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ABSTRACT
Fueled by the widespread adoption of sensor-enabled smart-
phones, mobile crowdsourcing is an area of rapid innova-
tion. Many crowd-powered sensor systems are now part of
our daily life – for example, providing highway congestion
information. However, participation in these systems can
easily expose users to a significant drain on already limited
mobile battery resources. For instance, the energy burden
of sampling certain sensors (e.g., WiFi, GPS) can quickly
accumulate to levels users are unwilling to bear. Designers
of crowd systems must minimize the negative energy side-
effects of participation if they are to acquire and maintain
large-scale user populations.

To address this challenge, we propose Piggyback Crowd-
Sensing (PCS) – a system for collecting mobile sensor data
from smartphones that lowers the energy overhead of user
participation. Our approach is to collect sensor data by ex-
ploiting Smartphone App Opportunities – the times when
smartphone users place phone calls or use applications. In
these situations, the energy needed to sense is lowered as the
phone no longer has to be woken from an idle sleep state,
just to collect data. Similar savings are also possible when
either performing local sensor computation or uploading the
data to the cloud. To efficiently use these sporadic oppor-
tunities PCS builds a light-weight user-specific prediction
model of smartphone app usage. This is used by PCS to
drive a decision engine allowing the smartphone to locally
decide which app opportunities to exploit based on expected
data quality/trade-offs. We evaluate PCS by analyzing a
large-scale dataset (containing 1320 smartphone users) and
building an end-to-end crowdsourcing application that con-
structs an indoor WiFi localization database. Our findings
show PCS can effectively collect large-scale mobile sensor
datasets (e.g., accelerometer, GPS, audio, image, etc.) from
users while using less energy (up to 90% depending on the
scenario) compared to a representative collection of existing
approaches.
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1. INTRODUCTION
Mobile crowdsourcing systems are becoming increasingly

prevalent in society. Commuters monitor highway conges-
tion using GPS readings from other drivers stuck in traffic [9,
37]. Commercial location services rely on WiFi maps built
from data collected from millions of smartphone users [6, 3].
City planners, similarly leverage smartphone microphones
to track noise pollution levels [33]. Now, even shoppers are
being incentivized to provide images of store interiors, al-
lowing product displays to be assessed [7].

This growing class of crowdsourcing systems all depend on
collecting mobile sensor data from large numbers of smart-
phone users. Keeping the burden placed on participating
users as low as possible is critical to the success of these sys-
tems. Yet, surprisingly many existing systems employ rel-
atively simplistic and inefficient data collection strategies.
Common strategies include relying on (1) highly-engaged
users to manually capture high-quality data that tightly
matches application requirements; (2) periodic or random
sampling of data; or, (3) context-driven sampling, typically
based on location. Accompanying each of these strategies
are significant negative side-effects, including, poor data qual-
ity, excessive energy consumption, and high user-engagement.
For mobile crowdsourcing to reach its considerable potential
new approaches are required for mobile sensor data collec-
tion, enabling it to be both energy-efficient and without the
user-in-the-loop.

Towards meeting these challenges, in this paper we pro-
pose Piggyback CrowdSensing (PCS) – a smartphone- and
cloud-based system for energy efficient crowdsourcing of mo-
bile sensor data. PCS is designed to intelligently leverage the
opportunities for collecting sensor data that frequently occur
during everyday smartphone user operations, such as, plac-
ing calls or using applications. We refer to these situations
as Smartphone App Opportunities. At these times the en-
ergy cost of sensing can be significantly reduced as required



smartphone components (e.g., CPU or even the sensor it-
self) are already activated from an idle state. Under PCS
sensor data collection, computation and uploading is per-
formed as a background process, without user involvement
– at times when the energy consumption of these actions can
be minimized.

Efficiently using sporadic user-driven sensing opportuni-
ties to satisfy crowdsourcing sensing requirements is chal-
lenging. For example, simply applying a greedy strategy and
taking advantage of every smartphone app opportunity to
sense would quickly consume too much energy, and neglect
potentially better later opportunities in favor of earlier ones.
Instead, the operation of PCS is guided by predictive mod-
els that capture the smartphone app usage patterns that are
specific to each user. By predicting upcoming sensing oppor-
tunities PCS can compare current opportunities to sample
against to future ones, which for instance might occur at a
highly valued location. The PCS app prediction model is
used to drive a decision engine that can balance current and
future opportunities against pending tasks to either sense,
upload or apply computation to the data.

The following contributions are made by this paper:

• We propose to systematically exploit Smartphone App
Opportunities for mobile crowdsourcing. Under this
approach predictable patterns of smartphone usage –
such as, making calls or browsing the web - are lever-
aged to decrease the energy consumption of mobile
crowdsourcing.

• We develop an architecture and algorithms designed
to maximize the benefit possible from unpredictable
Smartphone App Opportunities. Specifically, our al-
gorithms: (1) accurately predict smartphone app us-
age; that in turn enables (2) local intelligent decisions
by smartphones as to when to sample, compute and
upload sensor data.

• We evaluate our PCS prototype using (1) a large-scale
trace of 1320 smartphone users, (2) a separate field
trial (21 day, 11 users); and, (3) one end-to-end appli-
cation case study using the PCS system. Our results
show PCS can collect more sensor data (between 0.7x
and 3x) with the same energy budget when compared
to a representative set of crowdsourcing benchmarks;
while still performing the necessary computation and
uploading tasks.

The remainder of the paper is organized as follows. §2 high-
lights the benefits of piggyback crowdsensing. In §3 we begin
to describe PCS , which presents an overview of the PCS ar-
chitecture. §4 continues by providing the specifics of the key
algorithms in our design. Finally, in §5 we detail the imple-
mentation specifics of the PCS prototype. §6 presents exper-
iments that evaluate both individual PCS components and
compare overall PCS performance with alternative crowd-
sourcing approaches. §7 discusses the end-to-end perfor-
mance of representative prototype crowdsourcing applica-
tions built with PCS . In §8, we acknowledge the limitations
of our study and outline our plans for future work. Related
work is discussed in §9 and §10 concludes this paper.
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Figure 1: Energy consumption for sensing falls if
performed opportunistically when various smart-
phone applications are already being used by the
user.
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Figure 2: Energy consumption of (a) camera and (b)
microphone sensing with app usage. The additional
energy consumption required for sensing falls when
smartphone apps are already being used by the user.

2. SMARTPHONE APP OPPORTUNITIES
In this section, we discuss the collection of mobile sensor

data by piggyback crowdsensing. In particular, we highlight
potential energy-savings by exploiting Smartphone App Op-
portunities – the opportunities presented by smartphone us-
age, such as when users place phone calls or browse the web.

Smartphone Sensing with Lower Energy. We be-
gin with an experiment that measures the energy consump-
tion of sampling various sensors (viz. camera, microphone,
GPS, and accelerometer) opportunistically – at the same
time smartphone applications are used in the foreground.
Figure 1 compares the energy cost of sampling each sensor
under three scenarios. While the user is either, (1) brows-
ing the web (WiFi connection), (2) using Google Maps (3G
connection), or finally (3) when the phone is idle, and must
be woken from a sleep state. Our results show that if the
camera and microphone are sampled when the phone is in
an idle state, rather than exploiting the opportunity when
applications are used, sensing can cost as much as an addi-
tional 98% and 495%, respectively. In the case of the GPS,
all the energy necessary to sample can be trivially saved if
the application itself uses the GPS (as in the Google Maps
case), but even when the user is simply web browsing a sav-
ing of around 34% can still be achieved.

Waking the phone from an idle state to collect sensor
data requires a number of system components to be acti-
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Figure 3: Energy consumption of sending (a) two
mails with 16KB and (b) a mail with 32KB.

vated. The full CPU and related subsystems are needed for
most smartphones to be able to sample a sensor – by them-
selves these components can consume between 200 mW and
600 mW. One key reason why we find piggybacking sens-
ing with other apps can save energy is because much of this
CPU overhead can be saved. Figure 2 shows the energy con-
sumption of microphone and GPS sensing with and without
app usage at the same time. Performing sensing while an
app is in use requires 43% less CPU-related energy during
the sampling operation. The processing required to capture
sensor data is often fairly small and so can be performed
by the CPU being awake a little longer or by time-slicing
the computation with the primary user initiated workload.
In the case of low power consuming sensors (e.g., the ac-
celerometer) piggybacking can have an even larger benefit.
The cost of waking and using the CPU for sensing is largely
the same across sensing modalities, even for low-cost sensors.
As a result, often the actual sensor related cost of collecting
sensor data can be relatively tiny, as shown in Figure 2(b).
Because piggybacking largely lowers the CPU component of
the energy needed to sense it is able to have a large overall
larger impact on these relatively “cheap” sensors.

Piggyback Uploading with Lower Energy. In our
next experiment, we demonstrate how data collection (i.e.,
uploading) can benefit from app piggybacking. Figure 3
presents a time-series power consumption when uploading
data independently or when batched with the uploading
needs of another app by piggybacking. This figure shows the
transmission of two 16KB data files separately (Figure 3(a))
as well as single transmission of 32KB (Figure 3(a)). The
single transmission is caused two app transmitting data at
approximately the same time. In this particular experiment,
although the same amount of data is transmitted in both
cases by sending the data as two separate files the energy
cost is twice as high compared to the case of the piggy-
back case. The reason for this is that (1) the bandwidth of
the wireless connection could cope with the faster data rate
without increasing the upload duration and (2) the tail state
of communication module can be amortized across the two
piggybacking transmissions. Thus, the piggyback uploading
potentially may save significant energy if sensor uploading
occurs during the uploading of other applications.

Piggyback Computation with Application Usage.
Finally, we investigate the relationship between computation
and app usage. Figure 4 presents a time-series of CPU/GPU
utilization while Google Map is used. Our key observation is
that during user initiated (e.g., GUI-based) apps, while the
user pauses before next interacting the CPU is idle. These
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Figure 4: Utilization of (a) CPU and (b) GPU with
use of Google Map.

results indicate: (1) piggyback crowd-required computation
with app usage may not degrade the user experience if the
app already has low CPU utilization; (2) piggyback sensing
may potentially utilize slack time of the CPU/GPU if it is
not often used while the user is not interacting with the
screen.

3. PCS OVERVIEW
In this section, we introduce Piggyback CrowdSensing

(PCS) by briefly describing its core components and over-
all architecture. PCS has been designed to effectively ex-
ploit opportunities to collect, compute on and upload sensor
data presented by Smartphone App Opportunities – common
smartphone user operations (e.g., placing calls, using appli-
cations). This approach enables PCS to lower the energy
burden placed on users when participating in crowdsourcing
applications.

Figure 5 shows the overall architecture of PCS . The ma-
jority of functionality resides on the smartphone, allowing
it to independently make decisions as to when is the most
energy efficient times to perform pending sensing tasks. We
begin our description with the cloud-side components.

PCS Cloud Infrastructure. The primary function
of the cloud is to offer building-block services for external
crowdsourcing applications, in addition to storing data up-
loaded by PCS-enabled smartphones.

Crowdsourcing Application Support. Crowdsourcing ap-
plications use PCS via a set of external facing APIs, which
offer sensor data collection and data processing operations.
All applications must define a set of crowdsourcing tasks.
Minimally, these tasks must specify the sensor, sampling du-
ration, maximum upload latency (after which the sampled
data is no long needed) and the phone-side data processing
to be applied. In addition, optional specifications can be set
that describe the desired spacial and temporal preferences
(e.g., sample within an specified area or within a range of
hours during the day) as well as the preferred upload la-
tency. PCS meets these preferences on a best-effort basis
depending on the availability of Smartphone App Opportu-
nities and the battery budget determined by each user.

PCS Smartphone Software. Phone-side components
are responsible for making intelligent sensor sampling, com-
putation and uploading decisions that balance, for example,



Figure 5: PCS Prototype Implementation

expected sample quality with the resulting energy cost.
Sensing Decision Engine. Each time an application is

launched the Sensing Decision Engine (SDE) is invoked. The
role of the SDE is to compare the opportunity to perform
any pending crowdsensing tasks (viz. sensing, computation,
uploading), presented by the invoked application, against
future opportunities represented by predicted patterns of
smartphone app usage. Opportunities are evaluated dif-
ferently depending on the type of crowdsensing task to be
performed, with each type of task (e.g., sensing or compu-
tation) applying a different notion of utility and cost. For
example, an opportunity to sense based on a particular app
running on the foreground is evaluated with utility depend-
ing on an expected level of sample quality (app category
specific, see §4.3 for more) and the sampling context (e.g.,
time and location) – and with cost based on the expected
marginal energy required for the sample (again app category
specific.) In contrast, an opportunity to compute measures
utility based on the expected negative impact on user expe-
rience – we use the expected amount of idle CPU time while
this process runs as a proxy – the cost is again based on the
marginal energy for the task. The goal of the SDE is to select
those opportunities that will maximize utility – while still
respecting a user-specified battery budget constraint (i.e.,
cost.) If the current opportunity (i.e., application usage) is
selected, then the operation begins immediately – otherwise
it is delayed until the next time an app is invoked.

Smartphone App Usage Model. User-specific app usage
is predicted using an online model (i.e., that learns incre-
mentally) that operates locally on the phone. We adopt
predictive features previously demonstrated to be effective,
for example: the prior app that is used, the time of day, day
of week, location. The output of our app usage model is the
probability of when each app will be used at different times
of day. Some predictions are trivial when they are related to
smartphone OS related processes which are deterministically
scheduled. Location in our app usage model is based on a

mobility model (described next) as directly estimating the
location of the user when each app is used would consume
too much energy.

Mobility Model. Mobility patterns for each user as mod-
eled because (1) smartphone app usage often have location
dependencies, and (2) crowdsourcing applications typically
have spatial and/or temporal sensor sampling preferences.
The mobility model is best-effort and relies on the location
requests (GPS or WiFi) made by user initiated apps (or
those initiated by the smartphone OS.) These opportunistic
location estimates are supplemented by location estimates
requested by the mobility model itself, these are made when
required from a small daily energy budget allocated to this
component. As in the case of the app usage model, the mo-
bility model is personal to each user with the training and
execution of this model performed exclusively on the phone.

4. PCS ALGORITHMS
In what follows, we detail the core algorithms that collec-

tively comprise the PCS architecture.

4.1 Smartphone App Usage Model
The goal of this model is to predict when certain apps will

be invoked by each user. To achieve this we adopt an online
model that becomes personalized for each user based on their
particular usage patterns. Training occurs incrementally,
each time apps are used.

Predictive App Usage Features. We adopt a series of
features proposed in prior studies (e.g., [36, 19]) that predict
future app usage. However, we exclude those features that
are energy expensive to compute since app prediction must
occur frequently.

Specifically, we compute features based on: location, time,
phone state and the previous app used. The time of day
when an app is used is quantized into four time intervals,
each lasting six hours1. Similarly, the day of week is cate-
gorized into either weekend, or weekday. Location is based
on a coarse estimated position of the user (one of a series
of regions the user moves within) using the mobility model
(described in §4.2). Previous app used is represented as an
app identifier, only capturing the immediately previous app.
Finally, a variety of phone states are used: vibrate mode,
screen on, airplane mode – each of which are represented as
binary indicator variables.

Online Boosting App Prediction Model. We learn
patterns of smartphone app usage with an Online Boosted
Naive Bayes Model [31]. This classifier design allows the
phone to perform incremental training and inference with
little overhead (see §6.2). Previously, batch versions of a
naive bayes model using a superset of the features we used
have been successful in modeling application usage [36]. In
§6.2 we present results showing our approach has similar lev-
els of prediction accuracy to [36]. However, PCS is agnostic
to the precise model used to predict app usage behavior.

We use the specific formulation of an online boosting model
provided in [31] that is designed to act as a online equivalent
to AdaBoost.M1 [23]. A naive bayes model is used as the
weak learner during the boosting process, with each bayes
model trained being applied to the features described above.
Each bayes model will assign a conditional probability to
each possible smartphone app based on the value of the sin-

1{6am − 12pm, 12pm − 6pm, 6pm − 12am, 12am − 6am}



gle feature (e.g., time of day) it is trained on. Unlike many
classification problems labeled training data is plentiful since
features are labeled (i.e., annotated with the ground truth
app) by system event logs. This enables our app prediction
model to constantly be revised without manual intervention.

The output of the boosting process is a series of weak
learners, h1, h2, .., hm (single feature bayes models), that
are based on weighted training examples (i.e., features com-
puted against observations of apps being used.) Boosting
incrementally trains these learners one after the other in re-
sponse to errors in the training data. Like AdaBoost.M1
our online boosting algorithm will increase the weight of
examples provided to the new weak learner (hm) that were
misclassified by the previous weak learner (hm−1). However,
because training is a stream process the entire dataset can
not be re-weighted and the new weak learner (hm) trained.
Instead the same effect is produced by maintaining weights
(λcorrect

m and λincorrect
m ) for each weak learner that influence

how the learner is revised (i.e., shifting the classifier deci-
sion boundary for a respective feature) each time it either
incorrectly, or correctly classifies a new training example –
in addition to updating εm, the error for the model.

At any time an app prediction is required the boosted
model can be used, although accuracy will increase as it is
exposed to greater amounts of data. Prediction is performed
by applying,

h(x) = argmaxy∈Y ΣM
m=1log

1− εm
εm

I(hm(x) = y) (1)

where, y is any app in the set of all apps used (Y ), εm is
the error term for each weak learner (hm) and x is the vec-
tor of computed features. When the SDE is invoked app
predictions are made for the remainder of the day by apply-
ing this model. These predictions are used by the SDE to
guide its decision process of matching crowdsensing tasks to
Smartphone App Opportunities.

4.2 Mobility Model
We employ a fairly rudimentary model to predict user

mobility. We acknowledge that this model may not provide
enough accuracy for some scenarios; the over-riding concern
is to keep the energy overhead of this technique low. Impor-
tantly, just as is the case of our use of an online boosting
learning algorithm to predicting app usage patterns, PCS is
also agnostic to the specific mobility model used and could
adopt more sophisticated methods to increase system per-
formance.

Mobility is modeled under PCS as follows. The phys-
ical region in which PCS users move is tessellated into a
grid of square tiles, the size of which is application-specific
(e.g., an indoor deployment will use smaller tiles than an
outdoor one). Similarly, time is also divided into discrete
blocks, for example, we use a set of 8 blocks – four used by
days during the week and four used by days in the weekend.
Each day is partitioned along the same boundaries used to
quantize application start times, as detailed in the previ-
ous subsection. Let each time interval block correspond to
a completely separate grid of tessellation tiles. Further, let
each user be represented by a separate data structure – con-
taining time interval blocks and tessellation tiles. Populate
this data structure based on the mobility pattern of each
users by counting each time a user visits a specific tessella-
tion tile, with respect to a specific block of time. Finally, to
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Figure 6: Sensing Decision Engine operation

predict the location of a user for a particular time interval
(i.e., within the set of 8 discrete blocks) simply select the
tessellation tile most frequently visited for that block.

4.3 Sensing Decision Engine
The role of the Sensing Decision Engine (SDE) is to eval-

uate current and future opportunities for the phone to per-
form tasks (viz. sense, compute, upload) requested by crowd-
sourcing applications using PCS . Figure 6 illustrates the
decision process performed by the SDE each time an app
is started. The current opportunity to perform a task (oi),
presented by initiated app (api), is compared to upcom-
ing opportunities ({oj , ..., ok}), based on the predicted app
{apj , ..., apk} determined by the Smartphone App Usage
Model. Selection of an opportunity oi relative to alterna-
tives {oj , ..., ok} is done by balancing expected utility (e.g.,
quality of the sensor sample) and the cost (e.g., energy con-
sumed), which can vary, for example, depending on which
app is being used or the task to be performed. Any decision
made by the SDE can only ever be approximate since ac-
tual app usage in the future almost certainly will differ from
the prediction. Whenever the currently executing app is in-
cluded in this plan Sensing Decision Engine will then initiate
the task by sampling, uploading or applying computation.

We now describe in detail: (1) how utility and cost is de-
termined for each type of crowdsensing task; and, (2) how
the optimization is performed that determines how the de-
cision engine behaves.

Utility. We describe now proof-of-concept utility func-
tions, with different definitions existing for each of the three
varieties of crowdsensing tasks. These can be easily replaced
to meet the needs of crowdsourcing applications, or to im-
prove PCS performance, without impacting any other com-
ponents in the system.

We now describe each utility function definition in turn.
Sensing. PCS defines the utility of sensing not with re-

spect to individual apps but instead categories of apps. Ap-
plications are assigned into 15 different categories (described
in §6.1). This is due to the shear number of applications we
perform this process using the Mechanical Turk [1].

Because utility functions for sensing are so application
specific PCS provides a framework for the function that a
crowdsourcing app can customize (or even completely re-
place). This function design assess the utility of (ui) of an
opportunity (oi) based on two criteria. First, the expected
quality of the data sampled (uq). Second, how closely con-
textual conditions for sampling match the requirements of
the crowdsourcing app (ul). These two factors are combined



to determine the final utility for an opportunity. The default
is a linear combination of uq and ul with weight assignments
to each term that are configurable by the crowdsourcing ap-
plication developer (i.e., ui = wquqi + wluli).

Our strawman definition for sensor data quality (uq), that
is used for the later evaluation, is for uq to be based on ac-
curacy achieved (e.g., f1-score) when performing a compu-
tational task (e.g., object-recognition, speech recognition –
called pj .) For example, the accuracy when performing ob-
ject recognition using the smartphone camera while a user
is talking on the phone. Formally,

uq(pj , ck) = 2 · precision(pj , ck) · recall(pj , ck)

precision(pj , ck) + recall(pj , ck)
(2)

where precision(pj , ck) and recall(pj , ck) are the mean pre-
cision [14] and recall [14], found experimentally, when per-
forming pj while ck is the foreground smartphone applica-
tion. Note, our use of recall and precision in Equation 2 is
simply the standard formation of f1-score, which combines
both recall and precision metrics.

Our strawman definition of utility based on the contex-
tual conditions for sampling (ul) is highly app-specific and
assumes uniform geo-graphic sampling is required. To do
this we use the same data structure used to predict user
mobility described previously in §4.1. We determine based
on this data structure the current tessellation tile (tti) and
time block (tbi) for a user. The utility ul for oi then is sim-
ply the sum of all user visits to tti at tbi divided by the sum
of all visits across all tiles and blocks.

Computation. Computation attempts to quantify the
utility (ui) of a computation opportunity experimentally
based on the amount of idle CPU time while the app is
used. The intuition is to coarsely capture the availability of
the CPU during the specific use of an app. Although this
measure is not perfect it is very easy to acquire data for, sim-
ply by PCS gathering smartphone OS statistics using app
usage.

Uploading. Similar to the utility of computation, utility
(ui) for an uploading opportunity (oi) attempts to capture
how much negative user experience may occur if an upload-
ing task is performed at the same time as the app in question.
To capture this we base our utility on the amount of data
that is transferred on average during the app’s operation.
Apps that heavily use the network might be negatively ef-
fected by PCS also using available wireless bandwidth. In
contrast, apps that do not use the network will have a high
utility value, but this is balanced by their high cost since
there is no opportunity for PCS to piggyback on any app
generated traffic. Determining the utility value for each app
is simple, PCS simply tracks how much data is transferred
each time the app is used.

Cost. We define the cost (ci) of a any crowdsensing
task (oi) in terms of the energy consumed. Just as we did
with utility, cost is empirically determined; measurements
are performed on an app category basis rather than indi-
vidual categories to reduce the number of measurements re-
quired. Also similar to utility, three key parameters are used
in the estimation of ci: (1) the sensor (if needed); (2) the
radio interface (if needed); and (3) the current app (if any).
We experimentally build functions for ci, just as we did for
uq, by performing a careful series of experiment that quan-
tify the energy required to perform sensing, data transfer
and data processing assuming different app categories are in

use. As the energy consumed by an app and during sensing
can vary in time, for simplicity, we use only an estimate of
energy usage based on the mean power drawn and operation
duration – as measured over multiple experiment runs.

Optimization. The Sensing Decision Engine formulates
the planing process - i.e., the selection of smartphone app-
based opportunities to either sample, compute or upload - as
a stochastic knapsack problem with deadlines [32, 35] (SKP).
Under SKP, items are selected from a larger collection to be
placed inside a knapsack that is subject to a weight limit.
Each item is associated with a weight and value. Certain
items have a deadline associated before which they must be
performed. The objective is to find the subset of items that
will maximize the value of the knapsack, without exceed-
ing the weight constraint or violating deadline constraints.
However, item weights and values can be stochastic and so
uncertain at the time items are selected. We formulate the
PCS planning problem under SKP as follows.

The item collection is determined by all pending crowd-
sensing tasks. This set of pending tasks contains: all sensing
requests made by the external crowdsourcing applications,
along with an upload and when necessary computation task
that are generated each time a sensing task is complete.
Uploading tasks may or may not have a deadline associ-
ated, depending on the specification of the crowdsourcing
application (see §3). All computation tasks have a deadline
set to be prior to the uploading deadline. During the SKP
optimization an item is a pairing of a pending task and pre-
dicted app usage. In other words, an item is generated for
each combination of task and predicted app during which
the task could be performed (as predicted by the Smart-
phone App Usage Model). Item values are set by ui, and
item weights are set by ci by applying the utility and cost
definitions described above; consequently, both are param-
eterized based on the type of crowdsensing task considered
(e.g., sensing or uploading), the sensor modality (if the task
is to perform sensing) and the app category. Uncertainty
of ui and ci are decided by the confidence the Smartphone
App Usage Model has in its prediction of the app usage.
For our boosting model, confidence is simply based on the
probability assigned to each app based on the computed
features. Knapsack capacity is set to the battery budget (b)
allocated for crowdsourcing tasks by the user (available as a
configuration option). Solutions to SKP typically attempt to
maximize the expected value of the selected objects subject
to a corresponding expected penalty for exceeding knapsack
capacity. More formally, we must solve:

max
∑

βsri µi λi xi − d · E[> b|xi] (3)

s.t. xi ∈ {0, 1}

where, xi indicates if a potential task/app pair i is selected
or not, d is the penalty factor per unit of weight exceeding
capacity, ri is the reward per unit of weight for the task/app
pair i, µi is the expected weight of task/app pair i, λi is the
expected value of the task/app pair i, all rewards for the
task/app pair are subject to βs a decay function that looses
value the closer the time s approaches a specified deadline;
and finally, E[> b|xi] is the expected weight above b.

A dynamic programming solution to this particular SKP
is intractable. We apply a knap sack heuristic developed to
cope with the same formulation as it applied to perishable
items (e.g., fruit) which have rewards the decay over time



while the item is waiting to be purchased [25]. This Index-
Knapsack heuristic relies on a series of index equations that
are generated by first representing the problem as a specific
form of markov decision process (a weakly-coupled MDP).
Index equations are then found by decomposing the MDP.
[24, 25] shows that by computing this index across the set
of items at each time step the index can proxy for the item
values. An approximate solution can then be found through
a conventional knap sack formulation, solvable with a text
book dynamic programming solution.

The Sensing Decision Engine solves this optimization each
time an app is initiated by the user. The index equations are
determined off-line but once computed they can be stored
locally on the smartphone allowing the optimization to be
done locally. If the initiating app is included in the result-
ing opportunities selected then the chosen crowdsensing task
is immediately scheduled. Otherwise all pending tasks are
delayed in preference towards a future opportunity.

5. PCS IMPLEMENTATION
We conclude our description of PCS by a describing our

prototype implementation. Figure 5 shows the core proto-
type components and highlights where in the architecture
they reside (e.g., cloud or smartphone).

Smartphone Software. Our prototype is implemented
for the Android smartphone platform, and spans three sys-
tem services and one user application. Each system service
performs one of the following functions (1) sensor sampling,
(2) managing cloud communication, and (3) collecting ap-
plication usage and mobility data with minimal energy over-
head. The single user application offers various privacy set-
tings.

We now describe in additional detail each of these four
components, in turn.

Sensor Sampling. We embed the SDE algorithms that
governed sensor sampling within an event-activated service.
By using the notifications from standard Android system
events this PCS component can primarily sleep, consuming
virtually no energy until an opportunity to sense presents
itself. Once activated, if sensing occurs then the resulting
data is stored for later delivery to the cloud.

Privacy Control. Given the sensitivity of the sensor
data collected by PCS providing the user with control over
their own data is paramount. All data is forced to reside
on the smartphone for at least 24 hours, during which time
users are able to delete any data they are uncomfortable
being collected for processing. For this purpose our client
incorporates a simple interface which allows users to view all
images and play all audio clips collected, which they can then
manually choose to delete. To further simplify this process
users, with the press of a single button, can decide to purge
all collected sensor data for the previous 1, 6 or 24 hours.
Finally, as a preventative measure users can also select to
pause data collection for an upcoming time interval (again
1, 6 or 24 hours) if they anticipate sensitive events occurring
- or alternatively, users are able to inform the client to never
collect data at a certain place (e.g., home, office).

Low-energy Smartphone Monitor. Traces of application
usage and user mobility are required to build the Smart-
phone App Usage Model. Logging smartphone usage is sim-
ple and requires little energy, requiring only the recording of
a variety of system events, including not only which applica-
tion is invoked but events, such as phone calls being placed

(which are also valuable opportunities to collect data). How-
ever, tracking user mobility requires GPS estimates that if
not carefully controlled can consume large amounts of en-
ergy. PCS is conservative in building/maintaining its user
mobility model, preferring instead to operate with a weak
model that lowers crowdsensing performance (e.g., poor ge-
ographic coverage) rather overly burden the phone battery.
GPS estimates used for the mobility trace are sourced in two
ways: (1) exploiting the GPS samples required, for example,
by other user applications such as for maps and navigation;
and, (2) a small amount of direct calls to the GPS. Direct
GPS calls are made during a day up until a fixed daily bud-
get of energy is met. PCS allocates this daily budget sim-
ply by attempting to accumulatively (over multiple days)
sample location uniformly throughout the day, with a lower
weight placed on regular sleeping hours (i.e., 12am - 7am).
Later, in §6.4 we investigate the use of this approach, finding
a surprising amount of GPS estimates can be gained from
user-initiated applications, and that PCS can perform well
even if this component uses minimal amounts of energy.

Cloud Communication. Most crowdsourcing applications
targeted by PCS comfortably tolerate short delays in data
collection (e.g., [9, 37, 33, 7, 6, 3, 26]). PCS exploits this
flexibility to minimize the energy consumption (and cellu-
lar data plan cost) of cloud communication. The default
policy for all communication is to delay until the smart-
phone is both line-powered and has a WiFi network avail-
able, which typically occur while the smartphone is recharg-
ing overnight. This simple, but effective heuristic, allows
cloud networking to occur without penalty to the phone
battery. If the crowdsourcing application specifies a latency
deadline for the delivery of data PCS attempts to meet this
requirement. However, cellular data is only used if this op-
tion is enabled by the user. Otherwise only WiFi is utilized.
Regardless of network interface the battery budget provided
the user is always respected.

During communication the cloud provides: (1) the assign-
ment of apps to app categories and any app category sensor
utility functions and (2) new/revised crowdsourcing tasks.
In turn, the smartphone provides the cloud all data col-
lected, and computation performed since the last communi-
cation.

Cloud Infrastructure. We build the PCS Cloud In-
frastructure using the storage, computation and distributed
system services offered by Windows Azure [10]. The primary
function of this infrastructure is to facilitate the interaction
between PCS and external crowdsourcing applications.

External Crowdsourcing Application Support. Through a
series of standard RESTful APIs external applications can
submit to PCS crowdsourcing tasks (briefly defined in §3)
that specify sensor data sampling requirements (e.g., modal-
ity, sampling rate, etc.). Further, external applications can
specify additional post processing to be performed to the
data. Our prototype currently supporting various types
of sensor data classification and interpretation (e.g., object
recognition, sound volume) – we detail these supported sen-
sor algorithms in §6.1. Once a crowdsourcing task is sub-
mitted external applications are able to use the PCS APIs
to track the accumulation of data and retrieve it when re-
quired.



6. EVALUATION
In this section, we evaluate PCS and study its ability

to perform energy-efficient crowd sourcing of mobile sen-
sor data. Our key finding is that under a wide variety of
crowdsourcing scenarios – each with their own particular
combination of sensor data sampling, computation and col-
lection requirements – PCS is able to significantly lower the
energy consumed by the user’s smartphone compared to a
number of commonly implemented benchmark strategies.

6.1 Methodology
We briefly describe the key components and definitions in

our experiment methodology.
Benchmarks. We compare PCS against three baseline

strategies, which we now describe:
Periodic Sampling. In the absence of prediction peri-

odic simply samples at a fixed sampling frequency. This
frequency is set based on the fixed battery budget set for
each experiment.

Context-driven. Many crowdsensing applications have
a strong temporal and spatial requirement. The context

baseline attempts to maintain uniform sampling across time
and space, using the same mobility model employed by PCS
(specified in §6.3).

Application-driven. The most simplistic approach to
leveraging smartphone app opportunities is to greedily use
each one whenever it occurs. We compare this approach,
performed by app-driven, against PCS to quantify the ben-
efit of the app prediction and decision optimization we pro-
pose.

Datasets. We use two datasets. First, we are given
access to AppJoy – a dataset of smartphone usage patterns
from the authors of [39]. This dataset is comprised of 1320
people and contains the app used, along with start time,
coarse location and duration. The data was collected world-
wide as part of a public Android application release. We pair
this large-scale trace with CrowdTest – a dataset we collect
ourselves as part of a 11 person, 21 day deployment to ex-
amine data quality. All users are provided with Android
phones running PCS and a simple sampling app that imple-
ments periodic and context. All phone sensors are used
(GPS, WiFI, accelerometer, microphone). To assess data
quality we employ students from Yonsei university to man-
ually inspect the data and assign ground-truth categories
depending on the content. The PCS utility function during
all experiments (unless otherwise stated) is set with the ob-
jective of uniform spatial coverage; utility ignores potential
other factors, such as, time of day or the piggy-back app
type.

Smartphone Application Categories. Due to the di-
versity of smartphone applications it is impractical to profile
(e.g., energy) them all. Instead, we group applications into
categories which we list in Table 1, along with representative
app examples that fit in each category.

To categorize all of the apps used in our 1320 person ap-
plication trace we use the Mechanical Turk [1]. Our task
requests users to categorize the application and provide a
link to a webpage that assists their decision. We have each
app categorized by three people, and then determine the
final category based on majority voting.

We empirically profile the energy consumption of five ap-
plications from each category (see §6.2) to determine the
variance of energy consumption when PCS exploits apps

Categories  Applications 
Phone  GrooVe IP, AIVC, Google Voice, Voxer Walkie‐Talkie PTT

SMS & Chat Clients  IM+, Go SMS, tablet talk, Handcent SMS, Kakao Talk
Audio & Music  Poweramp, PlayerPro Music, WavPlayer,Winamp

Browser  Dolphin browser, Firefox, Opera Mobile, Chrome
Video  YouTube, VPlayer, MX Player,DicePlayer, Plex, GTV Box
Email  Enhanced email, Gmail, Yahoo! Mail, Hotmail

Reading / Books  Kindle, Bible, Google Play Books, iQuran, Blio eBooks
Photo viewing Apps  Picasa Mobile, InstaPics, FX Photo Editor, Adobe Photoshop

Games  Angry birds, fruit ninja, doodle jump, minecraft
System  Task Killer, JuiceDefender, Tasker, Easy Battery Saver

Map & Navigation  Google Maps, Navigon, GPS Phone Tracker, Street View
Social Networking  Facebook, Twitter, FourSquare, Google+, LinkedIn
Video + Microphone  Skype, Viber, ooVoo, T‐Mobile Video Chat, 

Camera  Camera Zoom, Paper Camera, Pano, Vignette, HDR Camera
Others  Root Explorer, Flashlight, Speedtest, Go Launcher EX

 

Table 1: Categories of Smartphone Apps used in
PCS evaluation.

within categories. We find the average within category range
of energy consumption is ±13%. This profiling also is used
for our actual cost category functions used by PCS in our
experiments.

Sensor Data Quality Categories. To provide a
measure of sensor data quality under PCS and alternative
strategies, we categorize collected audio clips into three cat-
egories: (1) human voice, (2) background sounds, and (3)
silence. Categories are assigned to audio clips based on the
volume and the output of the speech recognizer, a subset of
sounds are manually checked after categorization to verify
the assignment is valid. In cases where an audio clip can
be assigned to multiple categories the “dominant” sound of
the clip is attempted to be assessed and used for classifica-
tion. Human-voice audio clips contain one or more people
speaking. We consider an audio clip as silence if the file
includes virtually no words and little noise (i.e., less than
-70dB in volume). Finally, audio clips are categorized as a
background sound type if they contain few words but are
loud enough not to be in the silent category.

6.2 Micro-benchmarks
We begin by performing two brief micro-benchmarks that

investigate the quality of sampling the microphone under
PCS and the periodic and context baselines. In addition,
we also profile the impact of PCS on the smartphone to
measure any negative impact to the user experience (e.g.,
when the user runs other apps while PCS is operating).

Sensor Data Quality. We perform a preliminary in-
vestigation using the CrowdTest dataset to see if exploiting
Smartphone App Opportunities causes negative changes in
sensor quality. Examining data quality is difficult without
a scenario in mind, and so in §7 we show the performance
of a complete system that constructs an indoor WiFi finger-
print database. Because without an application judging the
quality of accelerometer and WiFi is problematic we do not
report any results related to those sensor modalities here.
As a result, we discuss initial findings related to collected
audio.

Figure 7(a) presents a breakdown of collected audio clips
under PCS and periodic sampling. From this figure it ap-
pears that sampling using app opportunities does not harm
sensor data quality. In fact, it appears that audio clip qual-
ity improves at least for the categories we adopted. A large
fraction of audio clips collected during periodic are silence.
In contrast, the fraction of human voice and background
sounds captured by application-driven sampling (PCS) is
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Figure 7: Manual examination of audio clips cap-
tured under PCS in comparison to context and pe-

riodic baselines.
 

Benchmark 
Tools 

Benchmark 
Features 

Camera 
Sensing 

Mic. 
Sensing 

GPS 
Sensing

NenaMark2  FPS*  7.9%  6.3%  0.0%
NeoCore  FPS  3.5%  4.5%  0.3%

AnTuTu 

RAM  12.8%  5.4%  ‐0.3%
CPU  13.9%  4.8%  ‐0.8%

2D Rendering  50.5%  9.0%  0.3%
3D Rendering  15.5%  4.9%  ‐2.0%

Average  17.4%  5.8%  ‐0.4%
            *FPS: frame per second 
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Table 2: Impact on smartphone app performance
due to PCS operating in the background.

much higher. However, we do make strong claims about
this comparison other that we do not find any evidence PCS
lowers the quality of captured audio data.

Figure 7(b) provides a coarse characterization of the audio
clips captured under PCS and context sampling. By com-
paring the CDFs of each strategy we can observe audio clips
when the apps are active are louder. Again PCS does not
appear to hurt sensor data quality. Audio clips captured
by context (which is location and time driven) are often
taken while the smartphone remains in pockets and bags –
limiting what can be overhead. Even those clips captured
by periodic sampling that are relatively loud should not be
assumed to be necessarily of higher quality. We find (by
listening) that such audio clips are often dominated by the
sound of the microphone rubbing against clothing material.

PCS Overhead. For PCS to be practical it should not
overtly impact the usability of the smartphone. To investi-
gate this issue, we execute a series of smartphone applica-
tion benchmarks while PCS samples various sensors in the
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Figure 9: CDF of PCS app prediction accuracy
across the user population.

background as well as other typical PCS operations (e.g.,
revising app prediction models). For this experiment we use
the Motorola Razr XT910 smartphone and three well known
Android benchmarks: NenaMark2 [4], NeoCore [5] and An-
TuTu [2]. NenaMark2 measures graphics performance and
stresses in particular the GPU, performance is measured
in frames-per-second. NeoCore is another popular graph-
ics benchmark, also measuring performance by frames-per-
second. AnTuTu performs a range of benchmarks, including
memory, cpu, storage, and both 2D and 3D graphics; the
unit of measurement varies between each benchmark, with
each a different composite index.

From Table 2 we see PCS while sampling the GPS has
almost no effect, this is because sensing is almost entirely
performed by the GPS unit without meaningful assistance
from other components. Similarly, while PCS samples the
microphone there is very little effect with the average im-
pact on benchmark results being at most 9%, and an overall
average of 5%. Finally, we test PCS while accessing the
camera. Clearly this has the largest impact, on average a
17% slowdown occurs across the board. The most effected
index is 2D rendering, which is lowered by 50%.

6.3 Smartphone App Usage Model
Our next experiments examines our Smartphone App Us-

age Model, focusing on the performance of predicting up-
coming app usage. These experiments are based on the
AppJoy dataset. Some features described in §4.1 are un-
available in this dataset (e.g., phone context) and so are
not used (although they are used in our experiments in §7).
We start by examining overall accuracy throughout the user
population (1320 people) before concluding by considering
the relationship between accuracy and the deployment time
(given we use an online learner).

Accuracy within User Population. We examine the
prediction accuracy across the entire user population. Fig-



ure 9 shows a CDF of per-user prediction accuracy. This
figure is drawn assuming the model has been trained for 30
days. We report three accuracy metrics based on the cor-
rect app being within: the first prediction made (i.e., k = 1);
first two model predictions made (i.e., k = 2); and, first three
model predictions made (i.e., k = 3). This is a standard met-
ric for app prediction (see [36]). We find that our reported
accuracy levels for these three k values are comparable with
recent work that uses a batch prediction model (compared
to our streaming prediction model) and a superset of the
features we select (we exclude commonly used features that
drain significant energy). For example, [36] reports 63% for
k = 3 within its dataset of 111 users (compared to our 1320).

Time to Train Online Model. Figure 8 shows the
average prediction accuracy for our Smartphone App Usage
Model as time elapses and the online model as an opportu-
nity to become personalized to the user’s app behavior. We
see from this figure after 20 days the model is approaching
its maximum accuracy levels. By 30 days the model has
approximately reached an accuracy plateau.

6.4 PCS Performance
In the following experiments we investigate the perfor-

mance benefits of PCS which we measure largely by in-
creased energy efficiency. Our findings show for the same
energy budget PCS is able to collect a larger amount of
data, compared to our suite of benchmarks.

More Data for Less Energy. Figure 10 presents six
crowdsourcing application scenarios that we evaluate under
PCS and compare to three different baselines (baselines de-
scribed in §6.1). All of these experiments use the AppJoy

dataset to perform a trace based analysis of how much ad-
ditional sensor samples would be collected under each sce-
nario. To make the analysis realistic each event in the sce-
nario (e.g., data computation, sensor sampling, uploading)
is performed with five representative apps from each of the
15 app categories – as well as five times without any app
activity. During these benchmarking experiments energy is
estimated using the AppScope system [41]. We implement
all the computation required locally on the phone with the
exception of the speech recognition module that is imple-
mented as service external to PCS (although feature extrac-
tion is performed on the phone.) In the speed recognition
case we setup a WiFi connection and measure the network
overhead of using a cloud solution.

Each figure shows the raw count of outperformance – in
terms of additional sensor samples collected beyond each
baseline – during the replay of the AppJoy dataset. These
experiments use a Motorola Razr XT910 smartphone. We
assume that either 1% or 2% of the standard battery is allo-
cated by the user to crowdsourcing. All figures report results
assuming these two battery budgets.

GPS/Accel Pothole Detection. In this first scenario we
consider a pothole detection scenario, identical to the one
described in [21]. Smartphones are assumed to collect GPS
and accelerometer data. Furthermore we implement simi-
lar pothole detection techniques as described in the paper,
implemented directly on the phone. These computations
are scheduled by PCS at times when other apps are being
used to save energy. The results of these feature extraction
routines are sent to the PCS cloud (assuming WiFi). From
Figure 10(a) we find that PCS dominates the simple peri-

odic baseline (2.5x to 3x) and provides significant gains over
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Figure 11: (a) presents daily opportunities to upload
data in the evening and gather extremely low-cost
GPS reading based on application that already use
the GPS sensor. (b) breaks down how PCS uses its
energy budget during opportunistic operations.

the context and app-driven (0.7x to 1.0x).
GPS/WiFi/Accel Train Mobility Classifier. Our next

scenario assumes we are crowdsourcing training data for a
transportation mode classifier. We define a crowdsourc-
ing application to PCS that will collect WiFi, GPS and
accelerometer samples and perform local extraction of the
transportation mode features described in [34]. These fea-
tures are then transmitted to the PCS cloud (again via
WiFi.) Figure 10(b) shows PCS causes gains of between
1x to 1.5x over the nearest two baselines (context and app-

driven). The reason why the outperformance is marginally
better than the prior scenario appears to be the additional
sensor data being collected which provides more opportuni-
ties for PCS to exploit its app opportunity based advantage
over the baselines.

Accel/Train Activity Classifier. The following scenario is
very similar to the previous one. Here we assume the same
scenario but consider the activity recognition domain. We
collect as part of the crowdsourcing scenario accelerometer
data and assume the smartphone will extract the same do-
main features detailed in [30]. All other details from the
prior scenario apply here. In Figure 10(c), we observe PCS
performance is strong against both periodic and context.

Microphone/Speech Recognition. In this scenario we
assume audio data is collected and speech recognition is
to be applied. Recently in [18] these two operations were
used as a building block to perform location analysis. Fig-
ure 10(d) demonstrates that PCS can collect between 3x to
2x more samples than both baselines. This scenario uses the
open source CMU Sphinx recognizer [8] for this task. Mel-
frequency cepstral coefficients [22] (MFCCs) are extracted
on the phone and then sent to a remote module over WiFi
for processing.

Camera/No Computation. In this scenario, presented in
Figure 10(e), we consider just the camera being triggered
opportunistically. We examine this scenario without com-
putation. Opportunistic image capture has been proposed
in work such as [18] and others. Unlike the prior scenario
the gains are much lower since camera piggybacking itself
does not have as large gains as the microphone (see §2) and
this scenario lacks computation to further demonstrate the
power of piggybacking. Although PCS is capable of per-
forming this action we believe it is too privacy invasive to
be practical.

GPS/No Computation. Our final scenario again does
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Figure 10: Marginal increase in the quantity of collected sensor data when comparing PCS to three baseline
strategies. Six crowdsourcing scenarios are shown: (a) Pothole Detection; (b) Training a Transportation
Mode Classifier; (c) Training an Activity Classifier; (d) Word Recognition from background audio; (e) Camera
sampling; and finally, (f) GPS sampling.

not consider computation but simply attempts to sample
the GPS. This is a building block activity for many trans-
portation and traffic related crowdsourcing scenarios. For
example, the commercial crowdsourcing company Waze [9]
requests this from its users so that it may learn traffic pat-
terns and driving routes. From Figure 10(f), we find that
PCS has modest gains over app-driven and context but sig-
nificant gains over periodic.

Because AppScope is able to produce a detailed energy
breakdown we are able to examine how PCS uses its energy
budget. Figure11(b) breaks down the average daily energy
budget allocation for the camera and microphone (which
also uses speech recognition) scenarios above. You can see
that the majority of energy is consumed by the primary
sensor. Most of the remaining budget each day is used to
perform additional GPS estimates to support building an
adequate mobility model.

Personalized Sampling Patterns. Understanding
why PCS can produce results such as the scenarios described
above is just as important as the outperformance itself. To
gain a greater understanding we visualize the sampling de-
cisions made by the PCS smartphone software for 100 peo-
ple in the AppJoy dataset. Results in Figure 12 show all
users have a unique sampling strategy dynamically deter-
mined based on predicted opportunities to sample. These
figures also present interesting aggregate insights. For ex-
ample, Figure12(b) illustrates data collection occurring on
the weekend, which is noticeably sparser than the weekdays
(see Figure12(a)). The reason for this is due to the frequency
of app opportunities, we find fewer applications are used in
the weekend than the weekdays.

Uploading and Localization Opportunities. Al-
though we enable crowdsourcing applications to request data
to be delivered with respect to a deadline the majority of ex-
isting crowdsourcing apps can tolerate latency of a day or
more. For this reason we set the default strategy for PCS
to upload at night and exploit the times when the phone
is charging and has WiFi available. Figure11(a) looks at
the AppJoy dataset and presents the fraction of days from
our 1320 users when they have WiFi available during the
evening while recharging. We are able to extract this from
the system apps that we find in our trace. This figure shows
for around 60% of the days people have 2 or more times per
evening when their phone is recharging and WiFi is avail-
able.
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Figure 12: Temporal patterns of sampling for rep-
resentative users. Two visualizations are associated
with collecting audio, one during the (a) weekend,
the other during (b) weekday.

Deployment Location

Figure 13: Floor-plan of the case study deployment
area.

Similarly, we attempt to keep the overhead of our mobil-
ity model low by exploiting location samples requested by
user driven smartphone apps. Figure11(a) also presents the
frequency that users invoke an app that makes a location re-
quest to the smartphone OS. In our data trace we find that
for around 80% of the days in our trace users use around 3
GPS requiring applications. These “free” GPS samples can
accumulate overtime to help build our mobility model.

7. CASE STUDY: INDOOR LOCALIZATION
WIFI FINGERPRINT DATABASE

In the following section, we perform an end-to-end ap-
plication case study in which PCS is used to construct a
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Figure 14: On average, PCS is less accurate than
the conventional approach to constructing a WiFi
fingerprint database. However, PCS also uses no-
ticeably less energy.
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Figure 15: CDF of location accuracy under PCS.

WiFi-based indoor localization fingerprint database. Impor-
tantly, this case study allows us to examine the performance
of PCS within a well understood workload (i.e., tasks includ-
ing WiFi scanning and computation, such as, step-counting)
that has clear performance metrics (primarily, the accuracy
of localization). During a 25-day 15-user experiment, we find
PCS is able to construct a fingerprint database with signifi-
cantly lower amounts of energy consumed on the end-user’s
device relative to a conventional crowdsourcing approach.
This gain in energy efficiency is achieved with only a mod-
est reduction in localization accuracy.

Implementation. A WiFi fingerprint database con-
tains information collected from WiFi scans performed at
a variety of locations within the deployment area. Each
database record includes both the scan information and the
ground-truth location where the scan was performed. This
database can be used to estimate the location of a user by
comparing the similarity of WiFi scan information collected
at an unknown user location against database records. For
this case study, we adopt the WiFi fingerprinting techniques
of RADAR [12].

Because PCS operates opportunistically (i.e., without the
user being in the loop) the key challenge in using PCS to
construct an fingerprint database is that the ground-truth
location of WiFi scans are unknown. Typically, users are
requested to provides this information manually by indicat-
ing their approximate position on a floor-plan. Instead, we
estimate ground-truth using inertial sensor data and rely
on the availability of the building floor-plan. This requires
the use of previously developed techniques including: turn

detection, floor-plan turn association and step distance esti-
mation; we implement these techniques based on the descrip-
tion provided in [28]. Turn detection uses the accelerometer
and magnetometer to recognize when a user is turning while
walking inside the building, such as when they approach a
sharp corner of a corridor. Turn association enables detected
turns to be tied to specific corridor corners within the build-
ing floor-plan – this is done by considering the sequences
of user turns and the distances (as estimated by the step
counter) between turns. The ground-truth position of users
when WiFi scans are performed can be estimated based on
the location of specific corners they encounter (provided by
the building map). By using step counting for a limited
number of steps before and after a recognized corner turn,
additional ground-truth positions can be recognized.

To construct the WiFi fingerprint database PCS is con-
figured and setup as follows. Accelerometer, magnetometer
and WiFi sensor data are collected locally on smartphones
based on app opportunities. This data is delivered to the
cloud infrastructure via the APIs described in §5. The tol-
erable delay for data collection is high, so data is only deliv-
ered from smartphones to the cloud using the default policy
of only transmitting when the phone is line-powered and
WiFi is available. Ground-truth of collected WiFi scans is
performed post-facto in the cloud using the location specific
techniques detailed above (e.g., step counting etc.). Records
for the fingerprint database are formed based on the esti-
mated ground-truth location and the WiFi scans performed
at that position.

Methodology. We conduct a 25-day 15-user experiment
within a single floor of a typical office building. Figure 13
shows the floor-plan of the deployment region, and denotes
the position of WiFi access points. The majority of the
working space of this floor is open plan and contains only a
few offices.

Each participant carries an Android phone during the ex-
periment with PCS installed. Participants are requested to
use the phone as their primary smartphone device so that
their app usage behavior during the experiment remains rel-
atively natural. The Smartphone App Usage Model is ini-
tially trained using the AppJoy dataset but the model of
each participant will become personalized during the exper-
iment based on their app usage. To estimate the energy
used by PCS the phone system event logs are analyzed us-
ing AppScope [41], which provides an energy estimate using
a verified empirical model and kernel-level measurements.

At the conclusion of the experiment, a second baseline
WiFi fingerprint database is constructed using a conven-
tional surveying approach that could also be crowdsourced.
A small group of users collect WiFi scans using their smart-
phones at a list of specified locations (detailed on a provided
floor-plan) that cover the floor using a grid layout. Users
indicate which of the specified locations they have selected
using a smartphone app and a WiFi scan occurs. The energy
consumed when performing this surveying using the smart-
phone (excluding GUI related energy) is estimated again
using AppScope. However, we do not quantify the amount
of additional user burden that occurs due to the user be-
ing in the loop – for example, when they manually provide
their position. The size (i.e., number of records) of both
the fingerprint databases is the same – although the posi-
tions where PCS collects data is not as systematic as the
surveying approach and is impacted by user mobility and



the limited locations where ground-truth can be estimated
(e.g., certain corridor corners).

For the purposes of comparing the location accuracy of
each fingerprint database, a test dataset of WiFi scans is
collected that systematically covers the entire floor plan.
For these measurements ground-truth is determined care-
fully using a laser range-finger that provides the distance
to nearby walls enabling precise location to be determined.
We use the localization algorithms of RADAR against each
fingerprint database to compare location accuracy for this
test set.

Results. Figure 14 presents the trade-off of energy
and localization accuracy under PCS and compared to the
benchmark surveying approach. We examine this trade-
off by replaying PCS logs collected during the experiment
through an off-line version of the PCS decision engine (SDE).
To produce this figure we assume PCS is provided with a
variety of energy budgets. From this figure, we find under
different budgets different fingerprint database records are
collected and as a result location error is often impacted.
Each data point shown on this figure indicates a possible
operating point of PCS at a certain energy budget. How-
ever, in practice PCS will only operate at one of the optimal
accuracy/energy operating points along the two pareto fron-
tiers (the two solid curves) shown in the figure.

Two location estimate error metrics are shown in Fig-
ure 14; one reports average localization error and the other
reports the error for 95% of all locations in the test dataset.
Energy (shown on the y-axis of the figure) is normalized
with respect to the total energy consumed by the benchmark
scheme. In other words, 0.5 on this scale represents only half
of the energy we use when constructing the benchmark fin-
gerprint database. The two data points sitting at the top
of the y-axis (at the 1.0 level) represent the performance of
the benchmark surveying approach under both location er-
ror metrics. In Figure 14, we can observe many operating
points where the energy consumed is less than a third of the
benchmark. At this specific level of energy savings (0.3) the
cost is approximately a 0.5 meter increase in location error
(average) relative to the benchmark performance.

Figure 15 shows a CDF across all test location positions
we collect – but for one single PCS operating point. Specif-
ically, this figure assumes an energy budget of 50% of the
energy of the benchmark technique (i.e., 0.5 on the y-axis in
Figure 14). We find that, for example, error in localization
is 5 meters or less for 60% of test locations.

8. DISCUSSION
Our results show PCS to be a promising direction towards

energy-efficient mobile crowdsourcing. However, these same
results also highlight limitations of PCS that we plan to
address in future work.

We have specified strawman utility and cost functions.
Given the application-specific nature of these functions our
expectation is that developers of crowdsourcing applications
would likely specify their own for most applications. We be-
lieve that the remaining components of PCS would operate
well even with significantly different utility functions. Sim-
ilarly, assessing data quality is a highly application specific
task. In our evaluation, to examine data quality we provide
a range of often used types of sensor data processing, how-
ever clearly there are many others. We acknowledge this
may not hold for all possible uses of crowdsourced data.

In an effort to keep energy costs low we offer only coarse
mobility modeling. As a result, PCS only coarsely knows
where the user is when sampling occurs meaning that sam-
ples may not be taken with good geographic spread (if this
is what a crowdsourcing application specifies). The problem
is estimating location, prior to sensing is prohibitively costly
to approach differently without lifting the energy cost sig-
nificantly. In the current design a user can address this by
increasing the energy budget assigned to the mobility mod-
eling component. However, we also plan to examine this
problem as a future work item.

Privacy is key facet of crowdsensing, which we do not com-
pletely address in this work. Nevertheless, we do treat pri-
vacy seriously and provide complete and easy to use privacy
controls on the PCS smartphone client (see §5). Clearly,
this complex issue will require careful study before a sys-
tem like PCS could ever be widely deployed to the public.
Towards addressing privacy concerns we will investigate the
use of automatically obfuscating collected data, for example,
masking faces and certain words in collected data.

The benefits of opportunistic crowdsensing do not extend
to all forms of crowdsourcing. For example, many forms
of crowdsourcing exploit human computation – where peo-
ple do certain tasks machines are unable to perform effec-
tively. In such cases PCS does not offer any benefit, except
in those cases where the system is a hybrid, involving both
sensing and human computation (e.g., [40]). Another case
where crowdsourcing may not strongly benefit from PCS is
when data is required at times when users rarely use appli-
cations. For example, if an application must sample data
only from drivers while they are driving their car. Finally,
many crowdsourcing scenarios require the tracking or search
for moving items (e.g., cars, people) in a city; PCS is not
suited to such dynamic tasks, and is much better equipped
to sample based on simple static geographic or temporal
constraints.

9. RELATED WORK
PCS has relevance to a number of research areas, in this

section we survey work most closely related to our own.
Crowdsourcing. The power of crowdsourcing has been

appreciated for a number years [38]. The crowdsourcing of
mobile sensor data, in particular, is becoming an active area
for both research and startups. Various systems are being
built that depend on large-scale mobile sensor data gathered
by the public. Such systems are being applied to problems in
city congestion [13], localization [6, 3], noise pollution [33],
or even optimizing traffic control systems [26].

Smartphone Sensing. Complementary to the rise
of crowdsourcing has been the steadily increasing interest
in smartphone sensing (e.g., [16] [15] [11]). Recent smart-
phone systems investigate a variety crowdsourcing applica-
tions, such as Ear-phone [33], which collects audio samples
from mobile phones to construct a noise map. These systems
are also beginning to more tightly couple phone sensing and
crowdsourcing. For example, [40] intelligently combines the
use of sensing, image classification and human intelligence
to produce a system that reaches new operating points of
accuracy and system performance (e.g., latency).

Opportunistic Sensing. Our approach of opportunis-
tically crowdsourcing sensor data is related to the more gen-
eral concept of opportunistic sensing [20, 16] which proposes
to collectively leverage sensors in consumer devices to form



large-scale sensor networks. PCS proposes new techniques to
address challenges not considered by opportunistic sensing,
for instance, lowering energy consumption by“piggybacking”
sensing in combination with smartphone app use.

Sensor Networks. Finally, PCS shares similarities
with the substantial amount of research that explores op-
timal scheduling and sensor placement in sensor networks
(e.g., [17], [29]). Like PCS this body of work considers se-
lecting opportunities to sample, has strong consideration for
energy budgets and how these factors relate to observing
larger phenomena. However, the platform, scenarios and
related assumptions differ dramatically. Effective solutions
for both domains, consequently, are quite different – still,
as part of future work we anticipate investigating some of
the optimization formulations used in this area to consider
how we might improve our current selection and scheduling
process.

10. CONCLUSION
In this paper we have presented PCS, a system for crowd-

sourcing mobile sensor data that is designed to intelligently
exploit opportunities to sense, compute and upload – at a
low energy cost – presented by everyday phone app usage
(i.e., smartphone app opportunities).

To evaluate PCS we have performed a comprehensive set
of mobile crowdsourcing experiments. We used controlled
benchmarks to better understand energy and data quality
trade-offs of the piggyback approach. Based on a large-scale
trace of smartphone app usage, we compared the perfor-
mance of PCS with a number of representative baselines
under a range of crowd system scenarios. To test the end-
to-end performance of PCS we built and evaluated a crowd-
sourcing application that constructs indoor WiFi fingerprint
databases. Collectively, our findings validate the design of
PCS and show it is able to outperform existing approaches
to collecting mobile sensor data at scale in an energy-efficient
manner.
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