
Oracle® Database
Learning Key 20c New Features for Database
Administrators

F25017-04
May 2020

Oracle Database Learning Key 20c New Features for Database Administrators,

F25017-04

Copyright © 2015, 2020, Oracle and/or its affiliates.

Primary Author: Dominique Jeunot

Contributors: Alan Williams, Saurabh Naresh Netravalkar, Vijayendra Lakkundi, Jim Stenoish, Bill
Beauregard, Gregg Christman, , Andy Rivenes, Teck Hua Lee, Vijayendra Lakkundi, Nigel Bayliss, Allison
Holloway, Sathya Jaganathan, Huagang Li, Kelly Smith, Mark Scardina, Bill Burton, Ravi Thammaiah,
Hermann Baer, Christopher Jones, Abhishek Munnolimath, Shashaanka Agrawal, Dominic Giles, Daniel
Overby Hansen, Srikanth Bellamkonda, Daniel Overby Hansen, Krishna Mohan, Preetam Ramakrishna

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Learning Key 20c New Features for Database Administrators

Practices Environment 1-1

Practices Environment on Oracle Database Cloud Preview 1-1

Security Solutions 1-3

Security 1-4

Force Upgraded Password File to be Case Sensitive 1-4

Predefined Unified Audit Policies for Security Technical Implementation
Guides (STIG) Compliance 1-7

SYSLOG Destination for Common Unified Audit Policies 1-13

Unified Audit Policies Enforced on the Current User 1-22

Unified Audit Policy Configuration Changes Effective Immediately 1-26

Oracle Blockchain Table 1-32

Oracle Advanced Security 1-45

Ability to Set the Default Tablespace Encryption Algorithm 1-45

Oracle Database Vault 1-47

Ability to Prevent Local Oracle Database Vault Policies from Blocking
Common Operations 1-47

Performance and High-Availability Options 1-78

Automatic Operations 1-78

SecureFiles Defragmentation 1-78

Automatic Index Optimization 1-84

Automatic Zone Maps 1-107

Oracle Database In-Memory 1-125

Database In-Memory Base Level 1-126

Automatic In-Memory 1-126

In-Memory Hybrid Scans 1-141

Database In-Memory External Table Enhancements 1-151

Flashback 1-164

PDB Point-in-Time Recovery or Flashback to Any Time in the Recent Past 1-164

Autonomous Health Framework 1-175

Oracle Trace File Analyzer Real-Time Health Summary 1-175

Oracle Trace File Analyzer Log File Life Cycle Enhancements 1-176

Oracle Multitenant 1-176

iii

MAX_IDLE_BLOCKER_TIME Parameter 1-176

Expanded Syntax for PDB Application Synchronization 1-181

Details: Using non-CDBs and CDBs 1-189

Tools and Languages 1-189

Analytical SQL and Statistical Functions 1-189

Bitwise Aggregate Functions 1-190

New Analytical and Statistical Aggregate Functions 1-191

Enhanced Analytic Functions 1-212

SQL 1-220

SQL Macros 1-221

Placeholders in SQL DDL Statements 1-228

Expression Support for Initialization Parameters 1-229

Enhanced SQL Set Operators 1-233

Upgrades, Patching and Migrations 1-238

Oracle Database Utilities 1-238

Oracle Data Pump Includes and Excludes in the Same Operation 1-238

Oracle Data Pump Resumes Transportable Tablespace Jobs 1-256

Oracle Data Pump Parallelizes Transportable Tablespace Metadata
Operations 1-257

Oracle Data Pump Provides Optional Index Compression 1-260

Oracle Data Pump Checksums Support Cloud Migrations 1-265

iv

Preface

This document describes new features implemented in Oracle Database 20c.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
Read the "Oracle Database Learning Key 20c New Features for Database
Administrators" if you want to learn about features, options, and enhancements that
are new in Oracle Database 20c and benefit from practices to better understand the
features use.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Database 20c
documentation set:

• Oracle Database New Features

• Oracle Database Error Messages

• Oracle Database Administrator’s Guide

• Oracle Database Concepts

• Oracle Database Reference

Conventions
The following text conventions are used in this document:

5

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Conventions

6

1
Learning Key 20c New Features for
Database Administrators

The learning guide shows the major new features and enhancements introduced in
Oracle Database 20c, for which you can get more details and even practices to
experiment them.

For other new features that are not providing any more details or practices, refer to the
Oracle® Database New Features Guide 20c.

• Practices Environment
If you plan to test the practices available in different sections, the practices are
designed to be independent from one another. This is the reason why, in case a
particular configuration is already enabled in your testing database, the recreation
of your testing database is suggested, but not mandatory.

• Security Solutions

• Performance and High-Availability Options

• Tools and Languages

• Upgrades, Patching and Migrations

Practices Environment
If you plan to test the practices available in different sections, the practices are
designed to be independent from one another. This is the reason why, in case a
particular configuration is already enabled in your testing database, the recreation of
your testing database is suggested, but not mandatory.

• Practices Environment on Oracle Database Cloud Preview

Practices Environment on Oracle Database Cloud Preview
1. Create an instance of a 20c Cloud Preview Database running in Oracle Cloud

Infrastructure following the instructions explained in the Create an Oracle Cloud
Infrastructure VM Database tutorial. Name the CDB CDB20 and its pluggable
database PDB20.

2. Once your 20c Cloud Preview CDB20 and PDB20 are created, an alias entry is
automatically created in /u01/app/oracle/homes/OraDB20Home1/network/admin/
tnsnames.ora. It is recommended to add an alias entry in /u01/app/oracle/
homes/OraDB20Home1/network/admin/tnsnames.ora for PDB20 to provide an easier
connection to PDB20.

$ cat /u01/app/oracle/homes/OraDB20Home1/network/admin/tnsnames.ora
LISTENER_CDB20=(ADDRESS=(PROTOCOL=TCP)(HOST=host_value)(PORT=1521))

CDB20_iad1bw=(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=host_value)

1-1

https://oracle.github.io/learning-library/data-management-library/database/oci-vm-database/create-oci-vm-db/
https://oracle.github.io/learning-library/data-management-library/database/oci-vm-database/create-oci-vm-db/

(PORT=1521))(CONNECT_DATA=(SERVER=DEDICATED)
(SERVICE_NAME=CDB20_iad1bw.subnetname.dbvcn.oraclevcn.com)))
$

3. Create an alias entry by copying the CDB alias entry, replace the CDB alias name
with your PDB name, and the CDB service name with your PDB service name.

$ vi /u01/app/oracle/homes/OraDB20Home1/network/admin/tnsnames.ora
LISTENER_CDB20=(ADDRESS=(PROTOCOL=TCP)(HOST=host_value)(PORT=1521))

CDB20_iad1bw=(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=host_value)
(PORT=1521))(CONNECT_DATA=(SERVER=DEDICATED)
(SERVICE_NAME=CDB20_iad1bw.subnetname.dbvcn.oraclevcn.com)))

PDB20=(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=host_value)(PORT=1521))
(CONNECT_DATA=(SERVER=DEDICATED)
(SERVICE_NAME=PDB20.subnetname.dbvcn.oraclevcn.com)))
$

Do the same operation for each new PDB created in the CDB.

4. Test the connection to CDB20.

$ sqlplus sys@CDB20_iad1bw AS SYSDBA

SQL*Plus: Release 20.0.0.0.0 - Production on Thu Apr 2 15:20:34 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Enter password: password_defined_during_DBSystem_creation

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> SHOW CON_NAME

CON_NAME

CDB$ROOT
SQL>

5. Test the connection to PDB20.

SQL> CONNECT sys@PDB20 AS SYSDBA
Enter password: password_defined_during_DBSystem_creation
Connected.
SQL> SHOW CON_NAME

CON_NAME

PDB20

Chapter 1
Practices Environment

1-2

SQL> EXIT
$

6. Download the Cloud_Preview_20c_labs.zip zip file from Oracle Web Content in
the directory /home/oracle on your VM and unzip the file.

$ cd /home/oracle
$ unzip Cloud_Preview_20c_labs.zip
Archive: Cloud_Preview_20c_labs.zip
inflating: labs/update_pass.sh
 creating: labs/M104785GC10/
 inflating: labs/M104785GC10/hr_cre.sql
 inflating: labs/M104785GC10/hr_idx.sql
 inflating: labs/M104785GC10/hr_main_new.sql
 inflating: labs/M104785GC10/hr_code.sql
 inflating: labs/M104785GC10/hr_main.sql
 inflating: labs/M104785GC10/hr_drop_new.sql
 inflating: labs/M104785GC10/hr_analz.sql
 inflating: labs/M104785GC10/hr_drop.sql
 inflating: labs/M104785GC10/profile.sql
 inflating: labs/M104785GC10/flashback.sql
...
 inflating: labs/M104782GC10/create_PDB20.sql
 inflating: labs/M104782GC10/tnsnames.ora
 inflating: labs/M104782GC10/hr_comnt.sql
 inflating: labs/M104782GC10/hr_popul.sql
 inflating: labs/M104782GC10/create_CDB20.sh
 inflating: labs/M104782GC10/listener.ora
$

7. Launch the /home/oracle/labs/update_pass.sh shell script. The shell script
prompts you to enter the password_defined_during_DBSystem_creation and sets
it in all shell scripts and SQL scripts that will be used in the practices.

$ chmod 777 /home/oracle/labs/update_pass.sh
$ /home/oracle/labs/update_pass.sh
dos2unix: converting file /home/oracle/labs/update_pass.sh to Unix
format ...
dos2unix: converting file /home/oracle/labs/M104785GC10/create_CDB20.sh
to Unix format ...
dos2unix: converting file /home/oracle/labs/M104781GC10/setup_DV.sh to
Unix format ...
...
Enter the password you set during the DBSystem creation:
password_defined_during_DBSystem_creation
$

Security Solutions
• Security

• Oracle Advanced Security

• Oracle Database Vault

Chapter 1
Security Solutions

1-3

http://www-content.oracle.com/content/idcplg?IdcService=GET_FILE&fldFile=fFileGUID:670A724591A0154EBFB73065175A4FFF&fldBrowsingMode=contribution

Security
• Force Upgraded Password File to be Case Sensitive

• Predefined Unified Audit Policies for Security Technical Implementation Guides
(STIG) Compliance

• SYSLOG Destination for Common Unified Audit Policies

• Unified Audit Policies Enforced on the Current User

• Unified Audit Policy Configuration Changes Effective Immediately

• Oracle Blockchain Table

Force Upgraded Password File to be Case Sensitive
Starting in Oracle Database 20c, the parameter to enable or disable password file
case sensitivity is removed. All passwords in new password files are case-sensitive.

Case-sensitive password files provide more security than older password files that are
case insensitive. Oracle recommends that you use case-sensitive password files.
However, upgraded password files from earlier Oracle Database releases can retain
their original case-insensitivity. You can force your password files to be case-sensitive
by migrating password files from one format to another.

• Practice: Forcing Upgraded Password File to be Case Sensitive
This practice shows how the passwords in the password files in Oracle Database
20c are case-sensitive. In earlier Oracle Database releases, password files by
default retain their original case-insensitive verifiers. The parameter to enable or
disable password file case sensitivity IGNORECASE is removed. All passwords in
new password files are case-sensitive.

Related Topics

• Oracle® Database Security Guide

Practice: Forcing Upgraded Password File to be Case Sensitive
This practice shows how the passwords in the password files in Oracle Database 20c
are case-sensitive. In earlier Oracle Database releases, password files by default
retain their original case-insensitive verifiers. The parameter to enable or disable
password file case sensitivity IGNORECASE is removed. All passwords in new password
files are case-sensitive.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Display the password file format of CDB20.

$ export ORACLE_BASE=/u01/app/oracle
$ cd $ORACLE_BASE/dbs
$ ls -l orapwCDB20
-rw-r----- 1 oracle oinstall 2048 Mar 5 09:48 orapwCDB20
$ orapwd describe file=orapwCDB20
Password file Description : format=12
$

Chapter 1
Security Solutions

1-4

3. Change SYS password and verify that the password is now case-sensitive.

a. Change the SYS user password in the password file.

$ orapwd file=$ORACLE_BASE/dbs/orapwCDB20 sys=Y force=Y format=12
ignorecase=Y
Usage 1: orapwd file=<fname> force={y|n} asm={y|n}
 dbuniquename=<dbname> format={12|12.2}
 delete={y|n} input_file=<input-fname>
 'sys={y | password | external(<sys-external-name>)
 | global(<sys-directory-DN>)}'
 'sysbackup={y | password | external(<sysbackup-external-
name>)
 | global(<sysbackup-directory-DN>)}'
 'sysdg={y | password | external(<sysdg-external-name>)
 | global(<sysdg-directory-DN>)}'
 'syskm={y | password | external(<syskm-external-name>)
 | global(<syskm-directory-DN>)}'

Usage 2: orapwd describe file=<fname>

 where
 file - name of password file (required),
 password
 - password for SYS will be prompted
 if not specified at command line.
 Ignored, if input_file is specified,
 force - whether to overwrite existing file, also clears
 CRS resource if it already has password file
 registered (optional),
 asm - indicates that the ASM instance password file is to
 be stored in Automatic Storage Management (ASM)
 disk group (optional),
 dbuniquename
 - unique database name used to identify database
 password files residing in ASM diskgroup
 or Exascale Vault.
 Ignored when asm option is specified (optional),
 format - use format=12 for new 12c features like SYSBACKUP,
SYSDG
 and SYSKM support, longer identifiers, SHA2 Verifiers
etc.
 use format=12.2 for 12.2 features like enforcing user
 profile (password limits and password complexity) and
 account status for administrative users.
 If not specified, format=12.2 is default (optional),
 delete - drops a password file. Must specify 'asm',
 'dbuniquename' or 'file'. If 'file' is specified,
 the file must be located on an ASM diskgroup
 or Exascale Vault,
 input_file
 - name of input password file, from where old user
 entries will be migrated (optional),
 sys - specifies if SYS user is password, externally or
 globally authenticated.
 For external SYS, also specifies external name.

Chapter 1
Security Solutions

1-5

 For global SYS, also specifies directory DN.
 SYS={y | password} specifies if SYS user password needs
 to be changed when used with input_file,
 sysbackup
 - creates SYSBACKUP entry (optional).
 Specifies if SYSBACKUP user is password, externally or
 globally authenticated.
 For external SYSBACKUP, also specifies external name.
 For global SYSBACKUP, also specifies directory DN.
 Ignored, if input_file is specified,
 sysdg - creates SYSDG entry (optional).
 Specifies if SYSDG user is password, externally or
 globally authenticated.
 For external SYSDG, also specifies external name.
 For global SYSDG, also specifies directory DN.
 Ignored, if input_file is specified,
 syskm - creates SYSKM entry (optional).
 Specifies if SYSKM user is password, externally or
 globally authenticated.
 For external SYSKM, also specifies external name.
 For global SYSKM, also specifies directory DN.
 Ignored, if input_file is specified,
 describe
 - describes the properties of specified password file
 (required).

 There must be no spaces around the equal-to (=) character.
$

The usage notes mention all possibles parameters that can be used in the
command. IGNORECASE is not mentioned because it is now a deprecated
parameter.

b. Re-enter the command without the deprecated parameter.

$ orapwd file=$ORACLE_BASE/dbs/orapwCDB20 sys=Y force=Y format=12
Enter password for SYS: password
$

c. Log on as SYS to CDB20.

$ sqlplus sys@CDB20 AS SYSDBA

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Dec 23 09:44:55
2019
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Enter password: password_with_case-sensitiveness

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

Chapter 1
Security Solutions

1-6

SQL> CONNECT sys@CDB20 AS SYSDBA

Enter password: password_without_case-sensitiveness
ERROR:
ORA-01017: invalid username/password; logon denied

Warning: You are no longer connected to ORACLE.
SQL>

d. Display the list of the users.

SQL> CONNECT sys@CDB20 AS SYSDBA
Enter password: password_with_case-sensitiveness
Connected.
SQL> SET PAGES 100
SQL> COL username FORMAT A30
SQL> SELECT username, password_versions FROM dba_users ORDER BY 2,1;

USERNAME PASSWORD_VERSIONS
------------------------------ -----------------
SYS 11G 12C
SYSTEM 11G 12C
ANONYMOUS
APPQOSSYS
AUDSYS
CTXSYS
...
SQL> EXIT
$

Predefined Unified Audit Policies for Security Technical Implementation Guides
(STIG) Compliance

Starting with this release, you can audit for Security Technical Implementation Guide
(STIG) compliance by using new predefined unified audit policies.

These policies are as follows:

• ORA_STIG_RECOMMENDATIONS

• ORA_ALL_TOPLEVEL_ACTIONS

• ORA_LOGON_LOGOFF

• Practice: Using Predefined Unified Audit Policies for STIG Compliance
This practice shows how to use predefined unified audit policies to implement
Security Technical Implementation Guides (STIG) audit requirements.

Related Topics

• Oracle® Database Security Guide

Chapter 1
Security Solutions

1-7

Practice: Using Predefined Unified Audit Policies for STIG Compliance
This practice shows how to use predefined unified audit policies to implement Security
Technical Implementation Guides (STIG) audit requirements.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Connect to PDB20 as SYSTEM and verify which predefined unified audit policies are
implemented.

$ sqlplus system@PDB20

Enter password: password
Connected.
SQL> SELECT DISTINCT policy_name FROM audit_unified_policies ORDER BY 1;

POLICY_NAME
--

ORA_ACCOUNT_MGMT
ORA_ALL_TOPLEVEL_ACTIONS
ORA_CIS_RECOMMENDATIONS
ORA_DATABASE_PARAMETER
ORA_DV_AUDPOL
ORA_DV_AUDPOL2
ORA_LOGON_FAILURES
ORA_LOGON_LOGOFF
ORA_RAS_POLICY_MGMT
ORA_RAS_SESSION_MGMT
ORA_SECURECONFIG
ORA_STIG_RECOMMENDATIONS

12 rows selected.

SQL>

Observe the three new predefined unified audit policies implemented.

3. Are these policies enabled to satisfy STIG compliance?

SQL> SELECT * FROM audit_unified_enabled_policies
 WHERE policy_name IN
('ORA_ALL_TOPLEVEL_ACTIONS','ORA_LOGON_LOGOFF','ORA_STIG_RECOMMENDATIONS
');

no rows selected

SQL>

None of these are enabled.

4. Before enabling any of these policies, understand which actions they would audit.

Chapter 1
Security Solutions

1-8

a. Verify the actions audited by ORA_STIG_RECOMMENDATIONS.

SQL> COL audit_option FORMAT A26
SQL> COL AUDIT_OPTION_TYPE FORMAT A16
SQL> COL OBJECT_SCHEMA FORMAT A4
SQL> COL OBJECT_NAME FORMAT A22
SQL> COL OBJECT_TYPE FORMAT A7
SQL> SELECT audit_option, audit_option_type, object_schema,
object_name, object_type
 FROM audit_unified_policies
 WHERE policy_name = 'ORA_STIG_RECOMMENDATIONS';

AUDIT_OPTION AUDIT_OPTION_TYP OBJE
OBJECT_NAME OBJECT_
-------------------------- ---------------- ----
---------------------- -------
ALTER SESSION SYSTEM PRIVILEGE NONE
NONE NONE
CREATE TABLE STANDARD ACTION NONE
NONE NONE
DROP TABLE STANDARD ACTION NONE
NONE NONE
ALTER TABLE STANDARD ACTION NONE
NONE NONE
CREATE SYNONYM STANDARD ACTION NONE
NONE NONE
DROP SYNONYM STANDARD ACTION NONE
NONE NONE
CREATE VIEW STANDARD ACTION NONE
NONE NONE
DROP VIEW STANDARD ACTION NONE
NONE NONE
CREATE PROCEDURE STANDARD ACTION NONE
NONE NONE
ALTER PROCEDURE STANDARD ACTION NONE
NONE NONE
ALTER DATABASE STANDARD ACTION NONE
NONE NONE
ALTER USER STANDARD ACTION NONE
NONE NONE
ALTER SYSTEM STANDARD ACTION NONE
NONE NONE
CREATE USER STANDARD ACTION NONE
NONE NONE
CREATE ROLE STANDARD ACTION NONE
NONE NONE
DROP USER STANDARD ACTION NONE
NONE NONE
DROP ROLE STANDARD ACTION NONE
NONE NONE
SET ROLE STANDARD ACTION NONE
NONE NONE
CREATE TRIGGER STANDARD ACTION NONE
NONE NONE
ALTER TRIGGER STANDARD ACTION NONE

Chapter 1
Security Solutions

1-9

NONE NONE
DROP TRIGGER STANDARD ACTION NONE
NONE NONE
CREATE PROFILE STANDARD ACTION NONE
NONE NONE
DROP PROFILE STANDARD ACTION NONE
NONE NONE
ALTER PROFILE STANDARD ACTION NONE
NONE NONE
DROP PROCEDURE STANDARD ACTION NONE
NONE NONE
CREATE MATERIALIZED VIEW STANDARD ACTION NONE
NONE NONE
ALTER MATERIALIZED VIEW STANDARD ACTION NONE
NONE NONE
DROP MATERIALIZED VIEW STANDARD ACTION NONE
NONE NONE
CREATE TYPE STANDARD ACTION NONE
NONE NONE
DROP TYPE STANDARD ACTION NONE
NONE NONE
ALTER ROLE STANDARD ACTION NONE
NONE NONE
ALTER TYPE STANDARD ACTION NONE
NONE NONE
CREATE TYPE BODY STANDARD ACTION NONE
NONE NONE
ALTER TYPE BODY STANDARD ACTION NONE
NONE NONE
DROP TYPE BODY STANDARD ACTION NONE
NONE NONE
DROP LIBRARY STANDARD ACTION NONE
NONE NONE
ALTER VIEW STANDARD ACTION NONE
NONE NONE
CREATE FUNCTION STANDARD ACTION NONE
NONE NONE
ALTER FUNCTION STANDARD ACTION NONE
NONE NONE
DROP FUNCTION STANDARD ACTION NONE
NONE NONE
CREATE PACKAGE STANDARD ACTION NONE
NONE NONE
ALTER PACKAGE STANDARD ACTION NONE
NONE NONE
DROP PACKAGE STANDARD ACTION NONE
NONE NONE
CREATE PACKAGE BODY STANDARD ACTION NONE
NONE NONE
ALTER PACKAGE BODY STANDARD ACTION NONE
NONE NONE
DROP PACKAGE BODY STANDARD ACTION NONE
NONE NONE
CREATE LIBRARY STANDARD ACTION NONE
NONE NONE

Chapter 1
Security Solutions

1-10

CREATE JAVA STANDARD ACTION NONE
NONE NONE
ALTER JAVA STANDARD ACTION NONE
NONE NONE
DROP JAVA STANDARD ACTION NONE
NONE NONE
CREATE OPERATOR STANDARD ACTION NONE
NONE NONE
DROP OPERATOR STANDARD ACTION NONE
NONE NONE
ALTER OPERATOR STANDARD ACTION NONE
NONE NONE
CREATE SPFILE STANDARD ACTION NONE
NONE NONE
ALTER SYNONYM STANDARD ACTION NONE
NONE NONE
ALTER LIBRARY STANDARD ACTION NONE
NONE NONE
DROP ASSEMBLY STANDARD ACTION NONE
NONE NONE
CREATE ASSEMBLY STANDARD ACTION NONE
NONE NONE
ALTER ASSEMBLY STANDARD ACTION NONE
NONE NONE
ALTER PLUGGABLE DATABASE STANDARD ACTION NONE
NONE NONE
CREATE LOCKDOWN PROFILE STANDARD ACTION NONE
NONE NONE
DROP LOCKDOWN PROFILE STANDARD ACTION NONE
NONE NONE
ALTER LOCKDOWN PROFILE STANDARD ACTION NONE
NONE NONE
ADMINISTER KEY MANAGEMENT STANDARD ACTION NONE
NONE NONE
ALTER DATABASE DICTIONARY STANDARD ACTION NONE
NONE NONE
GRANT STANDARD ACTION NONE
NONE NONE
REVOKE STANDARD ACTION NONE
NONE NONE
ALL OLS ACTION NONE
NONE NONE
EXECUTE OBJECT ACTION SYS
DBMS_SCHEDULER PACKAGE
EXECUTE OBJECT ACTION SYS
DBMS_JOB PACKAGE
EXECUTE OBJECT ACTION SYS
DBMS_RLS PACKAGE
EXECUTE OBJECT ACTION SYS
DBMS_REDACT PACKAGE
EXECUTE OBJECT ACTION SYS
DBMS_TSDP_MANAGE PACKAGE
EXECUTE OBJECT ACTION SYS
DBMS_TSDP_PROTECT PACKAGE
EXECUTE OBJECT ACTION SYS

Chapter 1
Security Solutions

1-11

DBMS_NETWORK_ACL_ADMIN PACKAGE

75 rows selected.

SQL>

The policy once enabled audits all major actions that could damage the
security and the smooth running of the database, and also all Oracle Label
Security actions. This result shows that you should enable the policy for all
users.

b. Verify the actions audited by ORA_ALL_TOPLEVEL_ACTIONS.

SQL> COL audit_option FORMAT A6
SQL> COL object_name FORMAT A11
SQL> COL audit_only_toplevel FORMAT A22
SQL> SELECT audit_option, audit_option_type, object_schema,
object_name,
 object_type, audit_only_toplevel
 FROM audit_unified_policies
 WHERE policy_name = 'ORA_ALL_TOPLEVEL_ACTIONS';

AUDIT_ AUDIT_OPTION_TYP OBJE OBJECT_NAME OBJECT_ AUDIT_ONLY_TOPLEVEL
------ ---------------- ---- ----------- -------

ALL STANDARD ACTION NONE NONE NONE YES

SQL>

The policy once enabled audits all top level actions of privileged users on any
object that could damage the security of the database. This result shows that
you should enable the policy for all users.

c. Verify the actions audited by ORA_LOGON_LOGOFF.

SQL> COL audit_option FORMAT A6
SQL> COL object_name FORMAT A11
SQL> COL audit_only_toplevel FORMAT A22
SQL> SELECT audit_option, audit_option_type, object_schema,
object_name,
 object_type, audit_only_toplevel
 FROM audit_unified_policies
 WHERE policy_name = 'ORA_LOGON_LOGOFF';

AUDIT_ AUDIT_OPTION_TYP OBJE OBJECT_NAME OBJECT_ AUDIT_ONLY_TOPLEVEL
------ ---------------- ---- ----------- -------

LOGON STANDARD ACTION NONE NONE NONE NO
LOGOFF STANDARD ACTION NONE NONE NONE NO

SQL>

The policy once enabled audits all connection and disconnections that could
display unsecure connections to the database. This policy is required for both

Chapter 1
Security Solutions

1-12

the Center for Internet Security (CIS) and Security for Technical
Implementation Guides (STIG) requirements.

d. Enable all three audit policies for all users.

SQL> AUDIT POLICY ORA_STIG_RECOMMENDATIONS;

Audit succeeded.

SQL> AUDIT POLICY ORA_ALL_TOPLEVEL_ACTIONS;

Audit succeeded.

SQL> AUDIT POLICY ORA_LOGON_LOGOFF;

Audit succeeded.

SQL> EXIT
$

SYSLOG Destination for Common Unified Audit Policies
Certain predefined columns of unified audit records from common unified audit policies
can be written to the UNIX SYSLOG destination.

To enable this feature, you set UNIFIED_AUDIT_COMMON_SYSTEMLOG, a new CDB
level init.ora parameter. This enhancement enables all audit records from common
unified audit policies to be consolidated into a single destination.

This feature is available only on UNIX platforms, not Windows.

• Practice: SYSLOG Destination for Common Unified Audit Policies
This practice shows how to enable all audit records from common unified audit
policies to be consolidated into a single destination. The new initialization
parameter used for the configuration is supported only on UNIX platforms and
NOT available on Windows.

Related Topics

• Oracle® Database Security Guide

Practice: SYSLOG Destination for Common Unified Audit Policies
This practice shows how to enable all audit records from common unified audit policies
to be consolidated into a single destination. The new initialization parameter used for
the configuration is supported only on UNIX platforms and NOT available on Windows.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Before configuring the SYSLOG destination for common unified audit policies to be
consolidated into a single destination, execute the /home/oracle/labs/
M104781GC10/setup_SYSLOG_audit.sh shell script against CDB20. The shell script

Chapter 1
Security Solutions

1-13

creates a common user C##TEST and commonly grants the common user the
CREATE SESSION and CREATE TABLE privileges.

$ cd /home/oracle/labs/M104781GC10
$ /home/oracle/labs/M104781GC10/setup_SYSLOG_audit.sh

SQL*Plus: Release 20.0.0.0.0 - Production on Fri Mar 20 04:38:30 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0
SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production

Version 20.2.0.0.0

LSNRCTL for Linux: Version 20.0.0.0.0 - Production on 20-MAR-2020
04:38:57

Copyright (c) 1991, 2019, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=10.150.76.66)
(PORT=1521)))
The command completed successfully
/usr/bin/ar cr /u01/app/oracle/product/20.2.0/dbhome_1/rdbms/lib/
libknlopt.a /u01/app/oracle/product/20.2.0/dbhome_1/rdbms/lib/kzaiang.o
chmod 755 /u01/app/oracle/product/20.2.0/dbhome_1/bin

 - Linking Oracle
rm -f /u01/app/oracle/product/20.2.0/dbhome_1/rdbms/lib/oracle
...
LSNRCTL for Linux: Version 20.0.0.0.0 - Production on 20-MAR-2020
04:39:09

Copyright (c) 1991, 2019, Oracle. All rights reserved.

Starting /u01/app/oracle/product/20.2.0/dbhome_1/bin/tnslsnr: please
wait...

TNSLSNR for Linux: Version 20.0.0.0.0 - Production
System parameter file is /u01/app/oracle/homes/OraDB20Home1/network/
admin/listener.ora
Log messages written to /u01/app/oracle/diag/tnslsnr/edcdr8p1/listener/
alert/log.xml
Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=10.150.76.66)
(PORT=1521)))

Chapter 1
Security Solutions

1-14

Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=10.150.76.66)
(PORT=1521)))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for Linux: Version 20.0.0.0.0 -
Production
Start Date 20-MAR-2020 04:39:09
Uptime 0 days 0 hr. 0 min. 0 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File /u01/app/oracle/homes/OraDB20Home1/network/
admin/listener.ora
Listener Log File /u01/app/oracle/diag/tnslsnr/edcdr8p1/
listener/alert/log.xml
Listening Endpoints Summary...
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=10.150.76.66)(PORT=1521)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))
The listener supports no services
The command completed successfully

SQL*Plus: Release 20.0.0.0.0 - Production on Fri Mar 20 04:39:09 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to an idle instance.

SQL> STARTUP
...
SQL*Plus: Release 20.0.0.0.0 - Production on Tue Dec 24 02:34:44 2019
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Last Successful login time: Tue Dec 24 2019 02:31:07 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> CREATE USER c##test IDENTIFIED BY password CONTAINER=ALL;

User created.

SQL> GRANT CREATE SESSION, CREATE TABLE TO c##test CONTAINER=ALL;

Grant succeeded.

SQL> EXIT
$

Chapter 1
Security Solutions

1-15

3. Create a common and a local audit policy at the CDB root in CDB20, and a local
audit policy at the PDB level in PDB20.

a. First create the common and the local audit policy at the CDB root in CDB20.

$ sqlplus / AS SYSDBA

Connected.
SQL> CREATE AUDIT POLICY pol_common ACTIONS create table
CONTAINER=ALL;

Audit policy created.

SQL> AUDIT POLICY pol_common;

Audit succeeded.

SQL> CREATE AUDIT POLICY pol_root ACTIONS insert;

Audit policy created.

SQL> AUDIT POLICY pol_root;

Audit succeeded.

SQL> COL policy_name FORMAT A18
SQL> COL audit_option FORMAT A18
SQL> SELECT policy_name, audit_option, common
 FROM AUDIT_UNIFIED_POLICIES
 WHERE policy_name like 'POL%';

POLICY_NAME AUDIT_OPTION COM
------------------ ------------------ ---
POL_COMMON CREATE TABLE YES
POL_ROOT INSERT NO

SQL>

b. Create the local audit policy at the PDB level in PDB20.

SQL> CONNECT system@PDB20
Enter password: password
Connected.
SQL> CREATE AUDIT POLICY pol_pdb20 ACTIONS select;

Audit policy created.

SQL> AUDIT POLICY pol_pdb20;

Audit succeeded.

SQL>

Chapter 1
Security Solutions

1-16

c. Display the policy names, their actions and commonality.

SQL> COL policy_name FORMAT A18
SQL> COL audit_option FORMAT A18
SQL> SELECT policy_name, audit_option, common
 FROM AUDIT_UNIFIED_POLICIES
 WHERE policy_name like 'POL%';

POLICY_NAME AUDIT_OPTION COM
------------------ ------------------ ---
POL_COMMON CREATE TABLE YES
POL_PDB20 SELECT NO

SQL>

4. Configure the SYSLOG destination for common unified audit policies to be
consolidated into a single destination. The facility_clause refers to the facility to
which you will write the audit trail records. Valid choices are USER and LOCAL. If you
enter LOCAL, then optionally append 0–7 to designate a local custom facility for the
SYSLOG records. priority_clause refers to the type of warning in which to
categorize the record. Valid choices are NOTICE, INFO, DEBUG, WARNING, ERR,CRIT ,
ALERT, and EMERG.

SQL> CONNECT / AS SYSDBA
Connected.
SQL> ALTER SYSTEM SET UNIFIED_AUDIT_COMMON_SYSTEMLOG='local0.info'
SCOPE=SPFILE;

System altered.

SQL>

5. Configure the SYSLOG destination for local unified audit policies to be consolidated
into a single destination.

SQL> CONNECT sys@PDB20 AS SYSDBA
Enter password: password
Connected.
SQL> ALTER SYSTEM SET UNIFIED_AUDIT_COMMON_SYSTEMLOG='local1.warning'
SCOPE=SPFILE;
ALTER SYSTEM SET UNIFIED_AUDIT_COMMON_SYSTEMLOG='local1.warning'
SCOPE=SPFILE
*
ERROR at line 1:
ORA-65040: operation not allowed from within a pluggable database

SQL> CONNECT / AS SYSDBA
Connected.
SQL> ALTER SYSTEM SET UNIFIED_AUDIT_SYSTEMLOG='local1.warning'
SCOPE=SPFILE;

System altered.

SQL>

Chapter 1
Security Solutions

1-17

Observe that the UNIFIED_AUDIT_COMMON_SYSTEMLOG is a CDB level init.ora
parameter.

6. Restart the database instance because the initialization parameter
UNIFIED_AUDIT_COMMON_SYSTEMLOG has been set at the SPFILE scope.

SQL> SHUTDOWN IMMEDIATE
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> STARTUP
ORACLE instance started.

Total System Global Area 1426061008 bytes
Fixed Size 9565904 bytes
Variable Size 889192448 bytes
Database Buffers 520093696 bytes
Redo Buffers 7208960 bytes
Database mounted.
Database opened.
SQL> ALTER PLUGGABLE DATABASE pdb20 OPEN;

Pluggable database altered.

SQL>

7. Before audited actions are recorded by the SYSLOG system, define the OS
directories for the SYSLOG files to store the audited records. Open another
terminal session.

a. Log in a root.

$ sudo su
#

b. Edit the /etc/rsyslog.conf configuration file and under the RULES section,
add as many lines as different values defined in the CDB for SYSTEMLOG to
specify related OS directories.

vi /etc/rsyslog.conf
...
RULES
...
Save boot messages also to boot.log
local7.* /var/log/
boot.log

Unified Audit Rules
local0.info /var/log/root_common_audit_records.log
local1.warning /var/log/root_audit_records.log
...
#

Chapter 1
Security Solutions

1-18

c. Restart the SYSLOG daemon.

cd /etc/init.d
service rsyslog restart
Redirecting to /bin/systemctl restart rsyslog.service

8. In the oracle UNIX session, log on as the common user C##TEST to the CDB root
and perform a CREATE TABLE operation followed by INSERT operation on the
table created.

SQL> CONNECT c##test

SQL*Plus: Release 20.0.0.0.0 - Production on Fri Mar 20 05:44:04 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Enter password: password

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> ALTER SESSION SET default_sharing = 'EXTENDED DATA';

Session altered.

SQL> CREATE TABLE test (id NUMBER, label VARCHAR2(10));

Table created.

SQL> INSERT INTO test VALUES (1,'A');

1 row created.COMMIT;

SQL> INSERT INTO test VALUES (2,'B');

1 row created.

SQL> COMMIT;

Commit complete.

SQL>

9. Back in the root UNIX session, check that a syslog entry is created in /var/log/
root_common_audit_records.log file because an audit record for CREATE
TABLE got generated due to the common audit policy POL_COMMON.

cat /var/log/root_common_audit_records.log
Mar 20 08:51:55 your_server journal: Oracle Unified Audit[9653]:
LENGTH: '214' TYPE:"4" DBID:"2739122757" SESID:"112109882" CLIENTID:""
ENTRYID:"1" STMTID:"8" DBUSER:"C##TEST" CURUSER:"C##TEST" ACTION:"1"

Chapter 1
Security Solutions

1-19

RETCODE:"0" SCHEMA:"C##TEST" OBJNAME:"TEST"
PDB_GUID:"9DF89CC354CB1655E0538EE0E40A712F"
#

The single entry corresponds to the CREATE TABLE action audited commonly
because the POL_COMMON audit policy audits all CREATE TABLE statements in all
containers. The INSERT action is not recorded in this log file because the audit
policy that audits INSERT statements, POL_ROOT is enabled only locally in the CDB
root.

10. Check that syslog entries are created in /var/log/root_audit_records.log file
because audit records for INSERT got generated due to the local root audit policy
POL_ROOT.

cat /var/log/root_audit_records.log
Mar 20 08:51:55 your_server journal: Oracle Unified Audit[9653]:
LENGTH: '214' TYPE:"4" DBID:"2739122757" SESID:"112109882" CLIENTID:""
ENTRYID:"1" STMTID:"8" DBUSER:"C##TEST" CURUSER:"C##TEST" ACTION:"1"
RETCODE:"0" SCHEMA:"C##TEST" OBJNAME:"TEST"
PDB_GUID:"9DF89CC354CB1655E0538EE0E40A712F"
Mar 20 08:51:58 your_server journal: Oracle Unified Audit[9653]:
LENGTH: '214' TYPE:"4" DBID:"2739122757" SESID:"112109882" CLIENTID:""
ENTRYID:"2" STMTID:"9" DBUSER:"C##TEST" CURUSER:"C##TEST" ACTION:"2"
RETCODE:"0" SCHEMA:"C##TEST" OBJNAME:"TEST"
PDB_GUID:"9DF89CC354CB1655E0538EE0E40A712F"
Mar 20 08:52:11 your_server journal: Oracle Unified Audit[9653]:
LENGTH: '215' TYPE:"4" DBID:"2739122757" SESID:"112109882" CLIENTID:""
ENTRYID:"3" STMTID:"10" DBUSER:"C##TEST" CURUSER:"C##TEST" ACTION:"2"
RETCODE:"0" SCHEMA:"C##TEST" OBJNAME:"TEST"
PDB_GUID:"9DF89CC354CB1655E0538EE0E40A712F"
#

The first entry corresponds to the CREATE TABLE action audited commonly and
thus also locally in the CDB root. The second and third entries correspond to the
two INSERT actions recorded in this log file because the audit policy POL_ROOT that
audits INSERT statements is enabled locally in the CDB root.

11. Back in the oracle UNIX session, log on as the common user C##TEST to the PDB
PDB20 and perform a CREATE TABLE operation followed by INSERT operation on
the table created.

SQL> CONNECT c##test@PDB20
Enter password: password
Connected.
SQL> CREATE TABLE testpdb20 (id NUMBER, label VARCHAR2(10));

Table created.

SQL> INSERT INTO testpdb20 VALUES (1,'A');

1 row created.

SQL> INSERT INTO testpdb20 VALUES (2,'B');

Chapter 1
Security Solutions

1-20

1 row created.

SQL> COMMIT;

Commit complete.

SQL> EXIT
$

12. Back in the root UNIX session, check whether a syslog entry is created
in /var/log/root_common_audit_records.log file.

cat /var/log/root_common_audit_records.log
Mar 20 08:51:55 your_server journal: Oracle Unified Audit[9653]:
LENGTH: '214' TYPE:"4" DBID:"2739122757" SESID:"112109882" CLIENTID:""
ENTRYID:"1" STMTID:"8" DBUSER:"C##TEST" CURUSER:"C##TEST" ACTION:"1"
RETCODE:"0" SCHEMA:"C##TEST" OBJNAME:"TEST"
PDB_GUID:"9DF89CC354CB1655E0538EE0E40A712F"
Mar 20 09:02:48 your_server journal: Oracle Unified Audit[16023]:
LENGTH: '218' TYPE:"4" DBID:"79515510" SESID:"3581432176" CLIENTID:""
ENTRYID:"2" STMTID:"7" DBUSER:"C##TEST" CURUSER:"C##TEST" ACTION:"1"
RETCODE:"0" SCHEMA:"C##TEST" OBJNAME:"TESTPDB20"
PDB_GUID:"A12EDF03A4B47886E053424C960AD028"
#

The second entry corresponds to the CREATE TABLE action audited commonly
because the common audit policy POL_COMMON audits all CREATE TABLE
statements in all containers and thus in PDB20 too. No INSERT action is recorded
in this log file because the audit policy POL_ROOT that audits INSERT statements is
created only locally in the CDB root and not commonly in all containers.

13. Check whether syslog entries are created in /var/log/root_audit_records.log
file.

cat /var/log/root_audit_records.log
...
Mar 20 08:51:55 your_server journal: Oracle Unified Audit[9653]:
LENGTH: '214' TYPE:"4" DBID:"2739122757" SESID:"112109882" CLIENTID:""
ENTRYID:"1" STMTID:"8" DBUSER:"C##TEST" CURUSER:"C##TEST" ACTION:"1"
RETCODE:"0" SCHEMA:"C##TEST" OBJNAME:"TEST"
PDB_GUID:"9DF89CC354CB1655E0538EE0E40A712F"
Mar 20 08:51:58 your_server journal: Oracle Unified Audit[9653]:
LENGTH: '214' TYPE:"4" DBID:"2739122757" SESID:"112109882" CLIENTID:""
ENTRYID:"2" STMTID:"9" DBUSER:"C##TEST" CURUSER:"C##TEST" ACTION:"2"
RETCODE:"0" SCHEMA:"C##TEST" OBJNAME:"TEST"
PDB_GUID:"9DF89CC354CB1655E0538EE0E40A712F"
Mar 20 08:52:11 your_server journal: Oracle Unified Audit[9653]:
LENGTH: '215' TYPE:"4" DBID:"2739122757" SESID:"112109882" CLIENTID:""
ENTRYID:"3" STMTID:"10" DBUSER:"C##TEST" CURUSER:"C##TEST" ACTION:"2"
RETCODE:"0" SCHEMA:"C##TEST" OBJNAME:"TEST"
PDB_GUID:"9DF89CC354CB1655E0538EE0E40A712F"
...
exit

Chapter 1
Security Solutions

1-21

exit
$ exit

Although a local audit policy POL_PDB20 in PDB20 audits INSERT actions, no audit
record is written in the SYSLOG file because SYSLOG records only actions
executed at the CDB level.

Unified Audit Policies Enforced on the Current User
Starting with this release, unified audit policies are enforced on the current user who
executes the SQL statement.

In previous releases, unified audit policies were enforced on the user who owned the
top-level user session (that is, the login user session) in which the SQL statement is
executed.

Scenarios in which the current user is different from the login user include but are not
limited to the following:

• Trigger execution

• Definer rights procedure execution

• Functions and procedures that are executed during the evaluation of views

• Details: Unified Audit Policies Enforced on the Current User
This slide explains how unified audit policies are enforced on the user who owns
the top-level user session that is, the login user session in which the SQL
statement is executed.

• Practice: Enforcing Unified Audit Policies on the Current User
This practice shows how unified audit policies are enforced on the current user
who executes the SQL statement.

Related Topics

• Oracle® Database Security Guide

Details: Unified Audit Policies Enforced on the Current User
This slide explains how unified audit policies are enforced on the user who owns the
top-level user session that is, the login user session in which the SQL statement is
executed.

Chapter 1
Security Solutions

1-22

CREATE OR REPLACE PROCEDURE def_p

 (emp_name varchar2) AS cnt NUMBER;

 BEGIN

 SELECT sal INTO cnt FROM scott.emp

 WHERE ename = emp_name;

END;

EXEC U1.def_p

U1

U1.def_p

U2

Definer's right procedure by default

DBA

CREATE AUDIT POLICY pol_def_p

 ACTIONS SELECT ON scott.emp;

AUDIT POLICY pol_def_p BY U2;

Audit policy

SELECT dbusername, action_name

FROM unified_audit_trail

WHERE unified_audit_policies = 'POL_DEF_P';

Username Action_name

-------- -----------

U2 SELECT 19c

20cno rows

Starting with this release, unified audit policies are enforced on the current user who
executes a SQL statement and not the login user.

Practice: Enforcing Unified Audit Policies on the Current User
This practice shows how unified audit policies are enforced on the current user who
executes the SQL statement.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Use the /home/oracle/labs/M104781GC10/setup_audit_policies.sh shell script
to create the U1.PROCEMP procedure in PDB20. The script also creates the users U1
and U2.

$ cd /home/oracle/labs/M104781GC10
$ /home/oracle/labs/M104781GC10/setup_audit_policies.sh
...
SQL*Plus: Release 20.0.0.0.0 - Production on Fri Dec 13 05:55:55 2019
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> drop user u1 cascade;
drop user u1 cascade
 *
ERROR at line 1:
ORA-01918: user 'U1' does not exist

SQL> drop user u2 cascade;
drop user u2 cascade

Chapter 1
Security Solutions

1-23

 *
ERROR at line 1:
ORA-01918: user 'U2' does not exist

SQL> create user u1 identified by password;

User created.

SQL> grant create session, create procedure to u1;

Grant succeeded.

SQL> create user u2 identified by password;

User created.

SQL> grant select on hr.employees to u1, u2;

Grant succeeded.

SQL> grant create session to u2;

Grant succeeded.

SQL> grant select on unified_audit_trail to u1,u2;

Grant succeeded.

SQL>
SQL> CREATE OR REPLACE PROCEDURE u1.procemp (employee_id IN NUMBER)
 2 AS
 3 v_emp_id NUMBER:=employee_id;
 4 v_sal NUMBER;
 5 BEGIN
 6 SELECT salary INTO v_sal FROM hr.employees WHERE
employee_id=v_emp_id;
 7 dbms_output.put_line('Salary is : '||v_sal || ' for Employee
ID: '||v_emp_id);
 8 END procemp;
 9 /

Procedure created.

SQL>
SQL> grant execute on u1.procemp to u2;

Grant succeeded.

SQL>
SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

Chapter 1
Security Solutions

1-24

3. In PDB20, create and enable an audit policy so as to audit any query on
HR.EMPLOYEES table executed by the login user U2.

$ sqlplus system@PDB20

SQL*Plus: Release 20.0.0.0.0 - Production on Fri Apr 3 14:44:59 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Enter password: password

Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> CREATE AUDIT POLICY pol_emp ACTIONS select on hr.employees;

Audit policy created.

SQL> AUDIT POLICY pol_emp BY u2;

Audit succeeded.

SQL>

4. Connect to PDB20 as the user U2 and execute the U1.PROCEMP procedure.

SQL> CONNECT u2@PDB20
Enter password: password
SQL> SET SERVEROUTPUT ON
SQL> EXECUTE u1.procemp(206)
Salary is : 8300 for Employee ID: 206

PL/SQL procedure successfully completed.

SQL>

5. Display the DBUSERNAME (the login user) and the CURRENT_USER being the user who
executed the procedure from the unified audit trail.

SQL> SELECT dbusername, current_user, action_name
 FROM unified_audit_trail
 WHERE unified_audit_policies = 'POL_EMP';

no rows selected

SQL> EXIT
$

Chapter 1
Security Solutions

1-25

Note:

Observe that the unified audit policy is enforced on the current user who
executed the SQL statement, U1. Because only U2 is audited and U1 is
the current user executing the query, there is no audit record generated
that would give to the auditor the impression that the statement is
executed by the user who owned the top-level user session.

Unified Audit Policy Configuration Changes Effective Immediately
Starting with this release, changes made to a unified audit policy become effective
immediately in the current session and in all other on-going active sessions.

In previous releases, users who were affected by a changed unified audit policy had to
log out of and then back into the session in order for the unified audit policy to take
effect.

• Details: Unified Audit Policy Configuration Changes Effective Immediately
This page explains how changes made to a unified audit policy become effective
immediately in the current session and in all other on-going active sessions.

• Practice: Auditing Actions on Connected Sessions
This practice shows how changes made to a unified audit policy become effective
immediately in the current session and in all other on-going active sessions.

Related Topics

• Oracle® Database Security Guide

Details: Unified Audit Policy Configuration Changes Effective Immediately
This page explains how changes made to a unified audit policy become effective
immediately in the current session and in all other on-going active sessions.

CONNECT u1@PDB19

U1

U2

Current sessions

DBA

CREATE AUDIT POLICY pol1
 ACTIONS SELECT ON scott.emp;
AUDIT POLICY pol1 BY ALL;

Audit policy

19c 20c

New sessions

SELECT dbusername, action_name

FROM unified_audit_trail

WHERE unified_audit_policies='POL1';

no rows selected

CONNECT u2@PDB19
SELECT * FROM scott.emp;

DBA

SELECT * FROM scott.emp;U1

DBA

CONNECT u1@PDB20

U1

Current sessions

DBA

CREATE AUDIT POLICY pol1
 ACTIONS SELECT ON scott.emp;
AUDIT POLICY pol1 BY ALL;

Audit policy

SELECT dbusername, action_name

FROM unified_audit_trail

WHERE unified_audit_policies='POL1';

Username Action_name

-------- -----------

U1 SELECT

SELECT * FROM scott.emp;U1

DBA

SELECT dbusername, action_name

FROM unified_audit_trail

WHERE unified_audit_policies='POL1';

Username Action_name

-------- -----------

U2 SELECT

Chapter 1
Security Solutions

1-26

In previous releases, users who were affected by a changed unified audit policy had to
log out of and then back into the session in order for the unified audit policy to take
effect.

Practice: Auditing Actions on Connected Sessions
This practice shows how changes made to a unified audit policy become effective
immediately in the current session and in all other on-going active sessions.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Before starting the practice, execute the /home/oracle/labs/M104781GC10/
setup_audit.sh shell script.

$ cd /home/oracle/labs/M104781GC10
$ /home/oracle/labs/M104781GC10/setup_audit.sh

SQL*Plus: Release 20.0.0.0.0 - Production on Fri Mar 20 04:12:39 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

LSNRCTL for Linux: Version 20.0.0.0.0 - Production on 20-MAR-2020
04:13:03

Copyright (c) 1991, 2019, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=10.150.76.66)
(PORT=1521)))
The command completed successfully
/usr/bin/ar cr /u01/app/oracle/product/20.2.0/dbhome_1/rdbms/lib/
libknlopt.a /u01/app/oracle/product/20.2.0/dbhome_1/rdbms/lib/kzaiang.o
chmod 755 /u01/app/oracle/product/20.2.0/dbhome_1/bin

 - Linking Oracle
rm -f /u01/app/oracle/product/20.2.0/dbhome_1/rdbms/lib/oracle
...
LSNRCTL for Linux: Version 20.0.0.0.0 - Production on 20-MAR-2020
04:13:52

Copyright (c) 1991, 2019, Oracle. All rights reserved.

Chapter 1
Security Solutions

1-27

Starting /u01/app/oracle/product/20.2.0/dbhome_1/bin/tnslsnr: please
wait...

TNSLSNR for Linux: Version 20.0.0.0.0 - Production
System parameter file is /u01/app/oracle/homes/OraDB20Home1/network/
admin/listener.ora
Log messages written to /u01/app/oracle/diag/tnslsnr/edcdr8p1/listener/
alert/log.xml
Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=10.150.76.66)
(PORT=1521)))
Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=10.150.76.66)
(PORT=1521)))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for Linux: Version 20.0.0.0.0 -
Production
Start Date 20-MAR-2020 04:13:52
Uptime 0 days 0 hr. 0 min. 0 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File /u01/app/oracle/homes/OraDB20Home1/network/
admin/listener.ora
Listener Log File /u01/app/oracle/diag/tnslsnr/edcdr8p1/
listener/alert/log.xml
Listening Endpoints Summary...
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=10.150.76.66)(PORT=1521)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))
The listener supports no services
The command completed successfully

SQL*Plus: Release 20.0.0.0.0 - Production on Fri Mar 20 04:13:52 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to an idle instance.

SQL> STARTUP
...
SQL*Plus: Release 20.0.0.0.0 - Production on Mon Mar 9 05:09:56 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 19c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

specify password for HR as parameter 1:

Chapter 1
Security Solutions

1-28

specify default tablespeace for HR as parameter 2:

specify temporary tablespace for HR as parameter 3:

specify log path as parameter 4:
...
SQL> BEGIN
 2 DBMS_AUDIT_MGMT.clean_audit_trail(
 3 audit_trail_type => DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL,
 4 use_last_arch_timestamp => false);
 5 END;
 6 /

PL/SQL procedure successfully completed.

SQL>
SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Mar 9 05:09:55 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Last Successful login time: Mon Mar 09 2020 04:57:43 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL>
SQL> DROP USER u1 CASCADE;

User dropped.

SQL> DROP USER u2 CASCADE;

User dropped.

SQL> CREATE USER u1 identified by password;

User created.

SQL> GRANT create session TO u1;

Grant succeeded.

SQL> GRANT select ON hr.locations TO u1;

Grant succeeded.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release

Chapter 1
Security Solutions

1-29

20.0.0.0.0 - Poduction
Version 20.2.0.0.0
$

3. Connect as U1 in to PDB20.

$ sqlplus u1@PDB20

SQL*Plus: Release 20.0.0.0.0 - Production on Fri Mar 20 04:31:44 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Enter password: password

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL>

4. In another terminal session, connect as SYSTEM to PDB20 and create and enable an
audit policy to audit any select on the HR.LOCATIONS table.

a. Verify that Unified Auditing is enabled.

$ sqlplus system@PDB20

SQL*Plus: Release 20.0.0.0.0 - Production on Fri Mar 20 04:32:22
2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Enter password: password
Last Successful login time: Fri Mar 20 2020 04:21:35 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

SQL> SELECT value FROM v$option WHERE parameter='Unified Auditing';

VALUE
--
TRUE

SQL>

b. Create and enable an audit policy to audit any select on the HR.LOCATIONS
table.

SQL> CREATE AUDIT POLICY pol1 ACTIONS SELECT ON hr.locations;

Chapter 1
Security Solutions

1-30

Audit policy created.

SQL> AUDIT POLICY pol1;

Audit succeeded.

SQL> SELECT dbusername, action_name FROM unified_audit_trail
WHERE unified_audit_policies='POL1';

no rows selected.

SQL>

5. Back in the U1 session, select rows from HR.LOCATIONS table.

SQL> SELECT street_address FROM hr.locations;

STREET_ADDRESS
--
1297 Via Cola di Rie
93091 Calle della Testa
2017 Shinjuku-ku
...

23 rows selected.

SQL> EXIT
$

6. Is the query executed by U1 audited although not reconnected? Switch back in the
SYSTEM session.

SQL> SELECT dbusername, action_name FROM unified_audit_trail
WHERE unified_audit_policies='POL1';

DBUSERNAME
--

ACTION_NAME
--
U1
SELECT

SQL>

Observe the difference of behavior between the Oracle Database 19c and Oracle
Database 20c: in Oracle Database 20c, enabled audit policies do not require
already connected sessions to reconnect to get their actions be audited.

7. Drop the audit policy.

SQL> NOAUDIT POLICY pol1;

Noaudit succeeded.

Chapter 1
Security Solutions

1-31

SQL> DROP AUDIT POLICY pol1;

Audit Policy dropped.

SQL> EXIT
$

Oracle Blockchain Table
Blockchain tables are append-only tables in which only insert operations are allowed.
Deleting rows is either prohibited or restricted based on time. Rows in a blockchain
table are made tamper-resistant by special sequencing & chaining algorithms. Users
can verify that rows have not been tampered. A hash value that is part of the row
metadata is used to chain and validate rows.

Blockchain tables enable you to implement a centralized ledger model where all
participants in the blockchain network have access to the same tamper-resistant
ledger.

A centralized ledger model reduces administrative overheads of setting a up a
decentralized ledger network, leads to a relatively lower latency compared to
decentralized ledgers, enhances developer productivity, reduces the time to market,
and leads to significant savings for the organization. Database users can continue to
use the same tools and practices that they would use for other database application
development.

• Details: Oracle Blockchain Table
Those pages provide more detailed information about blockchain tables and
chained rows by row hash, how the blockchain tables are implemented, managed
and how row data is handled in blockchain tables.

• Practice: Managing Blockchain Tables and Rows
This practice shows how to create, alter and drop Oracle blockchain tables.

Related Topics

• Oracle® Database Administrator's Guide

Details: Oracle Blockchain Table
Those pages provide more detailed information about blockchain tables and chained
rows by row hash, how the blockchain tables are implemented, managed and how row
data is handled in blockchain tables.

Chapter 1
Security Solutions

1-32

Rows in a Single Chain of a Blockchain Table

SQL> CREATE BLOCKCHAIN TABLE my_ledger_bank (...)

Blockchain tables are used to implement centralized blockchain applications where the
central authority is the Oracle Database. Centralized blockchains provide
organizations with more customizability and control as they can decide who can
participate in the network. The participants are different database users who trust
Oracle Database to maintain a tamper-proof blockchain of transactions. All participants
must have privileges to insert data into the blockchain table. The contents of the
blockchain are defined and managed by the application. Compared to decentralized
blockchains, centralized blockchains are useful in scenarios where a higher throughput
and lower latency of transactions is preferred over consensus-based distributed
blockchains.

Blockchain tables are insert-only tables that organize rows into a number of chains.
Each row, except the first row in the chain, is chained to the previous row.

Rows in a blockchain table are tamper-proof. Each row contains a cryptographic hash
value which is based on the data in that row and the hash value of the previous row in
the chain. If a row is tampered with, the hash value of the row changes and this
causes the hash value of the next row in the chain to change. An optional user
signature can be added to a row for enhanced fraud detection.

Use blockchain tables when immutability of data is critical for your centralized
applications and you need to maintain a tamper-resistant ledger of current and
historical transactions. A blockchain table is a building block. You must define the
triggers or stored procedures required to perform the tasks that will implement a
centralized blockchain. Information Lifecycle Management (ILM) is used to manage
the lifecycle of data in blockchain tables. When the data in one or more partitions of a
blockchain table is old, it can be moved to cheaper storage using ILM techniques.

Consider the following benefits of using blockchain tables:

• They provide application-transparent protection from frauds by other participants in
the blockchain network.

Frauds can be detected by verifying rows in the blockchain table. This recomputes
the hash value and verifies that it matches the value stored in the corresponding
internal column.

Chapter 1
Security Solutions

1-33

• They do not need new infrastructure because they are part of Oracle database.

• They enable you to retain the current architecture and programming model.
Therefore, existing database applications that have central authorities can be
made more secure.

• They are easier to use compared to distributed blockchains.

DBA_BLOCKCHAIN_TABLES

CREATE BLOCKCHAIN TABLE bank_ledger
 (bank VARCHAR2(128), deposit DATE, deposit_amount NUMBER)
 NO DROP UNTIL 16 DAYS IDLE

 NO DELETE UNTIL 25 DAYS AFTER INSERT
 HASHING USING "SHA2_512" VERSION "v1"
 PARTITION BY RANGE(trans_date)
 (PARTITION p1 VALUES LESS THAN (TO_DATE('30-09-2019','dd-mm-yyyy')),
 PARTITION p2 VALUES LESS THAN (TO_DATE('31-12-2019','dd-mm-yyyy')),
 ...);

Table dropped only

after 16 days of

inactivity Rows cannot be

deleted until 25 days

after insert

Partitioned on the

trans_date column

Creating the blockchain table bank_ledger

ALTER TABLE bank_ledger
 NO DROP UNTIL 31 DAYS IDLE
 NO DELETE LOCKED;

Table dropped only after

31 days of inactivity
Rows can never

be deleted

Altering attributes of the blockchain table bank_ledger

Blockchain tables are append-only tables in which only insert operations are allowed.
Deleting rows is either prohibited or restricted based on time. Rows in a blockchain
table are made tamper-resistant by special sequencing & chaining algorithms. Users
can verify that rows have not been tampered. A hash value that is part of the row
metadata is used to chain and validate rows. Blockchain tables enable you to
implement a centralized ledger model where all participants in the blockchain network
have access to the same tamper-resistant ledger.

Blockchain tables can be indexed and partitioned. You can control whether and when
rows are deleted from a blockchain table. You can also control whether the blockchain
table can be dropped. Blockchain tables can be used along with (regular) tables in
transactions and queries.

Chapter 1
Security Solutions

1-34

schema.table_name.ORABCTAB_SIGNATURE$

DBMS_BLOCKCHAIN_TABLE.SIGN_ROW('schema','bank_ledger'...)

Deletes only rows

from the blockchain table

that are outside the

retention period

Verifies that rows in the

blockchain table were not

modified since they

were inserted

DBMS_BLOCKCHAIN_TABLE
procedure

Adds the user signature

 to an existing row

DBMS_BLOCKCHAIN_TABLE.VERIFY_ROWS('schema','bank_ledger'...)

DBMS_BLOCKCHAIN_TABLE.DELETE_ROWS('schema','bank_ledger'...)

Signing Blockchain Table Rows

Signing a row sets a user signature for a previously created row. A signature provides
additional security against tampering.

Oracle Database verifies that the current user owns the row being updated and the
hash, if provided, matches the stored hash value of the row. You must have the
INSERT privilege on the blockchain table. The existing signature of the row for which a
signature is being added must be NULL. Use the DBMS_BLOCKCHAIN_TABLE.SIGN_ROW
procedure to add a signature to an existing row.

Validating Data in Blockchain Tables

The PL/SQL procedure DBMS_BLOCKCHAIN_TABLE.VERIFY_ROWS verifies that rows in a
blockchain table were not modified since they were inserted. Being tamper-proof is a
key requirement for blockchain tables. You must have the SELECT privilege on the
blockchain table to run this procedure.

You can validate all rows in the blockchain table or specify a criteria to filter rows that
must be validated. Rows can be filtered using the instance ID, chain ID, or row
creation time.

Deleting Rows in Blockchain Tables

Only rows that are outside the retention period can be deleted from a blockchain table.
The PL/SQL procedure DBMS_BLOCKCHAIN_TABLE.DELETE_ROWS deletes all rows or rows
that were created before a specified date.

Practice: Managing Blockchain Tables and Rows
This practice shows how to create, alter and drop Oracle blockchain tables.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Create the blockchain table named AUDITOR.LEDGER_EMP to maintain a tamper-
resistant ledger of current and historical transactions about HR.EMPLOYEES in

Chapter 1
Security Solutions

1-35

PDB20. Rows can never be deleted in the blockchain table AUDITOR.LEDGER_EMP.
Moreover the blockchain table can be dropped only after 31 days of inactivity.

a. Before starting creating the table, execute the /home/oracle/labs/
M104781GC10/setup_user.sh shell script.

$ cd /home/oracle/labs/M104781GC10
$ /home/oracle/labs/M104781GC10/setup_user.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Mon Mar 9 05:34:10 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

specify password for HR as parameter 1:

specify default tablespeace for HR as parameter 2:

specify temporary tablespace for HR as parameter 3:

specify log path as parameter 4:

PL/SQL procedure successfully completed.
...
SQL> Disconnected from Oracle Database 20c Enterprise Edition
Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Mar 9 05:34:16 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0
SQL> DROP USER auditor CASCADE;
DROP USER auditor CASCADE
 *
ERROR at line 1:
ORA-01918: user 'AUDITOR' does not exist

SQL> ALTER SYSTEM SET db_create_file_dest='/home/oracle/labs';

System altered.

Chapter 1
Security Solutions

1-36

SQL>
SQL> DROP TABLESPACE ledgertbs INCLUDING CONTENTS AND DATAFILES
cascade constraints;
DROP TABLESPACE ledgertbs INCLUDING CONTENTS AND DATAFILES cascade
constraints
*
ERROR at line 1:
ORA-00959: tablespace 'LEDGERTBS' does not exist

SQL> CREATE TABLESPACE ledgertbs;

Tablespace created.

SQL> CREATE USER auditor identified by password DEFAULT TABLESPACE
ledgertbs;

User created.

SQL> GRANT create session, create table, unlimited tablespace TO
auditor;

Grant succeeded.

SQL> GRANT execute ON sys.dbms_blockchain_table TO auditor;

Grant succeeded.

SQL> GRANT select ON hr.employees TO auditor;

Grant succeeded.

SQL>
SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

b. Create the blockchain table named AUDITOR.LEDGER_EMP.

$ sqlplus auditor@PDB20
SQL*Plus: Release 20.0.0.0.0 - Production on Mon Mar 9 05:37:25 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Enter password: password

SQL> CREATE BLOCKCHAIN TABLE ledger_emp (employee_id NUMBER, salary
NUMBER);
CREATE BLOCKCHAIN TABLE ledger_emp (employee_id NUMBER, salary
NUMBER)
 *

Chapter 1
Security Solutions

1-37

ERROR at line 1:
ORA-00905: missing keyword

Note:

Observe that the CREATE BLOCKCHAIN TABLE statement requires
additional attributes.
The NO DROP, NO DELETE, HASHING USING, and VERSION clauses are
mandatory.

SQL> CREATE BLOCKCHAIN TABLE ledger_emp (employee_id NUMBER, salary
NUMBER)
 NO DROP UNTIL 31 DAYS IDLE
 NO DELETE LOCKED
 HASHING USING "SHA2_512" VERSION "v1";

Table created.

SQL>

c. Verify the attributes set for the blockchain table in the appropriate data
dictionary view.

SQL> SELECT row_retention, row_retention_locked,
 table_inactivity_retention, hash_algorithm
 FROM user_blockchain_tables
 WHERE table_name='LEDGER_EMP';

ROW_RETENTION ROW TABLE_INACTIVITY_RETENTION HASH_ALG
------------- --- -------------------------- --------
 YES 31 SHA2_512

SQL>

d. Show the description of the table.

SQL> DESC ledger_emp
 Name Null? Type
 --- --------

 EMPLOYEE_ID NUMBER
 SALARY NUMBER

SQL>

Note:

Observe that the description displays only the visible columns.

Chapter 1
Security Solutions

1-38

e. Use the USER_TAB_COLS view to display all internal column names used to
store internal information like the users number, the users signature.

SQL> COL "Data Length" FORMAT 9999
SQL> COL "Column Name" FORMAT A24
SQL> COL "Data Type" FORMAT A28
SQL> SELECT internal_column_id "Col ID", SUBSTR(column_name,1,30)
"Column Name",
 SUBSTR(data_type,1,30) "Data Type",
data_length "Data Length"
 FROM user_tab_cols
 WHERE table_name = 'LEDGER_EMP' ORDER BY
internal_column_id;

 Col ID Column Name Data Type
Data Length
---------- ------------------------ ----------------------------

 1 EMPLOYEE_ID
NUMBER 22
 2 SALARY
NUMBER 22
 3 ORABCTAB_INST_ID$
NUMBER 22
 4 ORABCTAB_CHAIN_ID$
NUMBER 22
 5 ORABCTAB_SEQ_NUM$
NUMBER 22
 6 ORABCTAB_CREATION_TIME$ TIMESTAMP(6) WITH TIME
ZONE 13
 7 ORABCTAB_USER_NUMBER$
NUMBER 22
 8 ORABCTAB_HASH$
RAW 2000
 9 ORABCTAB_SIGNATURE$
RAW 2000
 10 ORABCTAB_SIGNATURE_ALG$
NUMBER 22
 11 ORABCTAB_SIGNATURE_CERT$
RAW 16
 12 ORABCTAB_SPARE$
RAW 2000

12 rows selected.

SQL>

3. Insert rows into the blockchain table as if your auditing application would do it.

a. Insert a first row into the blockchain table.

SQL> INSERT INTO ledger_emp VALUES (106,12000);

1 row created.

Chapter 1
Security Solutions

1-39

SQL> COMMIT;

Commit complete.

SQL>

b. Display the internal values of the first row of the chain.

SQL> COL "Chain date" FORMAT A17
SQL> COL "Chain ID" FORMAT 99999999
SQL> COL "Seq Num" FORMAT 99999999
SQL> COL "User Num" FORMAT 9999999
SQL> COL "Chain HASH" FORMAT 99999999999999
SQL> SELECT ORABCTAB_CHAIN_ID$ "Chain ID", ORABCTAB_SEQ_NUM$ "Seq
Num",
 to_char(ORABCTAB_CREATION_TIME$,'dd-Mon-YYYY hh-mi')
"Chain date",
 ORABCTAB_USER_NUMBER$ "User Num", ORABCTAB_HASH$ "Chain
HASH"
 FROM ledger_emp;

 Chain ID Seq Num Chain date User Num
--------- --------- ----------------- --------
Chain HASH
--

 14 1 06-Apr-2020 12-26 119
5812238B734B019EE553FF8A7FF573A14CFA1076AB312517047368D600984CFAB001
FA1FF2C98B13
9AB03DDCCF8F6C14ADF16FFD678756572F102D43420E69B3

SQL>

c. Connect as HR and insert a row into the blockchain table as if your auditing
application would do it. First grant the INSERT privilege on the table to HR.

SQL> GRANT insert ON ledger_emp TO hr;

Grant succeeded.

SQL>

d. Connect as HR and insert a new row.

SQL> CONNECT hr@PDB20
Enter password: password
Connected.
SQL> INSERT INTO auditor.ledger_emp VALUES (106,24000);

1 row created.

SQL> COMMIT;

Commit complete.

Chapter 1
Security Solutions

1-40

SQL>

e. Connect as AUDITOR and display the internal and external values of the
blockchain table rows.

SQL> CONNECT auditor@PDB20
Enter password: password
Connected.
SQL> SELECT ORABCTAB_CHAIN_ID$ "Chain ID", ORABCTAB_SEQ_NUM$ "Seq
Num",
 to_char(ORABCTAB_CREATION_TIME$,'dd-Mon-YYYY hh-mi')
"Chain date",
 ORABCTAB_USER_NUMBER$ "User Num", ORABCTAB_HASH$
"Chain HASH",
 employee_id, salary
 FROM ledger_emp;

 Chain ID Seq Num Chain date User Num
--------- --------- ----------------- --------
Chain HASH
--

EMPLOYEE_ID SALARY
----------- ----------
 14 1 06-Apr-2020 12-26 119
5812238B734B019EE553FF8A7FF573A14CFA1076AB312517047368D600984CFAB001
FA1FF2C98B13
9AB03DDCCF8F6C14ADF16FFD678756572F102D43420E69B3
 106 12000

 14 2 06-Apr-2020 12-28 118
BBCDACC41B489DFBD8E28244841411937BD716F987BE750146572C555311E377D6DB
A28D392C61E7
D75BA47BFCB3A2F4920A2C149409E89FBA63E10549DF4F47
 106 24000

SQL>

Observe that the user number is different. This value is the same value as
V$SESSION.USER# column.

4. Delete the row inserted by HR.

SQL> DELETE FROM ledger_emp WHERE ORABCTAB_USER_NUMBER$ = 106;
DELETE FROM ledger_emp WHERE ORABCTAB_USER_NUMBER$ = 106
 *
ERROR at line 1:
ORA-05715: operation not allowed on the blockchain table

SQL>

Chapter 1
Security Solutions

1-41

You cannot delete rows in a blockchain table with the DML DELETE command. You
must use the DBMS_BLOCKCHAIN_TABLE package.

SQL> SET SERVEROUTPUT ON
SQL> DECLARE
 NUMBER_ROWS NUMBER;
BEGIN
 DBMS_BLOCKCHAIN_TABLE.DELETE_EXPIRED_ROWS('AUDITOR','LEDGER_EMP',
null, NUMBER_ROWS);
 DBMS_OUTPUT.PUT_LINE('Number of rows deleted=' || NUMBER_ROWS);
END;
/ 2 3 4 5 6 7
Number of rows deleted=0

PL/SQL procedure successfully completed.
SQL>

You can delete rows in a blockchain table only by using the
DBMS_BLOCKCHAIN_TABLE package, and only rows that are outside the retention
period. This is the reason why the procedure successfully completes without
deleting any row.

If the Oracle Database release installed is 20.0.0, then the procedure to use is
DBMS_BLOCKCHAIN_TABLE.DELETE_ROWS and not
DBMS_BLOCKCHAIN_TABLE.DELETE_EXPIRED_ROWS.

5. Truncate the table.

SQL> TRUNCATE TABLE ledger_emp;
TRUNCATE TABLE ledger_emp
 *
ERROR at line 1:
ORA-05715: operation not allowed on the blockchain table

SQL>

6. Specify now that rows cannot be deleted until 15 days after they were created.

SQL> ALTER TABLE ledger_emp NO DELETE UNTIL 15 DAYS AFTER INSERT;
ALTER TABLE ledger_emp NO DELETE UNTIL 15 DAYS AFTER INSERT
*
ERROR at line 1:
ORA-05731: blockchain table LEDGER_EMP cannot be altered

SQL>

Why cannot you change this attribute?

You created the table with the NO DELETE LOCKED attribute. The LOCKED clause
indicates that you can never subsequently modify the row retention.

7. Drop the table.

SQL> DROP TABLE ledger_emp;
DROP TABLE ledger_emp

Chapter 1
Security Solutions

1-42

 *
ERROR at line 1:
ORA-05723: drop blockchain table LEDGER_EMP not allowed

SQL>

Note:

Observe that the error message is slightly different. The error message
from the two previous commands explained that the operation was not
possible on a blockchain table. The current error message explains that
the DROP TABLE is not possible but on this LEDGER_EMP table.
The blockchain table was created so that it cannot be dropped before 31
days of inactivity.

8. Change the behavior of the table to allow a lower retention.

SQL> ALTER TABLE ledger_emp NO DROP UNTIL 1 DAYS IDLE;
ALTER TABLE auditor.ledger_emp NO DROP UNTIL 1 DAYS IDLE
*
ERROR at line 1:
ORA-05732: retention value cannot be lowered

SQL> ALTER TABLE ledger_emp NO DROP UNTIL 40 DAYS IDLE;

Table altered.

SQL>

You can only increase the retention value. This prohibits the possibility to drop and
remove any historical information that needs to be kept for security purposes.

9. Create another blockchain table AUDITOR.LEDGER_TEST. Rows cannot be deleted
until 5 days after they were inserted, allowing rows to be deleted. Moreover the
blockchain table can be dropped only after 1 day of inactivity, but to .

a. Create the blockchain table.

SQL> CREATE BLOCKCHAIN TABLE auditor.ledger_test (id NUMBER, label
VARCHAR2(2))
 NO DROP UNTIL 1 DAYS IDLE
 NO DELETE UNTIL 5 DAYS AFTER INSERT
 HASHING USING "SHA2_512" VERSION "v1";
 2 3 4 CREATE BLOCKCHAIN TABLE auditor.ledger_test (id
NUMBER, label VARCHAR2(2))
*
ERROR at line 1:
ORA-05741: minimum retention time too low, should be at least 16
days

SQL> CREATE BLOCKCHAIN TABLE auditor.ledger_test (id NUMBER, label
VARCHAR2(2))
 NO DROP UNTIL 16 DAYS IDLE

Chapter 1
Security Solutions

1-43

 NO DELETE UNTIL 16 DAYS AFTER INSERT
 HASHING USING "SHA2_512" VERSION "v1";

Table created.

SQL>

b. Connect as HR and insert a row into the blockchain table as if your auditing
application would do it. First grant the INSERT privilege on the table to HR.

SQL> GRANT insert ON auditor.ledger_test TO hr;

Grant succeeded.

SQL>

c. Connect as HR and insert a new row.

SQL> CONNECT hr@PDB20
Enter password: password
Connected.
SQL> INSERT INTO auditor.ledger_test VALUES (1,'A1');

1 row created.

SQL> COMMIT;

Commit complete.

SQL>

d. Connect as AUDITOR and display the row inserted.

SQL> CONNECT auditor@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM auditor.ledger_test;

 ID LA
---------- --
 1 A1

SQL>

10. Regularly verify that the content of the rows are still valid.

• Use the DBMS_BLOCKCHAIN_TABLE.VERIFY_ROWS to validate the rows.

SQL> CONNECT auditor@PDB20
Enter password: password
Connected.
SQL> SET SERVEROUTPUT ON
SQL> DECLARE
 row_count NUMBER;
 verify_rows NUMBER;

Chapter 1
Security Solutions

1-44

 instance_id NUMBER;
BEGIN
 FOR instance_id IN 1 .. 2 LOOP
 SELECT COUNT(*) INTO row_count FROM auditor.ledger_test WHERE
ORABCTAB_INST_ID$=instance_id;
 DBMS_BLOCKCHAIN_TABLE.VERIFY_ROWS('AUDITOR','LEDGER_TEST',
NULL, NULL, instance_id, NULL, verify_rows);
 DBMS_OUTPUT.PUT_LINE('Number of rows verified in instance Id
'|| instance_id || ' = '|| row_count);
 END LOOP;
END;
/
Number of rows verified in instance Id 1 = 1
Number of rows verified in instance Id 2 = 0

PL/SQL procedure successfully completed.
SQL> EXIT
$

Oracle Advanced Security
• Ability to Set the Default Tablespace Encryption Algorithm

Ability to Set the Default Tablespace Encryption Algorithm
You now can set the TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM dynamic
parameter to define the default encryption algorithm for tablespace creation
operations.

For example, if you set TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM to
AES256, then future tablespace creation operations will use AES256 as the default
encryption algorithm. TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to
both offline and online tablespace encryption operations. In addition, when you create
a new tablespace using Database Configuration Assistant (DBCA), you can set the
default tablespace encryption algorithm by using the DBCA command line for silent
installations.

Supported encryption algorithms are AES128, AES192, AES256, and 3DES168 If you
do not set TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM, then the default
encryption algorithm is the default that was used in previous releases: AES128.

• Practice: Setting the Default Tablespace Encryption Algorithm
This practice shows how to define the default tablespace encryption algorithm for
tablespace creation operations by setting a dynamic parameter.

Related Topics

• Oracle® Database Advanced Security Guide

Practice: Setting the Default Tablespace Encryption Algorithm
This practice shows how to define the default tablespace encryption algorithm for
tablespace creation operations by setting a dynamic parameter.

1. Before starting any new practice, refer to the Oracle Cloud. Be aware that
encryption is configured by default in Oracle Database Cloud.

Chapter 1
Security Solutions

1-45

http://www.oracle.com/database/vm-cloud.html

2. Connect to the CDB root and display the default tablespace encryption algorithm.

$ sqlplus / AS SYSDBA
SQL*Plus: Release 20.0.0.0.0 - Production on Wed Apr 1 08:09:44 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0
SQL> SHOW PARAMETER TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM

NAME TYPE VALUE
-- ------

tablespace_encryption_default_algorithm string AES128
SQL>

3. Change the tablespace encryption algorithm.

SQL> ALTER SYSTEM SET TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM=AES192;

System altered.

SQL>

4. Connect to the PDB and create a new tablespace in PDBTEST.

SQL> ALTER SESSION SET CONTAINER=PDB20;

Session altered.

SQL> CREATE TABLESPACE tbstest DATAFILE 'test01.dbf' SIZE 2M;

Tablespace created.

SQL>

5. Verify the tablespace encryption algorithm used for TBSTEST.

SQL> SELECT name, encryptionalg
 FROM v$tablespace t, v$encrypted_tablespaces v
 WHERE t.ts#=v.ts#;

NAME ENCRYPT
------------------------------ -------
USERS AES128
TBSTEST AES192

SQL> EXIT
$

Chapter 1
Security Solutions

1-46

Oracle Database Vault
• Ability to Prevent Local Oracle Database Vault Policies from Blocking Common

Operations

Ability to Prevent Local Oracle Database Vault Policies from Blocking Common
Operations

Starting with this release, a DV_OWNER common user in the CDB root can prevent local
users from creating Oracle Database Vault controls on common objects in a pluggable
database (PDB).

Blocking common users from common operations can prevent the execution of SQL
commands that are necessary for managing the application or CDB database. To
prevent this situation, a user who has the DV_OWNER role in the root can execute the
DBMS_MACADM.ALLOW_COMMON_OPERATION procedure to control whether local PDB
users can create Database Vault controls on common users' objects (database or
application).

In previous releases, in a multitenant environment, a local Oracle Database Vault user
could create Database Vault policies that could potentially block application or
common operations. Blocking common users from common operations can prevent
the execution of SQL commands that are necessary for managing the application or
CDB database. To prevent this situation, a user who has the DV_OWNER role in the
root can execute the DBMS_MACADM.ALLOW_COMMON_OPERATION procedure to
control whether local PDB users can create Database Vault controls on common
users' objects (database or application).

• Practice: Preventing Local Users from Blocking Common Operations - Realms
This practice shows how to prevent local users from creating Oracle Database
Vault controls on common users objects which would prevent common users from
accessing local data in their own schema in PDBs. A PDB local Database Vault
Owner can create a realm around common Oracle schemas like DVSYS or CTXSYS
and prevent it functioning correctly. For the purposes of this practice, the C##TEST1
custom schema is created in CDB root to show this feature.

• Practice: Preventing Local Users from Blocking Common Operations - Command
Rules
This practice shows how to prevent local users from creating Oracle Database
Vault controls on common users which would prevent them from performing
commands on their own objects or even from logging in to the PDB in which their
objects reside.

Related Topics

• Oracle® Database Vault Administrator's Guide

Practice: Preventing Local Users from Blocking Common Operations - Realms
This practice shows how to prevent local users from creating Oracle Database Vault
controls on common users objects which would prevent common users from accessing
local data in their own schema in PDBs. A PDB local Database Vault Owner can
create a realm around common Oracle schemas like DVSYS or CTXSYS and prevent it
functioning correctly. For the purposes of this practice, the C##TEST1 custom schema is
created in CDB root to show this feature.

Chapter 1
Security Solutions

1-47

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Before starting the practice, execute the /home/oracle/labs/M104781GC10/
setup_DV.sh shell script. The shell script configures and enables Database Vault
at the CDB root level, creates the HR.G_EMP table in the root container, configures
and enables Database Vault at the PDB level, and creates the HR.L_EMP table in
PDB20.

$ cd /home/oracle/labs/M104781GC10
$ /home/oracle/labs/M104781GC10/setup_DV.sh
$./setup_DV_CDB.sh

SQL*Plus: Release 20.0.0.0.0 - Production on Wed Feb 19 05:38:54 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> drop user c##sec_admin cascade;
drop user c##sec_admin cascade
 *
ERROR at line 1:
ORA-01918: user 'C##SEC_ADMIN' does not exist

SQL> create user c##sec_admin identified by password container=ALL;

User created.

SQL> grant create session, set container, restricted session, DV_OWNER
to c##sec_admin container=ALL;

Grant succeeded.

SQL> drop user c##accts_admin cascade;
drop user c##accts_admin cascade
 *
ERROR at line 1:
ORA-01918: user 'C##ACCTS_ADMIN' does not exist

SQL> create user c##accts_admin identified by password container=ALL;

User created.

SQL> grant create session, set container, DV_ACCTMGR to c##accts_admin
container=ALL;

Grant succeeded.

Chapter 1
Security Solutions

1-48

SQL> grant select on sys.dba_dv_status to c##accts_admin container=ALL;

Grant succeeded.

SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
...
Copyright (c) 1982, 2020, Oracle. All rights reserved.

Last Successful login time: Tue Feb 18 2020 08:26:21 +00:00

SQL> DROP TABLE g_emp;

Table dropped.

SQL> CREATE TABLE g_emp(name CHAR(10), salary NUMBER) ;

Table created.

SQL> INSERT INTO g_emp values('EMP_GLOBAL',1000);

1 row created.

SQL> COMMIT;

Commit complete.

SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Feb 18 08:27:58 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Last Successful login time: Tue Feb 18 2020 08:27:54 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> DROP TABLE l_emp;

Table dropped.

SQL> CREATE TABLE l_emp(name CHAR(10), salary NUMBER);

Table created.

SQL> INSERT INTO l_emp values('EMP_LOCAL',2000);

Chapter 1
Security Solutions

1-49

1 row created.

SQL> COMMIT;

Commit complete.

SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Feb 18 08:27:58 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Last Successful login time: Tue Feb 18 2020 08:27:54 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> DROP TABLE l_tab;

Table dropped.

SQL> CREATE TABLE l_tab(code NUMBER);

Table created.

SQL> INSERT INTO l_tab values(1);

1 row created.

SQL> INSERT INTO l_tab values(2);

1 row created.

SQL> COMMIT;

Commit complete.

SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

3. Connect to the CDB root as C##SEC_ADMIN to verify the status of
DV_ALLOW_COMMON_OPERATION. This is the default behavior: it allows local users to
create Database Vault controls on common users objects.

$ sqlplus c##sec_admin
Enter password: password

Chapter 1
Security Solutions

1-50

SQL> SELECT * FROM DVSYS.DBA_DV_COMMON_OPERATION_STATUS;

NAME STATU
------------------------- -----
DV_ALLOW_COMMON_OPERATION FALSE

SQL>

4. Test how data is accessible in both the table C##TEST1.G_EMP in the CDB root and
the table C##TEST1.L_EMP in PDB20 when there is no realm applied on C##TEST1
objects.

a. Connect to the CDB root as C##TEST1, the table common owner.

SQL> CONNECT c##test1
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;

NAME SALARY
---------- ----------
EMP_GLOBAL 1000

SQL>

b. Connect to the CDB root as C##TEST2, another common user.

SQL> CONNECT c##test2
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;

NAME SALARY
---------- ----------
EMP_GLOBAL 1000

SQL>

c. Connect to PDB20 as C##TEST1, the table common owner.

SQL> CONNECT c##test1@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;

NAME SALARY
---------- ----------
EMP_LOCAL 2000

SQL>

d. Connect to PDB20 as C##TEST2, another common user.

SQL> CONNECT c##test2@PDB20
Enter password: password

Chapter 1
Security Solutions

1-51

Connected.
SQL> SELECT * FROM c##test1.l_emp;

NAME SALARY
---------- ----------
EMP_LOCAL 2000

SQL>

5. Test how data is accessible in both the table HR.G_EMP in the CDB root and the
table C##TEST1.L_EMP in PDB20 when a regular realm is applied on C##TEST1
objects in the CDB root.

a. Create a common regular realm on C##TEST1 tables in the CDB root.

SQL> CONNECT c##sec_admin
Enter password: password
Connected.
SQL> BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'Root Test Realm',
 description => 'Test Realm description',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_FAIL,
 realm_type => 0);
END;
/ 2 3 4 5 6 7 8 9

PL/SQL procedure successfully completed.

SQL> BEGIN
 DBMS_MACADM.ADD_OBJECT_TO_REALM(
 realm_name => 'Root Test Realm',
 object_owner => 'C##TEST1',
 object_name => '%',
 object_type => '%');
END;
/ 2 3 4 5 6 7 8

PL/SQL procedure successfully completed.

SQL>

b. Connect to the CDB root as C##TEST1, the table common owner.

SQL> CONNECT c##test1
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;

NAME SALARY
---------- ----------
EMP_GLOBAL 1000

SQL>

Chapter 1
Security Solutions

1-52

c. Connect to the CDB root as C##TEST2, another common user.

SQL> CONNECT c##test2
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;
SELECT * FROM c##test1.g_emp
 *
ERROR at line 1:
ORA-01031: insufficient privileges

SQL>

d. Connect to PDB20 as C##TEST1, the table common owner.

SQL> CONNECT c##test1@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;

NAME SALARY
---------- ----------
EMP_LOCAL 2000

SQL>

e. Connect to PDB20 as C##TEST2, another common user.

SQL> CONNECT c##test2@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;

NAME SALARY
---------- ----------
EMP_LOCAL 2000

SQL>

f. Drop the realm.

SQL> CONNECT c##sec_admin
Enter password: password
Connected.
SQL> EXEC DBMS_MACADM.DELETE_REALM_CASCADE('Root Test Realm')

PL/SQL procedure successfully completed.

SQL>

6. Test how data is accessible in both the table C##TEST1.G_EMP in the CDB root and
the table C##TEST1.L_EMP in PDB20 when a mandatory realm is applied on
C##TEST1 objects in the CDB root.

Chapter 1
Security Solutions

1-53

a. Create a common mandatory realm on C##TEST1 tables in the CDB root.

SQL> BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'Root Test Realm',
 description => 'Test Realm description',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_FAIL,
 realm_type => 1);
END;
/ 2 3 4 5 6 7 8 9

PL/SQL procedure successfully completed.

SQL> BEGIN
 DBMS_MACADM.ADD_OBJECT_TO_REALM(
 realm_name => 'Root Test Realm',
 object_owner => 'C##TEST1',
 object_name => '%',
 object_type => '%');
END;
/ 2 3 4 5 6 7 8

PL/SQL procedure successfully completed.

SQL>

b. Connect to the CDB root as C##TEST1, the table common owner.

SQL> CONNECT c##test1
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;
SELECT * FROM c##test1.g_emp
 *
ERROR at line 1:
ORA-01031: insufficient privileges

SQL>

c. Connect to the CDB root as C##TEST2, another common user.

SQL> CONNECT c##test2
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;
SELECT * FROM c##test1.g_emp
 *
ERROR at line 1:
ORA-01031: insufficient privileges

SQL>

Chapter 1
Security Solutions

1-54

d. Connect to PDB20 as C##TEST1, the table common owner.

SQL> CONNECT c##test1@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;

NAME SALARY
---------- ----------
EMP_LOCAL 2000

SQL>

e. Connect to PDB20 as C##TEST2, another common user.

SQL> CONNECT c##test2@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;

NAME SALARY
---------- ----------
EMP_LOCAL 2000

SQL>

f. Drop the realm.

SQL> CONNECT c##sec_admin
Enter password: password
Connected.
SQL> EXEC DBMS_MACADM.DELETE_REALM_CASCADE('Root Test Realm')

PL/SQL procedure successfully completed.

SQL>

7. Test how data is accessible in both the table C##TEST1.G_EMP in the CDB root and
the table C##TEST1.L_EMP in PDB20 when a PDB regular realm is applied on
C##TEST1 objects in PDB20.

a. Create a PDB regular realm on C##TEST1 tables in PDB20.

SQL> CONNECT sec_admin@PDB20
Enter password: password
Connected.
SQL> BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'Test Realm',
 description => 'Test Realm description',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_FAIL,
 realm_type => 0);
END;
/ 2 3 4 5 6 7 8 9

Chapter 1
Security Solutions

1-55

PL/SQL procedure successfully completed.

SQL> BEGIN
 DBMS_MACADM.ADD_OBJECT_TO_REALM(
 realm_name => 'Test Realm',
 object_owner => 'C##TEST1',
 object_name => '%',
 object_type => '%');
END;
/ 2 3 4 5 6 7 8

PL/SQL procedure successfully completed.

SQL>

b. Connect to the CDB root as C##TEST1, the table common owner.

SQL> CONNECT c##test1
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;

NAME SALARY
---------- ----------
EMP_GLOBAL 1000

SQL>

c. Connect to the CDB root as C##TEST2, another common user.

SQL> CONNECT c##test2
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;

NAME SALARY
---------- ----------
EMP_GLOBAL 1000

SQL>

d. Connect to PDB20 as C##TEST1, the table common owner.

SQL> CONNECT c##test1@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;

NAME SALARY
---------- ----------
EMP_LOCAL 2000

SQL>

Chapter 1
Security Solutions

1-56

e. Connect to PDB20 as C##TEST2, another common user.

SQL> CONNECT c##test2@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;
SELECT * FROM c##test1.l_emp
 *
ERROR at line 1:
ORA-01031: insufficient privileges

SQL>

f. Drop the realm.

SQL> CONNECT sec_admin@PDB20
Enter password: password
Connected.
SQL> EXEC DBMS_MACADM.DELETE_REALM_CASCADE('Test Realm')

PL/SQL procedure successfully completed.

SQL>

8. Test how data is accessible in both the table C##TEST1.G_EMP in the CDB root and
the table C##TEST1.L_EMP in PDB20 when a PDB mandatory realm is applied on
C##TEST1 objects in PDB20.

a. Create a PDB mandatory realm on C##TEST1 tables in PDB20.

SQL> CONNECT sec_admin@PDB20
Enter password: password
Connected.
SQL> BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'Test Realm',
 description => 'Test Realm description',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_FAIL,
 realm_type => 1);
END;
/ 2 3 4 5 6 7 8 9

PL/SQL procedure successfully completed.

SQL> BEGIN
 DBMS_MACADM.ADD_OBJECT_TO_REALM(
 realm_name => 'Test Realm',
 object_owner => 'C##TEST1',
 object_name => '%',
 object_type => '%');
END;
/ 2 3 4 5 6 7 8

PL/SQL procedure successfully completed.

Chapter 1
Security Solutions

1-57

SQL>

b. Connect to the CDB root as C##TEST1, the table common owner.

SQL> CONNECT c##test1
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;

NAME SALARY
---------- ----------
EMP_GLOBAL 1000

SQL>

c. Connect to the CDB root as C##TEST2, another common user.

SQL> CONNECT c##test2
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;

NAME SALARY
---------- ----------
EMP_GLOBAL 1000

SQL>

d. Connect to PDB20 as C##TEST1, the table common owner.

SQL> CONNECT c##test1@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;
SELECT * FROM c##test1.l_emp
 *
ERROR at line 1:
ORA-01031: insufficient privileges

SQL>

e. Connect to PDB20 as C##TEST2, another common user.

SQL> CONNECT c##test2@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;
SELECT * FROM c##test1.l_emp
 *
ERROR at line 1:
ORA-01031: insufficient privileges

SQL>

Chapter 1
Security Solutions

1-58

f. Drop the realm.

SQL> CONNECT sec_admin@PDB20
Enter password: password
Connected.
SQL> EXEC DBMS_MACADM.DELETE_REALM_CASCADE('Test Realm')

PL/SQL procedure successfully completed.

SQL>

9. Connect to the CDB root as C##SEC_ADMIN and restrict local users from creating
Oracle Database Vault controls on common user C##TEST1 objects. Set
DV_ALLOW_COMMON_OPERATION to TRUE.

SQL CONNECT c##sec_admin
Enter password: password
Connected.
SQL> SELECT * FROM DVSYS.DBA_DV_COMMON_OPERATION_STATUS;

NAME STATU
------------------------- -----
DV_ALLOW_COMMON_OPERATION FALSE

SQL> EXEC DBMS_MACADM.ALLOW_COMMON_OPERATION

PL/SQL procedure successfully completed.

SQL> SELECT * FROM DVSYS.DBA_DV_COMMON_OPERATION_STATUS;

NAME STATU
------------------------- -----
DV_ALLOW_COMMON_OPERATION TRUE

SQL>

10. Test how data is accessible in both the table C##TEST1.G_EMP in the CDB root and
the table C##TEST1.L_EMP in PDB20 when a regular realm is applied on C##TEST1
objects in the CDB root.

a. Create a common regular realm on C##TEST1 tables in the CDB root.

SQL CONNECT c##sec_admin
Enter password: password
Connected.
SQL> BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'Root Test Realm',
 description => 'Test Realm description',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_FAIL,
 realm_type => 0);
END;
/ 2 3 4 5 6 7 8 9

Chapter 1
Security Solutions

1-59

PL/SQL procedure successfully completed.

SQL> BEGIN
 DBMS_MACADM.ADD_OBJECT_TO_REALM(
 realm_name => 'Root Test Realm',
 object_owner => 'C##TEST1',
 object_name => '%',
 object_type => '%');
END;
/ 2 3 4 5 6 7 8

PL/SQL procedure successfully completed.

SQL>

b. Connect to the CDB root as C##TEST1, the table common owner.

SQL> CONNECT c##test1
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;

NAME SALARY
---------- ----------
EMP_GLOBAL 1000

SQL>

c. Connect to the CDB root as C##TEST2, another common user.

SQL> CONNECT c##test2
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;
SELECT * FROM c##test1.g_emp
 *
ERROR at line 1:
ORA-01031: insufficient privileges

SQL>

d. Connect to PDB20 as C##TEST1, the table common owner.

SQL> CONNECT c##test1@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;

NAME SALARY
---------- ----------
EMP_LOCAL 2000

SQL>

Chapter 1
Security Solutions

1-60

e. Connect to PDB20 as C##TEST2, another common user.

SQL> CONNECT c##test2@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;

NAME SALARY
---------- ----------
EMP_LOCAL 2000

SQL>

f. Drop the realm.

SQL> CONNECT c##sec_admin
Enter password: password
Connected.
SQL> EXEC DBMS_MACADM.DELETE_REALM_CASCADE('Root Test Realm')

PL/SQL procedure successfully completed.

SQL>

11. Test how data is accessible in both the table C##TEST1.G_EMP in the CDB root and
the table C##TEST1.L_EMP in PDB20 when a mandatory realm is applied on
C##TEST1 objects in the CDB root.

a. Create a common mandatory realm on C##TEST1 tables in the CDB root.

SQL> BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'Root Test Realm',
 description => 'Test Realm description',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_FAIL,
 realm_type => 1);
END;
/ 2 3 4 5 6 7 8 9

PL/SQL procedure successfully completed.

SQL> BEGIN
 DBMS_MACADM.ADD_OBJECT_TO_REALM(
 realm_name => 'Root Test Realm',
 object_owner => 'C##TEST1',
 object_name => '%',
 object_type => '%');
END;
/ 2 3 4 5 6 7 8

PL/SQL procedure successfully completed.

SQL>

Chapter 1
Security Solutions

1-61

b. Connect to the CDB root as C##TEST1, the table common owner.

SQL> CONNECT c##test1
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;
SELECT * FROM c##test1.g_emp
 *
ERROR at line 1:
ORA-01031: insufficient privileges

SQL>

c. Connect to the CDB root as C##TEST2, another common user.

SQL> CONNECT c##test2
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;
SELECT * FROM c##test1.g_emp
 *
ERROR at line 1:
ORA-01031: insufficient privileges

SQL>

d. Connect to PDB20 as C##TEST1, the table common owner.

SQL> CONNECT c##test1@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;

NAME SALARY
---------- ----------
EMP_LOCAL 2000

SQL>

e. Connect to PDB20 as C##TEST2, another common user.

SQL> CONNECT c##test2@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;

NAME SALARY
---------- ----------
EMP_LOCAL 2000

SQL>

Chapter 1
Security Solutions

1-62

f. Drop the realm.

SQL> CONNECT c##sec_admin
Enter password: password
Connected.
SQL> EXEC DBMS_MACADM.DELETE_REALM_CASCADE('Root Test Realm')

PL/SQL procedure successfully completed.

SQL>

12. Test how data is accessible in both the table C##TEST1.G_EMP in the CDB root and
the table C##TEST1.L_EMP in PDB20 when a PDB regular realm is applied on
C##TEST1 objects in PDB20.

a. Create a PDB regular realm on C##TEST1 tables in PDB20.

SQL> CONNECT sec_admin@PDB20
Enter password: password
Connected.
SQL> BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'Test Realm1',
 description => 'Test Realm description',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_FAIL,
 realm_type => 0);
END;
/ 2 3 4 5 6 7 8 9

PL/SQL procedure successfully completed.

SQL> BEGIN
 DBMS_MACADM.ADD_OBJECT_TO_REALM(
 realm_name => 'Test Realm1',
 object_owner => 'C##TEST1',
 object_name => '%',
 object_type => '%');
END;
/ 2 3 4 5 6 7 8
BEGIN
*
ERROR at line 1:
ORA-47286: cannot add %, C##TEST1.% to a realm
ORA-06512: at "DVSYS.DBMS_MACADM", line 1059
ORA-06512: at line 2

SQL> !oerr ora 47286
47286, 00000, "cannot add %s, %s.%s to a realm"
// *Cause: When ALLOW COMMON OPERATION was set to TRUE, a smaller
scope user was not allowed to add a larger scope user's object or a
larger scope role to a realm.
// *Action: When ALLOW COMMON OPERATION is TRUE, do not add a
larger scope user's object or a larger scope role to a realm.

Chapter 1
Security Solutions

1-63

SQL>

b. Connect to the CDB root as C##TEST1, the table common owner.

SQL> CONNECT c##test1
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;

NAME SALARY
---------- ----------
EMP_GLOBAL 1000

SQL>

c. Connect to the CDB root as C##TEST2, another common user.

SQL> CONNECT c##test2
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;

NAME SALARY
---------- ----------
EMP_GLOBAL 1000

SQL>

d. Connect to PDB20 as C##TEST1, the table common owner.

SQL> CONNECT c##test1@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;

NAME SALARY
---------- ----------
EMP_LOCAL 2000

SQL>

e. Connect to PDB20 as C##TEST2, another common user.

SQL> CONNECT c##test2@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;

NAME SALARY
---------- ----------
EMP_LOCAL 2000

SQL>

Chapter 1
Security Solutions

1-64

f. Drop the realm.

SQL> CONNECT sec_admin@PDB20
Enter password: password
Connected.
SQL> EXEC DBMS_MACADM.DELETE_REALM_CASCADE('Test Realm1')

PL/SQL procedure successfully completed.

SQL>

13. Test how data is accessible in both the table C##TEST1.G_EMP in the CDB root and
the table C##TEST1.L_EMP in PDB20 when a PDB mandatory realm is applied on
C##TEST1 objects in PDB20.

a. Create a PDB mandatory realm on C##TEST1 tables in PDB20.

SQL> BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'Test Realm1',
 description => 'Test Realm description',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_FAIL,
 realm_type => 1);
END;
/ 2 3 4 5 6 7 8 9

PL/SQL procedure successfully completed.

SQL> BEGIN
 DBMS_MACADM.ADD_OBJECT_TO_REALM(
 realm_name => 'Test Realm1',
 object_owner => 'C##TEST1',
 object_name => '%',
 object_type => '%');
END;
/ 2 3 4 5 6 7 8
BEGIN
*
ERROR at line 1:
ORA-47286: cannot add %, C##TEST1.% to a realm
ORA-06512: at "DVSYS.DBMS_MACADM", line 1059
ORA-06512: at line 2

SQL>

b. Connect to the CDB root as C##TEST1, the table common owner.

SQL> CONNECT c##test1
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;

NAME SALARY
---------- ----------

Chapter 1
Security Solutions

1-65

EMP_GLOBAL 1000

SQL>

c. Connect to the CDB root as C##TEST2, another common user.

SQL> CONNECT c##test2
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.g_emp;

NAME SALARY
---------- ----------
EMP_GLOBAL 1000

SQL>

d. Connect to PDB20 as C##TEST1, the table common owner.

SQL> CONNECT c##test1@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;

NAME SALARY
---------- ----------
EMP_LOCAL 2000

SQL>

e. Connect to PDB20 as C##TEST2, another common user.

SQL> CONNECT c##test2@PDB20
Enter password: password
Connected.
SQL> SELECT * FROM c##test1.l_emp;

NAME SALARY
---------- ----------
EMP_LOCAL 2000

SQL>

f. Drop the realm.

SQL> CONNECT sec_admin@PDB20
Enter password: password
Connected.
SQL> EXEC DBMS_MACADM.DELETE_REALM_CASCADE('Test Realm1')

PL/SQL procedure successfully completed.

SQL>

Chapter 1
Security Solutions

1-66

14. Disable Database Vault in both the PDB and the CDB root.

$ /home/oracle/labs/M104781GC10/disable_DV.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Mon Apr 6 15:25:59 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Last Successful login time: Mon Apr 06 2020 15:23:56 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> exec DVSYS.DBMS_MACADM.DISABLE_DV

PL/SQL procedure successfully completed.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Apr 6 15:26:00 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Last Successful login time: Mon Apr 06 2020 15:23:58 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> exec DVSYS.DBMS_MACADM.DISABLE_DV

PL/SQL procedure successfully completed.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Apr 6 15:26:02 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> shutdown immediate
Database closed.

Chapter 1
Security Solutions

1-67

Database dismounted.
ORACLE instance shut down.
SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Apr 6 15:26:23 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to an idle instance.

SQL> STARTUP
ORACLE instance started.

Total System Global Area 6442447392 bytes
Fixed Size 9581088 bytes
Variable Size 1090519040 bytes
Database Buffers 5318377472 bytes
Redo Buffers 23969792 bytes
Database mounted.
Database opened.
SQL> ALTER PLUGGABLE DATABASE all OPEN;

Pluggable database altered.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

Let's summarize the behavior of data access on common users objects in PDBs when
you switch the DV_ALLOW_COMMON_OPERATION value.

FALSE TRUE

C##TEST1 C##TEST2 C##TEST1 C##TEST2

Common
Regular
or
Mandato
ry Realm
in CDB
root

No change No change No change No change

PDB
Regular
Realm

Access Blocked Access Access

PDB
Mandato
ry Realm

Blocked Blocked Access Access

Chapter 1
Security Solutions

1-68

If you create a regular or mandatory realm in the CDB root and a regular or mandatory
PDB realm, and if DV_ALLOW_COMMON_OPERATION is TRUE, then data of common users
objects is accessible.

If local realms had been created when DV_ALLOW_COMMON_OPERATION was set to FALSE,
they would still exist after the new control but enforcement would be ignored.

Practice: Preventing Local Users from Blocking Common Operations - Command Rules
This practice shows how to prevent local users from creating Oracle Database Vault
controls on common users which would prevent them from performing commands on
their own objects or even from logging in to the PDB in which their objects reside.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Before starting the practice, execute the /home/oracle/labs/M104781GC10/
setup_DV_CR.sh shell script. The shell script configures and enables Database
Vault at the CDB root level and at the PDB level, and creates the C##TEST1 and
C##TEST2 common users.

$ cd /home/oracle/labs/M104781GC10
$ /home/oracle/labs/M104781GC10/setup_DV_CR.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Wed Feb 19 05:38:54 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> drop user c##sec_admin cascade;
drop user c##sec_admin cascade
 *
ERROR at line 1:
ORA-01918: user 'C##SEC_ADMIN' does not exist

SQL> create user c##sec_admin identified by password container=ALL;

User created.

SQL> grant create session, set container, restricted session, DV_OWNER
to c##sec_admin container=ALL;

Grant succeeded.

SQL> drop user c##accts_admin cascade;
drop user c##accts_admin cascade
 *
ERROR at line 1:
ORA-01918: user 'C##ACCTS_ADMIN' does not exist

Chapter 1
Security Solutions

1-69

SQL> create user c##accts_admin identified by password container=ALL;

User created.

SQL> grant create session, set container, DV_ACCTMGR to c##accts_admin
container=ALL;

Grant succeeded.

SQL> grant select on sys.dba_dv_status to c##accts_admin container=ALL;

Grant succeeded.

SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
...
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Wed Feb 19 11:14:29 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> GRANT dba to c##test1 CONTAINER=ALL;

Grant succeeded.

...
Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> DROP TABLE l_tab;

Table dropped.

SQL> CREATE TABLE l_tab(code NUMBER);

Table created.

SQL> INSERT INTO l_tab values(1);

1 row created.

SQL> INSERT INTO l_tab values(2);

Chapter 1
Security Solutions

1-70

1 row created.

SQL> COMMIT;

Commit complete.

SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

3. Connect to the CDB root as C##SEC_ADMIN to verify the status of
DV_ALLOW_COMMON_OPERATION. This is the default behavior: it allows local users to
create Database Vault controls on common users such as command rules.

$ sqlplus c##sec_admin
SQL*Plus: Release 20.0.0.0.0 - Production on Mon Mar 9 12:18:01 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Last Successful login time: Mon Mar 09 2020 12:16:12 +00:00
Enter password: password

SQL> SELECT * FROM DVSYS.DBA_DV_COMMON_OPERATION_STATUS;

NAME STATU
------------------------- -----
DV_ALLOW_COMMON_OPERATION FALSE

SQL>

If the status is set to TRUE, set it to FALSE with the following command:

SQL> EXEC DBMS_MACADM.ALLOW_COMMON_OPERATION (FALSE)

PL/SQL procedure successfully completed.

SQL> SELECT * FROM DVSYS.DBA_DV_COMMON_OPERATION_STATUS;

NAME STATU
------------------------- -----
DV_ALLOW_COMMON_OPERATION FALSE

SQL>

4. Test if the common user C##TEST1 can connect to the CDB root and to PDB20 when
there is no command rule applied on the common user C##TEST1.

a. Connect to the CDB root as C##TEST1.

SQL> CONNECT c##test1
Enter password: password

Chapter 1
Security Solutions

1-71

Connected.
SQL>

b. Connect to PDB20 as C##TEST1.

SQL> CONNECT c##test1@PDB20
Enter password: password
Connected.
SQL>

5. Test if the common user C##TEST1 can connect to the CDB root and to PDB20 when
there is a command rule applied on the common user C##TEST1 in the CDB root.

a. Create a command rule on C##TEST1 in the CDB root.

SQL> CONNECT c##sec_admin
Enter password: password
Connected.
SQL> BEGIN
 DBMS_MACADM.CREATE_CONNECT_COMMAND_RULE(
 rule_set_name => 'Disabled',
 user_name => 'C##TEST1',
 enabled => 'y',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/ 2 3 4 5 6 7 8

PL/SQL procedure successfully completed.

SQL>

b. Connect to the CDB root as C##TEST1.

SQL> CONNECT c##test1
Enter password: password
ERROR:
ORA-47400: Command Rule violation for CONNECT on LOGON

Warning: You are no longer connected to ORACLE.
SQL> !oerr ora 47400
47400, 00000, "Command Rule violation for %s on %s"
// *Cause: An operation that was attempted failed due to a command
rule
// violation
// *Action: Ensure you have sufficient privileges for this
operation retry
// the operation

SQL>

c. Connect to PDB20 as C##TEST1.

SQL> CONNECT c##test1@PDB20
Enter password: password

Chapter 1
Security Solutions

1-72

Connected.
SQL>

d. Drop the command rule.

SQL> CONNECT c##sec_admin
Enter password: password
Connected.
SQL> EXEC
DBMS_MACADM.DELETE_CONNECT_COMMAND_RULE('C##TEST1',DBMS_MACUTL.G_SCO
PE_LOCAL)

PL/SQL procedure successfully completed.

SQL>

6. Test if the common user C##TEST1 can connect to the CDB root and to PDB20 when
there is a command rule applied on the common user C##TEST1 in PDB20.

a. Create a command rule on C##TEST1 in PDB20.

SQL> CONNECT sec_admin@PDB20
Enter password: password
Connected.
SQL> BEGIN
 DBMS_MACADM.CREATE_CONNECT_COMMAND_RULE(
 rule_set_name => 'Disabled',
 user_name => 'C##TEST1',
 enabled => 'y',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/ 2 3 4 5 6 7 8

PL/SQL procedure successfully completed.

SQL>

b. Connect to the CDB root as C##TEST1.

SQL> CONNECT c##test1
Enter password: password
Connected.
SQL>

c. Connect to PDB20 as C##TEST1.

SQL> CONNECT c##test1@PDB20
Enter password: password
ERROR:
ORA-47400: Command Rule violation for CONNECT on LOGON

Warning: You are no longer connected to ORACLE.

SQL>

Chapter 1
Security Solutions

1-73

d. Drop the command rule.

SQL> CONNECT sec_admin@PDB20
Enter password: password
Connected.
SQL> EXEC
DBMS_MACADM.DELETE_CONNECT_COMMAND_RULE('C##TEST1',DBMS_MACUTL.G_SCO
PE_LOCAL)

PL/SQL procedure successfully completed.

SQL>

7. Connect to the CDB root as C##SEC_ADMIN and prevent local users from creating
Oracle Database Vault controls on common users which would prevent them from
logging in to the PDB in which their objects reside. Set
DV_ALLOW_COMMON_OPERATION to TRUE.

SQL CONNECT c##sec_admin
Enter password: password

SQL> SELECT * FROM DVSYS.DBA_DV_COMMON_OPERATION_STATUS;

NAME STATU
------------------------- -----
DV_ALLOW_COMMON_OPERATION FALSE

SQL> EXEC DBMS_MACADM.ALLOW_COMMON_OPERATION

PL/SQL procedure successfully completed.

SQL> SELECT * FROM DVSYS.DBA_DV_COMMON_OPERATION_STATUS;

NAME STATU
------------------------- -----
DV_ALLOW_COMMON_OPERATION TRUE

SQL>

Note that you can execute this procedure without including any parameter to
achieve a TRUE result.

8. Test if the common user C##TEST1 can connect to the CDB root and to PDB20 when
there is a command rule applied on the common user C##TEST1 in the CDB root.

a. Create a command rule on C##TEST1 in the CDB root.

SQL> BEGIN
 DBMS_MACADM.CREATE_CONNECT_COMMAND_RULE(
 rule_set_name => 'Disabled',
 user_name => 'C##TEST1',
 enabled => 'y',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/ 2 3 4 5 6 7 8

Chapter 1
Security Solutions

1-74

PL/SQL procedure successfully completed.

SQL>

b. Connect to the CDB root as C##TEST1.

SQL> CONNECT c##test1
Enter password: password
ERROR:
ORA-47400: Command Rule violation for CONNECT on LOGON

Warning: You are no longer connected to ORACLE.
SQL> !oerr ora 47400
47400, 00000, "Command Rule violation for %s on %s"
// *Cause: An operation that was attempted failed due to a command
rule
// violation
// *Action: Ensure you have sufficient privileges for this
operation retry
// the operation

SQL>

c. Connect to PDB20 as C##TEST1.

SQL> CONNECT c##test1@PDB20
Enter password: password
Connected.
SQL>

d. Drop the command rule.

SQL> CONNECT c##sec_admin
Enter password: password
Connected.
SQL> EXEC
DBMS_MACADM.DELETE_CONNECT_COMMAND_RULE('C##TEST1',DBMS_MACUTL.G_SCO
PE_LOCAL)

PL/SQL procedure successfully completed.

SQL>

9. Test if the common user C##TEST1 can connect to the CDB root and to PDB20 when
there is a command rule applied on the common user C##TEST1 in PDB20.

a. Create a command rule on C##TEST1 in PDB20.

SQL> CONNECT sec_admin@PDB20
Enter password: password
Connected.
SQL> BEGIN
 DBMS_MACADM.CREATE_CONNECT_COMMAND_RULE(
 rule_set_name => 'Disabled',

Chapter 1
Security Solutions

1-75

 user_name => 'C##TEST1',
 enabled => 'y',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/ 2 3 4 5 6 7 8
BEGIN
*
ERROR at line 1:
ORA-47110: cannot create command rules for C##TEST1.%
ORA-06512: at "DVSYS.DBMS_MACADM", line 1872
ORA-06512: at "DVSYS.DBMS_MACADM", line 2263
ORA-06512: at line 2

SQL> !oerr ORA 47110
47110, 00000, "cannot create command rules for %s.%s"
// *Cause: When ALLOW COMMON OPERATION was set to TRUE, a smaller
scope user was not allowed to create command rules on a larger
scope user's object.
// *Action: When ALLOW COMMON OPERATION is TRUE, do not create
command rules on a larger scope user's object.

SQL>

b. Connect to the CDB root as C##TEST1.

SQL> CONNECT c##test1
Enter password: password
Connected.
SQL>

c. Connect to PDB20 as C##TEST1.

SQL> CONNECT c##test1@PDB20
Enter password: password
Connected.
SQL> EXIT
$

10. Disable Database Vault in both the PDB and the CDB root.

$ /home/oracle/labs/M104781GC10/disable_DV.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Mon Apr 6 15:25:59 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Last Successful login time: Mon Apr 06 2020 15:23:56 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> exec DVSYS.DBMS_MACADM.DISABLE_DV

PL/SQL procedure successfully completed.

Chapter 1
Security Solutions

1-76

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Apr 6 15:26:00 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Last Successful login time: Mon Apr 06 2020 15:23:58 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> exec DVSYS.DBMS_MACADM.DISABLE_DV

PL/SQL procedure successfully completed.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Apr 6 15:26:02 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Apr 6 15:26:23 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to an idle instance.

SQL> STARTUP
ORACLE instance started.

Chapter 1
Security Solutions

1-77

Total System Global Area 6442447392 bytes
Fixed Size 9581088 bytes
Variable Size 1090519040 bytes
Database Buffers 5318377472 bytes
Redo Buffers 23969792 bytes
Database mounted.
Database opened.
SQL> ALTER PLUGGABLE DATABASE all OPEN;

Pluggable database altered.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

Database Vault does not only block inappropriate command rules from being created
once DBMS_MACADM.ALLOW_COMMON_OPERATION is set to TRUE, but existing local
command rules created when DBMS_MACADM.ALLOW_COMMON_OPERATION was set to
FALSE fall under the control. Existing local command rules still exist but enforcement is
ignored.

Performance and High-Availability Options
• Automatic Operations

• Oracle Database In-Memory

• Flashback

• Autonomous Health Framework

• Oracle Multitenant

Automatic Operations
• SecureFiles Defragmentation

• Automatic Index Optimization

• Automatic Zone Maps

SecureFiles Defragmentation
SecureFiles defragmentation provides online defragmentation of allocated and freed
space in SecureFiles segments, for all types of SecureFiles LOBs - compressed,
deduplicated, encrypted. Defragmentation can be done automatically by a background
process, and the segment advisor can estimate the fragmentation levels and how
much space can be saved. Defragmentation can be done mostly in-place, with some
temp segment space needed to hold intermediate results.

SecureFiles defragmentation provides a transparent way to defragment or shrink the
space used by SecureFiles segments, helping to reclaim space and improve
performance, without compromising concurrent access to SecureFiles data, and
without a significant impact on performance.

Chapter 1
Performance and High-Availability Options

1-78

• Details: SecureFiles Defragmentation
This page provides more detailed information about defragment operations on
SecureFiles.

• Practice: Shrinking SecureFile LOBs
This practice shows how to reclaim space and improve performance with
SecureFile LOBs.

Related Topics

• Oracle® Database SecureFiles and Large Objects Developer's Guide

Details: SecureFiles Defragmentation
This page provides more detailed information about defragment operations on
SecureFiles.

SecureFiles fragmentation impacts:

SecureFiles defragmentation shrinks the space used by SecureFiles segments
without compromising concurrent access to SecureFiles data.

SQL> ALTER TABLE tab1 MODIFY LOB (lob_column1) (SHRINK SPACE);

SQL> ALTER TABLE tab_containing_LOBs SHRINK SPACE CASCADE;

SQL> ALTER TABLE tab_containing_LOBs SHRINK SPACE CASCADE;

 - Sequential read performance of the LOBs
 - Efficiency of space layer to search for free space and the overall performance

of SecureFile DMLs

SQL> ALTER TABLE tab_containing_LOBs MOVE LOB …;

Not supported

Expensive operation in time and space

- Partitioned, including compression, encryption, and deduplication
- Allows concurrent queries and DMLs, and serializes concurrent DDLs
- Works on RAC
- Restarts and recovers from failure or interruption
- Honors LOB retention V$SECUREFILE_SHRINK

19c

20c

A new view V$SECUREFILE_SHRINK reports the results of the defragment operations. A
new row is created after each invocation of shrink and is continuously updated. After
the shrink is done, the row remains static, and a new invocation of shrink for the same
segment overwrites the row.

Practice: Shrinking SecureFile LOBs
This practice shows how to reclaim space and improve performance with SecureFile
LOBs.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Create a table with a CLOB column.

Chapter 1
Performance and High-Availability Options

1-79

a. Before starting shrinking a SecureFile LOB, execute the /home/oracle/labs/
M104780GC10/setup_LOB.sh shell script that creates a tablespace with
sufficient space to let the LOB grow and be candidate for shrinking.

$ cd /home/oracle/labs/M104780GC10
$ /home/oracle/labs/M104780GC10/setup_LOB.sh

SQL*Plus: Release 20.0.0.0.0 - Production on Fri Dec 13 11:05:28
2019
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

SQL> DROP TABLESPACE users INCLUDING CONTENTS AND DATAFILES;

Tablespace dropped.

SQL> CREATE TABLESPACE users DATAFILE '/home/oracle/labs/
users01.dbf' SIZE 500M;

Tablespace created.

SQL> create user hr identified by password;

User created.

SQL> grant dba to hr;

Grant succeeded.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

b. Create a table with a CLOB column in PDB20.

$ sqlplus system@PDB20

SQL*Plus: Release 20.0.0.0.0 - Production on Fri Dec 13 11:09:44
2019
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Enter password: password
Last Successful login time: Fri Dec 13 2019 10:42:50 +00:00

Connected to:

Chapter 1
Performance and High-Availability Options

1-80

Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

SQL> CREATE TABLE hr.t1 (a CLOB) LOB(a) STORE AS SECUREFILE
TABLESPACE users;

Table created.

SQL>

c. Insert rows, update the CLOB data and commit.

SQL> INSERT INTO hr.t1 values
('aaa');

1 row created.

SQL> INSERT INTO hr.t1 Select * from hr.t1;

1 row created.

SQL> INSERT INTO hr.t1 Select * from hr.t1;

2 rows created.

SQL> INSERT INTO hr.t1 Select * from hr.t1;

4 rows created.

SQL> UPDATE hr.t1 SET a=a||a||a||a||a||a||a;

8 rows updated.

SQL> UPDATE hr.t1 SET a=a||a||a||a||a||a||a;

8 rows updated.

SQL> COMMIT;

Commit complete.

SQL>

3. Shrink the LOB segment.

SQL> ALTER TABLE hr.t1 MODIFY LOB(a) (SHRINK SPACE);

Table altered.

SQL>

Chapter 1
Performance and High-Availability Options

1-81

4. Display the number of extents or blocks freed.

SQL> SET PAGES 100
SQL> SELECT * FROM v$securefile_shrink;

 LOB_OBJD SHRINK_STATUS
---------- --
START_TIME
--

END_TIME
--

BLOCKS_MOVED BLOCKS_FREED BLOCKS_ALLOCATED EXTENTS_ALLOCATED
EXTENTS_FREED
------------ ------------ ---------------- -----------------

EXTENTS_SEALED CON_ID
-------------- ----------
 74403 COMPLETE
13-DEC-19 11.14.30.702 AM +00:00
13-DEC-19 11.14.33.520 AM +00:00
 2 2 2
1 1
 1 4

SQL>

As a result, two blocks are freed.

5. Update the CLOB.

SQL> UPDATE hr.t1 SET a=a||a||a||a||a||a||a;

8 rows updated.

SQL> UPDATE hr.t1 SET a=a||a||a||a||a||a||a;

8 rows updated.

SQL> UPDATE hr.t1 SET a=a||a||a||a||a||a||a;

8 rows updated.

SQL> UPDATE hr.t1 SET a=a||a||a||a||a||a||a;

8 rows updated.

SQL> COMMIT;

Commit complete.

SQL>

Chapter 1
Performance and High-Availability Options

1-82

6. Shrink the LOB segment.

SQL> ALTER TABLE hr.t1 MODIFY LOB(a) (SHRINK SPACE);

Table altered.

SQL>

7. Display the number of extents or blocks freed.

SQL> SELECT * FROM v$securefile_shrink;

 LOB_OBJD SHRINK_STATUS
---------- --
START_TIME
--

END_TIME
--

BLOCKS_MOVED BLOCKS_FREED BLOCKS_ALLOCATED EXTENTS_ALLOCATED
EXTENTS_FREED
------------ ------------ ---------------- -----------------

EXTENTS_SEALED CON_ID
-------------- ----------
 74403 COMPLETE
13-DEC-19 11.22.07.225 AM +00:00
13-DEC-19 11.22.18.281 AM +00:00
 2648 2648 2648 0
11
 11 4

 74403 COMPLETE
13-DEC-19 11.14.30.702 AM +00:00
13-DEC-19 11.14.33.520 AM +00:00
 2 2 2
1 1
 1 4

SQL>

As a result, 2648 blocks are freed. Observe that the first row remains static.

8. Update the CLOB.

SQL> UPDATE hr.t1 SET a=a||a;

8 rows updated.

SQL> COMMIT;

Commit complete.

Chapter 1
Performance and High-Availability Options

1-83

SQL>

9. Shrink the LOB segment.

SQL> ALTER TABLE hr.t1 MODIFY LOB(a) (SHRINK SPACE);

Table altered.

SQL>

10. Display the number of extents or blocks freed.

SQL> SELECT * FROM v$securefile_shrink WHERE LOB_OBJD=74403;

 LOB_OBJD SHRINK_STATUS
---------- --
START_TIME
--

END_TIME
--

BLOCKS_MOVED BLOCKS_FREED BLOCKS_ALLOCATED EXTENTS_ALLOCATED
EXTENTS_FREED
------------ ------------ ---------------- -----------------

EXTENTS_SEALED CON_ID
-------------- ----------
 74403 COMPLETE
13-DEC-19 11.22.07.225 AM +00:00
13-DEC-19 11.22.18.281 AM +00:00
 2648 2648 2648 0
11
 11 4

 74403 COMPLETE
13-DEC-19 11.24.14.623 AM +00:00
13-DEC-19 11.24.39.373 AM +00:00
 5484 5484 5484 1
19
 19 4

SQL> EXIT
$

As a result, 5484 blocks are freed. Observe that only the row of the previous
shrinking operation is kept.

Automatic Index Optimization
ADO Policies for Indexes extends existing Automatic Data Optimization (ADO)
functionality to provide compression and optimization capability on indexes.
Customers of Oracle Database are interested in leveraging compression tiering and

Chapter 1
Performance and High-Availability Options

1-84

storage tiering to satisfy their Information Lifecycle Management (ILM) requirements.
Existing ADO functionality enables you to set policies that enforce compression tiering
and storage tiering for data tables and partitions automatically, with minimal user
intervention.

In a database, indexes can contribute to a significant amount of database space.
Reducing the space requirement for indexes, without sacrificing performance, requires
ILM actions similar to the existing Automatic Data Optimization feature for data
segments. Using this new Index compression and optimization capability, the same
ADO infrastructure can also automatically optimize indexes. Similar to ADO for data
segments, this automatic index compression and optimization capability achieves ILM
on indexes by enabling you to set policies that automatically optimize indexes through
actions like compressing, shrinking and rebuilding indexes.

• Details: Automatic Index Optimization
This page provides more detailed information about Automatic Data Optimization
policies for indexes, extending existing ADO functionality for tables to provide
segment movement, compression and optimization capability on indexes.

• Practice: Implementing Storage Tiering ADO Policy for Indexes
This practice shows how to automate the movement of indexes to another
tablespace depending on certain conditions defined in Automatic Data
Optimization policies.

• Practice: Implementing Optimize ADO Policy for Indexes
This practice shows how to automate the compression and optimization of
indexes, using the existing Automatic Data Optimization (ADO) framework,
depending on certain conditions defined in Automatic Data Optimization policies.

Related Topics

• Oracle® Database VLDB and Partitioning Guide

Details: Automatic Index Optimization
This page provides more detailed information about Automatic Data Optimization
policies for indexes, extending existing ADO functionality for tables to provide segment
movement, compression and optimization capability on indexes.

Chapter 1
Performance and High-Availability Options

1-85

Enable Heat Map
HEAT_MAP=ON

Heat Map statistics
collected on segments

Pol1: If no access during 3 days
 => COMPRESS

Pol2: If tablespace TBS_IND FULL
 => Move I_DEPT to
 another tablespace

1 2

Memory
V$HEAT_MAP_SEGMENT

Real

Time

SQL> UPDATE dept SET deptno=10 WHERE ...

HEAT_MAP_STAT$ tableDBA_HEAT_MAP_SEG_HISTOGRAM view

Create ADO Policy on index

3

ADO Policy evaluated

4

ADO action executed

5

View ADO results

6

I_DEPT

I_DEPT
No access since 3 days

=> COMPRESS (pol1)

Tablespace TBS_IND not FULL yet

=> No movement (pol2)

I_DEPT compressed

COMPRESSION_STAT$ table

MMON

The slide shows how to set up the different steps between Heat Map and Automatic
Data Optimization (ADO) to automate the movement of a segment to another
tablespace and/or the compression of blocks or a segment depending on certain
conditions defined in ADO policies.

Oracle Database 20c allows ADO policies for indexes, extending existing Automatic
Data Optimization (ADO) functionality for tables to provide segment movement,
compression and optimization capability on indexes. The optimization process
includes actions such as compressing, shrinking, or rebuilding indexes. When the
OPTIMIZE clause is specified, Oracle automatically determines which action is optimal
for the index and implements that action as part of the optimization process. You do
not have to specify which action is taken.

1. The first operation for the DBA is to enable Heat Map, tracking the activity on blocks
and segments. Heat Map activates system-generated statistics collection, such as
segment access or modification.

2. Real-time statistics are collected in memory (V$HEAT_MAP_SEGMENT view) and
regularly flushed by scheduled DBMS_SCHEDULER jobs to the persistent HEAT_MAP_STAT$
table. The persistent data is visible by using the DBA_HEAT_MAP_SEG_HISTOGRAM view.

3. The next operation for the DBA is to create ADO policies on indexes as default ADO
behavior on tablespaces.

4. The next step for the DBA is to schedule when ADO policy evaluation must happen
if the default scheduling does not match the business requirements. ADO policy
evaluation relies on Heat Map statistics. MMON evaluates row-level policies
periodically and start jobs to compress whichever blocks qualify. Segment-level
policies are evaluated and executed only during the maintenance window.

5. The DBA can finally view ADO execution results by using the
DBA_ILMEVALUATIONDETAILS and DBA_ILMRESULTS views.

6. Finally, the DBA can verify whether the segment moved to another tablespace and
is therefore stored on the tablespace defined in the ADO policy, and or if blocks of the
index got compressed viewing the COMPRESSION_STAT$ table.

Chapter 1
Performance and High-Availability Options

1-86

Practice: Implementing Storage Tiering ADO Policy for Indexes
This practice shows how to automate the movement of indexes to another tablespace
depending on certain conditions defined in Automatic Data Optimization policies.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Before creating the storage tier ADO policy on an index, execute the /home/
oracle/labs/M104783GC10/ADO_setup.sh. The shell script cleans up any existing
ADO policies, creates two tablespaces for moving indexes from the ADOTBSINDX
tablespace to the LOW_COST_STORE_INDX tablespace, and creates the HR.EMP table
with a primary key PK_EMPLOYEE_ID whose index is stored in the ADOTBSINDX. It
also starts collecting the heat map statistics.

$ cd /home/oracle/labs/M104783GC10
$ /home/oracle/labs/M104783GC10/ADO_setup.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Tue Jan 7 03:31:27 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> set feedback off
SQL> delete ilm_results$;
SQL> delete ilm_execution$;
SQL> delete ilm_executiondetails$;
SQL> DROP TABLESPACE adotbsindx INCLUDING CONTENTS AND DATAFILES;
DROP TABLESPACE adotbsindx INCLUDING CONTENTS AND DATAFILES
*
ERROR at line 1:
ORA-00959: tablespace 'ADOTBSINDX' does not exist

SQL> DROP TABLESPACE low_cost_store_indx INCLUDING CONTENTS AND
DATAFILES;
DROP TABLESPACE low_cost_store_indx INCLUDING CONTENTS AND DATAFILES
*
ERROR at line 1:
ORA-00959: tablespace 'LOW_COST_STORE_INDX' does not exist

SQL>
SQL> declare
 2 begin
 3 dbms_ilm_admin.customize_ilm(DBMS_ILM_ADMIN.TBS_PERCENT_USED,85);
 4 exception
 5 when others then
 6 raise;
 7 end;

Chapter 1
Performance and High-Availability Options

1-87

 8 /
SQL>
SQL> declare
 2 begin
 3 dbms_ilm_admin.customize_ilm(DBMS_ILM_ADMIN.TBS_PERCENT_FREE,25);
 4 exception
 5 when others then
 6 raise;
 7 end;
 8 /
SQL>
SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Jan 7 03:31:28 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> set feedback off
SQL> delete ilm_results$;
SQL> delete ilm_execution$;
SQL> delete ilm_executiondetails$;
SQL> DROP TABLESPACE adotbsindx INCLUDING CONTENTS AND DATAFILES;
SQL> DROP TABLESPACE low_cost_store_indx INCLUDING CONTENTS AND
DATAFILES;
SQL>
SQL> declare
 2 begin
 3 dbms_ilm_admin.customize_ilm(DBMS_ILM_ADMIN.TBS_PERCENT_USED,85);
 4 exception
 5 when others then
 6 raise;
 7 end;
 8 /
SQL>
SQL> declare
 2 begin
 3 dbms_ilm_admin.customize_ilm(DBMS_ILM_ADMIN.TBS_PERCENT_FREE,25);
 4 exception
 5 when others then
 6 raise;
 7 end;
 8 /
SQL>
SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production

Chapter 1
Performance and High-Availability Options

1-88

Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Jan 7 03:31:34 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> ALTER SYSTEM SET heat_map=on SCOPE=BOTH;

System altered.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Jan 6 03:29:05 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

specify password for HR as parameter 1:

specify default tablespeace for HR as parameter 2:

specify temporary tablespace for HR as parameter 3:

specify log path as parameter 4:

PL/SQL procedure successfully completed.

User created.

User altered.

User altered.

Grant succeeded.

Chapter 1
Performance and High-Availability Options

1-89

Grant succeeded.

Session altered.

Session altered.

Session altered.

****** Creating REGIONS table
...
****** Creating EMPLOYEES table
...
****** Populating EMPLOYEES table
...
1 row created.
...
Index created.
...
Trigger altered.
...
PL/SQL procedure successfully completed.

SQL> Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Jan 6 03:29:13 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL>
SQL> GRANT select any dictionary TO hr;

Grant succeeded.

SQL> CREATE TABLESPACE adotbsindx
 2 DATAFILE '/home/oracle/labs/adotbs1.dbf'
 3 size 2m reuse autoextend off extent management local
uniform size 64K;

Tablespace created.

SQL> CREATE TABLESPACE low_cost_store_indx
 2 DATAFILE '/home/oracle/labs/lcs.dbf'
 3 size 100M;

Chapter 1
Performance and High-Availability Options

1-90

Tablespace created.

SQL>
SQL> CREATE TABLE hr.emp TABLESPACE users AS SELECT * FROM
hr.employees ;

Table created.

SQL> ALTER TABLE hr.emp MODIFY employee_id NUMBER(38) ;

Table created.

SQL> ALTER TABLE hr.emp ADD CONSTRAINT pk_employee_id primary key
(employee_id) using index tablespace adotbsindx;

Table altered.

SQL> INSERT INTO hr.emp
 2 SELECT employee_id*3, first_name,last_name, email,
phone_number, hire_date, job_id, salary, commission_pct, manager_id,
department_id
 3 FROM hr.emp;

107 rows created.

SQL> INSERT INTO hr.emp
 2 SELECT employee_id*7, first_name,last_name, email,
phone_number, hire_date, job_id, salary, commission_pct, manager_id,
department_id
 3 FROM hr.emp;

214 rows created.

SQL> COMMIT;

Commit complete.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

3. Display the tablespace on which the index of the primary key for the HR.EMP table
is stored and how much space the segment is using.

$ sqlplus system@PDB20
SQL*Plus: Release 20.0.0.0.0 - Production on Mon Jan 6 03:36:57 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Enter password: password

Chapter 1
Performance and High-Availability Options

1-91

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> COL tablespace_name FORMAT A20
SQL> COL index_name FORMAT A20
SQL> COL owner FORMAT A10
SQL> SELECT tablespace_name, index_name, owner FROM dba_indexes WHERE
table_name='EMP';

TABLESPACE_NAME INDEX_NAME OWNER
-------------------- -------------------- ----------
ADOTBSINDX PK_EMPLOYEE_ID HR

SQL>
SQL> SELECT bytes FROM dba_segments WHERE segment_name='PK_EMPLOYEE_ID';

 BYTES

 65536

SQL>

4. Display the space used and free in the tablespace on which the index of the
primary key for the HR.EMP table is stored.

SQL> SELECT /* + RULE */ df.tablespace_name "Tablespace",
 df.bytes / (1024 * 1024) "Size (MB)",
 SUM(fs.bytes) / (1024 * 1024) "Free (MB)",
 Nvl(Round(SUM(fs.bytes) * 100 / df.bytes),1) "% Free",
 Round((df.bytes - SUM(fs.bytes)) * 100 / df.bytes) "% Used"
 FROM dba_free_space fs, (SELECT tablespace_name,SUM(bytes) bytes
 FROM dba_data_files
 GROUP BY tablespace_name) df
 WHERE fs.tablespace_name (+) = df.tablespace_name
 GROUP BY df.tablespace_name,df.bytes
 ORDER BY 4;

Tablespace Size (MB) Free (MB) % Free %
Used
------------------------------ ---------- ---------- ----------

SYSTEM 270 6.125 2
98
SYSAUX 340 17.1875 5
95
USERS 5 2.3125 46
54
ADOTBSINDX 2 .9375 47
53
UNDOTBS1 100 66.125 66
34
LOW_COST_STORE_INDX 100 99
99 1

Chapter 1
Performance and High-Availability Options

1-92

6 rows selected.

SQL>

5. Create a storage tiering ADO policy on the index so that when the percentage of
empty space in ADOTBSINDX tablespace is less than 90%, the ILM policy being
evaluated triggers an ADO action to move the index to the LOW_COST_STORE_INDX
tablespace.

SQL> ALTER INDEX hr.pk_employee_id ILM ADD POLICY TIER TO
low_cost_store_indx;

Index altered.

SQL>

6. Display the policy in the data dictionary view.

SQL> CONNECT hr@PDB20
Enter password: password
Connected.
SQL> SELECT policy_name, action_type, scope,
 tier_tablespace "TIER_TBS"
 FROM user_ilmdatamovementpolicies
 ORDER BY policy_name;

POLI ACTION_TYPE SCOPE TIER_TBS
---- ----------- ------- --------------------
P61 STORAGE SEGMENT LOW_COST_STORE_INDX

SQL>

7. Insert rows into HR.EMP until the index entries inserted raise the percentage of
empty space in ADOTBSINDX tablespace to less than 90%.

SQL> INSERT INTO hr.emp
 SELECT employee_id*101, first_name,last_name, email,
 phone_number, hire_date, job_id, salary,
commission_pct,
 manager_id, department_id
 FROM hr.emp;

428 rows created.

SQL> INSERT INTO hr.emp
 SELECT employee_id+436926 , first_name,last_name, email,
 phone_number, hire_date, job_id, salary,
commission_pct,
 manager_id, department_id
 FROM hr.emp;

856 rows created.

SQL> COMMIT;

Chapter 1
Performance and High-Availability Options

1-93

Commit complete.

SQL> SELECT /* + RULE */ df.tablespace_name "Tablespace",
 df.bytes / (1024 * 1024) "Size (MB)",
 SUM(fs.bytes) / (1024 * 1024) "Free (MB)",
 Nvl(Round(SUM(fs.bytes) * 100 / df.bytes),1) "% Free",
 Round((df.bytes - SUM(fs.bytes)) * 100 / df.bytes) "% Used"
 FROM dba_free_space fs, (SELECT tablespace_name,SUM(bytes) bytes
 FROM dba_data_files
 GROUP BY tablespace_name) df
 WHERE fs.tablespace_name (+) = df.tablespace_name
 GROUP BY df.tablespace_name,df.bytes
 ORDER BY 4;

Tablespace Size (MB) Free (MB) % Free %
Used
------------------------------ ---------- ---------- ----------

SYSTEM 270 6.125 2
98
SYSAUX 340 16.625 5
95
ADOTBSINDX 2 .875 44
56
USERS 5 2.25 45
55
UNDOTBS1 100 66.6875 67
33
LOW_COST_STORE_INDX 100 99
99 1

6 rows selected.

SQL>

The index entries inserted raise the percentage of empty space in ADOTBSINDX
tablespace to less than 90%.

8. Display the tablespace on which the index of the primary key for the HR.EMP table
is now stored. Is the index moved to the LOW_COST_STORE_INDX tablespace?

SQL> SELECT tablespace_name, index_name, owner FROM dba_indexes WHERE
table_name='EMP';

TABLESPACE_NAME INDEX_NAME OWNER
-------------------- -------------------- ----------
ADOTBSINDX PK_EMPLOYEE_ID HR

SQL>

The index has not moved to the other tablespace although the percentage of
empty space in ADOTBSINDX tablespace to less than 90%.

9. The ADO decision to move segments also depends on the default thresholds
defined at the database level for all user-defined tablespaces.

Chapter 1
Performance and High-Availability Options

1-94

a. Set the TBS_PERCENT_FREE threshold to 90% and the TBS_PERCENT_USED
threshold to 30% .

SQL> CONNECT sys@PDB20 AS SYSDBA
Enter password: password
Connected.
SQL> COL name FORMAT A40
SQL> SELECT * FROM dba_ilmparameters;

NAME VALUE
-- ----------
ENABLED 1
RETENTION TIME 30
JOB LIMIT 2
EXECUTION MODE 2
EXECUTION INTERVAL 15
TBS PERCENT USED 85
TBS PERCENT FREE 25
POLICY TIME 0

8 rows selected.

SQL> EXEC
dbms_ilm_admin.customize_ilm(DBMS_ILM_ADMIN.TBS_PERCENT_FREE,90)

PL/SQL procedure successfully completed.

SQL> EXEC
dbms_ilm_admin.customize_ilm(DBMS_ILM_ADMIN.TBS_PERCENT_USED,30)

PL/SQL procedure successfully completed.

SQL> SELECT * FROM dba_ilmparameters;

NAME VALUE
-- ----------
ENABLED 1
RETENTION TIME 30
JOB LIMIT 2
EXECUTION MODE 2
EXECUTION INTERVAL 15
TBS PERCENT USED 30
TBS PERCENT FREE 90
POLICY TIME 0

8 rows selected.

SQL>

b. For the purpose of the demo, you will not wait for the maintenance window to
open to trigger the ADO policies jobs. Instead, you are going to execute the

Chapter 1
Performance and High-Availability Options

1-95

following command that uses the following PL/SQL block connected as the
ADO policy owner, HR.

SQL> CONNECT hr@PDB20
Enter password: password
Connected.
SQL> ALTER SESSION SET nls_date_format='dd-mon-yy hh:mi:ss';

Session altered.

SQL> DECLARE
 v_executionid number;
 BEGIN
 dbms_ilm.execute_ILM (ILM_SCOPE => dbms_ilm.SCOPE_SCHEMA,
 execution_mode =>
dbms_ilm.ilm_execution_offline,
 task_id => v_executionid);
 END;
/

PL/SQL procedure successfully completed.

SQL>

c. Check again whether the index has moved to the LOW_COST_STORE_INDX
tablespace.

SQL> COL object_type FORMAT A10
SQL> COL object_name FORMAT A14
SQL> COL selected_for_execution FORMAT A28
SQL> COL job_name FORMAT A9
SQL> SELECT OBJECT_TYPE, OBJECT_NAME, SELECTED_FOR_EXECUTION,
JOB_NAME
 FROM user_ilmevaluationdetails;

OBJECT_TYP OBJECT_NAME SELECTED_FOR_EXECUTION JOB_NAME
---------- -------------- ---------------------------- ---------
INDEX PK_EMPLOYEE_ID SELECTED FOR EXECUTION ILMJOB124

SQL> SELECT task_id, job_name, job_state FROM user_ilmresults;

TASK_ID JOB_NAME JOB_STATE
------- ---------- -----------------------------------
 41 ILMJOB124 COMPLETED SUCCESSFULLY

SQL>

10. Display the tablespace on which the index of the primary key for the HR.EMP table
is now stored. Is it moved to the LOW_COST_STORE_INDX tablespace?

SQL> SELECT tablespace_name, index_name, owner FROM dba_indexes WHERE
table_name='EMP';

TABLESPACE_NAME INDEX_NAME OWNER
-------------------- -------------------- ----------

Chapter 1
Performance and High-Availability Options

1-96

LOW_COST_STORE_INDX PK_EMPLOYEE_ID HR

SQL>

The index has moved to the other tablespace.

11. Delete the ADO policy on the index.

SQL> ALTER INDEX pk_employee_id ILM DELETE POLICY p61;

Index altered.

SQL>

12. Stop heat map statistics collection and clean up all heat map statistics.

SQL> CONNECT / AS SYSDBA
Connected.
SQL> ALTER SYSTEM SET heat_map=off SCOPE=BOTH;

System altered.

SQL> EXEC dbms_ilm_admin.clear_heat_map_all

PL/SQL procedure successfully completed.

SQL> EXIT
$

Practice: Implementing Optimize ADO Policy for Indexes
This practice shows how to automate the compression and optimization of indexes,
using the existing Automatic Data Optimization (ADO) framework, depending on
certain conditions defined in Automatic Data Optimization policies.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Before creating the optimize ADO policy on an index, execute the /home/oracle/
labs/M104783GC10/ADO_setup2.sh. The shell script cleans up any existing ADO
policies, creates the HR.EMP table and starts collecting the heat map statistics.

$ cd /home/oracle/labs/M104783GC10
$ /home/oracle/labs/M104783GC10/ADO_setup2.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Tue Jan 7 03:35:49 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> set feedback off

Chapter 1
Performance and High-Availability Options

1-97

SQL> delete ilm_results$;
SQL> delete ilm_execution$;
SQL> delete ilm_executiondetails$;
SQL>
SQL> declare
 2 begin
 3 dbms_ilm_admin.customize_ilm(DBMS_ILM_ADMIN.TBS_PERCENT_USED,85);
 4 exception
 5 when others then
 6 raise;
 7 end;
 8 /
SQL>
SQL> declare
 2 begin
 3 dbms_ilm_admin.customize_ilm(DBMS_ILM_ADMIN.TBS_PERCENT_FREE,25);
 4 exception
 5 when others then
 6 raise;
 7 end;
 8 /
SQL>
SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Jan 7 03:35:50 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> set feedback off
SQL> delete ilm_results$;
SQL> delete ilm_execution$;
SQL> delete ilm_executiondetails$;
SQL>
SQL> declare
 2 begin
 3 dbms_ilm_admin.customize_ilm(DBMS_ILM_ADMIN.TBS_PERCENT_USED,85);
 4 exception
 5 when others then
 6 raise;
 7 end;
 8 /
SQL>
SQL> declare
 2 begin
 3 dbms_ilm_admin.customize_ilm(DBMS_ILM_ADMIN.TBS_PERCENT_FREE,25);
 4 exception

Chapter 1
Performance and High-Availability Options

1-98

 5 when others then
 6 raise;
 7 end;
 8 /
SQL>
SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Jan 7 03:35:51 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> ALTER SYSTEM SET heat_map=on SCOPE=BOTH;

System altered.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Jan 6 03:29:05 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

specify password for HR as parameter 1:

specify default tablespeace for HR as parameter 2:

specify temporary tablespace for HR as parameter 3:

specify log path as parameter 4:

PL/SQL procedure successfully completed.

User created.

User altered.

User altered.

Grant succeeded.

Chapter 1
Performance and High-Availability Options

1-99

Grant succeeded.

Session altered.

Session altered.

Session altered.

****** Creating REGIONS table
...
****** Creating EMPLOYEES table
...
****** Populating EMPLOYEES table
...
1 row created.
...
Index created.
...
Trigger altered.
...
PL/SQL procedure successfully completed.

SQL> Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Jan 6 03:29:13 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL>
SQL> GRANT select any dictionary TO hr;

Grant succeeded.
SQL> DROP TABLESPACE low_cost_store_indx INCLUDING CONTENTS AND
DATAFILES;

Tablespace dropped.

SQL> CREATE TABLESPACE low_cost_store_indx
 2 DATAFILE '/home/oracle/labs/lcs.dbf'
 3 size 100M;

Tablespace created.

SQL>
SQL> CREATE TABLE hr.emp TABLESPACE users AS SELECT * FROM
hr.employees ;

Chapter 1
Performance and High-Availability Options

1-100

Table created.

SQL> ALTER TABLE hr.emp MODIFY employee_id NUMBER(38) ;

Table created.

SQL> ALTER TABLE hr.emp ADD CONSTRAINT pk_employee_id primary key
(employee_id) using index tablespace adotbsindx;

Table altered.

SQL> INSERT INTO hr.emp
 2 SELECT employee_id*3, first_name,last_name, email,
phone_number, hire_date, job_id, salary, commission_pct, manager_id,
department_id
 3 FROM hr.emp;

107 rows created.

SQL> INSERT INTO hr.emp
 2 SELECT employee_id*7, first_name,last_name, email,
phone_number, hire_date, job_id, salary, commission_pct, manager_id,
department_id
 3 FROM hr.emp;

214 rows created.

SQL> COMMIT;

Commit complete.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

3. Before creating the optimization ADO policy on an index, create the composite
index I_NAME on the two columns FIRST_NAME and LAST_NAME of the HR.EMP table.

$ sqlplus hr@PDB20
Enter password: password
Connected.
SQL> CREATE INDEX hr.i_name ON hr.emp (first_name, last_name)
TABLESPACE low_cost_store_indx;

Index created.

SQL>

4. Check the compression attribute of the index.

SQL> COL index_name FORMAT A26
SQL> SELECT compression, index_name FROM dba_indexes WHERE
table_name='EMP';

Chapter 1
Performance and High-Availability Options

1-101

COMPRESSION INDEX_NAME
------------- --------------------
DISABLED PK_EMPLOYEE_ID
DISABLED I_NAME

SQL>

5. Add an OPTIMIZE ADO policy on the I_NAME index. When the OPTIMIZE clause is
specified, Oracle automatically determines which action is optimal for the index
and implements that action as part of the optimization process. You do not have to
specify which action is taken. The optimization process includes actions such as
compressing, shrinking, or rebuilding indexes. The OPTIMIZE clause provides an
opportunity for ADO to optimize the index whenever the policy condition is met.
The exact action invoked by ADO would be based on the decision made by the
Oracle Database. For example, if more than 30% of the leaf blocks are suitable for
COALESCE, then REBUILD ONLINE may take less elapsed time and certainly
generate a lot less undo.

SQL> ALTER INDEX hr.i_name ILM ADD POLICY OPTIMIZE AFTER 10 DAYS OF NO
MODIFICATION;

Index altered.

SQL>

6. Verify that the policy is added.

SQL> SELECT policy_name, action_type, scope,
 compression_level, condition_type, condition_days
 FROM user_ilmdatamovementpolicies
 ORDER BY policy_name;
 2 3 4
POLI ACTION_TYPE SCOPE COMPRESSION_LEVEL CONDITION_TYPE
---- ----------- ------- ----------------- ----------------------
CONDITION_DAYS

P62 OPTIMIZE SEGMENT LAST MODIFICATION TIME
 10

SQL>

7. To indicate that the policy is specified in seconds rather than in days, set the
POLICY TIME to 1 (seconds) instead of the default value 0 (days) to test ADO
policy evaluation quickly instead of waiting for the policy duration.

SQL> CONNECT sys@PDB20 AS SYSDBA
Enter password: password
Connected.
SQL> EXEC
dbms_ilm_admin.customize_ilm(dbms_ilm_admin.POLICY_TIME,dbms_ilm_admin.I
LM_POLICY_IN_SECONDS)

PL/SQL procedure successfully completed.

Chapter 1
Performance and High-Availability Options

1-102

SQL> SELECT * FROM dba_ilmparameters;

NAME VALUE
-------------------- -----
ENABLED 1
RETENTION TIME 30
JOB LIMIT 2
EXECUTION MODE 2
EXECUTION INTERVAL 15
TBS PERCENT USED 85
TBS PERCENT FREE 25
POLICY TIME 1

8 rows selected.

SQL>

8. Wait at least until 1 minute (instead of 10 days) has passed without any
modification on HR.EMP table, and therefore on HR.I_NAME index. For the purpose
of the demo, you will not wait until MMON evaluates the ADO policies. You launch
the ADO policy evaluation and ADO task execution immediately by executing the
following PL/SQL block.

SQL> CONNECT hr@PDB20
Enter password: password
Connected.
SQL> ALTER SESSION SET nls_date_format='dd-mon-yy hh:mi:ss';

Session altered.

SQL> DECLARE
v_executionid number;
BEGIN
dbms_ilm.execute_ILM (ILM_SCOPE => dbms_ilm.SCOPE_SCHEMA,
 execution_mode => dbms_ilm.ilm_execution_offline,
 task_id => v_executionid);
END;
/

PL/SQL procedure successfully completed.

SQL>

9. Display the result of the executed task.

SQL> COL SELECTED_FOR_EXECUTION FORMAT A28
SQL> COL job_name FORMAT A9
SQL> SELECT task_id, task_owner, state FROM dba_ilmtasks WHERE
task_owner='HR';

TASK_ID TASK_OWN STATE
------- -------- ---------
 42 HR COMPLETED

Chapter 1
Performance and High-Availability Options

1-103

SQL> SELECT task_id, policy_name, object_name,
 selected_for_execution, job_name
 FROM dba_ilmevaluationdetails
 WHERE object_name='I_NAME';

TASK_ID POLI OBJECT_N SELECTED_FOR_EXECUTION JOB_NAME
------- ---- -------- ------------------------------ ---------
 42 P62 I_NAME STATISTICS NOT AVAILABLE

10. Gather the index statistics.

SQL> ANALYZE INDEX hr.i_name COMPUTE STATISTICS;

Index analyzed.

SQL>

11. Wait at least 1 minute before re-launching the ADO policy evaluation and ADO
task execution immediately.

SQL> DECLARE
v_executionid number;
BEGIN
dbms_ilm.execute_ILM (ILM_SCOPE => dbms_ilm.SCOPE_SCHEMA,
 execution_mode => dbms_ilm.ilm_execution_offline,
 task_id => v_executionid);
END;
/

PL/SQL procedure successfully completed.

SQL> SELECT task_id, task_owner, state FROM dba_ilmtasks WHERE
task_owner='HR';

TASK_ID TASK_OWN STATE
------- -------- ---------
 42 HR COMPLETED
 43 HR COMPLETED

SQL> SELECT task_id, policy_name, object_name,
 selected_for_execution, job_name
 FROM dba_ilmevaluationdetails
 WHERE object_name='I_NAME';

TASK_ID POLI OBJECT_N SELECTED_FOR_EXECUTION JOB_NAME
------- ---- -------- ---------------------------- ---------
 43 P62 I_NAME PRECONDITION NOT SATISFIED
 42 P62 I_NAME STATISTICS NOT AVAILABLE

SQL>

If the PRECONDITION NOT SATISFIED does not appear, generate more entries in the
index. Proceed with step 12. In all cases, proceed with step 12.

Chapter 1
Performance and High-Availability Options

1-104

12. Generate more entries in the index by inserting more rows into the table. Use the /
home/oracle/labs/M104783GC10/ADO_loop_insert.sql SQL script.

SQL> @/home/oracle/labs/M104783GC10/ADO_loop_insert.sql
SQL> SET ECHO ON
SQL> CONNECT hr/password@PDB20
Connected.

SQL> INSERT INTO hr.emp
 2 SELECT employee_id + (select max(employee_id) from hr.emp),
first_name,last_name, email, phone_number, hire_date, job_id, salary,
commission_pct, manager_id, department_id
 3 FROM hr.emp;

428 rows created.
...
SQL> INSERT INTO hr.emp
 2 SELECT employee_id + (select max(employee_id) from hr.emp),
first_name,last_name, email, phone_number, hire_date, job_id, salary,
commission_pct, manager_id, department_id
 3 FROM hr.emp;

109568 rows created.

SQL> COMMIT;

Commit complete.

SQL>

13. Gather the index statistics using the ANALYZE command.

SQL> ANALYZE INDEX hr.i_name COMPUTE STATISTICS;

Index analyzed.

SQL>

14. Wait at least 1 minute before re-launching the ADO policy evaluation and ADO
task execution immediately.

SQL> DECLARE
v_executionid number;
BEGIN
dbms_ilm.execute_ILM (ILM_SCOPE => dbms_ilm.SCOPE_SCHEMA,
 execution_mode => dbms_ilm.ilm_execution_offline,
 task_id => v_executionid);
END;
/

PL/SQL procedure successfully completed.

SQL> SELECT task_id, task_owner, state FROM dba_ilmtasks WHERE
task_owner='HR';

Chapter 1
Performance and High-Availability Options

1-105

TASK_ID TASK_OWN STATE
------- -------- ---------
 42 HR COMPLETED
 43 HR COMPLETED
 44 HR COMPLETED

SQL> SELECT task_id, policy_name, object_name,
 selected_for_execution, job_name
 FROM dba_ilmevaluationdetails
 WHERE object_name='I_NAME';

TASK_ID POLI OBJECT_N SELECTED_FOR_EXECUTION JOB_NAME
------- ---- -------- ---------------------------- ---------
 44 P62 I_NAME SELECTED FOR EXECUTION ILMJOB164
 43 P62 I_NAME PRECONDITION NOT SATISFIED
 42 P62 I_NAME STATISTICS NOT AVAILABLE

SQL>

In case the precondition for execution is still not satisfied, generate more entries in
the index by inserting more rows into the table. Use the /home/oracle/labs/
M104783GC10/ADO_loop_insert2.sql SQL script. Then re-execute steps 13 and
14.

15. Display the compression attribute of the index.

SQL> SELECT compression, index_name FROM dba_indexes WHERE
table_name='EMP';

COMPRESSION INDEX_NAME
------------- --------------------
DISABLED PK_EMPLOYEE_ID
ADVANCED LOW I_NAME

SQL>

16. Delete the ADO policy on the index.

SQL> ALTER INDEX hr.i_name ILM DELETE POLICY p62;

Index altered.

SQL>

17. Stop heat map statistics collection and clean up all heat map statistics.

SQL> CONNECT / AS SYSDBA
Connected.
SQL> ALTER SYSTEM SET heat_map=off SCOPE=BOTH;

System altered.

SQL> EXEC dbms_ilm_admin.clear_heat_map_all

Chapter 1
Performance and High-Availability Options

1-106

PL/SQL procedure successfully completed.

SQL> EXIT
$

Automatic Zone Maps
Automatic zone maps are created and maintained for any user table without any
customer intervention. Zone maps allow the pruning of blocks and partitions based on
the predicates in the queries, without any user intervention. Automatic zone maps are
maintained for direct loads, and are maintained and refreshed for any other DML
operation incrementally and periodically in the background.

Automatic zone maps are improving the performance of any query transparently and
automatically without the need of any user action.

• Details: Automatic Zone Maps
This page provides more detailed information about the automatic zone map
creation and maintenance.

• Details: Automatic Zone Maps - Package
This page provides more detailed information about the new package related to
automatic zone maps.

• Details: Automatic Zone Maps - Views
This page provides more detailed information about the new package and views
related to automatic zone maps.

• Practice: Using Automatic Zone Maps
This practice shows how to enable automatic zone maps and how automatic zone
maps are created and maintained for any user table without your intervention.

Related Topics

• Oracle® Database Data Warehousing Guide

Details: Automatic Zone Maps
This page provides more detailed information about the automatic zone map creation
and maintenance.

Chapter 1
Performance and High-Availability Options

1-107

Divide a table up into contiguous regions of blocks called zones to increase query performance

- A zone map on the STATE column records the minimum and maximum values for each zone
 in the table.

- A query with a WHERE clause on the STATE column skips the zones that don't contain rows
 for the value.

- Zone maps are explicitly created and controlled by the DBA on a table-by-table basis.

- Automatic zone maps are created and maintained for any user table without any customer
 intervention. Zone maps can still be created manually.

19c

20c

Oracle Database 20c allows you to enable automatic creation and maintenance of
basic zone maps for both partitioned and non-partitioned tables by using a new
package and procedure, DBMS_AUTO_ZONEMAP.CONFIGURE. Automatic zone map
creation is turned off by default. Enabling automatic zone map creation does not
require any DBA intervention any longer for both the creation of the zone maps and
their maintenance. Nevertheless zone maps can still be created manually. Automatic
is for Cloud autonomous database and Exadata only.

This functionality is not available for join zone maps, IOTs (Oracle Index-organized
Tables), external tables, or temporary tables.

Details: Automatic Zone Maps - Package
This page provides more detailed information about the new package related to
automatic zone maps.

Chapter 1
Performance and High-Availability Options

1-108

- Disable auto zone map:

- Enable auto zone map:

DBMS_AUTO_ZONEMAP package

Configuration

Reports automatic zone maps activity for a given time window:

SELECT DBMS_AUTO_ZONEMAP.ACTIVITY_REPORT(SYSTIMESTAMP-2,NULL) FROM dual;

Reporting

DBMS_AUTO_ZONEMAP.CONFIGURE('AUTO_ZONEMAP_MODE','BACKGROUND')

DBMS_AUTO_ZONEMAP.CONFIGURE('AUTO_ZONEMAP_MODE','ON')

DBMS_AUTO_ZONEMAP.CONFIGURE('AUTO_ZONEMAP_MODE','FOREGROUND')

- All the activity of the last execution:

SELECT DBMS_AUTO_ZONEMAP.ACTIVITY_REPORT() FROM dual;

- All the activity of the last 2 days:

- All the activity with all sections with typical details for the last 48 hours in text format:

DBMS_AUTO_ZONEMAP.ACTIVITY_REPORT(SYSTIMESTAMP-2,SYSTIMESTAMP,'TEXT','ALL','TYPICAL')

DBMS_AUTO_ZONEMAP.CONFIGURE('AUTO_ZONEMAP_MODE','OFF')

The DBMS_AUTO_ZONEMAP.CONFIGURE new package and procedure allows you to set
configuration options for automatic zone map, specifically to enable or disable the
feature and to control foreground or background mode of the feature. There are four
values allowed for the second parameter:

• ON: Turns on automatic zone map completely, both for foreground and background
zone maps creation and maintenance

• OFF: Turns off automatic zone map completely, both for foreground and
background zone maps creation and maintenance

• FOREGROUND: Turns on only for foreground zone maps creation and maintenance

• BACKGROUND: Turns on only for background zone maps creation and maintenance

The DBMS_AUTO_ZONEMAP.ACTIVITY_REPORT reports automatic zone maps activity for a
given time window. Since zone maps autotask background job is scheduled for every
15 minutes and run for one hour or less, users can query the actions performed by the
zone map autotask for a given time window. The function uses four parameters:

• START_TIME: Timestamp from which auto zone map executions are observed for
the report. NULL value reports everything from the beginning of auto zone maps
maintenance. Default value is NULL.

• END_TIME: Timestamp until which auto zone map executions are observed for the
report. NULL value reports everything to the end of auto zone maps maintenance.
Default value is NULL.

Note:

If NULL is specified for both START_TIME and END_TIME,
DBMS_AUTO_ZONEMAP.ACTIVITY_REPORT reports activity of the last
execution.

• TYPE: Output type of the report. Possible values are: TEXT, XML and HTML. Default
value is TEXT.

Chapter 1
Performance and High-Availability Options

1-109

• SECTION: Particular section in the report. Possible values are SUMMARY, DETAILS
and ALL. Default value is ALL.

– SUMMARY: Very high level numbers summary on new zone maps created and
maintained for the given time window

– DETAILS: Detailed summary report on names and other details of new zone
maps created and maintained for the given time window. It also includes
findings details.

– ALL: In addition to summary and details, it includes time series based
execution / action logs.

• LEVEL: Format of the report. It represents the level of details with in each section.
Possible values are BASIC, TYPICAL and ALL. Default being TYPICAL.

– BASIC: Represents very high level details in executive summary. Users only
see numbers on zone maps that were created, complete rebuilt and fast
rebuilt. In new zone map details section, you can see new zone map name,
date created and base table name. Maintenance details section shows only
zone map name, previous state and current state. Similarly, findings section
shows only object name and blacklist reason, and no other details. Action logs
section shows only important time series based log messages pertaining to
zone maps creation and maintenance.

– TYPICAL: Everything in basic level and little more comprehensive than basic.
This level shows full overview on executive summary section. New zone maps
details shows schema name, column list and date created. Zone maps
maintenance details section shows refresh type, date maintained. Findings
section shows timestamp and exception message. Action logs section shows
little more comprehensive logs than basic, which has information about
candidate column list, findings information and creation DDLs.

– ALL: On top of typical level are shown DOP used for each operation for
creating or maintaining zone maps, time took to process each DDL and other
details in action logs. Show all log messages with details on clustering ratios of
columns, exception messages and other details.

Details: Automatic Zone Maps - Views
This page provides more detailed information about the new package and views
related to automatic zone maps.

Chapter 1
Performance and High-Availability Options

1-110

Get important insights such as:

New Views

DBA_ZONEMAP_AUTO_ACTIONS

Reports automatic zone maps activity for a given time window:

 - How many zone maps were created across all executions?
 - How many fully stale zone maps were rebuilt across all executions?
 - How many partial stale zone maps were rebuilt across all executions?

Existing View

DBA_ZONEMAP_AUTO_FINDINGS

Get important findings such as:

 - Get all evicted base tables during zone map creation
 - Get all base tables which had errors during zone map creation

Three new columns added:

DBA_ZONEMAPS

 - Is the zone map automatically created or not?
 - Is the zone map partly stale or not?
 - Is the zone map missing zones or not?

The DBA_ZONEMAP_AUTO_ACTIONS new view holds five columns:

• TASK_ID: Advisor task id for automatic zone maps

• MSG_ID: Message ID

• EXEC_NAME: Advisor execution name: SYS_ZMAP_<Timestamp>

• ACTION_MSG: Execution message log

• TIME_STAMP: Message time stamp

The DBA_ZONEMAP_AUTO_FINDINGS new view holds five columns:

• TASK_ID: Advisor task id for automatic zone maps

• MSG_ID: Message ID

• EXEC_NAME: Advisor execution name: SYS_ZMAP_<Timestamp>

• MESSAGE: Execution message log

• TIME_STAMP: Message time stamp

• OBJECT_NAME: Object name, typically table name or zone map name on which the
finding was observed

• FINDING_REASON: Finding reason can be an error, an eviction or a timed out.

• FINDING_TYPE: Finding type can be a blacklist, back in queue and others.

The exsiting DBA_ZONEMAPS view holds three new columns:

• AUTOMATIC: Is the zone map automatically created or not?

• PARTLY_STALE: Is the zone map partly stale or not?

• INCOMPLETE: Is the zone map missing zones or not?

Chapter 1
Performance and High-Availability Options

1-111

Practice: Using Automatic Zone Maps
This practice shows how to enable automatic zone maps and how automatic zone
maps are created and maintained for any user table without your intervention.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. The first part of the practice is to show how zone maps are created and visible
under DBA intervention.

a. Use the /home/oracle/labs/M104784GC10/setup_zonemap.sh shell script to
create the SALES.ZM_TABLE table in PDB20.

$ cd /home/oracle/labs/M104784GC10
$ /home/oracle/labs/M104784GC10/setup_zonemap.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Tue Feb 25 10:37:32
2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

System altered.

Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Feb 25 10:37:33
2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

Chapter 1
Performance and High-Availability Options

1-112

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Feb 25 10:37:58
2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to an idle instance.

SQL> STARTUP
ORACLE instance started.

Total System Global Area 1426062424 bytes
Fixed Size 9567320 bytes
Variable Size 855638016 bytes
Database Buffers 553648128 bytes
Redo Buffers 7208960 bytes
Database mounted.
Database opened.
SQL> ALTER PLUGGABLE DATABASE all OPEN;

Pluggable database altered.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Feb 25 10:38:32
2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

SQL> drop user sales cascade;
drop user sales cascade
 *
ERROR at line 1:
ORA-01918: user 'SALES' does not exist

SQL> create user sales identified by password;

User created.

SQL> grant create session, create table, unlimited tablespace to
sales;

Grant succeeded.

Chapter 1
Performance and High-Availability Options

1-113

SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Feb 25 10:38:33
2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

SQL> CREATE TABLE sales_zm (sale_id NUMBER(10), customer_id
NUMBER(10));

Table created.

SQL>
SQL> DECLARE
 2 i NUMBER(10);
 3 BEGIN
 4 FOR i IN 1..80
 5 LOOP
 6 INSERT INTO sales_zm
 7 SELECT ROWNUM, MOD(ROWNUM,1000)
 8 FROM dual
 9 CONNECT BY LEVEL <= 100000;
 10 COMMIT;
 11 END LOOP;
 12 END;
 13 /

PL/SQL procedure successfully completed.

SQL>
SQL> EXEC dbms_stats.gather_table_stats(ownname=>NULL,
tabname=>'SALES_ZM')

PL/SQL procedure successfully completed.

SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

Chapter 1
Performance and High-Availability Options

1-114

b. Log in PDB20 as SALES, set your session in statistic trace, and query the
SALES_ZM table a few times to see the “consistent gets” value.

$ sqlplus sales@PDB20

Enter password: password

SQL> SET AUTOTRACE ON STATISTIC
SQL> SELECT COUNT(DISTINCT sale_id) FROM sales_zm WHERE customer_id
= 50;

COUNT(DISTINCTSALE_ID)

 100

Statistics
--
 44 recursive calls
 12 db block gets
 15248 consistent gets
 4 physical reads
 2084 redo size
 582 bytes sent via SQL*Net to client
 432 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 2 sorts (memory)
 0 sorts (disk)
 1 rows processed

SQL>

c. Create a zone map. Since attribute clustering is a property of the table, any
existing rows are not re-ordered. Therefore move the table to cluster the rows
together.

SQL> ALTER TABLE sales_zm ADD CLUSTERING BY LINEAR ORDER
(customer_id) WITH MATERIALIZED ZONEMAP;

Table altered.

SQL> ALTER TABLE sales_zm MOVE;

Table altered.

SQL>

d. Re-run the query to see the “consistent gets” value.

SQL> SELECT COUNT(DISTINCT sale_id) FROM sales_zm WHERE customer_id
= 50;

COUNT(DISTINCTSALE_ID)

 100

Chapter 1
Performance and High-Availability Options

1-115

Statistics
--
 67 recursive calls
 8 db block gets
 900 consistent gets
 0 physical reads
 1464 redo size
 582 bytes sent via SQL*Net to client
 432 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 1 rows processed

SQL>

e. Display the status of the zone map created for this table.

SQL> SET AUTOTRACE OFF
SQL> COL zonemap_name FORMAT A20
SQL> SELECT zonemap_name,automatic,partly_stale, incomplete
 FROM dba_zonemaps;

ZONEMAP_NAME AUTOMATIC PARTLY_STALE INCOMPLETE
-------------------- --------- ------------ ------------
ZMAP$_SALES_ZM NO NO NO

SQL>

Note that the new column AUTOMATIC, added to the existing view DBA_ZONEMAPS
shows that the zone map is not created automatically.

3. The second part of the practice is to show how to enable automatic zone maps
and then verify that zone maps are automatically created and how to display
automatic zone map activity (creation and maintenance).

a. Drop the table.

SQL> DROP TABLE sales_zm PURGE;

Table dropped.

SQL> SELECT zonemap_name, automatic, partly_stale, incomplete
 FROM dba_zonemaps;

no rows selected

SQL>

b. Enable automatic zone map creation.

SQL> EXEC DBMS_AUTO_ZONEMAP.CONFIGURE('AUTO_ZONEMAP_MODE','ON')

PL/SQL procedure successfully completed.

Chapter 1
Performance and High-Availability Options

1-116

SQL>

c. Re-create the table, insert rows with direct load, and gather table statistics.

SQL> CREATE TABLE sales_zm (sale_id NUMBER(10), customer_id
NUMBER(10));

Table created.

SQL> DECLARE
 i NUMBER(10);
BEGIN
 FOR i IN 1..80
 LOOP
 INSERT /*+ APPEND */ INTO sales_zm
 SELECT ROWNUM, MOD(ROWNUM,1000)
 FROM dual
 CONNECT BY LEVEL <= 100000;
 COMMIT;
 END LOOP;
END;
/ 2 3 4 5 6 7 8 9 10 11 12 13
PL/SQL procedure successfully completed.

SQL> EXEC dbms_stats.gather_table_stats(ownname=>NULL,
tabname=>'SALES_ZM')

PL/SQL procedure successfully completed.

SQL>

d. Query the SALES_ZM table at least twenty times to see the “consistent gets”
value.

SQL> SET AUTOTRACE ON STATISTIC
SQL> SELECT COUNT(DISTINCT sale_id) FROM sales_zm WHERE customer_id
= 50;

COUNT(DISTINCTSALE_ID)

 100

Statistics
--
 44 recursive calls
 12 db block gets
 15248 consistent gets
 4 physical reads
 2084 redo size
 582 bytes sent via SQL*Net to client
 432 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 2 sorts (memory)
 0 sorts (disk)

Chapter 1
Performance and High-Availability Options

1-117

 1 rows processed

SQL> /

COUNT(DISTINCTSALE_ID)

 100

Statistics
--
 44 recursive calls
 12 db block gets
 15248 consistent gets
 4 physical reads
 2084 redo size
 582 bytes sent via SQL*Net to client
 432 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 2 sorts (memory)
 0 sorts (disk)
 1 rows processed

SQL> /

COUNT(DISTINCTSALE_ID)

 100

Statistics
--
 44 recursive calls
 12 db block gets
 15248 consistent gets
 4 physical reads
 2084 redo size
 582 bytes sent via SQL*Net to client
 432 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 2 sorts (memory)
 0 sorts (disk)
 1 rows processed

SQL>

e. Because the background process responsible for the zone maps creation will
wake up late, use the /home/oracle/labs/M104784GC10/zonemap_exec.sql
SQL script to wake it up sooner.

SQL> @/home/oracle/labs/M104784GC10/zonemap_exec.sql
Connected.

PL/SQL procedure successfully completed.

Chapter 1
Performance and High-Availability Options

1-118

Connected.
SQL>

f. Display the status of the zone map created.

SQL> SELECT zonemap_name, automatic, partly_stale, incomplete
 FROM dba_zonemaps;

ZONEMAP_NAME AUTOMATIC PARTLY_STALE INCOMPLETE
-------------------- --------- ------------ ------------
ZMAP$_SALES_ZM YES NO NO

SQL>

g. Display the automatic zone map task actions. Query the
DBA_ZONEMAP_AUTO_ACTIONS view several times until you see that an automatic
zone map is created.

SQL> SELECT task_id, msg_id, action_msg FROM
dba_zonemap_auto_actions;

 TASK_ID MSG_ID
---------- ----------
ACTION_MSG
--

 6 35
BS:Current execution task id: 6 Execution name:
SYS_ZMAP_2020-04-06/07:56:54 Tas
k Name: ZMAP_TASK1

 6 36
BS:******** Zonemap Background Action Report for Task ID: 6

 6 37
BS:****** End of Zonemap Background Action Report for Task ID: 6

 6 21
BS:Current execution task id: 6 Execution name:
SYS_ZMAP_2020-04-06/07:34:36 Tas
k Name: ZMAP_TASK1

 6 22
BS:******** Zonemap Background Action Report for Task ID: 6

 6 23
TP:Trying to create zonemap on table: SALES_ZM owner:SALES

 6 24
AL:Block count : 15447, sample percent is : 3.236874

 6 25

Chapter 1
Performance and High-Availability Options

1-119

TP:col name:CUSTOMER_ID: clustering ratio: .98

 6 26
TP:col name:SALE_ID: clustering ratio: .09

 6 27
TP:Candidate column list:SALE_ID

 6 28
TP:New zonemap name: ZMAP$_SALES_ZM

 6 29
TP:Creating new zonemap ZMAP$_SALES_ZM on table SALES_ZM owner
SALEStable space
USERS

 6 30
BS:succesfully created zonemap: ZN:ZMAP$_SALES_ZM BT:SALES_ZM
SN:SALES CL:SALE_I
D CT:+00 00:00:01.605120 TS:2020-04-06/07:34:39 DP:4

 6 31
BS:****** End of Zonemap Background Action Report for Task ID: 6

 6 32
BS:Current execution task id: 6 Execution name:
SYS_ZMAP_2020-04-06/07:43:46 Tas
k Name: ZMAP_TASK1

 6 33
BS:******** Zonemap Background Action Report for Task ID: 6

 6 34
BS:****** End of Zonemap Background Action Report for Task ID: 6

17 rows selected.

SQL>

Another way to show the activity report of the auto task run is to use the
DBMS_AUTO_ZONEMAP.ACTIVITY_REPORT function.

SQL> SELECT dbms_auto_zonemap.activity_report(systimestamp-2,
systimestamp, 'TEXT') FROM dual;

DBMS_AUTO_ZONEMAP.ACTIVITY_REPORT(SYSTIMESTAMP-2,SYSTIMESTAMP,'TEXT'
)
--

/orarep/autozonemap/main%3flevel%3d GENERAL SUMMARY

Chapter 1
Performance and High-Availability Options

1-120

--

 Activity Start 04-APR-2020 16:45:33.000000000 +00:00
 Activity End 06-APR-2020 16:45:33.656170000 +00:00
 Total Executions 1
--

EXECUTION SUMMARY
--

 zonemaps created 1
 zonemaps compiled 0
 zonemaps dropped 0
 Stale zonemaps complete refreshed 0
 Partly stale zonemaps fast refreshed 0
 Incomplete zonemaps fast refreshed 0
--

NEW ZONEMAPS DETAILS
--

 Zonemap Base Table Schema Operation time Date
created DOP C
olumn list
 ZMAP$_SALES_ZM SALES_ZM SALES 00:00:01.68
2020-04-06/16:45:04 2 S
ALE_ID
--

ZONEMAPS MAINTENANCE DETAILS
--

 Zonemap Previous State Current State Refresh Type Operation
Time Dop Date
 Maintained
--

FINDINGS
--

 Execution Name Finding Name Finding Reason Finding Type Message

SQL>

If you want to know how many zone maps were created across all executions,
run the following query:

SQL> SELECT * FROM dba_zonemap_auto_actions
WHERE action_msg LIKE '%succesfully created zonemap:%' ORDER BY

Chapter 1
Performance and High-Availability Options

1-121

TIME_STAMP;

 TASK_ID MSG_ID
---------- ----------
EXEC_NAME
--

ACTION_MSG
--

TIME_STAMP
--

 6 49
SYS_ZMAP_2020-04-06/16:45:01
BS:succesfully created zonemap: ZN:ZMAP$_SALES_ZM BT:SALES_ZM
SN:SALES CL:SALE_I
D CT:+00 00:00:01.681134 TS:2020-04-06/16:45:04 DP:2
06-APR-20 04.45.04.000000000 PM

SQL>

h. Update the SALE_ID column vales in SALES_ZM table. Execute the /home/
oracle/labs/M104784GC10/zonemap_update.sql SQL script.

SQL> @/home/oracle/labs/M104784GC10/zonemap_update.sql
8000 rows updated.

8000 rows updated.

8000 rows updated.

8000 rows updated.

Commit complete.

SQL>

i. Display the status of the zone map maintenance.

SQL> SELECT zonemap_name, automatic, partly_stale, incomplete
 FROM dba_zonemaps;

ZONEMAP_NAME AUTOMATIC PARTLY_STALE INCOMPLETE
-------------------- --------- ------------ ------------
ZMAP$_SALES_ZM YES YES NO

SQL>

j. Display the activity report until you see actions to automatic zone map
maintenance.

SQL> SELECT dbms_auto_zonemap.activity_report(systimestamp-2,
systimestamp, 'TEXT') FROM dual;

Chapter 1
Performance and High-Availability Options

1-122

DBMS_AUTO_ZONEMAP.ACTIVITY_REPORT(SYSTIMESTAMP-2,SYSTIMESTAMP,'TEXT'
)
--

/orarep/autozonemap/main%3flevel%3d GENERAL SUMMARY
--

 Activity Start 04-APR-2020 16:47:10.000000000 +00:00
 Activity End 06-APR-2020 16:47:10.417146000 +00:00
 Total Executions 1
--

EXECUTION SUMMARY
--

 zonemaps created 1
 zonemaps compiled 0
 zonemaps dropped 0
 Stale zonemaps complete refreshed 0
 Partly stale zonemaps fast refreshed 1
 Incomplete zonemaps fast refreshed 0
--

NEW ZONEMAPS DETAILS
--

 Zonemap Base Table Schema Operation time Date
created DOP C
olumn list
 ZMAP$_SALES_ZM SALES_ZM SALES 00:00:01.60
2020-04-06/07:34:39 4 S
ALE_ID
--

ZONEMAPS MAINTENANCE DETAILS
--

 Zonemap Previous State Current State Refresh Type
Operation Time Do
p Date Maintained
 ZMAP$_SALES_ZM PARTLY_STALE VALID REBUILD
00:00:01.77 0
 2020-04-06/08:41:24
--

FINDINGS
--

 Execution Name Finding Name Finding Reason Finding Type Message

Chapter 1
Performance and High-Availability Options

1-123

SQL>

It is possible that the background process responsible for the zone maps
maintenance woke up very quickly and already rebuilt the zonemap. In this
case, no information in "ZONEMAPS MAINTENANCE DETAILS" would be displayed.

k. It is possible that the background process responsible for the zone maps
maintenance will wake up late. Use the /home/oracle/labs/M104784GC10/
zonemap_exec.sql SQL script to wake it up sooner.

SQL> @/home/oracle/labs/M104784GC10/zonemap_exec.sql
Connected.

PL/SQL procedure successfully completed.

Connected.
SQL>

l. Display the activity report.

SQL> SELECT zonemap_name, automatic, partly_stale, incomplete
 FROM dba_zonemaps;

ZONEMAP_NAME AUTOMATIC PARTLY_STALE INCOMPLETE
-------------------- --------- ------------ ------------
ZMAP$_SALES_ZM YES NO NO

SQL> SELECT dbms_auto_zonemap.activity_report(systimestamp-2,
systimestamp, 'TEXT') FROM dual;

DBMS_AUTO_ZONEMAP.ACTIVITY_REPORT(SYSTIMESTAMP-2,SYSTIMESTAMP,'TEXT'
)
--

/orarep/autozonemap/main%3flevel%3d GENERAL SUMMARY
--

 Activity Start 04-APR-2020 16:51:21.000000000 +00:00
 Activity End 06-APR-2020 16:51:21.228968000 +00:00
 Total Executions 2
--

EXECUTION SUMMARY
--

 zonemaps created 1
 zonemaps compiled 0
 zonemaps dropped 0
 Stale zonemaps complete refreshed 0
 Partly stale zonemaps fast refreshed 1
 Incomplete zonemaps fast refreshed 0
--

Chapter 1
Performance and High-Availability Options

1-124

NEW ZONEMAPS DETAILS
--

 Zonemap Base Table Schema Operation time Date
created DOP C
olumn list
 ZMAP$_SALES_ZM SALES_ZM SALES 00:00:01.68
2020-04-06/16:45:04 2 S
ALE_ID
--

ZONEMAPS MAINTENANCE DETAILS
--

 Zonemap Previous State Current State Refresh Type
Operation Time Do
p Date Maintained
 ZMAP$_SALES_ZM PARTLY_STALE VALID REBUILD
00:00:05.25 0
 2020-04-06/16:48:30
--

FINDINGS
--

 Execution Name Finding Name Finding Reason Finding Type Message

SQL>

m. Drop the table.

SQL> DROP TABLE sales_zm PURGE;

Table dropped.

SQL> SELECT zonemap_name, automatic, partly_stale, incomplete
 FROM dba_zonemaps;

no rows selected

SQL> EXIT
$

Oracle Database In-Memory
• Database In-Memory Base Level

• Automatic In-Memory

• In-Memory Hybrid Scans

Chapter 1
Performance and High-Availability Options

1-125

• Database In-Memory External Table Enhancements

Database In-Memory Base Level
Database In-Memory is an option to Enterprise Edition. Database In-Memory now has
a new "Base Level" feature. This allows the use of Database In-Memory with up to a
16GB column store without triggering any license tracking.

The feature allows you to use Database In-Memory without having to license the
option. The column store is limited to 16GB when using the Base Level. This helps to
show the value of Database In-Memory without having to worry about licensing issues.

Related Topics

• Oracle® Database In-Memory Guide

Automatic In-Memory
Automatic In-Memory enables, populates, evicts, and recompresses segments without
user intervention.

When INMEMORY_AUTOMATIC_LEVEL is set to HIGH, the database automatically
enables and populates segments based on their usage patterns. Combined with
support for selective column level eviction and recompression, In-Memory population
is largely self-managing. This automation helps maximize the number of objects that
can be populated into the In-Memory Column Store at one time.

• Details: Automatic In-Memory
This page provides more detailed information about how the new value of the
initialization parameter INMEMORY_AUTOMATIC_LEVEL influences the behavior of in-
memory segments compression in the In-Memory Column Store, population into
the In-Memory Column Store and eviction from the In-Memory Column Store.

• Practice: Configuring and Observing Automatic In-Memory
This practice shows how to configure Automatic In-Memory and then observe how
in-memory objects are automatically and dynamically populated in the IM column
store without user intervention, and then possibly automatically evicted from the IM
column store.

Related Topics

• Oracle® Database In-Memory Guide

Details: Automatic In-Memory
This page provides more detailed information about how the new value of the
initialization parameter INMEMORY_AUTOMATIC_LEVEL influences the behavior of in-
memory segments compression in the In-Memory Column Store, population into the
In-Memory Column Store and eviction from the In-Memory Column Store.

Chapter 1
Performance and High-Availability Options

1-126

Automatic In-Memory optimizes the SQL workload as it changes, without manual
intervention.

The working data set consists of the most frequently queried segments. Typically, the
working data set changes with time for many applications. Users must decide which
segments to enable as INMEMORY, monitor usage to decide which IM segments to
populate and evict, and create ADO IM policies. These tasks require a thorough
understanding of the workload.

To free the DBA from manual maintenance chores, Automatic In-Memory uses
frequently updated internal statistics to maintain the working data set in the IM column
store. Oracle Database decides what to populate and what to evict, and when to do it.
In a sense, the IM column store becomes "self-driving."

When the initialization parameter INMEMORY_AUTOMATIC_LEVEL is set to HIGH, Automatic
In-Memory continuously monitors column statistics in the IM store, and sets all
segments that do not have a pre-existing INMEMORY attribute as INMEMORY MEMCOMPRESS
AUTO. The database populates only objects that it decides belong in the working data
set. This decision is based on current usage statistics. The database identifies cold
regions of the IM store through internal column statistics, which are similar to those
used by Heat Map but do not require HEAT_MAP to be set to ON. Automatic In-Memory
can recompress cold columns in AUTO segments to save space. Segments with a
PRIORITY setting other than NONE are excluded from the automatic eviction algorithm.

Practice: Configuring and Observing Automatic In-Memory
This practice shows how to configure Automatic In-Memory and then observe how in-
memory objects are automatically and dynamically populated in the IM column store
without user intervention, and then possibly automatically evicted from the IM column
store.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Before starting the practice, execute the /home/oracle/labs/M104783GC10/
AutoIM_setup.sh. The shell script configures the IM column store to 110M,

Chapter 1
Performance and High-Availability Options

1-127

creates NO INMEMORY tables in HR schema in PDB20, and finally inserts rows in HR
tables.

$ cd /home/oracle/labs/M104783GC10
$ /home/oracle/labs/M104783GC10/AutoIM_setup.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Tue Mar 10 10:38:54 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> SHUTDOWN ABORT
ORACLE instance shut down.
SQL> STARTUP MOUNT
ORACLE instance started.

Total System Global Area 851440264 bytes
Fixed Size 9573000 bytes
Variable Size 339738624 bytes
Database Buffers 377487360 bytes
Redo Buffers 7200768 bytes
In-Memory Area 117440512 bytes
Database mounted.
SQL> ALTER SYSTEM SET sga_target=812M SCOPE=spfile;

System altered.

SQL> ALTER SYSTEM SET inmemory_size=110M SCOPE=SPFILE;

System altered.

SQL> ALTER SYSTEM SET query_rewrite_integrity=stale_tolerated
SCOPE=SPFILE;

System altered.

SQL> SET ECHO OFF

System altered.

SQL> ALTER SYSTEM SET INMEMORY_AUTOMATIC_LEVEL=LOW SCOPE=SPFILE;

System altered.

SQL> shutdown immediate
ORA-01109: database not open

Database dismounted.
ORACLE instance shut down.
SQL> STARTUP

Chapter 1
Performance and High-Availability Options

1-128

ORACLE instance started.

Total System Global Area 851440264 bytes
Fixed Size 9573000 bytes
Variable Size 339738624 bytes
Database Buffers 377487360 bytes
Redo Buffers 7200768 bytes
In-Memory Area 117440512 bytes
Database mounted.
Database opened.
SQL> ALTER PLUGGABLE DATABASE pdb20 OPEN;

Pluggable database altered.

SQL> CONNECT sys/password@PDB20 AS SYSDBA
Connected.
SQL> ALTER SYSTEM SET INMEMORY_AUTOMATIC_LEVEL=LOW SCOPE=SPFILE;

System altered.

SQL> ALTER SYSTEM SET query_rewrite_integrity=stale_tolerated
SCOPE=SPFILE;

System altered.

SQL> shutdown immediate
Pluggable Database closed.
SQL> STARTUP
Pluggable Database opened.
SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Mar 10 10:41:05 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> ALTER SYSTEM SET db_create_file_dest='/home/oracle/labs';

System altered.

SQL>
SQL> DROP TABLESPACE imtbs INCLUDING CONTENTS AND DATAFILES cascade
constraints;

Tablespace dropped.

SQL> CREATE TABLESPACE imtbs DATAFILE '/home/oracle/labs/imtbs1.dbf'

Chapter 1
Performance and High-Availability Options

1-129

SIZE 10G;

Tablespace created.

SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Mar 10 10:44:02 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

specify password for HR as parameter 1:

specify default tablespeace for HR as parameter 2:

specify temporary tablespace for HR as parameter 3:

specify log path as parameter 4:

PL/SQL procedure successfully completed.

User created.

User altered.

User altered.

Grant succeeded.

Grant succeeded.

Session altered.

Session altered.

Session altered.

****** Creating REGIONS table

Table created.

Index created.

Table altered.

****** Creating COUNTRIES table

Chapter 1
Performance and High-Availability Options

1-130

Table created.

Table altered.

****** Creating LOCATIONS table

Table created.

Index created.

Table altered.

Sequence created.

****** Creating DEPARTMENTS table

Table created.

Index created.

Table altered.

Sequence created.

****** Creating JOBS table

Table created.

Index created.

Table altered.

****** Creating EMPLOYEES table

Table created.

Index created.

Table altered.

Table altered.

Sequence created.

****** Creating JOB_HISTORY table

Table created.

Index created.

Table altered.

****** Creating EMP_DETAILS_VIEW view ...

Chapter 1
Performance and High-Availability Options

1-131

View created.

Commit complete.

Session altered.

****** Populating REGIONS table

1 row created.

1 row created.

1 row created.

1 row created.

****** Populating COUNTIRES table

1 row created.
...
****** Populating LOCATIONS table

1 row created.
...

****** Populating DEPARTMENTS table

Table altered.

...
1 row created.

****** Populating JOBS table

1 row created.
...

****** Populating EMPLOYEES table

1 row created.
...

****** Populating JOB_HISTORY table

1 row created.
...

Table altered.

Commit complete.

Index created.

...

Chapter 1
Performance and High-Availability Options

1-132

Commit complete.

Procedure created.

Trigger created.

Trigger altered.

Procedure created.

Trigger created.

Commit complete.

Comment created.

...

Commit complete.

PL/SQL procedure successfully completed.

SQL> Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Mar 10 10:44:22 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> DROP TABLE hr.emp CASCADE CONSTRAINTS;
DROP TABLE hr.emp CASCADE CONSTRAINTS
 *
ERROR at line 1:
ORA-00942: table or view does not exist

SQL> CREATE TABLE hr.emp INMEMORY AS SELECT * FROM hr.employees ;

Table created.

SQL> INSERT INTO hr.emp SELECT * FROM hr.emp;

107 rows created.

SQL> /

214 rows created.

SQL> /

Chapter 1
Performance and High-Availability Options

1-133

428 rows created.

SQL> /

856 rows created.

SQL> /

1712 rows created.

SQL> /

3424 rows created.

SQL> /

6848 rows created.

SQL> /

13696 rows created.

SQL> /

27392 rows created.

SQL> /

54784 rows created.

SQL> /

109568 rows created.

SQL> /

219136 rows created.

SQL> /

438272 rows created.

SQL> /

876544 rows created.

SQL> /

1753088 rows created.

SQL> COMMIT;

Commit complete.

Chapter 1
Performance and High-Availability Options

1-134

SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

3. Query the data dictionary to determine whether HR tables are specified as
INMEMORY.

$ sqlplus sys@PDB20 AS SYSDBA

Enter password: password

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0
SQL> COL table_name FORMAT A18
SQL> SELECT table_name, inmemory, inmemory_compression
FROM dba_tables WHERE owner='HR';

TABLE_NAME INMEMORY INMEMORY_COMPRESS
------------------ -------- -----------------
REGIONS DISABLED
LOCATIONS DISABLED
DEPARTMENTS DISABLED
JOBS DISABLED
EMPLOYEES DISABLED
JOB_HISTORY DISABLED
EMP ENABLED FOR QUERY LOW
COUNTRIES DISABLED

8 rows selected.

SQL>

4. Apply the INMEMORY and MEMCOMPRESS FOR CAPACITY LOW attributes to the
HR.JOB_HISTORY table.

SQL> ALTER TABLE hr.job_history INMEMORY MEMCOMPRESS FOR CAPACITY LOW;

Table altered.

SQL> SELECT table_name, inmemory, inmemory_compression
FROM dba_tables WHERE owner='HR';

TABLE_NAME INMEMORY INMEMORY_COMPRESS
------------------ -------- -----------------
REGIONS DISABLED
LOCATIONS DISABLED
DEPARTMENTS DISABLED
JOBS DISABLED
EMPLOYEES DISABLED
JOB_HISTORY ENABLED FOR CAPACITY LOW
EMP ENABLED FOR QUERY LOW
COUNTRIES DISABLED

Chapter 1
Performance and High-Availability Options

1-135

8 rows selected.

SQL>

5. Connect to the CDB root, then set INMEMORY_AUTOMATIC_LEVEL to HIGH, and re-
start the database instance.

SQL> CONNECT / AS SYSDBA
Connected.
SQL> ALTER SYSTEM SET INMEMORY_AUTOMATIC_LEVEL=HIGH SCOPE=SPFILE;

System altered.

SQL> SHUTDOWN IMMEDIATE
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> STARTUP
ORACLE instance started.

Total System Global Area 851442944 bytes
Fixed Size 9571584 bytes
Variable Size 440401920 bytes
Database Buffers 276824064 bytes
Redo Buffers 7204864 bytes
In-Memory Area 117440512 bytes
Database mounted.
Database opened.
SQL>

6. Query the data dictionary to determine whether HR tables are specified as
INMEMORY.

SQL> CONNECT sys@PDB20 AS SYSDBA
Enter password: password
Connected.
SQL> SELECT table_name, inmemory, inmemory_compression
FROM dba_tables WHERE owner='HR';

TABLE_NAME INMEMORY INMEMORY_COMPRESS
------------------ -------- -----------------
REGIONS DISABLED
LOCATIONS DISABLED
DEPARTMENTS DISABLED
JOBS DISABLED
EMPLOYEES DISABLED
JOB_HISTORY ENABLED FOR CAPACITY LOW
EMP ENABLED FOR QUERY LOW
COUNTRIES DISABLED

8 rows selected.

SQL>

Chapter 1
Performance and High-Availability Options

1-136

Why are the HR tables not enabled to INMEMORY, except those already manually set
to INMEMORY? Display the INMEMORY_AUTOMATIC_LEVEL in the PDB.

SQL> SHOW PARAMETER INMEMORY_AUTOMATIC_LEVEL

NAME TYPE VALUE
------------------------------------ ----------- -------------
inmemory_automatic_level string LOW
SQL> SELECT ispdb_modifiable FROM v$parameter WHERE
name='inmemory_automatic_level';

ISPDB

TRUE

SQL>

7. Set INMEMORY_AUTOMATIC_LEVEL to HIGH at the PDB level, and re-start PDB20.

SQL> ALTER SYSTEM SET INMEMORY_AUTOMATIC_LEVEL=HIGH SCOPE=SPFILE;

System altered.

SQL> SHUTDOWN IMMEDIATE
Pluggable Database closed.
SQL> STARTUP
Pluggable Database opened.
SQL>

8. Wait one minute to observe the HR tables to be automatically assigned the
INMEMORY attribute.

SQL> SELECT table_name, inmemory, inmemory_compression
FROM dba_tables WHERE owner='HR';

TABLE_NAME INMEMORY INMEMORY_COMPRESS
------------------ -------- -----------------
REGIONS ENABLED AUTO
LOCATIONS ENABLED AUTO
DEPARTMENTS ENABLED AUTO
JOBS ENABLED AUTO
EMPLOYEES ENABLED AUTO
JOB_HISTORY ENABLED FOR CAPACITY LOW
EMP ENABLED FOR QUERY LOW
COUNTRIES DISABLED

8 rows selected.

SQL>

Observe that HR.JOB_HISTORY and HR.JOB_EMP which were manually specified as
INMEMORY, retain their previous settings.

Chapter 1
Performance and High-Availability Options

1-137

Why is HR.COUNTRIES not automatically enabled?

SQL> ALTER TABLE hr.countries INMEMORY;
 ALTER TABLE hr.countries INMEMORY
*
ERROR at line 1:
ORA-64358: in-memory column store feature not supported for IOTs

SQL>

9. Execute the /home/oracle/labs/M104783GC10/AutoIM_scan.sql SQL script to
populate the HR tables into the IM Column Store.

SQL> @/home/oracle/labs/M104783GC10/AutoIM_scan.sql
SQL> SELECT /*+ FULL(hr.employees) NO_PARALLEL(hr.employees) */
count(*) FROM hr.employees;

 COUNT(*)

 107

SQL> SELECT /*+ FULL(hr.departments) NO_PARALLEL(hr.departments) */
count(*) FROM hr.departments;

 COUNT(*)

 27

SQL> SELECT /*+ FULL(hr.locations) NO_PARALLEL(hr.locations) */
count(*) FROM hr.locations;

 COUNT(*)

 23

SQL> SELECT /*+ FULL(hr.jobs) NO_PARALLEL(hr.jobs) */ count(*) FROM
hr.jobs;

 COUNT(*)

 19

SQL> SELECT /*+ FULL(hr.regions) NO_PARALLEL(hr.regions) */ count(*)
FROM hr.regions;

 COUNT(*)

 4

SQL> SELECT /*+ FULL(hr.emp) NO_PARALLEL(hr.emp) */ count(*) FROM
hr.emp;

 COUNT(*)

Chapter 1
Performance and High-Availability Options

1-138

 3506176

SQL>

10. Display the population status of the HR tables into the IM Column Store.

SQL> COL segment_name FORMAT A12
SQL> SELECT segment_name, inmemory_size, bytes_not_populated,
inmemory_compression FROM v$im_segments;

SEGMENT_NAME INMEMORY_SIZE BYTES_NOT_POPULATED INMEMORY_COMPRESS
------------ ------------- ------------------- -----------------
EMP 44433408 0 FOR QUERY LOW

SQL>

Why aren't the ENABLED AUTO tables not populated into the IM column store? The
internal statistics are not sufficient yet to identify cold and hot data in the IM
column store to consider which segments can be populated into the IM column
store.

11. Execute the /home/oracle/labs/M104783GC10/AutoIM_scan_AUTO.sql SQL script
to insert more rows into HR.EMPLOYEES table, query the HR.EMPLOYEES table and
possibly then get the table automatically populated into the IM column store.

SQL> @/home/oracle/labs/M104783GC10/AutoIM_scan_AUTO.sql
SQL> set echo on
SQL> begin
 2 for i in (select constraint_name, table_name from dba_constraints
where table_name='EMPLOYEES') LOOP
 3 execute immediate 'alter table hr.employees drop constraint '||
i.constraint_name||' CASCADE';
 4 end loop;
 5 end;
 6 /

PL/SQL procedure successfully completed.

SQL> drop index hr.EMP_EMP_ID_PK;
drop index hr.EMP_EMP_ID_PK
 *
ERROR at line 1:
ORA-01418: specified index does not exist

SQL>
SQL> INSERT INTO hr.employees SELECT * FROM hr.employees;

107 rows created.

SQL> /

214 rows created.

SQL> /

Chapter 1
Performance and High-Availability Options

1-139

428 rows created.

SQL> /

856 rows created.

SQL> /

1712 rows created.

SQL> /

3424 rows created.

SQL> /

6848 rows created.

SQL> /

13696 rows created.

SQL> /

27392 rows created.

SQL> COMMIT;

Commit complete.

SQL> /

Commit complete.

SQL> /

Commit complete.

SQL> /

Commit complete.

SQL> /

Commit complete.

SQL> /

Commit complete.

SQL> /

Commit complete.

Chapter 1
Performance and High-Availability Options

1-140

SQL> COMMIT;

Commit complete.

SQL>

12. Display the population status of the HR tables into the IM Column Store. You may
have to wait for a few minutes before the population of EMPLOYEES table starts.

SQL> SELECT segment_name, inmemory_size, bytes_not_populated,
inmemory_compression FROM v$im_segments;

SEGMENT_NAME INMEMORY_SIZE BYTES_NOT_POPULATED INMEMORY_COMPRESS
------------ ------------- ------------------- -----------------
EMP 44433408 0 FOR QUERY LOW
EMPLOYEES 1310720 0 AUTO

SQL> EXIT
$

Observe the HR.EMPLOYEES table is now populated with an INMEMORY_COMPRESS
value set to AUTO. Compression used the automatic in-memory management
based on internal statistics. After some time, the HR.EMP may be evicted according
to the internal statistics. If you re-query the HR.EMP table, the statistics may decide
to evict the HR.EMPLOYEES to let the HR.EMP populate back into the IM column store.

In-Memory Hybrid Scans
Oracle Database supports In-memory scans when not all columns in a table have
been populated into the In-Memory Column Store (IM column store).

This situation can occur when columns have been specified as NO INMEMORY to save
space. In-memory hybrid scans can access some data from the IM column store, and
some data from the row store, improving performance by orders of magnitude over
pure row store queries.

• Details: In-Memory Hybrid Scans
This page provides more detailed information about queries referencing both
INMEMORY and NO INMEMORY columns behaving differently in Oracle Database 20c.

• Practice: Using In-Memory Hybrid Scans in Queries
This practice shows how queries referencing both INMEMORY and NO INMEMORY
columns can access columnar data. This optimizer access method called IM
hybrid scan can improve performance by orders of magnitude. If the optimizer
chooses a table scan, the storage engine automatically determines whether an IM
hybrid scan performs better than a regular row store scan from the buffer cache.

Related Topics

• Oracle® Database In-Memory Guide

Details: In-Memory Hybrid Scans
This page provides more detailed information about queries referencing both INMEMORY
and NO INMEMORY columns behaving differently in Oracle Database 20c.

Chapter 1
Performance and High-Availability Options

1-141

Buffer Cache

In-Memory
Column Store

19c 20c

Buffer Cache

In-Memory
Column Store

Table IMTAB
C1 C2

NO INMEMORY INMEMORY

C3

INMEMORY

1 2 A
1 2 A
1 3 B
4 6 C
5 9 Z

SELECT c2 FROM imtab WHERE c1=1;

SELECT c1 FROM imtab WHERE c2=2 AND c3='A';

SELECT c3 FROM imtab WHERE c1=1 AND c2=2;

1 2 A
1 2 A
1 3 B
4 6 C
5 9 Z

1 2 A
1 2 A
1 3 B
4 6 C
5 9 Z

C2

2
2
3
6
9

IM hybrid scan

Table Access FULL

SELECT sum(c3) FROM imtab WHERE c2=1 AND c3>2;

Table Access FULL

C3

A
A
B
C
Z

C2

2
2
3
6
9

C3

A
A
B
C
Z

Table Access Inmemory FULL

The optimizer considers In-Memory hybrid scans for a query when the following conditions are met:

 - The predicate contains only INMEMORY columns.
 - The SELECT list contains an arbitrary combination of INMEMORY and NO INMEMORY columns.

Before Oracle Database 20c, if a query referenced any column with the NO INMEMORY
attribute, then the query accessed all data from the row store (buffer cache).
Therefore, the table scan could not take advantage of columnar formats, predicate
pushdown, and other In-Memory features.

Starting in Oracle Database 20c, queries that reference both INMEMORY and NO
INMEMORY columns can access columnar data.

In some cases, an IM hybrid scan can improve performance by orders of magnitude.
The greatest performance benefits occur when a query has selective filters. In this
case, the IM column store can quickly filter out most rows so that the row store
projects only a small number of rows.

To achieve optimal performance, the optimizer compares different access methods. If
the optimizer chooses a table scan, then the storage engine automatically determines
whether an IM hybrid scan performs better than a regular row store scan. The
optimizer considers hybrid scans when the following conditions are met:

• The predicate contains only INMEMORY columns.

• The SELECT list contains an arbitrary combination of INMEMORY and NO INMEMORY
columns.

An IM hybrid scan logically divides the work into two: one part processes the query on
the IM column store, and the other part processes the query on the row store. In the
execution plan, the operation named TABLE ACCESS INMEMORY FULL (HYBRID)
indicates a hybrid scan. Note that if runtime statistics indicate that performance will be
faster by accessing the row store only, then the database can disable the IM hybrid
scan at runtime.

Practice: Using In-Memory Hybrid Scans in Queries
This practice shows how queries referencing both INMEMORY and NO INMEMORY columns
can access columnar data. This optimizer access method called IM hybrid scan can
improve performance by orders of magnitude. If the optimizer chooses a table scan,

Chapter 1
Performance and High-Availability Options

1-142

the storage engine automatically determines whether an IM hybrid scan performs
better than a regular row store scan from the buffer cache.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. The optimizer considers hybrid scans when the following conditions are met:

• The predicate contains only INMEMORY columns.

• The SELECT list contains an arbitrary combination of INMEMORY and NO
INMEMORY columns.

3. Before testing the queries on in-memory tables containing INMEMORY and NO
INMEMORY columns, execute the /home/oracle/labs/M104783GC10/
IM_Hybrid_setup.sh. The shell script configures the IM column store to 110M,
creates an in-memory table IMU.IMTAB containing two INMEMORY columns and one
NO INMEMORY column, and finally inserts rows in the table. The shell script executes
the same operations in an Oracle Database 19c and Oracle Database 20c.

$ cd /home/oracle/labs/M104783GC10
$ /home/oracle/labs/M104783GC10/IM_Hybrid_setup.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Thu Jan 9 03:51:59 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> SHUTDOWN ABORT
ORACLE instance shut down.
SQL> STARTUP MOUNT
ORACLE instance started.

Total System Global Area 851442944 bytes
Fixed Size 9571584 bytes
Variable Size 331350016 bytes
Database Buffers 385875968 bytes
Redo Buffers 7204864 bytes
In-Memory Area 117440512 bytes
Database mounted.
SQL> ALTER SYSTEM SET sga_target=812M SCOPE=spfile;

System altered.

SQL> ALTER SYSTEM SET inmemory_size=110M SCOPE=SPFILE;

System altered.

SQL> SHUTDOWN IMMEDIATE
ORA-01109: database not open

Database dismounted.

Chapter 1
Performance and High-Availability Options

1-143

ORACLE instance shut down.
SQL> STARTUP
ORACLE instance started.

Total System Global Area 851442944 bytes
Fixed Size 9571584 bytes
Variable Size 331350016 bytes
Database Buffers 385875968 bytes
Redo Buffers 7204864 bytes
In-Memory Area 117440512 bytes
Database mounted.
Database opened.
SQL> ALTER PLUGGABLE DATABASE pdb20 OPEN;

Pluggable database altered.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Thu Jan 9 03:53:36 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> ALTER SYSTEM SET db_create_file_dest='';

System altered.

SQL> DROP USER imu CASCADE;

User dropped.

SQL> DROP TABLESPACE imtbs INCLUDING CONTENTS AND DATAFILES;

Tablespace dropped.

SQL> CREATE TABLESPACE imtbs DATAFILE '/home/oracle/labs/imtbs1.dbf'
SIZE 500M;

Tablespace created.

SQL> CREATE USER imu IDENTIFIED BY password DEFAULT TABLESPACE imtbs;

User created.

SQL> GRANT create session, create table, unlimited tablespace TO imu;

Grant succeeded.

Chapter 1
Performance and High-Availability Options

1-144

SQL>
SQL> CREATE TABLE imu.imtab (c1_noinmem NUMBER, c2_inmem NUMBER,
c3_inmem VARCHAR2(4000))
 2 INMEMORY PRIORITY high MEMCOMPRESS for capacity low NO
INMEMORY(c1_noinmem);

Table created.

SQL> INSERT INTO imu.imtab VALUES (3,4,'Test20c');

1 row created.

SQL> INSERT INTO imu.imtab SELECT c1_noinmem + (select max(c1_noinmem)
from imu.imtab),
 2 c2_inmem + (select max(c2_inmem) from
imu.imtab),
 3 c3_inmem|| (select max(c2_inmem) from
imu.imtab) FROM imu.imtab;

1 row created.

SQL> /

2 rows created.

SQL> /

4 rows created.

SQL> /

8 rows created.

SQL> /

16 rows created.

SQL> /

32 rows created.

SQL> /

64 rows created.

SQL> /

128 rows created.

SQL> /

256 rows created.

SQL> /

Chapter 1
Performance and High-Availability Options

1-145

512 rows created.

SQL> /

1024 rows created.

SQL> /

2048 rows created.

SQL> /

4096 rows created.

SQL> /

8192 rows created.

SQL> /

16384 rows created.

SQL> /

32768 rows created.

SQL> /

65536 rows created.

SQL> /

131072 rows created.

SQL> COMMIT;

Commit complete.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

4. Connect to PDB20 as SYSTEM and set formats for the queried columns.

$ sqlplus system@PDB20
SQL*Plus: Release 20.0.0.0.0 - Development on Thu Jan 9 04:08:41 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Enter password: password
Last Successful login time: Wed Jan 08 2020 12:03:56 +00:00

Chapter 1
Performance and High-Availability Options

1-146

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0
SQL> COL table_name FORMAT A10
SQL> COL inmemory_compression FORMAT A11
SQL> COL COL_NO_INMEM FORMAT 9999999999999999999999
SQL> COL COL_INMEM FORMAT 9999999999999999999999
SQL> COL segment_name FORMAT A12
SQL>

5. Display the in-memory attributes of the IMU.IMTAB table and of all columns of the
table.

SQL> SELECT table_name, inmemory_compression "COMPRESSION",
inmemory_priority "PRIORITY"
FROM dba_tables WHERE owner='IMU';

TABLE_NAME COMPRESSION PRIORITY
---------- ----------------- --------
IMTAB FOR CAPACITY LOW HIGH

SQL> SELECT obj_num, segment_column_id, inmemory_compression FROM
v$im_column_level im, dba_objects o
WHERE im.obj_num = o.object_id
AND o.object_name='IMTAB';

 OBJ_NUM SEGMENT_COLUMN_ID INMEMORY_CO
---------- ----------------- -----------
 74869 1 NO INMEMORY
 74869 2 DEFAULT
 74869 3 DEFAULT

SQL>

6. Execute a full scan on the IMU.IMTAB table so as to populate the table into the IM
Column Store.

SQL> SELECT /*+ FULL(imu.imtab) NO_PARALLEL(imu.imtab) */ COUNT(*) FROM
imu.imtab;

 COUNT(*)

 262144

SQL>

7. Verify that the IMU.IMTAB table is populated into the IM Column Store.

SQL> COL segment_name FORMAT A12
SQL> SELECT segment_name, bytes, inmemory_size, bytes_not_populated
FROM v$im_segments;

Chapter 1
Performance and High-Availability Options

1-147

SEGMENT_NAME BYTES INMEMORY_SIZE BYTES_NOT_POPULATED
------------ ---------- ------------- -------------------
IMTAB 17481728 4456448 0

SQL>

8. Execute a first query on the IMU.IMTAB table. The SELECT list contains the NO
INMEMORY column and the predicate contains only the NO INMEMORY columns. Then
examine the execution plan.

SQL> SELECT sum(c1_noinmem) AS COL_NO_INMEM FROM imu.imtab
WHERE c1_noinmem BETWEEN 5 AND 1258291;

 COL_NO_INMEM

 103079608317

SQL> SELECT * FROM table(dbms_xplan.display_cursor());

PLAN_TABLE_OUTPUT
--
SQL_ID 1dpya5ws8gbvx, child number 0

SELECT sum(c1_noinmem) AS COL_NO_INMEM FROM imu.imtab WHERE c1_noin
mem BETWEEN 5 AND 1258291

Plan hash value: 360700294
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
Time

| 0 | SELECT STATEMENT | | | | 547 (100)|
|
| 1 | SORT AGGREGATE | | 1 | 13 | |
|
|* 2 | TABLE ACCESS FULL| IMTAB | 292K| 3712K| 547 (1)| 00 :
00:01

Predicate Information (identified by operation id):

 2 - filter(("C1_NOINMEM">=5 AND "C1_NOINMEM"<=1258291))
Note

 - dynamic statistics used: dynamic sampling (level=2)

24 rows selected.

SQL>

The optimizer in both sessions choose the TABLE ACCESS FULL method because
the predicate does not contain only INMEMORY columns.

Chapter 1
Performance and High-Availability Options

1-148

9. Execute a second query on the IMU.IMTAB table. The SELECT list contains the NO
INMEMORY column and the predicate contains both a NO INMEMORY column and an
INMEMORY column. Then examine the execution plan.

SQL> SELECT sum(c1_noinmem) AS COL_NO_INMEM FROM imu.imtab
WHERE c1_noinmem BETWEEN 5 AND 1258291 AND c3_inmem LIKE 'Test20c%';

 COL_NO_INMEM

 103079608317

SQL> SELECT * FROM table(dbms_xplan.display_cursor());
PLAN_TABLE_OUTPUT
--
SQL_ID afz9bm3rscr3y, child number 0

SELECT sum(c1_noinmem) AS COL_NO_INMEM FROM imu.imtab WHERE c1_noinmem
BETWEEN 5 AND 1258291 AND c3_inmem LIKE 'Test20c%'

Plan hash value: 360700294
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
Time

| 0 | SELECT STATEMENT | | | | 582 (100)|
|
| 1 | SORT AGGREGATE | | 1 | 2015 | |
|
|* 2 | TABLE ACCESS FULL| IMTAB | 230K| 443M| 582 (1)|
00:00:01

Predicate Information (identified by operation id):

 2 - filter(("C1_NOINMEM">=5 AND "C1_NOINMEM"<=1258291 AND "C3_INMEM"
LIKE 'Test20c%'))

Note

 - dynamic statistics used: dynamic sampling (level=2)

25 rows selected.

SQL>

The optimizer in both sessions choose the TABLE ACCESS FULL access method
because the predicate does not contain only INMEMORY columns. It contains a
INMEMORY column and an NO INMEMORY columns.

Chapter 1
Performance and High-Availability Options

1-149

10. Execute a third query on the IMU.IMTAB table. The SELECT list contains the NO
INMEMORY column and the predicate contains only INMEMORY columns. Then
examine the execution plan.

SQL> SELECT sum(c1_noinmem) AS COL_NO_INMEM FROM imu.imtab
WHERE c2_inmem BETWEEN 5 AND 1258291 AND c3_inmem LIKE 'Test20c%';

 COL_NO_INMEM

 103079608317

SQL> SELECT * FROM table(dbms_xplan.display_cursor());

PLAN_TABLE_OUTPUT
--
SQL_ID f07n4gc330rhz, child number 0

SELECT sum(c1_noinmem) AS COL_NO_INMEM FROM imu.imtab WHERE c2_inmem
BETWEEN 5 AND 1258291 AND c3_inmem LIKE 'Test20c%'

Plan hash value: 360700294

--

| Id | Operation | Name | Rows | Bytes |
Cost (%CPU)| Time |
--

| 0 | SELECT STATEMENT | | | | 582
(100)| |
| 1 | SORT AGGREGATE | | 1 | 2028
| | |
|* 2 | TABLE ACCESS INMEMORY FULL (HYBRID)| IMTAB | 230K|
445M| 582 (1)| 00:00:01 |
--

Predicate Information (identified by operation id):

 2 - filter(("C2_INMEM">=5 AND "C2_INMEM"<=1258291 AND "C3_INMEM"
LIKE 'Test20c%'))

Note

 - dynamic statistics used: dynamic sampling (level=2)

24 rows selected.

SQL>

The optimizer in both sessions choose different access methods. In 20c, the TABLE
ACCESS INMEMORY FULL (HYBRID) access method is chosen because the predicate
contains only INMEMORY columns and the SELECT list a NO INMEMORY column.

Chapter 1
Performance and High-Availability Options

1-150

11. Drop the IMU user.

SQL> DROP USER imu CASCADE;

User dropped.

SQL> EXIT
$

Database In-Memory External Table Enhancements
For a partitioned or hybrid external table, the INMEMORY clause is supported at both
the table and partition level. For hybrid tables, the table-level INMEMORY attribute
applies to all partitions, whether internal or external.

This enhancement significantly broadens support for in-memory external tables.

• Practice: Using In-Memory With Hybrid Partitioned Tables
This practice shows how the INMEMORY attribute on a hybrid partitioned table is
handled at both the table and partition level, whether internal or external partitions.

Related Topics

• Oracle® Database In-Memory Guide

Practice: Using In-Memory With Hybrid Partitioned Tables
This practice shows how the INMEMORY attribute on a hybrid partitioned table is handled
at both the table and partition level, whether internal or external partitions.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Before starting the practice, execute the /home/oracle/labs/M104784GC10/
IM_Hybrid_External_setup.sh shell script. The shell script configures the IM
column store to 110M, creates the HYPTEXT user and directories for external files.

$ cd /home/oracle/labs/M104784GC10
$ /home/oracle/labs/M104784GC10/IM_Hybrid_External_setup.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Wed Jan 15 05:17:45 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> SHUTDOWN ABORT
ORACLE instance shut down.
SQL> STARTUP MOUNT
ORACLE instance started.

Total System Global Area 851442944 bytes
Fixed Size 9571584 bytes
Variable Size 432013312 bytes

Chapter 1
Performance and High-Availability Options

1-151

Database Buffers 285212672 bytes
Redo Buffers 7204864 bytes
In-Memory Area 117440512 bytes
Database mounted.
SQL> ALTER SYSTEM SET sga_target=812M SCOPE=spfile;

System altered.

SQL> ALTER SYSTEM SET inmemory_size=110M SCOPE=SPFILE;

System altered.

SQL> ALTER SYSTEM SET query_rewrite_integrity=stale_tolerated
SCOPE=SPFILE;

System altered.

SQL> SET ECHO OFF

System altered.

SQL> ALTER SYSTEM SET INMEMORY_AUTOMATIC_LEVEL=LOW SCOPE=SPFILE;

System altered.

SQL> shutdown immediate
ORA-01109: database not open

Database dismounted.
ORACLE instance shut down.
SQL> STARTUP
ORACLE instance started.

Total System Global Area 851442944 bytes
Fixed Size 9571584 bytes
Variable Size 432013312 bytes
Database Buffers 285212672 bytes
Redo Buffers 7204864 bytes
In-Memory Area 117440512 bytes
Database mounted.
Database opened.
SQL> ALTER PLUGGABLE DATABASE pdb20 OPEN;

Pluggable database altered.

SQL> CONNECT sys/password@PDB20 AS SYSDBA
Connected.
SQL> ALTER SYSTEM SET INMEMORY_AUTOMATIC_LEVEL=LOW SCOPE=SPFILE;

System altered.

SQL> ALTER SYSTEM SET query_rewrite_integrity=stale_tolerated
SCOPE=SPFILE;

Chapter 1
Performance and High-Availability Options

1-152

System altered.

SQL> shutdown immediate
Pluggable Database closed.
SQL> STARTUP
Pluggable Database opened.
SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Wed Jan 15 05:19:12 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> ALTER SYSTEM SET db_create_file_dest='';

System altered.

SQL> DROP USER hyptext CASCADE;
DROP USER hyptext CASCADE
 *
ERROR at line 1:
ORA-01918: user 'HYPTEXT' does not exist

SQL> DROP TABLESPACE imtbs INCLUDING CONTENTS AND DATAFILES cascade
constraints;
DROP TABLESPACE imtbs INCLUDING CONTENTS AND DATAFILES cascade
constraints
*
ERROR at line 1:
ORA-00959: tablespace 'IMTBS' does not exist

SQL> CREATE TABLESPACE imtbs DATAFILE '/u02/app/oracle/oradata/
imtbs1.dbf' SIZE 10G;

Tablespace created.

SQL> CREATE USER hyptext IDENTIFIED BY password DEFAULT TABLESPACE
imtbs;

User created.

SQL> GRANT create session, create table, unlimited tablespace TO
hyptext;

Grant succeeded.

Chapter 1
Performance and High-Availability Options

1-153

SQL> HOST mkdir -p /home/oracle/labs/M104784GC10/CENT17

SQL> HOST mkdir -p /home/oracle/labs/M104784GC10/CENT18

SQL> HOST mkdir -p /home/oracle/labs/M104784GC10/CENT19

SQL> HOST mkdir -p /home/oracle/labs/M104784GC10/CENT20

SQL> HOST mv /home/oracle/labs/M104784GC10/cent17.dat /home/oracle/labs/
M104784GC10/CENT17

SQL> HOST mv /home/oracle/labs/M104784GC10/cent19.dat /home/oracle/labs/
M104784GC10/CENT19

SQL> HOST mv /home/oracle/labs/M104784GC10/cent20.dat /home/oracle/labs/
M104784GC10/CENT20

SQL> CREATE OR REPLACE DIRECTORY cent17 AS '/home/oracle/labs/
M104784GC10/CENT17';

Directory created.

SQL> CREATE OR REPLACE DIRECTORY cent18 AS '/home/oracle/labs/
M104784GC10/CENT18';

Directory created.

SQL> CREATE OR REPLACE DIRECTORY cent19 AS '/home/oracle/labs/
M104784GC10/CENT19';

Directory created.

SQL> CREATE OR REPLACE DIRECTORY cent20 AS '/home/oracle/labs/
M104784GC10/CENT20';

Directory created.

SQL> GRANT read, write ON DIRECTORY cent17 TO hyptext;

Grant succeeded.

SQL> GRANT read, write ON DIRECTORY cent18 TO hyptext;

Grant succeeded.

SQL> GRANT read, write ON DIRECTORY cent19 TO hyptext;

Grant succeeded.

SQL> GRANT read, write ON DIRECTORY cent20 TO hyptext;

Grant succeeded.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release

Chapter 1
Performance and High-Availability Options

1-154

20.0.0.0.0 - Production
Version 20.2.0.0.0
$

3. The first part of the practice shows how the INMEMORY attribute on a hybrid
partitioned table is handled at the table level with internal or external partitions.

a. Connect to PDB20 as SYSTEM.

$ sqlplus system@PDB20
SQL*Plus: Release 20.0.0.0.0 - Production on Thu Jan 9 04:08:41 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Enter password: password
Last Successful login time: Wed Jan 08 2020 12:03:56 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0
SQL> COL partition_name FORMAT A14
SQL> COL segment_name FORMAT A14
SQL>

b. Create an in-memory hybrid partitioned table. Apply the INMEMORY attribute at
the table level.

SQL> CREATE TABLE hyptext.inmem_tab
 (history_event NUMBER , time_id DATE) TABLESPACE imtbs
 EXTERNAL PARTITION ATTRIBUTES
 (TYPE ORACLE_LOADER DEFAULT DIRECTORY cent20
 ACCESS PARAMETERS
 (FIELDS TERMINATED BY ',' (history_event , time_id DATE
'dd-MON-yyyy'))
 REJECT LIMIT UNLIMITED
)
 PARTITION BY RANGE (time_id)
 (PARTITION cent18 VALUES LESS THAN (TO_DATE('01-Jan-1800','dd-MON-
yyyy')) EXTERNAL,
 PARTITION cent19 VALUES LESS THAN (TO_DATE('01-Jan-1900','dd-MON-
yyyy')) EXTERNAL
 DEFAULT DIRECTORY cent19 LOCATION
('cent19.dat'),
 PARTITION cent20 VALUES LESS THAN (TO_DATE('01-Jan-2000','dd-MON-
yyyy')) EXTERNAL
 LOCATION('cent20.dat'),
 PARTITION y2000 VALUES LESS THAN (TO_DATE('01-Jan-2001','dd-MON-
yyyy')),
 PARTITION pmax VALUES LESS THAN (MAXVALUE))
 INMEMORY MEMCOMPRESS FOR QUERY HIGH;

Table created.

Chapter 1
Performance and High-Availability Options

1-155

SQL>

c. Which partitions are defined as in-memory segments?

SQL> SELECT partition_name, inmemory, inmemory_compression
FROM dba_tab_partitions
WHERE table_name = 'INMEM_TAB';

PARTITION_NAME INMEMORY INMEMORY_COMPRESS
-------------- -------- -----------------
CENT18
CENT19
CENT20
PMAX ENABLED FOR QUERY HIGH
Y2000 ENABLED FOR QUERY HIGH

SQL>

Internal partitions are defined as in-memory. External partitions are not defined
as in-memory, nor as no in-memory.

Use the DBA_XTERNAL_TAB_PARTITIONS view to show in-memory status on
external partitions.

SQL> SELECT partition_name, inmemory, inmemory_compression
 FROM dba_xternal_tab_partitions WHERE
TABLE_NAME='INMEM_TAB';

PARTITION_NAME INMEMORY INMEMORY_COMPRESS
-------------- -------- -----------------
CENT19 ENABLED FOR QUERY HIGH
CENT20 ENABLED FOR QUERY HIGH

SQL>

d. Execute the /home/oracle/labs/M104784GC10/insert_select.sql SQL
script. The script inserts rows into the partitions of the table and query the
table to populate the data into the in-memory column store. Which partitions
are populated into the in-memory column store?

SQL> @/home/oracle/labs/M104784GC10/insert_select.sql
SQL> INSERT INTO hyptext.inmem_tab VALUES (21,to_date('31.12.2000',
'dd.mm.yyyy'));

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (22,to_date('31.10.2000',
'dd.mm.yyyy'));

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (23,to_date('01.02.2000',
'dd.mm.yyyy'));

Chapter 1
Performance and High-Availability Options

1-156

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (24,to_date('27.03.2000',
'dd.mm.yyyy'));

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (25,to_date('31.03.2000',
'dd.mm.yyyy'));

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (26,to_date('15.04.2000',
'dd.mm.yyyy'));

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (27,to_date('02.09.2000',
'dd.mm.yyyy'));

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (29,to_date('12.08.2018',
'dd.mm.yyyy'));

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (30,to_date('15.09.2017',
'dd.mm.yyyy'));

1 row created.

SQL> COMMIT;

Commit complete.

SQL> SELECT * FROM hyptext.inmem_tab;

HISTORY_EVENT TIME_ID
------------- ---------
 11 01-JAN-76
 12 01-JAN-15
 13 01-JAN-28
 14 01-JAN-37
 15 01-JAN-49
 16 01-FEB-59
 17 01-FEB-96
 18 01-FEB-97
 19 01-FEB-98
 20 01-FEB-98
 1 01-JAN-76
 2 01-JAN-15
 3 01-JAN-28
 4 01-JAN-37

Chapter 1
Performance and High-Availability Options

1-157

 5 01-JAN-49
 6 01-FEB-59
 7 01-FEB-96
 8 01-FEB-97
 9 01-FEB-98
 10 01-FEB-98
 21 31-DEC-00
 22 31-OCT-00
 23 01-FEB-00
 24 27-MAR-00
 25 31-MAR-00
 26 15-APR-00
 27 02-SEP-00
 29 12-AUG-18
 30 15-SEP-17

29 rows selected.

SQL>

SQL> SELECT segment_name, partition_name FROM v$im_segments;

SEGMENT_NAME PARTITION_NAME
-------------- --------------
INMEM_TAB PMAX
INMEM_TAB CENT19
INMEM_TAB Y2000
INMEM_TAB CENT20

SQL19>

All internal and external partitions are populated into the in-memory column
store because the INMEMORY attribute was set at the table level.

e. Does the execution plan show the different types of access to partitions?

SQL> EXPLAIN PLAN FOR SELECT * FROM hyptext.inmem_tab;

Explained.

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

PLAN_TABLE_OUTPUT
--
Plan hash value: 2513257138
--
| Id | Operation | Name | Rows
| Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
| 0 | SELECT STATEMENT | | 188K
| 4057K| 105 (1)| 00:00:01 | | |
| 1 | PARTITION RANGE ALL | | 188K
| 4057K| 105 (1)| 00:00:01 | 1 | 5 |
| 2 | TABLE ACCESS HYBRID PART INMEMORY FULL| INMEM_TAB | 188K

Chapter 1
Performance and High-Availability Options

1-158

4057K	105 (1)	00:00:01	1	5
3	TABLE ACCESS INMEMORY FULL	INMEM_TAB		
			1	5
--

10 rows selected.

SQL> EXPLAIN PLAN FOR SELECT * FROM hyptext.inmem_tab PARTITION
(CENT19);

Explained.

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

PLAN_TABLE_OUTPUT
--
Plan hash value: 938963152
--
| Id | Operation | Name | Rows | B
ytes | Cost (%CPU)| Time | Pstart| Pstop |
--
| 0 | SELECT STATEMENT | | 8169 |
 175K| 29 (0)| 00:00:01 | | |
| 1 | PARTITION RANGE SINGLE | | 8169 |
 175K| 29 (0)| 00:00:01 | 2 | 2 |
| 2 | EXTERNAL TABLE ACCESS INMEMORY FULL| INMEM_TAB | 8169 |
 175K| 29 (0)| 00:00:01 | 2 | 2 |
--

9 rows selected.

SQL>

The access path shows either TABLE ACCESS HYBRID PART INMEMORY FULL (NO
INMEMORY and INMEMORY accessed segments) or EXTERNAL TABLE ACCESS
INMEMORY FULL (INMEMORY) on the selected external partition.

f. Drop the HYPTEXT.INMEM_TAB table.

SQL> DROP TABLE hyptext.inmem_tab;

Table dropped.

SQL>

4. The second part of the practice shows how the INMEMORY attribute on internal or
external partitions of a hybrid partitioned table is handled.

a. Create an in-memory hybrid partitioned table. Apply the INMEMORY attribute at
the partition level, on an internal and an external partition.

SQL> CREATE TABLE hyptext.inmem_tab
 (history_event NUMBER , time_id DATE) TABLESPACE imtbs
 EXTERNAL PARTITION ATTRIBUTES
 (TYPE ORACLE_LOADER DEFAULT DIRECTORY cent20

Chapter 1
Performance and High-Availability Options

1-159

 ACCESS PARAMETERS
 (FIELDS TERMINATED BY ',' (history_event , time_id DATE
'dd-MON-yyyy'))
 REJECT LIMIT UNLIMITED
)
 PARTITION BY RANGE (time_id)
 (PARTITION cent18 VALUES LESS THAN (TO_DATE('01-Jan-1800','dd-MON-
yyyy')) EXTERNAL,
 PARTITION cent19 VALUES LESS THAN (TO_DATE('01-Jan-1900','dd-MON-
yyyy')) EXTERNAL
 DEFAULT DIRECTORY cent19 LOCATION
('cent19.dat')
 INMEMORY MEMCOMPRESS FOR QUERY HIGH,
 PARTITION cent20 VALUES LESS THAN (TO_DATE('01-Jan-2000','dd-MON-
yyyy')) EXTERNAL
 LOCATION('cent20.dat'),
 PARTITION y2000 VALUES LESS THAN (TO_DATE('01-Jan-2001','dd-MON-
yyyy'))
 INMEMORY MEMCOMPRESS FOR CAPACITY LOW,
 PARTITION pmax VALUES LESS THAN (MAXVALUE));

Table created.

SQL>

b. Which partitions are defined as in-memory?

SQL> SELECT partition_name, inmemory, inmemory_compression
FROM dba_tab_partitions
WHERE table_name = 'INMEM_TAB';

PARTITION_NAME INMEMORY INMEMORY_COMPRESS
-------------- -------- -----------------
CENT18
CENT19
CENT20
PMAX DISABLED
Y2000 ENABLED FOR CAPACITY LOW

SQL>

Only internal partitions for which the INMEMORY attribute was set are defined as
in-memory. External partitions, even those for which the INMEMORY attribute
was set, are not defined as in-memory, nor as no in-memory.

Use the DBA_XTERNAL_TAB_PARTITIONS view to show in-memory status on
external partitions.

SQL> SELECT partition_name, inmemory, inmemory_compression
 FROM dba_xternal_tab_partitions WHERE
TABLE_NAME='INMEM_TAB';

PARTITION_NAME INMEMORY INMEMORY_COMPRESS
-------------- -------- -----------------
CENT19 ENABLED FOR QUERY HIGH

Chapter 1
Performance and High-Availability Options

1-160

CENT20 DISABLED

SQL>

c. Execute the /home/oracle/labs/M104784GC10/insert_select.sql SQL
script. The script inserts rows into the partitions of the table and query the
table to populate the data into the in-memory column store. Which partitions
are populated into the in-memory column store?

SQL> @/home/oracle/labs/M104784GC10/insert_select.sql
SQL> SET ECHO ON
SQL>
SQL> INSERT INTO hyptext.inmem_tab VALUES (21,to_date('31.12.2000',
'dd.mm.yyyy'));

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (22,to_date('31.10.2000',
'dd.mm.yyyy'));

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (23,to_date('01.02.2000',
'dd.mm.yyyy'));

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (24,to_date('27.03.2000',
'dd.mm.yyyy'));

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (25,to_date('31.03.2000',
'dd.mm.yyyy'));

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (26,to_date('15.04.2000',
'dd.mm.yyyy'));

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (27,to_date('02.09.2000',
'dd.mm.yyyy'));

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (29,to_date('12.08.2018',
'dd.mm.yyyy'));

1 row created.

SQL> INSERT INTO hyptext.inmem_tab VALUES (30,to_date('15.09.2017',
'dd.mm.yyyy'));

Chapter 1
Performance and High-Availability Options

1-161

1 row created.

SQL> COMMIT;

Commit complete.

SQL> SELECT * FROM hyptext.inmem_tab;

HISTORY_EVENT TIME_ID
------------- ---------
 11 01-JAN-76
 12 01-JAN-15
 13 01-JAN-28
 14 01-JAN-37
 15 01-JAN-49
 16 01-FEB-59
 17 01-FEB-96
 18 01-FEB-97
 19 01-FEB-98
 20 01-FEB-98
 1 01-JAN-76
 2 01-JAN-15
 3 01-JAN-28
 4 01-JAN-37
 5 01-JAN-49
 6 01-FEB-59
 7 01-FEB-96
 8 01-FEB-97
 9 01-FEB-98
 10 01-FEB-98
 21 31-DEC-00
 22 31-OCT-00
 23 01-FEB-00
 24 27-MAR-00
 25 31-MAR-00
 26 15-APR-00
 27 02-SEP-00
 29 12-AUG-18
 30 15-SEP-17

29 rows selected.

SQL>

SQL> SELECT segment_name, partition_name FROM v$im_segments;

SEGMENT_NAME PARTITION_NAME
-------------- --------------
INMEM_TAB CENT19
INMEM_TAB Y2000

SQL>

Chapter 1
Performance and High-Availability Options

1-162

In the Oracle Database 20c session, internal and external partitions defined as
in-memory are populated into the in-memory column store.

d. Does the execution plan show the different types of access to partitions?

SQL> EXPLAIN PLAN FOR SELECT * FROM hyptext.inmem_tab;

Explained.

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

PLAN_TABLE_OUTPUT
--
Plan hash value: 2513257138
--
| Id | Operation | Name | Rows
| Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
| 0 | SELECT STATEMENT | | 188K
| 4057K| 367 (1)| 00:00:01 | | |
| 1 | PARTITION RANGE ALL | | 188K
| 4057K| 367 (1)| 00:00:01 | 1 | 5 |
| 2 | TABLE ACCESS HYBRID PART INMEMORY FULL| INMEM_TAB | 188K
4057K	367 (1)	00:00:01	1	5
3	TABLE ACCESS INMEMORY FULL	INMEM_TAB		
			1	5
--

10 rows selected.

SQL> EXPLAIN PLAN FOR SELECT * FROM hyptext.inmem_tab PARTITION
(CENT19);

Explained.

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

PLAN_TABLE_OUTPUT
--
Plan hash value: 938963152
--
| Id | Operation | Name | Rows | B
ytes | Cost (%CPU)| Time | Pstart| Pstop |
--
| 0 | SELECT STATEMENT | | 8169 |
 175K| 29 (0)| 00:00:01 | | |
| 1 | PARTITION RANGE SINGLE | | 8169 |
 175K| 29 (0)| 00:00:01 | 2 | 2 |
| 2 | EXTERNAL TABLE ACCESS INMEMORY FULL| INMEM_TAB | 8169 |
 175K| 29 (0)| 00:00:01 | 2 | 2 |
--

9 rows selected.

Chapter 1
Performance and High-Availability Options

1-163

SQL>

SQL> EXPLAIN PLAN FOR SELECT * FROM hyptext.inmem_tab PARTITION
(CENT20);

Explained.

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

PLAN_TABLE_OUTPUT
--
Plan hash value: 938963152
--
| Id | Operation | Name | Rows | Bytes | Co
st (%CPU)| Time | Pstart| Pstop |
--
| 0 | SELECT STATEMENT | | 8169 | 175K|
 29 (0)| 00:00:01 | | |
| 1 | PARTITION RANGE SINGLE | | 8169 | 175K|
 29 (0)| 00:00:01 | 3 | 3 |
| 2 | EXTERNAL TABLE ACCESS FULL| INMEM_TAB | 8169 | 175K|
 29 (0)| 00:00:01 | 3 | 3 |
--

9 rows selected.

SQL>

The access path shows either TABLE ACCESS HYBRID PART INMEMORY FULL (NO
INMEMORY and INMEMORY accessed segments) or EXTERNAL TABLE ACCESS
INMEMORY FULL (INMEMORY) on the selected external partition or EXTERNAL
TABLE ACCESS FULL (NO INMEMORY) on the selected external partition.

e. Drop the HYPTEXT.INMEM_TAB table.

SQL> DROP TABLE HYPTEXT.INMEM_TAB PURGE;

Table dropped.

SQL> EXIT
$

Flashback
• PDB Point-in-Time Recovery or Flashback to Any Time in the Recent Past

PDB Point-in-Time Recovery or Flashback to Any Time in the Recent Past
PDBs can be recovered to an orphan PDB incarnation within the same CDB
incarnation or an ancestor incarnation.

Chapter 1
Performance and High-Availability Options

1-164

Availability of PDBs is enhanced. Both flashback and point-in-time recovery operations
are supported when recovering PDBs to orphan PDB incarnations.

• Details: PDB Point-in-Time Recovery or Flashback to Any Time in the Recent Past
This page provides more detailed information about new possibilities about PDB
PITR or flashback to any time in the recent past.

• Practice: Flashbacking PDBs to Any Time in the Recent Past
This practice shows how to perform a PDB PITR/Flashback to a specific time, then
a PDB PITR/Flashback to a PDB time on an orphan PDB incarnation.

Related Topics

• Oracle® Database Backup and Recovery User's Guide

Details: PDB Point-in-Time Recovery or Flashback to Any Time in the Recent Past
This page provides more detailed information about new possibilities about PDB PITR
or flashback to any time in the recent past.

RMAN> FLASHBACK PLUGGABLE DATABASE pdba TO Wednesday 4pm;

RMAN> ALTER PLUGGABLE DATABASE pdba OPEN RESETLOGS;

PDBaPDBa
Thu 5pmFriday 2pm

PDBa
Thursday 3pm

19c

20c

RMAN> FLASHBACK PLUGGABLE DATABASE pdba TO Thursday 5pm;

PDBa
Thursday 3pm

t-1 current time

X

Parent
PDB
inc 2

RMAN> ALTER PLUGGABLE pdba DATABASE pdba CLOSE;

RMAN> RESET PLUGGABLE DATABASE pdba INCARNATION 2;

RMAN> FLASHBACK PLUGGABLE DATABASE pdba TO Thursday 5pm;

RMAN> FLASHBACK PLUGGABLE DATABASE pdba TO SCN 23456;

Current
PDB
inc 4

Current
PDB
inc 5

Orphan
PDB
inc 2

Current
PDB
inc 3

PDBa
Wed 4pm

PDBa
Friday 2pm

Orphan
PDB
inc 3

Orphan
PDB
inc 4

PDBa
Wed 4pm

PDBa
Friday 2pm

Orphan
PDB
inc 3

or

Oracle database 20c allows point-in-time recovery or flashback of pluggable database
to a point in time which lies on an orphaned PDB branch. This allows you to take back
the database to anytime within a certain number of days and therefore rewind data
back in time to correct any problems caused by logical data corruption or user errors:

• Allows PDB PITR/Flashback to any time as long as there is enough redo and
flashback data and there is no CDB resetlogs

• Performs PDB point-in-time recovery/flashback to a PDB restore point on orphan
PDB incarnation across multiple DB incarnation: A user can PITR/flashback a
pluggable database to any point on a different database incarnation other than the
current database incarnation as long as the database incarnation is on the current
database ancestor path and sufficient redo/flashback data exists. Oracle does not
support PDB PITR/Flashback to any point on orphaned database incarnation. The
reason being, a user should be able to recover the CDB with one pass of media
recovery after restoring any backup.

Chapter 1
Performance and High-Availability Options

1-165

• Allows a DBA to issue a new RMAN command to set PDB incarnation before PDB
PITR/Flashback to a SCN

Performing a flashback operation on a particular PDB modifies the data files for that
PDB only. The remaining PDBs in the CDB are not impacted. The point in time to
which the PDB must be flashed back is specified using a specific time, SCN, CDB
restore point, PDB restore point, PDB clean restore point, or PDB guaranteed restore
point.

Practice: Flashbacking PDBs to Any Time in the Recent Past
This practice shows how to perform a PDB PITR/Flashback to a specific time, then a
PDB PITR/Flashback to a PDB time on an orphan PDB incarnation.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Before starting flashbacking data in PDB20, execute the/home/oracle/labs/
M104782GC10/setup_Flashback.sh shell script that enables flahsback in the CDB,
recreates PDB20 and creates the HR schema in PDB20.

$ cd /home/oracle/labs/M104782GC10
$ /home/oracle/labs/M104782GC10/setup_Flashback.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Mon Jan 13 11:05:13 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> ALTER DATABASE FLASHBACK on;

Database altered.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Jan 13 11:15:41 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> ALTER PLUGGABLE DATABASE pdb20 CLOSE;

Pluggable database altered.

Chapter 1
Performance and High-Availability Options

1-166

SQL> ALTER SESSION SET db_create_file_dest='/home/oracle/labs';

Session altered.

SQL> DROP PLUGGABLE DATABASE pdb20 INCLUDING DATAFILES;

Pluggable database dropped.

SQL> CREATE PLUGGABLE DATABASE pdb20
 2 ADMIN USER pdb_admin IDENTIFIED BY password ROLES=(CONNECT)
 3 CREATE_FILE_DEST='/home/oracle/labs';

Pluggable database created.

SQL>
SQL> ALTER PLUGGABLE DATABASE pdb20 OPEN;

Pluggable database altered.

SQL> exit

Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Jan 13 11:05:14 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

specify password for HR as parameter 1:

specify default tablespeace for HR as parameter 2:

specify temporary tablespace for HR as parameter 3:

specify log path as parameter 4:

PL/SQL procedure successfully completed.

User created.

ALTER USER hr DEFAULT TABLESPACE users
...
Commit complete.

PL/SQL procedure successfully completed.

Chapter 1
Performance and High-Availability Options

1-167

SQL> Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

3. Connect to the CDB root and check that the CDB is open and enabled for
flashback.

$ sqlplus / AS SYSDBA
SQL*Plus: Release 20.0.0.0.0 - Production on Fri Mar 13 07:10:40 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> SELECT open_mode, flashback_on FROM v$database;

OPEN_MODE FLASHBACK_ON
-------------------- ------------------
READ WRITE YES

SQL>

4. Before any DDL or DML command is executed on HR.EMPLOYEES table in PDB20,
display the current SCN, its associated timestamp and the incarnations of the
PDB.

SQL> CONNECT sys@PDB20 AS SYSDBA
Enter password: password
Connected.
SQL> COL TIMESTAMP FORMAT A40
SQL> SELECT CURRENT_SCN, SCN_TO_TIMESTAMP(CURRENT_SCN) "TIMESTAMP" from
V$DATABASE;

CURRENT_SCN SCN_TO_TIMESTAMP(CURRENT_SCN)

--
 3880324 13-MAR-20 07.12.24.000000000 AM

SQL> SELECT con_id, status, pdb_incarnation# inc#, begin_resetlogs_scn,
end_resetlogs_scn
 FROM v$pdb_incarnation ORDER BY 3;

 CON_ID STATUS INC# BEGIN_RESETLOGS_SCN END_RESETLOGS_SCN
---------- ------- ---------- ------------------- -----------------
 4 PARENT 0 1 1
 4 CURRENT 0 2667602 2667602

SQL>

Chapter 1
Performance and High-Availability Options

1-168

Possible ORPHAN incarnations would come from previous PDB resetlogs.

5. Display the number of rows in HR.EMPLOYEES table.

SQL> SELECT count(*) FROM hr.employees;

 COUNT(*)

 107

SQL>

6. A user makes an accidental removal of the HR.EMPLOYEES table in PDB20.

SQL> DROP TABLE hr.employees CASCADE CONSTRAINTS;

Table dropped.

SQL>

7. Flashback the PDB so as to restore the dropped table. Ensure that PDB20 is
closed. Other PDBs can be open and operational.

SQL> ALTER PLUGGABLE DATABASE CLOSE;

Pluggable database altered.

SQL>

8. Flashback the data back to the point before the table was dropped. You need not
set the orphan PDB incarnation if the flashback operation is to a specified time or
restore point. Determine the desired SCN or point in time for the Flashback
Database command. This point must be within the current CDB incarnation or an
ancestor CDB incarnation.

SQL> FLASHBACK PLUGGABLE DATABASE TO SCN 3880324;

Flashback complete.

SQL>

9. Open PDB20 with RESETLOGS.

SQL> ALTER PLUGGABLE DATABASE OPEN RESETLOGS;

Pluggable database altered.

SQL> SELECT count(*) FROM hr.employees;

 COUNT(*)

 107

SQL>

Chapter 1
Performance and High-Availability Options

1-169

10. Display the incarnations of PDB20.

SQL> SELECT con_id, pdb_incarnation# INC#, status, incarnation_scn,
end_resetlogs_scn
 FROM v$pdb_incarnation ORDER BY 1, 2;
 CON_ID INC# STATUS INCARNATION_SCN END_RESETLOGS_SCN
---------- ---------- ------- --------------- -----------------
 4 0 PARENT 2667602 2667602
 4 1 CURRENT 3880344 3881083

SQL>

11. Increase the salary of the employees in HR.EMPLOYEES by 2 for some employees.

SQL> SELECT min(salary), MAX(salary) FROM hr.employees;

MIN(SALARY) MAX(SALARY)
----------- -----------
 2100 24000

SQL> UPDATE hr.employees SET salary=salary*2 WHERE employee_id<200;

100 rows updated.

SQL> COMMIT;

Commit complete.

SQL> SELECT CURRENT_SCN, SCN_TO_TIMESTAMP(CURRENT_SCN) "TIMESTAMP" from
V$DATABASE;

CURRENT_SCN TIMESTAMP
----------- --
 3881391 13-MAR-20 07.16.33.000000000 AM

SQL>

12. Two minutes later, you delete the employee 206.

SQL> DELETE FROM hr.employees WHERE employee_id=206;

1 rows deleted.

SQL> COMMIT;

Commit complete.

SQL> SELECT count(*) FROM hr.employees;

 COUNT(*)

 106

SQL> SELECT CURRENT_SCN, SCN_TO_TIMESTAMP(CURRENT_SCN) "TIMESTAMP" from

Chapter 1
Performance and High-Availability Options

1-170

V$DATABASE;

CURRENT_SCN TIMESTAMP
----------- --
 3882392 13-MAR-20 07.20.27.000000000 AM

SQL> SELECT con_id, pdb_incarnation# INC#, status, incarnation_scn,
end_resetlogs_scn
 FROM v$pdb_incarnation ORDER BY 1, 2;

 CON_ID INC# STATUS INCARNATION_SCN END_RESETLOGS_SCN
---------- ---------- ------- --------------- -----------------
 4 0 PARENT 2667602 2667602
 4 1 CURRENT 3880344 3881083

SQL>

13. You decide to flashback the data back to the point before the table was dropped.

SQL> ALTER PLUGGABLE DATABASE CLOSE;

Pluggable database altered.

SQL> FLASHBACK PLUGGABLE DATABASE TO SCN 3880324;

Flashback complete.

SQL> ALTER PLUGGABLE DATABASE OPEN RESETLOGS;

Pluggable database altered.

SQL> SELECT count(*) FROM hr.employees;

 COUNT(*)

 107

SQL> SELECT min(salary), MAX(salary) FROM hr.employees;

MIN(SALARY) MAX(SALARY)
----------- -----------
 2100 24000

SQL> SELECT con_id, pdb_incarnation# INC#, status, incarnation_scn,
end_resetlogs_scn
 FROM v$pdb_incarnation ORDER BY 1, 2;
 2
 CON_ID INC# STATUS INCARNATION_SCN END_RESETLOGS_SCN
---------- ---------- ------- --------------- -----------------
 4 0 PARENT 2667602 2667602
 4 1 ORPHAN 3880344 3881083
 4 2 CURRENT 3880325 3882600

SQL>

Chapter 1
Performance and High-Availability Options

1-171

14. Users ask for resetting PDB20 as it was after the salaries were updated and before
the employee 206 was deleted. This state of PDB20 belongs to incarnation 1 of
PDB20. Set the orphan PDB incarnation to which the flashback PDB operation must
be performed. This step is required because the flashback operation is to an SCN
or specific time in an orphan PDB incarnation.

SQL> RESET PLUGGABLE DATABASE TO INCARNATION 1;
SP2-0734: unknown command beginning "RESET PLUG..." - rest of line
ignored.
SQL> EXIT
$

This command exists only in RMAN.

$ rman TARGET sys@PDB20
target database Password: password
connected to target database: CDB20:PDB20 (DBID=2289122758)

RMAN> LIST INCARNATION OF PLUGGABLE DATABASE pdb20;

using target database control file instead of recovery catalog
List of Pluggable Database Incarnations
DB Key PDB Key PDBInc Key DBInc Key PDB Name Status Inc
SCN Inc Time Begin Reset SCN Begin Reset Time
------- ------- -------- --------- ------- --------
--------------- ------------------ ---------------

2 4 2 2 PDB20 CURRENT
3880325 13-MAR-20 3882600 13-MAR-20
End Reset SCN:3882600 End Reset Time:13-MAR-20
Guid:A0B8281946B32375E053424C960A082A
2 4 1 2 PDB20 ORPHAN
3880344 13-MAR-20 3881083 13-MAR-20
End Reset SCN:3881083 End Reset Time:13-MAR-20
Guid:A0B8281946B32375E053424C960A082A
2 4 0 2 PDB20 PARENT
2667602 12-MAR-20 2667602 12-MAR-20
End Reset SCN:2667602 End Reset Time:12-MAR-20
Guid:A0B8281946B32375E053424C960A082A

RMAN> RESET PLUGGABLE DATABASE pdb20 TO INCARNATION 1;
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of reset database command at 03/13/2020 07:28:33
RMAN-05625: command not allowed when connected to a pluggable database

RMAN> exit
Recovery Manager complete.
$
$ rman TARGET /

Recovery Manager: Release 20.0.0.0.0 - Production on Mon Mar 13
11:50:04 2020

Chapter 1
Performance and High-Availability Options

1-172

Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle and/or its affiliates. All rights
reserved.

connected to target database: CDB20 (DBID=2732805675)

RMAN> ALTER PLUGGABLE DATABASE pdb20 CLOSE;

using target database control file instead of recovery catalog
Statement processed

RMAN> RESET PLUGGABLE DATABASE pdb20 TO INCARNATION 1;

pluggable database reset to incarnation 1

RMAN> FLASHBACK PLUGGABLE DATABASE pdb20 TO SCN 3880344;
Starting flashback at 13-JAN-20
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=148 device type=DISK

starting media recovery
media recovery failed
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of flashback command at 03/13/2020 07:31:00
ORA-39889: Specified System Change Number (SCN) or timestamp is in the
middle of a previous PDB RESETLOGS operation.

RMAN> exit

What does this error mean?

$ oerr ora 39889
39889, 00000, "Specified System Change Number (SCN) or timestamp is in
the middle of a previous PDB RESETLOGS operation."
// *Cause: The specified System Change Number (SCN) or timestamp was
in the
// middle of a previous PDB RESETLOGS operation. More
specifically,
// each PDB RESETLOGS operation may create a PDB incarnation
as shown
// in v$pdb_incarnation. Any SCN between INCARNATION_SCN and
// END_RESETLOGS_SCN or any timestamp between INCARNATION_TIME
and
// END_RESETLOGS_TIME as shown in v$pdb_incarnation is
considered in
// the middle of the PDB RESETLOGS operation.
// *Action: Flashback the PDB to an SCN or timestamp that is not in the
middle
// of a previous PDB RESETLOGS operation. If flashback to a
SCN on the
// orphan PDB incarnation is required, then use

Chapter 1
Performance and High-Availability Options

1-173

// "RESET PLUGGABLE DATABASE TO INCARNATION" RMAN command to
specify
// the pluggable database incarnation along which flashback to
the
// specified SCN must be performed. Also, ensure that the
feature is
// enabled.
$

Use the SCN displayed at the end of step 11.

$ rman TARGET /

Recovery Manager: Release 20.0.0.0.0 - Production on Mon Mar 13
11:50:04 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle and/or its affiliates. All rights
reserved.

connected to target database: CDB20 (DBID=2732805675)

RMAN> RESET PLUGGABLE DATABASE pdb20 TO INCARNATION 1;

pluggable database reset to incarnation 1

RMAN> FLASHBACK PLUGGABLE DATABASE pdb20 TO SCN 3881391;
Starting flashback at 13-MAR-20
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=19 device type=DISK

starting media recovery
archived log for thread 1 with sequence 9 is already on disk as
file /u03/app/oracle/fast_recovery_area/CDB20_IAD3CV/archivelog/
2020_04_07/o1_mf_1_9_h8s80s3f_.arc
archived log for thread 1 with sequence 10 is already on disk as
file /u03/app/oracle/fast_recovery_area/CDB20_IAD3CV/archivelog/
2020_04_07/o1_mf_1_10_h8s80t1w_.arc
archived log for thread 1 with sequence 11 is already on disk as
file /u03/app/oracle/fast_recovery_area/CDB20_IAD3CV/archivelog/
2020_04_07/o1_mf_1_11_h8s80y54_.arc

media recovery complete, elapsed time: 00:00:25

Finished flashback at 13-MAR-20

RMAN> EXIT

Recovery Manager complete.
$

Chapter 1
Performance and High-Availability Options

1-174

15. Open the PDB and verify that the data is restored with the employees' salaries
updated and the employee 206 restored too.

$ sqlplus sys@PDB20 AS SYSDBA
Enter password: password

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> ALTER PLUGGABLE DATABASE pdb20 OPEN RESETLOGS;

Pluggable database altered.

SQL> CONNECT system@PDB20
Enter password: password
Connected.
SQL> SELECT count(*) FROM hr.employees;

 COUNT(*)

 107

SQL> SELECT min(salary), MAX(salary) FROM hr.employees;

MIN(SALARY) MAX(SALARY)
----------- -----------
 4200 48000

SQL> SELECT con_id, pdb_incarnation# INC#, status, incarnation_scn,
end_resetlogs_scn
 FROM v$pdb_incarnation ORDER BY 1, 2;

 CON_ID INC# STATUS INCARNATION_SCN END_RESETLOGS_SCN
---------- ---------- ------- --------------- -----------------
 4 0 PARENT 2667602 2667602
 4 1 PARENT 3880344 3881083
 4 2 ORPHAN 3880325 3882600
 4 3 CURRENT 3881392 3884391

SQL> EXIT
$

Autonomous Health Framework
• Oracle Trace File Analyzer Real-Time Health Summary

• Oracle Trace File Analyzer Log File Life Cycle Enhancements

Oracle Trace File Analyzer Real-Time Health Summary
Oracle Trace File Analyzer generates a real-time health summary report, which shows
performance degradation due to faults and workload issues.

Chapter 1
Performance and High-Availability Options

1-175

Similar to the status scorecard of the deployment configurations that Oracle ORAchk
and Oracle EXAchk generate, Oracle Trace File Analyzer also provides a readily
consumable and trackable scoring for operational status. The health summary consists
of scores in the categories of availability, health, workload, and capacity broken down
from cluster-wide through the database, instance, service, and hardware resource.

Related Topics

• Oracle® Autonomous Health Framework User's Guide

Oracle Trace File Analyzer Log File Life Cycle Enhancements
Oracle Trace File Analyzer archives log files before purging them upon each rotation.

The Oracle Database and Oracle Grid Infrastructure deployments generate a large
number of logs and trace files. Oracle Trace File Analyzer does not archive these files.
You have to create custom jobs if you need this history for support or auditing
purposes. The enhancement in this release builds in the desired archiving functionality
and thus removes the need for custom scripts.

Related Topics

• Oracle® Autonomous Health Framework User's Guide

Oracle Multitenant
• MAX_IDLE_BLOCKER_TIME Parameter

• Expanded Syntax for PDB Application Synchronization

• Details: Using non-CDBs and CDBs
This page provides information about the availability of CDBs only in Oracle
Database 20c. The non-CDB architecture was deprecated in Oracle Database
12c. It is desupported in Oracle Database 20c which means that the Oracle
Universal Installer and DBCA can no longer be used to create non-CDB Oracle
Database instances.

MAX_IDLE_BLOCKER_TIME Parameter
MAX_IDLE_BLOCKER_TIME sets the number of minutes that a session holding
needed resources can be idle before it is a candidate for termination.

MAX_IDLE_TIME sets limits for all idle sessions, whereas
MAX_IDLE_BLOCKER_TIME sets limits only for idle sessions consuming resources.
MAX_IDLE_TIME can be problematic for a connection pool because it may continually
try to re-create the sessions terminated by this parameter.

• Details: MAX_IDLE_BLOCKER_TIME Parameter
This page provides more detailed information about the new initialization
parameter MAX_IDLE_BLOCKER_TIME influencing sessions behavior.

• Practice: Using MAX_IDLE_BLOCKER_TIME Parameter
This practice shows how to terminate a blocking session by using the new
initialization parameter MAX_IDLE_BLOCKER_TIME.

Related Topics

• Oracle® Multitenant Administrator's Guide

Chapter 1
Performance and High-Availability Options

1-176

Details: MAX_IDLE_BLOCKER_TIME Parameter
This page provides more detailed information about the new initialization parameter
MAX_IDLE_BLOCKER_TIME influencing sessions behavior.

SELECT

U1

19c

SELECT
SELECT count(*) FROM employees
*
ERROR at line 1:
ORA-03113: end-of-file on communication channel
Process ID: 23968
Session ID: 153 Serial number: 18502

DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (-

 PLAN => 'DAYTIME', -

 GROUP_OR_SUBPLAN => 'REPORTING', -

 MGMT_P1 => 15, -

 MAX_IDLE_LIMIT => 600)

SQL> ALTER SYSTEM SET MAX_IDLE_TIME = 2;

or

19c

20c

DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (-

 PLAN => 'DAYTIME', -

 GROUP_OR_SUBPLAN => 'REPORTING', -

 MGMT_P1 => 15, -

 MAX_IDLE_BLOCKER_LIMIT => 600)

SQL> ALTER SYSTEM SET MAX_IDLE_BLOCKER_TIME = 600;

DBA DBA

UPDATE employees SET
107 rows updated.

DELETE FROM employees

SELECT count(*)
*

ERROR at line 1: ORA-03113: end-of-file on communication

Process ID: 23968 Session ID: 155 Serial number: 18504

DELETE FROM employees
COMMIT;

In Oracle Database 19c, you can specify an amount of time that a session can be idle,
after which it is terminated. You can define the maximum session idle time, by setting:

• The MAX_IDLE_TIME resource plan directive, in seconds. Default is NULL, which
implies unlimited.

SQL> EXEC DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (-
 PLAN => 'DAYTIME', -
 GROUP_OR_SUBPLAN => 'REPORTING', -
 MGMT_P1 => 15, -
 MAX_IDLE_LIMIT => 600)

• The MAX_IDLE_TIME initialization parmeter, in minutes. The default value of 0
indicates that there is no limit.

You can also specify a more stringent idle time limit that applies only to sessions that
are idle consuming resources and therefore blocking other sessions, by setting the
MAX_IDLE_BLOCKER_TIME resource plan directive that indicates the maximum session
idle time of a blocking session. Default is NULL, which implies unlimited.

Oracle Database 20c allows you to set the MAX_IDLE_BLOCKER_TIME initialization
parmeter to define the maximum session idle time of a blocking session, in minutes.
The default value of 0 indicates that there is no limit.

Practice: Using MAX_IDLE_BLOCKER_TIME Parameter
This practice shows how to terminate a blocking session by using the new initialization
parameter MAX_IDLE_BLOCKER_TIME.

Chapter 1
Performance and High-Availability Options

1-177

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Prepare two terminal sessions, one logged in PDB20 as HR and another one logged
in PDB20 as SYSTEM.

a. Log in PDB20 as SYSTEM.

$ sqlplus system@PDB20

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Jan 20 08:20:09
2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Enter password: password

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

SQL> SET SQLPROMPT "SQL system> "
SQL system>

b. Log in PDB20 as HR.

$ sqlplus hr@PDB20

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Jan 20 08:20:09
2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Enter password: password

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

SQL> SET SQLPROMPT "SQL hr> "
SQL hr>

3. In the SYSTEM session, set the initialization parameter MAX_IDLE_BLOCKER_TIME to
two minutes.

SQL system> ALTER SYSTEM SET max_idle_blocker_time=2;

System altered.

SQL system> SHOW PARAMETER max_idle_blocker_time

NAME TYPE VALUE

Chapter 1
Performance and High-Availability Options

1-178

------------------------------- -----------

max_idle_blocker_time integer 2
SQL system>

4. In the HR session, update the employees' salary.

SQL hr> UPDATE hr.employees SET salary=salary*2;

107 rows updated.

SQL hr>

5. In the SYSTEM session, set all employees' commission percentage to 0. The
statement waits for the lock resources held on the row by HR be released.

SQL system> UPDATE hr.employees SET commission_pct=0;

After two minutes, observe that the statement is executed.

107 rows updated.

SQL system>

6. Back in the HR session, query the result of the salaries update.

SQL hr> SELECT salary FROM hr.employees;
SELECT salary FROM hr.employees *
ERROR at line 1:
ORA-03113: end-of-file on communication channel
Process ID: 32314
Session ID: 274 Serial number: 8179

SQL hr> EXIT
$

The session was automatically terminated because it held resource for a duration
longer than two minutes.

Observe the DIAG trace file:

$ cd /u01/app/oracle/diag/rdbms/database_unq_name/database_name/trace
$ ls -ltr
...
-rw-r----- 1 oracle oinstall 4139 Mar 16 04:38
CDB20_dia0_30961_base_1.trm
-rw-r----- 1 oracle oinstall 16101 Mar 16 04:38
CDB20_dia0_30961_base_1.trc
-rw-r----- 1 oracle oinstall 1067 Mar 16 04:48 CDB20_mmon_31003.trm
-rw-r----- 1 oracle oinstall 2614 Mar 16 04:48 CDB20_mmon_31003.trc
-rw-r----- 1 oracle oinstall 1107 Mar 16 04:49 CDB20_dbrm_30949.trm
-rw-r----- 1 oracle oinstall 3398 Mar 16 04:49 CDB20_dbrm_30949.trc
...

Chapter 1
Performance and High-Availability Options

1-179

$ cat CDB20_dia0_30961_base_1.trc
...
HM: Session with ID 274 serial # 8179 (U01I) on single instance 1 is
hung
 and is waiting on 'SQL*Net message from client' for 96 seconds.
 Session was previously waiting on 'SQL*Net more data to client'.
 Session ID 274 is blocking 1 session
...
HM: Session with ID 136 serial # 42403 (U011) on single instance 1 is
hung
 and is waiting on 'enq: TX - row lock contention' for 96 seconds.
 Session was previously waiting on 'db file sequential read'.
 Final Blocker is Session ID 274 serial# 8179 on instance 1
 which is waiting on 'SQL*Net message from client' for 108 seconds
 p1: 'driver id'=0x54435000, p2: '#bytes'=0x1, p3: ''=0x0
...
*** 2020-03-16T04:31:35.031598+00:00 (CDB$ROOT(1))
All Current Hang Statistics

 current number of hangs 1
 hangs:current number of impacted sessions 2
 current number of deadlocks 0
deadlocks:current number of impacted sessions 0
 current number of singletons 0
 current number of local active sessions 2
 current number of local hung sessions 1

Suspected Hangs in the System and possibly Rebuilt Hangs
 Root Chain Total Hang
 Hang Hang Inst Root #hung #hung Hang Hang Resolution
 ID Type Status Num Sess Sess Sess Conf Span Action
 ----- ---- -------- ---- ----- ----- ----- ------ ------

 1 HANG VALID 1 274 2 2 LOW LOCAL Terminate
Process

 Inst Sess Ser Proc Wait Wait
 Num ID Num OSPID Name Time(s) Event
 ----- ------ ----- --------- ----- ------- -----
 PDBID PDBNm
 ----- ---------------
 1 136 42403 32583 U011 97 enq: TX - row lock
contention
 7 PDB20
 1 274 8179 32314 U01I 110 SQL*Net message from client
 7 PDB20
;..
HM: current SQL: UPDATE hr.employees SET commission_pct=0

 IO
 Total Self- Total Total Outlr Outlr Outlr
 Hung Rslvd Rslvd Wait WaitTm Wait WaitTm Wait
 Sess Hangs Hangs Count Secs Count Secs Count Wait Event
------ ------ ------ ------ ------ ------ ------ ------ -----------
 1 0 0 0 0 0 0 0 enq: TX - row

Chapter 1
Performance and High-Availability Options

1-180

lock contention
...
HM: current SQL: UPDATE employees SET salary=salary*2
...
HM: Session ID 274 serial# 8179 ospid 32314 on instance 1 in Hang ID 1
 was considered hung but is now no longer hung

HM: Session with ID 274 with serial number 8179 is no longer hung

*** 2020-03-16T04:38:25.114410+00:00 (CDB$ROOT(1))
HM: Hang ID=1 detected at 03/16/2020 04:31:34 with victim:1/274/8179
 Evt:'SQL*Net message from client', SELF-RESOLVED after 0 matches
(0) (1).
$

You can also read the PMON trace file.

$ cat /u01/app/oracle/diag/rdbms/cdb20/CDB20/trace/CDB20_pmon_30913.trc
...
Kill idle blocker, hang detected

*** 2020-03-16T04:32:04.240685+00:00 ((7))
Idle session sniped info:
reason=max_idle_blocker_time parameter sess=0x86a06a20 sid=274
serial=8179 idle=2 limit=2 event=SQL*Net message from client
client details:
 O/S info: user: oracle, term: pts/0, ospid: 32312
 machine: edcdr8p1 program: sqlplus@edcdr8p1 (TNS V1-V3)
 application name: SQL*Plus, hash value=3669949024
Current SQL:
UPDATE employees SET salary=salary*2
End of Idle session sniped info
KILL SESSION for sid=(274, 8179):
 Reason = max_idle_blocker_time parameter, idle time = 2 mins,
currently waiting on 'SQL*Net message from
...
$

7. In the SYSTEM session, query the employees' commission percentage.

SQL system> SELECT DISTINCT commission_pct FROM hr.employees;

COMMISSION_PCT

 0

SQL system> EXIT
$

Expanded Syntax for PDB Application Synchronization
The ALTER PLUGGABLE DATABASE APPLICATION ... SYNC statement now
accepts multiple application names and names to be excluded. For example, a single

Chapter 1
Performance and High-Availability Options

1-181

statement issued in an application PDB can synchronize app1 and app2, or
synchronize all applications except app3.

The expanded syntax enables you to reduce the number of synchronization
statements. Also, the database replays the statements in correct order. Assume that
you upgrade ussales from v1 to v2, and then upgrade eusales from v1 to v2, and
then upgrade ussales from v2 to v3. The statement ALTER PLUGGABLE DATABASE
APPLICATION ussales, eusales SYNC replays the statements in sequence,
upgrading ussales to v2, then eusales to v2, and then ussales to v3.

• Details: Expanded Syntax for PDB Application Synchronization
This page provides more detailed information about enhancement of applications
synchronization in application PDBs.

• Practice: Synchronizing Multiple Applications In Application PDBs
This practice shows how to reduce the number of synchronization statements
when you have to synchronize multiple applications in application PDBs. In
previous Oracle Database versions, you had to execute as many synchronization
statements as applications.

Related Topics

• Oracle® Multitenant Administrator's Guide

Details: Expanded Syntax for PDB Application Synchronization
This page provides more detailed information about enhancement of applications
synchronization in application PDBs.

CDB1

CDB root

Application root PDB_HR

Application PDB
PDB1

Application PDB
PDB2

App PDB
PDB3

Application APP1
Version 4.1 -> 4.2

Application APP2
Version 4.1 -> 4.2

SQL> CONNECT sys@PDB_HR
SQL> ALTER PLUGGABLE DATABASE APPLICATION app1
 BEGIN UPGRADE '4.1' TO '4.2';

1- Start the APP1 application upgrade.

SQL> @scripts
SQL> ALTER PLUGGABLE DATABASE APPLICATION app1
 END UPGRADE '4.1' TO '4.2';

2- Complete the APP1 application upgrade.

SQL> ALTER PLUGGABLE DATABASE APPLICATION app2
 BEGIN UPGRADE '4.1' TO '4.2';

3- Start the APP2 application upgrade.

SQL> @scripts_2

SQL> ALTER PLUGGABLE DATABASE APPLICATION app2

 END UPGRADE '4.1' TO '4.2';

4- Complete the APP2 application upgrade.

SQL> ALTER PLUGGABLE DATABASE APPLICATION

 app1, app2 SYNC;

5- Synchronize both APP1 and APP2 applications.

In Oracle Database 19c, the ALTER PLUGGABLE DATABASE APPLICATION … SYNC
statement accepts only one application name to synchronize with the application root.
You had to execute the statement as many times as the number of applications to
synchronize with the application root.

In Oracle Database 20c, the benefit of the ALTER PLUGGABLE DATABASE APPLICATION …
SYNC statement is that it allows you to execute the statement only once for multiple

Chapter 1
Performance and High-Availability Options

1-182

application names. For example, a single statement issued in an application PDB can
synchronize apexapp and ordsapp, or synchronize all applications except ordsapp.

When applications depend on one another, synchronizing them in a single statement
is necessary for functional correctness. Assume that you upgrade apexapp from 1.0 to
2.0, upgrade ordsapp from 1.0 to 2.0, and then upgrade apexapp to 3.0. The statement
ALTER PLUGGABLE DATABASE APPLICATION apexapp, ordsapp SYNC replays the
upgrades in sequence, upgrading apexapp to 2.0, ordsapp to 2.0, and then apexapp to
3.0. Synchronizing apexapp and then ordsapp in separate statements does not
preserve the upgrade order.

Practice: Synchronizing Multiple Applications In Application PDBs
This practice shows how to reduce the number of synchronization statements when
you have to synchronize multiple applications in application PDBs. In previous Oracle
Database versions, you had to execute as many synchronization statements as
applications.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Use the /home/oracle/labs/M104780GC10/setup_apps.sh shell script to install the
TOYS_APP and the SALES_TOYS_APP applications in the TOYS_ROOT application
container for both ROBOTS and DOLLS application PDBs. The script defines the
application container, installs the two applications in the application container, and
finally creates the two application PDBs in the application container.

a. To be able to connect during the shell script execution to TOYS_ROOT, ROBOTS
and DOLLS, create the entries in the tnsnames.ora file as explained in practices
environment.

b. Execute the shell script.

$ cd /home/oracle/labs/M104780GC10
$ /home/oracle/labs/M104780GC10/setup_apps.sh
...
SQL> ALTER PLUGGABLE DATABASE toys_root CLOSE IMMEDIATE;

Pluggable database altered.

SQL> DROP PLUGGABLE DATABASE robots INCLUDING DATAFILES;

Pluggable database dropped.

SQL> DROP PLUGGABLE DATABASE dolls INCLUDING DATAFILES;

Pluggable database dropped.

SQL> DROP PLUGGABLE DATABASE toys_root INCLUDING DATAFILES;

Pluggable database dropped.

SQL> ALTER SESSION SET db_create_file_dest='/home/oracle/labs/
toys_root';

Session altered.

Chapter 1
Performance and High-Availability Options

1-183

SQL> CREATE PLUGGABLE DATABASE toys_root AS APPLICATION CONTAINER
 2 ADMIN USER admin IDENTIFIED BY password ROLES=(CONNECT);

Pluggable database created.

SQL> alter PLUGGABLE DATABASE toys_root open;

Pluggable database altered.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Fri Nov 29 03:03:18
2019
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

SQL> ALTER PLUGGABLE DATABASE APPLICATION toys_app begin install
'1.0';

Pluggable database altered.

SQL>
SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST='/home/oracle/labs/
toys_root';

System altered.

SQL> CREATE TABLESPACE toys_tbs DATAFILE SIZE 100M autoextend on
next 10M maxsize 200M;

Tablespace created.

SQL> create user toys_owner identified by password container=all;

User created.

SQL> grant create session, dba to toys_owner;

Grant succeeded.

SQL>
SQL> CREATE TABLE toys_owner.categories SHARING=DATA (c1 number,
category varchar2(20));

Table created.

Chapter 1
Performance and High-Availability Options

1-184

SQL> INSERT INTO toys_owner.categories VALUES (1,'GAMES');

1 row created.

SQL> INSERT INTO toys_owner.categories VALUES (2,'PUPPETS');

1 row created.

SQL> INSERT INTO toys_owner.categories VALUES (3,'VEHICLES');

1 row created.

SQL> COMMIT;

Commit complete.

SQL>
SQL> ALTER PLUGGABLE DATABASE APPLICATION toys_app end install
'1.0';

Pluggable database altered.

SQL>
SQL> ALTER PLUGGABLE DATABASE APPLICATION sales_toys_app BEGIN
INSTALL '1.0';

Pluggable database altered.

SQL>
SQL> CREATE USER sales_toys IDENTIFIED BY password CONTAINER=ALL;

User created.

SQL> GRANT create session, dba TO sales_toys;

Grant succeeded.

SQL> ALTER USER sales_toys DEFAULT TABLESPACE toys_tbs;

User altered.

SQL> CREATE TABLE sales_toys.sales_data sharing=extended data
 2 (year number(4),
 3 region varchar2(10),
 4 quarter varchar2(4),
 5 revenue number);

Table created.

SQL> INSERT INTO sales_toys.sales_data VALUES (2019,'US','Q1',
100000);

1 row created.

Chapter 1
Performance and High-Availability Options

1-185

SQL> INSERT INTO sales_toys.sales_data VALUES (2019,'US','Q2',
400000);

1 row created.

SQL> INSERT INTO sales_toys.sales_data VALUES (2019,'EU','Q2',
50000);

1 row created.

SQL> INSERT INTO sales_toys.sales_data VALUES (2019,'ASIA','Q3',
300000);

1 row created.

SQL> INSERT INTO sales_toys.sales_data VALUES (2019,'EU','Q3',
20000);

1 row created.

SQL> COMMIT;

Commit complete.

SQL>
SQL> ALTER PLUGGABLE DATABASE APPLICATION sales_toys_app END
INSTALL '1.0';

Pluggable database altered.

SQL>
SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Fri Nov 29 03:03:37
2019
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

SQL>
SQL> ALTER SESSION SET DB_CREATE_FILE_DEST='/home/oracle/labs/
toys_root/robots';

Session altered.

SQL> CREATE PLUGGABLE DATABASE robots ADMIN USER admin identified

Chapter 1
Performance and High-Availability Options

1-186

by password ROLES=(CONNECT);

Pluggable database created.

SQL> ALTER SESSION SET DB_CREATE_FILE_DEST='/home/oracle/labs/
toys_root/dolls';

Session altered.

SQL> CREATE PLUGGABLE DATABASE dolls ADMIN USER admin identified by
password ROLES=(CONNECT);

Pluggable database created.

SQL>
SQL> alter pluggable database robots open;

Pluggable database altered.

SQL> alter pluggable database dolls open;

Pluggable database altered.

SQL>
SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

3. Display the applications installed in the application container.

$ sqlplus / AS SYSDBA

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Mar 16 05:29:42 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0
SQL> COL app_name FORMAT A16
SQL> COL app_version FORMAT A12
SQL> COL pdb_name FORMAT A10
SQL> SELECT app_name, app_version, app_status, p.pdb_name
 FROM cdb_applications a, cdb_pdbs p
 WHERE a.con_id = p.pdb_id
 AND app_name NOT LIKE '%APP$%'
 ORDER BY 1;

APP_NAME APP_VERSION APP_STATUS PDB_NAME
---------------- ------------ ------------ ----------
SALES_TOYS_APP 1.0 NORMAL TOYS_ROOT
TOYS_APP 1.0 NORMAL TOYS_ROOT

Chapter 1
Performance and High-Availability Options

1-187

SQL>

Observe that the applications toys_app and sales_toys_app are installed in the
application container at version 1.0.

4. Synchronize the application PDBs with the new applications toys_app and
sales_toys_app installed.

SQL> CONNECT sys@robots AS SYSDBA
Enter password: password
SQL> ALTER PLUGGABLE DATABASE APPLICATION toys_app, sales_toys_app SYNC;

Pluggable database altered.

SQL> SELECT app_name, app_version, app_status, p.pdb_name
 FROM cdb_applications a, cdb_pdbs p
 WHERE a.con_id = p.pdb_id
 AND app_name NOT LIKE '%APP$%'
 ORDER BY 1;

APP_NAME APP_VERSION APP_STATUS PDB_NAME
---------------- ------------ ------------ ----------
SALES_TOYS_APP 1.0 NORMAL ROBOTS
TOYS_APP 1.0 NORMAL ROBOTS

SQL> CONNECT sys@dolls AS SYSDBA
Enter password: password
SQL> ALTER PLUGGABLE DATABASE APPLICATION toys_app, sales_toys_app SYNC;

Pluggable database altered.

SQL> SELECT app_name, app_version, app_status, p.pdb_name
 FROM cdb_applications a, cdb_pdbs p
 WHERE a.con_id = p.pdb_id
 AND app_name NOT LIKE '%APP$%'
 ORDER BY 1;

APP_NAME APP_VERSION APP_STATUS PDB_NAME
---------------- ------------ ------------ ----------
SALES_TOYS_APP 1.0 NORMAL DOLLS
TOYS_APP 1.0 NORMAL DOLLS

SQL> CONNECT / AS SYSDBA
Connected.
SQL> SELECT app_name, app_version, app_status, p.pdb_name
 FROM cdb_applications a, cdb_pdbs p
 WHERE a.con_id = p.pdb_id
 AND app_name NOT LIKE '%APP$%'
 ORDER BY 1;

APP_NAME APP_VERSION APP_STATUS PDB_NAME
---------------- ------------ ------------ ----------
SALES_TOYS_APP 1.0 NORMAL DOLLS
SALES_TOYS_APP 1.0 NORMAL ROBOTS

Chapter 1
Performance and High-Availability Options

1-188

SALES_TOYS_APP 1.0 NORMAL TOYS_ROOT
TOYS_APP 1.0 NORMAL DOLLS
TOYS_APP 1.0 NORMAL TOYS_ROOT
TOYS_APP 1.0 NORMAL ROBOTS

6 rows selected.

SQL> EXIT
$

Details: Using non-CDBs and CDBs
This page provides information about the availability of CDBs only in Oracle Database
20c. The non-CDB architecture was deprecated in Oracle Database 12c. It is
desupported in Oracle Database 20c which means that the Oracle Universal Installer
and DBCA can no longer be used to create non-CDB Oracle Database instances.

CDB1 logical structure

CDB root

 PDB PDB1 PDB PDB2

$ dbca -silent -createDatabase -templateName General_Purpose.dbc
 -gdbname ORCL -sid ORCL
 -createAsContainerDatabase false ...

[FATAL] [DBT-10333] Container database (CDB) creation option
 is not selected.
 CAUSE: Non-CDB creation is not supported.
 ACTION: Make sure container database (CDB) option is selected.
$

Creating CDBs only

ORCL logical structure

Creating non-CDBs not supported any longer

ORCL physical structure

CDB1 physical structure

$ dbca -silent -createDatabase -templateName General_Purpose.dbc
 -gdbname ORCL -sid ORCL -totalMemory 1800
 -sysPassword "password" ...

- Not necessary to use -createAsContainerDatabase clause
 any longer

20c

- No PDB created by default

A multitenant container database is the only supported architecture in Oracle
Database 20c.

Tools and Languages
• Analytical SQL and Statistical Functions

• SQL

Analytical SQL and Statistical Functions
• Bitwise Aggregate Functions

• New Analytical and Statistical Aggregate Functions

• Enhanced Analytic Functions

Chapter 1
Tools and Languages

1-189

Bitwise Aggregate Functions
New aggregate functions BIT_AND_AGG, BIT_OR_AGG, and BIT_XOR_AGG enable
bitwise aggregation of integer columns and columns that can be converted or rounded
to integer values.

Bitwise aggregation functions enable bitwise type processing directly in SQL. Use of
these new functions improves overall query performance by eliminating unnecessary
data movement and by taking full advantage of other database capabilities such as
parallel processing.

• Practice: Using Bitwise Aggregate Functions
This practice shows how to use the new BIT_AND_AGG, BIT_OR_AGG and
BIT_XOR_AGG bitwise aggregate functions at the bit level of records within a group.
BIT_AND_AGG, BIT_OR_AGG and BIT_XOR_AGG return the result of bitwise AND, OR
and XOR operations respectively. These aggregates can be performed on a single
numeric column or an expression. The return type of a bitwise aggregate operation
is always a number.

Related Topics

• Oracle® Database Data Warehousing Guide

Practice: Using Bitwise Aggregate Functions
This practice shows how to use the new BIT_AND_AGG, BIT_OR_AGG and BIT_XOR_AGG
bitwise aggregate functions at the bit level of records within a group. BIT_AND_AGG,
BIT_OR_AGG and BIT_XOR_AGG return the result of bitwise AND, OR and XOR
operations respectively. These aggregates can be performed on a single numeric
column or an expression. The return type of a bitwise aggregate operation is always a
number.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Connect to PDB20 as SYSTEM to query values with numbers and bitwise aggregate
functions.

$ sqlplus system@PDB20

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Mar 16 08:48:55 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Enter password: password
Last Successful login time: Mon Mar 16 2020 04:28:54 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

3. A bitwise AND is a binary operation that takes two equal-length binary
representations and performs the logical AND operation on each pair of the
corresponding bits. If both bits in the compared position are 1, the bit in the
resulting binary representation is 1, otherwise, the result is 0. Apply the

Chapter 1
Tools and Languages

1-190

BIT_AND_AGG function on two numbers. The bit pattern for the values used in the
examples below are 01 for 1, 10 for 2, and 11 for 3.

SQL> WITH x AS (SELECT 2 c1 FROM dual UNION ALL SELECT 3 FROM dual)
 SELECT BIT_AND_AGG(c1) FROM x;

BIT_AND_AGG(C1)

 2

SQL>

4. A bitwise OR is a binary operation that takes two bit patterns of equal length and
performs the logical inclusive OR operation on each pair of corresponding bits.
The result in each position is 0 if both bits are 0, otherwise the result is 1. Apply
the BIT_OR_AGG function on two numbers.

SQL> WITH x AS (SELECT 2 c1 FROM dual UNION ALL SELECT 3 FROM dual)
 SELECT BIT_OR_AGG(c1) FROM x;

BIT_OR_AGG(C1)

 3

SQL>

5. A bitwise XOR is a binary operation that takes two bit patterns of equal length and
performs the logical exclusive OR operation on each pair of corresponding bits.
The result in each position is 1 if only the first bit is 1 or only the second bit is 1,
but will be 0 if both are 0 or both are 1. Therefore, the comparison of two bits
results in 1 if the two bits are different, and 0 if they are equal. Apply the
BIT_XOR_AGG function on two numbers.

SQL> WITH x AS (SELECT 2 c1 FROM dual UNION ALL SELECT 3 FROM dual)
 SELECT BIT_XOR_AGG(c1) FROM x;

BIT_XOR_AGG(C1)

 1

SQL> EXIT
$

New Analytical and Statistical Aggregate Functions
New analytical and statistical aggregate functions are available in SQL:

CHECKSUM computes the checksum of the input values or expression.

KURTOSIS functions KURTOSIS_POP and KURTOSIS_SAMP measure the tailedness of
a data set where a higher value means more of the variance within the data set is the
result of infrequent extreme deviations as opposed to frequent modestly sized
deviations. Note that a normal distribution has a kurtosis of zero.

Chapter 1
Tools and Languages

1-191

SKEWNESS functions SKEWNESS_POP and SKEWNESS_SAMP are measures of
asymmetry in data. A positive skewness is means the data skews to the right of the
center point. A negative skewness means the data skews to the left.

All of these new aggregate functions support the keywords ALL, DISTINCT, and
UNIQUE.

With these additional SQL aggregation functions, you can write more efficient code
and benefit from faster in-database processing.

• Practice: Detecting Data Tampering with the CHECKSUM Function
This practice shows how to use the CHECKSUM aggregate function to detect
changes in a table. The function can be applied on a column, a constant, a bind
variable, or an expression involving them. All datatypes except ADT and JSON are
supported. The order of the rows in the table does not affect the result.

• Practice: Measuring Asymmetry in Data with the SKEWNESS Functions
This practice shows how to use the SKEWNESS_POP and SKEWNESS_SAMP aggregate
functions to measure asymmetry in data. For a given set of values, the result of
population skewness (SKEWNESS_POP) and sample skewness (SKEWNESS_SAMP) are
always deterministic.

• Practice: Measuring Tailedness of Data with the KURTOSIS Functions
This practice shows how to use the KURTOSIS_POP and KURTOSIS_SAMP aggregate
functions to measure tailedness of data. Higher kurtosis means more of the
variance is the result of infrequent extreme deviations, as opposed to frequent
modestly sized deviations. A normal distribution has a kurtosis of zero.

Related Topics

• Oracle® Database Data Warehousing Guide

Practice: Detecting Data Tampering with the CHECKSUM Function
This practice shows how to use the CHECKSUM aggregate function to detect changes in
a table. The function can be applied on a column, a constant, a bind variable, or an
expression involving them. All datatypes except ADT and JSON are supported. The
order of the rows in the table does not affect the result.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Execute the /home/oracle/labs/M104784GC10/setup_SH_tables.sh shell script to
create and load SH.SALES and SH.TIMES tables.

$ cd /home/oracle/labs/M104784GC10
$ /home/oracle/labs/M104784GC10/setup_SH_tables.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Wed Mar 25 03:18:51 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Last Successful login time: Wed Mar 25 2020 03:17:43 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

Chapter 1
Tools and Languages

1-192

Tablespace dropped.

Tablespace created.

Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Wed Mar 25 03:19:13 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Last Successful login time: Wed Mar 25 2020 03:18:51 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

specify password for SH as parameter 1:

specify default tablespace for SH as parameter 2:

specify temporary tablespace for SH as parameter 3:

specify password for SYS as parameter 4:

specify directory path for the data files as parameter 5:

writeable directory path for the log files as parameter 6:

specify version as parameter 7:

specify connect string as parameter 8:

Session altered.

User dropped.
...
loading TIMES using:
/home/oracle/labs/M104784GC10/sales_history/time_v3.ctl
/home/oracle/labs/M104784GC10/sales_history/time_v3.dat
/home/oracle/labs/M104784GC10/time_v3.log

SQL*Loader: Release 20.0.0.0.0 - Production on Wed Mar 25 03:10:13 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.

Path used: Direct
Save data point reached - logical record count 1000.

Load completed - logical record count 1826.

Chapter 1
Tools and Languages

1-193

Table TIMES:
 1826 Rows successfully loaded.
...
loading additonal SALES using:
/home/oracle/labs/M104784GC10/sales_history/dmsal_v3.ctl
/home/oracle/labs/M104784GC10/sales_history/dmsal_v3.dat
/home/oracle/labs/M104784GC10/dmsal_v3.log

SQL*Loader: Release 20.0.0.0.0 - Production on Wed Mar 25 03:10:45 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.

Path used: Direct
Save data point reached - logical record count 100.
Save data point reached - logical record count 200.
Save data point reached - logical record count 300.
Save data point reached - logical record count 400.
Save data point reached - logical record count 500.
Save data point reached - logical record count 600.
Save data point reached - logical record count 700.
Save data point reached - logical record count 800.
Save data point reached - logical record count 900.
Save data point reached - logical record count 1000.
Save data point reached - logical record count 1100.
Save data point reached - logical record count 1200.
Save data point reached - logical record count 1300.
Save data point reached - logical record count 1400.
Save data point reached - logical record count 1500.
SQL*Loader-2026: the load was aborted because SQL Loader cannot
continue.

Load completed - logical record count 1600.

Table SALES:
 1500 Rows successfully loaded.
...
gathering statistics ...

PL/SQL procedure successfully completed.

PL/SQL procedure successfully completed.

SQL>

3. At the end of each month and fiscal period, for legislative reasons, there is an
audit table that stores what was sold. Verify the amount sold at the end of fiscal
year 1998.

SQL> CONNECT system@PDB20
Enter password: password
SQL> SET PAGES 100
SQL> SELECT amount_sold FROM sh.sales s

Chapter 1
Tools and Languages

1-194

 JOIN sh.times t ON (s.time_id = t.time_id)
 WHERE fiscal_month_number = 12 AND fiscal_year = 1998;

AMOUNT_SOLD

 22.99
 44.99
 7.99
 149.99
...
 11.99
 44.99
 49.99
 11.99
 44.99
 27.99
 149.99
 44.99

12400 rows selected.

SQL>

4. Before storing the data for auditing, note the CHECKSUM value. This will help you
ensure that no one is tampering with old sales.

SQL> SELECT CHECKSUM(amount_sold) FROM sh.sales s
 JOIN sh.times t ON (s.time_id = t.time_id)
 WHERE fiscal_month_number = 12 AND fiscal_year = 1998;

CHECKSUM(AMOUNT_SOLD)

 793409

SQL>

5. Meanwhile in another terminal session, called SH session, someone executes a
batch that updates the amount sold.

$ /home/oracle/labs/M104784GC10/app_SH_tables.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Wed Mar 25 03:28:37 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Last Successful login time: Wed Mar 25 2020 03:20:17 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

525 rows updated.

Commit complete.

Chapter 1
Tools and Languages

1-195

Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

6. In the initial terminal session, check that no one tampered with old sales.

SQL> SELECT CHECKSUM(amount_sold) FROM sh.sales s
 JOIN sh.times t ON (s.time_id = t.time_id)
 WHERE fiscal_month_number = 12 AND fiscal_year = 1998;

CHECKSUM(AMOUNT_SOLD)

 835564

SQL>

Since the checksum value is different from the value retrieved in step 4, someone
tampered the data.

7. What happens if someone attempted to tamper with old sales? In the SH session,
update some old sales but then rolls the transaction back.

$ sqlplus sh@PDB20

SQL*Plus: Release 20.0.0.0.0 - Production on Wed Mar 25 03:45:09 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Enter password: password
Last Successful login time: Wed Mar 25 2020 03:28:37 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> UPDATE sh.sales SET amount_sold = amount_sold*2 WHERE time_id='30-
NOV-98';

525 rows updated.

SQL> ROLLBACK;

Rollback complete.

SQL>

8. In the initial terminal session, check that no one tampered with old sales.

SQL> SELECT CHECKSUM(amount_sold) FROM sh.sales s
 JOIN sh.times t ON (s.time_id = t.time_id)
 WHERE fiscal_month_number = 12 AND fiscal_year = 1998;

CHECKSUM(AMOUNT_SOLD)

Chapter 1
Tools and Languages

1-196

 835564

SQL>

The checksum value for the column is still the same as it was before the rolled
back update.

9. Verify also the quantity sold at the end of fiscal year 1998 and the checksum
value.

SQL> SELECT DISTINCT quantity_sold FROM sh.sales s
 JOIN sh.times t ON (s.time_id = t.time_id)
 WHERE fiscal_month_number = 12 AND fiscal_year = 1998;

QUANTITY_SOLD

 1

SQL>

As you can see, the quantity sold for any sales is one.

SQL> SELECT CHECKSUM(quantity_sold) FROM sh.sales s
 JOIN sh.times t ON (s.time_id = t.time_id)
 WHERE fiscal_month_number = 12 AND fiscal_year = 1998;

CHECKSUM(QUANTITY_SOLD)

 0

SQL>

The checksum value is 0 which is not a distinguishable value from another
quantity value.

What if you use the DISTINCT (or UNIQUE- UNIQUE is an Oracle specific keyword
and not an ANSI standard)?

SQL> SELECT CHECKSUM(DISTINCT quantity_sold) FROM sh.sales s
 JOIN sh.times t ON (s.time_id = t.time_id)
 WHERE fiscal_month_number = 12 AND fiscal_year = 1998;

CHECKSUM(DISTINCTQUANTITY_SOLD)

 863352

SQL>

10. In the SH session, double the quantity for all sales.

SQL> UPDATE sh.sales SET quantity_sold = 2;

918843 rows updated.

Chapter 1
Tools and Languages

1-197

SQL> COMMIT;

Commit complete.

SQL>

11. In the initial terminal session, check that no one tampered with old sales.

SQL> SELECT CHECKSUM(quantity_sold) FROM sh.sales s
 JOIN sh.times t ON (s.time_id = t.time_id)
 WHERE fiscal_month_number = 12 AND fiscal_year = 1998;

CHECKSUM(AMOUNT_SOLD)

 0

SQL>

The checksum value for the column is still the same as it was before the
committed update.

SQL> SELECT CHECKSUM(DISTINCT quantity_sold) FROM sh.sales s
 JOIN sh.times t ON (s.time_id = t.time_id)
 WHERE fiscal_month_number = 12 AND fiscal_year = 1998;

CHECKSUM(DISTINCTQUANTITY_SOLD)

 65515

SQL>

The checksum value for the column is different from the one retrieved in step 9.

12. How is NULL considered? Still in the initial terminal session, check that no one
tampered with old sales of the end of fiscal year 1998, stored in the
SALES_TRANSACTIONS_EXT table whose amount sold is 1282.7.

a. First, get the checksum value of old sales of the end of fiscal year 1998 whose
amount sold is 1282.7.

SQL> SELECT CHECKSUM(DISTINCT amount_sold), CHECKSUM(DISTINCT
quantity_sold) FROM sh.SALES_TRANSACTIONS_EXT s
 JOIN sh.times t ON (s.time_id = t.time_id)
 WHERE fiscal_month_number = 12 AND fiscal_year = 1998 AND
amount_sold = to_number('1282.7');

CHECKSUM(AMOUNT_SOLD) CHECKSUM(QUANTITY_SOLD)
--------------------- -----------------------
 422955 863352

SQL>

Chapter 1
Tools and Languages

1-198

b. In the SH session, the user launched a batch that replaces the quantity sold by
a null value for the old sales of the end of fiscal year 1998 whose amount sold
is 1282.7.

SQL> @/home/oracle/labs/M104784GC10/batch.sql
...
SQL> EXIT
$

c. In the initial terminal session, get the new checksum value of old sales of the
end of fiscal year 1998 whose amount sold is 1282.7 after the update.

SQL> SELECT CHECKSUM(DISTINCT amount_sold), CHECKSUM(DISTINCT
quantity_sold) FROM sh.SALES_TRANSACTIONS_EXT s
 JOIN sh.times t ON (s.time_id = t.time_id)
 WHERE fiscal_month_number = 12 AND fiscal_year = 1998 AND
amount_sold = to_number('1282.7');

CHECKSUM(AMOUNT_SOLD) CHECKSUM(QUANTITY_SOLD)
--------------------- -----------------------
 422955 863352

SQL> SELECT amount_sold, quantity_sold FROM
sh.SALES_TRANSACTIONS_EXT
 WHERE amount_sold = to_number('1282.7')
 AND quantity_sold IS NULL;

AMOUNT_SOLD QUANTITY_SOLD
----------- -------------
 1282.7

SQL> EXIT
$

Be aware that NULL values in CHECKSUM column are ignored.

Practice: Measuring Asymmetry in Data with the SKEWNESS Functions
This practice shows how to use the SKEWNESS_POP and SKEWNESS_SAMP aggregate
functions to measure asymmetry in data. For a given set of values, the result of
population skewness (SKEWNESS_POP) and sample skewness (SKEWNESS_SAMP) are
always deterministic.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Connect to PDB20 as HR and execute the /home/oracle/labs/M104784GC10/
Houses_Prices.sql SQL script. The SQL script creates a table with skewed data.

$ cd /home/oracle/labs/M104784GC10
$ sqlplus hr@PDB20

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Mar 16 09:27:03 2020
Version 20.2.0.0.0

Chapter 1
Tools and Languages

1-199

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Enter password: password
Last Successful login time: Mon Mar 16 2020 08:49:41 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> @/home/oracle/labs/M104784GC10/Houses_Prices.sql
SQL> SET ECHO ON
SQL>SQL> DROP TABLE houses;
DROP TABLE houses
 *
ERROR at line 1:
ORA-00942: table or view does not exist

SQL> CREATE TABLE houses (house NUMBER, price_big_city NUMBER,
price_small_city NUMBER, price_date DATE);

Table created.

SQL> INSERT INTO houses VALUES (1,100000,10000, sysdate);

1 row created.

SQL> INSERT INTO houses VALUES (1,200000,15000, sysdate+1);

1 row created.

SQL> INSERT INTO houses VALUES (1,300000,25000, sysdate+1);

1 row created.

SQL> INSERT INTO houses VALUES (1,400000,28000, sysdate+2);

1 row created.

SQL> INSERT INTO houses VALUES (1,500000,30000, sysdate+3);

1 row created.

SQL> INSERT INTO houses VALUES (1,600000,32000, sysdate+3);

1 row created.

SQL> INSERT INTO houses VALUES (1,700000,35000, sysdate+4);

1 row created.

SQL> INSERT INTO houses VALUES (1,800000,38000, sysdate+4);

1 row created.

SQL> INSERT INTO houses VALUES (1,900000,40000, sysdate+5);

Chapter 1
Tools and Languages

1-200

1 row created.

SQL>
SQL> INSERT INTO houses VALUES (2,2000000,1000000, sysdate+6);

1 row created.

SQL> INSERT INTO houses VALUES (2,200000,20000, sysdate);

1 row created.

SQL> INSERT INTO houses VALUES (2,400000,35000, sysdate+1);

1 row created.

SQL> INSERT INTO houses VALUES (2,600000,55000, sysdate+1);

1 row created.

SQL> INSERT INTO houses VALUES (2,800000,48000, sysdate+2);

1 row created.

SQL>
SQL> INSERT INTO houses VALUES (3,400000,40000, sysdate+3);

1 row created.

SQL> INSERT INTO houses VALUES (3,500000,42000, sysdate+3);

1 row created.

SQL> INSERT INTO houses VALUES (3,600000,45000, sysdate+4);

1 row created.

SQL> INSERT INTO houses VALUES (3,700000,48000, sysdate+4);

1 row created.

SQL> INSERT INTO houses VALUES (3,800000,49000, sysdate+5);

1 row created.

SQL> COMMIT;

Commit complete.

SQL>

3. Display the table rows. The HOUSE column values refer to types of house that you
want to look at and categorize the data that you look at statistically and compare
with each other. With Skewness, you measure whether there is more data towards

Chapter 1
Tools and Languages

1-201

the left or the right end of the tail (positive/negative) or how close you are to a
normal distribution (skewness = 0).

SQL> SET PAGES 100
SQL> SELECT * FROM houses;

 HOUSE PRICE_BIG_CITY PRICE_SMALL_CITY PRICE_DAT
---------- -------------- ---------------- ---------
 1 100000 10000 05-FEB-20
 1 200000 15000 06-FEB-20
 1 300000 25000 06-FEB-20
 1 400000 28000 07-FEB-20
 1 500000 30000 08-FEB-20
 1 600000 32000 08-FEB-20
 1 700000 35000 09-FEB-20
 1 800000 38000 09-FEB-20
 1 900000 40000 10-FEB-20
 2 2000000 1000000 11-FEB-20
 2 200000 20000 05-FEB-20
 2 400000 35000 06-FEB-20
 2 600000 55000 06-FEB-20
 2 800000 48000 07-FEB-20
 3 400000 40000 08-FEB-20
 3 500000 42000 08-FEB-20
 3 600000 45000 09-FEB-20
 3 700000 48000 09-FEB-20
 3 800000 49000 10-FEB-20

19 rows selected.

SQL>

4. Display the result of population skewness prices (SKEWNESS_POP) and sample
skewness prices (SKEWNESS_SAMP) for the three houses in the table.

SQL> SELECT house, count(house) FROM houses GROUP BY house ORDER BY 1;

 HOUSE COUNT(HOUSE)
---------- ------------
 1 9
 2 5
 3 5

SQL> SELECT house, SKEWNESS_POP(price_big_city),
SKEWNESS_POP(price_small_city) FROM houses
 GROUP BY house;

 HOUSE SKEWNESS_POP(PRICE_BIG_CITY) SKEWNESS_POP(PRICE_SMALL_CITY)
---------- ---------------------------- ------------------------------
 1 0 -.66864012
 2 1.13841996 1.49637083
 3 0 -.12735442

SQL> SELECT house, SKEWNESS_SAMP(price_big_city),
SKEWNESS_SAMP(price_small_city) FROM houses

Chapter 1
Tools and Languages

1-202

 GROUP BY house;

 HOUSE SKEWNESS_SAMP(PRICE_BIG_CITY) SKEWNESS_SAMP(PRICE_SMALL_CITY)
---------- ----------------------------- -------------------------------
 1 0 -.81051422
 2 1.69705627 2.23065793
 3 0 -.18984876

SQL>

Skewness is important in a situation where PRICE_BIG_CITY and
PRICE_SMALL_CITY represent the prices of houses to buy and you want to
determine whether the outliers in data are biased towards the left end or right end
of the distribution, that is, if there are more values to the left of the mean when
compared to the number of values to the right of the mean.

5. Insert more rows in the table.

SQL> INSERT INTO houses SELECT * FROM houses;

19 rows created.

SQL> /

38 rows created.

SQL> /

76 rows created.

SQL> /

152 rows created.

SQL> COMMIT;

Commit complete.

SQL> SELECT house, SKEWNESS_POP(price_big_city),
SKEWNESS_POP(price_small_city) FROM houses
 GROUP BY house ORDER BY 1;

 HOUSE SKEWNESS_POP(PRICE_BIG_CITY) SKEWNESS_POP(PRICE_SMALL_CITY)
---------- ---------------------------- ------------------------------
 1 0 -.66864012
 2 1.13841996 1.49637083
 3 0 -.12735442

SQL> SELECT house, SKEWNESS_SAMP(price_big_city),
SKEWNESS_SAMP(price_small_city) FROM houses
 GROUP BY house ORDER BY 1;

 HOUSE SKEWNESS_SAMP(PRICE_BIG_CITY) SKEWNESS_SAMP(PRICE_SMALL_CITY)
---------- ----------------------------- -------------------------------
 1 0 -.67569912

Chapter 1
Tools and Languages

1-203

 2 1.1602897 1.52511703
 3 0 -.12980098

SQL>

As you can see, as the number of values in the data set increases, the difference
between the computed values of SKEWNESS_SAMP and SKEWNESS_POP decreases.

6. Determine the skewness of distinct values in columns PRICE_BIG_CITY and
PRICE_SMALL_CITY.

SQL> SELECT house,
 SKEWNESS_POP(DISTINCT price_big_city)
pop_big_city,
 SKEWNESS_SAMP(DISTINCT price_big_city)
samp_big_city,
 SKEWNESS_POP(DISTINCT price_small_city)
pop_small_city,
 SKEWNESS_SAMP(DISTINCT price_small_city)
samp_small_city
 FROM houses
 GROUP BY house;

 HOUSE POP_BIG_CITY SAMP_BIG_CITY POP_SMALL_CITY SAMP_SMALL_CITY
---------- ------------ ------------- -------------- ---------------
 1 0 0 -.66864012 -.81051422
 2 1.13841996 1.69705627 1.49637083 2.23065793
 3 0 0 -.12735442 -.18984876

SQL>

Is the result much different if the query does not evaluate the distinct values in
columns PRICE_BIG_CITY and PRICE_SMALL_CITY?

SQL> SELECT house,
 SKEWNESS_POP(price_big_city) pop_big_city,
 SKEWNESS_SAMP(price_big_city) samp_big_city,
 SKEWNESS_POP(price_small_city) pop_small_city,
 SKEWNESS_SAMP(price_small_city) samp_small_city
 FROM houses
 GROUP BY house;

 HOUSE POP_BIG_CITY SAMP_BIG_CITY POP_SMALL_CITY SAMP_SMALL_CITY
---------- ------------ ------------- -------------- ---------------
 1 0 0 -.66864012 -.67569912
 2 1.13841996 1.1602897 1.49637083 1.52511703
 3 0 0 -.12735442 -.12980098

SQL>

The population skewness value is not different because the same exact rows were
inserted.

Chapter 1
Tools and Languages

1-204

7. Insert more rows in the table with a big data set for HOUSE number 1.

SQL> INSERT INTO houses (house, price_big_city, price_small_city)
 SELECT house, price_big_city*0.5, price_small_city*0.1
 FROM houses WHERE house=1;

144 rows created.

SQL> /

288 rows created.

SQL> /

576 rows created.

SQL> /

1152 rows created.

SQL> /

2304 rows created.

SQL> COMMIT;

Commit complete.

SQL> SELECT house, count(house) FROM houses GROUP BY house ORDER BY 1;

 HOUSE COUNT(HOUSE)
---------- ------------
 1 4608
 2 80
 3 80

SQL> SELECT house,
 SKEWNESS_POP(price_big_city) pop_big_city,
 SKEWNESS_SAMP(price_big_city) samp_big_city,
 SKEWNESS_POP(price_small_city) pop_small_city,
 SKEWNESS_SAMP(price_small_city) samp_small_city
 FROM houses
 GROUP BY house;

 HOUSE POP_BIG_CITY SAMP_BIG_CITY POP_SMALL_CITY SAMP_SMALL_CITY
---------- ------------ ------------- -------------- ---------------
 1 2.57050631 2.57134341 5.7418481 5.74371797
 2 1.13841996 1.1602897 1.49637083 1.52511703
 3 0 0 -.12735442 -.12980098

SQL>EXIT
$

Chapter 1
Tools and Languages

1-205

Now the skewness becomes positive for house number 1 which means that data is
skewed to right.

Practice: Measuring Tailedness of Data with the KURTOSIS Functions
This practice shows how to use the KURTOSIS_POP and KURTOSIS_SAMP aggregate
functions to measure tailedness of data. Higher kurtosis means more of the variance is
the result of infrequent extreme deviations, as opposed to frequent modestly sized
deviations. A normal distribution has a kurtosis of zero.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Connect to PDB20 as HR and execute the /home/oracle/labs/M104784GC10/
Houses_Prices.sql SQL script. The SQL script creates a table with data.

$ cd /home/oracle/labs/M104784GC10
$ sqlplus hr@PDB20

SQL*Plus: Release 20.0.0.0.0 - Production on Mon Mar 16 08:49:39 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Enter password: password
Last Successful login time: Mon Mar 16 2020 08:48:58 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.
SQL> @/home/oracle/labs/M104784GC10/Houses_Prices.sql
SQL>
SQL> DROP TABLE houses;

Table dropped.

SQL> CREATE TABLE houses (house NUMBER, price_big_city NUMBER,
price_small_city NUMBER, price_date DATE);

Table created.

SQL> INSERT INTO houses VALUES (1,100000,10000, sysdate);

1 row created.

SQL> INSERT INTO houses VALUES (1,200000,15000, sysdate+1);

1 row created.

SQL> INSERT INTO houses VALUES (1,300000,25000, sysdate+1);

1 row created.

SQL> INSERT INTO houses VALUES (1,400000,28000, sysdate+2);

1 row created.

Chapter 1
Tools and Languages

1-206

SQL> INSERT INTO houses VALUES (1,500000,30000, sysdate+3);

1 row created.

SQL> INSERT INTO houses VALUES (1,600000,32000, sysdate+3);

1 row created.

SQL> INSERT INTO houses VALUES (1,700000,35000, sysdate+4);

1 row created.

SQL> INSERT INTO houses VALUES (1,800000,38000, sysdate+4);

1 row created.

SQL> INSERT INTO houses VALUES (1,900000,40000, sysdate+5);

1 row created.

SQL>
SQL> INSERT INTO houses VALUES (2,2000000,1000000, sysdate+6);

1 row created.

SQL> INSERT INTO houses VALUES (2,200000,20000, sysdate);

1 row created.

SQL> INSERT INTO houses VALUES (2,400000,35000, sysdate+1);

1 row created.

SQL> INSERT INTO houses VALUES (2,600000,55000, sysdate+1);

1 row created.

SQL> INSERT INTO houses VALUES (2,800000,48000, sysdate+2);

1 row created.

SQL>
SQL> INSERT INTO houses VALUES (3,400000,40000, sysdate+3);

1 row created.

SQL> INSERT INTO houses VALUES (3,500000,42000, sysdate+3);

1 row created.

SQL> INSERT INTO houses VALUES (3,600000,45000, sysdate+4);

1 row created.

Chapter 1
Tools and Languages

1-207

SQL> INSERT INTO houses VALUES (3,700000,48000, sysdate+4);

1 row created.

SQL> INSERT INTO houses VALUES (3,800000,49000, sysdate+5);

1 row created.

SQL> COMMIT;

Commit complete.

SQL>

3. Display the table rows. The HOUSE column values refer to types of house that you
want to look at and categorize the data that you look at statistically and compare
with each other.

SQL> SET PAGES 100
SQL> SELECT * FROM houses;

 HOUSE PRICE_BIG_CITY PRICE_SMALL_CITY PRICE_DAT
---------- -------------- ---------------- ---------
 1 100000 10000 06-FEB-20
 1 200000 15000 07-FEB-20
 1 300000 25000 07-FEB-20
 1 400000 28000 08-FEB-20
 1 500000 30000 09-FEB-20
 1 600000 32000 09-FEB-20
 1 700000 35000 10-FEB-20
 1 800000 38000 10-FEB-20
 1 900000 40000 11-FEB-20
 2 2000000 1000000 12-FEB-20
 2 200000 20000 06-FEB-20
 2 400000 35000 07-FEB-20
 2 600000 55000 07-FEB-20
 2 800000 48000 08-FEB-20
 3 400000 40000 09-FEB-20
 3 500000 42000 09-FEB-20
 3 600000 45000 10-FEB-20
 3 700000 48000 10-FEB-20
 3 800000 49000 11-FEB-20

19 rows selected.

SQL>

4. Display the result of population kurtosis (KURTOSIS_POP) and sample kurtosis
(KURTOSIS_SAMP) for the three types of houses.

SQL> SELECT house, kurtosis_pop(price_big_city),
kurtosis_pop(price_small_city) FROM houses
 GROUP BY house;

 HOUSE KURTOSIS_POP(PRICE_BIG_CITY) KURTOSIS_POP(PRICE_SMALL_CITY)

Chapter 1
Tools and Languages

1-208

---------- ---------------------------- ------------------------------
 1 -1.23 -.7058169
 2 -.212 .245200191
 3 -1.3 -1.5417881

SQL> SELECT house, kurtosis_samp(price_big_city),
kurtosis_samp(price_small_city) FROM houses
 GROUP BY house;

 HOUSE KURTOSIS_SAMP(PRICE_BIG_CITY) KURTOSIS_SAMP(PRICE_SMALL_CITY)
---------- ----------------------------- -------------------------------
 1 -1.2 -.201556
 2 3.152 4.98080076
 3 -1.2 -2.1671526

SQL>

PRICE_SMALL_CITY has a higher kurtosis compared to PRICE_BIG_CITY. Observe
whether there is more data in the tails or around the peak in PRICE_SMALL_CITY
and in PRICE_BIG_CITY.

5. Insert more rows in the table.

SQL> INSERT INTO houses SELECT * FROM houses;

19 rows created.

SQL> /

38 rows created.

SQL> /

76 rows created.

SQL> /

152 rows created.

SQL> COMMIT;

Commit complete.

SQL> SELECT house, KURTOSIS_POP(price_big_city),
KURTOSIS_POP(price_small_city) FROM houses
 GROUP BY house ORDER BY 1;

 HOUSE KURTOSIS_POP(PRICE_BIG_CITY) KURTOSIS_POP(PRICE_SMALL_CITY)
---------- ---------------------------- ------------------------------
 1 -1.23 -.7058169
 2 -.212 .245200191
 3 -1.3 -1.5417881

SQL> SELECT house, KURTOSIS_SAMP(price_big_city),
KURTOSIS_SAMP(price_small_city) FROM houses

Chapter 1
Tools and Languages

1-209

 GROUP BY house ORDER BY 1;

 HOUSE KURTOSIS_SAMP(PRICE_BIG_CITY) KURTOSIS_SAMP(PRICE_SMALL_CITY)
---------- ----------------------------- -------------------------------
 1 -1.2309485 -.68809876
 2 -.14695105 .340165838
 3 -1.3061439 -1.5637533

SQL>

As you can see, as the number of values in the data set increases, the difference
between the computed values of KURTOSIS_SAMP and KURTOSIS_POP decreases.

6. Determine the kurtosis of distinct values in columns PRICE_SMALL_CITY and
PRICE_BIG_CITY.

SQL> SELECT house,
 KURTOSIS_POP(DISTINCT price_big_city)
pop_big_city,
 KURTOSIS_SAMP(DISTINCT price_big_city)
samp_big_city,
 KURTOSIS_POP(DISTINCT price_small_city)
pop_small_city,
 KURTOSIS_SAMP(DISTINCT price_small_city)
samp_small_city
 FROM houses
 GROUP BY house;

 HOUSE POP_BIG_CITY SAMP_BIG_CITY POP_SMALL_CITY SAMP_SMALL_CITY
---------- ------------ ------------- -------------- ---------------
 1 -1.23 -1.2 -.7058169 -.201556
 2 -.212 3.152 .245200191 4.98080076
 3 -1.3 -1.2 -1.5417881 -2.1671526

SQL>

Is the result much different if the query does not evaluate the distinct values in
columns PRICE_BIG_CITY and PRICE_SMALL_CITY?

SQL> SELECT house,
 KURTOSIS_POP(price_big_city) pop_big_city,
 KURTOSIS_SAMP(price_big_city) samp_big_city,
 KURTOSIS_POP(price_small_city) pop_small_city,
 KURTOSIS_SAMP(price_small_city) samp_small_city
 FROM houses
 GROUP BY house;

 HOUSE POP_BIG_CITY SAMP_BIG_CITY POP_SMALL_CITY SAMP_SMALL_CITY
---------- ------------ ------------- -------------- ---------------
 1 -1.23 -1.2309485 -.7058169 -.68809876
 2 -.212 -.14695105 .245200191 .340165838
 3 -1.3 -1.3061439 -1.5417881 -1.5637533

SQL>

Chapter 1
Tools and Languages

1-210

The population tailedness value is not different because the same exact rows were
inserted.

7. Insert more rows in the table with a big data set for HOUSE number 1.

SQL> INSERT INTO houses (house, price_big_city, price_small_city)
 SELECT house, price_big_city*0.5, price_small_city*0.1
 FROM houses WHERE house=1;

144 rows created.

SQL> /

288 rows created.

SQL> /

576 rows created.

SQL> /

1152 rows created.

SQL> /

2304 rows created.

SQL> COMMIT;

Commit complete.

SQL> SELECT house, count(house) FROM houses GROUP BY house ORDER BY 1;

 HOUSE COUNT(HOUSE)
---------- ------------
 1 4608
 2 80
 3 80

SQL> SELECT house,
 KURTOSIS_POP(price_big_city) pop_big_city,
 KURTOSIS_SAMP(price_big_city) samp_big_city,
 KURTOSIS_POP(price_small_city) pop_small_city,
 KURTOSIS_SAMP(price_small_city) samp_small_city
 FROM houses
 GROUP BY house;

 HOUSE POP_BIG_CITY SAMP_BIG_CITY POP_SMALL_CITY SAMP_SMALL_CITY
---------- ------------ ------------- -------------- ---------------
 1 9.12746931 9.13868421 33.7452495 33.7831972
 2 -.212 -.14695105 .245200191 .340165838
 3 -1.3 -1.3061439 -1.5417881 -1.5637533

SQL>EXIT
$

Chapter 1
Tools and Languages

1-211

Now the tailedness of the data becomes positive for house number 1 which means
that data is skewed to right.

PRICE_SMALL_CITY has a much higher kurtosis compared to PRICE_BIG_CITY. This
implies that in PRICE_SMALL_CITY, more of the variance is the result of many
infrequent extreme deviations, whereas in PRICE_BIG_CITY, the variance is
attributed to very frequent modestly sized deviations.

Enhanced Analytic Functions
Window functions now support the EXCLUDE options of the SQL standard window
frame clause. The query_block clause of a SELECT statement now supports the
window_clause, which implements the window clause of the SQL standard table
expression as defined in the SQL:2011 standard.

Supporting the full ANSI standard enables easier migration of applications that were
developed against other standard-compliant database systems.

• Practice: Using Enhanced Analytic Functions
This practice shows how to benefit from the new options of the window frame
clause, GROUPS and EXCLUDE, and also from the WINDOW clause in the table
expression.

Related Topics

• Oracle® Database Data Warehousing Guide

Practice: Using Enhanced Analytic Functions
This practice shows how to benefit from the new options of the window frame clause,
GROUPS and EXCLUDE, and also from the WINDOW clause in the table expression.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Experiment the usage of the GROUPS clause of the window frame.

a. Before starting experimenting the usage of the GROUPS clause of the window
frame, execute the /home/oracle/labs/M104784GC10/
setup_analytic_table.sh shell script. The shell script creates in both PDB20
and PDB19 the user REPORT, grants REPORT the CREATE SESSION, CREATE TABLE
and UNLIMITED TABLESPACE privileges, and finally creates the table TRADES
including rows.

$ /home/oracle/labs/M104784GC10
$ /home/oracle/labs/M104784GC10/setup_analytic_table.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Mon Feb 3 09:23:40 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

SQL> DROP USER report CASCADE;

Chapter 1
Tools and Languages

1-212

User dropped.

SQL> CREATE USER report IDENTIFIED BY password;

User created.

SQL> GRANT create session, create table, unlimited tablespace TO
report;

Grant succeeded.

SQL> CREATE TABLE report.trades (acno NUMBER, tid NUMBER, Tday
DATE, Ttype VARCHAR2(4), amount NUMBER, Ticker VARCHAR2(4));

Table created.

SQL> INSERT INTO report.trades VALUES (123, 1, sysdate, 'buy',
1000, 'CSCO');

1 row created.

SQL> INSERT INTO report.trades VALUES (123, 1, sysdate, 'buy', 400,
'JNPR');

1 row created.

SQL> INSERT INTO report.trades VALUES (123, 3, sysdate+2, 'buy',
2000, 'SYMC');

1 row created.

SQL> INSERT INTO report.trades VALUES (123, 4, sysdate+2, 'buy',
1200, 'CSCO');

1 row created.

SQL> INSERT INTO report.trades VALUES (123, 5, sysdate+2, 'buy',
500, 'JNPR');

1 row created.

SQL> INSERT INTO report.trades VALUES (123, 6, sysdate+4, 'buy',
200, 'CSCO');

1 row created.

SQL> INSERT INTO report.trades VALUES (123, 7, sysdate+4, 'buy',
100, 'CSCO');

1 row created.

SQL> INSERT INTO report.trades VALUES (123, 9, sysdate+5, 'buy',
400, 'JNPR');

1 row created.

Chapter 1
Tools and Languages

1-213

SQL> INSERT INTO report.trades VALUES (123, 10, sysdate+5, 'buy',
200, 'GOOG');

1 row created.

SQL> INSERT INTO report.trades VALUES (123, 11, sysdate+5, 'buy',
1000, 'JNPR');

1 row created.

SQL> INSERT INTO report.trades VALUES (123, 12, sysdate+5, 'buy',
4000, 'JNPR');

1 row created.

SQL> INSERT INTO report.trades VALUES (123, 13, sysdate+8, 'buy',
2000, 'HPQ');

1 row created.

SQL> COMMIT;

Commit complete.

SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

b. Display the rows of REPORT.TRADES in PDB20. Using ROWS, the user specifies
the window frame extent by counting rows forward or backward from the
current row. ROWS allows any number of sort keys, of any ordered data types.
This can be advantageous, because counting rows is oblivious to any “holes”
in the values that are sorted. On the other hand, counting rows from the
current row can be non-deterministic when there are multiple rows that are
identical in the sort keys, causing an arbitrary cutoff between two rows that
have the same values in the sort keys. Using RANGE, the user specifies an
offset. There must be precisely one sort key, and its declared type must be
amenable to addition and subtraction (i.e., numeric,datetime or interval). This
avoids the non-determinism of arbitrarily cutting between two adjacent rows
with the same value, but it can only be used with a single sort key of an
additive type. SQL:2011 standard includes a third way of specifying the
window frame extent, using the keyword GROUPS. Like ROWS, a GROUPS window
can have any number of sort keys, of any ordered types. Like RANGE, a GROUPS
window does not make cutoffs between adjacent rows with the same values in
the sort keys. Thus, GROUPS combines some of the features of both ROWS and
RANGE.

$ sqlplus report@PDB20
SQL*Plus: Release 20.0.0.0.0 - Production on Mon Feb 3 09:31:17 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Chapter 1
Tools and Languages

1-214

Enter password: password

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0
SQL> SET PAGES 100
SQL> SELECT * FROM trades;

 ACNO TID TDAY TTYP AMOUNT TICK
---------- ---------- --------- ---- ---------- ----
 123 1 08-APR-20 buy 1000 CSCO
 123 1 08-APR-20 buy 400 JNPR
 123 3 10-APR-20 buy 2000 SYMC
 123 4 10-APR-20 buy 1200 CSCO
 123 5 10-APR-20 buy 500 JNPR
 123 6 12-APR-20 buy 200 CSCO
 123 7 12-APR-20 buy 100 CSCO
 123 9 13-APR-20 buy 400 JNPR
 123 10 13-APR-20 buy 200 GOOG
 123 11 13-APR-20 buy 1000 JNPR
 123 12 13-APR-20 buy 4000 JNPR
 123 13 16-APR-20 buy 2000 HPQ

12 rows selected.

SQL>

c. Compute the total amount over the last five days on which account number
123 performed a “buy”. To answer this query, you can group the data by trade
day, compute the sum of amount on each trade day, and then use a ROWS
window to add up the last five trade days.

SQL> SELECT trades.acno, trades.tday, SUM (agg.suma) OVER W
FROM trades, (SELECT acno, tday, SUM(amount) AS suma
 FROM trades
 WHERE ttype = 'buy'
 GROUP BY acno, tday) agg
WHERE trades.acno = agg.acno
AND trades.tday = agg.tday
AND trades.ttype = 'buy'
WINDOW W AS (PARTITION BY trades.acno ORDER BY trades.tday ROWS
BETWEEN 4 PRECEDING AND CURRENT ROW);

 ACNO TDAY SUM(AGG.SUMA)OVERW
---------- --------- ------------------
 123 08-APR-20 1400
 123 08-APR-20 2800
 123 10-APR-20 6500
 123 10-APR-20 10200
 123 10-APR-20 13900
 123 12-APR-20 12800
 123 12-APR-20 11700
 123 13-APR-20 13600

Chapter 1
Tools and Languages

1-215

 123 13-APR-20 15500
 123 13-APR-20 17400
 123 13-APR-20 22700
 123 16-APR-20 24400

12 rows selected.

SQL>

The reason why this query works is because it is possible to decompose a
sum into partial aggregates, and compute the final sum from those partial
aggregates. In this case, the query is decomposing the sum over groups
defined by acno and tday. Then the query gets the sum over 5 trading days by
adding the partial sums from the grouped query. COUNT, MAX and MIN are also
decomposable aggregates. AVG can be decomposed by computing sums and
counts and then dividing.

When the window name is specified with a windowing clause, it can only be
referenced directly, without parentheses.

d. Query how many distinct ticker symbols were traded in the preceding 5 trading
days. This requires a COUNT DISTINCT, which cannot be decomposed into
partial counts, one for each trading day, because there may be duplicate ticker
symbols on different trading days, as can be seen in the sample data. COUNT
DISTINCT is not decomposable, and the technique in the preceding query
cannot be used. Use the keyword GROUPS instead of RANGE or ROWS. The
keyword GROUPS emphasizes the relationship to grouped queries. Using this
kind of keyword, we can answer queries such as, for each account number, for
the last five trading days on which the account executed a “buy”, find the
amount spent and the number of distinct ticker symbols bought.

SQL> SELECT acno, tday, SUM(amount) OVER W, COUNT(DISTINCT ticker)
OVER W
FROM trades
WHERE ttype = 'buy'
WINDOW W AS (PARTITION BY acno ORDER BY tday GROUPS BETWEEN 4
PRECEDING AND CURRENT ROW);
SELECT acno, tday, SUM(amount) OVER W, COUNT(DISTINCT ticker) OVER W
 *
ERROR at line 1:
ORA-30487: ORDER BY not allowed here

SQL>

Note:

<aggregate function> with DISTINCT specification cannot be used
with <window specification> having <window order clause>.

SQL> SELECT acno, tday, SUM(amount) OVER W, COUNT(ticker) OVER W
FROM trades

Chapter 1
Tools and Languages

1-216

WHERE ttype = 'buy'
WINDOW W AS (PARTITION BY acno ORDER BY tday GROUPS BETWEEN 4
PRECEDING AND CURRENT ROW);

 ACNO TDAY SUM(AMOUNT)OVERW COUNT(TICKER)OVERW
---------- --------- ---------------- ------------------
 123 08-APR-20 1400 2
 123 08-APR-20 1400 2
 123 10-APR-20 5100 5
 123 10-APR-20 5100 5
 123 10-APR-20 5100 5
 123 12-APR-20 5400 7
 123 12-APR-20 5400 7
 123 13-APR-20 11000 11
 123 13-APR-20 11000 11
 123 13-APR-20 11000 11
 123 13-APR-20 11000 11
 123 16-APR-20 13000 12

12 rows selected.

SQL>

Notice that the syntax avoids the need for a nested grouped query and a join
with TRADES as it was the case in step c.

3. Experiment the usage of the EXCLUDE clause of the window frame.

a. Before starting experimenting the usage of the EXCLUDE clause of the window
frame, execute the /home/oracle/labs/M104784GC10/create_T_table.sql
SQL script.

SQL> @/home/oracle/labs/M104784GC10/create_T_table.sql
SQL> SET ECHO ON
SQL> DROP TABLE t;

Table dropped.

SQL> CREATE TABLE t (v NUMBER);

Table created.

SQL> INSERT INTO t VALUES (1);

1 row created.

SQL> INSERT INTO t VALUES (1);

1 row created.

SQL> INSERT INTO t VALUES (3);

1 row created.

SQL> INSERT INTO t VALUES (5);

Chapter 1
Tools and Languages

1-217

1 row created.

SQL> INSERT INTO t VALUES (5);

1 row created.

SQL> INSERT INTO t VALUES (5);

1 row created.

SQL> INSERT INTO t VALUES (6);

1 row created.

SQL> COMMIT;

Commit complete.

SQL>

b. Display the rows of table T.

SQL> SELECT * FROM t;

 V

 1
 1
 3
 5
 5
 5
 6

7 rows selected.

SQL>

c. Use the EXCLUDE options for window frame exclusion with ROWS. If EXCLUDE
CURRENT ROW is specified and the current row is still a member of the window
frame, then remove the current row from the window frame. If EXCLUDE GROUP
is specified, then remove the current row and any peers of the current row
from the window frame. If EXCLUDE TIES is specified, then remove any rows
other than the current row that are peers of the current row from the window
frame. If the current row is already removed from the window frame, then it
remains removed from the window frame. If EXCLUDE NO OTHERS is specified
(this is the default), then no additional rows are removed from the window
frame by this rule.

SQL> SELECT v,
 sum(v) OVER (o ROWS BETWEEN 1 PRECEDING AND 1
FOLLOWING EXCLUDE CURRENT ROW) AS current_row,
 sum(v) OVER (o ROWS BETWEEN 1 PRECEDING AND 1
FOLLOWING EXCLUDE GROUP) AS the_group,
 sum(v) OVER (o ROWS BETWEEN 1 PRECEDING AND 1

Chapter 1
Tools and Languages

1-218

FOLLOWING EXCLUDE TIES) AS ties,
 sum(v) OVER (o ROWS BETWEEN 1 PRECEDING AND 1
FOLLOWING EXCLUDE NO OTHERS) AS no_others
 FROM t
 WINDOW o AS (ORDER BY v);

 V CURRENT_ROW THE_GROUP TIES NO_OTHERS
---------- ----------- ---------- ---------- ----------
 1 1 1 2
 1 4 3 4 5
 3 6 6 9 9
 5 8 3 8 13
 5 10 5 15
 5 11 6 11 16
 6 5 5 11 11

7 rows selected.

SQL> SELECT v,
 sum(v) OVER (o ROWS BETWEEN 2 PRECEDING AND 2
FOLLOWING EXCLUDE CURRENT ROW) AS current_row,
 sum(v) OVER (o ROWS BETWEEN 2 PRECEDING AND 2
FOLLOWING EXCLUDE GROUP) AS the_group,
 sum(v) OVER (o ROWS BETWEEN 2 PRECEDING AND 2
FOLLOWING EXCLUDE TIES) AS ties,
 sum(v) OVER (o ROWS BETWEEN 2 PRECEDING AND 2
FOLLOWING EXCLUDE NO OTHERS) AS no_others
 FROM t
 WINDOW o AS (ORDER BY v);

 V CURRENT_ROW THE_GROUP TIES NO_OTHERS
---------- ----------- ---------- ---------- ----------
 1 4 3 4 5
 1 9 8 9 10
 3 12 12 15 15
 5 14 4 9 19
 5 19 9 14 24
 5 16 6 11 21
 6 10 10 16 16

7 rows selected.

SQL>

d. Use the EXCLUDE options for window frame exclusion with RANGE.

SQL> SELECT v,
 sum(v) OVER (o RANGE BETWEEN 1 PRECEDING AND 1
FOLLOWING EXCLUDE CURRENT ROW) AS current_row,
 sum(v) OVER (o RANGE BETWEEN 1 PRECEDING AND 1
FOLLOWING EXCLUDE GROUP) AS the_group,
 sum(v) OVER (o RANGE BETWEEN 1 PRECEDING AND 1
FOLLOWING EXCLUDE TIES) AS ties,
 sum(v) OVER (o RANGE BETWEEN 1 PRECEDING AND 1
FOLLOWING EXCLUDE NO OTHERS) AS no_others

Chapter 1
Tools and Languages

1-219

 FROM t
 WINDOW o AS (ORDER BY v);

 V CURRENT_ROW THE_GROUP TIES NO_OTHERS
---------- ----------- ---------- ---------- ----------
 1 1 1 2
 1 1 1 2
 3 3 3
 5 16 6 11 21
 5 16 6 11 21
 5 16 6 11 21
 6 15 15 21 21

7 rows selected.

SQL>

e. Use the EXCLUDE options for window frame exclusion with GROUPS.

SQL> SELECT v,
 sum(v) OVER (o GROUPS BETWEEN 1 PRECEDING AND 1
FOLLOWING EXCLUDE CURRENT ROW) AS current_row,
 sum(v) OVER (o GROUPS BETWEEN 1 PRECEDING AND 1
FOLLOWING EXCLUDE GROUP) AS the_group,
 sum(v) OVER (o GROUPS BETWEEN 1 PRECEDING AND 1
FOLLOWING EXCLUDE TIES) AS ties,
 sum(v) OVER (o GROUPS BETWEEN 1 PRECEDING AND 1
FOLLOWING EXCLUDE NO OTHERS) AS no_others
 FROM t
 WINDOW o AS (ORDER BY v);

 V CURRENT_ROW THE_GROUP TIES NO_OTHERS
---------- ----------- ---------- ---------- ----------
 1 4 3 4 5
 1 4 3 4 5
 3 17 17 20 20
 5 19 9 14 24
 5 19 9 14 24
 5 19 9 14 24
 6 15 15 21 21

7 rows selected.

SQL> EXIT
$

SQL
• SQL Macros

• Placeholders in SQL DDL Statements

• Expression Support for Initialization Parameters

• Enhanced SQL Set Operators

Chapter 1
Tools and Languages

1-220

SQL Macros
You can create SQL Macros (SQM) to factor out common SQL expressions and
statements into reusable, parameterized constructs that can be used in other SQL
statements. SQL macros can either be scalar expressions, typically used in
SELECT lists, WHERE, GROUP BY and HAVING clauses, to encapsulate calculations and
business logic or can be table expressions, typically used in a FROM clause.

SQL macros increase developer productivity, simplify collaborative development, and
improve code quality.

• Details: SQL Macros
This page provides more detailed information explaining what SQL Macros are
useful for and supplying various examples to use.

• Practice: Using SQM Scalar and Table Expressions
These practices show how to use SQL Macro as scalar and table expressions.

Related Topics

• Oracle® Database PL/SQL Language Reference

Details: SQL Macros
This page provides more detailed information explaining what SQL Macros are useful
for and supplying various examples to use.

Application developers can use SQM to write macros, useful in SQL statements:

- As scalar expressions: typically used in SELECT, WHERE, and HAVING clauses
- As table expressions: typically used in a FROM clause
- As pseudo operators

DBA_PROCEDURES.SQL_MACRO => NULL, SCALAR, TABLE

1. Create the SQL macro:

2. Use the SQL macro in a query in the SELECT clause:

SQL> CREATE FUNCTION concat_self(str varchar2, cnt pls_integer)
 RETURN VARCHAR2 SQL_MACRO(SCALAR)
IS BEGIN RETURN 'rpad(str, cnt * length(str), str)';
END;
/

SQL> SELECT ename, concat_self(ename, :num) FROM emp;

-> Rewritten as: SELECT ename, rpad(ename, :num * length(ename), ename
FROM emp;

SQM Scalar Expressions - Example 1

You can create SQL macros (SQM) to factor out common SQL expressions and
statements into reusable, parametized constructs that can be used in other SQL
statements. SQL macros can either be scalar expressions, typically used in SELECT
lists, WHERE, and HAVING clauses, to encapsulate calculations and business logic, or
can be table expressions, typically used in a FROM clause, to act as a sort of
parametized views. SQL macros increase developer productivity, simplifies
collaborative development, and improves code quality.

Chapter 1
Tools and Languages

1-221

The example in the slide shows an SQL macro written as a scalar expression, used in
the SELECT list of the query.

1. Create the SQL macro:

2. Use the SQL macro in a query in the SELECT clause:

SQL> CREATE FUNCTION clip(lo VARCHAR2, x VARCHAR2, hi VARCHAR2)
 RETURN VARCHAR2 SQL_MACRO(SCALAR)
IS BEGIN RETURN 'least(greatest(x, lo), hi)';
END;
/

SQL> SELECT ename, clip(:lower, sal+comm, :upper) FROM emp;

-> Rewritten as: SELECT ename, least(greatest(sal+comm, :lower), :upper)
FROM emp;

SQM Scalar Expressions - Example 2

3. Use the SQL macro in a query in both the SELECT and WHERE clauses:

SQL> SELECT clip(1000,sal,2000) FROM emp
 WHERE clip(SYSDATE-10, hiredate, SYSDATE+10) = hiredate;

The example in the slide shows an SQL macro written as a scalar expression, used in
the SELECT list and the WHERE clause of the query.

View versus SQM

1. Create a view:

SELECT * FROM v_budget
WHERE deptno = :dno;

CREATE VIEW v_budget AS
 SELECT deptno,
 sum(sal) v_budget
 FROM emp
 GROUP BY deptno;

SQM Table Expressions - Example 3 - Polymorphic Non-parameterized Views

2. Query the view:

1. Create an SQM:

SELECT * FROM mbudget()
WHERE deptno = :dno;

CREATE FUNCTION mbudget
 RETURN VARCHAR2 SQL_MACRO
IS BEGIN
RETURN q'(SELECT deptno, sum(sal) budget
 FROM emp GROUP BY deptno)';
END;

2. The original query

SELECT * FROM
 (SELECT deptno, sum(sal) budget
 FROM emp
 GROUP BY deptno)
WHERE deptno = :dno;

gets rewritten as:

The example in the slide shows an SQL macro written as a table expression, then
used in the FROM list of the query.

Practice: Using SQM Scalar and Table Expressions
These practices show how to use SQL Macro as scalar and table expressions.

Chapter 1
Tools and Languages

1-222

1. Before starting any new practice, refer to the practices environment
recommendations.

2. The first practice is an easy one to show you how to concatenate an employee
name to its own name as many times as defined during the execution of the SQL
macro.

a. Create the HR schema and its tables.

$ sqlplus sys@pdb20 AS SYSDBA
SQL*Plus: Release 20.0.0.0.0 - Production on Wed Apr 1 12:32:01 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Enter password: password

Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

SQL> @$ORACLE_HOME/demo/schema/human_resources/hr_main.sql password
users temp /home/oracle/labs /home/oracle/labs
specify password for HR as parameter 1:

specify default tablespeace for HR as parameter 2:

specify temporary tablespace for HR as parameter 3:

specify log path as parameter 4:

PL/SQL procedure successfully completed.

User created.

User altered.

User altered.

Grant succeeded.

Grant succeeded.
...

Commit complete.

PL/SQL procedure successfully completed.

SQL> EXIT
$

b. Create the SQM as an scalar expression.

$ sqlplus hr@PDB20
SQL*Plus: Release 20.0.0.0.0 - Production on Mon Mar 16 10:37:50
2020

Chapter 1
Tools and Languages

1-223

Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Enter password: password
Last Successful login time: Mon Mar 16 2020 09:27:07 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

SQL> CREATE OR REPLACE FUNCTION concat_self(str varchar2, cnt
pls_integer)
 RETURN VARCHAR2 SQL_MACRO(SCALAR)
 IS BEGIN
 RETURN 'rpad(str, cnt * length(str), str)';
END;
/
Function created.

SQL>

c. Use the SQM to query the table and display the employees names doubled.

SQL> COL CONCAT_SELF(LAST_NAME,2) FORMAT A40
SQL> SELECT last_name, concat_self(last_name,2) FROM hr.employees;

LAST_NAME CONCAT_SELF(LAST_NAME,2)
------------------------- --
Abel AbelAbel
Ande AndeAnde
Atkinson AtkinsonAtkinson
Austin AustinAustin
Baer BaerBaer
Baida BaidaBaida
Banda BandaBanda
Bates BatesBates
Bell BellBell
Bernstein BernsteinBernstein
Bissot BissotBissot
...
107 rows selected.

SQL>

d. Use the SQM to query the table and display the employees names tripled.

SQL> COL CONCAT_SELF(LAST_NAME,3) FORMAT A40
SQL> SELECT last_name, concat_self(last_name,3) FROM hr.employees;

LAST_NAME CONCAT_SELF(LAST_NAME,3)
------------------------- --
Abel AbelAbelAbel
Ande AndeAndeAnde

Chapter 1
Tools and Languages

1-224

Atkinson AtkinsonAtkinsonAtkinson
Austin AustinAustinAustin
Baer BaerBaerBaer
Baida BaidaBaidaBaida
Banda BandaBandaBanda
Bates BatesBatesBates
Bell BellBellBell
Bernstein BernsteinBernsteinBernstein
Bissot BissotBissotBissot
Bloom BloomBloomBloom
Bull BullBullBull
Cabrio CabrioCabrioCabrio
...
107 rows selected.

SQL>

3. The second practice shows how to use an SQM as a table expression to
implement a polymorphic view.

a. Let us use a simple view to display the sum of the salaries per department.

SQL> CREATE VIEW v_budget
 AS SELECT department_id, sum(salary) v_budget
 FROM hr.employees
 GROUP BY department_id;

View created.

SQL>

b. Query the result from the view.

SQL> SELECT * FROM v_budget WHERE department_id IN (10,50);

DEPARTMENT_ID V_BUDGET
------------- ----------
 50 156400
 10 4400

SQL>

c. Now use an SQM as a table expression. Create the SQM.

SQL> CREATE OR REPLACE FUNCTION budget
return varchar2 SQL_MACRO
IS
BEGIN
 RETURN q'(select department_id, sum(salary) budget
 from hr.employees
 group by department_id)';
END;
/

Function created.

Chapter 1
Tools and Languages

1-225

SQL>

d. Use the SQM to display the result for the departments 10 and 50.

SQL> SELECT * FROM budget() WHERE department_id IN (10,50);

DEPARTMENT_ID BUDGET
------------- ----------
 50 156400
 10 4400

SQL>

4. The third practice shows how to use an SQM as a table expression to display sum
of the salaries per department for a particular job.

a. Create the SQM.

SQL> CREATE OR REPLACE FUNCTION budget_per_job(job_id varchar2)
return varchar2 SQL_MACRO
IS
BEGIN
 RETURN q'(select department_id, sum(salary) budget
 from hr.employees
 where job_id = budget_per_job.job_id
 group by department_id)';
END;
/
Function created.

SQL>

b. Use the SQM to display the result for the ST_CLERK job in department 10.

SQL> SELECT * FROM budget_per_job('ST_CLERK') WHERE department_id =
10;

no rows selected

SQL>

c. Use the SQM to display the result for the SH_CLERK job in department 50.

SQL> SELECT * FROM budget_per_job('SH_CLERK') WHERE department_id =
50;

DEPARTMENT_ID BUDGET_PER_JOB
------------- --------------
 50 64300

SQL>

Chapter 1
Tools and Languages

1-226

d. Use the DBMS_OUTPUT package to display the rewritten SQL query. Recreate
the function including the DBMS_OUTPUT package.

SQL> CREATE OR REPLACE function budget_per_job(job_id varchar2)
return varchar2 SQL_MACRO
is
 stmt varchar(2000) := q'(
 select department_id, sum(salary) budget
 from hr.employees
 where job_id = budget_per_job.job_id
 group by department_id)';
begin

dbms_output.put_line('--
');
 dbms_output.put_line('SQM Text: ');

dbms_output.put_line('--
');
 dbms_output.put_line(' ' ||stmt);

dbms_output.put_line('--
');
 return stmt;
end;
/
Function created.

SQL>

e. Re-execute the query using the SQM.

SQL> SET serveroutput on
SQL> SET LONG 20000
SQL> SELECT * FROM budget_per_job('ST_CLERK') WHERE department_id =
50;

DEPARTMENT_ID BUDGET
------------- ----------
 50 55700

--
SQM Text:
--

 select department_id, sum(salary) budget
 from hr.employees
 where
job_id = budget_per_job.job_id
 group by department_id
--
SQL>

Chapter 1
Tools and Languages

1-227

5. Use the USER_PROCEDURES view to display the new values of the SQL_MACRO
column.

SQL> COL object_name FORMAT A30
SQL> SELECT object_name, sql_macro, object_type FROM user_procedures;

OBJECT_NAME SQL_MA OBJECT_TYPE
------------------------------ ------ -------------
SECURE_DML NULL PROCEDURE
BUDGET TABLE FUNCTION
ADD_JOB_HISTORY NULL PROCEDURE
BUDGET_PER_JOB TABLE FUNCTION
CONCAT_SELF SCALAR FUNCTION
SECURE_EMPLOYEES TRIGGER
UPDATE_JOB_HISTORY TRIGGER

7 rows selected.

SQL> EXIT
$

Placeholders in SQL DDL Statements
SQL DDL statements can now contain placeholders instead of hard coded values for
some content. For example, placeholders may be used where a username or
password are required in a CREATE USER statement. Oracle Call Interface programs
can substitute values into the DDL statement placeholders before the statements are
sent to Oracle Database. This is similar to data binding, but occurs in Oracle Client.

Application security is improved because values do not need to be hard coded in SQL
DDL.

• Details: Placeholders in SQL Statements
This page provides more detailed information about the
OCIStmtPlaceholderSubstitute() function. The
OCIStmtPlaceholderSubstitute() substitutes placeholder strings in SQL
statements. Placeholders can be specified in only those statements that cannot
have bind variables. OCI placeholders are not the same as bind variables.

Related Topics

• Oracle® Call Interface Programmer's Guide

Details: Placeholders in SQL Statements
This page provides more detailed information about the
OCIStmtPlaceholderSubstitute() function. The OCIStmtPlaceholderSubstitute()
substitutes placeholder strings in SQL statements. Placeholders can be specified in
only those statements that cannot have bind variables. OCI placeholders are not the
same as bind variables.

Chapter 1
Tools and Languages

1-228

Statements not supporting bind values:

Statements supporting placeholder values:

- Some statements are subject to SQL Injection attacks unless developers are careful
 about avoiding SQL Injection attacks by using techniques such as input validation,
 quoting user input appropriately.

- Placeholders can be added in statements like:

- The OCIStmtPlaceholderSubstitute() call for the username in the statement could be:

- User input strings are either validated or quoted before they are substitued in the SQL text:
 distinct modes determine the behavior.

- This mitigates the risk from SQL injection attacks.

19c

20c

CREATE USER :!username IDENTIFIED BY :!password
 DEFAULT TABLESPACE example QUOTA 10M ON example
 PROFILE app_user PASSWORD EXPIRE;

- OCIStmtPlaceholderSubstitute() is called to substitute the placeholders strings in
 SQL statements. Substitution takes place before the statement is executed.

OCIStmtPlaceholderSubstitute(stmthp, "username", strlen("username"),
 "scott", strlen("scott"), OCI_DEFAULT);

- Placeholders can be specified in only those statements that cannot have bind variables.

The statements that cannot have OCI placeholders are those beginning with the
keywords like SELECT, UPDATE, DELETE, INSERT, BEGIN, DECLARE, RETURNING, CALL,
MERGE, ROLLBACK, COMMIT, and FLASHBACK since they support bind variables. Other SQL
statements such as CREATE, DROP, ALTER, EXPLAIN statements can have OCI
placeholders.

The parameters of the OCIStmtPlaceholderSubstitute() function are defined in the
Oracle® Call Interface Programmer's Guide 20c.

Expression Support for Initialization Parameters
You can specify an expression when setting the value of an initialization parameter.

In previous releases, you were required to specify an absolute value when setting an
initialization parameter. You can now specify an expression that takes into account the
current system configuration and environment. This is especially useful in Oracle
Autonomous Database environments.

• Practice: Using Expressions in Initialization Parameters
This practice shows how to optimize the values set in initialization parameters
when they depend on environmental characteristics, such as system
configurations, run-time decisions, or the values of other parameters by using
expressions.

Related Topics

• Oracle® Database Reference

Practice: Using Expressions in Initialization Parameters
This practice shows how to optimize the values set in initialization parameters when
they depend on environmental characteristics, such as system configurations, run-time
decisions, or the values of other parameters by using expressions.

1. Before starting any new practice, refer to the practices environment
recommendations.

Chapter 1
Tools and Languages

1-229

https://docs.oracle.com/en/database/oracle/oracle-database/20/lnoci/statement-functions.html#GUID-C25A8811-0DD6-4349-9DA0-42B5576DD856

2. Log in to PDB20 as SYSTEM.

$ sqlplus system
SQL*Plus: Release 20.0.0.0.0 - Production on Thu Jan 9 04:08:41 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Enter password: password
Last Successful login time: Wed Jan 08 2020 12:03:56 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL>
SQL>

3. Set the sga_target to 2G.

SQL> ALTER SYSTEM SET sga_target = 2G;
ALTER SYSTEM SET sga_target = 2G
*
ERROR at line 1:
ORA-02097: parameter cannot be modified because specified value is
invalid
ORA-00823: Specified value of sga_target greater than sga_max_size

SQL>

As it fails, set it to 80 % of the SGA_MAX_SIZE.

SQL> ALTER SYSTEM SET sga_target = 'sga_max_size*80/100';

System altered.

SQL> SHOW PARAMETER sga

NAME TYPE VALUE
------------------------------------ -----------

allow_group_access_to_sga boolean FALSE
lock_sga boolean FALSE
pre_page_sga boolean TRUE
sga_max_size big integer 1360M
sga_min_size big integer 0
sga_target big integer 1088M
SQL>

4. Set the job_queue_processes to the 10% of the processes value.

SQL> ALTER SYSTEM SET job_queue_processes='processes*10/100' SCOPE=BOTH;

System altered.

Chapter 1
Tools and Languages

1-230

SQL> SHOW PARAMETER processes

NAME TYPE VALUE
------------------------------------ -----------

aq_tm_processes integer 1
db_writer_processes integer 1
gcs_server_processes integer 0
global_txn_processes integer 1
job_queue_processes integer 32
log_archive_max_processes integer 4
processes integer 320
SQL>

5. Set the aq_tm_processes to the minimum value between 40 and 10% of
processes.

SQL> ALTER SYSTEM SET AQ_TM_PROCESSES = 'MIN(40, PROCESSES * .1)'
SCOPE=BOTH;

System altered.

SQL> SHOW PARAMETER processes

NAME TYPE VALUE
------------------------------------ -----------

aq_tm_processes integer 32
db_writer_processes integer 1
gcs_server_processes integer 0
global_txn_processes integer 1
job_queue_processes integer 320
log_archive_max_processes integer 4
processes integer 320

SQL>

6. What happens if you change the value of processes?

a. Set the processes value to 500 in SPFILE.

SQL> ALTER SYSTEM SET PROCESSES = 500 SCOPE=SPFILE;

System altered.

SQL>

b. Restart the CDB instance.

SQL> CONNECT / AS SYSDBA
Connected.
SQL> SHUTDOWN IMMEDIATE
Database closed.
Database dismounted.

Chapter 1
Tools and Languages

1-231

ORACLE instance shut down.
SQL> STARTUP
ORACLE instance started.

Total System Global Area 1140848912 bytes
Fixed Size 9566480 bytes
Variable Size 352321536 bytes
Database Buffers 771751936 bytes
Redo Buffers 7208960 bytes
Database mounted.
Database opened.
SQL>

c. Display the values for processes and aq_tm_processes.

SQL> SHOW PARAMETER processes

NAME TYPE VALUE
------------------------------------ -----------

aq_tm_processes integer 40
db_writer_processes integer 1
gcs_server_processes integer 0
global_txn_processes integer 1
job_queue_processes integer 50
log_archive_max_processes integer 4
processes integer 500
SQL>

The minimum value between 40 and 10% of processes is now 40 (because
10% of 500 is 50). The expression used for setting the aq_tm_processes
parameter is kept throughout the database instance restarts.

7. Set the db_recovery_file_dest to the same value as $HOME, in CDB20.

SQL> ALTER SYSTEM SET db_recovery_file_dest='$HOME' SCOPE=BOTH;

System altered.

SQL> SHOW PARAMETER db_recovery_file_dest

NAME TYPE VALUE
------------------------------------ -----------

db_recovery_file_dest string $HOME
db_recovery_file_dest_size big integer 15000M
SQL> ALTER SYSTEM SWITCH LOGFILE;

System altered.

SQL> ALTER SYSTEM SWITCH LOGFILE;

System altered.

SQL> ALTER SYSTEM SWITCH LOGFILE;

Chapter 1
Tools and Languages

1-232

SQL> HOST
$ cd $HOME
$ ls -ltR | more
.:
total 20
drwxr-x--- 3 oracle oinstall 4096 Apr 8 11:49 CDB20_IAD3CV
drwxrwxrwx 9 oracle oinstall 4096 Apr 8 10:11 labs
drwxrwxrwx 2 oracle oinstall 4096 Apr 3 13:06 foo
-rwxrwxrwx 1 oracle oinstall 590 Apr 3 10:27 database2007112852029
274968.rsp
-rwxrwxrwx 1 oracle oinstall 668 Apr 3 10:27 initparam728549400967
7521997.rsp

./CDB20_IAD3CV:
total 4
drwxr-x--- 3 oracle oinstall 4096 Apr 8 11:49 archivelog

./CDB20_IAD3CV/archivelog:
total 4
drwxr-x--- 2 oracle oinstall 4096 Apr 8 11:50 2020_04_08

./CDB20_IAD3CV/archivelog/2020_04_08:
total 391288
-rw-r----- 1 oracle oinstall 7168 Apr 8 11:50 o1_mf_1_16_h8vgm
8xs_.arc
-rw-r----- 1 oracle oinstall 2560 Apr 8 11:50 o1_mf_1_15_h8vgm
2op_.arc
-rw-r----- 1 oracle oinstall 400666624 Apr 8 11:49 o1_mf_1_14_h8vgm
1st_.arc

./labs:
total 36
-rw-r--r-- 1 oracle oinstall 6075 Apr 8 10:11 hr_main.log
...
$ exit
SQL> EXIT
$

Enhanced SQL Set Operators
The SQL set operators now support all keywords as defined in ANSI SQL. The new
operator EXCEPT [ALL] is functionally equivalent to MINUS [ALL]. The operators
MINUS and INTERSECT now support the keyword ALL.

Full ANSI compliance provides greater compatibility with other database vendors and
makes migration to Oracle Database easier than before.

• Details: Enhanced SQL Set Operators
This page provides more detailed information about the new SQL set operator and
the enhanced existing ones.

• Practice: Using New Set Operators
This practice shows how to use the new set operators, EXCEPT, EXCEPT ALL and
INTERSECT ALL.

Chapter 1
Tools and Languages

1-233

Related Topics

• Oracle® Database Data Warehousing Guide

Details: Enhanced SQL Set Operators
This page provides more detailed information about the new SQL set operator and the
enhanced existing ones.

SELECT * FROM v_budget
WHERE deptno = :dno;

SELECT c1 FROM t1
EXCEPT
SELECT c1 FROM t2

EXCEPT = MINUS / EXCEPT ALL = MINUS ALL / INSERSECT ALL

A
B
B
C
C
D
Z

A
B
B
C
E
F
F

t1.c1 t2.c1

SELECT c1 FROM t2
EXCEPT
SELECT c1 FROM t1

E
F

New set operators:

SELECT c1 FROM t1
EXCEPT ALL
SELECT c1 FROM t2

A
B
B
C
C
D
Z

A
B
B
C
E
F
F

t1.c1 t2.c1

SELECT c1 FROM t2
EXCEPT ALL
SELECT c1 FROM t1

E
F
F

C
D
Z

SELECT * FROM v_budget
WHERE deptno = :dno; SELECT c1 FROM t1

INTERSECT
SELECT c1 FROM t2

A
B
B
C
C
D
Z

A
B
B
C
E
F
F

t1.c1 t2.c1

SELECT c1 FROM t1
INTERSECT ALL
SELECT c1 FROM t2

A
B
B
C

A
B
C

D

Z

Until Oracle Database 20c, only the set operator UNION could be combined with ALL.
Oracle Database 20c introduces two set operators, MINUS ALL (same as EXCEPT ALL)
and INTERSECT ALL.

In the examples of the graphic, the first and second statements combining results from
two queries with the EXCEPT operator (being equivalent to MINUS) returns only unique
rows returned by the first query but not by the second query.

The third and forth statements combining results from two queries with the EXCEPT ALL
operator (being equivalent to MINUS ALL) returns only rows returned by the first query
but not by the second query, even if not unique.

The fifth and sixth statements combining results from two queries with the INTERSECT
operator returns only unique rows returned by both queries.

Practice: Using New Set Operators
This practice shows how to use the new set operators, EXCEPT, EXCEPT ALL and
INTERSECT ALL.

1. Before starting any new practice, refer to the practices environment
recommendations.

Chapter 1
Tools and Languages

1-234

2. Execute the /home/oracle/labs/M104783GC10/setup_oe_tables.sh shell script.
The shell script creates and loads the OE.INVENTORIES, OE.ORDERS and
OE.ORDER_ITEMS tables.

$ cd /home/oracle/labs/M104783GC10
$ /home/oracle/labs/M104783GC10/setup_oe_tables.sh
...
Commit complete.

Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

3. Connect to PDB20 as OE.

$ sqlplus oe@PDB20
SQL*Plus: Release 20.0.0.0.0 - Production on Mon Mar 16 11:32:53 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Enter password: password
Last Successful login time: Mon Mar 16 2020 11:32:00 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0
SQL>

4. Count in both tables, INVENTORIES and ORDER_ITEMS, respectively the number of
products available in the inventory and the number of products that customers
ordered.

SQL> SELECT count(distinct product_id) FROM inventories;

COUNT(PRODUCT_ID)

 208

SQL> SELECT count(distinct product_id) FROM order_items;

COUNT(PRODUCT_ID)

 185

SQL>

5. How many products are in the inventory that were never ordered? Use the EXCEPT
operator to retrieve only unique rows returned by the first query but not by the
second.

SQL> SELECT count(*) FROM
 (SELECT product_id FROM inventories

Chapter 1
Tools and Languages

1-235

 EXCEPT
 SELECT product_id FROM order_items);

 COUNT(*)

 84

SQL>

6. How many products were ordered that are now missing in the inventory? The
order of the queries is relevant for the result.

SQL> SELECT count(*) FROM
 (SELECT product_id FROM order_items
 EXCEPT
 SELECT product_id FROM inventories);

 COUNT(*)

 61

SQL>

7. Would the usage of ALL in the operator defined in the query in step 5 mean
anything?

SQL> SELECT product_id FROM inventories
 EXCEPT ALL
 SELECT product_id FROM order_items;

PRODUCT_ID

 1729
 1729
 1729
 1729
 1729
 1729
 1733
 1733
 1733
 1733
 1733
 1733
 1733
 1733
 1733
...
 3502
 3502
 3502
 3502
 3502
 3503
 3503

Chapter 1
Tools and Languages

1-236

 3503
 3503
 3503

826 rows selected.

SQL> SELECT count(*) FROM
 (SELECT product_id FROM inventories
 EXCEPT ALL
 SELECT product_id FROM order_items);

 COUNT(*)

 826

SQL>

The result shows all rows in the INVENTORIES table that contain products that were
never ordered all inventories. This does not mean anything relevant. The use of
ALL in operators must be appropriate.

8. How many products that were ordered are still orderable? The statement
combining the results from two queries with the INTERSECT operator returns only
those unique rows returned by both queries.

SQL> SELECT count(*) FROM
 (SELECT product_id FROM inventories
 INTERSECT
 SELECT product_id FROM order_items);

 COUNT(*)

 124

SQL> SELECT count(*) FROM
 (SELECT product_id FROM order_items
 INTERSECT
 SELECT product_id FROM inventories);

 COUNT(*)

 124

SQL>

9. Would the usage of ALL in the operator defined in the query in step 8 mean
anything?

SQL> SELECT count(*) FROM
 (SELECT product_id FROM order_items
 INTERSECT ALL
 SELECT product_id FROM inventories);

 COUNT(*)

Chapter 1
Tools and Languages

1-237

 286

SQL> EXIT
$

The result shows all rows in the INVENTORIES table that contain products that were
ordered. This does not mean that these products were ordered from these
warehouses. The query does not mean anything relevant. The use of ALL in
operators must be appropriate.

Upgrades, Patching and Migrations
• Oracle Database Utilities

Oracle Database Utilities
• Oracle Data Pump Includes and Excludes in the Same Operation

• Oracle Data Pump Resumes Transportable Tablespace Jobs

• Oracle Data Pump Parallelizes Transportable Tablespace Metadata Operations

• Oracle Data Pump Provides Optional Index Compression

• Oracle Data Pump Checksums Support Cloud Migrations

Oracle Data Pump Includes and Excludes in the Same Operation
Starting with Oracle Database 20c, Oracle Data Pump can include and exclude
objects in the same export or import operation.

Oracle Data Pump provides powerful, flexible inclusion and exclusion of objects for a
job. Now, Oracle Data Pump commands can include both INCLUDE and EXCLUDE
parameters in the same operation. By enabling greater specificity about what is being
migrated, this enhancement makes it easier to migrate to Oracle Cloud, or to another
on-premises Oracle Database.

• Details: Oracle Data Pump Includes and Excludes in the Same Operation
This page provides more detailed information about excluding and including
objects with Oracle Data Pump export or import in a single command.

• Practice: Including and Excluding Objects from Export or Import
This practice shows how to export or import objects by including and excluding
objects during the same operation.

Related Topics

• Oracle® Database Database Utilities

Details: Oracle Data Pump Includes and Excludes in the Same Operation
This page provides more detailed information about excluding and including objects
with Oracle Data Pump export or import in a single command.

Chapter 1
Upgrades, Patching and Migrations

1-238

The EXCLUDE and INCLUDE parameters are mutually exclusive.

Including and excluding objects is possible in the same export / import operation:

1. Data Pump processes the INCLUDE parameter
 first and includes all objects identified.

2. Then Data Pump processes the EXCLUDE
 parameters. Any objects specified by the
 EXCLUDE parameter being in the list of
 INCLUDE objects are removed.

SH.Table1
SH.Table2
HR schema except Employees
OE schema except Table3

SH.Table1
SH.Table2
HR schema, OE schema

HR.EMPLOYEES
OE.Table3

$ expdp … INCLUDE = TABLE:"IN ('SH.TABLE1', 'SH.TABLE2')"
 INCLUDE = SCHEMA:"IN ('HR','OE')"
 EXCLUDE = TABLE:"IN ('HR.EMPLOYEES', 'OE.TABLE3')"

19c

20c

Starting with Oracle Database 20c, Oracle Data Pump permits you to set both INCLUDE
and EXCLUDE parameters in the same command. When you include both parameters in
a command, Oracle Data Pump processes the INCLUDE parameter first, such that the
Oracle Data Pump job includes only objects identified as included. Then it processes
the EXCLUDE parameters, which can further restrict the objects processed by the job.
As the command runs, any objects specified by the EXCLUDE parameter that are in the
list of INCLUDE objects are removed.

Practice: Including and Excluding Objects from Export or Import
This practice shows how to export or import objects by including and excluding objects
during the same operation.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Use the /home/oracle/labs/M104780GC10/create_PDB20_2.sh shell script to
create the PDB20_2 PDB and the HR user in PDB20_2.

$ cd /home/oracle/labs/M104780GC10
$ /home/oracle/labs/M104780GC10/create_PDB20_2.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Tue Mar 17 03:41:01 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> ALTER SESSION SET db_create_file_dest='/home/oracle/labs';

Session altered.

Chapter 1
Upgrades, Patching and Migrations

1-239

SQL> ALTER PLUGGABLE DATABASE pdb20_2 CLOSE;

Pluggable database altered.

SQL> DROP PLUGGABLE DATABASE pdb20_2 INCLUDING DATAFILES;

Pluggable database dropped.

SQL>
SQL> CREATE PLUGGABLE DATABASE pdb20_2
 2 ADMIN USER pdb_admin IDENTIFIED BY password ROLES=(CONNECT)
 3 DEFAULT TABLESPACE users DATAFILE SIZE 1M AUTOEXTEND ON
NEXT 1M
 4 CREATE_FILE_DEST='/home/oracle/labs';

Pluggable database created.

SQL> ALTER PLUGGABLE DATABASE pdb20_2 OPEN;

Pluggable database altered.

SQL> exit
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Mar 17 03:41:38 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> DROP USER hr CASCADE;
DROP USER hr CASCADE
 *
ERROR at line 1:
ORA-01918: user 'HR' does not exist

SQL> CREATE USER hr IDENTIFIED BY password;

User created.

SQL> GRANT create session, create table, unlimited tablespace TO hr;

Grant succeeded.

SQL> CREATE DIRECTORY dp_dir AS '/home/oracle/labs';

Directory created.

SQL> GRANT read, write ON DIRECTORY dp_dir TO hr;

Chapter 1
Upgrades, Patching and Migrations

1-240

Grant succeeded.

SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Mar 17 03:41:39 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

specify password for HR as parameter 1:

specify default tablespeace for HR as parameter 2:

specify temporary tablespace for HR as parameter 3:

specify log path as parameter 4:

PL/SQL procedure successfully completed.

User created.

ALTER USER hr DEFAULT TABLESPACE users
*
ERROR at line 1:
ORA-00959: tablespace 'USERS' does not exist

User altered.

Grant succeeded.

Grant succeeded.

Session altered.

Session altered.

Session altered.

****** Creating REGIONS table

Table created.

Index created.

Table altered.

****** Creating COUNTRIES table

Chapter 1
Upgrades, Patching and Migrations

1-241

Table created.

Table altered.

****** Creating LOCATIONS table

Table created.

Index created.

Table altered.

Sequence created.

****** Creating DEPARTMENTS table

Table created.

Index created.

Table altered.

Sequence created.

****** Creating JOBS table

Table created.

Index created.

Table altered.

****** Creating EMPLOYEES table

Table created.

Index created.

Table altered.

Table altered.

Sequence created.

****** Creating JOB_HISTORY table

Table created.

Index created.

Table altered.

****** Creating EMP_DETAILS_VIEW view ...

View created.

Chapter 1
Upgrades, Patching and Migrations

1-242

Commit complete.

Session altered.

****** Populating REGIONS table

1 row created.

1 row created.

1 row created.

1 row created.

****** Populating COUNTIRES table

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-243

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

****** Populating LOCATIONS table

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-244

1 row created.

1 row created.

****** Populating DEPARTMENTS table

Table altered.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-245

1 row created.

1 row created.

1 row created.

1 row created.

****** Populating JOBS table

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

****** Populating EMPLOYEES table

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-246

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-247

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-248

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-249

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

****** Populating JOB_HISTORY table

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-250

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Table altered.

Commit complete.

Index created.

Index created.

Index created.

Index created.

Index created.

Index created.

Index created.

Index created.

Index created.

Index created.

Index created.

Commit complete.

Procedure created.

Trigger created.

Trigger altered.

Procedure created.

Trigger created.

Commit complete.

Comment created.

Comment created.

Chapter 1
Upgrades, Patching and Migrations

1-251

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Chapter 1
Upgrades, Patching and Migrations

1-252

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Commit complete.

PL/SQL procedure successfully completed.

SQL> Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

3. Before exporting the two HR tables excluding their statistics, verify that the two HR
tables have statistics collected, and create a directory for the export dumpfile.

a. Verify that the two HR tables have statistics collected.

$ sqlplus system@PDB20

SQL*Plus: Release 20.0.0.0.0 - Production on Tue Mar 17 02:24:54
2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Enter password: password
Last Successful login time: Tue Mar 17 2020 02:23:18 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

SQL> SELECT num_rows FROM dba_tables WHERE table_name IN
('JOBS','DEPARTMENTS');

 NUM_ROWS

 27
 19

Chapter 1
Upgrades, Patching and Migrations

1-253

SQL>

b. Create a directory for the export dumpfile.

SQL> CREATE DIRECTORY dp_dir AS '/home/oracle/labs';

Directory created.

SQL> GRANT read, write ON DIRECTORY dp_dir TO hr;

Grant succeeded.

SQL> EXIT
$

4. Export from PDB20 two HR tables, excluding their statistics.

$ expdp hr@PDB20 DUMPFILE=hr.dmp DIRECTORY=dp_dir INCLUDE=TABLE:\"IN \
(\'JOBS\',\'DEPARTMENTS\'\)\" EXCLUDE=STATISTICS REUSE_DUMPFILES=YES
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.
Password: password

Connected to: Oracle Database 20c Enterprise Edition Release 20.0.0.0.0
- Production
Starting "HR"."SYS_EXPORT_SCHEMA_01": hr/********@PDB20
DUMPFILE=hr.dmp DIRECTORY=dp_dir INCLUDE=TABLE:"IN
('JOBS','DEPARTMENTS')" EXCLUDE=STATISTICS REUSE_DUMPFILES=YES
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
Processing object type SCHEMA_EXPORT/TABLE/TABLE
Processing object type SCHEMA_EXPORT/TABLE/COMMENT
Processing object type SCHEMA_EXPORT/TABLE/INDEX/INDEX
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
. . exported "HR"."JOBS" 7.109 KB
19 rows
. . exported "HR"."DEPARTMENTS" 7.125 KB
27 rows
Master table "HR"."SYS_EXPORT_SCHEMA_01" successfully loaded/unloaded
**

Dump file set for HR.SYS_EXPORT_SCHEMA_01 is:
 /home/oracle/labs/hr.dmp
Job "HR"."SYS_EXPORT_SCHEMA_01" successfully completed at Tue Mar 17
02:30:24 2020 elapsed 0 00:00:18
$

5. Import the dumpfile into another PDB, PDB20_2 in CDB20.

$ impdp system@PDB20_2 DUMPFILE=hr.dmp DIRECTORY=DP_DIR FULL=Y

Chapter 1
Upgrades, Patching and Migrations

1-254

Import: Release 20.0.0.0.0 - Production on Tue Mar 17 04:03:25 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.
Password: password

Connected to: Oracle Database 20c Enterprise Edition Release 20.0.0.0.0
- Production
Master table "SYSTEM"."SYS_IMPORT_FULL_01" successfully loaded/unloaded
Starting "SYSTEM"."SYS_IMPORT_FULL_01": system/********@PDB20_2
DUMPFILE=hr.dmp DIRECTORY=DP_DIR FULL=Y
Processing object type SCHEMA_EXPORT/TABLE/TABLE
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
. . imported "HR"."JOBS" 7.109 KB
19 rows
. . imported "HR"."DEPARTMENTS" 7.125 KB
27 rows
Processing object type SCHEMA_EXPORT/TABLE/COMMENT
Processing object type SCHEMA_EXPORT/TABLE/INDEX/INDEX
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
ORA-39083: Object type REF_CONSTRAINT:"HR"."DEPT_LOC_FK" failed to
create with error:
ORA-00942: table or view does not exist

Failing sql is:
ALTER TABLE "HR"."DEPARTMENTS" ADD CONSTRAINT "DEPT_LOC_FK" FOREIGN KEY
("LOCATION_ID") REFERENCES "HR"."LOCATIONS" ("LOCATION_ID") ENABLE

ORA-39083: Object type REF_CONSTRAINT:"HR"."DEPT_MGR_FK" failed to
create with error:
ORA-00942: table or view does not exist

Failing sql is:
ALTER TABLE "HR"."DEPARTMENTS" ADD CONSTRAINT "DEPT_MGR_FK" FOREIGN KEY
("MANAGER_ID") REFERENCES "HR"."EMPLOYEES" ("EMPLOYEE_ID") ENABLE
...
Job "SYSTEM"."SYS_IMPORT_FULL_01" completed with 19 error(s) at Tue Mar
17 04:03:37 2020 elapsed 0 00:00:05
$

6. The import completes with errors due to missing constraints for HR.DEPARTMENTS
that requires constraints referring other HR tables. Re-execute the export operation
excluding statistics and constraints.

$ expdp hr@PDB20 DUMPFILE=hr.dmp DIRECTORY=dp_dir INCLUDE=TABLE:\"IN \
(\'JOBS\',\'DEPARTMENTS\'\)\" EXCLUDE=STATISTICS,CONSTRAINT
REUSE_DUMPFILES=YES

Export: Release 20.0.0.0.0 - Production on Tue Mar 17 04:05:57 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.

Chapter 1
Upgrades, Patching and Migrations

1-255

Password: password

Connected to: Oracle Database 20c Enterprise Edition Release 20.0.0.0.0
- Production
Starting "HR"."SYS_EXPORT_SCHEMA_01": hr/********@PDB20
DUMPFILE=hr.dmp DIRECTORY=dp_dir INCLUDE=TABLE:"IN
('JOBS','DEPARTMENTS')" EXCLUDE=STATISTICS,CONSTRAINT
REUSE_DUMPFILES=YES
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
Processing object type SCHEMA_EXPORT/TABLE/TABLE
Processing object type SCHEMA_EXPORT/TABLE/COMMENT
Processing object type SCHEMA_EXPORT/TABLE/INDEX/INDEX
. . exported "HR"."JOBS" 7.109 KB
19 rows
. . exported "HR"."DEPARTMENTS" 7.125 KB
27 rows
Master table "HR"."SYS_EXPORT_SCHEMA_01" successfully loaded/unloaded
**

Dump file set for HR.SYS_EXPORT_SCHEMA_01 is:
 /home/oracle/labs/hr.dmp
Job "HR"."SYS_EXPORT_SCHEMA_01" successfully completed at Tue Mar 17
04:06:15 2020 elapsed 0 00:00:14
$

Note:

Observe that the import does not issue errors related to constraints.
Constraints that should have been added to the HR.DEPARTMENTS table
were excluded.

7. Verify that statistics for the HR.JOBS and HR.DEPARTMENTS tables were excluded
too.

$ sqlplus system@PDB20_2

Enter password: password

SQL> SELECT num_rows FROM dba_tables WHERE table_name IN
('JOBS','DEPARTMENTS');

no rows selected

SQL> EXIT
$

Oracle Data Pump Resumes Transportable Tablespace Jobs
Starting with Oracle Database 20c, Oracle Data Pump resumes transportable
tablespace export and import jobs that are stopped.

Oracle Data Pump has the capacity to resume transportable tablespace export and
import jobs. Due to errors, or other problems, you can find that transportable

Chapter 1
Upgrades, Patching and Migrations

1-256

tablespace export or import jobs are stopped. Oracle Data Pump's capacity to resume
these stopped jobs helps to save you time, and makes the system more available.

Related Topics

• Oracle® Database Database Utilities

Oracle Data Pump Parallelizes Transportable Tablespace Metadata Operations
Starting with Oracle Database 20c, Oracle Data Pump improves Transportable
Tablespace metadata operations with parallelism.

Oracle Data Pump now supports parallel export and import operations for
Transportable Tablespace (TTS) metadata. This is the information that associates the
tablespace data files with the target database in a TTS migration. Parallelism improves
TTS export and import performance, especially when there are millions of database
objects in the data files, including tables, indexes, partitions, and subpartitions.

• Details: Oracle Data Pump Resumes Transportable Tablespace Jobs and
Parallelizes Transportable Tablespace Metadata Operations
This page provides more detailed information about Oracle Data Pump restartable
transportable jobs and parallel export and import operations for Transportable
Tablespace (TTS) metadata.

• Practice: Parallelizing TTS Metadata Operations
The practice shows how to parallelize export and import operations for
Transportable Tablespace (TTS) metadata.

Related Topics

• Oracle® Database Database Utilities

Details: Oracle Data Pump Resumes Transportable Tablespace Jobs and Parallelizes
Transportable Tablespace Metadata Operations

This page provides more detailed information about Oracle Data Pump restartable
transportable jobs and parallel export and import operations for Transportable
Tablespace (TTS) metadata.

Chapter 1
Upgrades, Patching and Migrations

1-257

Restart a failed export / import operation, not a transportable tablespace
operation

Resume a failed transportable tablespace export at or near the point of failure

$ expdp … PARALLEL=2 TRANSPORT_TABLESPACES=tbs_1 TRANSPORT_FULL_CHECK=YES

Parallelize an export / import operation, not a transportable tablespace
operation

Parallelize transportable tablespace metadata operations

$ impdp … PARALLEL=2 TRANSPORT_DATAFILES='/user01/data/tbs1.dbf'

19c

20c

19c

20c

Starting with Oracle Database 20c, transportable jobs are restartable at or near the
point of failure During transportable imports tablespaces are temporarily made read/
write and then set back to read-only.The temporary setting change was introduced
with Oracle Database 12c Release 1 (12.1.0.2) to improve performance. However, be
aware that this behavior also causes the SCNs of the import job data files to change.
Changing the SCNs for data files can cause issues during future transportable imports
of those files.

Practice: Parallelizing TTS Metadata Operations
The practice shows how to parallelize export and import operations for Transportable
Tablespace (TTS) metadata.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. In the Oracle 20c PDB20, set the tablespace USERS to transport to read only.

$ sqlplus sys@PDB20 AS SYSDBA
SQL*Plus: Release 20.0.0.0.0 - Production on Wed Nov 20 07:29:31 2019
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Enter password: password

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> ALTER TABLESPACE users READ ONLY;

Tablespace altered.

SQL> EXIT

Chapter 1
Upgrades, Patching and Migrations

1-258

Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

3. Perform the TTS in parallel against PDB20.

$ expdp \"sys@PDB20 AS SYSDBA\" dumpfile=PDB20.dmp
TRANSPORT_TABLESPACES=users TRANSPORT_FULL_CHECK=YES LOGFILE=tts.log
REUSE_DUMPFILES=YES PARALLEL=2

Export: Release 20.0.0.0.0 - Production on Wed Nov 20 07:40:41 2019
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle and/or its affiliates. All rights
reserved.
Password: password
Connected to: Oracle Database 20c Enterprise Edition Release 20.0.0.0.0
- Production
Starting "SYS"."SYS_EXPORT_TRANSPORTABLE_02": "sys/********@PDB20 AS
SYSDBA" dumpfile=PDB20.dmp TRANSPORT_TABLESPACES=users
TRANSPORT_FULL_CHECK=YES LOGFILE=tts.log REUSE_DUMPFILES=YES PARALLEL=2
ORA-39396: Warning: exporting encrypted data using transportable option
without password

ORA-39396: Warning: exporting encrypted data using transportable option
without password

Processing object type TRANSPORTABLE_EXPORT/INDEX/STATISTICS/
INDEX_STATISTICS
Processing object type TRANSPORTABLE_EXPORT/STATISTICS/TABLE_STATISTICS
Processing object type TRANSPORTABLE_EXPORT/INDEX/STATISTICS/
BITMAP_INDEX/INDEX_STATISTICS
Processing object type TRANSPORTABLE_EXPORT/PLUGTS_BLK
Processing object type TRANSPORTABLE_EXPORT/STATISTICS/MARKER
Processing object type TRANSPORTABLE_EXPORT/POST_INSTANCE/PLUGTS_BLK
Processing object type TRANSPORTABLE_EXPORT/INDEX/INDEX
Processing object type TRANSPORTABLE_EXPORT/TABLE
Processing object type TRANSPORTABLE_EXPORT/COMMENT
Processing object type TRANSPORTABLE_EXPORT/CONSTRAINT/CONSTRAINT
Processing object type TRANSPORTABLE_EXPORT/CONSTRAINT/REF_CONSTRAINT
Processing object type TRANSPORTABLE_EXPORT/TRIGGER
Processing object type TRANSPORTABLE_EXPORT/INDEX/BITMAP_INDEX/INDEX
Processing object type TRANSPORTABLE_EXPORT/INDEX/DOMAIN_INDEX/
SECONDARY_TABLE/INDEX/INDEX
Processing object type TRANSPORTABLE_EXPORT/INDEX/DOMAIN_INDEX/
SECONDARY_TABLE/TABLE
Processing object type TRANSPORTABLE_EXPORT/INDEX/DOMAIN_INDEX/
SECONDARY_TABLE/CONSTRAINT
Processing object type TRANSPORTABLE_EXPORT/INDEX/DOMAIN_INDEX/INDEX
Processing object type TRANSPORTABLE_EXPORT/MATERIALIZED_VIEW
Master table "SYS"."SYS_EXPORT_TRANSPORTABLE_02" successfully loaded/
unloaded
**

Chapter 1
Upgrades, Patching and Migrations

1-259

Dump file set for SYS.SYS_EXPORT_TRANSPORTABLE_02 is:
 /u01/app/oracle/admin/ORCL/dpdump/A2B63C30139C0D6BE0530600000A01C5/
PDB20.dmp
**

Datafiles required for transportable tablespace USERS:
 /u02/app/oracle/oradata/users01.dbf
Job "SYS"."SYS_EXPORT_TRANSPORTABLE_02" completed with 2 error(s) at
Wed Apr 8 13:59:55 2020 elapsed 0 00:03:36
$

4. Set the tablespace back to read write.

$ sqlplus sys@PDB20 AS SYSDBA

SQL*Plus: Release 20.0.0.0.0 - Production on Wed Nov 20 07:29:31 2019
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Enter password: password

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> ALTER TABLESPACE users READ WRITE;

Tablespace altered.

SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

Oracle Data Pump Provides Optional Index Compression
In Oracle Database 20c, Oracle Data Pump supports optional index compression on
imports, including for Oracle Autonomous Database.

Oracle Data Pump supports adding, changing and eliminating table compression.
Oracle Database 20c supports index compression as well by introducing a new
TRANSFORM parameter clause, INDEX_COMPRESSION_CLAUSE. This clause enables
you to control whether index compression is performed during import. Adding this
clause also enables you to specify index compression on import with the autonomous
services.

• Details: Oracle Data Pump Provides Optional Index Compression
This page provides more detailed information about index compression during
Oracle Data Pump import.

• Practice: Using Index Compression on Import
The practice shows how to use index compression on import operations.

Chapter 1
Upgrades, Patching and Migrations

1-260

Related Topics

• Oracle® Database Database Utilities

Details: Oracle Data Pump Provides Optional Index Compression
This page provides more detailed information about index compression during Oracle
Data Pump import.

Add, change, or eliminate the table compression clause during import using a

Add, change, or eliminate the index compression clause during import using a
TRANSFORM parameter of INDEX_COMPRESSION_CLAUSE

$ impdp … TRANSFORM=INDEX_COMPRESSION_CLAUSE:\"COMPRESS ADVANCED LOW\"

$ impdp … TRANSFORM=INDEX_COMPRESSION_CLAUSE:NONE

$ impdp … TRANSFORM=TABLE_COMPRESSION_CLAUSE:

$ impdp … TRANSFORM=TABLE_COMPRESSION_CLAUSE:BASIC

TRANSFORM parameter of TABLE_COMPRESSION_CLAUSE

 \"COLUMN STORE COMPRESS FOR QUERY HIGH\"

19c

20c

If NONE is specified, then the index compression clause is omitted (and the index is
given the default compression for the tablespace). However, if you use compression,
then Oracle recommends that you use COMPRESS ADVANCED LOW. Indexes are created
with the specified compression.

If the index compression clause is more than one word, then it must be contained in
single or double quotation marks. Also, your operating system can require you to
enclose the clause in escape characters, such as the backslash character. For
example:

TRANSFORM=INDEX_COMPRESSION_CLAUSE:\"COMPRESS ADVANCED LOW\"

Specifying this transform changes the type of compression for all indexes in the job.

Practice: Using Index Compression on Import
The practice shows how to use index compression on import operations.

1. Before starting any new practice, refer to the practices environment
recommendations.

Chapter 1
Upgrades, Patching and Migrations

1-261

2. Create the HR schema. Change the string password in the command by your
password.

$ $ORACLE_HOME/bin/sqlplus "sys@PDB20 AS SYSDBA" @/u01/app/oracle/
product/20.0.0/dbhome_1/demo/schema/human_resources/hr_main.sql
password users temp /tmp

...
Commit complete.

PL/SQL procedure successfully completed.

SQL>

3. Verify that the HR.EMPLOYEES table is not using compression and does own indexes
that are not using compression.

 SQL> CONNECT SYSTEM@PDB20
Enter password: password
Connected.
SQL> SELECT compression, compress_for FROM DBA_TABLES WHERE
table_name='EMPLOYEES';

COMPRESS COMPRESS_FOR
-------- ------------------------------
DISABLED

SQL> COL INDEX_NAME FORMAT A30
SQL> SELECT index_name, compression FROM dba_indexes WHERE
table_name='EMPLOYEES';

INDEX_NAME COMPRESSION
------------------------------ -------------
EMP_NAME_IX DISABLED
EMP_EMAIL_UK DISABLED
EMP_EMP_ID_PK DISABLED
EMP_DEPARTMENT_IX DISABLED
EMP_JOB_IX DISABLED
EMP_MANAGER_IX DISABLED

6 rows selected.

SQL>

4. Create a directory for Oracle Data Pump dumpfiles.

SQL> CREATE DIRECTORY dp_dir AS '/u01/app/oracle/admin';

Directory created.

SQL> GRANT read, write ON DIRECTORY dp_dir TO hr;

Grant succeeded.

Chapter 1
Upgrades, Patching and Migrations

1-262

SQL> EXIT
$

5. Export the HR.EMPLOYEES table. Ignore any Database Vault warning.

$ expdp hr@PDB20 DUMPFILE=PDB20.dmp DIRECTORY=dp_dir TABLES=EMPLOYEES
REUSE_DUMPFILES=YES

Export: Release 20.0.0.0.0 - Production on Wed Apr 8 16:27:21 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.
Password: password

Connected to: Oracle Database 20c Enterprise Edition Release 20.0.0.0.0
- Production
Starting "HR"."SYS_EXPORT_TABLE_01": hr/********@PDB20
DUMPFILE=PDB20.dmp DIRECTORY=dp_dir TABLES=EMPLOYEES REUSE_DUMPFILES=YES
Processing object type TABLE_EXPORT/TABLE/TABLE_DATA
Processing object type TABLE_EXPORT/TABLE/INDEX/STATISTICS/
INDEX_STATISTICS
Processing object type TABLE_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS
Processing object type TABLE_EXPORT/TABLE/STATISTICS/MARKER
Processing object type TABLE_EXPORT/TABLE/TABLE
Processing object type TABLE_EXPORT/TABLE/COMMENT
Processing object type TABLE_EXPORT/TABLE/INDEX/INDEX
Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
Processing object type TABLE_EXPORT/TABLE/TRIGGER
. . exported "HR"."EMPLOYEES" 17.08 KB
107 rows
ORA-39173: Encrypted data has been stored unencrypted in dump file set.
Master table "HR"."SYS_EXPORT_TABLE_01" successfully loaded/unloaded
**

Dump file set for HR.SYS_EXPORT_TABLE_01 is:
 /u01/app/oracle/admin/PDB20.dmp
Job "HR"."SYS_EXPORT_TABLE_01" successfully completed at Wed Apr 8
16:27:55 2020 elapsed 0 00:00:29

$

6. Drop the table in PDB20.

$ sqlplus SYSTEM@PDB20

SQL*Plus: Release 20.0.0.0.0 - Production on Wed Apr 8 16:28:45 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Last Successful login time: Wed Apr 08 2020 16:24:56 +00:00

Connected to:

Chapter 1
Upgrades, Patching and Migrations

1-263

Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> DROP TABLE hr.employees CASCADE CONSTRAINTS;

Table dropped.

SQL> EXIT
$

7. Import the table using the index compression and the table compression
parameters.

$ impdp hr@PDB20 FULL=Y DUMPFILE=PDB20.dmp DIRECTORY=dp_dir
TRANSFORM=TABLE_COMPRESSION_CLAUSE:\"COMPRESS BASIC\"
TRANSFORM=INDEX_COMPRESSION_CLAUSE:\"COMPRESS ADVANCED LOW\"
EXCLUDE=CONSTRAINT
Import: Release 20.0.0.0.0 - Production on Wed Apr 8 16:39:13 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.
Password: password

Connected to: Oracle Database 20c Enterprise Edition Release 20.0.0.0.0
- Production
Master table "HR"."SYS_IMPORT_FULL_01" successfully loaded/unloaded
Starting "HR"."SYS_IMPORT_FULL_01": hr/********@PDB20 FULL=Y
DUMPFILE=PDB20.dmp DIRECTORY=dp_dir
TRANSFORM=TABLE_COMPRESSION_CLAUSE:"COMPRESS BASIC"
TRANSFORM=INDEX_COMPRESSION_CLAUSE:"COMPRESS ADVANCED LOW"
EXCLUDE=CONSTRAINT
Processing object type TABLE_EXPORT/TABLE/TABLE
Processing object type TABLE_EXPORT/TABLE/TABLE_DATA
. . imported "HR"."EMPLOYEES" 17.08 KB
107 rows
Processing object type TABLE_EXPORT/TABLE/COMMENT
Processing object type TABLE_EXPORT/TABLE/INDEX/INDEX
ORA-39083: Object type INDEX:"HR"."EMP_EMP_ID_PK" failed to create with
error:
ORA-25193: cannot use COMPRESS option for a single column key

Failing sql is:
CREATE UNIQUE INDEX "HR"."EMP_EMP_ID_PK" ON "HR"."EMPLOYEES"
("EMPLOYEE_ID") PCTFREE 10 INITRANS 2 MAXTRANS 255 COMPRESS ADVANCED
LOW STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS
2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL
DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT) TABLESPACE "USERS"

Processing object type TABLE_EXPORT/TABLE/INDEX/STATISTICS/
INDEX_STATISTICS
Processing object type TABLE_EXPORT/TABLE/TRIGGER
Processing object type TABLE_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS
Processing object type TABLE_EXPORT/TABLE/STATISTICS/MARKER
Job "HR"."SYS_IMPORT_FULL_01" completed with 1 error(s) at Wed Apr 8

Chapter 1
Upgrades, Patching and Migrations

1-264

16:39:55 2020 elapsed 0 00:00:36

$

Ignore the errors.

8. Verify that the table imported is using compression and that its indexes use
compression too.

$ sqlplus SYSTEM@PDB20

SQL*Plus: Release 20.0.0.0.0 - Production on Wed Apr 8 16:40:59 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Last Successful login time: Wed Apr 08 2020 16:38:57 +00:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> SELECT compression, compress_for FROM DBA_TABLES WHERE
table_name='EMPLOYEES';

COMPRESS COMPRESS_FOR
-------- ------------------------------
ENABLED BASIC

SQL> COL INDEX_NAME FORMAT A30
SQL> SELECT index_name, compression FROM dba_indexes WHERE
table_name='EMPLOYEES';

INDEX_NAME COMPRESSION
------------------------------ -------------
EMP_DEPARTMENT_IX ADVANCED LOW
EMP_JOB_IX ADVANCED LOW
EMP_MANAGER_IX ADVANCED LOW
EMP_NAME_IX ADVANCED LOW

SQL> EXIT
$

Oracle Data Pump Checksums Support Cloud Migrations
To check Oracle Data Pump dumpfiles for validity, you can now use checksums that
are added to the dumpfile.

Oracle Data Pump is used for migrating application data from on-premises Oracle
Database instances into the Oracle Cloud, and also for copying dumpfiles to on-
premises.

Starting with Oracle Database 20c, a checksum is now added to the dumpfile. You can
use the checksum to help to confirm that the file is valid after a transfer to or from the

Chapter 1
Upgrades, Patching and Migrations

1-265

object store and also after saving dumpfiles on on-premises and that it has no
accidental or malicious changes.

• Practice: Checking Oracle Data Pump Dump Files for Validity
This practice shows how to use the checksum to confirm that an Oracle Data
Pump dump file is valid after a transfer to or from the object store and also after
saving dump files on on-premises.The checksum ensures that no accidental or
malicious changes occurred.

Related Topics

• Oracle® Database Database Utilities

Practice: Checking Oracle Data Pump Dump Files for Validity
This practice shows how to use the checksum to confirm that an Oracle Data Pump
dump file is valid after a transfer to or from the object store and also after saving dump
files on on-premises.The checksum ensures that no accidental or malicious changes
occurred.

1. Before starting any new practice, refer to the practices environment
recommendations.

2. Before starting the practice, execute the /home/oracle/labs/M104786GC10/DP.sh
shell script. The shell script creates the table HR.EMPLOYEES to export in PDB20.

$ cd /home/oracle/labs/M104786GC10
$ /home/oracle/labs/M104786GC10/DP.sh
SQL*Plus: Release 20.0.0.0.0 - Production on Thu Feb 6 06:57:22 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

specify password for HR as parameter 1:

specify default tablespeace for HR as parameter 2:

specify temporary tablespace for HR as parameter 3:

specify log path as parameter 4:

PL/SQL procedure successfully completed.

User created.

User altered.

User altered.

Grant succeeded.

Grant succeeded.

Chapter 1
Upgrades, Patching and Migrations

1-266

Session altered.

Session altered.

Session altered.

****** Creating REGIONS table

Table created.

Index created.

Table altered.

****** Creating COUNTRIES table

Table created.

Table altered.

****** Creating LOCATIONS table

Table created.

Index created.

Table altered.

Sequence created.

****** Creating DEPARTMENTS table

Table created.

Index created.

Table altered.

Sequence created.

****** Creating JOBS table

Table created.

Index created.

Table altered.

****** Creating EMPLOYEES table

Table created.

Index created.

Table altered.

Chapter 1
Upgrades, Patching and Migrations

1-267

Table altered.

Sequence created.

****** Creating JOB_HISTORY table

Table created.

Index created.

Table altered.

****** Creating EMP_DETAILS_VIEW view ...

View created.

Commit complete.

Session altered.

****** Populating REGIONS table

1 row created.

1 row created.

1 row created.

1 row created.

****** Populating COUNTIRES table

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-268

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

****** Populating LOCATIONS table

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-269

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

****** Populating DEPARTMENTS table

Table altered.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-270

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

****** Populating JOBS table

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-271

1 row created.

1 row created.

1 row created.

1 row created.

****** Populating EMPLOYEES table

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-272

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-273

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-274

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Chapter 1
Upgrades, Patching and Migrations

1-275

1 row created.

1 row created.
****** Populating JOB_HISTORY table

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

Table altered.

Commit complete.

Index created.

Index created.

Index created.

Index created.

Index created.

Index created.

Index created.

Index created.

Index created.

Index created.

Index created.

Commit complete.

Procedure created.

Chapter 1
Upgrades, Patching and Migrations

1-276

Trigger created.

Trigger altered.

Procedure created.

Trigger created.

Commit complete.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Chapter 1
Upgrades, Patching and Migrations

1-277

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Comment created.

Commit complete.

SQL> Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL*Plus: Release 20.0.0.0.0 - Production on Fri Feb 7 05:24:12 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

Directory created.

Grant succeeded.

Chapter 1
Upgrades, Patching and Migrations

1-278

Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

3. Export the table HR.EMPLOYEES and add a checksum to the dump file to be able to
confirm that the dump file is still valid after the export and that the data is intact
and has not been corrupted. An Oracle Data Pump export writes control
information into the header block of a dump file: Oracle Database 20c extends the
data integrity checks by adding an additional checksum for all the remaining
blocks beyond the header within Oracle Data Pump and external table dump files.

a. Use the CHECKSUM parameter during the export operation.

$ expdp system@PDB20 TABLES=hr.employees DUMPFILE=dp_dir:emp.dmp
CHECKSUM=yes REUSE_DUMPFILES=yes

Export: Release 20.0.0.0.0 - Production on Thu Feb 6 07:14:45 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.
Password: password

Connected to: Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Starting "SYSTEM"."SYS_EXPORT_TABLE_01": system/********@PDB20
TABLES=hr.employees dump file=dp_dir:emp.dmp CHECKSUM=YES
Processing object type TABLE_EXPORT/TABLE/TABLE_DATA
Processing object type TABLE_EXPORT/TABLE/INDEX/STATISTICS/
INDEX_STATISTICS
Processing object type TABLE_EXPORT/TABLE/STATISTICS/
TABLE_STATISTICS
Processing object type TABLE_EXPORT/TABLE/STATISTICS/MARKER
Processing object type TABLE_EXPORT/TABLE/TABLE
Processing object type TABLE_EXPORT/TABLE/COMMENT
Processing object type TABLE_EXPORT/TABLE/INDEX/INDEX
Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
Processing object type TABLE_EXPORT/TABLE/TRIGGER
. . exported "HR"."EMPLOYEES" 17.08
KB 107 rows
ORA-39173: Encrypted data has been stored unencrypted in dump file
set.
Master table "SYSTEM"."SYS_EXPORT_TABLE_01" successfully loaded/
unloaded
Generating checksums for dump file set
**

Dump file set for SYSTEM.SYS_EXPORT_TABLE_01 is:
 /home/oracle/labs/M104786GC10/emp.dmp
Job "SYSTEM"."SYS_EXPORT_TABLE_01" successfully completed at Thu
Feb 6 07:15:15 2020 elapsed 0 00:00:26
$

Chapter 1
Upgrades, Patching and Migrations

1-279

The checksum algorithm defaults to SHA256 256-bit.

b. f you want to use the SHA384 384-bit hash algorithm or SHA512 512-bit hash
algorithm or the CRC32 32-bit checksum, use the CHECKSUM_ALGORITHM
parameter and not the CHECKSUM parameter which uses the SHA256 256-bit
hash algorithm.

$ expdp system@PDB20 TABLES=hr.employees DUMPFILE=dp_dir:emp384.dmp
CHECKSUM_ALGORITHM=SHA384 CHECKSUM=no REUSE_DUMPFILES=yes

Export: Release 20.0.0.0.0 - Production on Thu Feb 6 07:14:45 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.
Password: password

Connected to: Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
ORA-39002: invalid operation
ORA-39050: parameter CHECKSUM=NO is incompatible with parameter
CHECKSUM_ALGORITHM

$

$ expdp system@PDB20 TABLES=hr.employees DUMPFILE=dp_dir:emp512.dmp
CHECKSUM_ALGORITHM=SHA512 REUSE_DUMPFILES=yes

Export: Release 20.0.0.0.0 - Production on Thu Feb 6 07:50:05 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.
Password: password

Connected to: Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Starting "SYSTEM"."SYS_EXPORT_TABLE_01": system/********@PDB20
TABLES=hr.employees dump file=dp_dir:emp512.dmp
CHECKSUM_ALGORITHM=SHA512
Processing object type TABLE_EXPORT/TABLE/TABLE_DATA
Processing object type TABLE_EXPORT/TABLE/INDEX/STATISTICS/
INDEX_STATISTICS
Processing object type TABLE_EXPORT/TABLE/STATISTICS/
TABLE_STATISTICS
Processing object type TABLE_EXPORT/TABLE/STATISTICS/MARKER
Processing object type TABLE_EXPORT/TABLE/TABLE
Processing object type TABLE_EXPORT/TABLE/COMMENT
Processing object type TABLE_EXPORT/TABLE/INDEX/INDEX
Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
Processing object type TABLE_EXPORT/TABLE/TRIGGER
. . exported "HR"."EMPLOYEES" 17.08
KB 107 rows

Chapter 1
Upgrades, Patching and Migrations

1-280

ORA-39173: Encrypted data has been stored unencrypted in dump file
set.
Master table "SYSTEM"."SYS_EXPORT_TABLE_01" successfully loaded/
unloaded
Generating checksums for dump file set
**

Dump file set for SYSTEM.SYS_EXPORT_TABLE_01 is:
 /home/oracle/labs/M104786GC10/emp512.dmp
Job "SYSTEM"."SYS_EXPORT_TABLE_01" successfully completed at Thu
Feb 6 07:46:51 2020 elapsed 0 00:00:09
$

4. Drop the table before importing it.

$ sqlplus hr@PDB20

SQL*Plus: Release 20.0.0.0.0 - Production on Thu Feb 6 08:09:49 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Enter password: password

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0

SQL> DROP TABLE employees CASCADE CONSTRAINTS;

Table dropped.

SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$

5. Before importing the table, verify whether the dump files are corrupted or not.

a. Corrupt one of the dump files by executing the /home/oracle/labs/
M104786GC10/corrupt.sh shell script.

$ /home/oracle/labs/M104786GC10/corrupt.sh
$

b. Find which of the two dump files is corrupted.

$ impdp system@PDB20 FULL=yes DUMPFILE=dp_dir:emp512.dmp
VERIFY_ONLY=YES

Import: Release 20.0.0.0.0 - Production on Thu Feb 6 07:21:37 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights

Chapter 1
Upgrades, Patching and Migrations

1-281

reserved.
Password: password

Connected to: Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Verifying dump file checksums
Master table "SYSTEM"."SYS_IMPORT_FULL_01" successfully loaded/
unloaded
dump file set is complete
verified checksum for dump file "/home/oracle/labs/M104786GC10/
emp512.dmp"
dump file set is consistent
Job "SYSTEM"."SYS_IMPORT_FULL_01" successfully completed at Fri Feb
7 05:42:40 2020 elapsed 0 00:00:01

$

$ impdp system@PDB20 FULL=yes DUMPFILE=dp_dir:emp.dmp
VERIFY_ONLY=YES

Import: Release 20.0.0.0.0 - Production on Thu Feb 6 07:21:37 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.
Password: password
Connected to: Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
ORA-39001: invalid argument value
ORA-39000: bad dump file specification
ORA-39411: header checksum error in dump file "/home/oracle/labs/
M104786GC10/emp.dmp"

$ oerr ora 39411
39411, 00000, "header checksum error in dump file \"%s\""
// *Cause: The header block for the Data Pump dump file contained a
// header checksum that did not match the value calculated
from the
// header block as read from disk. This indicates that the
header
// was tampered with or otherwise corrupted due to
transmission or
// media failure.
// *Action: Contact Oracle Support Services.
$

6. Import the table.

a. Import the table using the corrupted dump file. If checksums were generated
when the export dump files were completed, the checksum is verified during
the import.

$ impdp system@PDB20 FULL=yes DUMPFILE=dp_dir:emp.dmp

Import: Release 20.0.0.0.0 - Production on Tue Mar 17 07:19:24 2020

Chapter 1
Upgrades, Patching and Migrations

1-282

Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.
Password: password

Connected to: Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
ORA-39001: invalid argument value
ORA-39000: bad dump file specification
ORA-39411: header checksum error in dump file "/home/oracle/labs/
M104786GC10/emp.dmp"

$

b. Import the table using the non-corrupted dump file. If checksums were
generated when the export dump files were completed, the checksum is
verified during the import if you mention the parameter VERIFY_CHECKSUM.
Ignore the error messages related to indexes creation. The important in this
practice is that the table can be reimported.

$ impdp system@PDB20 FULL=yes DUMPFILE=dp_dir:emp512.dmp
VERIFY_CHECKSUM=YES

Import: Release 20.0.0.0.0 - Production on Thu Feb 6 09:48:44 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.
Password: password

Connected to: Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Verifying dump file checksums
Master table "SYSTEM"."SYS_IMPORT_FULL_01" successfully loaded/
unloaded
Starting "SYSTEM"."SYS_IMPORT_FULL_01": system/********@PDB20
FULL=yes DUMPFILE=dp_dir:emp512.dmp VERIFY_CHECKSUM=YES
Processing object type TABLE_EXPORT/TABLE/TABLE
Processing object type TABLE_EXPORT/TABLE/TABLE_DATA
. . imported "HR"."EMPLOYEES" 17.08
KB 107 rows
Processing object type TABLE_EXPORT/TABLE/COMMENT
Processing object type TABLE_EXPORT/TABLE/INDEX/INDEX
Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type TABLE_EXPORT/TABLE/INDEX/STATISTICS/
INDEX_STATISTICS
Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
Processing object type TABLE_EXPORT/TABLE/TRIGGER
Processing object type TABLE_EXPORT/TABLE/STATISTICS/
TABLE_STATISTICS
Processing object type TABLE_EXPORT/TABLE/STATISTICS/MARKER
Job "SYSTEM"."SYS_IMPORT_FULL_01" successfully completed at Tue Mar
17 07:20:29 2020 elapsed 0 00:00:20

Chapter 1
Upgrades, Patching and Migrations

1-283

$

c. Import using the non-corrupted dumpfile avoiding the verification. Drop the
table first.

$ sqlplus hr@pdb20

SQL*Plus: Release 20.0.0.0.0 - Production on Thu Feb 6 08:09:49 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Enter password: password

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 -
Production
Version 20.2.0.0.0

SQL> DROP TABLE employees CASCADE CONSTRAINTS;

Table dropped.

SQL> EXIT
Disconnected from Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Version 20.2.0.0.0
$ impdp hr@PDB20 FULL=yes DUMPFILE=dp_dir:emp512.dmp
VERIFY_CHECKSUM=NO

Import: Release 20.0.0.0.0 - Production on Thu Feb 6 07:21:37 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.
Password: password
Master table "HR"."SYS_IMPORT_FULL_01" successfully loaded/unloaded
Connected to: Oracle Database 20c Enterprise Edition Release
20.0.0.0.0 - Production
Warning: dump file checksum verification is disabled
Master table "HR"."SYS_IMPORT_FULL_01" successfully loaded/unloaded
Starting "HR"."SYS_IMPORT_FULL_01": system/********@PDB20 FULL=yes
DUMPFILE=dp_dir:emp512.dmp VERIFY_CHECKSUM=NO
Processing object type TABLE_EXPORT/TABLE/TABLE
Processing object type TABLE_EXPORT/TABLE/TABLE_DATA
. . imported "HR"."EMPLOYEES" 17.08 KB
107 rows
Processing object type TABLE_EXPORT/TABLE/COMMENT
Processing object type TABLE_EXPORT/TABLE/INDEX/INDEX
Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type TABLE_EXPORT/TABLE/INDEX/STATISTICS/
INDEX_STATISTICS
Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
Processing object type TABLE_EXPORT/TABLE/TRIGGER

Chapter 1
Upgrades, Patching and Migrations

1-284

Processing object type TABLE_EXPORT/TABLE/STATISTICS/
TABLE_STATISTICS
Processing object type TABLE_EXPORT/TABLE/STATISTICS/MARKER
Job "HR"."SYS_IMPORT_FULL_01" successfully completed at Tue Mar 17
07:22:04 2020 elapsed 0 00:00:20
$

Chapter 1
Upgrades, Patching and Migrations

1-285

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Learning Key 20c New Features for Database Administrators
	Practices Environment
	Practices Environment on Oracle Database Cloud Preview

	Security Solutions
	Security
	Force Upgraded Password File to be Case Sensitive
	Practice: Forcing Upgraded Password File to be Case Sensitive

	Predefined Unified Audit Policies for Security Technical Implementation Guides (STIG) Compliance
	Practice: Using Predefined Unified Audit Policies for STIG Compliance

	SYSLOG Destination for Common Unified Audit Policies
	Practice: SYSLOG Destination for Common Unified Audit Policies

	Unified Audit Policies Enforced on the Current User
	Details: Unified Audit Policies Enforced on the Current User
	Practice: Enforcing Unified Audit Policies on the Current User

	Unified Audit Policy Configuration Changes Effective Immediately
	Details: Unified Audit Policy Configuration Changes Effective Immediately
	Practice: Auditing Actions on Connected Sessions

	Oracle Blockchain Table
	Details: Oracle Blockchain Table
	Practice: Managing Blockchain Tables and Rows

	Oracle Advanced Security
	Ability to Set the Default Tablespace Encryption Algorithm
	Practice: Setting the Default Tablespace Encryption Algorithm

	Oracle Database Vault
	Ability to Prevent Local Oracle Database Vault Policies from Blocking Common Operations
	Practice: Preventing Local Users from Blocking Common Operations - Realms
	Practice: Preventing Local Users from Blocking Common Operations - Command Rules

	Performance and High-Availability Options
	Automatic Operations
	SecureFiles Defragmentation
	Details: SecureFiles Defragmentation
	Practice: Shrinking SecureFile LOBs

	Automatic Index Optimization
	Details: Automatic Index Optimization
	Practice: Implementing Storage Tiering ADO Policy for Indexes
	Practice: Implementing Optimize ADO Policy for Indexes

	Automatic Zone Maps
	Details: Automatic Zone Maps
	Details: Automatic Zone Maps - Package
	Details: Automatic Zone Maps - Views
	Practice: Using Automatic Zone Maps

	Oracle Database In-Memory
	Database In-Memory Base Level
	Automatic In-Memory
	Details: Automatic In-Memory
	Practice: Configuring and Observing Automatic In-Memory

	In-Memory Hybrid Scans
	Details: In-Memory Hybrid Scans
	Practice: Using In-Memory Hybrid Scans in Queries

	Database In-Memory External Table Enhancements
	Practice: Using In-Memory With Hybrid Partitioned Tables

	Flashback
	PDB Point-in-Time Recovery or Flashback to Any Time in the Recent Past
	Details: PDB Point-in-Time Recovery or Flashback to Any Time in the Recent Past
	Practice: Flashbacking PDBs to Any Time in the Recent Past

	Autonomous Health Framework
	Oracle Trace File Analyzer Real-Time Health Summary
	Oracle Trace File Analyzer Log File Life Cycle Enhancements

	Oracle Multitenant
	MAX_IDLE_BLOCKER_TIME Parameter
	Details: MAX_IDLE_BLOCKER_TIME Parameter
	Practice: Using MAX_IDLE_BLOCKER_TIME Parameter

	Expanded Syntax for PDB Application Synchronization
	Details: Expanded Syntax for PDB Application Synchronization
	Practice: Synchronizing Multiple Applications In Application PDBs

	Details: Using non-CDBs and CDBs

	Tools and Languages
	Analytical SQL and Statistical Functions
	Bitwise Aggregate Functions
	Practice: Using Bitwise Aggregate Functions

	New Analytical and Statistical Aggregate Functions
	Practice: Detecting Data Tampering with the CHECKSUM Function
	Practice: Measuring Asymmetry in Data with the SKEWNESS Functions
	Practice: Measuring Tailedness of Data with the KURTOSIS Functions

	Enhanced Analytic Functions
	Practice: Using Enhanced Analytic Functions

	SQL
	SQL Macros
	Details: SQL Macros
	Practice: Using SQM Scalar and Table Expressions

	Placeholders in SQL DDL Statements
	Details: Placeholders in SQL Statements

	Expression Support for Initialization Parameters
	Practice: Using Expressions in Initialization Parameters

	Enhanced SQL Set Operators
	Details: Enhanced SQL Set Operators
	Practice: Using New Set Operators

	Upgrades, Patching and Migrations
	Oracle Database Utilities
	Oracle Data Pump Includes and Excludes in the Same Operation
	Details: Oracle Data Pump Includes and Excludes in the Same Operation
	Practice: Including and Excluding Objects from Export or Import

	Oracle Data Pump Resumes Transportable Tablespace Jobs
	Oracle Data Pump Parallelizes Transportable Tablespace Metadata Operations
	Details: Oracle Data Pump Resumes Transportable Tablespace Jobs and Parallelizes Transportable Tablespace Metadata Operations
	Practice: Parallelizing TTS Metadata Operations

	Oracle Data Pump Provides Optional Index Compression
	Details: Oracle Data Pump Provides Optional Index Compression
	Practice: Using Index Compression on Import

	Oracle Data Pump Checksums Support Cloud Migrations
	Practice: Checking Oracle Data Pump Dump Files for Validity

