-11-3, III-20-17
Maxwell’s demon, I-46-5
Maxwell’s equations, I-15-2 f, I-25-3, I-25-5,

I-46-7, I-47-7, 2-1, 2-8, 4-1, 6-1, 7-6,
8-11, 10-6, 13-3, 13-6, 13-11, 15-14,
18-1 ff, 22-1, 22-6 ff, 22-10, 23-3,
23-7, 23-9 f, 24-5, 25-7, 25-9, 25-11,
26-2, 26-11 f, 27-3, 27-5, 27-7, 27-9,
28-1, 32-5, 33-1, 33-3 ff, 34-8, 36-1,
36-3, 36-5, 36-13, 38-2, 39-8, 42-14,
III-10-7, III-21-6, III-21-13, III-34-8

for four-vectors, 25-10
General solution of ∼, 21-4 f
in a dielectric, 32-3 ff
Modifications of ∼, 28-6 ff
Solutions of ∼ in free space, 20-1 ff
Solutions of ∼ with currents and

charges, 21-1 ff
Solving ∼, 18-9 ff

Mean free path, I-43-3 f
Mean square distance, I-6-5, I-41-9
Mechanical energy, 15-3 ff
Meissner effect, III-21-8 ff, III-21-12
Metastable atom, I-42-10
Meter (unit), I-5-10
MeV (unit), I-2-9
Michelson-Morley experiment, I-15-3 ff
Microscope

Electron ∼, 29-3 f
Field-emission ∼, 6-14
Field-ion ∼, 6-14

Minkowski space, 31-12
Modes, I-49-1 ff

Normal ∼, I-48-10 f
Mole (unit), I-39-10
Molecular crystal, 30-2
Molecular diffusion, I-43-7 ff
Molecular dipole, 11-1
Molecular forces, I-12-6 f
Molecular motion, I-41-1
Molecule, I-1-3

Nonpolar ∼, 11-1
Polar ∼, 11-1, 11-3 ff

Mössbauer effect, 42-11
Moment

Dipole ∼, I-12-6, 6-3
of force, I-18-5
of inertia, I-18-7 f, I-19-1 ff

Momentum, I-9-1 f, I-38-2 ff, III-2-2 ff
Angular ∼, I-18-5 f, I-20-1, III-18-1 ff,

III-20-14 f
Composition of ∼, III-18-14 ff
Conservation of ∼, I-4-7, I-18-6 ff,
I-20-5

of a rigid body, I-20-8
Conservation of angular ∼,
Conservation of linear ∼, I-4-7, I-10-1 ff
Dynamical (p-) ∼, III-21-5
Field ∼, 27-1 ff
in quantum mechanics, I-10-9
Kinematic (mv-) ∼, III-21-5
of light, I-34-10 f
Relativistic ∼, I-10-8 f, I-16-1 ff

Momentum operator, III-20-2, III-20-9 ff
Momentum spectrometer, 29-1
Momentum spectrum, 29-2
Monatomic gas, I-39-5 ff, I-39-10 f, I-40-7 f
Monoclinic lattice, 30-7
Motion, I-5-1, I-8-1 ff

Brownian ∼, I-1-8, I-6-5, I-41-1 ff, I-46-2,
I-46-5

Circular ∼, I-21-4
Constrained ∼, I-14-3
Harmonic ∼, I-21-4, I-23-1 ff
of charge, 29-1 ff
Orbital ∼, 34-3, III-34-3
Parabolic ∼, I-8-10
Perpetual ∼, I-46-2
Planetary ∼, I-7-1 ff, I-9-6 ff, I-13-5

Motor, electric, 16-1 ff
Moving charge, field momentum of, 28-2 f
Muscle
Smooth ∼, I-14-2

Striated (skeletal) ∼, I-14-2
Music, I-50-1
Mutual capacitance, 22-17
Mutual inductance, 17-9 ff, 22-16 f
mv-momentum, III-21-5

N
Nabla operator (∇), 2-6 ff
Negative carriers, III-14-2
Neon, III-19-16
Nernst heat theorem, I-44-11
Neutral K-meson, III-11-12 ff
Neutral pion, III-10-7
Neutron diffusion equation, 12-7
Neutrons, I-2-4
Diffusion of ∼, 12-6 ff

Newton (unit), I-11-6
Newton ·meter (unit), I-13-3
Newton’s laws, I-2-6, I-7-6, I-9-1 ff,

I-10-1 ff, I-11-2, I-11-4 f, I-12-1 ff,
I-12-11 f, I-13-1, I-14-6, I-15-1 ff,
I-15-9, I-16-2, I-16-8, I-18-1, I-19-2 f,
I-20-1, I-28-3, I-39-1 f, I-39-10,
I-41-1, I-46-1, I-46-5, I-47-2 f, 7-5,
19-1, 42-1, 42-13

in vector notation, I-11-7 f
Nodes, I-49-2
Noise, I-50-1
Nonconservative force, I-14-6 f
Nonpolar molecule, 11-1
Normal dispersion, I-31-8
Normal distribution, I-6-9, III-16-8 f
Normal modes, I-48-10 f
n-type semiconductor, III-14-5
Nuclear cross section, I-5-9
Nuclear energy, I-4-2
Nuclear forces, I-12-12, 1-1 f, 8-6 f, 28-10,

28-12 ff, III-10-6 ff
Nuclear g-factor, 34-4, III-34-4
Nuclear interactions, 8-7
Nuclear magnetic resonance, 35-10 ff,

III-35-10 ff
Nucleon, III-11-3
Nucleus, I-2-4, I-2-6, I-2-8 ff
Numerical analysis, I-9-6
Nutation, I-20-7

O
Oersted (unit), 36-6
Ohm (unit), I-25-7
Ohm’s law, I-23-5, I-25-7, I-43-7, 19-14,

III-14-6
One-dimensional lattice, III-13-1 ff
Operator, III-8-5, III-20-1 ff
Algebraic ∼, III-20-3
Curl ∼, 2-8, 3-1
D’Alembertian ∼, 25-7
Divergence ∼, 2-7, 3-1
Gradient ∼, 2-4 ff, 3-1
Laplacian ∼, 2-10
Momentum ∼, III-20-2, III-20-9 ff
Nabla ∼ (∇), 2-6 ff
Vector ∼, 2-6

Optic axis, I-33-3
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Optic nerve, I-35-2
Optics, I-26-1 ff
Geometrical ∼, I-26-1, I-27-1 ff

Orbital angular momentum, III-19-1
Orbital motion, 34-3, III-34-3
Orientation polarization, 11-3 ff
Oriented magnetic moment, 35-4, III-35-4
Orthorhombic lattice, 30-7
Oscillating dipole, 21-5 ff
Oscillation

Amplitude of ∼, I-21-3
Damped ∼, I-24-3 f
Frequency of ∼, I-2-5
Periodic ∼, I-9-4
Period of ∼, I-21-3
Phase of ∼, I-21-3
Plasma ∼s, 7-5 ff

Oscillator, I-5-2 f
Forced harmonic ∼, I-21-6, I-23-3 ff
Harmonic ∼, I-10-1, I-21-1 ff

P
Pappus, theorem of, I-19-4
Parabolic antenna, I-30-6 f
Parabolic motion, I-8-10
Parallel-axis theorem, I-19-6
Parallel-plate capacitor, I-14-10, 6-11 ff,

8-3
Paramagnetism, 34-1 ff, 35-1 ff, III-34-1 ff,

III-35-1 ff
Paraxial rays, I-27-2
Partial derivative, I-14-9
Particles
Bose ∼, III-4-1 ff, III-15-6 f
Fermi ∼, III-4-1 ff, III-15-7
Identical ∼, III-3-9 ff, III-4-1 ff
Spin-one ∼, III-5-1 ff
Spin one-half ∼, III-6-1 ff, III-12-1 ff
Precession of ∼, III-7-10 ff

Pascal’s triangle, I-6-4
Passive circuit element, 22-5
Pauli exclusion principle, 36-15
Pauli spin exchange operator, III-12-7,

III-15-2
Pauli spin matrices, III-11-1 ff
Pendulum, I-5-2
Coupled ∼s, I-49-6 f

Pendulum clock, I-5-2
Periodic table, I-2-9, I-3-1, III-19-13 ff
Period of oscillation, I-21-3
Permalloy, 37-11
Permeability, 36-9
Relative ∼, 36-9

Perpetual motion, I-46-2
Phase of oscillation, I-21-3
Phase shift, I-21-4
Phase velocity, I-48-6 f
Photon, I-2-7, I-17-8, I-26-1, I-37-8, III-1-8
Absorption of ∼s, III-4-7 f
Emission of ∼s, III-4-7 f
Polarization states of the ∼, III-11-9 ff

Photosynthesis, I-3-3
Physics
Astronomy and ∼, I-3-6 f

before 1920, I-2-3 ff
Biology and ∼, I-3-2 ff
Chemistry and ∼, I-3-1 f
Geology and ∼, I-3-7 f
Mathematics and ∼, I-3-1
Psychology and ∼, I-3-8 f
Relationship to other sciences, I-3-1 ff

Piezoelectricity, 11-8, 31-12
Planck’s constant, I-4-7, I-5-10, I-17-8,

I-37-11, 15-9, 19-9, 28-10, III-1-11,
III-20-15, III-21-2

Plane lattice, 30-5
Planetary motion, I-7-1 ff, I-9-6 ff, I-13-5
Plane waves, 20-1 ff
Plasma, 7-6
Plasma frequency, 7-7, 32-11 ff
Plasma oscillations, 7-5 ff
p-momentum, III-21-5
Poincaré stress, 28-4 f
Point charge, 1-2

Electrostatic energy of a ∼, 8-12
Field energy of a ∼, 28-1 f

Poisson equation, 6-1
Poisson’s ratio, 38-2 f, 38-10
Polarization, I-33-1 ff

Circular ∼, I-33-2
Electronic ∼, 11-1 ff
of matter, 32-1 ff
of scattered light, I-33-3
Orientation ∼, 11-3 ff

Polarization charges, 10-3 ff
Polarization vector, 10-2 f
Polarized light, I-32-9
Polar molecule, 11-1, 11-3 ff
Polar vector, I-20-4, I-52-6 f
Positive carriers, III-14-2
Potassium, III-19-16 f
Potential

Four-∼, 25-8
Quadrupole ∼, 6-8
Vector ∼, 14-1 ff, 15-1 ff
of known currents, 14-3 ff

Potential energy, I-4-4, I-13-1 ff, I-14-1 ff,
III-7-6 ff

Potential gradient of the atmosphere, 9-1 f
Power, I-13-2
Poynting vector, 27-5
Precession
Angle of ∼, 34-4, III-34-4
of atomic magnets, 34-4 f, III-34-4 f

Pressure, I-1-3
Hydrostatic ∼, 40-1
Light ∼, I-34-11
of a gas, I-39-2 ff
Radiation ∼, I-34-11

Principal quantum number, III-19-12
Principle
Exclusion ∼, III-4-12 ff
of equivalence, 42-8 ff
of inertia, I-9-1
of least action, 19-1 ff
of superposition, 1-3, 4-2
of virtual work, I-4-5

Uncertainty ∼, I-2-6, I-6-10 f, I-7-11,
I-37-9, I-37-11 f, I-38-3, I-38-5 ff,
III-1-9, III-1-11, III-2-3, III-2-5 ff

and stability of atoms, 1-1, 5-3
Probability, I-6-1 ff
Probability amplitudes, I-37-10, III-1-10,

III-3-1 ff, III-16-1 ff
Probability density, I-6-8 f, III-16-6
Probability distribution, I-6-7 ff, III-16-6
Propagation, in a crystal lattice, III-13-1 ff
Propagation factor, 22-14
Protons, I-2-4
Proton spin, 8-7
Pseudo force, I-12-10 ff
Psychology and physics, I-3-8 f
p-type semiconductor, III-14-5
Purkinje effect, I-35-2
Pyroelectricity, 11-8

Q
Quadrupole lens, 7-4, 29-6 f
Quadrupole potential, 6-8
Quantized magnetic states, 35-1 ff,

III-35-1 ff
Quantum electrodynamics, I-2-7 ff, I-28-3,

I-42-10
and point charges, 28-10

Quantum mechanical resonance, III-10-4
Quantum mechanics, I-2-2, I-2-6 ff, I-6-10,

I-37-1 ff, I-38-1 ff, III-1-1 ff,
III-2-1 ff, III-3-1 ff

and vector potential, 15-8 ff, III-21-1 f
Momentum in ∼, I-10-9

Quantum numbers, III-12-14

R
Rabi molecular-beam method, 35-4 ff,

III-35-4 ff
Radiant energy, I-4-2, I-4-6 f, I-7-11, I-10-8
Radiation
Blackbody ∼, I-41-3 ff
Bremsstrahlung, I-34-6 f
Cherenkov ∼, I-51-2
Cosmic rays, I-2-5, 9-2
Cosmic synchrotron ∼, I-34-6
Electromagnetic ∼, I-26-1, I-28-1, I-29-1
Gamma rays, I-2-5
Infrared ∼, I-2-5, I-23-8, I-26-1
Light, I-2-5
Relativistic effects in ∼, I-34-1 ff
Synchrotron ∼, I-34-3 ff
Ultraviolet ∼, I-2-5, I-26-1
X-rays, I-2-5, I-26-1, I-31-6, I-34-5,

I-48-6 f
Radiation damping, I-32-1 ff
Radiation pressure, I-34-11
Radiation resistance, I-32-1 f
Radioactive clock, I-5-3 ff
Radioactive isotopes, I-3-5, I-5-4, I-52-9
Radius

Bohr ∼, I-38-6, III-2-6, III-19-3, III-19-5
Classical electron ∼, I-32-4, 28-3
Excess ∼, 42-4 ff, 42-13 f

Random walk, I-6-5 ff, I-41-8 ff
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Ratchet and pawl machine, I-46-1 ff
Rayleigh’s criterion, I-30-6
Rayleigh’s law, I-41-6
Rayleigh waves, 38-8
Reactance, 22-11
Reciprocity principle, I-26-5, I-30-7
Rectification, I-50-9
Rectifier, 22-15
Reflected waves, 33-7 ff
Reflection, I-26-2 f
Angle of ∼, I-26-3, 33-1
of light, 33-1 f
Total internal ∼, 33-12 f

Refraction, I-26-2 f
Anomalous ∼, I-33-9 f
Index of ∼, I-31-1 ff, 32-1 ff
of light, 33-1 f

Relative permeability, 36-9
Relativistic dynamics, I-15-9 f
Relativistic energy, I-16-1 ff
Relativistic mass, I-16-6 ff
Relativistic momentum, I-10-8 f, I-16-1 ff
Relativity
Galilean ∼, I-10-3, I-10-6
of electric field, 13-6 ff
of magnetic field, 13-6 ff
Special theory of ∼, I-15-1 ff
Theory of ∼, I-7-11, I-17-1

Resistance, I-23-5
Resistor, I-23-5, I-41-3, I-41-8, 22-4
Resolving power, I-27-7 f
of a diffraction grating, I-30-5 f

Resonance, I-23-1 ff
Electrical ∼, I-23-5 ff
in nature, I-23-7 ff
Quantum mechanical ∼, III-10-4

Resonant cavity, 23-6 ff
Resonant circuits, 23-10 f
Resonant mode, 23-10
Resonator, cavity, 23-1 ff
Retarded time, I-28-2
Retina, I-35-1
Reynolds number, 41-5 ff
Rigid body, I-18-1, I-20-1
Angular momentum of a ∼, I-20-8
Rotation of a ∼, I-18-2 ff

Ritz combination principle, I-38-8, III-2-8
Rod cells, I-35-1 ff, I-35-5, I-35-9, I-36-4,

I-36-6, III-13-10
Root-mean-square (RMS) distance, I-6-6
Rotation
in space, I-20-1 ff
in two dimensions, I-18-1 ff
of a rigid body, I-18-2 ff
of axes, I-11-3 f
Plane ∼, I-18-1

Rotation matrix, III-6-4
Rutherford-Bohr atomic model, 5-3
Rydberg (unit), I-38-6, III-2-6
Rydberg energy, III-10-4, III-19-3

S
Saha equation, I-42-6
Scalar, I-11-5

Scalar field, 2-2 ff
Scalar product, I-11-8 ff

of four-vectors, 25-3 ff
Scattering of light, I-32-1 ff
Schrödinger equation, 15-12, 41-12,

III-16-4, III-16-11 ff, III-20-17
for the hydrogen atom, III-19-1 f
in a classical context, III-21-1 ff

Scientific method, I-2-1
Screw dislocations, 30-9
Screw jack, I-4-5
Second (unit), I-5-5
Seismograph, I-51-5
Self-inductance, 16-4, 17-11 f
Semiconductor junction, III-14-8 ff

Rectification at a ∼, III-14-10 f
Semiconductors, III-14-1 ff

Impure ∼, III-14-4 ff
n-type ∼, III-14-5
p-type ∼, III-14-5

Shear modulus, 38-4 f
Shear waves, I-51-4, 38-5 ff
Sheet of charge, 5-4
Side bands, I-48-4 f
Sigma electron, III-12-3
Sigma matrices, III-11-2
Sigma proton, III-12-3
Sigma vector, III-11-4
Simultaneity, I-15-7 f
Sinusoidal waves, I-29-2 f
Skin depth, 32-11 ff
Slip dislocations, 30-9
Smooth muscle, I-14-2
Snell’s law, I-26-3 f, I-26-6 f, I-31-2, 33-1
Sodium, III-19-16
Solenoid, 13-5
Solid-state physics, 8-6
Sound, I-2-3, I-47-1 ff, I-50-2

Speed of ∼, I-47-7 f
Space, I-2-3, I-8-2

Curved ∼, 42-1 ff
Space-time, I-2-6, I-17-1 ff, 26-12

Geometry of ∼, I-17-1 f
Special theory of relativity, I-15-1 ff
Specific heat, I-40-7 f, 37-4

and the failure of classical physics,
I-40-8 ff

at constant volume, I-45-2
Speed, I-8-2 ff

and velocity, I-9-2 f
Greeks’ difficulties with ∼, I-8-2 f
of light, I-15-1, 18-8 f
of sound, I-47-7 f

Sphere of charge, 5-4 f
Spherical aberration, I-27-7, I-36-3

of an electron microscope, 29-4
Spherical harmonics, III-19-7
Spherically symmetric solutions, III-19-2 ff
Spherical waves, 20-12 ff, 21-2 ff
Spinel (MgAl2O4), 37-12
Spin one-half particles, III-6-1 ff, III-12-1 ff
Precession of ∼, III-7-10 ff

Spin-one particles, III-5-1 ff
Spin orbit, 8-7

Spin-orbit interaction, III-15-13
Spin waves, III-15-1 ff
Spontaneous emission, I-42-9
Spontaneous magnetization, 36-11 ff
Standard deviation, I-6-9
States
Eigen∼, III-11-22
Excited ∼, 8-7, III-13-9
Ground ∼, III-7-2
of definite energy, III-13-3 ff
Stationary ∼, III-7-1 ff, III-11-22
Time-dependent ∼, III-13-6 f

State vector, III-8-1 f
Resolution of ∼s, III-8-3 ff

Stationary states, III-7-1 ff, III-11-22
Statistical fluctuations, I-6-3 ff
Statistical mechanics, I-3-1 f, I-40-1 ff
Steady flow, 40-6 ff
Steap leader, 9-10
Stefan-Boltzmann constant, I-45-8
Stern-Gerlach apparatus, III-5-1 ff
Stern-Gerlach experiment, 35-3 f, III-35-3 f
Stokes’ theorem, 3-9 f
Strain, 38-2
Volume ∼, 38-3

Strain tensor, 31-11, 39-1 ff
Strangeness, III-11-12
Conservation of ∼, III-11-12

“Strangeness” number, I-2-9
“Strange” particles, 8-7
Streamlines, 40-6
Stress, 38-2
Poincaré ∼, 28-4 f
Volume ∼, 38-3

Stress tensor, 31-9 ff
Striated (skeletal) muscle, I-14-2
Superconductivity, III-21-1 ff
Supermalloy, 36-9
Superposition, 13-11 f
of fields, I-12-9
Principle of ∼, I-25-2 ff, I-28-2, I-47-6,

1-3, 4-2
Surface
Equipotential ∼s, 4-11 f
Isothermal ∼s, 2-3

Surface tension, 12-5
Susceptibility
Electric ∼, 10-4
Magnetic ∼, 35-7, III-35-7

Symmetry, I-1-4, I-11-1
in physical laws, I-52-1 ff

Synchrotron, I-2-5, I-15-9, 17-5, 29-4, 29-6 f
Synchrotron radiation, I-34-3 ff, 17-5
Cosmic ∼, I-34-6

T
Taylor expansion, 6-7
Temperature, I-39-6 ff
Tension

Surface ∼, 12-5
Tensor, 26-7, 31-1 ff

of elasticity, 39-4 ff
of inertia, 31-6 ff
of polarizability, 31-1 f
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Strain ∼, 31-11, 39-1 ff
Stress ∼, 31-9 ff
Transformation of ∼ components, 31-3

Tensor algebra, III-8-4
Tensor field, 31-11
Tetragonal lattice, 30-7
Theorem

Bernoulli’s ∼, 40-6 ff
Fourier ∼, 7-11
Gauss’ ∼, 3-4 f, III-21-4
Helmholtz’s ∼, 40-11
Larmor’s ∼, 34-6 f, III-34-6 f
Stokes’ ∼, 3-9 f

Theory of gravitation, 42-13 f
Thermal conductivity, 2-8, 12-2 ff

of a gas, I-43-9 f
Thermal equilibrium, I-41-3 ff
Thermal ionization, I-42-5 ff
Thermodynamics, I-39-2, I-45-1 ff, 37-4 f

Laws of ∼, I-44-1 ff
Thomson atomic model, 5-3
Thomson scattering cross section, I-32-8
Three-body problem, I-10-1
Three-dimensional lattice, III-13-7 f
Three-dimensional waves, 20-8 f
Three-phase power, 16-7
Thunderstorms, 9-5 ff
Thymine, I-3-6
Tides, I-7-4
Time, I-2-3, I-5-1 ff, I-8-1 f

Retarded ∼, I-28-2
Standard of ∼, I-5-5
Transformation of ∼, I-15-5 ff

Time-dependent states, III-13-6 f
Torque, I-18-4, I-20-1 ff
Torsion, 38-5 ff
Total internal reflection, 33-12 f
Transformation

Fourier ∼, I-25-4
Galilean ∼, I-12-11, I-15-2 f
Linear ∼, I-11-6
Lorentz ∼, I-15-3, I-17-1, I-34-8, I-52-2,

25-1
of fields, 26-1 ff

of time, I-15-5 ff
of velocity, I-16-4 ff

Transformer, 16-4 f
Transforming amplitudes, III-6-1 ff
Transient response, I-21-6
Transients, I-24-1 ff

Electrical ∼, I-24-5 f
Transistor, III-14-11 f
Translation of axes, I-11-1 ff
Transmission line, 24-1 ff
Transmitted waves, 33-7 ff
Travelling field, 18-5 ff
Triclinic lattice, 30-7

Trigonal lattice, 30-7
Triphenyl cyclopropenyl molecule, III-15-12
Twenty-one centimeter line, III-12-9
Twin paradox, I-16-3 f
Two-dimensional fields, 7-2 ff
Two-slit interference, III-3-5 ff
Two-state systems, III-10-1 ff, III-11-1 ff

U
Ultraviolet radiation, I-2-5, I-26-1
Uncertainty principle, I-2-6, I-6-10 f, I-7-11,

I-37-9, I-37-11 f, I-38-3, I-38-5 ff,
III-1-9, III-1-11, III-2-3, III-2-5 ff

and stability of atoms, 1-1, 5-3
Unit cell, I-38-5, III-2-5
Unit matrix, III-11-2
Unit vector, I-11-10, 2-3
Unworldliness, 25-10

V
Van de Graaff generator, 5-9, 8-7
Vector, I-11-1 ff

Axial ∼, I-20-4, I-52-6 f
Components of a ∼, I-11-5
Four-∼s, I-15-8 f, I-17-5 ff, 25-1 ff
Polar ∼, I-20-4, I-52-6 f
Polarization ∼, 10-2 f
Poynting, 27-5
State ∼, III-8-1 f
Resolution of ∼s, III-8-3 ff

Unit ∼, I-11-10, 2-3
Vector algebra, I-11-6 f, 2-2, 2-6 f, 2-11 f,

3-1, 3-11, 27-4 f, III-5-15, III-8-2,
III-8-4

Four-∼, I-17-7 f
Vector analysis, I-11-5
Vector field, 1-4 f, 2-2 ff

Flux of a ∼, 3-2 ff
Vector integrals, 3-1 ff
Vector operator, 2-6
Vector potential, 14-1 ff, 15-1 ff

and quantum mechanics, 15-8 ff,
III-21-1 f

of known currents, 14-3 ff
Vector product, I-20-4
Velocity, I-8-3

Angular ∼, I-18-3
Components of ∼, I-9-3
Group ∼, I-48-6 f
Phase ∼, I-48-6 f
Speed and ∼, I-9-2 f
Transformation of ∼, I-16-4 ff

Velocity potential, 12-9
Virtual image, I-27-3
Virtual work, principle of, I-4-5
Viscosity, 41-1 ff

Coefficient of ∼, 41-2

Viscous flow, 41-4 f
Vision, I-36-1 ff, III-13-10

Binocular ∼, I-36-4 f
Color ∼, I-35-1 ff, I-36-1 ff
Physiochemistry of ∼, I-35-9 f

Neurology of ∼, I-36-9 ff
Visual cortex, I-36-4
Visual purple, I-35-9
Voltmeter, 16-1
Volume strain, 38-3
Volume stress, 38-3
Vortex lines, 40-10 ff
Vorticity, 40-5

W
Wall energy, 37-6
Watt (unit), I-13-3
Wave equation, I-47-1 ff, 18-9 ff
Wavefront, I-33-9, I-47-3, I-51-1 f
Wave function, III-16-5 ff

Meaning of the ∼, III-21-6 f
Waveguides, 24-1 ff
Wavelength, I-26-1, I-29-3
Wave nodes, III-7-9
Wave number, I-29-2
Wave packet, III-13-6
Waves, I-51-1 ff

Electromagnetic ∼, I-2-5, 21-1 f
Light ∼, I-48-1
Plane ∼, 20-1 ff
Reflected ∼, 33-7 ff
Shear ∼, I-51-4, 38-5 ff
Sinusoidal ∼, I-29-2 f
Spherical ∼, 20-12 ff, 21-2 ff
Spin ∼, III-15-1 ff
Three-dimensional ∼, 20-8 f
Transmitted ∼, 33-7 ff

“Wet” water, 41-1 ff
Work, I-13-1 ff, I-14-1 ff

X
X-ray diffraction, I-30-8, I-38-5, 8-4, 30-1,

III-2-5
X-rays, I-2-5, I-26-1, I-31-6, I-34-5, I-48-6 f

Y
Young’s modulus, 38-2, 38-5
Yukawa “photon”, 28-13
Yukawa potential, 28-13, III-10-7

Z
Zeeman effect, III-12-12
Zeeman splitting, III-12-9 ff
Zero, absolute, I-1-5, I-2-6
Zero curl, 3-10 f, 4-1
Zero divergence, 3-10 f, 4-1
Zero mass, I-2-10
Zinc, III-19-16 f
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List of Symbols

| | absolute value, I-6-5(
n
k

)
binomial coefficient, n over k, I-6-4

a∗ complex conjugate of a, I-23-1

�2 D’Alembertian operator, �2 = ∂2

∂t2
−∇2, 25-7

〈 〉 expectation value, I-6-5

∇2 Laplacian operator, ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , 2-10
∇ nabla operator, ∇ = (∂/∂x, ∂/∂y, ∂/∂z), I-14-9
| 1〉, | 2〉 a specific choice of base vectors for a two-state system, III-9-1
| I 〉, | II 〉 a specific choice of base vectors for a two-state system, III-9-2
〈φ | state φ written as a bra vector, III-8-2
〈f | s〉 amplitude for a system prepared in the starting state | s〉 to be found in the final state | f〉, III-3-2
|φ〉 state φ written as a ket vector, III-8-2
≈ approximately, I-6-9
∼ of the order, I-2-10
∝ proportional to, I-5-1
α angular acceleration, I-18-3
γ heat capacity ratio (adiabatic index or specific heat ratio), I-39-5
ε0 dielectric constant or permittivity of vacuum, ε0 = 8.854187817× 10−12 F/m, I-12-7
κ Boltzmann’s constant, κ = 1.3806504× 10−23 J/K, III-14-3
κ relative permittivity, 10-4
κ thermal conductivity, I-43-10
λ wavelength, I-17-8
λ reduced wavelength, λ = λ/2π, 15-9
µ coefficient of friction, I-12-4
µ magnetic moment, 14-8
µ magnetic moment vector, 14-8
µ shear modulus, 38-4
ν frequency, I-17-8
ρ density, I-47-3
ρ electric charge density, 2-8
σ cross section, I-5-9
σ Pauli spin matrices vector, III-11-4
σx, σy, σz Pauli spin matrices, III-11-2
σ Poisson’s ratio, 38-2
σ Stefan-Boltzmann constant, σ = 5.6704× 10−8 W/m2K4, I-45-8
τ torque, I-18-4
τ torque vector, I-20-4
φ electrostatic potential, 4-5
Φ0 basic flux unit, III-21-12
χ electric susceptibility, 10-4
ω angular velocity, I-18-3
ω angular velocity vector, I-20-4
Ω vorticity, 40-5

a acceleration vector, I-19-2
ax, ay, az cartesian components of the acceleration vector, I-8-10
a magnitude or component of the acceleration vector, I-8-8
A area, I-5-9
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Aµ = (φ,A) four-potential, 25-8
A vector potential, 14-1
Ax, Ay, Az cartesion components of the vector potential, 14-1
B magnetic field vector (magnetic induction), I-12-10
Bx, By, Bz cartesian components of the magnetic field vector, I-12-10
c speed of light, c = 2.99792458× 108 m/s, I-4-7
C capacitance, I-23-5
C Clebsch-Gordan coefficients, III-18-19
CV specific heat at constant volume, I-45-2
d distance, I-12-6
D electric displacement vector, 10-6
er unit vector in the direction r, I-28-2
E electric field vector, I-12-8
Ex, Ey, Ez cartesian components of the electric field vector, I-12-10
E energy, I-4-7
Egap energy gap, III-14-3
Etr transverse electric field vector, III-14-7
E electric field vector, III-9-5
E electromotive force, 17-1
E energy, I-33-10
f focal length, I-27-3
Fµν electromagnetic tensor, 26-6
F force vector, I-11-5
Fx, Fy, Fz cartesian components of the force vector, I-9-3
F magnitude or component of the force vector, I-7-1
g acceleration of gravity, I-9-4
G gravitational constant, I-7-1
h heat flow vector, 2-3
h Planck’s constant, h = 6.62606896× 10−34 Js, I-17-8
~ reduced Planck constant, ~ = h/2π, I-2-6
H magnetizing field vector, 32-4
i imaginary unit, I-22-7
i unit vector in the direction x, I-11-10
I electric current, I-23-5
I intensity, I-30-1
I moment of inertia, I-18-7
Iij tensor of inertia, 31-7
I intensity, III-9-14
j electric current density vector, 2-8
jx, jy, jz cartesian components of the electric current density vector, 13-11
j unit vector in the direction y, I-11-10
J angular momentum vector of electron orbit, 34-3
J0(x) Bessel function of the first kind, 23-6
k Boltzmann’s constant, k = 1.3806504× 10−23 J/K, I-39-10
kµ = (ω,k) four-wave vector, I-34-9
k unit vector in the direction z, I-11-10
k wave vector, I-34-9
kx, ky, kz cartesian components of the wave vector, I-34-9
k magnitude or component of the wave vector, wave number, I-29-3
K bulk modulus, 38-3
L angular momentum vector, I-20-4
L magnitude or component of the angular momentum vector, I-18-5
L self-inductance, I-23-6
L Lagrangian, 19-8
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L self-inductance, 17-11
|L〉 left-hand circularly polarized photon state, III-11-11
m mass, I-4-7
meff effective electron mass in a crystal lattice, III-13-7
m0 rest mass, I-10-8
M magnetization vector, 35-7
M mutual inductance, 22-16
M mutual inductance, 17-9
M bending moment, 38-9
n index of refraction, I-26-4
n the nth Roman numeral, so that n takes on the values I , II , . . . , N, III-11-22
n unit normal vector, 2-4
Nn number of electrons per unit volume, III-14-3
Np number of holes per unit volume, III-14-3
p dipole moment vector, 6-3
p magnitude or component of the dipole moment vector, 6-3
pµ = (E,p) four-momentum, I-17-7
p momentum vector, I-15-9
px, py, pz cartesian components of the momentum vector, I-10-8
p magnitude or component of momentum vector, I-2-6
p pressure, 40-1
Pspin exch Pauli spin exchange operator, III-12-7
P polarization vector, 10-3
P magnitude or component of the polarization vector, 10-4
P power, I-24-1
P pressure, I-39-3
P (k, n) Bernoulli or binomial probability, I-6-5
P (A) probability of observing event A, I-6-1
q electric charge, I-12-7
Q heat, I-44-3
r radius (position) vector, I-11-5
r radius or distance, I-5-9
R resistance, I-23-5
R Reynold’s number, 41-6
|R〉 right-hand circularly polarized photon state, III-11-11
s distance, I-8-1
S action, 19-3
S entropy, I-44-10
S Poynting vector, 27-2
S “strangeness” number, I-2-9
Sij stress tensor, 31-9
t time, I-5-1
T absolute temperature, I-39-10
T half-life, I-5-3
T kinetic energy, I-13-1
u velocity, I-15-2
U internal energy, I-39-5
U(t2, t1) operator designating the operation waiting from time t1 until t2, III-8-7
U potential energy, I-13-1
U unworldliness, 25-10
v velocity vector, I-11-7
vx, vy, vz cartesian components of the velocity vector, I-8-9
v magnitude or component of velocity vector, I-8-4
V velocity, I-4-6
V voltage, I-23-5
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V volume, I-39-3
V voltage, 17-12

W weight, I-4-4
W work, I-14-2

x cartesian coordinate, I-1-6
xµ = (t, r) four-position, I-34-9

y cartesian coordinate, I-1-6
Yl,m(θ, φ) spherical harmonics, III-19-7
Y Young’s modulus, 38-2

z cartesian coordinate, I-1-6
Z complex impedance, I-23-7
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