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Abstract: This study proposes an integrated fault estimation (FE) and fault-tolerant control design for a rigid spacecraft attitude
system with inertia uncertainties, external disturbances, input saturation, and different type multiple actuator faults. A barrier
function is first introduced to eliminate the effects of inertia uncertainties and disturbances in the design of the sliding mode FE
observer. By using the non-singular fast terminal sliding mode control technology, a finite-time fault-tolerant attitude stabilisation
controller and a finite-time fault-tolerant attitude tracking controller are designed to guarantee that the closed-loop attitude
system has a good fault-tolerant performance under actuator faults. Furthermore, when considering actuator saturation, an
auxiliary system is utilised to compensate for the saturation. The stability of the closed-loop system is analysed by Lyapunov
theory. Finally, the effectiveness of the proposed control approach is demonstrated via simulation results.

1 Introduction
In recent years, rigid spacecraft has attracted significant attention
in the fields of theoretical research and various military/civilian
applications. It is mainly because that rigid spacecraft could be
utilised to conduct deep space exploration and positioning
navigation associated with weather monitoring etc. However, in the
above proceeding, the rigid spacecraft's unexpected actuator/sensor
faults may occur inevitably, which can cause severe deterioration
of the system. For example, when an actuator is stuck and failed to
deflect the certain control state, it may result in a catastrophic
accident. It is widely believed that fault diagnosis (FD) and fault-
tolerant control (FTC) are effective techniques to improve the safe
and reliable operation of spacecraft. Therefore FD and FTC have
become a relatively active researching field in spacecraft [1–4].

Generally, the existing approaches of FTC can be classified into
two main categories, namely, passive FTC (PFTC) and active FTC
(AFTC). The PFTC of spacecraft has been investigated to be robust
against actuator faults with fixed structured controllers [5–8]. Li
and Yang [5] designed an adaptive state feedback fault-tolerant
controller, in which the effect of actuator fault, exogenous
disturbance and parameter uncertainty can be eliminated
completely. Xiao et al. [6] proposed an integral-type sliding mode
scheme to enhance the fault-tolerant attitude control performance
of the rigid spacecraft with uncertain inertia parameters and
external disturbances. Xiao et al. [7] investigated an adaptive
backstepping control strategy to improve the attitude tracking
performance of the flexible spacecraft, where the unknown fault is
approximated by an adaptive sliding mode fault estimation FE
observer. Huo and Xia [8] proposed an adaptive fuzzy fault-
tolerant tracking control algorithm for rigid spacecraft attitude
systems with actuator faults, where the unknown control signals
could be approximated directly by fuzzy logic systems. However,
these control algorithms do not accurately acquire fault
information, which greatly reduces the FTC performance. In
contrast to the PFTC, the AFTC could obtain FE information more
accurately [9–11]. The result information of fault detection and FE
is added to the controller as a feedback signal, such that the
influence of the unknown faults can be compensated effectively.
This method not only guarantees the stability of the system but also
optimises the performance of the control system. In [9], the
problem of robust fault detection and isolation (FDI) was studied
for a class of uncertain single output non-linear systems with faults.

Gao et al. [10] proposed an active fault-tolerant attitude control
approach under the framework of both backstepping control and
adaptive control theory. An active FTC scheme for satellite attitude
control was designed in [11], which used an FDI mechanism to
improve FTC performance of the attitude system.

However, all of the above methods have some serious
drawbacks. The AFTC means that the controller changes in an
active way according to the effects that faults have on the control
reconfiguration. The PFTC is just an extension of robust control in
which the faults are considered as an additional form of uncertainty
affecting the closed-loop system. Therefore, many integrated
FE/FTC designs for some control systems have also been published
[12–16]. The integrated FE/FTC strategy means that the direct use
of FE without the need for a reconfigurable mechanism brings
significant convenience and application potential to the subject of
FTC system design. An integrated FE and non-fragile FTC design
approach was proposed for uncertain Takagi-Sugeno fuzzy system
with actuator fault and sensor fault [12]. Lan and Patton [13]
proposed an integrated FE/FTC design for Lipschitz non-linear
systems subject to uncertainties, disturbances, and actuator/sensor
faults. Lan and Patton [14] proposed a decoupling approach to the
integrated design of FE/FTC for linear systems in the presence of
unknown bounded actuator faults and perturbations. The FTC
approach using FE and fault compensation was proposed for a
class of linear systems with system state uncertainty [15]. Lan et al.
[16] proposed FE-based FTC output tracking strategy for a
linearised three degree of freedom helicopter with perturbations
and oscillatory and drift actuator faults. To the best of the authors'
knowledge, until now few applications of FE/FTC strategy in
spacecraft attitude control systems have been reported in the
published literature works. The innovation of this paper is the
application of the integrated FE/FTC theory in a rigid spacecraft
attitude system.

From the above described AFTC and FE/FTC, it can be found
that the FE observer is a very important key link for the
implementation of fault reconfiguration. In the field of FE, many
important results have been obtained [17–19], such as the popular
adaptive observer, the unknown input observer (UIO), and the
sliding mode observer. The adaptive observer could achieve
asymptotic estimation for constant faults and bounded estimation
for time-varying faults in [17]. The UIO has been presented to
guarantee that the residuals are completely decoupled from
disturbances in [18]. Based on the sliding mode control method, an
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adaptive sliding mode observer was provided for a class of
uncertain mechanical systems with unknown parameters and faults
in [19]. It is important to note that although in [19] the stabilities of
the observer was analysed, the knowledge of the upper bound of
disturbances was required to design observer. In practice, this
bound is not constant and it is unknown. It often follows that this
bound is overestimated, which products a chattering phenomenon
to damage actuators and systems.

In an actual system, the actuator saturation is also a critical
factor which affects the attitude control performance. If it is
ignored during the controller design process, many negative
influences such as system performance degradation and even
instability will be caused on the spacecraft when the actuator
saturation occurs. It should be pointed out that the actuator
saturation is considered in [20–23]. Han et al. [20] designed a finite
time fault-tolerant attitude controller, in which the actuator-
magnitude constraints were rigorously enforced and the attitude of
the rigid spacecraft converged to the equilibrium in finite time even
in the presence of external disturbances and actuator faults. A
similar problem was considered in [21], in which an integral
sliding mode fault-tolerant attitude controller was presented for the
spacecraft, and the control allocation was used to solve effectively
the actuator saturation problem. In addition, a finite time attitude
stabilisation controller for a rigid spacecraft subject to external
disturbance, actuator faults, and input saturation has been presented
by Jiang et al. [22]. Then, [22] have been further studied by
Esmailzadeh and Golestani [23]. So, the consideration of actuator
saturation in control problems is meaningful. The main
contributions of this study relative to other existing works are as
follows:

• This paper is different from previous research papers [16, 24,
25] that only studied a kind of actuator FE or multiple actuator
FE without considering actuator saturation. In this study, the
proposed multiple actuator FE strategy for rigid spacecraft
attitude systems with inertial uncertainties, external disturbances
and actuator saturation is a major contribution.

• In comparison to the FE observer design approaches in literature
[12, 14], a new adaptive strategy based on barrier function (BF)
is introduced into an adaptive sliding mode FE observer which
does not need any upper bound information of uncertainties and
external disturbances. The proposed barrier strategy can ensure
the convergence of the output variable and maintain it in a
neighbourhood of zero, without overestimating the sliding mode
gain. Therefore, it improves the rapidity and accuracy of FE.

• Based on the integrated FE/FTC strategy, by using non-singular
fast terminal sliding mode (NFTSM) control techniques and
introducing a dynamic auxiliary system, a finite time fault
tolerant attitude stabilisation controller and a finite time fault-
tolerant attitude tracking controller are designed to accurately
compensate for the multiple actuator faults and avoid actuator
saturation. Furthermore, a neural network (NN) algorithm [26,
27] is introduced into two fault-tolerant controllers, such that no
longer require the prior knowledge of uncertainties and external
disturbances.

• In most modern spacecraft attitude control schemes [10, 20],
their control inputs contain the discontinuous term k sign(s). In
order to have a faster reaching time, good robustness and
tracking performance, k must be increased. However, this will
directly increase the chattering level on the control input. In
order to solve this dilemma, a novel reaching law containing an
exponential term function of the sliding surface s is proposed in
this study, such that the interdependence between the reaching
time and the chattering level could be removed. The exponential
term smoothly adapts to the variations of s and improves sliding
mode dynamics reaching performance.

The remainder of the paper is organised as follows. Section 2
presents the mathematical models for the rigid spacecraft and
actuator fault. An adaptive sliding mode FE observer is designed
and analysed in Section 3. The NFTSM-based fault-tolerant
stabilisation controller and tracking controller are designed in

Section 4. Section 5 provides simulation results. Finally, the main
conclusions are summarised in Section 6.

2 Preliminaries and mathematical models
In this section, the modified Rodrigues parameters (MRPs) are
used to describe the spacecraft attitude. A vector of MRPs
representing the spacecraft attitude can be defined as [4, 8]:

σ = sin(θ /2)n
1 + cos(θ /2) = tan(θ /4)n (1)

where σ = [σ1, σ2, σ3]T ∈ R3 represents the spacecraft attitude in
body frame with respect to the inertial frame, θ ∈ R and n ∈ R3 (a
unit vector) denote the Euler eigenangle and eigenaxis.

Note that the MRPs allow non-singular attitude representation
for −2π < θ < 2π and singularities arise at θ = ± 2π. As is shown
in [8], it is possible to map the MRP vector σ to its shadow
counterpart σs through σs = (1/σTσ)σ. By switching the MRPs to σs

when σTσ > 1, the MRP vector remains bounded within a unit
sphere, global rotation representation without singularity can thus
be ensured. The kinematic equation represented by MRPs is [8]

σ̇ = 1
4 (1 − σTσ)I3 × 3 + 2σ× + 2σσT ω = G(σ)ω (2)

where I3 × 3 ∈ R3 × 3 is the identity matrix, ω = [ω1, ω2, ω3]T ∈ R3 is
the angular velocity of body frame with respect to inertial frame, σ×

is the vector cross-product operator of a skew-symmetric matrix
σ× = 0, − σ3, σ2; σ3, 0, − σ1; − σ2, σ1, 0 . Simple algebraic
manipulation shows that G(σ) has a following property.

 
Property 1 (P1): The matrix G(σ) is such that

G−1(σ) = 16
(1 + σTσ)2 GT(σ)

The dynamic equation of the rigid spacecraft with respect to the
uncertainty of the inertia matrix is described as [4]

(J + ΔJ)ω̇ = − ω×(J + ΔJ)ω + Dτ + Td (3)

where J ∈ R3 × 3 is the symmetric inertia matrix of rigid spacecraft;
ΔJ is the parameter uncertainty; τ = [τ1, τ2, …τn]T is the control
torque vector generated by n reaction wheels (RWs); D ∈ R3 × n is
the RW distribution matrix; Td = [d1, d2, d3]T represents the external
disturbance torques; ω× represents the cross-product operator and
has the similar form of σ×.

After some manipulations, (3) can be transformed into the
following form

ω̇ = − J−1ω×Jω + J−1Dτ + J−1d (4)

where d = Td − ω×ΔJω − ΔJω̇ and it can be viewed as a
generalised perturbation for the dynamics equation.

The output torque of the ith RW in the presence of possible
faults and input saturation can be written as [28]

τi = eisat(uci) + u f i (5)

where uci is the torque command from attitude controller,
0 < ei ≤ 1 is the actuator loss of effectiveness fault (i.e.
multiplicative fault), and u f i represents the bias torque (i.e. additive
fault). The ith RW partially loses its effectiveness if 0 < ei < 1 and
completely fails if ei = 0. With no faults, it follows that ei = 1 and
u f i = 0. Saturation function sat(uci) is described by [16, 29]

sat(uci) =
uci, uci ≤ uM

uM ⋅ sign(uci), uci > uM
(6)
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where uM is the maximum control torque, and i = 1, …, n.
Note that sat(uci) can also be written as sat(uci) = uci + Θi(uci),

where Θi(uci) represents the excess portion of uci over its limit and
is given by

Θi(uci) =
uM − uci, if uci > uM

0, if uci ≤ uM

−uM − uci, if uci < − uM

(7)

Let E = diag{e1, …, en}, the control torque in actuator fault and
input saturation case could be expressed as the following form [28]

τ = Euc + EΘ(uc) + u f (8)

where uc = [uc1, …, ucn]T, u f = [u f 1, …, u f n]T, and
Θ(uc) = [Θ1(uc1), …, Θn(ucn)]T.

Based on the above description, the faulty dynamics equation of
rigid spacecraft could be rewritten as the following form

ω̇ = − J−1ω×Jω + J−1DEuc + J−1Du f + J−1dΘ (9)

where dΘ = DEΘ(uc) + d is regarded as the total time-varying
uncertainties and satisfying ∥ dΘ ∥ < dM.

The objectives of this study are listed as follows:

• Design an adaptive sliding mode FE observer for the attitude
system of the faulty rigid spacecraft to obtain the accurate
estimated value of the actuator LOE fault and bias fault under
actuator saturation, external disturbances, and inertia uncertainties.
• Based on the integrated FE/FTC strategy, design a finite time
fault-tolerant attitude stabilisation controller and a finite time fault-
tolerant attitude tracking controller to guarantee that the closed-
loop attitude system has a good fault-tolerant performance under
actuator faults and saturation.

The whole integrated FE/FTC strategy developed in this study
is shown in Fig. 1. To achieve the objectives described above, we
recall the following assumptions and lemmas, which will be
needed to prove the main results.

 
Assumption 1: The attitude angle σ and the angular velocity ω

are measurable. The desired attitude angle σd, the desired angular
velocity ωd, and its first time derivative (i.e. σ̇d, and ω̇d) are
limited.

 
Assumption 2: The non-linear function ω×Jω is locally

Lipschitz bounded with a Lipschitz constant ε0, which can be
formulated in the following

∥ ω×Jω − ω^ ×Jω^ ∥ ≤ ε0 ∥ ω − ω^ ∥ = ε0 ∥ ω~ ∥ (10)
 
Assumption 3: In this paper, FTC of faults is implemented by

installing redundant actuators, i.e. the number of actuators required
is n > 3.

 

Lemma 1: The extended Lyapunov description of finite-time
stability with faster finite time convergence is given as

V̇(x) + λ1V(x) + λ2Vλ0(x) ≤ 0 (11)

and the convergence time is given by

Tk ≤ 1/(λ1(1 − λ0))ln(λ1V1 − λ0(x0) + λ2)/λ2 (12)

where λ1 > 0, λ2 > 0 and 0 < λ0 < 1 [29, 31].
 
Remark 1: As discussed in [20, 28], Assumption 1 is reasonable

because spacecraft attitude angle and angular velocity can be
measured directly according to the position sensitive detector and
gyro, and the expected angular velocity and its first derivative are
usually continuous and bounded when the spacecraft carries out
tracking tasks. Assumption 2 is more general and have been given
in [7, 32], where the state ω is first-order differentiable and its
derivative is bounded. According to [4], Assumption 3 means that,
although the n actuators (n > 3) may suffer from partial loss of
actuator effectiveness or even complete failure, the number of
totally failed actuators is no more than n − 3, such that DEDT

remains positive definite. If more than n − 3 actuators have totally
failed, the matrix DEDT becomes singular and the system is
underactuated.

3 Fault estimation observer design
In this position, by introducing a BF, a new adaptive sliding mode
FE observer is designed to achieve accurately multiple actuator FE.

3.1 BFs preliminaries

 
Definition 1: Suppose that ε > 0 is given and fixed, the BF can

be defined as an even continuous function Kb:
x ∈ [ − ε, ε] → Kb(x) ∈ [b, ∞] strictly increasing on [0, ε] [33].

• lim x → ε Kb(x) = + ∞.
• Kb(x) has a unique minimum at zero and Kb(0) = b ≥ 0.

In this paper, the following BF is considered

• Positive Semi-definite BF: Kpsb(x) = x /(ε − x ), i.e.
kpsb(0) = 0.

3.2 Adaptive sliding mode fault estimation observer design

The actuator loss of effectiveness fault E is a diagonal matrix, and
Euc of the formula (9) can be written

Euc = Ue (13)

where U = diag{uc1, …, ucn} and e = [e1, …, en]T.
The faulty dynamics equation of rigid spacecraft (9) can be

transformed into

ω̇ = − J−1ω×Jω + J−1DUe + J−1Du f + J−1dΘ (14)

A novel adaptive sliding mode FE observer with parameter
updated algorithms are designed as

ω^̇ = Λ(ω − ω^ ) − J−1ω^ ×Jω^ + J−1DUe^

+J−1Du^ f + J−1K(t)sign(ω − ω^ )
(15)

e^̇ = γ1U
TDTJ−Tω~, u^̇ f = γ2D

TJ−Tω~ (16)

where ω~ = ω − ω^ , Λ > 0 is a diagonal matrix, which is determined
in advance. γ1 and γ2 are two positive constants.

Time-varying switching gain K(t) is defined by as follow:

Fig. 1  The structure of FE/FTC developed in this paper
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• if 0 < t ≤ t̄ , K(t) is the solution of

K(t) = Ka(t) with K̇a = γ3 ∥ J−1 ∥ ω~Tsign(ω~) (17)
• if t > t̄ , then

K(t) = ω~Tω~

ε − ω~Tω~
(18)

Where there exists t̄ , for all t ≥ t̄ , the inequality ω~Tsign(ω~) < ε
holds.

Let e~ = e − e^, the following observer error equation is obtained
by subtracting (13) from (12)

ω~̇ = −Λω~ − J−1(ω×Jω − ω^ ×Jω^ ) + J−1DUe~

+J−1Du~ f + J−1dΘ − J−1K(t)sign(ω~) (19)

where for any ω~(0) and ε > 0.
 
Lemma 2: For the adaptive sliding mode FE observer (15), the

adaptive gain Ka in (17) has an upper bound K* for all t > 0 with
K* > dM [33].

 
Theorem 1: For the faulty spacecraft attitude system (2) and (9),

suppose that Assumptions 1 and 2 hold, if there exists an
appropriate Λ such that the following condition is satisfied
λmin(Λ) − ε0 ∥ J−1 ∥ ≥ 0, then the proposed adaptive sliding mode
FE observer (15) and FE laws (16) can provide an accurate FE
under actuator saturation. Meanwhile, the error dynamical system
(19) for the FE observer is practically stable (i.e. final and uniform
bound). It means that all estimation error trajectories converge to a
neighbourhood of the origin.

 
Proof: In this position, the Lyapunov candidate is selected as

follows

V0 = 1
2ω~Tω~ + 1

2γ1
e~Te~ + 1

2γ2
u~ f

Tu~ f + 1
2γ3

(K − K*)2 (20)

1. Supposing that 0 < t ≤ t̄ , i.e. ω~Tsign(ω~(t̄)) > ε which means
that K(t) is adjusted by the adaptive update law (17). Then the
derivative of V0 with respect to time is

V̇0 = ω~Tω~̇ + 1
γ1

e~Te~̇ + 1
γ2

u~ f
Tu~̇ f + 1

γ3
(K − K*)K̇

= ω~T[ − Λω~ − J−1(ω×Jω − ω^ ×Jω^ ) + J−1DUe~

+J−1Du~ f + J−1dΘ − J−1K(t)sign(ω~)]

− 1
γ1

e~Te^̇ − 1
γ2

u~ f
Tu^̇ f + 1

γ3
(K − K*)K̇

(21)

Substituting the first equation of (16) into (21), one has

V̇0 = ω~T[ − Λω~ − J−1(ω×Jω − ω^ ×Jω^ ) + J−1dΘ

−J−1K(t)sign(ω~)] + 1
γ3

(K − K*)K̇
(22)

Substituting the first equation of (17) into (22), it obtains

V̇0 ≤ −(λmin(Λ) − ε0 ∥ J−1 ∥ ) ∥ ω~ ∥2 + ∥ ω~T ∥ ∥ J−1 ∥
× (dM − Ka) + (Ka − K*) ∥ J−1 ∥ ω~Tsign(ω~)

≤ −(λmin(Λ) − ε0 ∥ J−1 ∥ ) ∥ ω~ ∥2 − (K* − dM)
× ∥ ω~TJ−1 ∥ < 0

(23)

It can be seen that there always exist K* such that K* > dM.
The main result of Theorem 1 can be achieved.

2. Supposing that t > t̄ , i.e. ω~Tsign(ω~(t̄)) < ε. According to [33],
the proposed adaptive sliding mode observer with the equation

(18) can maintain that ω~Tsign(ω~(t̄)) < ε for all t > t̄ . Therefore,
the proof of Theorem 1 can be easily obtained.

□
 
Remark 2: A FE approach is proposed in [15] to only achieve

the actuator bias FE in the presence of external disturbances, but
actuator LOE fault and actuator saturation is ignored. The other
references [16, 25] treat external disturbances, the actuator LOE
fault and the bias fault as a lumped fault in the design of the FE
observer, but it does not take into account the FE in the case of
actuator saturation. Compared with the results obtained [15, 16,
25], an adaptive sliding mode FE observer is developed in this
paper for the rigid spacecraft attitude system, such that the actuator
LOE fault and bias fault could be estimated simultaneously under
actuator saturation, external disturbances and inertia uncertainties.

 
Remark 3: A new BF-based adaptive strategy is proposed firstly

for a sliding mode FE observer (15). The sliding mode term
Ksign(ω~) is used to offset the effects of the total time-varying
uncertainties for a sliding mode FE observer. Unlike the general
sliding mode FE observer [13], this strategy allows the adaptive
gain to increase and decrease based on the current value of the
output variable. When the output variable is going to zero, the
adaptive gain decreases till the value which allows to compensate
for the total time-varying uncertainties.

• On the one hand, the proposed adaptive strategy is to first
increase the adaptive gain until the output variable reaches a
small neighbourhood of zero ε at time t̄  by using a derivative
gain.

• On the other hand, a new BF-based adaptive strategy can
achieve the convergence of the output variable to a
neighbourhood of zero, with an adaptive gain that is not
overestimated, and without using any information about the
upper bound of the total time-varying uncertainties, nor the use
of the low pass filter.

4 Fault-tolerant controller design
In this section, according to fault information from the FE observer
(15), a finite time fault-tolerant attitude stabilisation controller and
a finite time fault-tolerant attitude tracking controller are designed
respectively to compensate for the multiple actuator faults and
eliminate of the actuator saturation. In order to relax the
requirement on disturbances bound and attenuate chattering
problem in control forces, a NN technique is used to estimate the
lumped disturbances online.

4.1 NNs theory

The structure of a radial basis function (RBF) NN is a three-lawyer
feedforward network. The input layer passes input signals without
any operation; the hidden layer performs activation function in
each node of the layer and the output layer gives the output.

The output of the NN can be described as [26]

y = WTϕ (24)

where W = [W1, W2, …, WN]T is the weight vector and WN is the
neural weight connecting the Nth neuron in the hidden layer and
the output neuron. ϕ represents the activation function that is
performed in every node in the hidden layer; ϕ = [ϕ1, ϕ2…, ϕN]T is
the output vector of the hidden layer. The Gaussian function is
usually chosen as the activation function and the output of the Nth
node in the hidden layer is given by

ϕN(x) = exp − ∥ x − CN ∥2

ηN
2 (25)

where CN and ηN is the centre and the width of the Gaussian
function.
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In this study, the following RBF NNs are used to reconstruct the
generalised perturbation d(t) in the first equation of (9), which can
be expressed as

d(t) = WTϕ (26)

where W is the vector of adjustable weights.
The optimal weight value W of RBF NN is given by

W = arg minŴ ∈ RN × 3 {supω ∈ Γ d(t) − W^ Tϕ(t) } (27)

where W^  is the estimated matrix of W .
Since the optimal weight value W is unknown, it follows that

d
^(t) = W^ Tϕ(t) + ϵθ (28)

where d
^(t) is the estimated value of d(t), ϵθ is the very small known

estimation error.

4.2 Finite time fault tolerant attitude stabilisation control

In this section, a finite time fault tolerant attitude stabilisation
controller is proposed for the faulty attitude systems (2) and (9)
with actuator saturation. First, a fast terminal sliding model surface
is designed as

s = ω + aσ + bsig
p
q (σ) (29)

where s = [s1, s2, s3]T ∈ R3 is the sliding mode variable, a > 0, b > 0
are two positive scalars, 0 < p

q < 1, and p, q are positive odd

integers. the function sig
p
q (σ) is defined as

sig
p
q (σ) = [ σ1

p
q sign(σ1), σ2

p
q sign(σ2), σ3

p
q sign(σ3)]T . (30)

Taking the derivative of sliding variable s with respect to time
yields

ṡ = ω̇ + aσ̇ + b p
q diagp/q( σ

(p/q) − 1
)σ̇ (31)

It is noted that (31) contains a negative fractional term
(p/q) − 1, the singularity will occurs while σ j = 0 and σ̇ j ≠ 0. To
avoid the singularity problem, the derivative of s is modified as

ṡ = ω̇ + aσ̇ + bs̄(σ) (32)

where s̄(σ) = [s̄1(σ), s̄2(σ), s̄3(σ)]T ∈ R3 with

s̄i(σ) =

p
q σ̇i

(p/q) − 1σ̇i, if σ̇i ≠ 0, σ̇i ≥ ϵ

p
q ϵi

(p/q) − 1σ̇i, if σ̇i ≠ 0, σ̇i < ϵ

0, if σ̇i = 0

(33)

where s̄i(σ) is the ith component of s̄(σ) and ϵ is a small positive
constant.

Considering a faulty rigid spacecraft attitude system with
actuator saturation, it is easily known that

ṡ = −J−1ω×Jω + J−1DEuc + J−1DEΘ(uc)
+J−1Du f + J−1d + aσ̇ + bs̄(σ)

(34)

The reaching law proposed in this paper is based on the choice
of an exponential term that adapts to the variations of the switching
function. A new exponential reaching law (ERL) is designed as
follows [34]:

ṡ = − ε1s − ε2

N(s) sign(s) (35)

where N(s) = δ0 + (1 − δ0)e−α ∥ s ∥P0 , ε1 = diag{ε11, ε12, ε13} > 0 and

ε2

N(s) = diag ε2i

δ0 + (1 − δ0)e−α si
P0 > 0, i = 1, 2, 3.

δ0 is a strictly positive offset that is less than one, P0 is a strictly
positive integer, and α is also strictly positive. Note that the ERL is
given by (35) does not affect the stability of the control because
N(s) is always strictly positive.

 
Assumption 4: Similar to Assumption 4 in [20], there exist

unknown positive constants χ and ρ such that

∥ aσ̇ + bs̄(σ) ∥ ≤ χ ∥ σ̇ ∥ , ∥ E
~Θ(uc) + u~ f ∥ ≤ ρ

 
Remark 4: According to the Assumption 1 in and (33) in this

paper, ∥ aσ̇ + bs̄(σ) ∥ ≤ χ ∥ σ̇ ∥ can be obtained. In addition,
Theorem 1 means the estimates of the actuator LOE fault and the
bias fault are accurate, such that the errors of faults are almost zero
and bounded. It easily known that ∥ E

~Θ(uc) + u~ f ∥ ≤ ρ is
satisfied. Xiao et al. [7] and Han et al. [20] also pointed out that
Assumption 4 holds for the rigid spacecraft.

To achieve the desired fault-tolerant attitude control
performance, the control inputs uc are designed as follows:

uc = E^ 2
DT(J−1DE^ 3

DT)−1(un + um) (36)

where

un = − ε1s − ε2

N(s) sign(s) (37)

um = J−1ω×Jω − l1φ − J−1Du^ f − (χ^ ∥ σ̇ ∥
+ρ^ ∥ J−1 ∥ ∥ D ∥ )sign(s) − J−1(W^ Tϕ + ϵθ)

(38)

An auxiliary system [1] is introduced to deal with the actuator
saturation as

φ̇ = −l2φ − ∥ H ∥2 ∥ Θ(uc) ∥2

∥ φ ∥2 φ − HΘ(uc), ∥ φ ∥ ≥ δk

0, ∥ φ ∥ < δk

(39)

where φ is an auxiliary variable, δk is a small positive scalar, l2 is a
gain matrix, and H = J−1DE^ .

χ^ , W^  and ρ^  are the estimates of χ, W and ρ, respectively,
updated by the following adaptive laws:

χ^̇ = μ1 ∥ s ∥ ∥ σ̇ ∥ (40)

ρ^̇ = μ2 ∥ s ∥ ∥ J−1 ∥ ∥ D ∥ (41)

W^̇ = μ3ϕsTJ−1 (42)

where l1, l2, μ1, μ2, and μ3 are positive constants.
In the following, the second result of this study is given in the

form of Theorem 2.
 
Theorem 2: Consider a faulty rigid spacecraft attitude system

described by (2) and (9) in the presence of the three types of the
actuator faults and actuator saturation. Suppose that Assumptions
1–4 are satisfied, and the control parameters are chosen such that
l2 − (l1

2/2) − (1/2) > 0. By applying the designed control laws (36)–
(38) and the adaptive laws (39)–(42), the following results are
achieved:
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1. The closed-loop attitude system is asymptotically stable.
2. The attitude angle σ and the attitude angular velocity ω will

reach zero in a finite time, that is, limt → T1σ → 0 and
limt → T1ω → 0.

 
Proof: Consider the case that ∥ φ ∥ ≥ δk. Define the following

Lyapunov function:

V1 = V0 + sTs
2 + φTφ

2 + χ~2

2μ1
+ ρ~2

2μ2
+ tr(W~ TW

~ )
2μ3

(43)

where χ~ = χ − χ^ , ρ~ = ρ − ρ^  and W
~ = W − W^ .

The derivative of V1 with respect to time is

V1
˙ = V̇0 + sTṡ + φTφ̇ − χ~ χ^̇

μ1
− ρ~ρ^̇

μ2
− tr(W~ TW^̇ )

μ3

= V̇0 + sT[ − J−1ω×Jω + J−1DE^ uc + J−1DE^

× Θ(uc) + J−1DE
~sat(uc) + J−1Du f + J−1d

+aσ̇ + bs̄(σ)] + φTφ̇ − χ~ χ^̇
μ1

− ρ~ρ^̇
μ2

− tr(W~ TW^̇ )
μ3

(44)

Substituting the control laws (36)–(38) into (44) results in

V1
˙ ≤ V̇0 + sT[J−1DE^Θ(uc) + J−1DE

~sat(uc) − l1

× φ + J−1Du~ f + J−1d + aσ̇ + bs̄(σ) − (χ^ ∥ σ̇ ∥
+ρ^ ∥ J−1 ∥ ∥ D ∥ )sign(s) − J−1(W^ Tϕ + ϵθ)]

+sT[ − ε1s − ε2

N(s) sign(s)] + φTφ̇ − χ~ χ^̇
μ1

− ρ~ρ^̇
μ2

− tr(W~ TW^̇ )
μ3

(45)

From (39), it can be seen that

V1
˙ ≤ V̇0 + sT[J−1DE^Θ(uc) + J−1DE

~sat(uc) − l1φ
+J−1Du~ f + J−1d + aσ̇ + bs̄(σ) − (χ^ ∥ σ̇ ∥
+ ∥ J−1 ∥ ρ^)sign(s) − J−1(W^ Tϕ + ϵθ)] + sT

× [ − ε1s − ε2

N(s) sign(s)] − l2 ∥ φ ∥2 + ∥ J−1D ∥2

× ∥ E^ (t) ∥2 ∥ Θ(uc) ∥2 − φTJ−1DE^ Θ(uc)

− χ~ χ^̇
μ1

− ρ~ρ^̇
μ2

− tr(W~ TW^̇ )
μ3

(46)

Further, using the specific case of Young's inequality
xTy ≤ 1

2 xTx + 1
2 yTy for all x, y ∈ R3, the following inequalities may

be established:

−l1sTφ ≤ l1
2

2 ∥ φ ∥2 + 1
2 ∥ s ∥2 (47)

sTJ−1DE^ Θ(uc) ≤ ∥ J−1D ∥2 ∥ E^ ∥2 ∥ Θ(uc) ∥2

2 + ∥ s ∥2

2 (48)

−φTJ−1DE^ Θ(uc) ≤ ∥ J−1D ∥2 ∥ E^ ∥2 ∥ Θ(uc) ∥2

2 + ∥ φ ∥2

2 (49)

Therefore, inserting inequalities (47)–(49) into (46) yields

V1
˙ ≤ sT[J−1DE

~sat(uc) + J−1Du~ f + J−1d + aσ̇
+bs̄(σ) − (χ^ ∥ σ̇ ∥ + ρ^ ∥ J−1 ∥ ∥ D ∥ )sign(s) − J−1

× (W^ Tϕ + ϵθ)] + sT (I3 − ε1)s − ε2

N(s) sign(s)

− l2 − l1
2

2 − 1
2 ∥ φ ∥2 − χ~ χ^̇

μ1
− ρ~ρ^̇

μ2
− tr(W~ TW^̇ )

μ3

(50)

According to l2 − (l1
2/2) − (1/2) > 0 and (40)–(42), it follows that

V3
˙ ≤ sTJ−1(W~ Tϕ − ϵθ) + sT[(I3 − ε1)s − ε2

N(s)
× sign(s)] − tr(W~ TϕsTJ−1)

(51)

The following property for tracing the matrix is used:

tr(sTJ−1W
~ Tϕ) = tr(W~ TϕsTJ−1) (52)

Similar to the proof of [18, 30], it follows that

V̇3 ≤ −sT(ε1 − I3)s − 21/2 sTε2s
2N(s)

1/2

≤ −2λmin(ε1 − I3) 1 − Ψ
V1

V1

−21/2λmin
ε2

N(s) 1 − Ψ
V1

1/2

V1
1/2

(53)

where

Ψ = V0 + φTφ
2 + χ~2

2μ1
+ ρ~2

2μ2
+ tr(W~ TW

~ )
2μ3

, Ψ
V1

< 1, and

Ψ
V1

1/2

< 1.

Define

ρ0 = 1/2, ρ1 = 2λmin(ε1 − I3) 1 − Ψ
V1

, and ρ2

= 21/2λmin
ε2

N(s) 1 − Ψ
V1

1/2

,

then

V̇1 + ρ1V1 + ρ2V1
ρ0 ≤ 0 (54)

and the convergence time is given as:

T1 ≤ 1
ρ1(1 − ρ0)

ln ρ1V1
1 − ρ0(s0) + ρ2

ρ2
(55)

The proof of the case when ∥ φ ∥ < δk is similar to the above
case and the same conclusion can be drawn. Therefore, the state
trajectory of the faulty closed-loop attitude system can converge
into origin in finite time. This completes the proof. □

 
Remark 5: In [10], an active FTC scheme is proposed for a rigid

spacecraft using both sliding FE observer and terminal sliding
mode control techniques, but it could only handle the composite
fault effects of actuator partial LOE fault and bias fault, without
considering actuator saturation. In [16], the integrated FTC strategy
for attitude stabilisation control estimates and compensates the
total effect of the actuator faults and saturation. In [35], a finite
time attitude stabilisation controller is presented for a rigid
spacecraft by using the sliding mode control techniques, it has both
the advantage of high convergence rate and high steady accuracy,
but the actuator fault problems are not considered in [35]. Inspired
by the above results, a novel finite-time attitude stabilisation fault-
tolerant controller is proposed in this paper, it not only could
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compensate for different type actuator faults, including partial LOE
fault, bias fault and complete failure fault, but also could avoid
actuator saturation.

 
Remark 6: The parameter δk in (39) is designed to avoid the

singularity. In the practical application, δk is usually selected as a
very small positive constant, while the initial value of the auxiliary
variable φ(0) is given to satisfy ∥ φ(0) ∥ ≥ δk which ensures the
auxiliary system works at the beginning.

 
Remark 7: When considering actuator saturation, an auxiliary

system (39) is utilised to compensate for the saturation. The main
contributions of (39) are as follows

• When ∥ φ ∥ ≥ δk, it means that the auxiliary system works
(even when △u = 0).

• When ∥ φ ∥ < δk and △u = 0, it means the auxiliary system
does not work, and meanwhile the actuator saturation does not
exist.

• Especially, the case 0 < ∥ φ ∥ < δk and △u ≠ 0 represents that
the auxiliary system is not working at this moment but the
actuator saturation occurs. The case 0 < ∥ φ ∥ < δk and
△u ≠ 0 usually happens when the spacecraft tends to be stable
but suddenly requires a large control torque to perform the
attitude adjustment. On that occasion, φ will quickly increase
and satisfy the condition ∥ φ ∥ ≥ δk owing to (39) and △u,
such that the auxiliary system starts to work to compensate the
actuator saturation. Therefore, this case is just a transient stage.

 
Remark 8: From the reaching law stated in (35), one can see

that if ∥ s ∥ increases, N(s) approaches δ0, and therefore, ε2/N(s)
converges to ε2/δ0, which is greater than ε2. This means that ε2/N(s)
increases in reaching phase, and consequently, the attraction of the
sliding surface will be faster. On the other hand, if ∥ s ∥ decreases,
then N(s) approaches one, and ε2/N(s) converges to ε2. This means
that when the system approaches the sliding surface, ε2/N(s)
gradually decreases in order to limit the chattering. Therefore, the
ERL allows the controller to dynamically adapt to the variations of
the switching function by letting ε2/N(s) to vary between ε2 and
ε2/δ0.

4.3 Finite-time fault tolerant attitude tracking control

A finite time fault-tolerant attitude tracking controller design is
similar to a finite time fault-tolerant attitude stabilisation controller.
However, the design of finite time fault-tolerant attitude tracking
controller is more complex since it is designed by using back-
stepping techniques and sliding mode control methods. The design
steps of NFTSM fault-tolerant tracking controller are as follows.

Step 1: Two new error variables are defined as follows:

z1 = σ − σd, z2 = ω − ωd (56)

where σd is the desired attitude angle command, and ωd is the
desired angular velocity command.

For the outer loop which is also known as an angular loop, the
virtual control law is selected as follows:

ż1 = G(σ)(ωd + z2) − σ̇d (57)

Consider a Lyapunov function

V2 = 1
2 z1

Tz1 (58)

The derivative of V1 is

V̇2 = z1
Tż1 = z1

T[G(σ)(ωd + z2) − σ̇d] (59)

It can be further obtained from P1 that G(σ) has an inverse matrix.
Therefore, the virtual control ωd is designed as

ωd = − G−1(σ)(cz1 + σ̇d) (60)

where c is a design parameter.
According to P1, it can be found that

V̇2 ≤ − c ∥ z1 ∥2 + z1
TG(σ)z2 (61)

Step 2: Note that

ż2 = ω̇ − ω̇d

= − J−1ω×Jω + J−1DEsat(uc) + J−1Du f + J−1d − ω̇d
(62)

According to the attitude error and the angular velocity error, a fast
non-singular terminal sliding mode surface is selected as follows:

s = z2 + k1z1 + k2Sau (63)

where Sau = [Sau1, Sau2, Sau3]T, k ji > 0 ( j = 1, 2, i = 1, 2, 3).

Saui =
c1z1i + c2sign(z1i)z1i

2 , if S̄i ≠ 0, z1i < μϵ

z1i
r , otherwise

(64)

where S̄i = z2i + k1iz1i + k2iz1i
r , r = r1/r2, r1, r2 are positive odd

number, and 0 < r < 1. c1 > 0, c2 > 0.
It is easily known that

ṡ = −J−1ω×Jω + J−1DEuc + J−1DEΘ(uc)
+J−1Du f + J−1d − ω̇d + (k1 + k2δ)ż1

(65)

where

δ =
c1I3 + 2c2diag{sign(z1i)z1i}, if S̄i ≠ 0, z1i < μϵ

rdiag{z1i
r − 1}, otherwise

.

A new exponential approximation law is designed as follows:

ṡ = − ε3s − ε4

N(s) sign(s) (66)

where the parameters are similar to (35).

 
Assumption 5: There exists an unknown constant Ω > 0, such

that the following inequality is satisfied

∥ J−1D[E~Θ(uc) + u~ f ] + k2δ( − cz1 + G(σ)z2) ∥ ≤ Ω (67)
 

Remark 9: According to Assumption 4,

∥ J−1D[E~Θ(uc) + u~ f ] ∥ ≤ ∥ J−1D ∥ ∥ (E~Θ(uc) + u~ f ) ∥ ≤
. ∥ J−1D ∥ ρ (68)

Moreover, due to σd, σ̇d, ωd and ω̇d are bounded in Assumption 1, it
is obvious that z1 and z2 are bounded, such that
∥ k2δ( − cz1 + G(σ)z2) ∥ ≤ ρk is satisfied. Therefore,

∥ J−1D[E~Θ(uc) + u~ f ] + k2δ( − cz1 + G(σ)z2) ∥
≤ ∥ J−1D[E~Θ(uc) + u~ f ] ∥ + ∥ k2δ( − cz1 + G(σ)z2) ∥
≤ ∥ J−1D ∥ ρ + ρk = Ω

(69)

is satisfied, which is similar to Assumption 4 in [20].
To achieve the desired tracking performance, the control inputs

uc are designed as follows:
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uc = E^ 2
DT(J−1DE^ 3

DT)−1(u1 + u2) (70)

where

u1 = − ε3s − ε4

N(s) sign(s) (71)

u2 = J−1ω×Jω − L1ξ − J−1Du^ f + ω̇d − k1( − cz1 + G(σ)z2)

− s(1 + η) ∥ z1
TG(σ)z2 ∥

∥ s ∥2 + δn
− Ω^ sign(s) − J−1(W^ Tϕ + ϵθ)

(72)

The following auxiliary system is designed to compensate for
the saturation,

ξ̇ = −L2ξ − ∥ H ∥2 ∥ Θ(uc) ∥2

∥ ξ ∥2 ξ − HΘ(uc), ∥ ξ ∥ ≥ δk

0, ∥ ξ ∥ < δk

(73)

where L2, δk, Θ(uc), and H are similar to parameters of (39).
Ω^

, W^  and η are updated by the following adaptive laws:

Ω^̇ = θ1 ∥ s ∥ (74)

W^̇ = θ2ϕsTJ−1 (75)

η̇ =
θ3

η ⋅ η ∥ s ∥2 − δm

∥ s ∥2 + δn
∥ z1

TG(σ)z2 ∥ , η ≠ 0

δn, η = 0
(76)

where δm > δn > 0. L1, L2, θ1, θ2, and θ3 are positive constants.
It is ready to present the third main result in the following

theorem.
 
Theorem 3: Consider a faulty rigid spacecraft attitude system

(2) and (9) involving actuator saturation, actuator faults, inertia
matrix uncertainties, external disturbances under Assumptions 1–3,
Assumption 5, and L2 − (L1

2/2) − (1/2) > 0. By applying the
designed control laws in (70)–(72) and adaptive laws in (73)–(76),
the following results are achieved:

1. The closed-loop system is asymptotically stable.
2. The states such as the error attitude angle z1 and error attitude

angular velocity z2 converge to an arbitrary small set containing
the origin in a finite time, that is, limt → T2z1 → 0 and
limt → T2z2 → 0.

Proof : When ∥ ξ ∥ ≥ δk, define the following Lyapunov
function:

V3 = V0 + V2 + sTs
2 + ξTξ

2 + Ω~ 2

2θ1
+ tr(W~ TW

~ )
2θ2

+ η2

2θ3
(77)

where Ω~ = Ω − Ω^
.

The derivative of V1 with respect to time is

V3
˙ = V̇0 + V̇2 + sTṡ + ξTξ̇ − Ω~ Ω^̇

θ1
− tr(W~ TW^̇ )

θ2
+ ηη̇

θ3

= V̇0 + V̇2 + sT[ − J−1ω×Jω + J−1DE^ uc

+J−1DE^ Θ(uc) + J−1DE
~sat(uc)

+J−1Du f + J−1d − ω̇d + (k1 + k2δ)ż1]

+ξTξ̇ − Ω~ Ω^̇

θ1
− tr(W~ TW^̇ )

θ2
+ ηη̇

θ3

(78)

Substituting the control laws (71) and (72) into (78) results in

V3
˙ ≤ −c ∥ z1 ∥2 + z1

TG(σ)z2 + sT[J−1DE^ Θ(uc)
+J−1DE

~sat(uc) − L1ξ + J−1Du~ f + J−1d

+k2δ( − cz1 + G(σ)z2) − s(1 + η) ∥ z1
TG(σ)z2 ∥

∥ s ∥2 + δn

−(Ω^ + W^ Tϕ)sign(s)] + sT[ − ε3s − ε4

N(s) sign(s)]

+ξTξ̇ − Ω~ Ω^̇

θ1
− tr(W~ TW^̇ )

θ2
+ ηη̇

θ3

(79)

Substituting (73) into the above equation (79), it follows that

V3
˙ ≤ z1

TG(σ)z2 + sT[J−1DE^Θ(uc) + J−1DE
~sat(uc)

−L1ξ + J−1Du~ f + J−1d + k2δ( − cz1 + G(σ)z2)

− s(1 + η)
∥ s ∥2 + δn

∥ z1
TG(σ)z2 ∥ − J−1(W^ Tϕ + ϵθ)]

−sT[ε3s + ε4

N(s) sign(s)] − L2 ∥ ξ ∥2 + ∥ J−1D ∥2

× ∥ E^ ∥2 ∥ Θ(uc) ∥2 − Ω^ sign(s) − ξTJ−1DE^ Θ(uc)

− Ω~ Ω^̇

θ1
− tr(W~ TW^̇ )

θ2
+ ηη̇

θ3

(80)

The essence of auxiliary system (73) is same as the auxiliary
system (39) in Section 4.2. Therefore, the proof is similar with
Section 4.2, it can be attained

V3
˙ ≤ z1

TG(σ)z2 + sT[J−1DE
~sat(uc) + J−1Du~ f

+J−1d + k2δ( − cz1 + G(σ)z2) − Ω^ sign(s)

− s(1 + η)
∥ s ∥2 + δn

∥ z1
TG(σ)z2 ∥ − J−1(W^ Tϕ + ϵθ)]

+sT (I3 − ε3)s − ε4

N(s) sign(s) − L2 − L1
2

2 − 1
2

× ∥ ξ ∥2 − Ω~ Ω^̇

θ1
− tr(W~ TW^̇ )

θ2
+ ηη̇

θ3

(81)

According to L2 − (L1
2/2) − (1/2) > 0 and (74)–(76), one has

V3
˙ ≤ ∥ s ∥ ∥ J−1D(E~Θ(uc) + u~ f ) + k2δ( − cz1 + G(σ)z2) ∥

− ∥ s ∥ Ω^ + sTJ−1[d(t) − W^ Tϕ − ϵθ] + sT(I3 − ε3)

× s − sT ε4

N(s) sign(s) − Ω~ ∥ s ∥ − tr(W~ TϕsTJ−1)
(82)

Then by using Lemma 1 and the similar proof of Theorem 2, it
follows from (82) that

V3
˙ ≤ −2λmin(ε3 − I3) 1 − Υ

V3
V3

−21/2λmin
ε4

N(s) × 1 − Υ
V3

1/2

V3
1/2

(83)

where

Υ = V0 + V2 + (1/2)ξTξ + (1/2θ1)Ω
~ 2

+(1/2θ2)tr(W
~ TW

~ ) + (1/2θ3)η2,
(Υ/V3) < 1, and (Υ/V3)1/2 < 1.

(84)

Define

χ0 = 1/2, χ1 = 2λmin(ε3 − I3) 1 − Υ
V3

and χ2 = 21/2λmin

ε4

N(s) 1 − Υ
V3

1/2
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then,

V̇3 + χ1V3 + χ2V3
χ0 ≤ 0 (85)

and the convergence time is given as:

T2 ≤ 1
χ1(1 − χ0)

ln χ1V3
1 − χ0(s0) + χ2

χ2
(86)

The proof of the case when ∥ ξ ∥ < δk is similar to the above
case. Therefore, the faulty closed-loop attitude system can track the
desired attitude in finite time. This completes the proof.

 
Remark 10: Compared with the existing fault-tolerant attitude

tracking controller design [1, 4, 24, 25], the fault-tolerant attitude
tracking controller of this paper compensates the actuator by using
accurate information from the FE observer, which greatly improves
FTC performance. In addition, a NN algorithm for fault-tolerant
attitude tracking controller is presented to compensate for
uncertainties and external disturbances to better achieve desired
tracking performance. In this case, this paper relaxed the

hypothesis that the perturbation has a known upper bound in [1, 4,
24, 25].

 
Remark 11: Although the fast terminal sliding mode surface

(FTSM) S = Ẋ + K1X + K2XR1/R2(K1 > 0, K2 > 0) in [27] provides
fast convergence when the spacecraft attitude is equilibrium, it
cannot avoid singularity. In [21], an integral sliding mode fault-
tolerant controller is proposed to deal with faults with matched
uncertainties, unmatched uncertainties, and input saturation, but its
convergence rate is slow and does not achieve attitude tracking in
av finite time. Compared with the above references, this paper
designed a fast NTSM surface as shown in (63), which ensures that
the convergence rate is faster than the traditional TSM and avoid
the singularity. Therefore, it can improve the transient performance
of the rigid spacecraft attitude system.

5 Numerical simulation
To verify the effectiveness and performance of the proposed FTC
strategy, we select a finite time fault-tolerant attitude tracking
controller (71) as numerical simulation. The physical parameters of
the rigid spacecraft attitude system are listed in this section.

J =
30 5.3 6.4
5.3 27 10
6.4 10 19

kg ⋅ m2 D =

1 0 0 1
3

0 1 0 1
3

0 0 1 1
3

The inertial uncertainty △ J is proposed as

△ J = diag{sin(0.1t), 2sin(0.2t), sin(0.3t)}

and the external disturbances vector is chosen as
Td = 0.1[sin(t) + 1, 3sin(t) + 1, 5sin(t) + 1]TN ⋅ m. The initial
attitude of the rigid spacecraft is σ(0) = [ − 0.8, 0.3, 0.5]T, with an
initial angular velocity of ω(0) = [0.5, − 0.6, 0.4]T. The desired
attitude angle is selected as σd = [0.3sin(t); 0.1sin(2t); 0.2sin(t)]T.

In this article, it is assumed that there are four RWs used for the
spacecraft attitude control. The actuator saturation is addressed in
the position, namely, the maximum torque of each actuator is
constrained to be the value of 5.0N ⋅ m. The actuator fault scenario
used in the simulation is described as follows. The first RW
decreases 50% control effectiveness after t = 10 s, the second RW
occurs a bias fault u f 2 = 0.06 N ⋅ m after t = 10 s, the third RW and
the fourth RW work normal.

The observer gains were ultimately chosen as
Λ = 5diag{1, 1, 1}, γ1 = 0.5, γ2 = 1 and γ3 = 0.1. As for the finite
time attitude tracking controller part, the parameters are selected as
k1 = k2 = diag[0.6, 0.6, 0.6], ε3 = ε4 = 1.5diag{1, 1, 1}, α = 20,
P0 = 1, W^ (0) = diag[1, 1, 1], L1 = 0.5, L2 = 1, δm = 0.75,
δn = 0.001, θ1 = 0.1, θ2 = 0.3, and θ3 = 0.01.

We first present the simulation results. Fig. 2 gives the curves of
attitude angle in [4] for the healthy closed-loop attitude system of
rigid spacecraft, and the input torque curve is depicted in Fig. 3. It
can be seen that the closed-loop attitude system in actuator fault
free case has satisfactory tracking performance. Fig. 4 gives the
curves of attitude angle under the actuator faults in [4]. Fig. 5 gives
the actual control input torque curve under actuator faults. Fig. 6
portrays given the estimation of the actuator loss of effectiveness
fault e1 and the estimation of additive bias fault effect of u f 2, it
illustrates that the proposed adaptive sliding mode observer can
successfully estimate the actuator faults. Fig. 7 depicts curves of
attitude angle by using the NFTSM control law and illustrates that
the control input is maintained within the defined constraint
uci < 2 N ⋅ m. NFTSM control law successfully eliminates the
fault effect and ensures the tracking performance in finite time. Fig.
8 shows the attitude control performance with the application of
the FTC in the given an actuator loss of effectiveness fault, a bias

Fig. 2  The attitude angle in a healthy case under the tracking scheme in
[4]

 

Fig. 3  The control input torque in a healthy case under the tracking
scheme [4]

 

Fig. 4  The attitude angle in a faulty case under the tracking scheme in [4]
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fault and actuator saturation. It can see clearly that the proposed
finite time fault-tolerant attitude tracking controller (67) has
accomplished the attitude tracking manoeuver.

Table 1 presents the results on the comparison of the FTC law
in [4] with NFTSM control law in this paper. As mentioned in

Table 1 and illustrated in Figs. 2–5, the FTC law guarantees the
steady precision in 0.008, with the convergence time being 36 s.
The analysis of the comparison results shows that the NFTSM
control laws in this paper need less time to track the desired
attitude than FTC laws [4] and has higher steady precision.

6 Conclusion
In this study, an integrated FE/FTC strategy is developed for a rigid
spacecraft attitude system with inertia uncertainties, external
disturbances, input saturation and different type multiple actuator
faults. The BF is used to eliminate the effects of inertia
uncertainties and disturbances in sliding mode FE observer. Based
on the FE information, by using NFTSM techniques and
introducing a dynamic auxiliary system, a finite time fault-tolerant
attitude stabilisation controller and a finite time fault-tolerant
attitude tracking controller are designed to accurately compensate
for the multiple actuator faults and avoid actuator saturation.
Furthermore, to achieve the desirable FTC performance, a NN
algorithm is introduced into two fault-tolerant controllers, such that
no longer require the prior knowledge of uncertainties and external
disturbances. In addition, the integrated FE/FTC strategy in this
paper has a simple structure and be easily implemented on other
uncertain non-linear systems such as robotic manipulator, aircraft
etc.
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