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Abstract— The dynamic state estimation (DSE) applied to
power systems with synchrophasor measurements would estimate
the system’s true state based on measurements and predictions.
In this application, as phasor measurement units (PMUs) are
not deployed at all power system buses, state predictions would
enhance the redundancy of DSE input data. The significance
of predicted and measured data in DSE is affected by their
confidence levels, which are inversely proportional to the corre-
sponding variances. In practice, power system states may undergo
drastic changes during hourly load fluctuations, component out-
ages, or network switchings. In such conditions, the inclusion of
predicted values could degrade the power system state estimation.
This paper presents a mixed-integer programming formulation
of DSE that is capable of simultaneously discarding predicted
values whenever sudden changes in the system state are detected.
This feature enhances the DSE computation and will not require
iterative executions. The proposed model accommodates system-
wide synchronized measurements of PMUs, which could be
of interest to smart grid applications in energy management
systems. The voltage phasors at buses without PMUs are cal-
culated via voltage and current measurements of adjacent buses,
which are referred to as indirect measurements. The guide
to the expression of uncertainty in measurement is used for
computing the confidence level of indirect measurements based on
uncertainties associated with PMU measurements as well as with
transmission line parameters. Simulation studies are conducted
on an illustrative three-bus example and the IEEE 57-bus power
system, and the performance of the proposed model is thoroughly
discussed.

Index Terms— Dynamic state estimation, mathematical
programming, power system monitoring, state prediction,
synchrophasor measurement, uncertainty propagation.

NOMENCLATURE

Indexes

b Bus index.
i State variable index.
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j Measurement index.
l Line index.
p Uncertain parameter index.
t Time period index.

Sets
P Set of uncertain parameters.

Parameters
Il � δIl Current phasor of line l.
Mi Large positive constant associated

with state variable i .
NB Number of buses.
NMi Number of measurements associated

with state variable i .
NS Number of states.
NT Number of time periods.
rmax

i , rmin
i Upper and lower limits of r̃it .

Vb � δb Voltage phasor of bus b.
Y, θy, G, B Line admittance parameters.
Z , θz, R, X Line impedance parameters.
αi , βi Parameters of the prediction model

associated with state variable i .
σ̄i j Standard deviation of measurement j

associated with state variable i .
σp Standard deviation of parameter p.

Variables
Dit , Cit Coefficients of the prediction model

associated with state variable i at period t .
Jt Objective function value at period t .
r̃it Residual of prediction associated with state

variable i at period t .
r̄i j t Residual of measurement j associated with

state variable i at period t .
wit , σit Fluctuation and its standard deviation

associated with state variable i at period t .
xit True value of state variable i at period t .
x̄i j t Measurement j associated with the state

variable i at period t .
x̃it , σ̃it Prediction and its standard deviation

associated with state variable i at period t .
x̂it , σ̂it Estimation and its standard deviation

associated with the state variable i at period t .
γit Binary variable to discard the prediction

associated with state variable i at period t .
RMSD Sate estimator performance index.
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I. INTRODUCTION

STATE estimation (SE) computes the best estimate of the
true operating state of a power system as a prerequisite for

an efficient and reliable operation [1]. Since SE serves several
crucial functions such as the detection of abnormal conditions,
generator correction actions, and contingency analysis [2],
its responsibility is increasing with the dimension of power
systems and emerging uncertain conditions in the operation of
restructured systems.

In general, SE is categorized into the following three
classes: 1) static SE (SSE); 2) tracking SE (TSE); and
3) dynamic SE (DSE) [3]. SSE estimates the power sys-
tem state associated with a given time and based on the
measurement set corresponding to that moment of time. The
SSE algorithm is iterative that is initialized as a flat start.
Hence, it uses heavy computations and cannot be executed in
short intervals. To mitigate this burden, TSE was introduced
in which the estimation starts from the last calculated state
variables instead of a flat point. In both SSE and TSE, the
power system state is estimated based on a single set of
measurements. A more advanced class of estimators is DSE,
also referred to as forecasted-aided SE, which is becoming
more practical in modern energy management systems. DSE
possesses the ability to predict the power system state pro-
gressively in short time steps. Furthermore, at each time step,
the estimation uses both measurement and prediction data
sets. A comprehensive survey of DSE techniques and models
along with the results of DSE implementation in practical
power systems have been presented in [4] and [5]. Other
reviews of DSE techniques are available in [6] and [7]. One
of the challenging aspects of applying DSE is the estimation
error arising from the utilization of historical-based predic-
tion data during drastic changes in the power system state
variables.

A new generation of power system monitoring schemes
embedded in the wide-area measurement system (WAMS) is
enabled by escalating the deployment of phasor measurement
units (PMUs) [8]. PMUs directly measure the state variables,
i.e., magnitude and phase angle of bus voltages, with a very
high accuracy. They can consequently increase the robustness
and precision of the estimation process. The superiorities of
WAMS over the conventional metering infrastructure are as
follows [9].

1) PMUs are installed with specific guidelines, tested dur-
ing the commissioning process, and calibrated periodi-
cally.

2) PMU devices are furnished with advanced computation
algorithms and self-check/self-diagnostic capabilities. In
addition, PMUs are equipped with 16 bit or upper A/D
converters providing an extra high sampling rate and
very accurate measurements.

3) GPS receiver is added to the PMU structure for syn-
chronizing the A/D phase locked loop (sampling clock)
and accompanying the PMU data with the exact time
of measurement. The quality of time synchronization
associated with the data is sent as well.

4) PMUs report measurements to phasor data concen-
trator at the rate of 50/60 samples/s for 50/60 Hz
systems.

5) Similar to digital fault recorders, PMU devices are usu-
ally responsible for recording sinusoidal signals which
are downloadable through the direct access to PMUs.

The incorporation of PMU measurements in the conven-
tional DSE was discussed in [10]–[15]. In addition, the Electric
Power Research Institute had a research project relevant to this
issue [16]. To avoid deficits associated with the conventional
metering system such as asynchronous measurement and time
skew errors, a plenary set of WAMS is intended in future
power systems [17]. The high reporting rate of PMUs, com-
missioning high speed communication facilities in substations,
and developing fast and efficient DSE algorithms are three
key forces for decreasing the time interval of successive
estimations. The reduction of time interval would be very
desirable for near real-time applications.

The most common DSE algorithms are variants of weighted
least squares (WLSs) estimation. These models are solved
using iterative matrix-based calculations along with mathemat-
ical heuristics to reduce the computation [18]. An alternative
way for DSE is mixed-integer programming (MIP) formula-
tion, which can efficiently be solved by commercially available
solvers [19].

This paper presents an MIP formulation of DSE that is based
on PMU measurements. The proposed method accelerates the
DSE execution and is capable of simultaneously discarding
predictions from the estimation process when estimated states
exceed the estimation confidence bound. In practice, it is
neither economical nor essential to equip all buses with PMUs.
Hence, the power system state variables would be calculated
based on PMU measurements at adjacent buses. The calculated
confidence level would be affected by uncertainties associated
with PMU measurements. In addition, transmission line para-
meters are usually assumed to be exact while they are not
indeed. The uncertainty of these parameters is considered in
this paper for the calculation of PMU indirect measurements.
An illustrative example and the IEEE 57-bus test system are
examined in this paper for investigating performance of the
proposed DSE model.

The rest of this paper is organized as follows. Section II
describes the error propagation phenomenon in the calculation
of voltage phasors associated with buses not having PMU.
A general introduction to DSE is described in Section III.
The proposed DSE model and formulation are presented in
Section IV. Section V discusses the numerical examples.
Concluding remarks are outlined in Section VI. The Appendix
presents formulas derived for the calculating error propagation.

II. STANDARD DEVIATION OF INDIRECT MEASUREMENTS

A PMU installed at any bus would measure the corre-
sponding voltage and current phasors. Using the phasors at
one end of a transmission line, the corresponding phasors
can be calculated at the other end [9]. The DSE algorithm
incorporates the confidence level of all measurements either
directly measured or indirectly calculated. Accordingly, the
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Fig. 1. Phasor measurement and calculation in a transmission line.

confidence in the indirect phasors measurement is required
which can be calculated by three approaches including the
uncertainty propagation, Monte Carlo simulation, and ran-
dom fuzzy variables. Fixed transmission line parameters are
assumed in [20], which may not be the case in practice.
For instance, the line resistance is dependent on the ambient
temperature, and the asymmetry of three-phase currents could
impact the line reactance. A typical uncertainty bound for line
parameters is ±2% [21]. Hence, it is imperative to model line
parameter uncertainties, which are discussed in this section.

The inaccuracy of conventional measurement devices for
measuring voltage, current, and power quantities, is usually
over ±1% of the full scale [18]. In contrast, PMU mea-
surements are much more precise and time tagged with an
accuracy of better than 1 μs [9]. They are, however, still
prone to precision errors due to the inaccuracy of PMU
instruments including transformers, cables, and A/D convert-
ers [22]. The first two sets of random errors are mostly biased
and can be compensated by sophisticated PMU calibration
techniques [23]. The A/D-induced errors are more random
and consequently difficult to eliminate. The total vector error
(TVE) is a measure of the PMU measurement accuracy level
with acceptable ranges in steady-state and dynamic conditions,
which are provided in the IEEE C37.118.1 standard [24].

Fig. 1 shows the π model of a transmission line between
buses s and r and a PMU located at bus s. The PMU measures
the voltage phasor of bus s and the current phasor of the line
connected to bus s. Hence

Vr � δr = Vs � ϕ1 − Is Z � ϕ2 + VsY Z � ϕ3 (1)

where ϕ1 = δs , ϕ2 = δI s + θz , and ϕ3 = δs + θy + θz .
Since

P = {Vs, δs , Is , δI s , Z , θz, Y, θy} (2)

through applying the guide to the expression of uncertainty in
measurement (GUM), the standard deviations of Vr and δr are
calculated as

σVr =
√∑

p∈P

[
∂Vr

/
∂p

]2 [
σp

]2 (3)

σδr =
√∑

p∈P

[
∂δr

/
∂p

]2 [
σp

]2 (4)

and the corresponding detailed formulation is presented in the
Appendix.

We assume that the random measurement error is repre-
sented by a normal distribution. Thus, the standard deviation
of each PMU measurement, i.e., Vs , δs , Is , and δI s , would be
one sixth of the corresponding confidence intervals. A uniform

distribution function is assumed for the random transmission
parameter error in which the standard deviation is (2

√
3)−1

of the associated confidence intervals. The calculations in this
section correspond to buses without PMU. The PMU place-
ment scheme is assumed to be given by either deterministic
or probabilistic studies [25]–[28].

III. DYNAMIC STATE ESTIMATION

A. General Background

DSE has two objectives: 1) prediction of power system
state at the next time period and 2) SE based on both sets
of predicted and measured data. The first feature provides the
power system operator an additional time for making control
decisions and analyzing the security of operating system.
Talking specifically about WAMS, this feature is less important
since the measurement time instants are very close. The second
attribute would significantly improve the performance of DSE.
The consideration of predicted values in the estimation process
would enhance the data redundancy and make the DSE more
robust as compared with SSE and TSE, which use real
measurements alone.

Two consecutive stages are recognized in DSE which are
state prediction and SE (it is referred to as state filtering
in some documents). The power system state at the next
time period is predicted at the first stage, and upon receiving
the measurement set, the system state is determined by the
estimation process.

B. Major DSE Challenges

Power systems follow a quasi-static regime as the daily
load profile is followed by small random fluctuations. This
situation is referred to as normal operating condition in which
the power system state varies slowly and the performance
of DSE is highly satisfactory. The major DSE challenge
occurs during sudden changes in power system conditions
including abrupt changes in load and generation and network
reconfiguration [29]. When a sudden change occurs, state
variables that are geographically close to the affected area
could experience large transitions. Hence, there could be
large differences between actual measurements and predictions
based on historical data. In such cases, the predictions could
affect the final estimated values and render degradation of the
overall performance of DSE. The proposed solutions to this
shortcoming are reviewed as follows.

The first proposed approach to detect the sudden change
condition is based on the innovation analysis [3]–[5],
[29]–[32]. This method compares the predicted measurements
with the real measurement set and decides whether or not
a sudden change condition has occurred. Two methods are
offered to deal with this situation: 1) deemphasizing the
importance of predicted values by reducing their weight (or
analogously attach a higher weight to the measurements) and
2) labelling the prediction as unreliable and perform SSE or
TSE.

An algorithm to increase the robustness of DSE has been
proposed in [33] and [34]. In contrast to the approach based
on the innovation analysis, this technique does not need
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Fig. 2. Dynamic system with linear characteristic.

to detect the anomaly conditions and remedy them at two
separate stages. In [33] and [34], it was illustrated that the
proposed method, in spite of its effectiveness during bad data
and topology error conditions, does not work well in sudden
change conditions. The application of fuzzy controllers to
intelligently guide the solution to a near-optimal trajectory has
been proposed in [35]. This technique calculates the difference
between predicted and estimated states. If the difference is
greater than a small threshold, a compensation vector is
generated and the estimation stage is repeated. Accordingly,
the estimation stage of DSE will be longer.

IV. PROPOSED DSE FORMULATION AND METHODOLOGY

For a power system with NB buses, the state vector will
have NB bus voltage magnitudes and NB phase angles; hence,
the number of state variables, NS, would be the same as
2NB. In the following, the two DSE stages are formulated
and discussed.

A. State Prediction

In a linear dynamic power system, shown in Fig. 2, the
estimation process is presented as

xit = Ci(t−1)xi(t−1) + Di(t−1) + wi(t−1) (5)

where xit is the system state, Ci(t−1) and Di(t−1) are model
coefficients, and wi(t−1) is the random change of the power
system state. wi(t−1) is a white Gaussian sequence with zero
mean and the standard deviation of σi(t−1).

Equation (5) shows that the new power system state could
be represented as a function of the past state (s). Accordingly,
the next power system state is readily predicted based on the
information obtained in t − 1.

Applying the conditional expectation operator on (5), the
power system state at the next time period is obtained as

x̃it = Ci(t−1) x̂i(t−1) + Di(t−1) (6)

and the variance associated with the prediction would be

σ̃ 2
it = C2

i(t−1)σ̂
2
i(t−1) + σ 2

i(t−1). (7)

The coefficients used in (5) are specified according to the
adopted prediction method. The commonly used prediction
technique in DSE is the Holt’s linear exponential smooth-
ing technique [35], which is employed here. The following

equations were proposed by [36] for the Holt’s method

Ci(t−1) = αi (1 + βi ) (8)

Di(t−1) = (1 + βi )(1 − αi )x̃i(t−1)

− βi Si(t−2) + (1 − βi )bi(t−2) (9)

Si(t−2) = αi x̂i(t−2) + (1 − αi )x̃i(t−2) (10)

bi(t−2) = βi [Si(t−2) − Si(t−3)] + (1 − βi )bi(t−3) (11)

where αi and βi are constant parameters determined by trial
and error. It is evident that the model parameters depend on
previous states themselves. The above formulas were derived
from the canonical representation of Holt’s method [36].

In the DSE problem, wi(t−1) presents the small random
fluctuation in the power system state. It is a function of
the power system load, generation schedule, and network
configuration associated with the corresponding time sample.
The mean value of wi(t−1) is usually assumed to be zero;
however, its variance is determined by either historical records
of state variable changes or a series of off-line simulations.

B. State Estimation

SE (i.e., filtering) is the second stage of DSE that is executed
upon receiving the measured data set. At this stage, both
prediction and measurement sets are employed to reach to the
best estimation of the power system state. Note that this feature
is very desirable in WAMS in which the level of measurement
redundancy is rather low since PMU devices are not deployed
at all network buses [9].

Here, a new formulation of estimation process of DSE is
presented. The estimation process is formulated based on the
WLS model, which is widely used in the estimation problems.
The objective function of the estimation stage is

min Jt =
⎧⎨
⎩

NS∑
i=1

NMi∑
j=1

(x̄i j t − x̂it )
2

σ̄ 2
i j

+
NS∑
i=1

(x̃it − x̂it )
2

σ̃ 2
it

⎫⎬
⎭ . (12)

The first term in (12) shows the weighted difference of the
estimation with measurement and the second term represents
the weighted difference between the estimation and prediction.
In (12), the state variables are bus voltage phasor values
processed in the polar coordinate (namely magnitude and
phase angles). Note as well that PMU measurements are
synchronized with respect to the time reference provided by
GPS satellites, which eliminate the need for a reference bus
angle as in conventional state estimators [37].

As discussed earlier, we should discard the predicted values
from the estimation process in the drastic change condition.
In this respect, two approaches are discussed as follows.

1) Discarding by Process: In this approach, the innovation
process [30] is employed. Upon receiving the new WAMS
data set, the predicted values are compared with new mea-
surements, predictions which are far from the corresponding
measurements are identified, and associated terms are omitted
from (12). The remaining predictions along with all measure-
ments establish the objective function (12). This optimization
problem can readily be solved by calculating derivative of (12)
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and equating it to zero. The solution would be

x̂it =

NMi∑
j=1

x̄i j t

σ̄ 2
i j

+ x̃it
σ̃ 2

it

NMi∑
j=1

1
σ̄ 2

i j
+ 1

σ̃ 2
it

, i = 1, . . . , Ns . (13)

Using this approach, the solution of the optimization prob-
lem is readily computable and the time interval between
estimations would be significantly decreased. There are, how-
ever, disadvantages attributed to this approach. The first issue
is in relation with the comparison criteria. For each state
variable, we might have several redundant measurements along
with one prediction. It could be challenging to decide which
one of the measurements should be considered to measure
the distance of prediction. The other disadvantage of this
approach is that when the prediction is compared with a
measurement, or in general the equivalent of all measurements,
the effect of prediction is not considered in the reference
point. Whereas the inclusion of the impact of prediction in the
comparison reference values would make the rejection process
more authentic.

2) Simultaneous Discarding: Another technique is proposed
here to overcome the disadvantages associated with the first
approach. With the considerations discussed earlier, the second
term of (12) should be omitted from the objective function
during the sudden change condition. This characteristic is
achievable by accommodating binary variables γit in (14)

minJt =
⎧⎨
⎩

NS∑
i=1

NMi∑
j=1

(x̄i j t − x̂it )
2

σ̄ 2
i j

+
NS∑
i=1

(1 − γit )
(x̃it − x̂it )

2

σ̃ 2
it

⎫⎬
⎭.

(14)

This binary variable is an indicator of the sudden change
condition corresponding to the state variable i . One of the
advance topics in SSE is the bad data identification and
rejection. In [2], it has been pointed out that when the absolute
value of the measurement residual is greater than the triple of
the estimation standard deviation, there is a good chance that
the corresponding measurement is bad. Comparing this subject
with the prediction elimination reveals the same. Accordingly,
the rule is employed to detect the sudden change condition.
The prediction residual is represented by r̃it as

r̃it = ∣∣x̃it − x̂it
∣∣ . (15)

The following formulation is proposed for γit :

r̃it − 3σ̂it

Mi
≤ γit ≤ r̃it − 3σ̂it

Mi
+ 1 (16)

where Mi is a positive constant number, which is always
larger than the numerator. In (16), when r̃it is <3σ̂it , the
lower limit of γit would be a small negative number and its
upper limit would be a positive number smaller than unity.
γit is consequently set to 0 and the prediction is included in
objective function. Otherwise, for r̃it ≥ 3σ̂it , the variable γit

is 1 and the prediction is excluded.
In (16), σ̂it is the standard deviation associated with the

estimation of variable i at time t; however, it is unknown

as long as the estimated value of variable i is unknown.
Accordingly, σ̂it is a dependent variable, which is defined in
terms of independent variables. Similar to the calculation of
(13), the solution of (14) is given as

x̂it =

NMi∑
j=1

x̄i j t

σ̄ 2
i j

+ (1 − γit )
x̃it

σ̃ 2
it

NMi∑
j=1

1
σ̄ 2

i j
+ (1 − γit )

1
σ̃ 2

it

. (17)

If we apply the variance operator to (17) and assume that
x̄i j t , j = 1, 2, · · · , Ni

m , and x̃it are independent, we will have

σ̂it = 1√
NMi∑
j=1

1
σ̄ 2

i j
+ (1 − γit )

1
σ̃ 2

it

. (18)

The proposed model is summarized as follows: 1) (14)
is the objective function; 2) (16) expresses the constraints;
and 3) (15) and (18) define auxiliary variables. The solution
methodology is proposed next.

The current representation of the model is highly nonlinear
that includes the multiplication of a binary variable and a
quadratic term in (14), absolute value function in (15), and
binary variable in denominator in (18). Thus, the current model
is the mixed-integer nonlinear program (MINLP). The present
MINLP solvers are not powerful enough to effectively solve
this type of problems even with a long execution time.

C. MIP-Based Formulation of SE

The efficient MIP solver can tackle very large-scale power
system problems with thousands of continuous and inte-
ger variables within a tolerable time. It also guarantees a
solution that is globally optimal or one that is within an
acceptable tolerance. MIP proposes very flexible and accu-
rate modeling capabilities which are extremely desirable in
practical problems. MIP includes two types of problems:
1) mixed-integer linear programming (MILP) problems and
2) mixed-integer quadratic programming (MIQP) problems.
MILP models comprise both linear objective function and
constraints; while MIQP models consist of quadratic objective
function but linear constraints. The latter is the case in this
paper which is denoted as a MIP model hereafter. Substituting
the residuals of measurement and prediction with r̄i j t and
r̃it , respectively, and (1 − γit )(r̃it )

2 with (R̃it )
2, the objective

function (14) is rewritten as

Min Jt =
⎧⎨
⎩

NS∑
i=1

NMi∑
j=1

r̄2
i j t

σ̄ 2
i j

+
NS∑
i=1

R̃2
it

σ̃ 2
it

⎫⎬
⎭ (19)

which is a quadratic function. To linearize R̃it in terms of γit

and r̃it , the following inequities are presented [38]:

rmin
i (1 − γit ) ≤ R̃it ≤ rmax

i (1 − γit ) (20)

r̃it − rmax
i γit ≤ R̃it ≤ r̃it − rmin

i γit . (21)

If x̂it represents a voltage magnitude, rmin
i and rmax

i are
selected as 0 and 2 (p.u.), respectively, and if x̂it represents
a voltage phase angle, rmin

i and rmax
i are set at –π and
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π (rad), respectively. When γit is equal to 1, R̃it will vanish
due to (20) and the bounds in (21) will be inactive. Otherwise,
when γit is equal to 0, (21) will enforce R̃it to be equal to r̃it

and (20) will not bind R̃it .
Here, (22)–(25) represent a set of linear expressions for r̄i j t

and r̃it in terms of x̂it

r̄i j t ≥ x̄i j t − x̂it (22)

r̄i j t ≥ x̂it − x̄i j t (23)

r̃it ≥ x̃it − x̂it (24)

r̃it ≥ x̂it − x̃it . (25)

Also, (18) is restated as a linear representation of σ̂it in
terms of γit

σ̂it = γit√
NMi∑
j=1

1
σ̄ 2

i j

+ (1 − γit )√
NMi∑
j=1

1
σ̄ 2

i j
+ 1

σ̃ 2
it

. (26)

Therefore, the SE problem is formulated in MIP. The
estimated states x̂it and its corresponding standard deviation
σ̂it will be calculated accordingly.

An important point is to be emphasized with regards to
the detection/rejection of bad measurement data in estimators.
WAMS is an accurate, reliable, viable, and secure mea-
surement infrastructure. However, the inclusion of bad data
detection/rejection in the proposed DSE, if intended, can be
accommodated by adding a binary variable to the measurement
residual term in (14).

The other issue is that the proposed model is on the
basis that the state variables are the same as measurement
quantities, which is the case in WAMS. This assumption does
not hold in conventional metering system in which a nonlinear
measurement function would correlate state variables with
measurement quantities. Hence, the model proposed here
is not applicable in a metering system composed of only
conventional measurements. It should also be noted that due
to inherent differences of conventional measurements with
PMU data, which are being reported very fast and equipped
with exact time stamps, adding conventional measurements
to the WAMS is not a technically feasible choice. The
reverse relation in which some PMU data are, however, being
added to a SCADA system does make sense and is reported
by several works. In such cases, the proposed DSE model
could be used. To do so, an old-fashioned SE with only
conventional measurements is first executed. Its output, which
includes voltage magnitude and phase angle, is then consid-
ered as a set of phasor data for the proposed WAMS-based
DSE [9].

V. NUMERICAL STUDIES

In this section, a three-bus power system is analyzed to
illustrate the performance of the proposed method. In addition,
the effectiveness of the proposed method is examined on the
IEEE 57-bus power system. Various scenarios are considered
in each case for simulating sudden changes in the system state.
The PMU locations are assumed to be given here. Additional

PMU locations could be, however, examined for enhancing
the performance of DSE.

Among performance indexes for quantifying the accuracy
of state estimators, the root mean square deviation (RMSD)
of estimated states is a commonly used indicator. Here, the
RMSD of states corresponding to period t would be averaged
over the entire time horizon

RMSD = 1

NT

NT∑
t=1

√√√√ 1

NS

NS∑
i=1

(x̂it − xit )2. (27)

The above index is computed separately for voltage mag-
nitudes and phase angles because these state variables have
different scales. The estimator performance should be analyzed
statistically for enhancing the reliability and generality of the
obtained results. We consider 1000 executions with random
measurement sets in which the performance indexes are aver-
aged over all executions. The variability range (or standard
deviation) of performance indexes is another index that would
reflect the impact of measurement random errors on the overall
performance of the estimator. The performance analysis is
usually carried out considering various network topologies,
loading levels, and generation dispatch. This requirement is
satisfied in our analyzes since each execution has several time
instants with a variety of scenarios.

In the following studies, true system states are represented
by power flow solutions, measurements are simulated by
adding random noises within designated ranges to true values,
and prediction and estimated quantities are calculated based on
the presentation in Section IV. Line parameter uncertainties
are assumed to be typical as discussed in Section II, and
PMU measurement errors are adopted based on the maximum
allowable TVE (1%) associated with steady-state and small
change conditions [24]. Since the drastic changes considered
in this paper might correspond to dynamic conditions, the
TVE associated with dynamic situations (3%) is also studied
as part of sensitivity analyzes. In practical cases, appropriate
and realistic values could be employed which depend on
parameters specified by PMU manufacturers and experiences
with periodical calibrations. The CPLEX solver in the general
algebraic modeling system (GAMS) environment is employed
for the optimization purpose and the simulations were carried
out using an Intel Core (TM) i7 at 1.60-GHz CPU with 4 GB
of RAM.

A. Three-Bus System

The three-bus power system is shown in Fig. 3 and the
corresponding data are given in the Appendix (Tables VI
and VII). The PMU located at bus 1 measures the voltage
phasor of bus 1 and current phasors of transmission lines
1 and 2. Accordingly, the voltage phasors at buses 2 and 3
would be measured indirectly. According to the power flow
solution, unit 1 would generate 0.8 + j 0.25 (p.u. on the
100 MVA base) and the remaining load plus transmission
system losses are generated by unit 2, which is located at
the slack bus.
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TABLE I

BINARY VARIABLES γit IN CASE 0

1 2G1 

PMU

3

G21

2 3

Fig. 3. Three-bus system.

The reference bus angle is not defined because of direct
phase measurement of PMUs, and state variables are con-
sidered as { V1, δ1, V2, δ2, V3, δ3}. The challenging situation
for measuring the performance of DSE is a sudden change
in system conditions. This condition is simulated via the
following scenarios.

1) 20% load increase at time period 4.
2) Switch OFF generating unit 1 at time period 9.
3) Switch ON generating unit 1 at time period 13.
4) 20% load decrease at time period 16.
5) Switch out transmission line 3 at time period 20.
6) Switch in transmission line 3 at time period 23.

When unit 1 is on outage, the system load plus losses are fed
by unit 2; thus, there would be no load curtailments. Note as
well that the observability of the power system is preserved
when transmission line 3 is on outage.
We consider the following three test cases.

Case 0: Base case including the simultaneous discarding
capability.

Case 1: Exclude the discarding capability.
Case 2: Execute SSE with omitting the predictions.
These Cases are thoroughly discussed in the following.
Case 0: We have used the DSE formulation proposed in

Section IV-C for 24 time periods. Although the performance
of proposed DSE is generally drawn statistically, an execution
of performance indexes around the average statistical values
is adopted here for the sake of discussion. The binary vari-
ables γit are shown in Table I, in which 1 and 0 denote
the discarding and inclusion of predictions, respectively. Not
surprisingly, predictions associated with the state variables
V1 and δ1 are discarded in most time instants. The reason
is that V1 and δ1 have PMU direct measurements with higher
accuracy as compared with indirect measurements at buses
2 and 3 where the uncertainty of transmission line parameters

is considered. γit associated with V2 is 0 as this state variable
is regulated by unit 2 and would inherently remain fixed
when volatile conditions are considered. γit associated with
V3 is 1 at time periods 9, 20, and 23, which correspond to
scenarios 2), 5), and 6), respectively. In addition, γV3,t is 1
at instants 10, 11, 21, and 24, which is due to the memory
of the prediction approach and large variations in the system
operating conditions at the indicated scenarios. According to
Table I, δ3 is more sensitive to sudden change conditions as
compared to other state variables, and its associated binary
variables are 1 corresponding to all scenarios except 1).

Fig. 4 shows the DSE results in Case 0. The estimated
bus voltage errors are computed for both magnitudes and
phase angles as the difference between estimated and true
values in the base case of power flow solutions. In Fig. 4,
measurement errors are presented for state variables which are
associated with PMU direct measurements at bus 1 and indi-
rect measurements at buses 2 and 3. Time instants with lower
estimation error demonstrate the impact of data redundancy in
DSE. Time instants with identical estimation and measurement
errors correspond to instants with prediction discarding, or
γit = 1 in the mathematical sense. Fig. 4 shows that there is
a similar error behavior for bus voltage magnitudes and phase
angles in different buses. The reason is that only one PMU
exists in the three-bus network and state variables at buses
2 and 3 are dependent on the PMU voltage measurement at
bus 1.

Here, the binary variables associated with switching OFF and
ON of generating unit 1 (or switching out and in of transmis-
sion line 3) are not necessarily the same although the scenarios
have identical severities in terms of power systems. The reason
is that the scenarios are not identical from the DSEs viewpoint
as measurement errors are randomly different in various time
instants. This observation would be less likely as we increase
the redundancy levels of measurement systems. The data set
would be prohibitively large if we present all state variables
in the entire time horizon. Hence, Table II merely presents the
measured, predicted, estimated, and true values of V3, and δ3
to provide a set of specific numerical representation for the
DSE performance. These state variables would include 1 and
0 values for γit which can clarify the impact of prediction
inclusion and rejection. In Table II, as expected, estimations
are closer to the true state values as compared with the pure
measurement data set. Since the measurement redundancy is
zero in this case study, the analytical conclusions of the IEEE
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Fig. 4. Error in state variable estimation and measurement.

TABLE II

COMPARISON OF MEASUREMENT, PREDICTION, ESTIMATION, AND TRUE VALUES

57-bus system are expected to be more general. The index
defined in (27) considered for assessing the performance of
the proposed DSE is calculated as RMSDm = 0.0038 (p.u.) for
voltage magnitudes and RMSDp = 0.0045 (rad) for voltage
phase angles. These indexes are calculated statistically with
1000 executions.

Case 1: In this case, the discarding capability is not consid-
ered and all predictions are included in the estimation process.
Hence, the objective function (12) is considered with both
measurement and prediction residuals, with a solution derived
already in (13). This attribute shows that an optimization
would not be required as the solution is obtained with a
simple calculation. This simplicity is achieved at the cost of
not omitting the drastic changes. The performance indexes
associated with this case are RMSDm = 0.0046 (p.u.) and
RMSDp = 0.0056 (rad).

Case 2: In this case, the state prediction is disregarded. By
definition, this situation corresponds to the conventional SE,

referred to as SSE. There is, however, only one measurement
associated with each state variable and the SE leads to the
measurement data set. Thus, the performance indexes of
RMSDm = 0.0049 (p.u.) and RMSDp = 0.0057 (rad) are
identical to the average values of RMSD of measurements.
The comparison of performance indexes in Cases 1 and 2
with those in Case 0 verifies the advantage of using DSE for
enhancing the estimation accuracy.

1) Sensitivity Analysis: Here, Case 3 is considered to extract
the sensitivity of DSE performance in preserving or discarding
the prediction terms with respect to measurement uncertainties.
In this case, PMU measurement uncertainties are multiplied
by three; thus, the confidence bounds of uncertain values are
wider and equal to 3% which is the maximum allowable
TVE of PMU measurements in dynamic conditions [24].
The measurements of V2, δ2, V3, and δ3 are more volatile
and it is expected that the role of prediction would become
more significant. Table III presents the binary variables in
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TABLE III

BINARY VARIABLES γit IN CASE 3

which the predicted values associated with designated state
variables are discarded. The performance indexes are
RMSDm = 0.0160 (p.u.) and RMSDp = 0.0177 (rad). This
research is repeated when the predictions are not considered,
namely SSE. The analysis results in performance indexes as
RMSDm = 0.0271 (p.u.) and RMSDp = 0.0306 (rad). In
this case, the relative improvements due to the inclusion of
predictions in the estimation process are 40.5% and 42.1%
for voltage magnitude and phase angle, respectively. The
same comparison for the studies with 1% TVE in Cases 0
and 2 leads to 22.4% and 21.0% improvements for voltage
magnitude and phase angle, respectively. Hence, predictions
will have a higher positive impact on the estimation accuracy
as we increase the measurement uncertainty.

B. IEEE 57-Bus System

The network topology is shown in Fig. 5 [39]. We dis-
regard the zero-injection effect and use the PMU placement
algorithm proposed in [25] which considers 17 PMUs at
buses {1, 4, 6, 9, 15, 20, 24, 28, 30, 32, 36, 38, 41, 46, 50, 53, 57}
to make the system observable. The following scenarios would
simulate conditions with sudden changes.

1) Load increase at buses 31–33 at time period 2.
2) Switch OFF generating unit 3 at time period 5.
3) Switch out transmission line 18–19 at time period 9.
We simulate 12 time periods with an active simultaneous

discarding capability. Similar to the three bus example, buses
with PMU experience more accurate measurements with their
binary variables equal to 1 at most time periods. Hence, we
hereafter focus on the binary variables of non-PMU buses.
Among these variables, those which are equal to 1 are pre-
sented in Table IV. At time period 2, the loads at buses
31 to 33 are increased suddenly. The simulation results reveal
that γVb,t associated with buses 25, 31, and 33 are equal to 1 at
time periods 2 and 3. Similarly, γδb,t associated with buses 31,
and 33 are equal to 1 at the same time periods. As expected,
the buses experiencing sudden changes are geographically
located in the vicinity of the one with the initial sudden
change.

At time period 5, the generating unit 3 is switched OFF. The
generation shortage is compensated for by unit 1 which shifts
the state variables to a new operating point. The transition
depends on the unit 5 dispatch which is 40 MW in this case.
This event is not identified as a sudden change according to
the binary variables associated with bus voltage magnitudes.
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Fig. 5. One-line diagram of IEEE 57-bus system.

The observation is justified as the closely located generating
units would prevent a significant voltage drop during the
outage of generating unit 3. On the contrary, line flows and bus
phase angles experience relatively large variations. Table IV
shows that several binary variables associated with bus voltage
angles would become 1 at time periods 5 and 6.

We switch out the transmission line 18–19 at time period
9. At time period 8, the active power flow from bus 18 to bus
19 is only 2 MW. Hence, the line outage would not impose a
sever condition. Table IV shows that γVb,t and γδb,t associated
with bus 19 is equal to 1 only at the instant of change
occurrence. Hence, the impact of outage of line 18–19 is very
limited.
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TABLE IV

BINARY VARIABLES γit FOR THE IEEE 57-BUS POWER SYSTEM

TABLE V

PERFORMANCE INDEXES AND EXECUTION TIMES

FOR THE IEEE 57-BUS SYSTEM

We examine three case studies (Cases 0–2) of the three-bus
system on the 57-bus test system. Similarly, 1000 simulations
were carried out and the indexes were averaged. Table V shows
the index (27) separately calculated for voltage magnitudes and
phase angles. Here, the comparison of indexes with those of
the three-bus system reveals that the utilization of prediction
elimination capability would result in smaller improvements
in system-wide indexes for larger systems. This observation is
accurate since contingencies in larger systems would have lim-
ited geographically impacts with a smaller impact on the entire
set of system state variables. Regarding the same RMSDp

in Cases 1 and 2, it is worth noting that the performance
indexes are averaged over the entire time periods. For the
time instants without drastic changes, the estimation errors in
Case 1 are smaller. However, because the discarding capability
is excluded, the predictions impose greater estimation errors
for time periods associated with sudden changes. Furthermore,
the predictions impose greater estimation errors for time
periods associated with sudden changes because we exclude
the discarding capability. This observation is critical as it
reflects the necessity of accommodating discarding capability
in the DSE.

Table V additionally presents a comparison of computation
speed. As expected, Case 0 takes more time for optimization;
however, the process would likely be faster than that of Case 1
when outlier predictions are eliminated iteratively. The other
important point is that the execution time of Case 1 is not twice
that of Case 2. This observation is sensible as the number of
input data in Case 1 is not twice. In Case 2, 17 PMUs assigned
to the IEEE 57-bus system offer many redundant indirect
measurements; while, in Case 1, only 2 × 57 predictions are
added to the input data set.

VI. CONCLUSION

The solution of DSE problem with the PMU measurements
was addressed in this paper. The confidence level of measure-
ments associated with buses without PMU was computed by
propagating the uncertainties of original measurements over
the transmission lines and considering a variation bound for

the line parameters. The proposed MIP-based DSE formu-
lation is equipped with simultaneous discarding capability
of predictions. This feature alleviates the need for multiple
executions of DSE for averting the performance degrada-
tion when predictions are included at periods with sudden
changes. Two test systems were thoroughly examined and the
effectiveness of the proposed model was verified by consid-
ering various conditions for loading and topology changes.
As illustrated in this paper, the proposed formulation works
effectively during both normal and sudden change conditions.
At normal conditions, the prediction promotes the estimation
accuracy and enhances the data redundancy. However, upon
the occurrence of a major power system event, the predicted
data set are discarded to preserve the estimation quality. The
buses equipped with PMUs have more exact measurements
in which the prediction does not play an important role. In
contrast, buses without PMUs exploit the predicted data set
throughout the normal condition and even during some small
disturbances.

APPENDIX

A. Derivatives of GUM Application

The partial derivatives required for (3) and (4) are extracted
in this section. Converting Vr � δr into the rectangular coordi-
nation, we get

Vr � δr = V R
r + j V I

r (A.1)

where Vr = √
(V R

r )2 + (V I
r )2 and δr = tan−1(V I

r /V R
r ).

Referring to (1), we can formulate V R
r and V I

r as
follows:

V R
r = Vs cos(ϕ1) − Is Z cos(ϕ2) + VsY Z cos(ϕ3) (A.2)

V I
r = Vs sin(ϕ1) − Is Z sin(ϕ2) + VsY Z sin(ϕ3). (A.3)

Note that ϕ1, ϕ2, and ϕ3 are defined after (1).
Partial derivatives of Vr and δr are expressed in terms of

partial derivatives of V R
r and V I

r as follows:

∂Vr

∂p
= V R

r
∂V R

r
∂p + V I

r
∂V I

r
∂p

Vr
, ∀p ∈ P (A.4)

∂δr

∂p
=

−V I
r

∂V R
r

∂p + V R
r

∂V I
r

∂p

(Vr )2 , ∀p ∈ P (A.5)

and partial derivatives of V R
r and V I

r are obtained as follows:

∂Vr

∂Vs
= [(V R

r cos ϕ1 + V I
r sin ϕ1) (A.6)

+ (V R
r Y Z cos ϕ3 + V I

r Y Z sin ϕ3)]/Vr

∂Vr

∂δs
= −Vs[(V R

r sin ϕ1 − V I
r cos ϕ1) (A.7)

+ (V R
r Y Z sin ϕ3 − V I

r Y Z cos ϕ3)]/Vr

∂Vr

∂ Is
= −Z(V R

r cos ϕ2 + V I
r sin ϕ2)/Vr (A.8)

∂Vr

∂δI s
= Is Z(V R

r sin ϕ2 − V I
r cos ϕ2)/Vr (A.9)

∂Vr

∂ Z
= −[(V R

r Is cos ϕ2 + V I
r Is sin ϕ2) (A.10)
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− (V R
r VsY cos ϕ3 + V I

r VsY sin ϕ3)]/Vr

∂Vr

∂θz
= Z [(V R

r Is sin ϕ2 − V I
r Is cos ϕ2) (A.11)

− (V R
r VsY sin ϕ3 − V I

r VsY cos ϕ3)/Vr

∂Vr

∂Y
= Vs Z(V R

r cos ϕ3 + V I
r sin ϕ3)/Vr (A.12)

∂Vr

∂θy
= −VsY Z(V R

r sin ϕ3 − V I
r cos ϕ3)/Vr (A.13)

∂δr

∂Vs
= [(V R

r sin ϕ1 − V I
r cos ϕ1) (A.14)

+ (V R
r Y Z sin ϕ3 − V I

r Y Z cos ϕ3)]/(Vr )
2

∂δr

∂δs
= Vs[(V R

r cos ϕ1 + V I
r sin ϕ1) (A.15)

+ (V R
r Y Z cos ϕ3 + V I

r Y Z sin ϕ3)]/(Vr )
2

∂δr

∂ Is
= −Z(V R

r sin ϕ2 − V I
r cos ϕ2)/(Vr )

2 (A.16)

∂δr

∂δI s
= −Is Z(V R

r cos ϕ2 + V I
r sin ϕ2)/(Vr )

2 (A.17)

∂δr

∂ Z
= −[(V R

r Is sin ϕ2 − V I
r Is cos ϕ2) (A.18)

− (V R
r VsY sin ϕ3 − V I

r VsY cos ϕ3)]/(Vr )
2

∂δr

∂θz
= −Z [(V R

r Is cos ϕ2 + V I
r Is sin ϕ2) (A.19)

− (V R
r VsY cos ϕ3 + V I

r VsY sin ϕ3)]/(Vr )
2

∂δr

∂Y
= Vs Z(V R

r sin ϕ3 − V I
r cos ϕ3)/(Vr )

2 (A.20)

∂δr

∂θy
= VsY Z(V R

r cos ϕ3 + V I
r sin ϕ3)/(Vr )

2. (A.21)

The other parameters of (1) that should be calculated are
σZ , σθz , σ (Y ), and σ(θy). Referring to Fig. 1, the polar
representation of the line impedance and admittance are as
follows:

Z =
√

R2 + X2, θz = tan−1(X
/

R) (A.22)

Y =
√

G2 + B2, θy = tan−1(B
/

G). (A.23)

Standard deviations of impedance and admittance amplitude
and phase angle are function of line parameter variances, as
given below

σZ =
√[

∂ Z
/
∂ R

]2 [σR]2 + [
∂ Z

/
∂ X

]2 [σX ]2 (A.24)

σθz =
√[

∂θz
/
∂ R

]2 [σR ]2 + [
∂θz

/
∂ X

]2 [σX ]2 (A.25)

where ∂ Z/∂ R = R/Z ,∂ Z/∂ X = X/Z ,∂θz/∂ R = −X/Z2,
and ∂θz/∂ X = R/Z2.
And

σY =
√[

∂Y
/
∂G

]2 [σG ]2 + [
∂Y

/
∂ B

]2 [σB ]2 (A.26)

σθy =
√[

∂θy
/
∂G

]2 [σG ]2 + [
∂θy

/
∂ B

]2 [σB ]2 (A.27)

where ∂Y/∂G = G/Y, ∂Y /∂ B = B/Y, ∂θy/∂G = −B/Y 2,
and ∂θy/∂ B = G/Y 2.

B. Three-Bus System Data

TABLE VI

TRANSMISSION LINE DATA

TABLE VII

POWER SYSTEM LOAD IN 24 TIME PERIODS
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