In the name of allah

Introduction to ABINIT

Under Supervision of Dr. Mozaffari

Nasim Moradi

Department of Physics, University of Qom

Feb 19, 2013

Outline

Format of the input file

The main output file

Codes Nasim Moradi

ABINIT: an ab initio computational package for ground and excited calculations.

Capabilities of ABINIT □■□□□□□□□□□ Nasim Moradi

2

Capabilities of ABINIT

This package has the purpose of computing accurately material and nanostructure properties : *Beyond the computation of the total energy, charge density and electronic structure of such systems, ABINIT also implements many dynamical, dielectric, thermodynamical, mechanical,* **optical and magnetic** *properties.*

Main Reference: X. Gonze et al. **"***ABINIT: First-principles approach to material and nanosystem properties***", Comput. Phys. Comm. 180**, (2009)

Introduction to ABINIT

and the state of the state of

 \sim \sim \sim

If you have never used another electronic structure code, you should browse through

the Chaps. 1 to 13 of the book *Electronic Structure.*

Results: density (DEN), potential (POT), wavefunctions (WFK), ...

Introduction to ABINIT

 $\boldsymbol{\varDelta}$

http://www.abinit.org/downloads/psp-links/psp-links/lda_tm

The pseudopotential files

file available \Box file non-available

Original TM pseudopotential file unavailable,

but FHI pseudopotential file available

Introduction to ABINIT

6

The files file

Open a text editor and type below lines:

Save it as: ab.files

Introduction to ABINIT

#a SC ab.in 00111

Main input file

• The parameters are input to the code from a single input file.

47

• The names of all the parameters can be found in the *input* variables file.

Definition of the crystal structure

acell 11.954 11.954 4.263 angstrom # cell lattice vector scaling

rprim 1.0 0.0 0.0 # primitive translations in real space 0.0 1.0 0.0 0.0 0.0 1.0

 anything to the right of a "**#**" on any line is ignored by the code. \triangleright the code choose $(by \default)$ atomic units: the Hartree for energy the Bohr for lengths

> **'Ry ' => Rydberg (for energies)** Other units: \mathbf{Q} 'eV' => electron-volts (for energies) **'angstr...' => Angstrom (for lengths)**

Format of the input file □□□□□■□□□□□□□□ *Masim Moradi*

#Definition of the atom types

#Definition of the atoms

xred

Example:CulnO2

There are three options for atom positions:

xcart: vectors (X) of atom positions in CARTesian coordinates -length in Bohr-

xangst: vectors (X) of atom positions in cartesian coordinates -length in ANGSTrom-

xred: vectors (X) of atom positions in REDuced coordinates

The choice of the k-point mesh

Introduction to ABINIT

 ABINIT decomposes the Kohn-Sham wave function into an infinite sum of plane waves:

$$
\varphi_{n,k}(r) = \frac{1}{\sqrt{\Omega_{cell}}} \sum_{G} c_{n,k}(G) e^{i(k+G).r}
$$

 r c G e **Plane wave basis**
 \mathbf{h} am wave function into an
 $(r) = \frac{1}{\sqrt{\Omega_{cell}}} \sum_{G} c_{n,k}(G) e^{i(k+G)x}$
 \vdots that limits the summation to be
 $\mathbf{F}|^2 \leq E_{cutoff}$, $N_{pw} \propto \Omega_{cell}(E_{cuioff})^{3/2}$
 $\mathbf{F}|^2 = \mathbf{F}|^2 = \mathbf{F}|^2 = \mathbf{F}|^2 = \mathbf{F$ *Cutoff*
 condition 11.4
 condition 11.4
 condition into an
 $\varphi_{n,k}(r) = \frac{1}{\sqrt{\Omega_{cell}}}\sum_{G} c_{n,k}(G)e^{i(k+G).r}$

 condition into the summation to be
 $k + G|^2 \leq E_{cutoff}$, $N_{pw} \propto \Omega_{cell}(E_{cutoff})^{3/2}$

 $\begin{align} \textit{sim} \ \textit{Mora} \ \textit{dS} \text{is} \ \text{in} \ \textit{m} \ (\textit{E}_{\textit{cutoff}})^{3/2} \ \textit{m} \ \textit{m} \ \textit{m} \ \textit{m} \ \textit{m} \end{align}$ **e plane wave based (Alasim**
 n-Sham wave function into an
 $n_{n,k}(r) = \frac{1}{\sqrt{\Omega_{cell}}} \sum_{G} c_{n,k}(G) e^{i(k+G)}$

set that limits the summation to $\left| -G \right|^2 \leq E_{cutoff}$, $N_{pw} \propto \Omega_{cell}(E_{ca})$
 $m_{e} = m_{e} = m_{e} = m_{e} = m_{e} = m_{e} = m_{e} = m_{e}$ **The Wave basis:**

Sham wave function into an
 $\frac{1}{\sqrt{\Omega_{cell}}} \sum_{G} c_{n,k}(G) e^{i(k+G)}$

et that limits the summation if
 $|G|^2 \leq E_{cutoff}$, $N_{pw} \propto \Omega_{cell}(E_c)$
 $=-\frac{1}{\sqrt{\Omega_{cutoff}}} = \frac{1}{\sqrt{\Omega_{cutoff}}}$ **a parameter ecut has to be set that limits the summation to be** $1_{|L| \cdot C|^2 \times E}$ **executed only over:** $2^{|v|+|v|}$ $\frac{2}{cutoff}$ ecut 30 #Hartree #other option 60 Ry #other option 816 eV reciprocal space

Introduction to ABINIT

matrix Functional Theory (DFT) nonnon-
\n• **Kohn-Sham equations**

\n
$$
(-\frac{\nabla^2}{2} + V_{\text{eff}}[n])\psi_i(r) = \varepsilon_i \psi_i(r)
$$
\n
$$
f[f[n]] = V_{\text{ext}}(r) + V_{\text{Hartree}}[n] + (V_{\text{xc}}[n])
$$
\n"exchange-correlation energy

\n
$$
V_{\text{xc}}(r) = \frac{\partial E_{\text{xc}}[n(r)]}{\partial n(r)}
$$
\nLocal density approximation

\nLDA: Teter Pade parametrization

\nR. M. Martin, Electr

$$
V_{\text{eff}}[n] = V_{\text{ext}}(r) + V_{\text{Hartree}}[n] + V_{\text{xc}}[n]
$$

exchange-correlation energy

$$
V_{xc}(r) = \frac{\partial E_{xc}[n(r)]}{\partial n(r)}
$$

Local density approximation

LDA: Teter Pade parametrization

12

R. M. Martin, *Electronic Structure***, page 173**

Introduction to ABINIT

the choice of the exchange-correlation potential

IXC #Integer for eXchange-Correlation choice

1=> LDA or LSD, Teter Pade parametrization (4/93, published in S. Goedecker, M. Teter, J. Huetter, Phys.Rev.B54, 1703 (1996)), which reproduces Perdew-Wang (which reproduces Ceperley-Alder!).

2=> LDA, Perdew-Zunger-Ceperley-Alder (no spin-polarization)

3=> LDA, old Teter rational polynomial parametrization (4/91) fit to Ceperley-Alder data

11=> GGA, Perdew-Burke-Ernzerhof GGA functional

12=> GGA, x-only part of Perdew-Burke-Ernzerhof GGA functional

13=> GGA potential of van Leeuwen-Baerends, while for energy, Perdew-Wang 92 functional

...

…

27=> GGA, HTCH407 of A.D. Boese, and N.C. Handy, J. Chem. Phys 114, 5497 (2001).

 In order to find a good solution for KS equation, ABINIT does self-consistent iterations.

 This procedure is repeated until the total energy does not change any more.

15

iscf # Integer for Self-Consistent-Field cycles

- 1 => get the largest eigenvalue of the SCF cycle
- 2 => SCF cycle, simple mixing of the potential
- 3 => SCF cycle, Anderson mixing of the potential

17 => SCF cycle, Pulay mixing of the density based on the npulyit previous iterations .

• **toldfe** # TOLerance on the DiFference of total Energy

• **toldff** # TOLerance on the DiFference of Forces

…

Introduction to ABIN

Other input variables

nband 128 # Number of BANDs

 $\mathsf{enunit} \quad 1 \quad \mathsf{f}$ # print eigenvalues in eV

prtden 1 # provide output of electron density

Introduction to ABINIT

How to run the code?

ABINIT is run interactively (in Unix) with the command:

abinit<ab.files>& log

 \triangleright where standard out and standard error are piped to the log file called "log".

The output files □□□□□□□□■□□

Nasim Moradi

Introduction to ABINIT


```
Fermi (or HOMO) energy (eV) = 0.27320 Average Vxc (eV) = -
5.99366
Eigenvalues ( eV ) for nkpt= 21 k points:
kpt# 1, nband=128, wtk= 0.02500, kpt= 0.0000 0.0000 0.0000
(reduced coord)
-19.34562 -19.01478 -19.01478 -18.06143 -18.06058 -16.56057 -16.56057 - 14.63137-14.63024 -14.08317 -13.79795 -13.79795 -12.95920 -12.95730 -12.90218 - 12.65042-12.65042 -12.51736 -12.51736 -11.98377 -11.98339 -11.62655 -11.62655 - 9.89467-9.89320 - 9.87726 - 9.87726 - 9.21481 - 9.21127 - 8.39652 -8.39592 -7.82497-7.82497 -7.46688 -7.05892 -7.05892 -7.04023 -7.04023 -
6.58694 - 6.58694-6.06506 - 6.06228 - 5.91012 - 5.54819 - 5.53908 - 4.20132 -4.19223 - 3.78392-3.78392 -3.38485 -3.38485 -2.90455 -2.90455 -2.37898 -
2.36592 -1.93688-1.74957 -1.72726 -1.52157 -1.52157 -0.39856 -0.37309
```


Introduction to ABINIT

□□□□□□■□□□

20

Introduction to ABINIT

□□□□□□■□□□

Å a

At SCF step 17, etot is converged : for the second time, diff in etot= $2.606E-07 <$ toldfe= 1.000E-06

Introduction to ABINIT

□□□□□□■□□□

Nasim Moradi

22

Components of total free energy (in Hartree) :

Other information on the energy : Total energy(eV)= -5.25033687691820E+03 ; Band energy (Ha)= -4.0484830160E+01

Introduction to ABINIT

How I can plot band. Structures from Abinit output files?

STEP 1 : produce a .dbs file

The first thing to do is to extract datas from an Abinit output file and produce a **.dbs file** (dbs stands for Data for Band Structure). To do so, you must execute the program and specify the name of the .out file you wish to use.

 \triangleright Copy your output file in the following path:

abinit-7.10.2/scripts/post_processing

 \triangleright Then in the commond line type:

> python AbinitBandStructureMaker.py file.out

the program will extract all the necessary datas and produce a .dbs file. If everything goes well, you'll get the following message in the commond line:

> "file.out.dbs " file created successfully

STEP 2: produce a .agr file

Now that you have a customized .dbs file, you must extract datas from this file to produce a **.agr file** (a formatted file readable by xmgrace). To produce a .agr file, execute the program and specify the name of the .dbs file you wish to use:

> python AbinitBandStructureMaker.py file.out.dbs

If everything goes well, you'll get the following message :

> "file.out.agr " file created successfully

STEP 3 : plot the band structure

Now that you possess a .agr file, you just need to execute xmgrace and use the .agr file to plot the band structure.

> xmgrace file.out.agr **Your plot is ready:**

Nasim Moradi

http://*inac.cea.fr/L_Sim/V_Sim/*

Introduction to ABINIT

Nasim Moradi

http://*www.xcrysden.org*

Introduction to ABINIT

SUBJECTS

Let's play with:

Thank you…