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CHAPTER 1 SOLUTIONS

1.9.8. We have that

liminfA, = BNC, limsupA, =BUC.

n—oo n—00

1.9.9. We write
AAB =AB°| | BA°
while
ACAB® =A°(B°)°| | B (A°) = A°B| | B°A.

1.9.10. Suppose that A, — A. Then liminf,_,., A, = Asoifw € A, then
for some ng, w € Ap, for n > ng. Thus

1=1a(w) = lim 1lg, (w).
n—o00
If we A, then w € (limsup, ., An)¢ = liminf, o AS and therefore
0=1a(w) = n.lll}];o 14, (w)

since 14, (w) = 0 for all sufficiently large n.

Conversely, suppose 14, — 14. Then if w € A, it follows that 14, (w) —
1. Since indicator functions take on only the values 0 or 1 we get that
la,(w) = 1, for all large n, say n > ng and w € A,, for n > np and
w € liminf, 40 An. Thus A C liminf,, o An C limsup,_, ., An.

Ifow € A°, then 14, (w) = 0 so w € A5, for n > ng. Hence A° C
lim mnfy, 00 AS, or equivalently A D (liminf, e AS)° = limsup,_, oo An-

1.9.11. We first show that

U[O, a,) = [0, Slrl;p an).

n

If w belongs to the left side union, then w < a, for some n and therefore
w < sup, a, and w € [0,sup,, a,) which is the right side. f w € [0, sup,, a,,),
that is, w belongs to the interval on the right, then w < sup, a, and w < ay,
for some n which implies w € U, [0, a,).

For the second part, sup, ;537 =1 and 1 ¢ U,[0, ;27] = [0,1).

1.19.14. Suppose A, is a field for each n and that A, 1 . Since A, is a
field @ € A, for all n and therefore Q € U, A,. If A € U, A,, then A € A,
for some n which implies A° € A, which implies A° € U, A,,. So U, A,, is
closed under complementation.



If A,B € UpA,, there exist n,m such that A € A, and B ¢ A.,. Thus
A, B € Apym and AN B € Apvm (since fields are closed under finite
intersection). This yields AB € U, A,,.

1.9.15. We suppose Q@ = {1,2,...} and define
C;={A:AC{1,2,..5}}.
Set o(C;) =: B;. Check that
Bi=CGU{AU{j+1,j+2,..}:AeC}.

If A € B; satisfies the property that the number of elements of A is infinite,
then AD {j+1,j+2,..}.
Let A;j={2j-1},7=1,2,...50

(A1, Az, 43,...) = ({1}, {3}, {5},...).

Then
A; € By C UB"‘

but

U4 =1{1,3,5,7,...} ¢ | Ba,
j n

since U;A; is an infinite set but for no j is it true that {1,3,5,7,...} D
{i+15+2..}.

Note that a union of o-fields is not necessarily even a field. Let Q =
{1,2,...} and B; = o({i}) = {6,Q, {i}, {i}°} for i = 1,2. Then {i} € B;
but {1} U {2} = {1,2} ¢ B, U Bs.

1.9.17. We have w € liminfp00 Ay, ifw € A, for n > ng for some ng.
This is equivalent to l4,(w) = 1 for n > ng. But since indicators only
take values 0 or 1, the only way a sequence of indicators can converge
to a limit is if the indicators equal the limit from some index on. This
means that the statement: for some n > ng, 14, (w) = 1 is equivalent to
lim, oo 14, (w) =1.

1.9.18. We check the three postulates for a field or algebra:
(i) Q € A by assumption
(ii) Complementation: If A € A, then since € A we have QA = A° €
A.

(iii) Suppose A, B € A. Then AB° € Aso AN(AB°)* = AN(A°UB) =
AA°UAB = AB € A.



1.9.19. We have 1auyp(w) = 1 iff w € AU B iff either 14(w) = 1 or
13((.4.)) = 1iff 1A(w) \Y IB(w) =1.

Likewise, 1ynp(w) =1 iffw € ANB iff both 14(w) =1 and 1p(w) =1
iff la(w)Alpg(w) =1.

Since indicators take only values 0 or 1 we are done.

1.9.20. Define

m Ny

A=) [) A Ay €Cor A5 €C)

i=1j=1

and remember the summation notation for sets implies a disjoint union.
We claim A is a field and verify the field postulates:

(i) Pick A € C so that (A°)° € € and thus

Q=A+ A€ A.

(iii) Closure under finite intersection: Suppose

Z ﬂ Aij and Z ﬂ Ag

i€l jed, kel'led]

are two sets in A. Then the intersection is

> N4 N A

(i,k)eIxI' \j€J; ‘le.l,’c
which is also in A.

iiJ Closure under complementation: The complement of a typical set in
p
Ais
c
n; m n;

SO ) =AU 4

i=1 j=1 i=1j=1

To show that this set is in A, it suffices because of (iii) just checked,
to verify that one of the sets in the intersection is in A and hence it
suffices to show that U7, A € A where A; € C or A € C. However,
we may write

s

A; = Atl: + AgAl + AgAlAg + -4 A;AlAz AR,
1

J

which is a disjoint sum of sets of the form N¥_,; B; where B; € C or
B € C. Therefore |J}_; AS € A as required.



So A is a field. For any 4 € C, A € A so C C A and therefore the minimal
field over C is contained in A:

A(C) C A.

Also, if Ajj or Af; € C, then A;; € A(C). Therefore N2, A;; € A(C) so
Soim1NGL Aij € A(C). We conclude that A C A(C) as well.

1.9.26a. Set C = {A;, ..., Ap}, where ZLI A; = Q. We claim

AQ) ={J A, Ic{1,.. k)

iel

is the minimal algebra over C. Denote the right side collection of sets by
A. To prove the claim, we first show that A is a field. To do this, we verify
the postulates.

(i) First of all, @ € A since we may take I = {1,...,n}.
(ii) If A=U;erA; € A, then A¢ = Userc A; € A.
(iii) If A; = Uier; A;, for j = 1,2, then Ay U Ay = Uier, 1,4 € A.

So A is a field, A D C, so by minimality we have A D A(C). But clearly,
since A; € C C A(C), we have A C A(C). The two set inclusions give the
desired equality.

1.9.27. Call QQ the rational numbers and define
B(R) =c{(a,b] : =0 < a < b < 0}
and
F=c{(a,b]: —cc < a<b< oo, a,beQ}.
For ¢,s € Q,
(9,8] € {(a, 8] : —o0 < a < b < o0} C BR).

Therefore F C B(R).
On the other hand, for any a, b

(a,b] = nan;o(qn,sn]

where ¢, | @ and s, | b and ¢,,, s, € Q. So (a,b] € F and B(R) C F.

1.9.28. Let Z = {...,—1,0,1,2,...}. Let F be the periodic sets. A set A is
periodic, written A € F, if for all natural numbers n € Z we have z € A iff
z +n € A. We verify the o-field postulates for F:



(a) First of all, R € F.

(b) Complementation: Next, suppose A € F and we show A° € F. I
z € A°, then for any n € Z, we claim z4+n € A°. If not then z4+n € A
and since A is periodic (z 4 n) — n = z € A, a contradiction.

(c) Closure under countable unions: Let B; € F for j > 1. We show
U;jB; € F. If € U;B;, then there exists jo such that z € B;,. For
any n € Z, z+n € B;, CU;B;.

1.9.29. Let D(C) be the smallest class containing C and closed under count-
able intersection and union. This minimal structure exists since closure
axioms define the structure. Then C C D(C). Also o(C) is closed under
countable union and intersection and since ¢(C) D C, we get

a(C) D D(C).

Let
F:={AeD(C):A° €D(C)}.
We claim F is a o-field. Note if A, € F, then A,, € D(C) and AS € D(0).
This means U, A, € DP(C) and therefore

(Uas) =Naz epie),

since A% € D(C). So F is closed under countable unions.
If A € F so A° € D(C), then A satisfies

(A =AeFcCD()

which implies A° € F. So F is closed under complements.
Is £ € F7 Since A € D(C) implies A° € D(C) and Q2 = A + A° € D(C)
and § = ANA° € D(C), we get Q € F.
We claim, next, that F O C. The reason for this is that if A € C C D(C),
then
A ={JCieD(0)

where {C;} are each sets in C. So F is a o-field, F D C, so F D ¢(C). But
by definition, 7 C D(C). We conclude that o(C) C D(C).

1.9.31. If Q is countable, then € := {{z} : z € 2} is a countable generating
class, since for any A C Q, A = UgeaAa.

Now let 2 be uncountable. For the purpose of getting a contradiction,
suppose C = {Cy,n > 1} is a countable generating class for the o-field of
countable-cocountable sets. Define

c#—{g“ if C, is countable,

C5, otherwise.
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So C¥# is always countable and so is C = U,C#. Therefore, C¢ is uncount-
able.
Pick z,y € C° such that z # y. For any n,

{z.9} C Ch, if C, is not countable,
Y C:, otherwise.

Let
F={A€o(C):{z,y} C Aor {z,y} C A°}.

For any n, {z,y} C either Cy or C¢ so C C F. Further properties of F:
1. {z,y} CQso Qe F.
2. If A€ F, then A¢ € F.

3. If Ay € F, then since F C o(C), U, A, € o(C). If there exists n such
that {z,y} C Ap, then {z,y} C U, A4, and U, 4, € F.If for all n,
{z,y} C A5, then {z,y} C N, AS which implies U, 4, € F.

So we conclude F is a o-field and since C C F, we get o(C) C F and
since also F C o(C) we get F = o(C).

For A € F, either {z,y} C A or {z,y} C A°. But {z} € o(C) and
{z.y} € {2} and {z,y} ¢ {z}°. So {z} ¢ F which gives a contradiction.

1.9.34. Let
G:={AB+ A°B’': B, B’ € B}.

We claim § is a o-field. To verify this note

1. Q=AQ + A°Q € G.

2. If B,, Bj, € Bforn> 1, then AB, + A°B!, and
| JAB. + 4B} = An (UBn) + AN (UB;) cg

since U, B, and U, B, are both in B.
3. If AB + A°B’ € G then
(AB+ A°B')" =(AB)* N (A°B')" = (A°U B°) N (AU (B)°)
=(4°(B) + AB*) UB*(B')"
=A°(B')°U AB° U AB*(B')* U A°B°(B')°
=A(B° U B°(B')°) U A°((B')° U B¢(B’)°)
=AB® + A%(B')".



So G is a o-algebra.
Also, we have A € G and B C G and therefore

G D a(B, A).

Also,
G Co(BU{A})

since the right side contains B and A and hence contains sets of the form
BA + B'A°.

1.9.35. Suppose F is a countably-infinite o-field so that we can write it as
F = {Bl,Bg,...}.
For N= {1,2,...}, let

€= (e1,€2,...) € {0,1},

and write
x
B¢ = ﬂ B,
=1
where
BE = B,', if€i=l,
! Bf, ife=0.
Set.

¢={Beee 0, 1)},
~ Sincg F is a o-field, C € F. Note also that
BeﬂBer =0, ife#é,

so sets of C partition Q.

Now we claim that C contains infinitely many non-empty sets. If not,
then there are finitely many non-empty sets in C which partition Q. This
implies ¢(C) is finite. But o(C) = F since

(a) C C F implies o(C) C F.

{b) If B, € F, then

and hence F C o(C).
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This would mean that F is finite which contradicts the assumption that F
is countably infinite.
So, since C has infinitely many non-empty sets, we write

C:={0,Cy,Cs,...}

where C; # 0, i > 1.
Define afunction f on the subsets of N by

FiPMN)y=F, f(D=JC

iel

We claim that f is 1-1. To see this note that U;c;C; = Ujer:C; implies
that J = I’ since The C;’s are disjoint and non-empty.

So for all I € P(N), f(I) € F and hence F cannot be countably infinite
since a subset {f(/),] € P(N) is in 1-1 correspondence with P(N) which
has cardinality 2%e.

1.9.44. To see that A C A, note that if A € A, then we may set A, = A
so that A, — A showing that A € A.
We now see why A is a field. We verify the field postulates

1. Since 0,2 € A, and A C A we have 0,0 € A.

2. Suppose A € A. Then there exist A, € A and A, — A. Since A is a
field, we have AS € A. Thus

lim supAf1 :(lim ian,,)c = A°,

liminf A2 =(limsup A4,,)°

n—+oo n—rco
and so AS — A°. Thus 4 € A.
3. Suppose A, B € A. Then there exist 4, € A, B, € A such that
A, = A, B, - B.
It follows that A, B, € A and we show that A,B, — AB proving

that A is closed under finite intersections. First of all

llmsupA ﬂBn = ﬂ U ApBi C llmsupAn =A
k=1n>k

and similarly

o0

limsupA,.ﬂB,, = ﬂ U ArB, C llmsupB,, =B
nroo k=1n>k



Tuan

so that

limsup A4, ﬂ B, C AB.

n—oo

On the other hand, since liminf,_, o A, By, is the points in A, B, for
all large n, we have

liminf A, B, = liminf 4, ﬂlim inf B, = AB.
n—oo n—oo 1100
Thus
AB =liminfA, B, C limsup A, B, C AB.
n—o0

n—o00

Thus A,B, — AB and AB € A.
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CHAPTER 2 SOLUTIONS

2.6.1.

(a) First of all Q¢ = @ is finite so Q € Fy.

Next check closure under complementation: If A € Fy then either A
or A®is finite. Therefore A° € Fy since either (A°)¢ or AC is finite.

Finally check closure under finite intersection: Suppose A; € Fg, t =
1,2. If one of Ay, A is finite, then A; Ay is finite and hence in Fy. If
neither set is finite, then A{ and A§ are finite, so A{ U A§ is finite.
Therefore (A U A§)¢ = A1 A, € Fo.

(b) Let Ey,...,Ex € Fo, EsNE; = 0, for i # j. At most one can be

infinite, since if E) and Ej are both infinite and F1 N Ey = §, then

{, ES are finite which implies Ef U E is finite. So (Ef U E$)° is

infinite and in Fy. However, we also have (E§{ U E§)¢ = E\E; = 0,
which gives a contradiction. '

If none of Eq, E, ... E} is infinite then

k k
P(JEj)=0=3_ P(E)),
ij=1

i=1

If exactly one is infinite, then U§=1Ej is infinite and P(U?=1 E;) =

k
1= 3" PE;j, since the latter is a sum of (k — 1) zeros and one 1.
i=1

P is not o-additive. Let Q2x be finite and Qn 1 Q. If P were o-finite,
we would have

0=P(Qn)1P(Q) =1

(c) Define

P(E) = 0, if E is finite,
T 11, if EC is finite.

Suppose Ey,Eq, -+ € Fo and |J; E; € Fy and {E,} are mutually
disjoint. As in (b), at most one E,, can be infinite. Then either

(I) Uj; Ei is finite, in which case E; is finite for all i and P(|; E;) =
0= Zi P(E;)

or
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(II) (UE;)© is finite. This means there exists i such that EY is finite

L
and and because at most one of the {E,} can be infinite, for all
J # ¢, Ej is finite. Therefore

P(JE:)=1=) P(Ex) = P(E:)+ Y P(E;)=1+0.
i k

J#i
2.6.2. The result can be proven using the representation for .4 (see Problem

1.9.20, page 23)

m n; n;

A={{J[Aij : Aj €Por A5; € P and () Ai;, i=1,...,m are disjoint}.
i=1j=1 Jj=1

Given two probability measures P; and P» which agree on P we need

m n;

PI(U ﬂAij) =§P1 (ﬁAij)

i=lj=1

to be equal to

m n;:
=Z PZ( Aij).
i=1 Jj=1
Therefore, it suffices to prove for Ajy,..., A, where A; € P or Af € P,
! =1,..., k that :

k ko
Pi([)A) = Po([)Ar).
=1 =1

-

Separate the A’s into two groups {4;,7 € I'} and {A4;,l € J} where I+ J =
{1,...,k} and A; € Pfori € I and Af € P forl € J. Call B; = NjeA; so
that B; € P since P is a m-system. We need to prove

Py(B: [ )([4) = Pa(B: [ )([AL))-

leJ leJ
Write
(B (N(A)) =P:(B: (U 45)) = B(B) - (B 47)
leJ teJ leJ
=P(B;) - P(UBIA;)
1€7

and apply inclusion-exclusion.
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2.6.3. If B; C A; then U; B; C U; A; and

L'JAi \UB{ =(L1J Ai) ﬂ(u Bi) = (L;JAi) ﬂ(o Bf)
:LiJ(A;mB]?) cLiJA,-Bf

P(J4)-P(UB) < P(J4iB;) < 3 P(4iB]) = 3(P(4)—P(By)).

)

2.6.4. First of all, the extension is certainly not unique. For an easy exam-
ple, take B = {0,Q2} and A ¢ B. Then

By = o(A, B) = {#,Q, A, A°).

Knowing a probability on {@, 2} does not give much instruction about how
to extend it to A and A°.
Here is one way to extend using outer and inner measure. For any S C ,
define
P*(S) :=inf{P(B):SC B,B € B)}.
Let B, € B, S C Ba, P(By) | P*(S). Such a sequence {B,} exists by
definition of “inf”. Now define

[e ] N
5" = Ol B, = Jlim (_]1 B,.
Thus, $* € B, S C S*, and therefore
P*(S) <P(S")

-

{from the definition of Pr)

N
= lim | P(D1 B,) < Jim P(By) = P*(S).
We conclude
P*(S) = P(S"). (2.6.4.1)

Next, we claim, if C € B and
B>CCS"\S, then P(C)=0. (2.6.4.2)
This follows from S C $*\ C, $* \ C € B, and thus
P(S%) =P*(S) < P(S"\ C)
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(from the definition of P*)
= P(S§%) - P(C),

(since C C S*) whence P(C) = 0.
Next define, for any S C Q,
Se = ((59))5,
so that S. € B, S = (S¢)* D S¢ which yields, by taking inverses S, C S.
Then
P(S.) =1—P((S°)*) =1 - P*(S%)
=1—inf{P(A):S° C A, A€ B}
=sup{P(A°) : S° C A,A € B}
=sup{P(V):S°C V°,V e B}
=sup{P(V): SO V,V € B}.
Also, as with (2.6.4.2),if D C S\ S., and D € B, then P(D) = 0.
Pick A € [0, 1] and define Py on By = o(B, A) = {BA|J B'A%; B, B' € B}
by
Pi(BA( | B'A%) :=AP(A"B) + (1 - \)P(A.B)
AP((A*)°B') + (1 - A)P((A4.)°B'),
so that
Pi(BA( | B'A°) = Pi(BA) + Pi(B'A°).
Here are the relevant properties of P;:

12 Py is well defined on B; = o(B, A).
2. P; extends P. This is clear since if B € B,

Pi(BA[ | B'A°) =P1(B)
=\ [P(A*B) + P((A")°B)]
(1= 2) [P(A.B) + P((42)B)]
=AP(B) + (1 - \)P(B) = P(B).

3. P, is a probability measure.

To see why Py is a probability measure, note that clearly P;(C) > 0
for all C € By and P1(2) = P(Q) = 1. To verify o-additivity, suppose
B, AU B, A° € B, are disjoint for n > 1, where B,, B!, € B;. This means
that {ABn,n > 1} are disjoint and {A°B/,,n > 1} are disjoint.
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For any n # m, AB, N AB,, = 0 implies § = A.(AB, N ABp,) =
A.B, N A. B, since A, C A. Also A*B, N A*B,, C A* but

(A"Bn[|A"Br)NA= A" (BaAN BrA) =0,

SO

A*B,[)A"Bn C A"\ A

and by (2.6.4.2)
P(A*B, () A"Bn) =0.

So {A*Bn,n > 1} are almost disjoint (see Problem 2.6.6) and

Pl(QIABn) :,\Pl((@1 B,)A)
- =,\P((JB,,)A*) +(1- A)P('(U B,)A.)
=AP(Un(BnA')) +(1- A)P(Un(BnA.))
—,\ZP (BaA™) +(1— X ZP(B A.)
=Z [AP(BnA™) + (1 - N)P(B,A.)]
:iPl(BnA).

A similar argument works on A€,
We conclude that P; is a probability measure that extends P on B to
B.
2.6.6. Since
PUZ14) = lim P(U, 4;)

and -
2 P4 = lim, Z PA;

it suffices to show P(U =1 Aj) ijl PAj;. To check this observe that by
the Bonferroni mequallty

ZPA— Y P(Ais;) < P(

n
1<i<j<n j=

)< S P(4
1 1

and since ) P(A;A;) = 0, the result follows.
i<y
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2.6.8. We summarize the probabilities in the following chart

Qla b ¢ d

1 1 1 1
Pilg 3 3 §
1 1 1 1
Py 3 6 6 3°

Set
C= {{avb}’ {d,c}, {a,c}, {6,d}}

and note C is not a m-system since

{a,6}( Ya,c} = {a} ¢ C.
Check that o(C) = P(Q) and P, = P, on C but not on ¢(C) since, for
instance, Pi({a}) = } # 3 = Px({a}).
2.6.9. (a) First of all, if F(z)— F(z~) >
then either B = @ so that P(B) = P(0)
Thus

0, then P{z} > 0 and if B C {z},
=0or B = {z} so P(B) = P{z}.

{z : F(z) - F(z—) > 0} C { atoms of P}.
Next suppose A is an atom of P. Define
a:=sup{z: P({(—o00,2)NA) =0}, B:=inf{z: P((z,00) N A) = 0}.

If & < B, then P((a,00+ £52) N 4) > 0, and P((8 - £5%,8) N A) > 0
which contradicts A being an atom. Hence « = . It follows that

P((—o0,a — nl) NA4)=0, P{la+ %,oo)ﬂA) =0
and thus
: 11 _
b4 P((a—;,a+ ;l-)ﬂA)_P(A)>0.

Let n = oo to get P({a} N A) = P(A) > 0. So P({a}AA)=0.
(c) Let A and B be distinct atoms. Then P(AAB) > 0 and therefore
P(ABAD) = P(AB®°) + P((AB)°0) = P(AB), and we claim that

P(AB) = 0.
Since AB C A and AB C B and A and B are atoms we have
either P(AB) = 0, in which case the claim is true,
or else P(AB) > 0, in which case, since A and B are atoms, we have
P(B\AB) = P(A\AB) = 0,

which means that P(AAB) = 0 which contradicts the assumption
that P(AAB) > 0.
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(d) Let
A, = { distinct atoms which have probability at least _71;}

There are at most n atoms in A, since if Ay, ..., A, € Ay, then
m m m
1> P({J4)) =) _P(4;) > =
ji=1 ji=1
which makes m < n and card(A,) < n. So

card{ all atoms } = card(UAn)

which is at most countable.
(e) A partially ordered set is a set S together with a relation, denoted <,
on S x S; that is, on pairs of elements of S. This relation satisfies

l.z<z,
2. z <yand y < zimplies z =y,
3. z<yand y<:zimpliesz < z.

A subset C of S is called a chain or a totally ordered subset, if every two
elements of C are comparable; that is, if z,y € C, then either z < y or
y < z. An upper bound of a set A C S is an element y such that z < y for
all £ € A. A maximal element of S is any y € S satisfying y < z implies
y = z. Zorn’s lemma says that if S is a partially ordered set in which every
totally ordered subset has an upper bound, then S has a maximal element.
> For a set A € B, recall

A* = {B € B: P(AAB) =0}.

Define the partial order on the equivalence class of sets to be A# < B#
iff there exists A € A¥, B € B¥ and N € B such that P(N) = 0, and
A C BUN. This is a well defined specification of the relation. If also
A’ ¢ A#* and B’ € B# | then

A'A® = N, A(A) = N,
where P(N;) =0,7=1,2 and
A=AA"+ N, A =AA + N,.

Similarly,
B=BB + N3, B = BB+ Ny,
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SO
A'=AA + N c B NN
CBB’UN;;UNUNZ c B’UNs,

where Ny is an event with probability 0.
We have now defined a partial order relation on the equivalence classes
of events since

1. A# < A%,
2. If A#* < B* and B# < A# then
AcB\JN, BcAlJM

and so
Ac BN calJwi )
and therefore P(AAB) = 0.

3. If A# < B# and B# < C# then AC BUN;, BC CUN, and thus,
A C CU(N;UN,) so A# < C#,

Now let S# = {A# : P#(A#) < a}. We claim that any subset S¥ which
is totally ordered has an upper bound. Write

S¥ = {A* a e A}
and set

pa = P#(A%), ps, = suRP#(Af).
ag

By déﬁnition of supremum, there exists a,, € A such that
Po, = P#(Aa#,,) TpSo'
To prove the claim, we consider two cases.

CASE 1. Suppose p, < ps, for all @ € A. Then we show for any a € A,
Aq < | A%,

so |J, A% is an upper bound in S#. (Note, that it is relatively easy,
by taking finite approximations to {a,}, to verify that the upper
bound is, in fact, an element of $S#.) To verify this, pick any a € A.
Since po < ps,, there exists oy, such that

Pa < Pay,-
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Then because of total ordering, either
A% < A% or A% < A,.
The latter is incompatible with p, < ps, and we conclude

A% < af <Az,

as needed.

CASE 2. Suppose there exists a* € A such that py. = ps,. Then we claim that

UnAa#,, UAf. is an upper bound in S#. To see this, observe that for
any «, either p, < ps,, in which case, as in Case 1,

A% c At cJ4t A
n n
or, if po = ps,, then either
A* < A%, or A¥. < A%
In the first case, there exists Ay € Af. and A, € A¥ such that

Ao+ UN D A,, and P(Age) = P(Aq)-

So

P(AgA%.) = P(Aa) — P(AqAa) =0,
and

P(AgrAS) = P(Ag+) — P(AgAar) =0,

50 P(Aq+AAg) = 0. Thus A*. = A# and

a* =

Af c| Jaz | At

Consider the alternative case similarly.

By Zorn’s lemma, there exists a maximal element A%, € S# such
that P#(A%_,,) < a. For the purposes of getting a contradiction, suppose
P#(A¥,,) < a. We show this implies the existence of an atom.

Let

C* ={B¥ #£0: B#ﬂAﬁ“ = 0}.
For B# € C#, since B¥ N A%, =10,
P*(B*) + P*(Af.) = P*(B*( ) 4%..) > o,

otherwise we would get a contradiction in the following way. If

P#(B#) + P#(At,,) = P*(B*| JA%,,) < q,

max
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then
B¥ + A% ¢ S§*

SO
A* < B¥ U A% < A#

max — max = max

where the last inequality follows by maximality. Thus from the previous

line we would have
Aﬁax = B# UAﬁax

and since B¥ # § we get the desired contradiction to maximality of A%
Thus we conclude

P#(B*)>a—~ P*A%, )=c>0.

Make a partial order on C# by defining B# < C# iff there exists B € B#
and C € C¥ such that BUN D C. Note that C# is ordered by the inverse
relation to the one used for S#. As before, any totally ordered subset has

- an upper bound in C¥. The argument for this is similar to the argument
used to show the corresponding fact for S#. For instance, if S¥ is a totally
ordered subset of C#, write

St =(B¥ cc N}, p.=P*BE) >

and define

pi= aélglpa >e.
There exist an, € A; such that p,, | p. If for all @ € Ay, po > p, then
Np Bfn is the upper bound since for any o € A; , there exist a, such that
Pa, < Po- Then we claim Bf < ﬂkak since

= P#((\B,) < P*(B% ) < po = P*(B¥).
k

Either B# < B# or B# < B¥ but the latter alternative is incompatible
with the previous display so we get

B# < B <(\B%.
n

Handling the case that some « satisfies p, = p is similar to the procedure
used in analyzing S#.

Again by Zorn’s lemma, a maximal element B¥,, € C# exists. It follows
that B%,, is an atom. To see this, keep in mind P#(B#_ ) > ¢. Let B¥ C
BZ,,, where B# is the equivalence class of a set in B. Then P#(B#) <
P#(B%.,). If B¥ € C#, then P#(B#,,) < P#(B#) so we conclude that
P#(B# ) = P#(B#). Otherwise, if B# ¢ C#, then either B¥ = { or
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B# £ @ and B¥ N A%, # 0. This latter alternative is impossible since

max

B¥ € C¥#, so B¥ NA# =0, which implies B¥ N A% =0.
Thus B¥ C B¥%,, implies B¥ = § or P#(B#) = P#(B#,,) and thus
B¥_ . is an atom.

2.6.12. We show that iff B € o(C), then there exists a countable family
Cp C C such that B € o{Cg).
~ To see this, we let

G = {B C Q:3 a countable family Cg C C such that B € 0(Cp)}.
Properties of G:
(1) © € G since for any countable subset C’ C C, we have Q € ¢(C').
(2) If B € G, then B € o(Cg) implies B® € 0(Cp). Hence B° € G.

(3) If B, €G then B, € 6(Cg,) C 6(U,Cg,), where Cp, is a countable
family and hence so is U,Cp,. Therefore, |JB, € o(|JCp,) which

implies |JB, € G. So G is a o-field.

(4) C C G since if A € C then A € ¢(A) and if we set Cx = {A}, then Cy
is countable.

Thus G O C which implies G D o(C).

2.6.15. To check 818, := {515, : S; € &;, i = 1,2} is a semi-algebra we
must check three postulates.

1. @ € S; for i = 1,2 and therefore § = N P € $;S,. Similarly, we may
prove Q € §;85s.

2. If 5152 € 6182 and S15% € 8153 thén
5152 ()51 = 5151 () 525) € 815,
since 5157 € 81 and $,S55 € S,.
3. For 51 € S;,i=1,2 we have
(5152)° =S5 | ) S5 = S5z + 5555 + 5155

1 k
ZZAUSZ + ZAIJAZJ + Z SIAZiv
ji=1 IR i=1

where we assumed

{ k
S'f:ZAlj, S;:ZAZ,-.
i=1 i=1

This shows complements in S;S» have the correct form.
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To check that .
A(8182) = AS: | 82),

note that the left side is of the form

1

{D_ 5152, Sui € 81,5 € Sa}.
i=1
Such sets as exhibited on the previous line are in A(S; | S2) and therefore

A(8182) C A(S1 | S2).

Conversely

Si{ 82 C A(8:82)

and hence

A(S1|JS2) € A(S1S2).

2.6.16. Suppose {B} are disjoint and B, € B. Then Y., B, € B and
(3, Bn)¢ € B and therefore by assumption (c)

1=Q(} Bat+ (X Bn)) = Q(Ba) + QY. B)e).
However, we also have, from finite additivity,

and therefore

= QQ_Ba) =) Q(By).
n n
2.6.17. We check F,F (y) is right continuous by showing that if y,, | y, then
F{yn) § F(y). If this is not the case, then there exists L such that
F(wa) $ L > F(y)t
Suppose z is any value chosen so that
L>z>F(y).

Then F(y,) > z implies by the definition of F that F(z) < y, and
therefore, by letting n — oo, that F(z) < y. On the other hand, since
z > F (y), we have by definition that F(z) > y so we conclude F(z) = y.
This means F;~(y) > & which is a contridiction to the fact that £ > F (y).
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2.6.21. For a finitely additive measure g satisfying p(€2) = 1, it need not
be the case that A, | @ implies u(A,) } 0. Use Proposition 2.6.1. Let
Q=1{1,2,....,} and let A={E CQ: E or E°is finite. }. Define

P(E) = 0, if E is finite,
T 11, if E° is finite.

Then P is finitely additive.
Let A, = {n,n+1,...} € A since A is finite. So P(A,) = 1. Note
A, 10 but 1= P(A4,) A 0.

2.6.23. Set
C={(-o0,z]:x € R},

which is a m-system generating B(R 4 and so if P, = P, on C, then P, = P,
on o(C) = B(RY).



3.4.1.If 14 € BB, then

Conversely, suppose
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A=13{1} e B.
A € B. Then if I’ is an interval,

M) = {w :7 1a(w) € I'}.

Consider the following cases.

1. If I' 5 [0, 1], then 131(J") = Q € B.

2. If0€ " but 1 ¢
3.1 1€l but ¢

I' then 1,1(I') = A° € B.
I' then 13'(I") = A€ B.

4. If I’ contains neither 0 nor 1 then

1.} =06¢€B.

This suffices to show 14 is measurable with respect to B by Proposition

3.2.1.
3.4.2. We have

o(X

1) ={@v Q}

0'(/\'2) 20(1{1/2}) = {ﬁ,Q, {%}) {'21_}C}
O'(Xs) Z{Q,Q,Qa(@c}

3.4.4. If X € B/B(R),

for al z € B(R).
Conversely, suppose

B € B(R),

il

X~YB)

3.4.5. The variable Y

then since {z} € B(R),-
X7'({=}) € B,

for all £ € R that X~1({z}) € B. Then for any

{w: X(w)eB}={w:X(w) e BmR}

U {w: X(w) =7}
réR,reB

U x'trhes
réR,réB

= F(X) is measurable by composition:

X 1 (Q,B) — (R, B(R))
F: (R,B(R)) — (R, B(R))
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since F' is monotone and hence measureable.
Since F' is continuous, P[X < z] = P[X < z]. So from the properties of
F* we have

PIF(X) 2 4] =PIX > F~(y)] =1~ F(F“(y)).

But
Finf{u: F(u) > y}) = y

when F is continuous.

3.4.8. We write
Z=X14+Y1, .

If A€ Bthen 14 and 14¢ are both random variables by 3.4.1. Products of
random variables are random variables and sums of random variables are
random variables. This suffices.

3.4.11. X, is a random variable since for fixed ¢, X; = 1y} and {t} is

measurable. So
o(X:) = {0,9, {t}, {t}°}.

We claim

LHS = \/ o(X,)
tef0,1]
={A C[0,1]: A is countable or A° is countable.} = RHS.

Let.
C={0,Q,{t}, {t}5te€0,1]}

so that
2 LHS=0o(C)= \/ o(X:).
tef0,1]

Clearly RHS C LHS since the LHS contains one point sets and is closed
under countable union.
Likewise, A € C implies that A € RHS so that LHS C RHS.

3.4.12. To show that monotone f is measurable B(R)/B(R) it suffices to
show that
{u: (i) <z} = BR).

However, by monotonicity, the left side is a semi-infinite interval which is
certainly a Borel set. From Proposition 3.2.1 or Corollary 3.2.1, this suffices.

3.4.14. The function f is usc iff {t : f(z) < a} = f~!(~o0, ) is open in
R.If € = {(—o00, ) : A € R}, then ¢(C) = B(R) and f~}(C) C B(R). This
means f € B(R)/B(R).
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3.4.15. Let f(z) = 1(q4) and define

1, ifa+l<z<y,
()= <0, ifz<a,orz>b+1
linear, otherwise.
For z € (a,8], f(z) = 1 and f,(z) = 1, provided n is so large that a+ 1 < z.

For z < a we have f,(z) = f(x) = 0 while for z > b we have f(z) = f.(z) =
0 provided b + % <z.

3.4.16. If B(R) C B and f is continuous, then f is measurable so
fY(BR))c B(R)C B

and therefore f € B.
Conversely, suppose for any continuous function f that we have f € B.
This implies by definition that

f~1(B(R)) C B.
This says that for any A € B(R)
| {z: f(z) €A} €B

for any continuous function f. Let f(z) = z and the previous display reads
A € B. This means B(R) C B.

Now let F = o(f, f € C(R)) be the smallest o-field containing all con-
tinuous functions on R. From the previous discussion, we get

B(R)C F.

But i;ff is continuous, f is B(IR) measurable. So if any continuous function is
B(IR) measurable, the smallest o-field generated by the continuous functions
must be contained in B(R). Hence F = B(R).

3.4.17. Start by assuming T € B/B’. Then for B’ € B’, we have
T, (B')={w€ An :Tu(w) € B'} = A, NT"Y(B') € B,.

Thus T;; 1(B') C B
Conversely, suppose for each n that T,, € B,/B’. Then for B’ € B’ we
have

T7(B') ={w: T(w) € B') =| J{w € 4n : T(w) € B'}

=J{w € 4p : To(w) € B'Y = T;71(B)).
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Since T,y (B') € B, C B, we have T~'(B’) € B.

3.4.19. Suppose first that X = Y o 7 and we show X € o(T). For any
A € B(R), we need to show

X—I(A) €o(T) = {T_I(Bz) : By € By}

This follows from
X~HA) =T (Y ~1(4))
since Y~1(A) € B,.
Conversely, suppose X € o(T) which means that for all 4 € B(R),
AX—I(A) € {T_I(Bz) 1 By € By}

Suppose, for simplicity, that X > 0, since otherwise we would Just split X
into positive and negative parts. Then we write

n2 k-1
X = lim TkZ—l Tl[xe[*—;,,—*@*r)] + nlixsa

n— 00

and for some sets By, B, € B, the above equals

n2"
k

= lim )" !
n =300 k=1

on ]'T“(Bkn) + an—l(Bn)
and thus for any w; €

n2"
. . k-1
X(wy) =nli’r20 t E TlBkn(Twl) +nlp, (Twy).
k=1

Define
Sk-1
Ya(wa) =) o 1B (w2) +1lp, (w2),
k=1
and
Y =limsupY,.

n-—+o00

Then X =Y o T as required.
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CHAPTER 4 SOLUTIONS

4.6.2. We use the following useful notation. If A is any set, define

AO = 4c, AN = 4,

We need the fact that if B;,..., B, are independent events, so are
Bter) . B(es) for any choice of € := (e, . .., €,) € {0,1}".
Suppose Bj, ..., By, are independent subsets of a space §,, satisfying

1>P(B)>0; ¢, €{0,1},i=1,...,n

Then

ﬂ B(f W) ﬁP B(E:

i=1

implies ()}, B!) # §. The sets

{N B : (er,... en) € {0,1}"}
i=1

partition §,,. So if |A] is the cardinality of A,

n .
12.1= > |[)B)>Ho 1} =2,

e€{0,1}n i=1

since ()i, chi) # 0 and hence must contain at least one sample point. So
having n independent events, requires the space to have at least 2" sample
points.

Itis easy to see that 2" is really the correct minimum number. Let

Qn = {Oil}na P((Cl,...,€n)) = o=
for all € = (€1,...,€4) € Q,, and set
B;i={e:¢; =1}.

Then By,..., B, are independent and 1 > P(B,(E‘)) > 0. Since [2,| = 27,
we conclude the sample space cannot contain fewer than 2" points if n
independent events exist.

4.6.5. (a) If X is independent of itself, B(X) is almost trivial. Therefore,
since X € B(X), we have that there exists ¢ € R such that

PX=c}=1.
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(b) If X is independent of g(X), then g(X) is independent of 9(X) and
hence by (a), there is some ¢ such that Plg(X) =¢] =1.

4.6.6. We have on the one hand that
n
P[X; <1y, Xn < 2] =[] F(a3),
i=1
for all z; € R, =1,...,n. On the other hand,

n
P[X‘Ir(l) S 1“11 A -err(n) S zﬂ] = HF(zi'),
i=1

SO 4
(X1,...,Xn) = (X,.-(l), .. .,X,r(n)).

4.6.11. Pick ¢, to satisfy
so that

n

By the Borel-Cantelli lemma, P [I‘l—(;} > 1. ] = 0, and therefore
. . Xn 1 . Xn —_
1= P{liminf[|"=] < -1} <.P{ lim | ., | =0}

4:1;6.12. Given any € > 0, a, /b, = 1 means
ba(l—¢€) <an <bp(l+¢),

for all large n, say n > no = ng(¢). Therefore

Z ba(l—€) < Z an < Z bn(1+¢€)

n>ne n>no n2no

and the result follows.

4.6.13. Let
(B1,Bs,...)=(A1,A44,A7,...)

so that {B,} are independent events. Also

P(B,) = P(A1) =p’q



so that ) P(B,) = Y., p?q¢ = co and by the Borel 0 - 1 law we have

P(B,io0)=1.
Since
limsup B, C limsup A,
n—+oo n—+oo
we have

1 = P(limsupB,) < P(limsup A,).

n—+oQ n—00

4.6.14. For n > 1, define the events
2" —n
An - U [_¥2n+j = 1, . -1X2"+j+n—1 = 1y1Y2"+j+n = O]
j=0
Taking complements we have

2% —n
A:‘L = ﬂ [.X'gn..l.j = 1, .- -7X2"+j+n—1 = 1,X2n+j+n = OJC
=0

and retaining only certain terms in the intersection gives
Afl C[X2n+0 = 1, .. .,4Y2n+n_1 = 1,X’2n+n = O]C
ﬂ[X2"+n+l =1,..., Xonqon =1, Xonyonyr = 0]°

ﬂ[in+2n+2 =1,..., Xonq3041 = 1, Xonggns2 = 0]

: N...

-
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which is the intersection of events depending on disjoint blocks of X’s and
which are therefore, by the groupings lemma, independent. So P(AS) <
[1(1—p™q) where the number of terms in the product is the number of dis-
Joint blocks of length n41 which can be crammed in the interval [27, 27+1].

This is about
gnt+t _ 9n _2M2-1) 2

n+1 n+l ~ n4l

Therefore,
P(A7) <(1-ptg)*"/nH!

and using the inequality 1 —z < e~ for0< z< 1

271 (2p)n
P(AS) < —qp" = —q—
(A7) <exp{—gp n+1} exp{ qn+1}
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which leads to
2p)"
P(A,) =1 - P(AS) > 1 - —(——.
(4n) (45) 2 1 - exp{-¢ 2L

Now {A,} are independent, so to prove P(A, i.0.) = 1 we must show
> n P(An) =00. Forp=1

SP(n) 2 (1 - -2 — oo

l—e"':,Tzl~ 1/2,
n+1

which is not summable. For p > % we also have 2p > 1 and %%_)1: — 00 S0
S, PlAn) = oo.

4.6.15. If E([[;c;Y:) = [1;c; E(Y:) whenever Y; € B;, then for any A; €
B;, take Y; = 1,4, and

E(JIv) = P(N4) =] Pa:) =[] Ev)

i€l iel iel i€l

n—oo

and so {A;,i € I} are independent and {B;,i € I} are independent o-fields.
Conversely, suppose {B;,i € I} are independent o-fields. For A; € B;

and Y; = 1,4, we have
E([Tv) =] E().
i€l i€l
Next, if {Y;,i € I} are simple, then suppose
Y= Z-’Ci,le.v,,-, A ; € B;.
J
V_g_’e then have

E’(H Y;) =E(H Z l'i.j(i)lA-.j'm)

i€l i€l j(i)

=5( Y H-’ci,j(i)llg,f‘-'-ﬂ-‘))

j(i)ieriel

= Z Hxi,j(i)P(ﬂAi,j(i))

jliyieriel il
= Y [[l=0ioP (A6
j(iyierier
=szi,j(i)P(Ai,j(i))
i€ (i)

=[] Ewy).

iel



31

(If the notation makes following this difficult, write out the argument as-
suming that I = {1,2}.)

Finally, if Y¥; is a general, non-negative B;-measurable function, there
exists Y™} € B;, such that Y™ is simple and 0 < Y{™ 4 ¥;. 1t then

follows that
[1¥ +]I¥
, il i€l
and by the monotone convergence theorem

E(]v"™) 1e([T¥)

i€l i€l

and from the previous step, the left side is

[[2™) 1] B,
i€l i€l
again using the monotone convergence theorem.

(b) If for example B; is independent of B, and B; O B; for i = 1,2,
then B, ¢ = 1,2 are independent since if A; € B! then 4; € B; and
hence A;, Az are independent. So if X;,t € T are independent, then by
definition o(X;),t € T are independent and since o(f(X:)) C o(X;) the
result follows.

4.6.16. Kolmogorov’s 0-1 law implies that P[X, converges] = 0 or 1. If
P[X; converges] = 1, then there exists ¢ € [~00, 0o such that P[X,, — ¢] =
1, since limy, ;0 X, is a tail random variable of an independent sequence
and is hence almost surely constant. Suppose |c| < co. (Modest changes
are necessary if ¢ = +00.) Then for any &£ > 0;

- P[X, € (c—~e,c+e)io]=0,

-

so by Borel’s 0-1 law,

o0 > ZP[XH €(c—e,c+e)).

Since {X,} and iid sequence, we have
PlXp,€(c—¢€,c4+¢)°]=0

(otherwise, the sum would diverge since the sum consists of equal terms by
the iid assumption) so

PXy€(c—¢,c+e)]=1.

This is true for any € > 0 so let £ | 0 to get P[X = ¢] = 1. This contra-
dicts the assumption that the sequence does not consist of constants with
probability one.
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4.6.17. (b) If N is a N(0, 1) random variable, we have

P[IN|> (1 ¢€)y/2logn] =2P[N > (1 +¢)\/2logn]

exp{—((1 £ ¢)?2logn/2}

~2
(1+¢e)\/2Togn
c

Tn(E) Jlogn

Therefore

Y P[IN|> (1 4 €)\/2logn] < o, Y P[IN| > (1~ ¢€)y/2logn] = o,

and
IX |

| Xn]
Nk

Plo==> (1+€)V2i0]=0, P[ >(1—-¢)V2i0.]=1.

Thus
Pllimsup —= X I =V?] =1
og

n=+o0
(c) Let X have a Poisson distribution with parameter X. Since
[o 0]
P[X >n]=) e M /jl > e™*A"/nl,
Jj=n
we merely have to prove the upper bound.
We use the relation between the Poisson distribution and exponential
distribution. Let {E,,n > 1} be iid unit exponential random variables so
that {E,/A, n > 1} are iid exponential random variables with parameter

lambda. In the time interval [0, 1], a Poisson process of rate A has at least
n points iff the time of the nth occurrence is before time 1. Therefore

PIX > n] :P[Xn:E,'//\ <l1]= P[Xn:Ez < A

i=1 i=1
A n-1

:/ e—v 2 du
0 (n—1)!

and since e™* < 1 for u > 0, we get an upper bound

A n—1 n
u A
51'/0 m—DI = o

as needed to be shown.
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We show now that

X
Pllimsup

— =1]=1,
noo logn/logyn ]

where log, n = log(log n). It suffices to show

<oo, ifa>1,
=00, Iifa<l.

3" P[Xa > a(logn/ log, n)] {

Set m(n) = [alog n/log, n] and note

m(n)

A
P[X Z m(n)] Sm(n)|

and applying Stirling’s formula to the denominator, this expression is as-
ymptotic to

Am(n) B ( Ae )m(") 1
Y e m(mym 172 — \inm) m(n)
_ 2xp{—m(n) log(m(n)/A) }
m(n)
B eXP{—al‘?‘fé% -log(_)\ll?)g:ﬂ)}
- logn
alogzn
log(Alog, n 1
=cexp{—alogn(l — ggog iz ))} pyealy
2 log, n

Since a > 1, we may find @ > o’ > 1 and n so large that
afl ~log(Alog, n)/log,] > o' > 1.

Then we get an upper bound for the tail probability as follows:

<exp{—a’ logn} 1
- logn - al logn
logyn n a log, n

When a > o’ > 1, this is summable.
Similarly, when o < 1, one gets the probability sum appearing in the
Borel 0-1 Law to diverge.

4.6.18. Set C; = {A}, and C = P and it follows that C; is independent
of C>. This implies that B(C;) is independent of B(C3). Therefore, A is
independent of A and P(A) =0 or 1.
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4.6.19. Let Q = {0,1}°. Define X1(i,§) = i, X2(i,§) = j for (i,§) €
{0,1}2. Now define P; and P, by

(0,0) (0,1) (1,0) (1,1)

1 1 L 1
Py q F) 3 4
1 Y 1 1
Py 2 8 8 3

Then under P;, we have X; independent of X, but not under P, since
1
Po[X1 =0,X2 = 0] = P»({0,0}) = 3

and

Po[Xy = 0]P[xz = 0] =P2({(0,0), 0, 1)}) 22 (1(1,0), (0, 0)})
_55_2 1

4.6.20. (c) Note that
. 1 1 1
P[)(lXQ = 1]=P[)£1 =1,Xs=1lor X, =-1,X, :—1]: Z+Z = -2-
and similarly P[X; X, = —1] = 1/2. Then X; is independent of X3 X5, for
i =1,2. To see this, note

P[.Y1X2 =1,X; = 1] :P[X1 =1,X9 = ]_] = %

=P[.X1X2 = ].]P[Xl = 1] 1 1 1

(3X3) =7

and similarly for other possible values for the mass function. However,
PX1=1,X2=1,X1X, = -1]=0# P[X; = 1]P[X, = 1|P[X1 X, = 1]

and thus X;, X5, X1 X, are not independent.

4.6.22. Pick any J C {1,2,...} and define

B — An, ifneJ,
"Tl4g, ifne e
Then {B,} are independent and ), P(B,) = 0o so we conclude from the
Borel 0-1 Law that
P(B, 10.)=1.
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Taking complements, this also means that

b e ey 1 .
0= P(liminf B}) = lim 1 P(ko Bf).

Interchange the roles of J and J° and we may conclude

0< lim 1 P(() Bi) = 0.
n-—o0 k>n

Therefore, for all n,

P(() Bx)=0.

k2n

For the purposes of getting a contradiction, suppose B is an atom so that
P(B) > 0. Define J in the following particular way:

J:={n>1: P(A,B) > P(A%B))

and as above, set

B = An, ifnelJ,
T4, ifneJe.

Note with this definition, that P(B,B) > P(B¢ B). Therefore, since
-P(B) = P(B,B) + P(B;,B) < 2P(B,B),

we conclude L
0< §P(B) < P(B,B).

Now, B, B C B and since B is assumed to be an atom, either P(B,B)=0
(which cannot be the case since we know P(B,B) > $P(B) > 0) or else

P(B,B) = P(B).

This last equality holds for all n. Since P(B) > 0 we have for the conditional
probability measure
P(B,[B) =1

for all n and hence for any n

P(() BlB) = 1.
k>n

Therefore, for any n,

P((") BxB) = P(B) > 0.
k>n
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(b) We have
Plla=kl=Pld,=0,...,doss—1 = 0,dpyp = 1] = 2= (<+1),

Note
[ln 2 T'] = P[dn=0;-"1dﬂ+r—1 =0]=2_r

which also shows that
ln>7l€0(dn,... ,dngr-1).

(c) This follows from [I, = 0] = [d, = 0] and the fact that {d,} is iid.
(d) From the Borel 0-1 law, P{[l, = 0] i.0. } = 1 iff

1
0o = E Pll,=0]= E,, 3
{(e) Note

[1211 = 1] = [dQn = Oad2n+1 = 1] € U(d2m d2n+1)

and by the groupings lemma, the sigma-fields o(ds,,, d2,,41) are independent
for different n. Since

;P[IQ,, =1]= Zﬂ: <%)2 = o0,

P{[lon =1} i.0. } =1 and hence P{[l, = 1]i.0. } = 1.
(f) We have ’

X Plla > (1+€)logyn] < Plln > [(1+ ) log, n]]

1\ [(1+6) log, n] /1) (14)1ogs n46(n)
6 -z
n n

where |f(n)| < 1. This series converges or diverges according to whether
>, n~(1+¢) converges or diverges but this series converges.
Therefore, by the Borel-Cantelli lemma, for any ¢ > 0,

b >1+4+¢€lio. }=0.

P{[logzn >

This means for any e | 0

P[limsupl b <l4e]=1

n—oo 10gom
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and intersecting over k

. ln . l,
< ]} = P[l <1lj=1.
P{O[hﬂgp o S 1+ e} [1gsol;p oz, < ]

{g) Let 7(n) T oo be a sequence of integers. In particular, we will let
7(n) = [logy n]. Define n(1) = 1, and n(k+1) = n(k) + r(n(k)). Then since
[ln > "'] € U(In:ln+1, cee )ln+r—1)

we have from the groupings lemma that

[lngey > r(n(k))] € o(dnr),s - - s dn(re1)-1),
and therefore these events are independent. If we show
P{llagr) 2 r(n(k))] i0. } =1
then it will also follow that
P{lln, > r(n)]io0.} =1.

It suffices to show

3" Pllagey > r(n(k))] = oo.
k

Since n(k + 1) — n(k) = r(n(k)), we have

(k k
Xk:Pun(ker A)]—Z2 ) = ZQ r("k)_Jr(rlzzk)%

and because r(n) is non-decreasing, this is bounded below by

nk =1 o r(n)
sy
n=n(k)

r(n

2-7(m) 1
:Zk: r(n) zzn:nloan:
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CHAPTER 5 SOLUTIONS

5.5. (b) We use Fubini’s theorem. Let A = {a;,a3,...} be the countable
set of atoms of F. Write ‘

E(F(X)) = fm F(z)F(dz) = /R ( /,, . F(dy)) F(ds)
- / / erers, @ P = /,, . ( N F(d:c)) F(dy)

- /y N ( /t N F(dx)) F(dy) + /y . ( fx ., F(da:)) F(dy)

=3 (= FO) + FU) P + [ (1= Fw) P

yeA
=S (- FOF() + [ 01— FG)F@n + T F({h)
yeA yEA® yeEA
=/ (1- F(y)F(dy) + 3 F*({y})
yER yeA
=1-E(F(X))+ Y F2({y}).
yEA

Summarizing we see that
E(F(X)) = 1-E(F(X))+ ) F*({y})
yEeA

and therefore

2E(F(X)) =1+ ) _ F2({y})

yeA

(1 +) F"’({y})) :

yeEA

or

E(F(X)) =

N =

5.10.6. (e) Note that

| XdP—/AXdPI=|E(X1A,.)—E(X1A)|= |E(X(1a, = 14))|

An
<E(|X[11a, —14]) = E(X14,484) =0

by the result in (b).
(a) Since

| / XdP| < / IX1dP,
A A
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without loss of generality we may (and do) suppose X > 0. Now X1lxs, —

0 as n = oo and
OSXI[I>,,]SX€L1

so by the dominated convergence theorem

XdP = EXlxsn — E0 = 0.
X>n

(b) If P(A,) — 0, then assuming X > 0 we have for any large M

XdP:/ XdP+/ XdP
An AL [X<M] AL[X>M)

<MP(A.[X < M) + / XdP
[X>M]

<MP(A,) +/ XdP.
X>M

Therefore

lim sup XdP < 0+/ XdP.
n—oo An X>M

Let M — oo and by (a) we have [, , XdP — 0.
(c) If P(LAN[|X]|>0]) =0, then w1th An = AN{]X]| > 0] we have

/|X|dP=/ IX|dP
A n

and since P(A,) = 0 we apply (b) and get

0= lim/ |X|dP=/ X |dP.
n—00 An A

-

Co;versely, it suffices to show that E(|X|) = 0 implies P[|X|=0] =1

(since then one can replace X by X1,4). Recall

n2" E—1 ’
X122 > 5 Lixiertge, 4oy + P loxi>n
k=1

so taking expectations gives
E(X]) > E—P[IXI 2n )]+ nP[|X| > n].

Therefore for 2 < k < n2"

-1

PIIXI€ (S, 2] = 0 = PIIX| > )
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and we get by summing over k and adding the last term that P[|X| >
277] = 0. Let n = oo to get P[|X|> 0] =0.

5.10.7. We have [X,;, — X| < 2K and the constant function 2K is in L.
Therefore by dominated convergence, | X, — X| — 0 implies that E|X, —
X|—0.

5.10.9. We have

[Creso-re-aw=[|[ e
- /:r‘—c<u<:+c d(F * /\)

AV L

:/2cF(du) = 2ec.
5.10.10. Define
— k
Xo = D g ltexa gl +00 k=)
k-1

Note X
have

» > X, X}, is non-increasing and for w such that X(w) < oo we

sup (X (w) - X(w)) < 27"
wE[X <00}

If E(X) = oo, then oo = E(X) < E(X;). If E(X) < 00, then P[X =0] =0
and then

o B = E((X; - X) + X) = E(X; - X) + B(X) - B(X),
since 0 < E(X} — X)<2™™ = 0.
5.10.11. Since X € o(X) and lycp) € o(Y) we have

/ XdpP =E'X1[yEB] :E(X)E(I[YEB])
[Y eB]
(from, for example, Problem 4.6.15)

=E(X)P[Y € B].

5.10.12. (a) We first verify that B x B is generated by vertical and hori-
zontal lines:

BxB=o({{z} xX,X x {z},Vz € X}):= . (*)
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To see this note that {z} x X is a rectangle so
{2} x X eBxB, Xx{z}ecBxB,
and hence
B x B=0o(RECTS) D o({z} x X, X x {z},Vz € X) = X.
To get a reverse: containment let A € RECT. Then A = A x B where either
(1) A is countable and B is countable.
(2) A is countable and B€ is countable.
(3) A€ is countable and B is countable.
(4) A° is countable and B¢ is countable.

For
(1) Ax B=Useal(z,9)} € X.
yEB

0 AxB= UlahxB= U |5} x X\ U (@) €.

z€A z€A €Be
(3) We use an argument similar to the one used in (2).
(4) (AxBf=A°x XUB°x X € X.

So RECT C & and ¢( RECT ) C X. .
Now combine (*) and Exercise 2.6.12 to get the following statement: If
Ee B x B, then there exists a countable set S C X such that

-

Eco(({s} xX,X x {s},s€S) = F.
Let P = {{s},s € 5; S°} so that P is a partition of Q. Then

PxP:={A1xAz: A €P,i=1,2}
is a partition of X x X and

f:a(’F’X’P):{U Aj x A ;Ic{1,2,...},1’c{1,2,...}},
Jel,
kel
where the last equality follows because P x P partitions X x X.
So if E € F, then
E= UAj X Ak,

gk
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where j, k range over a subset of integers. But A; x Ax = {(s,s;)} or
{s:i} x 8¢ or S° x {s;} or S° x §¢. If E = DIAG then E € F is impossible
and we have a contradiction.

5.10.14. We proceed by means of a series of steps to show
Eg(X) = Eh(X,Y). (#)
SteP 1. If h(z,y) = hi(z)h2(y) then g(z) = hi(z)E(h2(Y)) and
E(9(X)) = E(h1(X))E(h2(Y)).

Thus (#) holds. It also follows that (#) holds for A(z,y) = 1a(z)1p(y) =
laxp(z,y) where A, B € B(R).

STEP 2. Let

G = {A € B(R?) : (#) holds for h = 1,}.

Note the following properties of G:

1. R?eg.

2. If A€ G, then A € G since

1- Eg(X) =1- EIA(X,Y) = E(1 - 14,(X,Y)).

3. G is closed under countable, disjoint unions.

We conclude G is a A-system. Also G contains S = {Ax B : A, B € B(R)},
the m-system of measurable rectangles. Since Step 1 implies

Gg>OS,
we get from Dynkin’s theorem that
G D a(S) = B(R?).
We conclude that (#) holds for 15, whenever A € B(R?).

STEP 3. Thus (#) holds for all positive simple functions and for all
positive measurable functions.

5.10.15. (a) We have

1 n n
nkE <Yl[x>n]) =F (-X—1[1> )nr]) S P[l > E]

=P[X >n]—=0, n-oo.
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(b) Now we have for any n > 0,
- 1 1
n'E (yl[x>%]) =E (Hl[bﬁ,}bo])

=K <$1[1>;§(>n,x>o]> +FE (%1[0<ﬁ'] < 77])
=A+ B.
For A we have the bound
AgP[1>;li>n,X>0]=P[1§nxgn“'l,X>0]—>0

as n — 00. It should be clear that B < 5 and since 7 is arbitrary, we are
done.

5.10.16. (b) If X; and X, are independent, then fi(X1) and f2(X2) are
independent and

Efi(X1)f2(X2) = Efi(X1)Ef2(X3).

Conversely, suppose Ef(X1)g(X2) = Ef(X1)Eg(X3) for all bounded

continuous f,g. Let f; = 1(4; 4;),i=1,2. Choose bounded continuous £ as
in (a) and then it follows that

Ef{D(X1)f{(X2) = Ef{D (X1) EfP(X2).
Let n — co and use the dominated convergence theorem to get
Efi(X1)f2(X2) = Efi(X1)E f2(X2)
which is equivalent to
P{X) € (a1,b1], X2 € [a2,b2]) = P [X1 € a1, b1]] P [ X2 € [az, by))

This:suffices for independence.
(c} By two applications of dominated convergence, we get for fi, fo
bounded and continuous

B (1(6)falme)) = lim B (fu(6n) () = lim B(f1(60)) E(fa(ma)
=E(f1(€x0)) E(f2(neo))-

5.10.18. The Riemann integral over A would give us the area of A. Write

//Ad(/\x/\)://lAd(/\x/\)
- /H [ /[] u@.y)e,ﬂ(y)x(dy)] A(dz)

-[ [ 1 L. (1)dy] Ao
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(where the inner integral is interpreted as a Riemann integral)

- / I(z)\(dz)
[o.1

where I(z) is the length of a vertical line segment which passes through A
at z. Note {(z) is bounded, continuous and hence Riemann integrable so

the above equals fol [(z)dz, the area of A.

5.10.20. (a) Use the transformation theorem.

(b) If ¢(A) = 0 then E(e*X) = 0, which implies exp{AX} = 0 almost
surely. This means that either X = —co almost surely if A > 0 or X = 400
almost surely if A < 0. So assuming X is R-valued as is usual, we get
#(A) > 0.

Now suppose A € A°. Pick ¢ such that [A—€,A+€] C A. Suppose A, — A.
For all large n

eA,.X < e(A—s)X+C(A+e)X c Ll(F)

and since A\, — A, e*»X — ¢*X and by dominated convergence we get
EelX 5 EX.

(c) Let

flz) =c(l +z)%™*, z>0.

Then Ao = 1. If @ < —1, then f;°(1 4 z)%dz < 00 80 Ao € A.
If a > —1, then [[°(1+ 2)%dz = 0o, and thus Ao, ¢ A.

(d) The density is
% f(x)
(W)

fa(z) .
(e) We have

e** F(dz)
1 #()

eA:c 7
< ——F(I)=0.
<SEamin=0

5.10.22. We use Fubini’s theorem to interchange the order of integration:

/[o,oo] P[X > t]dt =/0'°°] [/s; 1(:,00)(X(w))dP] dt
=/[0,°°]xn 1(2,00) (X (W)) P x A(dw, dt)

- /n [ /[o’oo) 1(,_00)(X(w))dt] dP

_ / X(w)dP(w) = E(X).
0

)=
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5.10.25. (a) If 9, — 7, then since g is continuous, we have g(X —v,) —
9(X — ). Since g is bounded we get by dominated convergence that

3(1m) = Eg(X — ) = Eg(X —7) = ¢(7).
(b) We have
Jim g(X — ) = g(—00) = 1.

Apply dominated convergence to get ¢(y) = —1 as vy —= co.
(c) If 91 < 72, then X — 4, > X — v; and since g is increasing we get
9(X — 1) > g(X — 72) and ¢(71) > é(72). In fact ¢ is strictly monotone:

If 1 < 72 and ¢(71) = #(72) then 0 = E(g(X — y1) — 9(X — v2)) and since
the integrand is non-negative, we get g(X — v1) — g(X — 72) = 0 almost
surely. Since g is strictly monotone we get a contradiction.

This shows (d) since ¢(v) = 0 must have a unique root.

(e) To show (X + ¢) = 4(X) + ¢, note (X + c) is the unique root of

E(g(X +c~17) =0,
which means it is the root of
E(g(X +c— (X + o)) =0.
Also,
B(g(X +¢) = 7(X) - ) = B(g(X —4(X))) =0,

so by uniqueness, (X + ¢) = y(X) + ¢.
(f) If g(—z) = —g(z), then y(—X) is the root of

0= Eg(-X —y(—=X)) = —Eg(X +v(-X))

and since also £g(X — y(X)) = 0, we get by uniqueness that

-

: 7X) = —(=X).
5.10.30. We have Y, — X,, > 0 so using Fatou’s lemma
E(Y)-E(X)=E(Y - X) = E(lirginf(Yn — Xn))
n = 0]
Slin_}'infE(Yn - X,) = lirginfE(Yn) — E(X,)
:llnn_ngfE(Y) - E(X,).

Therefore
limsup E(X,) < E(X)

n—oo

and again applying Fatou’s lemma we get

E(X)= E(lirgiann) < lin_l)infE(Xn) < limsup E(X,) < E(X).

n—00
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5.10.31. (c) Suppose I = [a,b] and P[X € I] > 1/2. For any ¢ > 0,
P[X < a—¢€] < 1/2 and therefore a — € cannot be a median. Similarly b+ ¢
cannot be a median.

(d) Observe that

P[X €[E(X) - /2Var(X), E(X) + \/2Var(X )N
=P[|X — E(X)| < v/2Var(X)]

and therefore by Chebychev’s inequality

Var(X)
PllX - E(X |>\/2VarX]<—Va—r(XT_

| =

Thus if
I=[E(X)-V2Var(X ) + v/2Var(X)],
we have P[X € I] > 1/2 and by (c), a median is in [.

5.10.36. Suppose that X, € L;, X, T X, and V,E(X,) < co.. We first
show that X € L;. Since X,, T X, we have Xe2>2Xo>2X",s0X1 €Ly
implies E(X~)} < E(X]) < o

Also

E(X*) = (llmxan+)<hmme(X+)

n—o00

(by Fatou’s lemma)
=liminf[E(X}) - E(X7) + E(X7)]

n o0 -
=liminf[E(X,) + B(X.])]
<VE(Xa) + E(X]) < oo.

n
Thus X € Ly and 0 < X — X, < X € L; and X — X, — 0 imply, by
dominated convergence, that

E(X - X,) = E(X) — E(Xa) — 0.
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CHAPTER 6 SOLUTIONS

6.7.1. (a) If {X,,(w)} is monotone, l_i_{n X (w) exists. Call the limit X (w).
n—00
If X, 5 X there exists a sequence {n;} such that X, (w) = X(w) for
almost all w. Thus li_)m Xn(w) = X (w) for almost all w.
n—r00

(b) From the definition of convergence, X, (w) = X(w) iff
&n(w) = sup|X(w) — X(w)] = 0.
k>n

However since {£,(w)} is monotone, we may use (a).

(c) Since {Y},} is non-increasing, we need only show convergence in proba-
bility. Let the n points be {exp{27i6;},j = 1,...,n} where {8;,1 < j < n}
are iid U(O,1). Then

[Yn > €] C{ there is an arc of length at most 1 —¢
such that n points are in it ]
C[ within a (1 — ¢)-neighborhood of some point,

there are n — 1 points |
n
C U[ within a (1 — ¢)-neighborhood of e27%;

j=1
there are (n — 1) points ].
Therefore,
P[Y, > €] <nP[ within a (1 ~ ¢)-neighborhood of €271
there are (n — 1) points ]
=n(l-¢€)""' 5 0.

(d) We have {M,} non-decreasing, so it suffices to show convergence in
probability. For z < zo,

P[M, <z}]= F*(z) =0,
since F(z) < 1.

6.7.2. We have by the weak law of large numbers (which only requires
existence of the first moment as will be shown in Chapter 7)

B (i(x,- - X'Z)) = %ZH:XE - X* B BE(X?) - (EX))? = o2
i=1

noA“
i=1
6.7.4. We have that {S,} is Ly convergent iff {S,,} is Ly cauchy iff

1Sn — Sm|2 = Var( Z a; X;) = o? Z a? -0,

i=m+1 i=m+1
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as m,n — 0. The last statement is true iff {3°7_, a2} is cauchy which holds
iff {377, a,n > 1} is convergent.

6.7.5. Given {X,} iid, X, € L, we show that {S,/n} is ui as follows.
Note first that

S
E{l— < E(|X;]) <
swp B(I57D) < B(1%0)) < oo
Next note that

E(IX:illyx.>a1) = E(1X1l1yx,1>a]) — 0,

and therefore v
sup E(|Xnlljx,(>a1) — 0.
n>1

Thus {X;} is ui. So given & > 0, there exists § > 0 such that if P(4) < 4,
then

sup/ | X;|dP < e.
i Ja
Therefore, given € > 0, if P(A) < 4,
Sn 1 1 ne

We conclude {S,/n} is ui.
6.7.6. First of all we have

sup
n

sup E(| Xy — X1) < sup B(|Xal) + E(|X[) < oo,
n n

since {X,} is ui.
“Next, suppose we are given ¢ > 0. There exists § > 0 such that if
P(A) < 6 then

/ X, ldP < £, / IX]dP < E.
A >, 7
So if P(A) < 4,

/]X X|dP</[X |dP+/|X|dP S+i=c

6.7.7. We show {X,,} is uiiff sup,, o, < 0o, where of course, 02 = Var(X,).
Suppose N ~ N(0,1); that is, N has a standard normal distribution. Then

d
1n=0nN.
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If {X,} is ui, then
0o > sup E(|Xy|) = supon E(|N]),

which implies the condition sup,, ¢, < co is necessary for uniform integra-
bility. If sup,, 05 < 0o is assumed, then sup,, E(|X,|) < oo and

sup/ |X,,|dP=supo’n/ |N|dP.
n A n A

Given € > 0, choose § > 0 so small that for P(A) < 4,
/ |N|dP < ¢/supoy,.
A n

6.7.9. How to get equality in the Schwartz inequality: With
t=E(XY)/E(Y?)
we must have equality on (6.14) on page 186 so 0 = E((X — ty)?) yields

E(XY)

1= P[X ~ty=0]= P[X = 3

Y]
6.7.13. We have E(|X;|?) < oo and

1
nP[Xy] > ex/n) = E'(nl[l,: £sn) < ZE(IX Pl esean) =0,

since | X1|? € L;.
Then

‘p

\n/L\)-;—:;—I > 5] = P{O[IXH > e\/r_z]} < nP[|Xi| > evn] = 0.

6.7.15. Write
E(|1Xo — Xnl) SE((Xo = Xa)1ixo>x,]) + E((Xn = Xo)11x,>x0])
=A + B.

For A:
(Xo = Xa)lixo>x,) < Xo € Ly
and
P[(Xo - Xn)]-[XoZX,.] > 6] < P[]Xo - Xp| > 6] — 0.

Thus, by dominated convergence,

A= E((Xo - Xn)l[XoZXn]) = 0.



52

For B, use a variant of Pratt’s lemma (Problem 5.10.30): if
0<& <

and P P
én 2 &0y Mn = Neo,

and E(nn) = E(nw) < 00, then E(£,) - E(fo) < 0o as well. To see
this, let {E£(£,/)} be a convergent subsequence. There exists a further sub-
sequence {n'’} such that along this subsequence both

Enn a_'s). € Mo a_.s). Moo«

By Pratt, E(fnv) = E(fw) and hence any convergent subsequence of
{E(&)} converges to the correct limit; therefore the full sequence con-
verges as well.

Back to B: We have

0< (Xn - XO)IIX,.ZXo] < Xa
and E(X,) = E(X,) and
P[(Xn — XO)I[X,.ZXo] > 6] — 0.

Thus
E((X,, = Xo)lix,3.x,0 > €]) = 0
by the Pratt lemma variant.
Thus we conclude E(}X,, — Xy|) —= 0 as required.

6.7.16. (a) If a sequence converges to 0, then its Cesaro averages converge
to 0.
(b) If || X,||p — 0, then by Minkowski (triangle) inequality

¢ 1<
”Z-— <Istixi, =0
n b4 n i=1

since convergence to 0 always implies Cesaro convergence to 0.

(c) Let the probability space be [0,1] with Lebesgue measure. Define
X1, X3 to be the indicators of (0,1/2],(1/2, 1] so that X; + X5 = 2. Then
define X3, X4, X5 to be the indicators of the three subintervals of (0,1} of
length 1/3 so that X3 + X4 + X5 = 3. Let Xg,..., Xo be the indicators of
the 4 subintervals of length 1/4 so that X¢ + -+ -4 Xy = 4 and so on. Then

X, 5 0 since the length of the intervals on which any indicator is different
from 0 shrinks. However

1

'2'(X1+X2):1)
1 243
g(X1+---+X5)=—5—=1,
1 24344
§(X1+“'+X9)='9—=1,
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and so on. Therefore + >_1 Xi does not converge in probability to 0.

(d) We write "

n n

Xn Sn n-1 Sn—l P _
( - )n_1—>0—(1).o_o.

6.7.19. We have for any § > 0

Pl|Xa| > 8] < P[Y, > 48] =0,

since Y, Lt 0.

6.7.20. Suppose Y is a non-negative random variable satisfying
E(Y)=1, EY})=b>0.

Further suppose 0 < a < 1 and define

(2 - a)(a+ 2 —2)

(6/(1—a))?

Then u(-) is a quadratic function with roots at a and a + 26/(1 — a) and
with a positive maximum of 1 at the argument a + b/(1 — a). Note further
that

u(z) =

w(z) < 0, Tf:cgaor:c>a+2b/(1—-a),
— |1, fzeR.

On the one hand,

Eu(Y) =E“(Y)l[yg[a,a+2b/(1-a)]] + Eu(y)l[YG[a,a+2b/(1—a)]]

: <0-P[Y ¢[a,a+2b/(1—a))] +1:P[Y € [a,a+2b/(1 - a)]]
T <P[Y >ad).

On the other hand,

—a)?
Euty) =8 - ) E((Y—a)(a+%—}’))
1—-a)? 2b
MED
e (-
(1-a)?
b2
(1-a)?

= b2 {20—02+b}.

2b
—b—-a(a+m-)+a}

——)(1-a)— b+a)

{a(l1—a)+20-b+a}
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For 0 < a <1, 2a—a? > 0 and so the above is bounded below by
(1-a)? ,_(1-a)

Zb"’ b

We conclude that
(1-a)?

. b
Now for X satisfying E(X?) = 1 and E(|X|) > a > 0, set ¥ =
IX|/E(|X|). Then

PlY > a] >

. E(x? 1
B0 =1, B = e = gy = b
For 0 < A < 1,
P[IX| > Ad] = P[Y > 'E(AI%I)] = P[Y > o,

for @’ = Aa/E(]X]) € (0,1), since 0 < a/E(|X]) < 1. Thus

’ (1 _al)z

P(IX]| > Ad] =P[Y > d'] > BT
Aa \?
=(1 - WXU) - E*(1X))

=(E(X]) = Aa)? = a(@ - )\)2 > a(1 = A)2.

6.7.23. A sequence of random variables {X,} converges in probability to
oo if for any M, we have

“P[X,>M] =1, n— oo
For any integer M,

P[T(s) > M] - Z (1—s)s* =sM 51,

k>M
ass—)l.SoT(s)i))oo.
Note -
(1-s8)U(s) = Z(l — 8)s"un = E(ur()).
. n=0

Now T'(s) A oass o 1, implies ur(s) £ 4. To see this, observe that
given any é > 0, there exists ng such that

[up —uf < 6.
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Therefore
Pllup(s) — u| > 8] < P[T(s) < no] = 0,

as s — 1. The result now follows by applying dominated convergence to
convergence in probability.

6.7.24. (a) We have for any 6 > 0

P[|X; — X[ > 6% <P[|Xn = X + |V = Y|* > 67
=Pld((X,,Yn), (X,Y)) >é]— 0.
(b) By part (a), it suffices to assume the range of f is R.
Given any subsequence {n(k)}, there exists a further subsequence {n(¥')} C

{n(k)} such that
Xowny = X, Yoy oY

almost surely and by continuity of f,
f(Xn(kl), Yﬂ(kl)) - f(X, Y)

almost surely. By the subsequence characterization of convergence in prob-
ability we have

f(Xn, Ya) B £(X,Y).
(c) Define the continuous function f : R?+ R? by

f(z,y) = (2 + y,2y).
Apply (b).

6.7.25. (d) Suppose it is possible to metrize almost sure convergence with
the metric d(-,-). Let {X,,,n > 1} be a sequence of random variables such

that X, 5 X but that {X,} does not converge almost surely. For instance,

Exaniple 6.2.1 provides such a sequence. Since almost sure convergence
fails, there exist a subsequence {nx} and a § > 0 such that

d(Xn,,X) > 4.

Since X, 5 X, given the subsequence {n}, there exists a further subse-
quence {ng(j)} C {nk} such that almost sure convergence holds along the

subsubsequence: X, ., 2% X and therefore

d(X X)—0.

k(i)

However, this contradicts the previous display so metrizing almost sure
convergence is impossible.
6.7.26. (a) If .

X, = —

= Togn L0,1/n),
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then
1 1

C—= — 0.
n  logn

_n
" logn

E(X,)

Also we have

n

1/n
EXTI 1 u: u a = un ogn>a a u n
(f) {u:X, (u)>a) (8) /0 lognl{ /logn>a and u<1/n}(8)ds

1 .
— { logn? if 10211 > a,
0, if (2= < a.

logn

Therefore if we set U(z) = z/logz we have

1 ]
sup/ IandP = \/ Fy. S \/ -0
n JXa|>e] n/lognza 0BT T >y (o) 1087

as a — oo.
Finally, to see that there is no dominating variable, we suppose there is
one and get a contradiction. Suppose

X, <Y € Ly(0,1).

This means on (0,1/n), we have Y > n/logn. Thus

by comparison with the integral [° y~'dy.
{b) Suppose
Xn =nl(0,1/n) = Plj1/n,2/n)-
Then
1 1

E(Xp)=n-——=n-—=0
n n

and for any ¢ > 0
P[|Xn| > €] < P(0,2/n) =2/n — 0.
Note that

n, f0<s<2

Xn =
Xn (o)l {m if2<s<1.
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Therefore

n-%:?, if n > a,

2/n
B (1% x> = /0 Wl unsanct/n)(5)ds) = {0, ifn <a,

and thus, finally,
sup E (|Xnl|lgx.1>a) = 2,
n
so the sequence {X,} is not ui.

6.7.31. (a) Since X, — ¢, £ 0, we have P[|Xn — ¢n] < €] = 1. Thus for all
large n,
P[Xp €len —€,cn+€]] > 1/2.

From Exercise 5.5.31, we get that
m(Xn) € [Cn —€,¢p + f]

for all large n. Since ¢ is arbitrary, we have m(X,) — ¢, — 0 as n — oo.
(b) Because X has a unique median m, for any € > 0, there isa § > 0
such that

PX <m=—¢< %—6, PIX>m+¢< %—5.
Therefore,

PlXo <m—¢€=P[Xp, <m—¢|X - X,| <¢/?]
+P[X, <m—¢|X—X,|>€/2
<P[X <m—€/2]+ P[IX — Xn| < ¢/2]

-

<3~ d-+ol1)

Therefore, for all large n, we have m(X,) > m — ¢/2. In a similar way, we
show m(X,) < m+¢/2.

6.7.33. Assuming that X,; > 0, we have

P[ST;—" > ¢] =P[Sp > ne] < P{O[an > d}

:P[\/ Xnj > €] -0
i=1

as n —» oo.
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CHAPTER 7 SOLUTIONS

7.7.6. We have E(X,) = v so that ), v < oo implies Zk Xr) < o0
and therefore ), X < o0 a.s.
Conversely, if ), Xi < oo almost surely, then

o<n(emx) = ([T - lee) -1 ()"

1 1 k=1
and J] (%)’“ >0 HF 37, 1k (log2) < oo iff - 1% < 00.
k

7.7.7. (a) If 1yp_ g, (w) = 1, then w € U}_, Ex and the left side equals the
right side since “Both are 1. If lup_ B, (w) = 0, then both sides are zero.
Using (a) and the Schwartz 1nequallty, we have

n 2 n
(EZlm) =( (10,50 - Zlgk)) E(13_ 5 ) B 15,)’
1 k=1

=E(lu;_ ) E ZIEJZ-—P U Q_1a)

Therefore

(b) Suppose

i) Z:;l PE, = oo,

(i) P(EmEn) < cP(Em)PE(n —m).
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Then

oo
PlimauFn) = fim P( U 55) = lim Jim P( U 5)

2
N
(E Zj=n+1 ]‘Ej)
“n—00 Naoo N 2
’ E(Zj=n+1 1Ej)

(S PUED)

N 2
(£ pisy)
lim lim —g ~H
700 N—+oo Zj=n+1 P(Ej) +2czn+15j<k§NP(Ej)P(Ek—j)
2
S 1 P(E))
> lim lim (Sienss P(59)

—nooo N N N 2
oo SNt P(ES) + 2C(Zj=n+l P(Ej))

. . 1 1
= ll)m A}lm =% > 0.
n—+ooN =00 -1 c
(2 PE)) +2

v

(c) Suppose Y;, > 0 are iid with common distribution G and X, > 0 are
iid with common distribution F. We have from Fubini’s theorem

00 Y,
€l = d ” z
2> Xn://{(r,y):pe} Gy r(de)

n=1  VX;
=2 F™(dz)| G(d
n LG[0.00) [Afry€‘1>z] ( )] ( y)

= /0 ” po (g) G(dy)

G(dy)
1 - F(y/e)
So if ©  G(dy)
Y
/0 W < 00, Ye>0,
then
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and v
P[-—— >¢i0.]=0,
V X;
i=1
which implies that
,,Y" -0
V X

i=1
almost surely.
For the converse, we suppose Y,/ VI, X; 2:3°0. Set E, = [v" ve > €]
so that P(E, 1.0.)=0.Form < n

P(EnmE,) =P 'me > g, ,,Y" >€
Vi:l 1 VX,
L i=1
[
<P ,f’" > ¢, ,,Y" >e€
V Xi V X;
Li=1 i=m+1

=P(En)P(Fn_m).
We conclude that 3"°° | P(E,) < 0o, and it follows that

G(dy)
I-F(Z <%

7.7.8. From problem 6.7.5, we have {S,-,/n,n > 1} is ui and hence the
SLLN plus Theorem 6.6.1 proves L;-convergence.

7.7.9. Define XJ’- = X;1)x,1<51- Then
¢iXj CJ .
SR # S < SR> 6= P >l < oo
J J

since E|X;| < co. Therefore 3. %% converges almost surely iff Z
converges almost surely and for this, it suffices to check

Z Var (ij j) < Z %E(X]?l[llesj]) < 0.
P j

To see that the right side expression indeed converges, note that it is

bounded by
\/lcklzz (X lnx |<_7]) < 00.
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Note, V. |ex|? < oo since {c;} is bounded and the sum of the expectations
is finite by the argument used to prove the strong law of large numbers.
We therefore conclude that

¢ Xj
Z ——converges almost surely
J

and by the Kronecker lemma, we get

n
¢; X;
E G4 — 0 a.s.
4 n
J=1

as n — oo.

7.7.10. (a) Start by supposing that {£;} are independent and E(§;) = 0,
n

and || < M. Then Zﬁj 23 0. To see this, it suffices, by the Kronecker

lemma, to show that z . converges almost surely. For this, it is enough

to check the Kolmogorov convergence criterion that 3 Var(§;/j) < oo.
J

However, we have

1 M?
Z"af §ild) = Z Z_z (€)<Y =5 <o
J J F
Now let EJ(-i) = Xitj(m+1) Where {X,} is m-dependent. From the above

n .
discussion, we have () /n 23 0 as n — oo. However,
=" :

m+1

“Zxa— Yoo D Xigjeman

i=1 j:#4j(m+1)<n

(253l

— Zf(’
2_: ?

m+1

m+1

=Y 1.0=0.
i=1

(b) We have

1 n
Nn(uh R ] uk) = ;Z l[szul,...,X,,..,.k_l:uk]-
m=1
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The indicators are k-dependent and

is bounded so from (a)

k
Nn(ul,...,uk) a.s.
n Hpui =" 0.
7.7.12. Let {Un,n > 0} be iid U(0,1) random variables. Then X, = Uy
and Xp41 = Upy1X, so that X, = H?:OI U;. Therefore, by the strong
law of large numbers

1 1 as.

—ﬁlogX = ;;logU, = -1,
since, for z > 0, P[—loglU; > z] = P[U; < e™%] = ¢~% and —~log U, has a
unit exponential distribution.

7.7.13. Use Problem 7.7.15. Then ), X, < oo almost surely iff for any
c>0,

(1) 5, PlIXal > o = T, e < o0,

(2) Lo B(Xnlgxaica) = o Dal(1 - e+) = ce™ 7] < oo
Now (1) implies A\, — oo and thus (1) and (2) hold iff

(2" Zx\;l(l - e'-"\"c) < 00

dnd (1) hold. However the series in (2’) is the same as Y, Ayl =3 A7le™*nc
and thus, we have that (1) and (2) hold iff (1) holds.

7.7.14. If 3" 02 < oo, then by the Kolmogorov criterion, Yon(Xn — ta)
converges almost surely and since §_, p, converges, we get Y on Xn con-
verges almost surely.

Conversely, suppose 3, X, converges almost surely. Let {X;} be iid
copies of {X,} and then > i=1(X; — X}) converges almost surely. Note

Var(zn:(Xj — XJ')) = 2211:0? =:s2
Jj=1

Jj=1

and N, := z;?:l(Xj — X;) is a normal random variable with mean 0 and

variance s2. So we assume

N, = Xoo
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since {N,} is almost surely convergent, where X, is some proper random
variable. For the purposes of getting a contradiction, suppose s, — co. Let
N(0,1) be a standard normal rv with mean 0 and variance 1 and then for
anyz€Rasn— oo

P[Na < 2] =P[5, N(0,1) < 2] = P[N(0,1) < =]

n

P[N(0,1) < 0] = % = P[Xo < 7]

which means X, cannot be proper.
Therefore, 3°; 07 < oo and 203 (Xj—p;) is convergent by the Kolmogorov
criterion. Since z X; is convergent we get Z 1t; is convergent.

7.7.15. We suppose that V;; > 0 and that
ZP[Vn > c] < oo, ZE(an[Vngc]) < oo
n n

Then it follows that

Y Var(Valyy,<q) < S_E(V21w,<q) < > E(Valy, <) < oo.

7.7.16. Since |S,/n| ~ |u| # 0 by the strong law of large numbers, it
suffices to show

}-Mn =
n

|X:1 330,

S|
<3

i=1

as n — oo. Since F{|X1]) < oo, we have

lim —IX( ) =0,

n—oo N

for € A and P(A) = 1. Now for each n, there exists k(n) < n (which is
random) such that M,, = X () and therefore,

le(n)I

-—M < k)

Suppose w € A. There are two cases. In case 1, k(n,w) = oo, so that

1 le(n,w)(w)l

In case 2, for some integer M(w) < oo, we have k(n,w) < M so that

M(w)
<— \/ | Xi(w)| — 0.



64

The desired result follows for either case.

7.7.17. We have 1

ZP[szkz]z ﬁ<oo
& k
so P[X) = k¥ i.0.] =0 and for k > ko(w), we have for almost all w that
Xk (w) = —1. Therefore, Y, Xi = —oo.
7.7.18. We have that %: W’E{OS_J converges almost surely by the Kolmogorov

convergence criterion, since

By Kronecker’s lemma

2 X;

d=t __as
nl/2logn

7.7.21. We need the fact that Z?:ll Xi(0) has density
1
folz) = 3(@/0)"e*/nt, 2 >0,

so that

“_(n+1(0) =

By the weak law of large numbers

: X.00 56

and by continuity we also get

w(Xa(6)) 5 u(o),

and since u is bounded, dominated convergence yields

Eg(u(X,(9))) = /000 nfe(nz)u(z)de — u(9).

We now check uniform convergence on a compact interval I = [a, b].
Let I* = [a/2,2b]. Define the modulus of continuity of u for any compact
interval J by

ws(J) := sup |u(z) — u(y)|

lz-yl<é
z,yeJ
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and since u is uniformly continuous on J, we have ws(J) ~ 0 as 6 0. Now
decompose as follows:

sup | Eg(u(Xn(6))) — u(8)] <sup Eg |u(Xa(6))) — u(8)]
o€l sel
Sz‘éﬁl’ Eq |u(X4(6))) — w(6)] 14%..6)-01<4]

+ sup Eg |[u(Xa(8))) — w(0)| 1y x..(6)-01241

which for § small has an upper bound

Sws(I*) + 2]y sup Py[|Xn(6) ~ 0] > 4]
€
=I+1I

Here, ||u|| = sup,¢g lu(z)| < co. Now for II we have
1 - 1 1
1T <2||ul| = sup Var(X,(8)) = 2|ju|| 5 sup ~Var(X;(6))
6% ger 0% ger m
11
=2 S 92
lull5z 7 sup 8™ =0
as n — oo. Therefore

lim supsup | Eo(u(X (8))) — u(8)] < ws(I*),

n—+oo fel

for any § > 0 and letting 6 | 0, yields the result.

7.7.22. (a) You can differentiate under the integral sign; this is justified
by doininated convergence. For instance,

P\ +8) — F(A o
() <

:/OQo (/oz e—“ydy)e-*fF(dz).

(1 - e~%)e ** F(dz)

Set
Gi(dz) = e F(dz)/F()\), Hs(z)= / e~%dy.
0
Then
Hs(z) < z € L1(G))
andasd — 0

Hs(z) > z.
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Therefore, by dominated convergence, as § — 0

_(F(A +8) — F())

) ) = /0 " Hy(2)Gadz) - F(N)

—-)/:o zGy(dz) F(/\) = /Ooo ze‘”F(dz).

(b) Fix 6. Then by the weak law of large numbers
1< P
= ; &(6) >0

since the limit is the mean. The rest follows from the fact that Y ..., &(6)
has a Poisson distribution with parameter né.
(c) Write

Z( 1y nd FU)(n / Ze—m

j<nr ! J<nz

_ / P[LPO(ns) < 5] F(ds),
0 n

F(ds)

where PO(ns) is a Poisson random variable with parameter ns. Note for
any z > 0,

1, ifz>s,

0, ifz<s.

P[%PO(ns) <z]— {

If F is continuous at z, then for any § > 0
-1y ..
Z (__')_nJF(J)(n)
j<nz J:

-8 1 z+6 1
= [ PlzPOtms) <alF(@s) + [ PLLPOMS) < 2)F(as

+ °°. P[lPO(ns) < z]F(ds).
44 n

By dominated convergence
-6
/ P[%PO(ns) < 2)F(ds) = F(z — 6),
0
ot 1
/ P[=PO(ns) < z]F(ds) — 0.
z4+6 n
Therefore,

1) J (.1
hnrr_l)gfjg - ~—L i F (n) > F(z —§8) — F(z)
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as d — 0 and

llmsupZ i )<F(m+6)+F(:c—Jx+5]—)F(z')

n—oo j<nz

as 6 — 0. This shows the result,.

7.7.23. We have
’ 1 1
E(X?) = 2ldr=2=_.
1) / z = 3

The rest follows from the weak law of large numbers since
27" A\ (BnsN1L,) = P[\/1/3-46 < ”" <V1/3+48) 1.

7.7.43. We have that the series defining Y converges from the fact that
{>°7=; Bi/2,n > 1} is non-decreasing in n and therefore has a limit. The
limit must be finite since

—Bi =1
LTS
The range of Y is 0 (when all B;’s are 0) to 1 (when all B;’s are 1).

We have . o
E(Y)=E(} g;) =p). —21— =p,
1 t=1

and

. ~=Var(Bi) pq
Var(Y') = Z 2;. =3
=1

Let x € [0,1] be represented by its non-terminating dyadic expansion

T = .23x9T3"'* = v
where z; € {0,1}. Then @, concentrates on the following subset of [0, 1]:
1L
Ap:={z€[0,1]: nll,r& ;;a:,- = p}.

Consequently, if p # p/, then
Qr(Ap) =1, Qp(Ap) =0
(b) Denote a dyadic interval of length 1/2"+! by
[(bl, AN .,bn) = [bl .. .bnO, .b1 .. bnl)
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Then

P[YE I(bl1-..,bn)] =P[B, :b", 1= 1,...,”, Bn+1 :0]
:pzz‘:l b‘q"‘2?=1 biq.

So for z €{0,1], z € I(z1,...,2,) and therefore
Qp({z}) S P[Y c 1(1'1, .. .,xn) = p2?=, a:aqn—z::':x a:.‘q -0,

as n — oo and therefore Q,({z}) = 0 and F,(-) is continuous.

To see that Fy is strictly continuous, note that if 2; < z, then for big
enough n, there is a dyadic interval I on the 1/2" grid which is contained
in (21, z2] and therefore

Qp(z1,22] > Qp(1) > 0.

Ifzr<1/2,

since {BJ,] >2) = {B,,n> 1}.
If <z <1, then

-

> Bi > B,‘ o B,.
=1 i=1 i=1
and since B; = 0 implies Y < 1/2 we get
—q+PP[ +Z < z]
1< B;
—q+pP[ 52_:-2—
B;

=q +pP[Z o < )].



69

7.7.45. By the strong law of large numbers, we have

—logpn(X1,...,Xn) -1
—_— pxl.
n n

i=1

a—";*E(—log‘pxl) =— Zp; logp; = H.

i=1

7.7.46. For the Cauchy distribution, E(|X]) = co so the conclusion for
the sums follows by the strong law of large numbers.
Note as r — oo

Y 1
P[X1>.’L']— mdUN;—E

T

soforz >0

1
nP[X; > nz/rl~n- — -z~
e

Therefore, for £ > 0

nP[X; > n:c/1r])”

n

PIV X; < nz/x] =(P[X1 < na/m))" = (1~

—exp{—z"'}.
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CHAPTER 8 SOLUTIONS

8.8.2. (a) We have X,, 5 0 since Pl Xn|>€l=1 =0.
(b) We have X, = 0 since for a constant limit, convergence in probability
is equivalent to convergence in distribution.

(c¢) We have
ZP[X,, =n]=Z%=oo

and therefore
P{[X,=n)io.}=1

and limsup, _, ., Knl = 1. We conclude limsup,,_, , X, = oo almost surely.

Also liminf,, o X,, = 0 since X, £o implies that for some subsequence

{nx}, we have X,,, &3 0. Thus lim inf, -, 0 X5 < 0. Since also P[X, > 0] =
1 we have liminf, ;. X, = 0.

8.8.3. Note —logU £ E where P[E > z] =e~", 2 > 0. By the strong law
of large numbers,

n
—Z long

n n A
—log H(Uj)* = ]=1n 2 Eij: =, —1as.
i=1

By the central limit theorem
“~—logU; —n
,Z_:l——\/_’_'— => N(0,1)

SO
p n

vn (Z —logU}* — 1) = (N(0,1).

j=1

Let g(z) = e~*. By the delta method,

Vn (HU:'% - e'1> =v/ng (%
1 Jj=1
=g (1)N(0,1) = —e='N (0, 1).

n

(—log Uj) —y(l))

8.8.4. (a) Suppose X, has distribution F, for n > 0. Suppose X, = Xo.
Given k and ¢ < %, we have (k — ¢,k + €) is an interval of continuity of
Fy(z) and so

P[Xn = k] = P[Xp € (k—¢,k+¢€]] > P[Xo € (k—¢,k+¢]] = P[Xo = k.



71

Conversely, suppose @ < b are not integers. Given that P[X, = k] —
P[Xo = k], we have

P[Xp € (a,b]]= > P[X,=kl— Y P[Xo=k=P[Xoe€ (ab]],
ke(a,b) k€(a,b)

so P[X, € I] = P[X, € I] for intervals of continuity.
(b) Let g be ¢ounting measure on the integers so that

p(A) = # integers k€ A = Z 14(k).
k
Set pn(z) = Y, P{Xn = k]1(x}(2). Define |
Fa(4) = P[Xo € A] = S PIXn = K] = [ pa(a)i(de)

keA A

From (a), F, = Fy iff P[X, = k] —» P[Xo = k] iff pn(2) — po(z), for
all integral z. But according to Scheffé’s lemma, p,(z) — po(z) implies
Pn — po in Ly (du), that is

S1P[Xn = K] - P[Xo = k]| = / 1pa(2) — po(2)|(dz) = 0.
k

(c) From (a): 14, — 14, iff
Plla, =11 = P(A,) - 1.)[1'4“ = 1] = P(4o).

(d) Suppose z, = zg. Let f be bounded and continuous. Then

[ $dFu = @) > f@0) = [ 1ar0

and hence F,, = Fj by the Portmanteau theorem.

Conversely, if , # zo, then there exists ¢ > 0, and there exists a
subsequence {n'} such that |z, — x| > €. Define f(z) = |zo — 2| A1 which
is bounded and continuous. Then

/de,,:=|:co—:cn:|/\12€ and /de():]:z:o—a:o]:O

SO fde,. b3 fdeo and F, #& Fy.
(e) For f bounded and continuous

1 1 1

Ef(Xn) =2 (1~ )+ 27(1+ 1) = 2£(1) + 5(1)
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and therefore X,, = X. Define the mass functions

0, ifz¢{l+i1-1) 1, ifz=1
fa@)=1{3%, ife=1-1 f°(z):{o’ itz 1
1, ifz=1+41 ’ |

Then for every z, fa(z) 7 fo(z).

8.8.5. (a) On [a, b], up is uniformly continuous so given € > 0, there exists
d > 0 such that for t,,t5 € [a, b] we have

jt1 — tal < & implies [uo(t:) — uo(tz)| < e. (*)
Let Ns(t) = {s : |t — s| < 8} be a d-neighborhood of ¢. Then

[a,8]C | Ns(t)

t€[a,b)
and by compactness of [a, b], there is a finite subcover
k
o, 8] C | JNs(ts).
i=1
Without loss of generality we can suppose
lo=a<ti<la<..<t=0b

and

k ) §
v'ti_t1—1|< 51
i=1

since if necessary, we can increase the subcover to achieve this. Pick ng so
large that for n > ng

sup |un(t:) — uo(t:)| < e. (#)
0<i<n

For z € [ti_1,1;], since un is nondecreasing, we get for n > ng that

lun(z) — wo(2)| <lun(®) ~ ua(ts)| + lualts) — uo(ts)| + |uolts) = uo(X)]

=A+ B+ C.
For A we have
A <un(t;) — un(ti-1) {by monotonicity)
Suo(ti) + € — (uo(ti-1) —¢) (from #)

=2¢ + uo(t:) — uo(ti—1) < 3¢ (from *).
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We also get B < ¢ (from #) and C < ¢ (from *). We conclude that
i :
sup [un(z) — up(z)] < \/ sup  |un(z) — ug(z)| < 5e,
z€la,b] j=1F€[ti—ti-1]

provided n > no.
(b) Given ¢ > 0, pick M > 0 such that

Fo(-M)\/(1 - Fy(M)) < e. (##)
Then pick ng such that for n > ng
|Fa(£M) - Fo(=M)| < e and sup |Fa(e)— Folz)[ Se.  (*%)
[_MrM]

Then we have

sup|Fr(2) — Foe)| <sup \/  sup \/ sup
zelR z<M -M<z<M =>M

SEMN Fo(MDN _sup | [Fo(z) = Fols)]

V[ = Fa(an) (1 = Fo(an)]
<((Fo(M) +e)\/ Fo(M)) \/ €

V(1 = Fo(8) +€) \/ (1 - Fo(M))
525\/5\/25 = 2e.

{c) We now verify the Glivenko-Cantelli lem:ma for this special case: Let

Folzw) = Z;’:l lix,;<z](w). There exists N € B, such that PN; = 0 and

if w ¢ NS then F,(z,w) — F(z). Let Q denote the rational numbers and
we have that

wE ﬂ N{ implies F, (z,w) = F(z).
z€Q
Now A := (N € B, and P(A) = 1 and for w € A, Fp(,w) 2 F().
z€Q
Hence by (b), for all w € A:

sup|Fn(z,w) — F(z)| = 0.
zeR

8.8.6. (i) If F(az +b) = F(cz + d) then
Fo@)-b_F-()-d

a C
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Proceed as in convergence to types theorem.
(ii) Tt is enough to show F(Az + B) = F(z) implies A =1,B = 0. If
A =1, then

F(yy=F(y+B)=F(y+B+B)=F(y+2B)=---= F(y+nB)

and letting n — oo gives F(y) = 1, (if B> 0) or = 0 (if B < 0) for all y
which contradicts the fact that F is non-degenerate. If A # 1, then

B B AB+ B~ AB
F(y+ m) _F(A(y+m+B)_F(Ay+ _——l_—A_)
B
_F(Ay+ m)

Define G(y) = F(y+ 1£5) and G(y) = G(Ay). So iterating, we get G(y) =
G(A™y). H A > 1,y > 0 we get G(y) = G(oo) = 1 and if y < 0,G(y) =
G(—o00) = 0 so G is degenerate at 0. If A < 1 then G(y) = G(0), forall y
which also contradicts G being proper and non-degenerate.

8.8.8. We have

P{X:n < z] =Plat least £ observations < z]

=3 (1) e

k=€+1

and thus the density is

@ = PO - PP ey
S;ince F(z)=1—e"7 for z > 0, we get
1 1 CEp] 2, —z\p_ n!
;fxz,,.(%)=;(1—e )ilem R (emw)n =m0
1z ,_ g n!
~;(;)£ Y1+ o0(1))e me m—_f)'
e nn—1)...(n—€+1)
(€- 1) nt
zé—-le—:c
=

8.8.10. We have for any § > 0 that

P[Xp - X|> 6> P[Y =0,X =1] = %
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This does not converge to 0. Note X,, = X since X, E5'¢

8.8.13. If pp, — po, and o, — 09 then the densities converge
n(in, 0n, T) = n(po, 00, T)

as n — oo and Scheffe lemma applies.

8.8.23. (i) We use the delta method with g(z) = 22 to get

5y _9Xn) =) e
V(g(Xa) ~ g(w)) = X — 700 V(X — g(p))

=¢'(#)N(0,0%) = 2uoN.
(ii) Use g(z) = €® so the limit is ¢’ ()N (0, 02) £ e#oN(0, 1).
8.8.34. Observe that if P[E; > z] = e~7, for z > 0, then with g(z) = £/

we have

Plg(Ey) > z] = P[E1 > g* (z)] =e™*", z>0,
so that {W,,n > 1} 4 {9(En),n > 1 and because g(-) is non-decreasing

n n n
\/ Wi 2\ g(E:) =g(\/ E:).
i=1 i=1 i=1
Write n
Y, = \/ E; —logn =Y.
i=1

By the Baby Skorohod theorem, there exists Y,# and Y# such that Y,# 4
Y, and Y# £ Y and Y# 23 Y#. So we have

Vizy Wi — glogn) 4 g(¥¥ +logn) — g(logn)

g'(logn) g'(log n)
- Y ¥4
: e gie)ds
g'(logn)
which by the mean value theorem is
_ I e
g'(logn) ™’

where (# is between logn and Y# + logn. Since Y# 3 Y#, we have
¢# /logn 23 1 from which follows

QI(C#) B ( C# )l/a—l a3 |
log n '

g'(logn) ~
Thus n
g'(logn) g'(logn) ™
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CHAPTER 9 SOLUTIONS
9.9.2. (a) We have
E(eitX,.) — eA,.(e-'t_l)

and therefore X,, = Xy iff Ay, = Aq.
(b) If pn — o, and o, = ap then

bx (t) = eitune—a:22/2 N eitpo—azt9/2
SO
Xn ~ N(/‘ﬂvarzz) = Xo ~ N(”Oan)'

Conversely: Suppose X, = Xg. Let {X/.} be iid and independent of

{Xn} and have the same marginal distribution: X/, £ X,,. Then X, -X, =
Xo — X2. So

95242 95242
¢X,.—X,’, (t) = 205t%/2 e 205t%/2 - ¢X0—X(’, (t),

and therefore o, — 0¢. But if 6, — 09, then from convergence of the chf’s
we get p, — po.

9.9.3. We have

1 1
2 ,2
E')(k 1—ﬁ+k k—2 -

1l
XS
1

and therefore,
n

Var (%) = %EI(? - kl~2) - 2.

Nféxt, let

. 1, ifXy=1ork
sz .
-1, ifXgy=-lor —k.

Thus {X}} are Bernoulli random variables with
* 1 *
P[Xk=1]='2'=P[Xk =-1]
and S;/v/n = N(0,1). Let
mg =sup{m : Zk < ey/n} =sup{m: —7271(1 +m) < ev/n}
k=1

>sup{m: (m+ 1)? < 2ey/n} = \/2ev/n — 1}.



77

If |S; — Sp| > ey/n, then it means that there exists ¢ > mg such that
X;i # X}, since if i < mo we would not get a big enough contribution to
the difference. Thus

PlIS, = Sal> e/ <P{ |J X # X3}

me<k<n

= 1

< Z kz = Z x]
k=mo k=1/2¢ev/n—-1

1

~(V2en7)"t —n~! 5 0.

It follows that

vro /n
and by Slutsky’s lemma 5—;- = N(0,1).

9.9.4. (a) We have

2
BUZ =%, EIUP =a}/4

and the Liapunov condition becomes

n
2 o

n 3
ZEJ—Uéi =const —k—=l— < Mconst———z-"l—akg
k=1 °n Zk _19})° Zk 103)*
M const
= 0.
(ZZ:I alze)-iT

n
(b) We have s = 13"aZ 1 5o < 00 s0
1

-

ZEU" [|—“|>S] ZEUIC o> es0) #0.

9.9.5. We know that
¢x.(t) = éx,(t) and ¢y, (t) = dr(t)
so if X, is independent of Y;, we have

Px4va (1) = Ox, (1)dy, (1) = dx,(t)byo(t) = dxotvo(l)-

9.9.6. (a) We have

#n(2) =f gtelgg = 298 g

-n n itn
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(b) This follows from the cosine funtion being bounded by 1.
(c) No. This does not contradict the continuity then since the limit does
not satisfy ¢(0) = 1.

9.9.7. If
flz) =273, |z| > 1,

then F(X,) =0, and E(X2) = co. Set
Yo = Xalyx,i<ymiogn)-

Then

E(Y3) =E|X,°1 g [V ey
(Y3) =E|Xal [IXnl<VAlogn] = . T “ar

=v/nlogn — 1 ~ \/nlogn.
Also, we have
Vnlogn
E(Y2) =E(X2 1l x, 1< mlogn)) = 2/ 22z 3%dr
1

=2log(v/nlogn) ~ logn.

Therefore,
n n
s2 = Z:E(YJ2 ~ /1 log zdz ~ nlogn
1
and
n 3 z
zl:Elyn, fln \/ilog.l‘d.’l: n? log n 1
: 3 (nlogn)? " n3(logn)?  (logn)? = 0.

So we see that the Liapunov condition holds for {Y.} and consequently

n
>_Y;/sn = N and by the convergence to types theorem
Jj=1

n
Z}’j/\/nlogn = N.
i=1
Lastly observe that

> P[Xn # Ya) =Y "P[|Xn| > Vnlogn] = Y2 /w 2 3%dz
n n n Vnlogn

1
_Zn: n(logn)? < o
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The demonstration can now be completed with the Equivalence Proposition

7.1.1 since we have n n
2_7':1 ‘XJ _ Z]s=1 }/J S 0.

Sn n

9.9.8. (a) Observe that if {X,} is iid with Poisson distribution with para-
n

meter 1, then S, = >_X; is Poisson distributed with parameter n. There-
1

fore, we have that

E<S':/_,7n)_ Zé(”_\;?k)jo[sn =k = in\;ﬁke k!n

and because this last sum telescopes, we get

e—nnn+1 e—nnn+§

- Vvnn! = n!
(b) From the central limit theorem,
Sp—n

Vn

where N is a standard normal random variable, since E(X,) = 1, and
Var(X,,) = 1. From the continuous mapping theorm

<S"\/_7_ln)_ = -

= N,

(c);‘We have

and therefore,

IA

\? 2
Sn—n (S,, - n)
vn va )
5 —n\") §a—n)?
n— T W — 7
=1.
w52 ) e (52)
So from the Crystal Ball Condition (6.13) we get that

(S"\/"T_l")— is ui.

so that
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Therefore the mean of the displayed random variable converges to E(N ™).
(d) We compute

[=2) e—a:2/2
z dz
0 Von

and making the change of variable y = 22/2 so that dy = zdz we get

E(N™)=E(N*) =

_[Tet¥dy 1

“Jo V2r T Var
We conclude 1

n+i_ —n
LN z'e -V
n

or

nl ~ e "nnti/2,

2r

9.9.9. (a) We have

o 1
_ ity ~zr _
¢(t)_/0 eTe d:c_l_z_t

Also, note that —— 1+u = ¢(~t) which is the characteristic function of —X.

(b) The chf of X is et+e™™ — cost.
(c) Observe that (cost)!” is the chf of X1 + --- 4+ X,7 where {X,} are
iid Bernoulli. -

(d) We have
[o0] [o0] 1
2/ 1 - Re ¢(t)dt 2/ l—E(costX)dt
T Jo 12 12

z 2/ ( costX)dt

and applying Fubini’s theorem, and then the fact that cos is an even func-

tion we get
:—E/ ( costX)dt

:ZE/ (l—cost[Xl>dt
T Jo 12

and with the change of variable s = t|X|, we get

oo —
=2/ (lc—"s(s)) dsE|X| = 2E|X]|,
0

w52
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since (1 — cos(s))/(ms?) is a density.
9.9.10. We have
BV =1VF) = exp{sle/VF — 1 it/ /5))
so it suffices to show

‘s[e“/ﬁ— 1—it/\/5]+13]| = 0.

However
it/s _q _ 2t lzlz e _ g _ %
sle \/§]+2t 's[e 1 7
it
NG
syt 3 1
S§|$ = O(=75) =0,

5172

Ssl[e"/‘/;—l

as § — 00.

9.9.12. Let XJ' = X; lix;l<ta,) SO that

n

p [X":%& £ iﬁ} <P [UHXJ-] > tan]J < En:PHXjI > ta,] = 0.
j= i = e i=t

J=

So )
Sn_5n P

An an

and it suffices to show %:- => N by Slutsky’s theorem. Mimic the standard
proof: The statement

n
EB”S:‘/G" — HEeitX;-/an N e_t2/2 (1)
1
follows from
n . 1
STE(e*i/en) —1442/2 50 (2)
i=1

since

exp{ZE‘(e“X;'/““) -1} - HEe”X;'/““ - 0. (3)
i=1

i=1
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The reason for (3) is that by the product comparison lemma, the difference
in (3) is

n
31 < [exp{ B3/ - 1) — peition
j=1

n

=Z Iexp{EeitX;-/an - 1} -1= E(eitX;-/a,, _ l)l
i=1
n

=) _le¥ =1z,
j=t
where z; = EeitXilan _ 1. Now
|2;| =|EetX5l0n — 1| = |EeitXi/an _ 1 it X} /anl,

(since EX] =0 due to symmetry of P[X; < z])

lz(X")Z_tz X;\?
SE(it ai% _2—E<a_,j) 1[%2._,54 *)
2\ (X:\?
<5VE(S) tma o

as n — 0o. The reason for the convergence to 0 is that for any £ > 0

X;\? X;\°, X;\?
B (32) sy <8 (32) tpmaeg + 5 (2) Hectzitg

n
: < +2) P [ X
- i=1

;i >e] —el+0=¢%
We conclude that as n — o0, |z;| = 0 uniformly in j. It follows that for
any § > 0 and n sufficiently large,

n . n Jtz n
181 <Yl — 11— 251 < 83151 < TZE(
Jj=1 j=1 ji=1

2
(X7)
aj

(by %)

PR X, 5t?
== FE (a—’lules«..s]) AT
i=1 n

Since 4§ is arbitrary |3 — 0.
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It remains to show (2) or what is the same thing

n . 2
2 E (e“"5/“~ -1- —(thj{z/ ) ) ~0, (2)
Jj=1
since R )
n X’~ n X
E ——J—> =) E (-’) 1 x; 1.
; (an 21: an [ %\:v{. St] -
Now

e

3
e +F

<

and for € < ¢ this is

X; 31
a, [s< af,{-t]

2 n
P [_&
l[luﬁilse]) + 3! Itl ;P . >

LTt X;
=Z:'3—’!(E =L

Qan

et [ X
<73 (ZE an

d

and since the first sum converges to 1and the second converges to 0, we get

j=1

NG
3

Now € > 0 is arbitrary so 2’ = 0 as n — oo.

+0.

-
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