In the name of allah

Introduction to **ABINIT**

Under Supervision of Dr. Mozaffari

Nasim Moradi

Department of Physics, University of Qom

Feb 19, 2013

Outline

Format of the input file

The main output file

Codes

Masim Moradi

Masim Moradi

ABINIT: an ab initio computational package for ground and excited calculations.

Capabilities of ABINIT

Masim Moradi

Capabilities of ABINIT

This package has the purpose of computing accurately material and nanostructure properties : Beyond the computation of the total energy, charge density and electronic structure of such systems, ABINIT also implements many dynamical, dielectric, thermodynamical, mechanical, optical and magnetic properties.

Main Reference: X. Gonze et al. "ABINIT: First-principles approach to material and nanosystem properties", Comput. Phys. Comm. 180, (2009)

Introduction to ABINIT

Capability	Methodology and entry point
Total energy, charge density and	PW+NCPP (using a supercell) : doc/tutorial/lesson_1.html
forces for finite systems	PAW (using a supercell) : Sec. 3.1
(molecules, clusters)	WVL (open boundaries) : Sec. 4.2
	Open boundaries to treat the electrostatics
	for PW+NCPP and PAW : Sec. 4.3
Total energy, charge density and	PW+NCPP and PAW : doc/tutorial/lesson_3.html,
forces for periodic insulating systems	and, for PAW, Sec. 3.1
(bulk solids, slabs, supercell)	
Total energy, charge density and	PW+NCPP and PAW : doc/tutorial/lesson_4.html
forces for periodic metallic systems	and, for PAW, Sec. 3.1
(bulk solids, slabs, supercell)	
Geometry optimization	PW+NCPP, PAW and WVL : doc/tutorial/lesson_1.html
or molecular dynamics	and ionmov input variable
	(Broyden algorithm, viscous damping, Nosé thermostat,
	Langevin dynamics)
Stresses and	PW+NCPP, and PAW : doc/tutorial/lesson_3.html,
primitive cell optimization	with ionmov and optcell input variables
	(full optimization, uniform scaling,
	fixed volume optimization, fixed stress optimization)
Total energy, charge density,	PW+NCPP (local potentials only) : Sec. 4.4
forces and molecular dynamics	
for high-temperature plasmas	
Macroscopic polarization	PW+NCPP : doc/tutorial/lesson_ffield.html,
(Berry phase)	PAW : Sec. 3.4
Periodic systems under finite	PW+NCPP : doc/tutorial/lesson_ffield.html,
electric field (Berry phase)	
Collinear magnetization	PW+NCPP, PAW and WVL : doc/tutorial/lesson_spin.html
Non-collinear magnetization	PW+NCPP, PAW : doc/tutorial/lesson_spin.html
Antiferromagnetism	PW+NCPP, PAW and WVL : doc/tutorial/lesson_spin.html
Electric field gradients	PAW : Sec. 3.6
Mössbauer Isomer Shift	PAW : Sec. 3.6
Fermi contact interaction	PAW : Sec. 3.6
Positron lifetime	PW+NCPP, PAW : Sec. 4.1
Bader partitioning of density	PW+NCPP : doc/users/aim_help.html
Hirshfeld charges	PW+NCPP : doc/users/cut3d_help.html

If you have never used another electronic structure code, you should browse through

the Chaps. 1 to 13 of the book *Electronic Structure*.

Masim Moradi

Results : density (_DEN), potential (_POT), wavefunctions (_WFK), ...

Introduction to ABINIT

Masim Moradi

http://www.abinit.org/downloads/psp-links/psp-links/lda_tm

The pseudopotential files

file available **file** file non-available

Original TM pseudopotential file unavailable,

but FHI pseudopotential file available

Introduction to ABINIT

Masim Moradi

The files file

> Open a text editor and type below lines:

Save it as: **ab.files**

Introduction to ABINIT

Main input file

• The parameters are input to the code from a single input file.

7

• The names of all the parameters can be found in the input variables file.

acell	bdgw	bs_algori	thm bs	s_ferq_mesh	ecut	ecuteps	enunit	ixc
iscf	nsppol	nstep	nsym	soenergy	symsigma	a xred	zcut	
znuc	l gw	calctype	gwmen	n kptopt	ngfft	ngkpt	npwks	S

Definition of the crystal structure

acell 11.954 11.954 4.263 angstrom # cell lattice vector scaling

rprim 1.0 0.0 0.0 # primitive translations in real space 0.0 1.0 0.0 0.0 0.0 1.0

Other units:'Ry ' => Rydberg (for energies)'eV ' => electron-volts (for energies)'angstr...' => Angstrom (for lengths)

Introduction to ABINIT

#Definition of the atom types

ntypat	3	<pre># number of types of atoms</pre>
znucl	29 49 8	<pre># nuclear charge</pre>

#Definition of the atoms

natom	4	#	total number of atoms in [.]	the unit	cell
typat	1233	#	an integer label to every	atom in	the unit cell

xred

0.0000	0.0000	0.0000
0.5000	0.5000	0.5000
0.1061	0.1061	0.1061
-0.1061	-0.1061	-0.1061

Example:CulnO2

There are three options for atom positions:

xcart: vectors (X) of atom positions in CARTesian coordinates -length in Bohr-

xangst: vectors (X) of atom positions in cartesian coordinates -length in ANGSTrom-

xred: vectors (X) of atom positions in **RED**uced coordinates

The choice of the k-point mesh

$n(r) = \frac{1}{(r)}$	$\frac{\Omega_{cell}}{(2\pi)^3} \sum_{n}$	$\int_{BZ} d^{3}k \left \phi_{n,k}(r) \right ^{2} \longrightarrow n(r) = \sum_{n} \sum_{i=1}^{N_{k}} w_{i} \left \phi_{n,k_{i}}(r) \right ^{2}$
kptopt ngkpt	1 4 4 4	<pre># option for the automatic generation of k points, # number of grid points for kpoints generation</pre>
kptopt	0	<pre># option for the manually generation of k points,</pre>
nkpt	40	# number of kpoints
kpt	0.00000 0.00000 0.00000	000E+00 0.0000000E+00 0.0000000E+00 000E+00 0.0000000E+00 2.50000000E-02 000E+00 0.0000000E+00 5.0000000E-02
	у	Introduction to ABINIT

Masim Moradi

The cutoff of the plane wave basis

□ ABINIT decomposes the Kohn-Sham wave function into an infinite sum of plane waves:

$$\varphi_{n,k}(r) = \frac{1}{\sqrt{\Omega_{cell}}} \sum_{G} c_{n,k}(G) e^{i(k+G).r}$$

□ a parameter ecut has to be set that limits the summation to be executed only over: $\frac{1}{2}|k+G|^2 \le E_{cutoff}$, $N_{pw} \propto \Omega_{cell} (E_{cutoff})^{3/2}$ ecut 30 #Hartree #other option 60 Ry #other option 816 eV

Introduction to ABINIT

Masim Moradi

$$\left(-\frac{\nabla^2}{2} + V_{eff}[n]\right)\psi_i(r) = \varepsilon_i\psi_i(r)$$

$$V_{eff}[n] = V_{ext}(r) + V_{Hartree}[n] + V_{xc}[n]$$

✓ exchange-correlation energy

$$V_{xc}(r) = \frac{\partial E_{xc}[n(r)]}{\partial n(r)}$$

Local density approximation

✓LDA: Teter Pade parametrization

R. M. Martin, *Electronic Structure*, page 173

the choice of the exchange-correlation potential

• **IXC** #Integer for eXchange-Correlation choice

1=> LDA or LSD, Teter Pade parametrization (4/93, published in S. Goedecker, M. Teter, J. Huetter, Phys.Rev.B54, 1703 (1996)), which reproduces Perdew-Wang (which reproduces Ceperley-Alder!).

2=> LDA, Perdew-Zunger-Ceperley-Alder (no spin-polarization)

3=> LDA, old Teter rational polynomial parametrization (4/91) fit to Ceperley-Alder data

11=> GGA, Perdew-Burke-Ernzerhof GGA functional

12=> GGA, x-only part of Perdew-Burke-Ernzerhof GGA functional

13=> GGA potential of van Leeuwen-Baerends, while for energy, Perdew-Wang 92 functional

27=> GGA, HTCH407 of A.D. Boese, and N.C. Handy, J. Chem. Phys 114, 5497 (2001).

....

...

Masim Moradi

□ In order to find a good solution for KS equation, ABINIT does self-consistent iterations.

iscf	5	<pre># integer for self-consistent-field cycles</pre>
toldfe	1.0d-6	<pre># tolerance on the difference of total energy</pre>
nstep	50	<pre># maximal number of scf cycles</pre>

□ This procedure is repeated until the total energy does not change any more.

15

iscf # Integer for Self-Consistent-Field cycles

- 1 => get the largest eigenvalue of the SCF cycle
- 2 => SCF cycle, simple mixing of the potential
- 3 => SCF cycle, Anderson mixing of the potential

17 => SCF cycle, Pulay mixing of the density based on the npulyit previous iterations .

• **toldfe** # TOLerance on the DiFference of total Energy

• **toldff** # TOLerance on the DiFference of Forces

...

Introduction to ABINIT

Masim Moradi

Other input variables

nband 128 # Number of BANDs

enunit 1 # print eigenvalues in eV

prtden 1 # provide output of electron density

Introduction to ABINIT

How to run the code?

abinit<ab.files>& log

where standard out and standard error are piped to the log file called "log".

The output files processes


```
Fermi (or HOMO) energy (eV) = 0.27320 Average Vxc (eV) = -
5.99366
Eigenvalues ( eV ) for nkpt= 21 k points:
kpt# 1, nband=128, wtk= 0.02500, kpt= 0.0000 0.0000 0.0000
(reduced coord)
-19.34562 -19.01478 -19.01478 -18.06143 -18.06058 -16.56057 -
16.56057 -14.63137
-14.63024 -14.08317 -13.79795 -13.79795 -12.95920 -12.95730 -
12.90218 -12.65042
-12.65042 -12.51736 -12.51736 -11.98377 -11.98339 -11.62655 -
11.62655 -9.89467
 -9.89320 -9.87726 -9.87726 -9.21481 -9.21127 -8.39652 -
8.39592 -7.82497
 -7.82497 -7.46688 -7.05892 -7.05892 -7.04023 -7.04023 -
6.58694 -6.58694
 -6.06506 -6.06228 -5.91012 -5.54819 -5.53908 -4.20132 -
4.19223 -3.78392
 -3.78392 -3.38485 -3.38485 -2.90455 -2.90455 -2.37898 -
2.36592 -1.93688
 -1.74957 -1.72726 -1.52157 -1.52157 -0.39856 -0.37309
```


Introduction to ABINIT

Masim Moradi

- (at 15h 9)	
<pre>- input file -> cntt.in - output file -> cntt.out - root for input files -> cntti - root for output files -> cntto</pre>	
Symmetries : space group P4 m m (# 99); Bravais tP (primitive tetrag.)	
Values of the parameters that define the memory need of the present run	.==
intxc = 0 ionmov = 0 iscf = 5 xclevel =	1
lmnmax = 1 lnmax = 1 mband = 128 mffmem =	1
P mgfft = 120 mkmem = 21 mpssoang= 2 mpw = 323	316
mqgrid = 5570 natom = 32 nfft = 576000 nkpt =	21
nloalg = 4 nspden = 1 nspinor = 1 nsppol =	1
nsym = 8 n1xccc = 2501 ntypat = 1 occopt =	1
	===
P This job should need less than 1478.728 Mbytes of memory.	
Rough estimation (10% accuracy) of disk space for files :	
WE disk file : 1325.463 MDytes ; DEN or POT disk file : 4.397 Mbytes.	6.
	==
abinit	

Introduction to ABINIT

Å

\mathcal{N} .	MA I	•
Hasim	Moradi	

i	iter	Etot(hartree)	deltaE(h)	residm	vres2	diffor	maxfor
ETOT	1	-192.51535842173	-1.925E+02	2.935E-02	2.012E+03	1.005E-02	1.005E-02
ETOT	2	-192.94185314536	-4.265E-01	4.779E-03	1.888E+02	9.015E-03	1.133E-02
ETOT	3	-192.94411972884	-2.267E-03	3.191E-03	1.039E+02	1.076E-03	1.036E-02
ETOT	4	-192.94533386782	-1.214E-03	1.304E-03	5.619E+01	1.026E-03	9.975E-03
ETOT	5	-192.94596140680	-6.275E-04	6.241E-04	2.009E+01	1.154E-03	1.097E-02
ETOT	6	-192.94611366814	-1.523E-04	3.498E-04	1.177E+01	3.102E-04	1.076E-02
ETOT	7	-192.94618446602	-7.080E-05	1.981E-04	4.938E+00	4.406E-04	1.056E-02
ETOT	8	-192.94629701340	-1.125E-04	2.587E-04	2.174E+00	3.768E-04	1.050E-02
ETOT	9	-192.94631777877	-2.077E-05	1.731E-04	1.685E+00	1.563E-04	1.061E-02
ETOT	10	-192.94632029460	-2.516E-06	2.174E-04	1.275E+00	8.082E-05	1.058E-02
ETOT	11	-192.94632779717	-7.503E-06	1.131E-04	8.336E-01	5.599E-05	1.059E-02
ETOT	12	-192.94632892236	-1.125E-06	1.292E-04	6.001E-01	2.124E-05	1.060E-02
ETOT	13	-192.94633377238	-4.850E-06	5.727E-05	3.020E-01	5.375E-05	1.059E-02
ETOT	14	-192.94633560568	-1.833E-06	6.280E-05	6.457E-02	5.789E-05	1.060E-02
ETOT	15	-192.94633777224	-2.167E-06	3.446E-05	5.161E-02	2.788E-05	1.060E-02
ETOT	16	-192.94633807816	-3.059E-07	2.932E-05	2.235E-02	2.920E-05	1.059E-02
ETOT	17	-192.94633833879	-2.606E-07	2.354E-05	1.389E-02	2.792E-05	1.060E-02

At SCF step 17, etot is converged : for the second time, diff in etot= 2.606E-07 < toldfe= 1.000E-06

Masim Moradi

22

Components of total free energy (in Hartree) :

Kinetic energy =	-	1.32807185446982E+02
Hartree energy =	-	3.34981337176879E+02
XC energy =	:	-6.84967773358775E+01
Ewald energy =	:	1.74988434967199E+02
PspCore energy =	=	9.22544332500993E-01
Loc. psp. energy=	:	-7.89885333758758E+02
NL psp energy=	:	2.17362708322854E+01
>>>>>> Etotal=	-	-1.92946338338788E+02

Other information on the energy : Total energy(eV)= -5.25033687691820E+03 ; Band energy (Ha)= -4.0484830160E+01

==	======						================		
-	Total Total	cpu wall	clock	time time	(s,m,h): (s,m,h):	20409.1 20447.7	340.15 340.80	5.669	

Introduction to ABINIT

How I can plot band **Structures** from Abinit output files?

STEP 1 : produce a .dbs file

The first thing to do is to extract datas from an Abinit output file and produce a **.dbs file** (dbs stands for Data for Band Structure). To do so, you must execute the program and specify the name of the .out file you wish to use.

Copy your output file in the following path:

abinit-7.10.2/scripts/post_processing

> Then in the commond line type:

> python AbinitBandStructureMaker.py file.out

the program will extract all the necessary datas and produce a .dbs file. If everything goes well, you'll get the following message in the commond line:

> "file.out.dbs " file created successfully

STEP 2: produce a .agr file

Now that you have a customized .dbs file, you must extract datas from this file to produce a **.agr file** (a formatted file readable by xmgrace). To produce a .agr file, execute the program and specify the name of the .dbs file you wish to use:

> python AbinitBandStructureMaker.py file.out.dbs

If everything goes well, you'll get the following message :

> "file.out.agr " file created successfully

STEP 3 : plot the band structure

Now that you possess a .agr file, you just need to execute xmgrace and use the .agr file to plot the band structure.

> xmgrace file.out.agr Your plot is ready:

http://inac.cea.fr/L_Sim/V_Sim/

Introduction to ABINIT

Masim Moradi

http://www.xcrysden.org

Introduction to ABINIT

SUBJECTS

Let's play with:

Thank you ...