
A Comprehensive Introduction
to Object-Oriented Programming
with JavaTM

C.Thomas Wu
Naval Postgraduate School

wu23399_fm.qxd 1/10/07 11:53 Page i

A COMPREHENSIVE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING WITH JAVA

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas,
New York, NY 10020. Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this
publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network
or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside
the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9 8 7

ISBN 978–0–07–352339–2
MHID 0–07–352339–9

Publisher: Alan R. Apt
Executive Marketing Manager: Michael Weitz
Senior Project Manager: Sheila M. Frank
Lead Production Supervisor: Sandy Ludovissy
Associate Media Producer: Christina Nelson
Designer: Rick D. Noel
Cover Designer: Elise Lansdon
(USE) Cover Image: breaking wave on foaming ocean surface, ®Ron Dahlquist/Getty Images
Compositor: ICC Macmillan Inc.
Typeface: 10.5/12 Times Roman
Printer: R. R. Donnelley Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Wu, C. Thomas.
A comprehensive introduction to object-oriented programming with Java / C. Thomas

Wu. – 1st ed.
p. cm.

ISBN 978–0–07–352339–2 — ISBN 0–07–352339–9
1. Object-oriented programming (Computer science) 2. Java (Computer program
language) I. Title.

QA76.64.W77 2008
005.1�17–dc22

2006048064

www.mhhe.com

wu23399_fm.qxd 1/10/07 11:53 Page ii

http://www.mhhe.com

To my family

wu23399_fm.qxd 1/10/07 11:53 Page iii

wu23399_fm.qxd 1/10/07 11:53 Page iv

v

Preface xiii

Key Differences from the Standard Edition xiii

Book Organization xiv

Hallmark Features of the Text xviii

0 Introduction to Computers and
Programming Languages 1

0.1 A History of Computers 2

0.2 Computer Architecture 4

0.3 Programming Languages 11

0.4 Java 12

1 Introduction to Object-Oriented Programming and
Software Development 15

1.1 Classes and Objects 16

1.2 Messages and Methods 18

1.3 Class and Instance Data Values 20

1.4 Inheritance 23

1.5 Software Engineering and Software
Life Cycle 24

C o n t e n t s

wu23399_fm.qxd 1/10/07 11:53 Page v

2 Getting Started with Java 29

2.1 The First Java Program 30

2.2 Program Components 39

2.3 Edit-Compile-Run Cycle 49

2.4 Sample Java Standard Classes 52

2.5 Sample Development 67

3 Numerical Data 81

3.1 Variables 82

3.2 Arithmetic Expressions 90

3.3 Constants 95

3.4 Displaying Numerical Values 97

3.5 Getting Numerical Input 103

3.6 The Math Class 109

3.7 Random Number Generation 113

3.8 The GregorianCalendar Class 115

3.9 Sample Development 120

3.10 Numerical Representation (Optional) 131

4 Defining Your Own Classes—Part 1 145

4.1 First Example: Defining and Using a Class 146

4.2 Second Example: Defining and Using Multiple Classes 156

4.3 Matching Arguments and Parameters 160

4.4 Passing Objects to a Method 162

4.5 Constructors 167

4.6 Information Hiding and Visibility Modifiers 172

4.7 Class Constants 175

4.8 Local Variables 183

4.9 Calling Methods of the Same Class 185

4.10 Changing Any Class to a Main Class 189

4.11 Sample Development 190

vi Contents

wu23399_fm.qxd 1/10/07 11:53 Page vi

Contents vii

5 Selection Statements 213

5.1 The if Statement 214

5.2 Nested if Statements 225

5.3 Boolean Expressions and Variables 231

5.4 Comparing Objects 239

5.5 The switch Statement 244

5.6 Drawing Graphics 248

5.7 Enumerated Constants 258

5.8 Sample Development 264

6 Repetition Statements 295

6.1 The while Statement 296

6.2 Pitfalls in Writing Repetition Statements 305

6.3 The do–while Statement 311

6.4 Loop-and-a-Half Repetition Control 315

6.5 The for Statement 319

6.6 Nested for Statements 324

6.7 Formatting Output 326

6.8 Loan Tables 331

6.9 Estimating the Execution Time 334

6.10 Recursive Methods (Optional) 338

6.11 Sample Development 343

7 Defining Your Own Classes—Part 2 365

7.1 Returning an Object from a Method 366

7.2 The Reserved Word this 370

7.3 Overloaded Methods and Constructors 378

7.4 Class Variables and Methods 383

wu23399_fm.qxd 1/10/07 11:53 Page vii

viii Contents

7.5 Call-by-Value Parameter Passing 387

7.6 Organizing Classes into a Package 394

7.7 Using Javadoc Comments for Class Documentation 395

7.8 The Complete Fraction Class 400

7.9 Sample Development 410

8 Exceptions and Assertions 437

8.1 Catching Exceptions 438

8.2 Throwing Exceptions and Multiple catch Blocks 445

8.3 Propagating Exceptions 450

8.4 Types of Exceptions 458

8.5 Programmer-Defined Exceptions 461

8.6 Assertions 463

8.7 Sample Development 469

9 Characters and Strings 487

9.1 Characters 488

9.2 Strings 491

9.3 Pattern Matching and Regular Expression 502

9.4 The Pattern and Matcher Classes 509

9.5 Comparing Strings 513

9.6 StringBuffer and StringBuilder 515

9.7 Sample Development 521

10 Arrays and Collections 543

10.1 Array Basics 544

10.2 Arrays of Objects 555

10.3 The For-Each Loop 565

wu23399_fm.qxd 1/10/07 11:53 Page viii

Contents ix

10.4 Passing Arrays to Methods 569

10.5 Two-Dimensional Arrays 576

10.6 Lists and Maps 583

10.7 Sample Development 596

11 Sorting and Searching 619

11.1 Searching 620

11.2 Sorting 624

11.3 Heapsort 632

11.4 Sample Development 645

12 File Input and Output 669

12.1 File and JFileChooser Objects 670

12.2 Low-Level File I/O 679

12.3 High-Level File I/O 684

12.4 Object I/O 693

12.5 Sample Development 700

13 Inheritance and Polymorphism 713

13.1 A Simple Example 714

13.2 Defining Classes with Inheritance 717

13.3 Using Classes Effectively with Polymorphism 721

13.4 Inheritance and Member Accessibility 724

13.5 Inheritance and Constructors 729

13.6 Abstract Superclasses and Abstract Methods 733

13.7 Inheritance versus Interface 738

13.8 Sample Development 739

wu23399_fm.qxd 1/12/07 13:15 Page ix

x Contents

14 GUI and Event-Driven Programming 765

14.1 Simple GUI I/O with JOptionPane 768

14.2 Customizing Frame Windows 771

14.3 GUI Programming Basics 777

14.4 Text-Related GUI Components 787

14.5 Layout Managers 798

14.6 Effective Use of Nested Panels 808

14.7 Other GUI Components 817

14.8 Menus 835

14.9 Handling Mouse Events 839

15 Recursive Algorithms 859

15.1 Basic Elements of Recursion 860

15.2 Directory Listing 861

15.3 Anagram 863

15.4 Towers of Hanoi 866

15.5 Quicksort 868

15.6 When Not to Use Recursion 873

16 Memory Allocation Schemes and
Linked Data Structures 879

16.1 Contiguous Memory Allocation Scheme 881

16.2 Noncontiguous Memory Allocation Scheme 886

16.3 Manipulating Linked Lists 890

16.4 Linked Lists of Objects 903

16.5 Sample Development 908

wu23399_fm.qxd 1/10/07 11:53 Page x

Contents xi

17 Generics and Type Safety 945

17.1 Generic Classes 946

17.2 Generics and Collections 961

17.3 Generics, Inheritance, and Java Interface 969

17.4 Additional Topics and Pitfalls 974

18 List ADT 981

18.1 The List ADT 982

18.2 The List Interface 988

18.3 The Array Implementation of the List ADT 992

18.4 The Linked-List Implementation
of the List ADT 1001

18.5 The Linked Implementation
with the Head Node 1018

18.6 The Iterator Design Pattern 1022

18.7 Sample Development 1027

19 Stack ADT 1035

19.1 The Stack ADT 1036

19.2 The Stack Interface 1040

19.3 The Array Implementation 1042

19.4 The Linked-List Implementation 1047

19.5 Implementation Using NPSList 1052

19.6 Sample Applications: Matching HTML Tags 1053

19.7 Sample Applications: Solving
a Maze with Backtracking 1060

wu23399_fm.qxd 1/10/07 11:53 Page xi

xii Contents

20 Queue ADT 1069

20.1 The Queue ADT 1070

20.2 The Queue Interface 1073

20.3 The Array Implementation 1075

20.4 The Linked-List Implementation 1082

20.5 Implementation Using NPSList 1088

20.6 Priority Queue 1089

Appendix A 1099

Appendix B 1107

Appendix C 1133

Appendix D 1155

Index 1163

wu23399_fm.qxd 1/10/07 11:53 Page xii

xiii

P r e f a c e

This book is an in-depth introduction to object-oriented programming using
the Java programming language. In addition to covering traditional topics for a CS1
course, some of the more advanced topics such as recursion and linked lists are in-
cluded to provide a comprehensive coverage of beginning to intermediate-level ma-
terials. There are more materials in the book than what are normally covered in a
typical CS1 course. An instructor may want to teach some of the chapters on data
structures in an advanced CS1 course. Topics covered in Chapters 16 to 20 are also
suitable for use in a CS2 course.

Key Differences from the Standard Edition
This comprehensive edition is based on An Introduction to Object-Oriented Pro-
gramming with Java, Fourth Edition. The key differences between this comprehen-
sive version and the fourth edition standard version are as follows:

1. Data Structures Chapters. Chapter 16 covers topics on managing linked
nodes. Using this as the foundation, Chapters 18 through 20 present three ab-
stract data types (ADTs) List, Stack, and Queue, respectively. For all three
ADTs, both array-based and linked-list implementations are shown, and their
relative advantages and disadvantages are discussed.

2. More Discussion on Java 5.0 Features. Many of the new Java 5.0 features
are explained and used in the sample programs. They include the enumerator
type, the for-each loop construct, auto boxing and unboxing, and the generics.
One complete chapter (Chapter 17) is dedicated to the generics.

3. Exclusive Use of Console Input and Output. All the GUI related topics,
including the JOptionPane class, are moved to Chapter 14. Sample programs
before Chapter 14 use the standard console input (Scanner) and output
(System.out). Those who want to use JOptionPane for simple input and output
can do so easily by covering Section 14.1 before Chapter 3.

wu23399_fm.qxd 1/10/07 11:53 Page xiii

xiv Preface

Book Organization
There are 21 chapters in this book, numbered from 0 to 20. The first 11 chapters
cover the core topics that provide the fundamentals of programming. Chapters 11 to
15 cover intermediate-level topics such as sorting, searching, recursion, inheritance,
polymorphism, and file I/O. And Chapters 16 to 20 cover topics related to data
structures. There are more than enough topics for one semester. After the first
11 chapters (Ch 0 to Ch 10), instructors can mix and match materials from Chapters 11
to 20 to suit their needs. We first show the dependency relationships among the
chapters and then provide a brief summary of each chapter.

Chapter Dependency
For the most part, chapters should be read in sequence, but some variations are
possible, especially with the optional chapters. Here’s a simplified dependency
graph:

0

1

2

3

4

5

6

7

8 9 10

1514*131211

18

19 20

17

16
*Note: Some examples use arrays,
 but the use of arrays is not an
 integral part of the examples.
 These examples can be modified
 to those that do not use arrays.
 Many topics from the early part
 of the chapter can be introduced
 as early as after Chapter 2.

wu23399_fm.qxd 1/10/07 11:53 Page xiv

Preface xv

Brief Chapter Summary
Here is a short description of each chapter:

• Chapter 0 is an optional chapter. We provide background information on
computers and programming languages. This chapter can be skipped or as-
signed as an outside reading if you wish to start with object-oriented pro-
gramming concepts.

• Chapter 1 provides a conceptual foundation of object-oriented programming.
We describe the key components of object-oriented programming and illus-
trate each concept with a diagrammatic notation using UML.

• Chapter 2 covers the basics of Java programming and the process of editing,
compiling, and running a program. From the first sample program presented in
this chapter, we emphasize object-orientation. We will introduce the standard
classes String, Date, and SimpleDateFormat so we can reinforce the notion of
object declaration, creation, and usage. Moreover, by using these standard
classes, students can immediately start writing practical programs.We describe
and illustrate console input with System.in and the new Scanner class and output
with System.out.

• Chapter 3 introduces variables, constants, and expressions for manipulating
numerical data. We explain the standard Math class from java.lang and
introduce more standard classes (GregorianCalendar and DecimalFormat) to
continually reinforce the notion of object-orientation. We describe additional
methods of the Scanner class to input numerical values. Random number
generation is introduced in this chapter. The optional section explains how the
numerical values are represented in memory space.

• Chapter 4 teaches the basics of creating programmer-defined classes. We
keep the chapter accessible by introducting only the fundamentals with illus-
trative examples. The key topics covered in this chapter are constructors, vis-
ibility modifiers (public and private), local variables, and passing data to
methods. We provide easy-to-grasp illustrations that capture the essence of
the topics so the students will have a clear understanding of them.

• Chapter 5 explains the selection statements if and switch. We cover boolean
expressions and nested-if statements. We explain how objects are compared
by using equivalence (==) and equality (the equals and compareTo methods).
We use the String and the programmer-defined Fraction classes to make the
distinction between the equivalence and equality clear. Drawing 2-D graphics
is introduced, and a screensaver sample development program is developed.
We describe the new Java 5.0 feature called enumerated type in this chapter.

• Chapter 6 explains the repetition statements while, do–while, and for. Pitfalls
in writing repetition statements are explained. One of the pitfalls to avoid is
the use of float or double for the data type of a counter variable. We illustrate
this pitfall by showing a code that will result in infinite loop. Finding the great-
est common divisor of two integers is used as an example of a nontrivial loop
statement. We show the difference between the straightforward (brute-force)

wu23399_fm.qxd 1/10/07 11:54 Page xv

xvi Preface

and the clever (Euclid’s) solutions. We introduce the Formatter class (new to
Java 5.0) and show how the output can be aligned nicely. The optional last sec-
tion of the chapter introduces recursion as another technique for repetition.
The recursive version of a method that finds the greatest common divisor of
two integers is given.

• Chapter 7 is the second part of creating programmer-defined classes. We
introduce new topics related to the creation of programmer-defined classes
and also repeat some of the topics covered in Chapter 4 in more depth. The
key topics covered in this chapter are method overloading, the reserved
word this, class methods and variables, returning an object from a method,
and pass-by-value parameter passing. As in Chapter 4, we provide many
lucid illustrations to make these topics accessible to beginners. We use the
Fraction class to illustrate many of these topics, such as the use of this and
class methods. The complete definition of the Fraction class is presented in
this chapter.

• Chapter 8 teaches exception handling and assertions. The focus of this chap-
ter is the construction of reliable programs. We provide a detailed coverage of
exception handling in this chapter. We introduce an assertion and show how it
can be used to improve the reliability of finished products by catching logical
errors early in the development.

• Chapter 9 covers nonnumerical data types: characters and strings. Both the
String and StringBuffer classes are explained in the chapter. Another string
class named StringBuilder (new to Java 5.) is briefly explained in this chapter.
An important application of string processing is pattern matching. We describe
pattern matching and regular expression in this chapter. We introduce the
Pattern and Matcher classes and show how they are used in pattern matching.

• Chapter 10 teaches arrays. We cover arrays of primitive data types and of ob-
jects. An array is a reference data type in Java, and we show how arrays are
passed to methods. We describe how to process two-dimensional arrays and
explain that a two-dimensional array is really an array of arrays in Java. Lists
and maps are introduced as a more general and flexible way to maintain a col-
lection of data. The use of ArrayList and HashMap classes from the java.util
package is shown in the sample programs. Also, we show how the WordList
helper class used in Chapter 9 sample development program is implemented
with another map class called TreeMap.

• Chapter 11 presents searching and sorting algorithms. Both N2 and Nlog2N
sorting algorithms are covered. The mathematical analysis of searching and
sorting algorithms can be omitted depending on the students’ background.

• Chapter 12 explains the file I/O. Standard classes such as File and JFile-
Chooser are explained. We cover all types of file I/O, from a low-level byte
I/O to a high-level object I/O. We show how the file I/O techniques are used
to implement the helper classes—Dorm and FileManager—in Chapter 8 and 9
sample development programs. The use of the Scanner class for inputting data
from a textfile is also illustrated in this chapter.

wu23399_fm.qxd 1/10/07 11:54 Page xvi

Preface xvii

• Chapter 13 discusses inheritance and polymorphism and how to use them ef-
fectively in program design. The effect of inheritance for member accessibil-
ity and constructors is explained. We also explain the purpose of abstract
classes and abstract methods.

• Chapter 14 covers GUI and event-driven programming. Only the Swing-
based GUI components are covered in this chapter. We show how to use the
JOptionPane class for a very simple GUI-based input and output. GUI com-
ponents introduced in this chapter include JButton, JLabel, ImageIcon,
JTextField, JTextArea, and menu-related classes. We describe the effective use
of nested panels and layout managers. Handling of mouse events is described
and illustrated in the sample programs. Those who do not teach GUI can skip
this chapter altogether. Those who teach GUI can introduce the beginning part
of the chapter as early as after Chapter 2.

• Chapter 15 covers recursion. Because we want to show the examples where
the use of recursion really shines, we did not include any recursive algorithm
(other than those used for explanation purposes) that really should be written
nonrecursively.

• Chapter 16 covers contiguous and noncontiguous memory allocation schemes
and introduces the concept of linked lists. Ample examples are provided to
illustrate the manipulation of linked lists of primitive data types and linked
lists of objects. This chapter lays the necessary foundation for the students to
learn different techniques for implementing the abstract data types covered in
Chapters 18 through 20.

• Chapter 17 covers new Java 5.0 generics in detail. The chapter describes how
generic classes are defined and how the type safety is supported by generics.
A concrete example of using generics is shown by defining a simple linked list
with generic nodes.

• Chapter 18 introduces the concept of abstract data types (ADT) and covers
the List ADT. Key features of the List ADT are explained and two implemen-
tations using an array and a linked list are shown. The iterator pattern to tra-
verse the elements in the List ADT is introduced.

• Chapter 19 covers the Stack ADT. Key features of the Stack ADT are ex-
plained and two implementations using an array and a linked list are shown.
Sample applications that use stacks are described.

• Chapter 20 covers the Queue ADT. Key features of the Stack ADT are ex-
plained and two implementations using an array and a linked list are shown.
A special type of queue called a priority queue is also intoduced in this
chapter.

wu23399_fm.qxd 1/10/07 11:54 Page xvii

xviii Preface

Development Exercises
give students an opportunity
to practice incremental
development.

Hallmark Features of the Text

Problem Solving

Printing the Initials

Now that we have acquired a basic understanding of Java application programs, let’s
write a new application.We will go through the design, coding, and testing phases of the
software life cycle to illustrate the development process. Since the program we develop
here is very simple, we can write it without really going through the phases. However, it is
extremely important for you to get into a habit of developing a program by following the
software life cycle stages. Small programs can be developed in a haphazard manner, but
not large programs.We will teach you the development process with small programs first,
so you will be ready to use it to create large programs later.

We will develop this program by using an incremental development technique,
which will develop the program in small incremental steps. We start out with a bare-
bones program and gradually build up the program by adding more and more code to
it. At each incremental step, we design, code, and test the program before moving on
to the next step. This methodical development of a program allows us to focus our at-
tention on a single task at each step, and this reduces the chance of introducing errors
into the program.

Problem Statement

We start our development with a problem statement. The problem statement for our
sample programs will be short, ranging from a sentence to a paragraph, but the problem
statement for complex and advanced applications may contain many pages. Here’s the
problem statement for this sample development exercise:

Write an application that asks for the user’s first, middle, and last names and
replies with the user’s initials.

Overall Plan

Our first task is to map out the overall plan for development. We will identify classes nec-
essary for the program and the steps we will follow to implement the program.We begin
with the outline of program logic. For a simple program such as this one, it is kind of obvi-
ous; but to practice the incremental development, let’s put down the outline of program
flow explicitly.We can express the program flow as having three tasks:

1. Get the user’s first, middle, and last names.

2. Extract the initials to formulate the monogram.

3. Output the monogram.

Having identified the three major tasks of the program, we will now identify the
classes we can use to implement the three tasks. First, we need an object to handle the
input. At this point, we have learned about only the Scanner class, so we will use it
here. Second, we need an object to display the result. Again, we will use System.out, as
it is the only one we know at this point for displaying a string value. For the string

Sample Development2.5 Sample Development

program
tasks

Sample Development Programs
Most chapters include a sample
development section that describes the
process of incremental development.

Development Exercises
For the following exercises, use the incremental development methodology to
implement the program. For each exercise, identify the program tasks, create a
design document with class descriptions, and draw the program diagram. Map
out the development steps at the start. Present any design alternatives and
justify your selection. Be sure to perform adequate testing at the end of each
development step.

8. In the sample development, we developed the user module of the keyless
entry system. For this exercise, implement the administrative module that
allows the system administrator to add and delete Resident objects and
modify information on existing Resident objects. The module will also allow
the user to open a list from a file and save the list to a file. Is it proper to
implement the administrative module by using one class? Wouldn’t it be a
better design if we used multiple classes with each class doing a single,
well-defined task?

9. Write an application that maintains the membership lists of five social clubs
in a dormitory. The five social clubs are the Computer Science Club, Biology
Club, Billiard Club, No Sleep Club, and Wine Tasting Club. Use the Dorm

wu23399_fm.qxd 1/10/07 11:54 Page xviii

Preface xix

Object-Oriented Approach
We take the object-first approach to teaching object-oriented programming with emphasis
on proper object-oriented design.The concept of objects is clearly illustrated from the very
first sample program.

/*

Chapter 2 Sample Program: Displaying a Window

File: Ch2Sample1.java

*/

import javax.swing.*;

class Ch2Sample1 {

public static void main(String[] args) {

JFrame myWindow;

myWindow = new JFrame();

myWindow.setSize(300, 200);
myWindow.setTitle("My First Java Program");
myWindow.setVisible(true);

}
}

Dorm

Door

ResidentUser module

Dorm Resident

A helper class
provided to us

A class we
implement

One or more classes
we implement

Administrative
module

Figure 8.8 Program diagrams for the user and administrative modules. Notice the same Dorm and
Resident classes are used in both programs. User and administrative modules will include one or more
classes (at least one is programmer-defined).

Good practices on object-
oriented design are
discussed throughout
the book and illustrated
through numerous
sample programs.

wu23399_fm.qxd 1/10/07 11:55 Page xix

xx Preface

Illustrative Diagrams
Illustrative diagrams are used to explain all key concepts of programming such as the
difference between object declaration and creation, the distinction between the primitive
data type and the reference data type, the call-by-value parameter passing, inheritance, and
many others.

Numerical Data Object

number1 = 237;
number2 = number1;

int number1, number2;

alan = new Professor();
turing = alan;

Professor alan, turing;

number2

number1

turing

alan

number2

number1

turing

alan

number1 = 237;

int number1, number2;

alan = new Professor();

Professor alan, turing;

number2 = number1; turing = alan;

:Professor

:Professor

number2

number1

turing

alan

number1 = 237;

int number1, number2;

alan = new Professor();

Professor alan, turing;

number2 = number1; turing = alan;

237

237

237

Figure 3.3 An effect of assigning the content of one variable to another.

Figure 18.2 Sample version 2 add operations on myList.

Before

After

Before

After

“cat” “gnu” “ape” “dog” “bee”

0 1 2 3 4

“cat”
0

“ape”
1

“dog”
2

“bee”
3

add(1, “gnu”)

throws
<index-out-of-bounds-exception>add(5, “gnu”)

myList

“cat”
0

“ape”
1

“dog”
2

“bee”
3

myList

myList

myList

“cat”
0

“ape”
1

“dog”
2

“bee”
3

No structural
change to the list

Lucid diagrams are used effectively to explain
data structures and abstract data types.

wu23399_fm.qxd 1/10/07 11:55 Page xx

Preface xxi

Student Pedagogy

Always define a constructor and initialize data members fully in the
constructor so an object will be created in a valid state.

It is not necessary to create an object for every variable we use. Many novice pro-
grammers often make this mistake. For example, we write

Fraction f1, f2;
f1 = new Fraction(24, 36);
f2 = f1.simplify();

We didn’t write

Fraction f1, f2;
f1 = new Fraction(24, 36);
f2 = new Fraction(1, 1); //not necessary

f2 = f1.simplify();

because it is not necessary.The simplify method returns a Fraction object, and in
the calling program, all we need is a name we can use to refer to this returned
Fraction object. Don’t forget that the object name (variable) and the actual object
instance are two separate things.

We can turn our simulation program into a real one by replacing the Door
class with a class that actually controls the door. Java provides a mechanism
called Java Native Interface (JNI) which can be used to embed a link to a low-
level device driver code, so calling the open method actually unlocks the
door.

1. What will be displayed on the console window when the following code is
executed and the user enters abc123 and 14?

Scanner scanner = new Scanner(System.in);
try {

int num1 = scanner.nextInt();

System.out.println("Input 1 accepted");

int num2 = scanner.nextInt();

System.out.println("Input 2 accepted");

} catch (InputMismatchException e) {

System.out.println("Invalid Entry");
}

List the catch blocks in the order of specialized to more general exception classes.
At most one catch block is executed, and all other catch blocks are ignored.

Design Guidelines
provide tips on good
program design.

Things to Remember
boxes provide tips for
students to remember key
concepts.

Tips, Hints, and Pitfalls
provide important points
for which to watch out.

You Might Want to Know
boxes give students
interesting bits of
information.

Quick Check
exercises at the end of
the sections allow
students to test their
comprehension of
topics.

wu23399_fm.qxd 1/10/07 11:55 Page xxi

xxii Preface

Supplements for Instructors and Students
On-Line Learning Center is located at www.mhhe.com/wu

For Instructors
• Complete set of PowerPoints, including lecture notes and figures.

• Complete solutions for the exercises

• Example Bank—Additional examples, which are searchable by topic, are
provided online in a “bank” for instructors.

• Homework Manager/Test Bank—Conceptual review questions are stored in
this electronic question bank and can be assigned as exam questions or home-
work.

• Online labs which accompany this text, can be used in a closed lab, open lab,
or for assigned programming projects.

wu23399_fm.qxd 1/10/07 11:55 Page xxii

http://www.mhhe.com/wu

Preface xxiii

For Students
• Compiler How Tos provide tutorials on how to get up and running on the

most popular compilers to aid students in using IDEs.

• Interactive Quizzes allow students to test what they learn and get immediate
feedback.

• Source code for all example programs in the book.

• Answers to quick check exercises.

• Glossary of key terms.

• Recent News links relevant to computer science.

• Additional Topics such as more on swing and an introduction to data structures.

Acknowledgments
First, I would like to thank the following reviewers for their comments, suggestions,
and encouragement.

Wu Focus Group—Jackson Hole, WY
Elizabeth Adams, James Madison University
GianMario Besana, Depaul University
Michael Buckley, State University of New York, Buffalo
James Cross, Auburn University
Priscilla Dodds, Georgia Perimeter College
Christopher Eliot, University of Massachusetts-Amherst
Joanne Houlahan, John Hopkins University
Len Myers, California Polytechnic State University, San Luis Obispo
Hal Perkins, University of Washington
William Shea, Kansas State University
Marge Skubic, University of Missouri, Columbia
Bill Sverdlik, Eastern Michigan University
Suzanne Westbrook, University of Arizona

wu23399_fm.qxd 1/10/07 11:55 Page xxiii

xxiv Preface

Reviewers
Ajith, Abraham, Oklahoma State University
Elizabeth Adams, James Madison University
David L. Atkins, University of Oregon
GianMario Besana, DePaul University
Robert P. Burton, Brigham Young University
Michael Buckley, State University of New York, Buffalo
Rama Chakrapani, Tennessee Technological University
Teresa Cole, Boise State University
James Cross, Auburn University
Priscilla Dodds, Georgia Perimeter College
Kossi Delali Edoh, Montclair State University
Christopher Eliot, University of Massachusetts-Amherst
Michael Floeser, Rochester Institute of Technology
Joanne Houlahan, John Hopkins University
Michael N. Huhns, University of South Carolina
Eliot Jacobson, University of California, Santa Barbara
Martin Kendall, Montgomery Community College
Mike Litman, Western Illinois University
Len Myers, California Polytechnic State University, San Luis Obispo
Jun Ni, University of Iowa
Robert Noonan, College of William and Mary
Jason S. O’Neal, Mississippi College
Hal Perkins, University of Washington
Gerald Ross, Lane Community College
William Shea, Kansas State University
Jason John Schwarz, North Carolina State University
Marge Skubic, University of Missouri, Columbia
Bill Sverdlik, Eastern Michigan University
Peter Stanchev, Kettering University
Krishnaprasad Thirunarayan, Wright State University
David Vineyard, Kettering University
Suzanne Westbrook, University of Arizona
Melissa Wiggins, Mississippi College
Zhiguang Xu, Valdosta State University.

The following reviewers have provided feedback on the chapters new to this
comprehensive edition:

Eric Matson, Wright State University
Tim Margush, University of Akron
Roxanne Canosa, Rochester Institute of Technology
Ivan Bajic, San Diego State University
Carolyn Miller, North Carolina State
Sunil Prabhakar, Purdue University
Weining Zhang, University of Texas, San Antonio

wu23399_fm.qxd 1/10/07 11:56 Page xxiv

Preface xxv

Personal Story
In September, 2001, I changed my name for personal reasons. Prof C. Thomas
Wu is now Prof Thomas W. Otani. To maintain continuity and not to confuse peo-
ple, we continue to publish the book under my former name. For those who
care to find out a little about my personal history can do so by visiting my web-
site (www.drcaffeine.com).

wu23399_fm.qxd 1/10/07 11:56 Page xxv

http://www.drcaffeine.com

wu23399_fm.qxd 1/10/07 11:56 Page xxvi

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

1

0
• State briefly a history of computers.

• Name and describe five major components of
the computer.

• Convert binary numbers to decimal numbers
and vice versa.

• State the difference between the low-level and
high-level programming languages.

Introduction to Computers
and Programming
Languages

wu23392_ch00.qxd 12/12/06 17:23 Page 1

2 Chapter 0 Introduction to Computers and Programming Languages

efore we embark on our study of computer programming, we will present some
background information on computers and programming languages in this optional
chapter. We provide a brief history of computers from the early days to present and
describe the components found in today’s computers. We also present a brief history
of programming languages from low-level machine languages to today’s object-
oriented languages.

0.1 A History of Computers
Humans have evolved from a primitive to a highly advanced society by continually
inventing tools. Stone tools, gunpowder, wheels, and other inventions have changed
the lives of humans dramatically. In recent history, the computer is arguably the
most important invention. In today’s highly advanced society, computers affect our
lives 24 hours a day: class schedules are formulated by computers, student records
are maintained by computers, exams are graded by computers, dorm security sys-
tems are monitored by computers, and numerous other functions that affect us are
controlled by computers.

Although the first true computer was invented in the 1940s, the concept of a
computer is actually more than 160 years old. Charles Babbage is credited with
inventing a precursor to the modern computer. In 1823 he received a grant from
the British government to build a mechanical device he called the Difference
Engine, intended for computing and printing mathematical tables. The device was
based on rotating wheels and was operated by a single crank. Unfortunately, the
technology of the time was not advanced enough to build the device. He ran into
difficulties and eventually abandoned the project.

But an even more grandiose scheme was already with him. In fact, one of the
reasons he gave up on the Difference Engine may have been to work on his new con-
cept for a better machine. He called his new device the Analytical Engine. This
device, too, was never built. His second device also was ahead of its time; the tech-
nology did not yet exist to make the device a reality. Although never built, the Ana-
lytical Engine was a remarkable achievement because its design was essentially
based on the same fundamental principles of the modern computer. One principle
that stands out was its programmability. With the Difference Engine, Babbage would
have been able to compute only mathematical tables, but with the Analytical Engine
he would have been able to compute any calculation by inputting instructions on
punch cards. The method of inputting programs to computers on punch cards was
actually adopted for real machines and was still in wide use as late as the 1970s.

The Analytical Engine was never built, but a demonstration program was
written by Ada Lovelace, a daughter of the poet Lord Byron. The programming lan-
guage Ada was named in honor of Lady Lovelace, the first computer programmer.

In the late 1930s John Atanasoff of Iowa State University, with his graduate
student Clifford Berry, built the prototype of the first automatic electronic calculator.

I n t r o d u c t i o n

B

Charles
Babbage

Difference
Engine

Analytical
Engine

Ada Lovelace

wu23392_ch00.qxd 12/12/06 17:23 Page 2

0.1 A History of Computers 3

One innovation of their machine was the use of binary numbers. (We discuss binary
numbers in Sec. 0.2.) At around the same time, Howard Aiken of Harvard University
was working on the Automatic Sequence-Controlled Calculator, known more com-
monly as MARK I, with support from IBM and the U.S. Navy. MARK I was very
similar to the Analytical Engine in design and was described as “Babbage’s dream
come true.”

MARK I was an electromechanical computer based on relays. Mechanical
relays were not fast enough, and MARK I was quickly replaced by machines based
on electronic vacuum tubes. The first completely electronic computer, ENIAC I
(Electronic Numerical Integrator And Calculator), was built at the University of
Pennsylvania under the supervision of John W. Mauchly and J. Presper Eckert.
Their work was influenced by the work of John Atanasoff.

ENIAC I was programmed laboriously by plugging wires into a control
panel that resembled an old telephone switchboard. Programming took an enor-
mous amount of the engineers’ time, and even making a simple change to a pro-
gram was a time-consuming effort. While programming activities were going on,
the expensive computer sat idle. To improve its productivity, John von Neumann
of Princeton University proposed storing programs in the computer’s memory.
This stored program scheme not only improved computation speed but also al-
lowed far more flexible ways of writing programs. For example, because a pro-
gram is stored in the memory, the computer can change the program instructions
to alter the sequence of the execution, thereby making it possible to get different
results from a single program.

We characterized these early computers with vacuum tubes as first-generation
computers. Second-generation computers, with transistors replacing the vacuum
tubes, started appearing in the late 1950s. Improvements in memory devices also
increased processing speed further. In the early 1960s, transistors were replaced by
integrated circuits, and third-generation computers emerged. A single integrated
circuit of this period incorporated hundreds of transistors and made the construction
of minicomputers possible. Minicomputers are small enough to be placed on desk-
tops in individual offices and labs. The early computers, on the other hand, were so
huge that they easily occupied the whole basement of a large building.

Advancement of integrated circuits was phenomenal. Large-scale integrated
circuits, commonly known as computer chips or silicon chips, packed the power
equivalent to thousands of transistors and made the notion of a “computer on a sin-
gle chip” a reality. With large-scale integrated circuits, microcomputers emerged in
the mid-1970s. The machines we call personal computers today are descendants of
the microcomputers of the 1970s. The computer chips used in today’s personal
computers pack the power equivalent to several millions of transistors. Personal
computers are fourth-generation computers.

Early microcomputers were isolated, stand-alone machines. The word per-
sonal describes a machine as a personal device intended to be used by an individual.
However, it did not take long to realize there was a need to share computer resources.
For example, early microcomputers required a dedicated printer. Wouldn’t it make
more sense to have many computers share a single printer? Wouldn’t it also make
sense to share data among computers, instead of duplicating the same data on

MARK I

ENIAC I

stored program

generations of
computers

wu23392_ch00.qxd 12/12/06 17:23 Page 3

individual machines? Wouldn’t it be nice to send electronic messages between the
computers? The notion of networked computers arose to meet these needs.

Computers of all kinds are connected into a network. A network that connects
computers in a single building or in several nearby buildings is called a local-area
network or LAN. A network that connects geographically dispersed computers is
called a wide-area network or WAN. These individual networks can be connected
further to form interconnected networks called internets. The most famous internet
is simply called the Internet. The Internet makes the sharing of worldwide informa-
tion possible and easy. The hottest tool for viewing information on the Internet is a
Web browser. A Web browser allows you to experience multimedia information
consisting of text, audio, video, and other types of information. We will describe
how Java is related to the Internet and Web browsers in Section 0.4.

4 Chapter 0 Introduction to Computers and Programming Languages

network

LAN

WAN

internet

1. Who was the first computer programmer?

2. Who designed the Difference Engine and Analytical Engine?

3. How many generations of computers are there?

0.2 Computer Architecture
A typical computer today has five basic components: RAM, CPU, storage devices,
I/O (input/output) devices, and communication devices. Figure 0.1 illustrates these
five components. Before we describe the components of a computer, we will explain
the binary numbering system used in a computer.

Binary Numbers
To understand the binary number system, let’s first review the decimal number sys-
tem in which we use 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. To represent a number in
the decimal system, we use a sequence of one or more of these digits. The value that
each digit in the sequence represents depends on its position. For example, consider
the numbers 234 and 324. The digit 2 in the first number represents 200, whereas
the digit 2 in the second number represents 20. A position in a sequence has a
value that is an integral power of 10. The following diagram illustrates how the

If you want to learn more about the history of computing, there is a wealth of information
available on the Web.You can start your exploration from

www.yahoo.com/Computers_and_Internet/History
For more information on the pioneers of computers, visit

en.wikipedia.org/wiki/category:Computer_pioneers

wu23392_ch00.qxd 12/12/06 17:23 Page 4

http://www.yahoo.com/Computers_and_Internet/History

0.2 Computer Architecture 5

values of positions are determined:

The value of a decimal number (represented as a sequence of digits) is the sum
of the digits, multiplied by their position values, as illustrated:

� 2 � 102 � 4 � 101 � 8 � 100 � 7 � 10�1

� 2 � 100 � 4 � 10 � 8 � 1 � 7 � 1�10

� 200 � 40 � 8 � 7�10 � 248.7

2

102

4

101

8

100

• 7

10�1

104 103 102 101 100

Decimal
Point

Position Values
10�1 10�2

• • •• • •

10�3

•

Figure 0.1 A simplified view of an architecture for a typical computer.

Output
Devices

Communication
Devices

Input
Devices

RAM

CPU

Storage
Devices

Printer
(output device)

Monitor
(output device)

Main Unit (housing
CPU, RAM, storage
devices, and
communication
devices)

Mouse
(input device)

Keyboard
(input device)

wu23392_ch00.qxd 12/12/06 17:23 Page 5

In the decimal number system, we have 10 symbols, and the position values
are integral powers of 10. We say that 10 is the base or radix of the decimal number
system. The binary number system works the same as the decimal number system
but uses 2 as its base. The binary number system has two digits (0 and 1) called bits,
and position values are integral powers of 2. The following diagram illustrates how
the values of positions are determined in the binary system:

The value of a binary number (represented as a sequence of bits) is the sum of
the bits, multiplied by their position values, as illustrated:

� 1 � 22 � 0 � 21 � 1 � 20 � 1 � 2�1

� 1 � 4 � 0 � 2 � 1 � 1 � 1 � 1�2

� 4 � 0 � 1 � 1�2 � 5.5

So the binary number 101.1 is numerically equivalent to the decimal num-
ber 5.5. This illustration shows how to convert a given binary number to the
decimal equivalent. How about converting a given decimal number to its binary
equivalent?

The following steps show how to convert a decimal number (only the whole
numbers) to the equivalent binary number. The basic idea goes something like
this:

1. Divide the number by 2.

2. The remainder is the bit value of the 20 position.

3. Divide the quotient by 2.

4. The remainder is the bit value of the 21 position.

5. Divide the quotient by 2.

6. The remainder is the bit value of the 22 position.

7. Repeat the procedure until you cannot divide any further, that is, until the
quotient becomes 0.

1

22

0

21

1

20

• 1

2�1

24 23

• • •• • •

22 21 20

Binary
Point

Position Values

•

2�1 2�2 2�3

6 Chapter 0 Introduction to Computers and Programming Languages

base-2
numbers

binary number

bits

binary-to-
decimal
conversion

decimal-to-
binary
conversion

wu23392_ch00.qxd 12/12/06 17:23 Page 6

0.2 Computer Architecture 7

When you pay closer attention to the on/off switch on computers and other
electronic devices, you should notice an icon like this

This is a stylized representation of binary digits 0 and 1.

RAM
Random access memory or RAM is a repository for both program instructions and
data manipulated by the program during execution. RAM is divided into cells,
with each cell having a unique address. Typically, each cell consists of 4 bytes (B),
and a single byte (1 B) in turn consists of 8 bits. Each bit, which can be either on
or off, represents a single binary digit. RAM is measured by the number of bytes
it contains. For example, 128 kilobytes (KB) of RAM contains 128 � 1024 �
131,072 B because 1 KB is equal to 210 � 1024 B. Notice that 1 K is not equal to
103, although 103 � 1000 is a close approximation to 210 � 1024. The first IBM
PC introduced in 1981 came with 16 KB of RAM, and the first Macintosh com-
puter introduced in 1984 came with 128 KB of RAM. In contrast, a typical PC
today has anywhere from 128 MB to 512 MB of RAM. Given that 1 MB is equal
to 1024 KB, we know that 256 MB means 256 � 1024 KB � 262,144 KB �
262,144 � 1024 B � 268,435,456 B.

RAM

byte

The following diagram illustrates the conversion of decimal number 25.

Division Division Division Division Division
#5 #4 #3 #2 #1

24 23 22 21 20

16 � 8 � 0 � 0 � 1 � 25

The binary system is more suitable for computers than the decimal system be-
cause it is far easier to design an electrical device that can distinguish two states
(bits 0 and 1) than 10 states (digits 0 through 9). For example, we can represent 1 by
turning the switch on and 0 by turning the switch off. In a real computer, 0 is repre-
sented by electrical voltage below a certain level and 1 by electrical voltage at or
above this level.

12
2�1�2�5�1�

24

1

6
2�1�1�2�1�

12

0

3
2�1�6�1�

6

0

1
2�1�3�1�

2

1

0
2�1�1�1�

0

1

wu23392_ch00.qxd 12/12/06 17:23 Page 7

CPU
The central processing unit or CPU is the brain of a computer. The CPU is the com-
ponent that executes program instructions by fetching an instruction (stored in
RAM), executing it, fetching the next instruction, executing it, and so on until it en-
counters an instruction to stop. The CPU contains a small number of registers, which
are high-speed devices for storing data or instructions temporarily. The CPU also
contains the arithmetic-logic unit (ALU), which performs arithmetic operations such
as addition and subtraction and logical operations such as comparing two numbers.

CPUs are characterized by their clock speeds. For example, in the Intel
Pentium 200, the CPU has a clock speed of 200 megahertz (MHz). The hertz is a
unit of frequency equal to 1 cycle per second. A cycle is a period of time between
two on states or off states. So 200 MHz equals 200,000,000 cycles per second. The
fastest CPU for commercially available personal computers was around 200 MHz
in 1997 when the first edition of this textbook was published. But by the beginning
of 1998, many vendors started selling 300-MHz machines. And in a mere 6 months,
by the middle of 1998, the top-of-the-line personal computers were 400-MHz ma-
chines. As of this writing in late 2002, we see computers with 2.0-GHz (2000-MHz)
CPU being advertised and sold. The increase of the CPU speed in the last two
decades is truly astonishing. The clock speed of the Intel 8080, the CPU introduced
in 1974 that started the PC revolution, was a mere 2 MHz. In contrast, the clock
speed of the Intel Pentium 4 introduced in 2001 was 2 GHz (2000 MHz). Table 0.1
lists some of the Intel processors.

I/O Devices
Input/output or I/O devices allow communication between the user and the CPU.
Input devices such as keyboards and mice are used to enter data, programs, and
commands in the CPU. Output devices such as monitors and printers are used to
display or print information. Other I/O devices include scanners, bar code readers,
magnetic strip readers, digital video cameras, and musical instrument digital inter-
face (MIDI) devices.

Storage Devices
Storage devices such as disk and tape drives are used to store data and programs. Sec-
ondary storage devices are called nonvolatile memory, while RAM is called volatile
memory. Volatile means the data stored in a device will be lost when the power to the
device is turned off. Being nonvolatile and much cheaper than RAM, secondary stor-
age is an ideal medium for permanent storage of large volumes of data. A secondary
storage device cannot replace RAM, though, because secondary storage is far slower
in data access (getting data out and writing data in) compared to RAM.

The most common storage device today for personal computers is a disk
drive. There are two kinds of disks: hard and floppy (also known as diskettes). Hard
disks provide much faster performance and larger capacity, but are normally not re-
movable; that is, a single hard disk is permanently attached to a disk drive. Floppy
disks, on the other hand, are removable, but their performance is far slower and
their capacity far smaller than those of hard disks. As the standard floppy disks can

8 Chapter 0 Introduction to Computers and Programming Languages

CPU

register

clock speed

I/O devices

nonvolatile and
volatile
memory

wu23392_ch00.qxd 12/12/06 17:23 Page 8

store only up to approximately 1.44 MB, they are becoming less useful in today’s
world of multimegabyte image and sound files. They are fast becoming obsolete,
and hardly anybody uses them anymore. Removable storage media with much
higher capacity such as zip disks (capable of holding 100 to 250 MB of data) re-
placed floppy disks in late 1990s. Computer technology moves so quickly that zip
disks themselves are already becoming obsolete. The most common form of
portable storage medium today (2006) is a compact USB flash drive, whose capac-
ity ranges from 125 MB to 16 GB.

Hard disks can store a huge amount of data, typically ranging from 20 GB
(gigabyte; 1 GB � 1024 MB) to 80 GB for a standard desktop PC in 2002. Portable
and removable hard disk drives, with performance and capacity that rival those of
nonremovable hard disks, are also available, but their use is not widespread.

Compact disks (CDs) are very popular today for storing massive amounts of
data, approximately 700 MB. Many software packages we buy today—computer

0.2 Computer Architecture 9

Ta
b

le
Table 0.1

A table of Intel processors. For some CPUs, several types with different
clock speeds are possible. In such case, only the fastest clock speed is
shown. For more information on Intel CPUs, visit http://www.intel.com.

Date Clock Speed
CPU Introduced (MHz)

4004 11/15/71 0.108

8008 4/1/72 0.200

1970s 8080 4/1/74 2

8088 6/1/79 8

80286 2/1/82 12

1980s 80386SX 6/16/88 16

80486DX 4/10/89 25

Pentium 3/22/93 66

Pentium Pro 11/1/95 200

1990s Pentium II 5/7/97 300

Pentium II Xeon 6/29/98 400

Pentium III 10/25/99 733

Xeon 9/25/01 2000

2000s

Pentium 4 4/27/01 2000

Itanium 2 7/8/02 1000

Pentium 4 Extreme 2/2/04 3400

Edition

Core 2 Extreme 7/27/06 3200

wu23392_ch00.qxd 12/12/06 17:23 Page 9

http://www.intel.com

games, word processors, and others—come with a single CD. Before the CD became
a popular storage device for computers, some software came with more than 20 floppy
diskettes. Because of the massive storage capacity of the CD, most computer vendors
eliminated printed manuals altogether by putting the manuals on the CD.

10 Chapter 0 Introduction to Computers and Programming Languages

Communication Devices
A communication device connects the personal computer to an internet. The most
common communication device for computers at home and in small offices is the
modem. A modem, which stands for modulator-demodulator, is a device that con-
verts analog signals to digital and digital signals to analog. By using a modem, a
computer can send to and receive data from another computer over the phone line.
The most critical characteristic of a modem is its transmission speed, which is mea-
sured in bits per second (bps). A typical speed for a modem is 56,000 bps, com-
monly called a 56K modem. Under an ideal condition (no line noise or congestion),
a 56K modem can transfer a 1 MB file in about 21⁄2 minutes. Frequently, though, the
actual transfer rate is much lower than the possible maximum. So-called DSL and
cable modems are not truly modems because they transfer data strictly in digital
mode, which allows for much faster connection speeds of 144K or above. High-
speed satellite connection to the Internet is also available today.

A communication device for connecting a computer to a LAN is a network
interface card (NIC). A NIC can transfer data at a much faster rate than the fastest
modem. For instance, a type of NIC called 10BaseT can transfer data at the rate
of 10 Mbps over the network. Traditional networks are connected, or wired, by the
cables. Increasingly, networks are connected wirelessly, where data are carried over
radio waves. Wireless networking is called WiFi or 802.11 networking. Today you
will find wireless networking almost universally available at airports and hotels.

communication
device

1. Name five major components of a computer.

2. What is the difference between volatile and nonvolatile memory?

3. What does the acronym CPU stand for?

4. How many bytes does the 64 KB RAM have?

5. Which device connects a computer to the Internet using a phone line?

Today we see more and more companies are even eliminating CDs and promoting
“boxless” online distribution of software. With this scheme, we go to their websites
and download the software, after paying for it with our credit card.Maybe someday
we may be able to buy textbooks in the same manner and stop carrying 20 lb of
dead trees in our backpacks.

wu23392_ch00.qxd 12/12/06 17:23 Page 10

0.3 Programming Languages
Programming languages are broadly classified into three levels: machine languages,
assembly languages, and high-level languages. Machine language is the only pro-
gramming language the CPU understands. Each type of CPU has its own machine
language. For example, the Intel Pentium and Motorola PowerPC understand differ-
ent machine languages. Machine-language instructions are binary-coded and very
low level—one machine instruction may transfer the contents of one memory loca-
tion into a CPU register or add numbers in two registers. Thus we must provide many
machine-language instructions to accomplish a simple task such as finding the aver-
age of 20 numbers. A program written in machine language might look like this:

10110011 00011001
01111010 11010001 10010100
10011111 00011001
01011100 11010001 10010000
10111011 11010001 10010110

One level above machine language is assembly language, which allows
“higher-level” symbolic programming. Instead of writing programs as a sequence
of bits, assembly language allows programmers to write programs by using sym-
bolic operation codes. For example, instead of 10110011, we use MV to move the
contents of a memory cell into a register. We also can use symbolic, or mnemonic,
names for registers and memory cells. A program written in assembly language
might look like this:

MV 0, SUM
MV NUM, AC
ADD SUM, AC
STO SUM, TOT

Since programs written in assembly language are not recognized by the CPU,
we use an assembler to translate programs written in assembly language into
machine-language equivalents. Compared to writing programs in machine lan-
guage, writing programs in assembly language is much faster, but not fast enough
for writing complex programs.

High-level languages were developed to enable programmers to write pro-
grams faster than when using assembly languages. For example, FORTRAN
(FORmula TRANslator), a programming language intended for mathematical com-
putation, allows programmers to express numerical equations directly as

X = (Y + Z) / 2

COBOL (COmmon Business-Oriented Language) is a programming language in-
tended for business data processing applications. FORTRAN and COBOL were de-
veloped in the late 1950s and early 1960s and are still in use. BASIC (Beginners
All-purpose Symbolic Instructional Code) was developed specifically as an easy
language for students to learn and use. BASIC was the first high-level language

0.3 Programming Languages 11

machine
language

machine code

assembly code

assembler

high-level code

high-level
languages

assembly
language

wu23392_ch00.qxd 12/12/06 17:23 Page 11

available for microcomputers. Another famous high-level language is Pascal, which
was designed as an academic language. Since programs written in a high-level lan-
guage are not recognized by the CPU, we must use a compiler to translate them to
assembly language equivalents.

The programming language C was developed in the early 1970s at AT&T Bell
Labs. The C++ programming language was developed as a successor of C in the
early 1980s to add support for object-oriented programming. Object-oriented pro-
gramming is a style of programming gaining wider acceptance today. Although the
concept of object-oriented programming is old (the first object-oriented program-
ming language, Simula, was developed in the late 1960s), its significance wasn’t
realized until the early 1980s. Smalltalk, developed at Xerox PARC, is another
well-known object-oriented programming language. The programming language
we use in this book is Java, the newest object-oriented programming language,
developed at Sun Microsystems.

0.4 Java
Java is a new object-oriented language that is receiving wide attention from both indus-
try and academia. Java was developed by James Gosling and his team at Sun Microsys-
tems in California. The language was based on C and C++ and was originally intended
for writing programs that control consumer appliances such as toasters, microwave
ovens, and others.The language was first called Oak, named after the oak tree outside of
Gosling’s office, but the name was already taken, so the team renamed it Java.

Java is often described as a Web programming language because of its use in
writing programs called applets that run within a Web browser. That is, you need a
Web browser to execute Java applets. Applets allow more dynamic and flexible dis-
semination of information on the Internet, and this feature alone makes Java an at-
tractive language to learn. However, we are not limited to writing applets in Java.
We can write Java applications also. A Java application is a complete stand-alone
program that does not require a Web browser. A Java application is analogous to a
program we write in other programming languages. In this book, we focus on Java
applications because our objective is to teach the fundamentals of object-oriented
programming that are applicable to all object-oriented programming languages.

We chose Java for this textbook mainly for its clean design. The language de-
signers of Java took a minimalist approach; they included only features that are in-
dispensable and eliminated features that they considered excessive or redundant.
This minimalist approach makes Java a much easier language to learn than other
object-oriented programming languages. Java is an ideal vehicle for teaching the
fundamentals of object-oriented programming.

12 Chapter 0 Introduction to Computers and Programming Languages

compiler

Java

applet

application

• Charles Babbage invented the Difference Engine and Analytical Engine,
precursors to the modern computer.

• Ada Lovelace is considered the first computer programmer.

• The first two modern computers were MARK I and ENIAC I.

S u m m a r y

wu23392_ch00.qxd 12/12/06 17:23 Page 12

• John von Neumann invented the stored-program approach of executing
programs.

• Computers are connected into a network. Interconnected networks are
called internets.

• Binary numbers are used in computers.

• A typical computer consists of five components: RAM, CPU, storage
devices, I/O devices, and communication devices.

• There are three levels of programming languages: machine, assembly, and
high-level.

• Java is one of the newest high-level programming languages in use today.
This textbook teaches how to program using Java.

Exercises 13

K e y C o n c e p t s

network

LAN

WAN

internets and Internet

CPU

RAM

I/O devices

communication devices

binary numbers

binary-to-decimal conversion

machine language

assembly language

assembler

high-level language

compiler

Java

E x e r c i s e s

1. Visit your school’s computer lab or a computer store, and identify the
different components of the computers you see. Do you notice any unique
input or output devices?

2. Visit your school’s computer lab and find out the CPU speed, RAM size, and
hard disk capacity of its computers.

3. Convert these binary numbers to decimal numbers.

a. 1010
b. 110011
c. 110.01
d. 111111

4. Convert these decimal numbers to binary numbers.

a. 35
b. 125
c. 567
d. 98

wu23392_ch00.qxd 12/12/06 17:23 Page 13

5. What is the maximum decimal number you can represent in 4 bits? 16 bits?
N bits?

6. If a computer has 128 MB of RAM, how many bytes are there?

7. How do high-level programming languages differ from low-level
programming languages?

8. Consider a hypothetical programming language called Kona. Using Kona,
you can write a program to compute and print out the sum of 20 integers
entered by the user:

let sum = 0;

repeat 20 times [
let X = next input;
add X to sum;

]

printout sum;

Is Kona a high-level language? Why or why not?

14 Chapter 0 Introduction to Computers and Programming Languages

wu23392_ch00.qxd 12/12/06 17:23 Page 14

Introduction to Object-Oriented
Programming and Software
Development

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Name the basic components of object-
oriented programming.

• Differentiate classes and objects.

• Differentiate class and instance
methods.

• Differentiate class and instance data
values.

• Draw program diagrams using icons for
classes, objects, and other components of
object-oriented programming.

• Describe the significance of inheritance in
object-oriented programs.

• Name and explain the stages of the software
life cycle.

15

1

wu23399_ch01.qxd 12/12/06 17:24 Page 15

efore we begin to write actual programs, we need to introduce a few basic concepts
of object-oriented programming (OOP), the style of programming we teach in this
book. The purpose of this chapter is to give you a feel for object-oriented program-
ming and to introduce a conceptual foundation of object-oriented programming. You
may want to refer to this chapter as you progress through the book. What we discuss
in the next four sections is independent of any particular programming language.

16 Chapter 1 Introduction to Object-Oriented Programming and Software Development

I n t r o d u c t i o n

B
object-
oriented
programming

object

Those of you who have some experience in programming, whether object-
oriented or non-object-oriented,will probably find many similarities between Java
and the programming languages you already know.This similarity may accelerate
your learning process, but in many cases what seems to be similar at first may
turn out to be quite different. So please do not jump to any conclusions about
similarity prematurely.

Another purpose of this chapter is to introduce the software development
process. To be able to write programs, knowledge of the components of object-
oriented programs is not enough. We must learn the process of developing pro-
grams. We will present a brief introduction to the software development process in
this chapter.

1.1 Classes and Objects
The two most important concepts in object-oriented programming are the class
and the object. In the broadest term, an object is a thing, both tangible and intangi-
ble, that we can imagine. A program written in object-oriented style will consist
of interacting objects. For a program to keep track of student residents of a college
dormitory, we may have many Student, Room, and Floor objects. For another pro-
gram to keep track of customers and inventory for a bicycle shop, we may have
Customer, Bicycle, and many other types of objects. An object is comprised of data
and operations that manipulate these data. For example, a Student object may con-
sist of data such as name, gender, birth date, home address, phone number, and age
and operations for assigning and changing these data values. We will use the nota-
tion shown in Figure 1.1 throughout the book to represent an object. The notation
we used in the book is based on the industry standard notation called UML, which
stands for Unified Modeling Language. In some of the illustrations, we relax the
rules of UML slightly for pedagogy.

Almost all nontrivial programs will have many objects of the same type.
For example, in the bicycle shop program we expect to see many Bicycle and other
objects. Figure 1.2 shows two Bicycle objects with the names Moto-1 and Moto-2
and one Customer object with the name Jon Java.

wu23399_ch01.qxd 12/12/06 17:24 Page 16

Inside a program we write instructions to create objects. For the computer to
be able to create an object, we must provide a definition, called a class. A class is a
kind of mold or template that dictates what objects can and cannot do. An object
is called an instance of a class. An object is an instance of exactly one class. An
instance of a class belongs to the class. The two Bicycle objects Moto-1 and Moto-2
are instances of the Bicycle class. Once a class is defined, we can create as many
instances of the class as a program requires.

1.1 Classes and Objects 17

class

instance

<Object name>

We use a rectangle to
represent an object and
place the underlined
name of the object
inside the rectangle.

Example: account1

This is an object
named account1.

Figure 1.1 A graphical representation of an object.

Jon Java : CustomerMoto-2 : BicycleMoto-1 : Bicycle

An object name is followed
by the class name.

Figure 1.2 Two Bicycle objects with the names Moto-1 and Moto-2 and one Customer object with the name
Jon Java.

A class must be defined before you can create an instance (object) of the class.

Figure 1.3 shows a diagram that we will use throughout the book to represent
a class.

1. Draw an object diagram for a Person class and two Person objects, Ms. Latte
and Mr. Espresso.

2. What must be defined before you can create an object?

wu23399_ch01.qxd 12/12/06 17:24 Page 17

1.2 Messages and Methods
In writing object-oriented programs we must first define classes, and while the pro-
gram is running, we use the classes and objects from these classes to accomplish
tasks. A task can range from adding two numbers, to computing an interest payment
for a college loan, to calculating the reentry angle of a space shuttle. To instruct a
class or an object to perform a task, we send a message to it. For example, we send
a message deposit to an Account object to deposit $100.

For a class or an object to process the message, it must be programmed ac-
cordingly. You cannot just send a message to any class or object. You can send a
message only to the classes and objects that understand the message you send. For
a class or an object to process the message it receives, it must possess a matching
method, which is a sequence of instructions that a class or an object follows to
perform a task. A method defined for a class is called a class method, and a method
defined for an object is an instance method.

18 Chapter 1 Introduction to Object-Oriented Programming and Software Development

Example:

We use a rectangle to
represent a class with
its name appearing
inside the rectangle.

<Class Name>Notice the name of a
class is not underlined
while the name of an
object is.

Account

Figure 1.3 A graphical representation of a class.

Many beginning programmers may not see the distinction between the class and object as
clearly as the more experienced programmers do. It may be helpful to compare the class
and object to a woodcut and the prints produced from the woodcut. A woodcut is a block
of wood engraved with a design for printing. Once you have a woodcut, you can make as
many prints as you wish. Similarly, once you have a class, you can make as many objects
from the class. Also, just as you cannot make prints without having a woodcut, you cannot
create an object without first defining a class. For sample prints by the 19th-century
Japanese artist Hiroshige, visit
http://www.ibiblio.org/wm/paint/auth/hiroshige/

Another helpful analogy is a robot factory. A factory is a class, and the robots
produced from the factory are the objects of the class.To create robots (instance), we
need the factory (class) first.Those interested in mobile robots can visit
http://www.ai.mit.edu/projects/mobile-robots/robots.html

message

method

class and
instance
methods

wu23399_ch01.qxd 12/12/06 17:24 Page 18

http://www.ibiblio.org/wm/paint/auth/hiroshige/
http://www.ai.mit.edu/projects/mobile-robots/robots.html

Let’s look at an example of an instance method first. Suppose a method called
walk is defined for a Robot object and instructs the robot to walk a designated dis-
tance. With this method defined, we can send the message walk to a Robot object,
along with the distance to be walked. A value we pass to an object is called an
argument of a message. Notice that the name of the message we send to an object or
a class must be the same as the method’s name. In Figure 1.4 we represent the send-
ing of a message.

The diagram in Figure 1.4 illustrates one-way communication; that is, an
object carries out the requested operation (it walks the designated distance) but
does not respond to the message sender. In many situations we need a reply in
which an object responds by returning a value to the message sender. For exam-
ple, suppose we want to know the distance from a robot to its nearest obstacle.
The designer of a robot may include a method getObstacleDistance that returns
the desired value. The diagram in Figure 1.5 shows a method that returns a value
to the message sender. Instead of returning a numerical value, a method can re-
port back the status of the requested operation. For example, a method walk can
be defined to return the status success/fail to indicate whether the specified
distance was covered successfully or not (e.g., it fails when the robot bumps into
an obstacle).

Now let’s look at an example of class methods. The class method getMaxi-
mumSpeed shown in Figure 1.6 returns the maximum possible speed of all Robot
objects. A method such as getMaximumSpeed that deals with collective information
about the instances of a class is usually defined as a class method. So we define an
instance method for a task that pertains to an individual instance and a class method
for a task that pertains to all instances.

1.2 Messages and Methods 19

argument

walk(25)
fido : Robot

Message walk with
the argument 25.

Figure 1.4 Sending the message walk to a Robot object.

getObstacleDistance()

distance

fido : Robot

This shows that we are not
sending any argument.

This shows the value
distance is returned as
a response to the message.

Figure 1.5 The result distance is returned to the sender of the message.

wu23399_ch01.qxd 12/12/06 17:24 Page 19

20 Chapter 1 Introduction to Object-Oriented Programming and Software Development

getMaximumSpeed()

maximum speed

Robot

Figure 1.6 The maximum possible speed of all Robot objects is returned by the class method
getMaximumSpeed.

1. Draw an object diagram of an Account object with instance methods deposit
and withdraw.

2. Is the getObstacleDistance method an instance or a class method?

1.3 Class and Instance Data Values
Suppose the method deposit of an Account object instructs the object to add a given
amount to the current balance. Where does the object keep the current balance?
Remember that an object is comprised of data values and methods. Analogous to
defining class and instance methods, we can define class and instance data values.
For example, we define an instance data value current balance for Account objects
to record the current balance. Figure 1.7 shows three Account objects with their
data values current balance. Notice that they all have the same data value current
balance. All instances of the same class will possess the same set of data values. The
actual dollar amounts for current balance, as the diagram illustrates, differ from one
instance to another. Items such as opening balance and account number are other
possible instance data values for Account objects.

A class data value is used to represent information shared by all instances or to
represent collective information about the instances. For example, if every account
must maintain a minimum balance of, say, $100, we can define a class data value
minimum balance. An instance can access the class data values of the class to which
it belongs, so every Account object can access the class data value minimum balance.

Jill’s : Account

1304.98

current balance

Jack’s : Account

354.00

current balance

John’s : Account

908.55

current balance

Figure 1.7 Three Account objects possess the same data value current balance, but the actual dollar
amounts differ.

instance data
value

class data value

wu23399_ch01.qxd 12/12/06 17:24 Page 20

Figure 1.8 shows how we represent a class data value. Notice that we underline the
class data value. Because the objects of a class are underlined, and the class data val-
ues are accessible to all objects of the class, we likewise underline the class data
value to show this relationship. Data values are also called data members because
they belong to a class or instance of the class.

To appreciate the significance of a class data value, let’s see what happens if
we represent minimum balance as an instance data value. Figure 1.9 shows three
Account objects having different dollar amounts for the current balance but the
same dollar amount for the minimum balance. Obviously, this duplication of mini-
mum balance is redundant and wastes space. Consider, for example, what happens
if the bank raises the minimum balance to $200. If there are 100 Account objects,
then all 100 copies of minimum balance must be updated. We can avoid this by
defining minimum balance as a class data value. Figure 1.10 shows another exam-
ple where the opening and closing times are shared by all cafeterias on campus.

There are two types of data values: those that can change over time and those
that cannot. A data value that can change is called a variable, and one that cannot

1.3 Class and Instance Data Values 21

John’s : Account

908.55

current balance

Jill’s : Account

1304.98

current balance

Account

minimum balance

100.00

Jack’s : Account

354.00

current balance

Notice the class data value is
underlined to show the fact that this

value is accessible to individual
objects, which are underlined.

Figure 1.8 Three Account objects sharing information (minimum balance � $100) stored as a class data value.

data member

variable

John’s : Account

908.55

current balance

minimum balance

100.00

Jill’s : Account

1304.98

current balance

minimum balance

100.00

Jack’s : Account

354.00

current balance

minimum balance

100.00

Figure 1.9 Three Account objects duplicating information (minimum balance � $100) in instance data values.

wu23399_ch01.qxd 12/12/06 17:24 Page 21

change is a constant. Figure 1.11 illustrates how we represent and distinguish be-
tween variables and constants. We use the keyword frozen for constants to indicate
that they cannot change. Notice that we now have four kinds of data values: class
variables, class constants, instance variables, and instance constants.

22 Chapter 1 Introduction to Object-Oriented Programming and Software Development

Union : Cafeteria

1917.34

revenue

West : Cafeteria

2306.99

revenue

QuikBite : Cafeteria

430.75

revenue

Cafeteria

opens

0600

closes

2100

Figure 1.10 Three Cafeteria objects sharing the same opening and closing times, stored as class data values.

John’s : Account

908.55

current balance

opening balance
{frozen}

246.00

Jill’s : Account

1304.98

current balance

opening balance
{frozen}

50.00

Account

100.00

minimum balance

account prefix
{frozen}

6427

Jack’s : Account

354.00

current balance

opening balance
{frozen}

100.00

We assume this number is
a prefix to the account

number of all accounts, and
the prefix never changes.

This keyword indicates
the value is locked and
cannot be changed.

Figure 1.11 Graphical representations for four types of data values: class variable, class constant, instance
variable, and instance constant.

constant

wu23399_ch01.qxd 12/12/06 17:24 Page 22

1.4 Inheritance
When we used the Account class and its instances to illustrate object-oriented con-
cepts, some of you were probably thinking about checking accounts, while others
may have been thinking about savings accounts. We did not distinguish between the
two in the examples. But when we look at the problem a little more carefully, we
will realize that in fact these two types of accounts are different, even though they
share many features.

In general, using only a single class to model two or more entities that are
similar but different is not good design. In object-oriented programming, we use a
mechanism called inheritance to design two or more entities that are different but
share many common features. First we define a class that contains the common fea-
tures of the entities. Then we define classes as an extension of the common class
inheriting everything from the common class. We call the common class the
superclass and all classes that inherit from it subclasses. We also call the superclass
an ancestor and the subclass a descendant. Other names for superclass and subclass
are base class and derived class, respectively. For the bank example, we can define
a superclass Account and then define Savings and Checking as subclasses of
Account. We represent the superclass and its subclasses as shown in Figure 1.12.
Notice that we draw arrows from each subclass to its superclass because a subclass
can refer to items defined in its superclass, but not vice versa.

Inheritance is not limited to one level. A subclass can be a superclass of other
classes, forming an inheritance hierarchy. Consider the example shown in
Figure 1.13. Inheritance is very powerful, and if it is used properly, we can develop

1.4 Inheritance 23

1. What is the difference between a constant and a variable?

2. Draw an object diagram of a Person object with the three instance variables
name, age, and gender.

Account

Savings Checking

Figure 1.12 A superclass Account and its subclasses Savings and Checking.

inheritance

superclass and
subclass

wu23399_ch01.qxd 12/12/06 17:24 Page 23

complex programs very efficiently and elegantly. The flip side of using a very pow-
erful tool is that if we do not use it correctly, we could end up in a far worse situation
than if we did not use it. We will be seeing many examples of inheritance through-
out this book. In Chapter 2, for example, we will introduce many classes that come
with the Java system. Most of these classes are defined using inheritance. We will
provide an in-depth discussion of inheritance and related topics in Chapter 13.

24 Chapter 1 Introduction to Object-Oriented Programming and Software Development

Student

LawDoctoralMasters

Graduate Undergraduate

Commuting Resident

Figure 1.13 An example of inheritance hierarchy among different types of students.

1. If Class A inherits from Class B, which is a superclass? Which is a subclass?

2. Draw a diagram that shows Class A is inheriting from Class B.

3. What are the other names for superclass and subclass?

4. If we have Animal, Insect, and Mammal classes, which one will be a
superclass?

5. Model different types of vehicles, using inheritance. Include Vehicle,
Automobile, Motorcycle, Sports Car, Sedan, and Bicycle.

1.5 Software Engineering and Software Life Cycle
When we say computer programming, we are referring not only to writing Java
commands, but also to a whole process of software development. Knowing a pro-
gramming language alone is not enough to become a proficient software developer.

wu23399_ch01.qxd 12/12/06 17:24 Page 24

You must know how to design a program. This book will teach you how to design
programs in an object-oriented manner.

We construct a house in well-defined stages and apply the engineering princi-
ples in all stages. Similarly, we build a program in stages and apply disciplined
methodology in all stages of program development. The sequence of stages from
conception to operation of a program is called the software life cycle, and software
engineering is the application of a systematic and disciplined approach to the
development, testing, and maintenance of a program.

There are five major phases in the software life cycle: analysis, design, coding,
testing, and operation. Software starts its life from the needs of a customer. A person
wants an online address book, for example. In the analysis phase, we perform a fea-
sibility study. We analyze the problem and determine whether a solution is possible.
Provided that a solution is possible, the result of this phase is a requirements speci-
fication that describes the features of a program. The features must be stated in a
manner that is testable. One of the features for the address book program may be the
capability to search for a person by giving his or her first name. We can test this
feature by running the program and actually searching for a person. We verify that
the program behaves as specified when the first name of a person in the address
book and the first name of a person not in the address book are entered as a search
condition. We do this testing in the testing phase, which we will explain shortly.

In the design phase, we turn a requirements specification into a detailed design
of the program. For an object-oriented design, the output from this phase will be a
set of classes that fulfill the requirements. For the address book program, we may
design classes such as Person, Phone, and others.

In the coding phase, we implement the design into an actual program, in our
case, a Java program. Once we have a well-constructed design, implementing it into
actual code is really not that difficult. The difficult part is the creation of the design,
and in this book, we place greater emphasis on the design aspect of the software
construction.

When the implementation is completed, we move to the testing phase. In this
phase, we run the program, using different sets of data to verify that the program
runs according to the specification. Two types of testing are possible for object-
oriented programs: unit testing and integration testing. With unit testing, we test
classes individually. With integration testing, we test that the classes work together
correctly. Activity to eliminate programming error is called debugging. An error
could be a result of faulty implementation or design. When there’s an error, we need
to backtrack to earlier phases to eliminate the error.

Finally, after the testing is successfully concluded, we enter the operation
phase, in which the program will be put into actual use. The most important and
time-consuming activity during the operation phase is software maintenance. After
the software is put into use, we almost always have to make changes to it. For
example, the customer may request additional features, or previously undetected er-
rors may be found. Software maintenance means making changes to software. It is
estimated that close to 70 percent of the cost of software is related to software main-
tenance. So naturally, when we develop software, we should aim for software that
is easy to maintain. We must not develop a piece of software hastily to reduce the

1.5 Software Engineering and Software Life Cycle 25

software life
cycle

software
engineering

analysis

design

coding

testing

operation

software
maintenance

debugging

wu23399_ch01.qxd 12/12/06 17:24 Page 25

software development cost. We should take time and care to design and code soft-
ware correctly even if it takes longer and costs more to develop initially. In the long
run, carefully crafted software will have a lower total cost because of the reduced
maintenance cost. Here’s an important point to remember:

26 Chapter 1 Introduction to Object-Oriented Programming and Software Development

Well-designed and -constructed software is easy to maintain.

In this book, we will focus on the design, coding, and testing phases. We will pre-
sent a requirements specification in the form of a problem statement for the sample
programs we will develop in this book. We present the first sample program devel-
oped by following the design, coding, and testing phases in Chapter 2. We will
come back to the discussion of software engineering and the software life cycle
throughout the book and provide more details.

1. Name the stages of the software life cycle.

2. How does the quality of design affect the software maintenance cost?

3. What is debugging?

• The style of programming we teach in this book is called object-oriented
programming.

• An object is an instance of a class. Many instances can be created from a
single class.

• There are class and instance methods. We can send messages to objects and
classes if they possess matching methods.

• There are class and instance data values. Data values are also called data
members.

• Inheritance is a powerful mechanism to model two or more entities that are
different but share common features.

• The sequence of software development stages from conception to operation
is called the software life cycle.

S u m m a r y

wu23399_ch01.qxd 12/12/06 17:24 Page 26

• Five major phases of the software life cycle are analysis, design, coding,
testing, and operation.

• Software engineering is the application of a systematic and disciplined
approach to the development, testing, and maintenance of a program.

Exercises 27

K e y C o n c e p t s

object-oriented programming

class

object

message

class and instance methods

instance and class data values

variable

constant

inheritance

superclass (ancestor, base class)

subclass (descendant, derived class)

software life cycle

software engineering

analysis

design

coding

testing

operation

E x e r c i s e s

1. Graphically represent a Vehicle class and three Vehicle objects named car1,
car2, and car3.

2. Graphically represent a Person class with the following components:

• Instance variables name, age, and gender.
• Instance methods setName, getName, and getAge.
• Class method getAverageAge.

3. Design a CD class where a CD object represents a single music CD. What
kinds of information (artist, genre, total playing time, etc.) do you want to
know about a CD? Among the information in which you are interested,
which are instance variables? Are there any class variables or class constants?

4. Suppose the Vehicle class in Exercise 1 is used in a program that keeps track
of vehicle registration for the Department of Motor Vehicles. What kinds of
instance variables would you define for such Vehicle objects? Can you think
of any useful class variables for the Vehicle class?

5. Suppose the following formulas are used to compute the annual vehicle
registration fee for the vehicle registration program of Exercise 4:

• For cars, the annual fee is 2 percent of the value of the car.
• For trucks, the annual fee is 5 percent of the loading capacity (in pounds)

of the truck.

Define two new classes Car and Truck as subclasses of Vehicle. Hint:
Associate class and instance variables common to both Car and Truck
to Vehicle.

wu23399_ch01.qxd 12/12/06 17:24 Page 27

6. Consider a student registration program used by the registrar’s office. The
program keeps track of students who are registered for a given semester. For
each student registered, the program maintains the student’s name, address,
and phone number; the number of classes in which the student is enrolled;
and the student’s total credit hours. The program also keeps track of the total
number of registered students. Define instance and class variables of a
Student class that is suitable for this program.

7. Suppose the minimum number and maximum number of courses for which a
student can register are different depending on whether the student is a
graduate, undergraduate, or work/study student. Redo Exercise 6 by defining
classes for different types of students. Relate the classes, using inheritance.

8. Imagine you are given the task of designing an airline reservation system that
keeps track of flights for a commuter airline. List the classes you think would be
necessary for designing such a system. Describe the data values and methods
you would associate with each class you identify. Note: For this exercise and
Exercises 9 through 12, we are not expecting you to design the system in
complete detail. The objective of these exercises is to give you a taste of
thinking about a program at a very high level. Try to identify about a half dozen
or so classes, and for each class, describe several methods and data members.

9. Repeat Exercise 8, designing a university course scheduling system. The
system keeps track of classes offered in a given quarter, the number of
sections offered, and the number of students enrolled in each section.

10. Repeat Exercise 8, designing the state Department of Motor Vehicles
registration system. The system keeps track of all licensed vehicles and
drivers. How would you design objects representing different types of
vehicles (e.g., motorcycles and trucks) and drivers (e.g., class A for
commercial licenses and class B for towing vehicles)?

11. Repeat Exercise 8, designing a sales tracking system for a fast-food
restaurant. The system keeps track of all menu items offered by the
restaurant and the number of daily sales per menu item.

12. When you write a term paper, you have to consult many references: books,
journal articles, newspaper articles, and so forth. Repeat Exercise 8,
designing a bibliography organizer that keeps track of all references you
used in writing a term paper.

13. Consider the inheritance hierarchy given in Figure 1.12. List the features
common to all classes and the features unique to individual classes. Propose
a new inheritance hierarchy based on the types of accounts your bank offers.

14. Consider a program that maintains an address book. Design an inheritance
hierarchy for the classes such as Person, ProfessionalContact, Friend, and
Student that can be used in implementing such a program.

15. Do you think the design phase is more important than the coding phase?
Why or why not?

16. How does the quality of design affect the total cost of developing and
maintaining software?

28 Chapter 1 Introduction to Object-Oriented Programming and Software Development

wu23399_ch01.qxd 12/12/06 17:24 Page 28

Getting Started with Java

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Identify the basic components of Java
programs.

• Write simple Java programs.

• Describe the difference between object
declaration and object creation.

• Describe the process of creating and running
Java programs.

• Use the Date, SimpleDateFormat, String, and
Scanner classes from the standard Java
packages.

• Develop Java programs, using the incremental
development approach.

29

2

wu23399_ch02.qxd 12/12/06 17:26 Page 29

e will describe the basic structure of simple Java programs in this chapter. We
will also describe the steps you follow to run Java programs. We expect you to
actually run these sample programs to verify that your computer (either your own or
the one at the school’s computer center) is set up properly to run the sample
programs presented in the book. It is important to verify this now. Otherwise, if you
encounter a problem later, you won’t be able to determine whether the problem is
the result of a bad program or a bad setup. Please check Appendix A for information
on how to run the textbook’s sample programs.

We will develop a sample application program in Section 2.4 following the
design, coding, and testing phases of the software life cycle. We stress here again
that our objective in this book is to teach object-oriented programming and how to
apply object-oriented thinking in program development. The Java language is
merely a means to implement a design into an executable program. We chose Java
for this book because Java is a much easier language than other object-oriented pro-
gramming languages to use to translate a design into an actual code. Beginning stu-
dents often get lost in the language details and forget the main objective of learning
the development process, but the use of Java should minimize this problem.

2.1 The First Java Program
Our first Java application program displays a window on the screen, as shown in Fig-
ure 2.1. The size of the window is set to 300 pixels wide and 200 pixels high. A pixel
is a shorthand for picture element, and it is the standard unit of measurement for the
screen resolution.Acommon resolution for a 17-in screen, for example, is 1024 pixels
wide and 768 pixels high. The title of the window is set to My First Java Program.

30 Chapter 2 Getting Started with Java

I n t r o d u c t i o n

W

pixel

Figure 2.1 Result of running the Ch2Sample1 program.The window size is 300 by 200 pixels and has the
title My First Java Program.

wu23399_ch02.qxd 12/12/06 17:26 Page 30

Although this program is very simple, it still illustrates the fundamental structure of an
object-oriented program, which is as follows:

2.1 The First Java Program 31

An object-oriented program uses objects.

It may sound too obvious, but let’s begin our study of object-oriented programming
with this obvious notion. Here’s the program code:

/*

Chapter 2 Sample Program: Displaying a Window

File: Ch2Sample1.java

*/

import javax.swing.*;

class Ch2Sample1 {

public static void main(String[] args) {

JFrame myWindow;

myWindow = new JFrame();

myWindow.setSize(300, 200);
myWindow.setTitle("My First Java Program");
myWindow.setVisible(true);

}
}

This will not concern the majority of you, but if you are using a Java development
tool that does not let you stop a running program easily, then insert the statement

myWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

after

myWindow.setVisible(true);

so the program terminates automatically when the frame window is closed.Please
read Appendix A for more information.

wu23399_ch02.qxd 12/12/06 17:26 Page 31

This program declares one class called Ch2Sample1, and the class includes
one method called main. From this main method, the Ch2Sample1 class creates and
uses a JFrame object named myWindow by sending the three messages setSize,
setTitle, and setVisible to the object. The JFrame class is one of many classes that
come with the Java system. An instance of this JFrame class is used to represent a
single window on the computer screen. To differentiate the classes that program-
mers define, including ourselves, and the predefined classes that come with the Java
system, we will call the first programmer-defined classes and the latter Java stan-
dard classes, or simply, standard classes. We also use the term system classes to
refer to the standard classes.

Expressing this program visually results in the program diagram shown in
Figure 2.2. In this diagram, we draw individual messages, but doing so would eas-
ily clutter a diagram when we have more than a handful of messages. Instead of
drawing messages individually, we can draw one arrow to represent a dependency
relationship. For this program, we say the Ch2Sample1 class is dependent on the
services provided by a JFrame object, because the Ch2Sample1 class sends mes-
sages to the MyWindow object. We draw a dotted arrow from Ch2Sample1 to
myWindow to indicate the dependency relationship, as shown in Figure 2.3

We begin the explanation of the program from the following core five lines
of code:

JFrame myWindow;

myWindow = new JFrame();

myWindow.setSize(300, 200);
myWindow.setTitle("My First Java Program");
myWindow.setVisible(true);

32 Chapter 2 Getting Started with Java

programmer-
defined classes

standard
classes

program
diagram

dependency
relationship

myWindow : JFrame

Ch2Sample1

setTitle(“My First Java Program”)

setSize(300, 200)

setVisible(true)

Figure 2.2 The program diagram for the Ch2Sample1 program.

Ch2Sample1

myWindow : JFrame

Figure 2.3 The program diagram for the Ch2Sample1 program that shows the dependency relationship.

wu23399_ch02.qxd 12/12/06 17:26 Page 32

We will explain the rest of the program in Section 2.2. These five lines of code
represent the crux of the program, namely, an object-oriented program that uses
objects. The rule to remember in using objects is as follows:

2.1 The First Java Program 33

object
declaration
syntax

identifier

To use an object in a program, first we declare and create an object, and then we
send messages to it.

In the remainder of this section, we will describe how to declare an object,
create an object, and use an object by sending messages to the object.

Object Declaration
Every object we use in a program must be declared. An object declaration desig-
nates the name of an object and the class to which the object belongs. Its syntax is

<class name> <object names> ;

where <object names> is a sequence of object names separated by commas and
<class name> is the name of a class to which these objects belong. Here’s how the
general syntax is matched to the object declaration of the program:

Class Name Object Names
The class must be One object is

defined beforehand. declared here.

JFrame myWindow;

Here are more examples:

Account checking;
Customer john, jack, jill;

The first declaration declares an Account object named checking, and the second
declaration declares three Customer objects.

To declare an object as an instance of some class, the class must be defined
already. First we will study how to use objects from system classes. Later in the
book, we will show you how to define your own classes, from which you can create
instances.

When we declare an object, we must give it a name. Any valid identifier that
is not reserved for other uses can be used as an object name. A Java identifier is a se-
quence of letters, digits, underscores (_), and dollar signs ($) with the first one being

wu23399_ch02.qxd 12/12/06 17:26 Page 33

a letter. We use an identifier to name a class, object, method, and others. The
following words are all valid identifiers:

MyFirstApplication
FunTime
ComputeArea
DEFAULT_VALUE

Upper- and lowercase letters are distinguished, so the following four identi-
fiers are distinct:

myWindow mywindow
MYwindow MYWINDOW

No spaces are allowed in an identifier, and therefore, the three lines

Sample Program
My First Application
Program FunTime

are all invalid identifiers.
Since upper- and lowercase letters are distinguished, you can use robot as the

name for an object of the class Robot. We name objects in this manner whenever
possible in this book so we can easily tell to which class the object belongs. We fol-
low the Java standard naming convention of using an uppercase letter for the first
letter of the class names and a lowercase letter for the first letter of the object names
in this book. It is important to follow the standard naming convention so others who
read your program can easily distinguish the purposes of identifiers. Programs that
follow the standard naming convention are easier to read than those that do not. And
remember that software maintenance is easier with easy-to-understand programs.

When an identifier consists of multiple words, the Java naming convention
dictates the first letter from every word, except the first word, will be capitalized, for
example, myMainWindow, not mymainwindow.

34 Chapter 2 Getting Started with Java

standard
naming
convention

Follow the standard naming convention in writing your Java programs to
make them easier to read.

Table 2.2 in the Summary section summarizes the naming convention.

Object Creation
No objects are actually created by the declaration. An object declaration simply
declares the name (identifier) that we use to refer to an object. For example, the
declaration

JFrame myWindow;

wu23399_ch02.qxd 12/12/06 17:26 Page 34

designates that the name myWindow is used to refer to a JFrame object, but the
actual JFrame object is not yet created. We create an object by invoking the new
operator. The syntax for new is

<object name> = new <class name> (<arguments>) ;

where <object name> is the name of a declared object, <class name> is the name of
the class to which the object belongs, and <arguments> is a sequence of values
passed to the new operation. Let’s match the syntax to the actual statement in the
sample program:

Object Name Class Name
Name of the object An instance of this

we are creating class is created.

myWindow = new JFrame () ;

Argument
No arguments
are used here.

Figure 2.4 shows the distinction between object declaration and creation.
Figure 2.5 shows the relationship between the UML-based program diagram and
the state-of-memory diagram. The state-of-memory diagram borrows the notation
from UML for consistency, but it is not a true UML diagram because it uses sym-
bols and notations not found in UML.

Now, consider the following object declaration and two statements of object
creation:

Customer customer;
customer = new Customer();
customer = new Customer();

What do you think will happen? An error? No. It is permissible to use the same
name to refer to different objects of the same class at different times. Figure 2.6

2.1 The First Java Program 35

new operator

object creation
syntax

Instead of writing statements for object declaration and creation separately, we
can combine them into one statement. We can write, for example,

Student john = new Student();

instead of

Student john;
john = new Student();

wu23399_ch02.qxd 12/12/06 17:26 Page 35

shows the state-of-memory diagram after the second new is executed. Since there
is no reference to the first Customer object anymore, eventually it will be erased
and returned to the system. Remember that when an object is created, a certain
amount of memory space is allocated for storing this object. If this allocated but
unused space is not returned to the system for other uses, the space gets wasted. This

36 Chapter 2 Getting Started with Java

State-of-Memory
Notation

Program Diagram
Notation

account : Account

account

:Account

The state-of-memory diagram uses the
same UML notation, but it also includes
symbols and notations not found in UML.

Figure 2.5 Relationship between the state-of-memory diagram and the program diagram notation.

State of Memory

Account account;

account = new Account();

A Account account;

B account = new Account();

after is executed A

account

after is executed B

The identifier account is
declared and space is
allocated in memory.

An Account object is created
and the identifier account is

set to refer to it.

account

:Account

Figure 2.4 Distinction between object declaration and object creation.

wu23399_ch02.qxd 12/12/06 17:26 Page 36

returning of space to the system is called deallocation, and the mechanism to deal-
locate unused space is called garbage collection.

Message Sending
After the object is created, we can start sending messages to it. The syntax for send-
ing a message to an object is

<object name> . <method name> (<arguments>) ;

where <object name> is an object name, <method name> is the name of a method
of the object, and <arguments> is a sequence of values passed to the method. In
the sample program, we send the setVisible message with the argument true to
the mainWindow object to make it appear on the screen. Once again, let’s match the
components in the general syntax to the actual statement:

Object Name Method Name
Name of the object to which The name of the message

we are sending a message we are sending

myWindow . setVisible (true) ;

Argument
The argument we are passing

with the message

Figure 2.7 shows the correspondence between message sending as repre-
sented in the program diagram and in the Java statement. Because the object that
receives a message must possess a corresponding method, we often substitute the
expression sending a message with calling a method. We will use these expressions
interchangeably.

2.1 The First Java Program 37

customer

:Customer :Customer

The first Customer object will be
deallocated eventually because
there are no references to it anymore.

Created with the
second new.

Created with the
first new.

Customer customer;
customer = new Customer();
customer = new Customer();

Figure 2.6 The state after two new commands are executed.

garbage
collection

message-
sending syntax

wu23399_ch02.qxd 12/12/06 17:26 Page 37

Notice the argument for the setVisible message does not include double quotes
as did the one for the setTitle message in the example shown on page 32. The argu-
ment true is one of the two possible logical values (the other is false) used in Java
programs. We will study more about the use of logical values later in the book, start-
ing from Chapter 5. For now, it suffices to remember that there are two logical
values— true and false—used for certain specific purposes.

Passing true in the setVisible message makes the receiving object appear on
the screen. Passing false makes the object disappear from the screen. So, for exam-
ple, if we write

myWindow.setVisible(true);
myWindow.setVisible(false);
myWindow.setVisible(true);

then myWindow will appear once, disappear, and then appear on the screen again.
(Note: Because the computer will execute these statements so quickly, you may not
notice any difference from the original program. See Exercise 22 on page 77.)

The word true (and false) is called a reserved word. It is an identifier that is
used for a specific purpose and cannot be used for any other purpose, such as for the
name of an object.

38 Chapter 2 Getting Started with Java

myWindow:JFrame
setVisible(true)Program

Diagram

Corresponding
Java Statement

Note: We can place method
icons on either side of a
class or instance icon.

myWindow . setVisible (true) ;

Figure 2.7 Correspondence between message sending as represented in the program diagram and in the
actual Java statement.

The expression calling object O’s method M is synonymous with sending message
M to object O.

reserved word

1. Which of the following are invalid identifiers?

a. one
b. my Window
c. 1234

wu23399_ch02.qxd 12/12/06 17:26 Page 38

d. DecafeLattePlease
e. hello
f. JAVA
g. hello, there
h. acct122

2. What’s wrong with the following code?

JFrame myWindow();
myWindow.setVisible(true);

3. Is there anything wrong with the following declarations?

mainWindow MainWindow;
Account, Customer account, customer;

4. Which of the following statements is valid?

a. myFirstWindow.setVisible("true");
b. myFirstWindow.setVisible(true);

2.2 Program Components
Now that we have covered the crux of the first sample program, let’s examine the
rest of the program. The first sample application program Ch2Sample1 is composed
of three parts: comment, import statement, and class declaration. These three parts
are included universally in Java programs.

2.2 Program Components 39

comments

A Java program is composed of comments, import statements, and class
declarations.

You can write a Java program that includes only a single class declaration, but
that is not the norm. In any nontrivial program, you will see these three components.
We explain the three components and their subparts in this section.

Comments
In addition to the instructions for computers to follow, programs contain comments
in which we state the purpose of the program, explain the meaning of code, and pro-
vide any other descriptions to help programmers understand the program. Here’s

wu23399_ch02.qxd 12/12/06 17:26 Page 39

the comment in the sample Ch2Sample1 program:

40 Chapter 2 Getting Started with Java

/*
Chapter 2 Sample Program: Displaying a Window

File: Ch2Sample1.java

*/

import javax.swing.*;

class Ch2Sample1 {

public static void main(String[] args) {

JFrame myWindow;

myWindow = new JFrame();

myWindow.setSize(300, 200);
myWindow.setTitle("My First Java Program");
myWindow.setVisible(true);

}
}

Comment

A comment is any sequence of text that begins with the marker /* and termi-
nates with another marker */. The beginning and ending comment markers are
matched in pairs; that is, every beginning marker must have a matching ending
marker. A beginning marker is matched with the next ending marker that appears.
Any beginning markers that appear between the beginning marker and its matching
ending marker are treated as part of the comment. In other words, you cannot put a
comment inside another comment. The examples in Figure 2.8 illustrate how the
matching is done.

Another marker for a comment is double slashes //. This marker is used for a
single-line comment marker. Any text between the double-slash marker and the end
of a line is a comment. The following example shows the difference between mul-
tiline and single-line comments:

/*
This is a comment with
three lines of
text.

*/

// This is a comment
// This is another comment
// This is a third comment

comment
markers

single-line
comment
marker

wu23399_ch02.qxd 12/12/06 17:26 Page 40

The third type of comment is called a javadoc comment. It is a specialized
comment that can appear before the class declaration and other program elements
yet to be described in the book. We will explain more about javadoc comments in
Chapter 7.

Comments are intended for the programmers only and are ignored by the
computer. Therefore, comments are really not necessary in making a program exe-
cutable, but they are an important aspect of documenting the program. It is not
enough to write a program that executes correctly. We need to document the pro-
gram, and commenting the program is an important part of program documentation.
Other parts of program documentation include program diagrams, programmers’
work logs, design documents, and user manuals. If you can write a program once
and use it forever without ever modifying it, then writing a program with no com-
ments may be tolerable. However, in the real world, using programs without ever
making any changes almost never happens. For example, you may decide to add
new features and capabilities or modify the way the user interacts with the program.
Even if you don’t improve the program, you still have to modify the program when
you detect some errors in it. Also, for commercial programs, those who change the
programs are most often not the ones who developed them. When the time comes

2.2 Program Components 41

javadoc
comment

*/

/* This is a comment on one line */

/*
 Comment number 1
*/
/*
 Comment number 2
*/

/*

/*
/*
 This is a comment
*/
.

An error: no matching
beginning marker

These two markers are
part of the comment.

Figure 2.8 How the beginning and ending comment markers are matched.

Although not required to run the program, comments are indispensable in writing
easy-to-understand code.

wu23399_ch02.qxd 12/12/06 17:26 Page 41

for a programmer to modify his own or someone else’s program, the programmer
must first understand the program, and program documentation is an indispensable
aid to understanding the program.

There are several different uses of comments. The first is the header comment.
At the beginning of a program, we place a comment to describe the program. We
characterize such a comment as a header comment. We also may include header
comments at the beginning of methods to describe their purposes. Depending on the
length and complexity of programs, the description may range from short and sim-
ple to long and very detailed. A typical header comment for a beginning program-
ming class may look something like this:

42 Chapter 2 Getting Started with Java

/*
* Program: TextEditor
*
* Author: Decafe Latte
* decafe@latte.com
*
* Written: May 1, 2006
*
* Course: Comp Sci 101
* Spring 2006
* Program Assignment No. 7
*
* Compiler: JDK 1.5
* Platform: Windows XP
*
* Description:
* This is a simple text editor. The editor allows the user
* to save text to a file and read text from a file. The
* editor displays text using Courier font only and does not
* allow formatting (e.g., bold, italic, etc.). The editor
* supports standard editing functions Cut, Copy, and
* Paste, but does not support Undo. For more details,
* please refer to the TxEditReadme file.
*/

header
comment

typical header
comment for a
beginning
programming
class

Note: The use of the
asterisks is in the style of
javadoc, but this is not a
javadoc comment.

For your own programs, you should write header comments following the
guideline provided by your instructor. For listing the sample programs in the book,
we will include only the program name and a short description in the header com-
ment, mainly for reference purposes. The header comment in the actual programs,
available from our website, includes additional information.

wu23399_ch02.qxd 12/12/06 17:26 Page 42

mailto:decafe@latte.com

Another use of comments is to explain code whose purpose may not be obvi-
ous. Your aim is always to write easily understandable, self-explanatory program
code. But at times this is not possible, and you should attach comment to code that
is not so easy to understand. There also are times when the original code may not
work as intended, and as a temporary measure, you modify the code slightly so the
program will continue to work. You should clearly mark such modification with a
comment, so you remember what you have done. If you did not put in an appropri-
ate comment and later read your code without remembering about the modification,
you would have no idea why you wrote such code. If you cannot understand your
own code, imagine the frustration of other programmers (or your T.A. or instructor)
trying to understand your modified code.

Yet another use of comments is to identify or summarize a block of code. Sup-
pose a program is divided into three major parts: getting input values from the user,
performing computation by using those values, and displaying the computation re-
sults. You can place comments at the top of each part to delineate the three major
parts clearly.

Remember that adding comments to a poorly designed program will not make
it a better program. Your foremost goal is to develop a well-designed program that
runs efficiently and is easy to understand. Commenting a program is only a means
toward that goal, not a goal itself. In fact, excessive use of comments makes it
harder to follow and understand a program.

2.2 Program Components 43

package

Always aim for self-explanatory code. Do not attempt to make poorly written
code easier to read by comments. Good comments are not a substitute for
good code. Bad code is bad, no matter how well your comments are written.

Comment markers are useful in disabling a portion of a program. Let’s say you find
a portion that may be causing the program to crash, and you want to try out
different code for the problem portion. Instead of replacing the whole problem
portion with new code, you can leave the questionable code in the program by
converting it into a “comment” with comment markers. You can remove the
comment markers if you need this code later.

Import Statement
We develop object-oriented programs by using predefined classes, both system-
and programmer-defined, whenever possible and defining our own classes when
no suitable predefined classes are available. In Java, classes are grouped into
packages, and the Java system comes with numerous packages. We also can logi-
cally group our own classes into a package so they can be reused conveniently by
other programs.

wu23399_ch02.qxd 12/12/06 17:26 Page 43

To use a class from a package, we refer to the class in our program by using
the following format:

<package name> . <class name>

For example, to use the Resident class in the dorm package, we refer to it as

dorm.Resident

which we read as “dorm dot Resident.” This notation is called dot notation.
A package can include subpackages, forming a hierarchy of packages. In re-

ferring to a class in a deeply nested package, we use multiple dots. For example, we
write

javax.swing.JFrame

to refer to the class JFrame in the javax.swing package; that is, the swing package
is inside the javax package. Dot notation with the names of all packages to which
a class belongs is called the class’s fully qualified name. Using the fully qualified
name of a class is frequently too cumbersome, especially when we have to refer
to the same class many times in a program. We can use the import statement to
avoid this problem. Here’s the original Ch2Sample1 program that uses the import
statement:

44 Chapter 2 Getting Started with Java

dot notation

fully qualified
name

/*

Chapter 2 Sample Program: Displaying a Window

File: Ch2Sample1.java
*/

import javax.swing.*;

class Ch2Sample1 {

public static void main(String[] args) {

JFrame myWindow;

myWindow = new JFrame();

myWindow.setSize(300, 200);
myWindow.setTitle("My First Java Program");
myWindow.setVisible(true);

}

}

Import Statement
The import statement allows the program to
refer to classes defined in the designated pack-
age without using the fully qualified class name.

wu23399_ch02.qxd 12/12/06 17:26 Page 44

And here’s the same Ch2Sample1 program without the import statement:

2.2 Program Components 45

/*

Chapter 2 Sample Program: Displaying a Window

File: Ch2Sample1.java
*/

class Ch2Sample1 {

public static void main(String[] args) {

javax.swing.JFrame myWindow;

myWindow = new javax.swing.JFrame ();

myWindow.setSize(300, 200);
myWindow.setTitle("My First Java Program");
myWindow.setVisible(true);

}

}

No import statement

Fully qualified names

Instead of using the expression javax.swing.JFrame to refer to the class, we
can refer to it simply as

JFrame

by including the import statement

import javax.swing.JFrame;

at the beginning of the program. Notice that the import statement is terminated by a
semicolon. If we need to import more than one class from the same package, then
instead of using an import statement for every class, we can import them all by
using asterisk notation:

import <package name> . * ;

For example, if we state

import javax.swing.*;

wu23399_ch02.qxd 12/12/06 17:26 Page 45

then we are importing all classes from the javax.swing package. We use this asterisk
notation in our sample program, even when we use only one of the many classes
available in the javax.swing package. We could have used

import javax.swing.JFrame;

but it is more conventional to use asterisk notation. Notice that the package names
are all in lowercase letters. This is another standard Java naming convention.
Chapter 4 includes greater discussion of packages.

46 Chapter 2 Getting Started with Java

When we say “import a package,” it sounds as if we are copying all those classes
into our programs. That is not the case. Importing a package is only a shorthand
notation for referencing classes.The only effect of importing a package is the elim-
ination of the requirement to use the fully qualified name. No classes are physically
copied into our programs.

Class Declaration
A Java program is composed of one or more classes; some are predefined classes,
while others are defined by us. In the first sample program, there are two classes—
JFrame and Ch2Sample1. The JFrame class is one of the standard classes, and the
Ch2Sample1 class is the class we define ourselves. To define a new class, we must
declare it in the program, or make a class declaration. The syntax for declaring the
class is

class <class name> {

<class member declarations>

}

where <class name> is the name of the class and <class member declarations> is a
sequence of class member declarations. The word class is a reserved word used to
mark the beginning of a class declaration. A class member is either a data value or
a method. We can use any valid identifier that is not reserved to name the class.
Here’s the class declaration in the sample Ch2Sample1 program:

class
declaration

/*

Chapter 2 Sample Program: Displaying a Window

File: Ch2Sample1.java

*/

import javax.swing.*;

wu23399_ch02.qxd 12/12/06 17:26 Page 46

One of the classes in a program must be designated as the main class. The
main class of the sample program is Ch2Sample1. Exactly how you designate a class
as the main class of the program depends on which Java program development tool
you use. We will use the name of a main class to refer to a whole application. For
example, we say the Ch2Sample1 class when we refer to the class itself, and we say
the Ch2Sample1 application when we refer to the whole application.

If we designate a class as the main class, then we must define a method called
main, because when a Java program is executed, the main method of a main class is
executed first. To define a method, we must declare it in a class.

Method Declaration
The syntax for method declaration is

<modifiers> <return type> <method name> (<parameters>) {

<method body>
}

where <modifiers> is a sequence of terms designating different kinds of methods,
<return type> is the type of data value returned by a method, <method name> is the
name of a method, <parameters> is a sequence of values passed to a method, and
<method body> is a sequence of instructions. Here’s the method declaration for the
main method:

2.2 Program Components 47

main class

method
declaration

class Ch2Sample1 {

public static void main(String[] args) {

JFrame myWindow;

myWindow = new JFrame();

myWindow.setSize(300, 200);
myWindow.setTitle("My First Java Program");
myWindow.setVisible(true);

}

}

Class Declaration
Every program
must include at
least one class.

/*

Chapter 2 Sample Program: Displaying a Window

File: Ch2Sample1.java
*/

wu23399_ch02.qxd 12/12/06 17:26 Page 47

48 Chapter 2 Getting Started with Java

import javax.swing.*;

class Ch2Sample1 {

public static void main(String[] args) {

JFrame myWindow;

myWindow = new JFrame();

myWindow.setSize(300, 200);
myWindow.setTitle("My First Java Program");
myWindow.setVisible(true);

}

}

Method Declaration
This declaration declares
the main method.

Let’s match these components to the actual method declaration of the sample
program:

We do not explain the meanings of modifiers, return types, and parameters
here. We will explain them in detail gradually as we progress through the book. For
now, we ask you to follow a program template that we present next.

A Program Template for Simple Java Applications
The diagram in Figure 2.9 shows a program template for simple Java applications.
You can follow this program template to write very simple Java applications. The
structure of the sample program Ch2Sample1 follows this template.

Method Body
Consists of a sequence
of instructions

ParameterModifier

Modifier Method Name

Return Type

JFrame myWindow;

myWindow = new JFrame();

myWindow.setSize(300, 200);
myWindow.setTitle("My First Java Program");
myWindow.setVisible(true);

public

}

static void main (String[] args) {

wu23399_ch02.qxd 12/12/06 17:26 Page 48

2.3 Edit-Compile-Run Cycle
We will walk through the steps involved in executing the first sample program.
What we outline here are the overall steps in the edit-compile-run cycle common to
any Java development tool you use. You need to get detailed instructions on how to
use your chosen development tool to actually run programs. The steps we present in
this section should serve as a guideline for more detailed instructions specific to
your program development tool. Additional information on how to run Java pro-
grams can be found in Appendix A.

Step 1
Type in the program, using an editor, and save the program to a file. Use the name
of the main class and the suffix .java for the filename. This file, in which the pro-
gram is in a human-readable form, is called a source file.

2.3 Edit-Compile-Run Cycle 49

Comment
Use a comment to

describe the program.

Import Statements
Include a sequence of

import statements.

public static void main(String[] args) {

}

}

class {Class Name
Give a descriptive

name to the main class.

Method Body
Include a sequence

of instructions.

Figure 2.9 A program template for simple Java applications.

edit-compile-
run cycle

source file

/*
Chapter 2 Sample Program: Displaying a Window

File: Ch2Sample1.java
*/

Ch2Sample1.java

wu23399_ch02.qxd 12/12/06 17:26 Page 49

Step 2
Compile the source file. Many compilers require you to create a project file and then
place the source file in the project file in order to compile the source file. When the
compilation is successful, the compiled version of the source file is created. This
compiled version is called bytecode, and the file that contains bytecode is called a
bytecode file. The name of the compiler-generated bytecode file will have the suffix
.class while its prefix is the same as the one for the source file.

When any error occurs in a program, an error message will be displayed. If the
sample program contains no errors in syntax, then instead of an error message, you
will get nothing or a message stating something like “Compiled successfully.” To see
what kind of error messages are displayed, try compiling the following program.
We purposely introduced three errors. Can you find them? Make sure to compile the
correct Ch2Sample1 again before you proceed to the next step.

/*

 Chapter 2 Sample Program: Displaying a Window

 File: Ch2Sample.java

*/

import javax.swing.*;

class Ch2Samplel {

 public static void main(String[] args) {

 JFrame myWindow;

 myWindow = new JFrame();

be 00 03 00 2d 00 1f 08 00 12 07 00 0c ..�....–........
000010 07 00 15 07 00 13 0a 00 04 00 08 0a 00 03 00 07

000020 0c 00 19 00 1c 0c 00 17 00 14 01 00 04 74 68 69 thi

000030 73 01 00 0d 43 6f 6e 73 74 61 6e 74 56 61 6c 75 s...ConstantValu

000040 65 01 00 12 4c 6f 63 61 6c 56 61 72 69 61 62 6c e...LocalVariabl

000050 65 54 61 62 6c 65 01 00 0e 6d 79 46 69 72 73 74 eTable...myFirst

000060 50 72 6f 67 72 61 6d 01 00 0a 45 78 63 65 70 74 Program...Except

000070 69 6f 6e 73 01 00 0f 4c 69 6e 65 4e 75 6d 62 65 ions...LineNumbe

000080 72 54 61 62 6c 65 01 00 0a 53 6f 75 72 63 65 46 rTable...Source

000090 69 6c 65 01 00 0e 4c 6f 63 61 6c 56 61 72 69 61 ile...LocalVaria

0000a0 62 6c 65 73 01 00 04 43 6f 64 65 01 00 0b 49 20 bles...Code...I

0000b0 4c 6f 76 65 20 4a 61 76 61 01 00 13 4a 61 76 61 Love Java...Java

0000c0 42 6f 6f 6b 2f 4d 65 73 73 61 67 65 42 6f 78 01 Book/MessageBox.

0000d0 00 15 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 ..(Ljava/lang/St

0000e0 72 69 6e 67 3b 29 56 01 00 10 6a 61 76 61 2f 6c ring;)V...java/1

0000f0 61 6e 67 2f 4f 62 6a 65 63 74 01 00 04 6d 61 69 ang/Object...mai

000100 6e 01 00 07 64 69 73 70 6c 61 79 01 00 16 28 5b n...display...([

000110 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e Ljava/lang/Strin

000120 67 3b 29 56 01 00 06 3c 69 6e 69 74 3e 01 00 10 g;)V...<init>...

000130 4c 6d 79 46 69 72 73 74 50 72 6f 67 72 61 6d 3b LmyFirstProgram;

000140 01 00 13 6d 79 46 69 72 73 74 50 72 6f 67 72 61 ...myFirstProgra

000150 6d 2e 6a 61 76 61 01 00 03 28 29 56 01 00 04 61 m.java...()V...a

000160 72 67 73 01 00 13 5b 4c 6a 61 76 61 2f 6c 61 6e rgs...[Ljava/lan

000170 67 2f 53 74 72 69 6e 67 3b 00 00 00 02 00 03 00 g/String;.......

Compiler

Ch2Sample1.java

(source file)

Ch2Sample1.class

(bytecode file)

Editor

50 Chapter 2 Getting Started with Java

import javax.swing.*;

class Ch2Sample1 {

public static void main(String[] args) {

JFrame myWindow;

myWindow = new JFrame();

myWindow.setSize(300, 200);
myWindow.setTitle("My First Java Program");
myWindow.setVisible(true);

}
}

Editor

(source file)

project file

bytecode

bytecode file

wu23399_ch02.qxd 12/12/06 17:26 Page 50

Bad Versio
nimport javax.swing.*;

class Ch2Sample1 {

public static void main(String[]args) {

myWindow = new JFrame();

myWindow.setSize();
myWindow.setTitle("My First Java Program");
myWindow.setVisible(true)

}
}

Errors detected by the compiler are called compilation errors. Compilation
errors are actually the easiest type of errors to correct. Most compilation errors are
due to the violation of syntax rules.

Step 3
Execute the bytecode file. A Java interpreter will go through the bytecode file and
execute the instructions in it. If your program is error-free, a window will appear on
the screen.

If an error occurs in running the program, the interpreter will catch it and stop
its execution. Errors detected by the interpreter are called execution errors. If you
did not see the expected results, go back to the previous steps and verify that your
program is entered correctly. If you still do not see the expected results, then most
likely your development environment is not set up correctly. Please refer to other
sources of information for further help.

be 00 03 00 2d 00 1f 08 00 12 07 00 0c

..�....–........
000010 07 00 15 07 00 13 0a 00 04 00 08

0a 00 03 00 07

000020 0c 00 19 00 1c 0c 00 17 00 14 01

00 04 74 68 69 thi

000030 73 01 00 0d 43 6f 6e 73 74 61 6e

74 56 61 6c 75 s...ConstantValu

000040 65 01 00 12 4c 6f 63 61 6c 56 61

72 69 61 62 6c e...LocalVariabl

000050 65 54 61 62 6c 65 01 00 0e 6d 79

46 69 72 73 74 eTable...myFirst

000060 50 72 6f 67 72 61 6d 01 00 0a 45

78 63 65 70 74 Program...Except

000070 69 6f 6e 73 01 00 0f 4c 69 6e 65

4e 75 6d 62 65 ions...LineNumbe

000080 72 54 61 62 6c 65 01 00 0a 53 6f

75 72 63 65 46 rTable...Source

/*

 Chapter 2 Sample Program: Displaying a Window

 File: Ch2Sample.java

*/

import javax.swing.*;

class Ch2Samplel {

 public static void main(String[] args) {

 JFrame myWindow;

 myWindow = new JFrame();

Compiler Interpreter

Ch2Sample1.java

(source file)

Ch2Sample1.class

(bytecode file)

Running Program

Editor

2.3 Edit-Compile-Run Cycle 51

compilation
error

execution error

wu23399_ch02.qxd 12/12/06 17:26 Page 51

52 Chapter 2 Getting Started with Java

Unlike machine-language instructions, or machine code, Java bytecode is not tied
to any particular operating system or CPU. All we need to run the same Java pro-
grams on different operating systems is the Java interpreters for the desired oper-
ating systems. Currently, there are Java interpreters for Windows, Mac, Unix, and
other operating systems. A Java interpreter is also called a Java Virtual Machine
(JVM) because it is like a virtual machine that executes bytecode, whereas a CPU is
a real machine that executes machine code.

2.4 Sample Java Standard Classes
Eventually, you must learn how to define your own classes, the classes you will
reuse in writing programs. But before you can become adept at defining your own
classes, you must learn how to use existing classes. In this section, we will intro-
duce standard classes. Sample code using these classes helps us reinforce the core
object-oriented programming (OOP) concepts introduced in Chapter 1 with the
actual Java statements. Five standard classes we introduce here are JOptionPane,
System, Scanner String, Date, and SimpleDateFormat. It is not our objective here to
explain these classes fully. Rather, our objective is to get you started in writing
practical Java programs with a minimal explanation of some of the useful standard
classes. We will introduce additional capabilities of these classes as we progress
through the textbook. Although we will scratch only the surface of these classes in
this section, what we provide here should serve as a foundation for you to delve
more deeply into these classes. For a more detailed description, please consult the
documentation for the standard classes. The documentation for the standard classes
is commonly called Java API documentation, where API stands for application
programming interface.

To become a good object-oriented programmer, first you must learn how to use
predefined classes.

Please do not get alarmed by the number of standard classes we introduce here.
Although we cover five standard classes at once, we limit ourselves to the most
basic operations, so we won’t overwhelm you with too much information. Their
documentation can be located online at
http://java.sun.com/j2se/1.5.0/docs/api/index.html

wu23399_ch02.qxd 12/12/06 17:26 Page 52

http://java.sun.com/j2se/1.5.0/docs/api/index.html

2.4.1 Standard Output
When a program computes a result, we need a way to display this result to the
user of the program. One of the most common ways to do this in Java is to use
the console window. The console window is also called the standard output
window. We output data such as the computation results or messages to the con-
sole window via System.out. The System class includes a number of useful class
data values. One is an instance of the PrintStream class named out. Since this is
a class data value, we refer to it through the class name as System.out, and this
PrintStream object is tied to the console window (there’s exactly one console
window per program). Every data item we send to System.out will appear on this
console window. We call the technique to output data by using System.out the
standard output.

We use the print method to output a value. For example, executing the code

System.out.print("Hello, Dr. Caffeine.");

will result in the console window shown in Figure 2.10. The actual appearance of
the console window will differ depending on which Java development tool we use.
Despite the difference in the actual appearance, its functionality of displaying data
is the same among different Java tools.

2.4 Sample Java Standard Classes 53

console
window

System.out

standard
output

Note
Depending on the tool you
use, you may see additional
text such as
Press any key to continue...
or something similar to it. We
will ignore any text that may be
displayed automatically by the
system.

Figure 2.10 Result of executing System.out.print("Hello, Dr. Caffeine.").

System.out refers to a precreated PrintStream object we use to output data to the
console window.The actual appearance of the console window depends on which
Java tool we use.

wu23399_ch02.qxd 12/12/06 17:26 Page 53

The print method will continue printing from the end of the currently dis-
played output. Executing the following statements will result in the console window
shown in Figure 2.11.

System.out.print("How do you do? ");
System.out.print("My name is ");
System.out.print("Seattle Slew.");

Notice that they all appear on the same line. If we want them to appear on individual
lines, we can use the println method instead of print. The word println is a short-
hand for “print line.” Figure 2.12 shows the effect of the println method.

This concludes our quick introduction to System.out. We will be gradually in-
troducing additional techniques of outputting to the console window as they are
needed.

54 Chapter 2 Getting Started with Java

System.out.print("How do you do? ");
System.out.print("My name is ");
System.out.print("Seattle Slew.");

How do you do? My name is Seattle Slew.

Code

Output

Note: Because the actual appearance of the console window
 is different depending on the Java development tool
 you use, we use a generic picture for the console
 window in the diagrams.

Figure 2.11 Result of executing three consecutive print methods. The print method continues the printing
from the currently displayed output.

How do you do?
My name is
Seattle Slew.

System.out.println("How do you do? ");
System.out.println("My name is ");
System.out.println("Seattle Slew.");

Code

Output

Figure 2.12 Result of executing three consecutive println methods. The println method will skip to the next
line after printing out its argument.

wu23399_ch02.qxd 1/11/07 11:47 Page 54

2.4 Sample Java Standard Classes 55

1. Write a Java statement to display the text I Love Java in the console window.

2. Write statements to display the following shopping list in the console
window. Don’t forget to include blank spaces so the item names appear
indented.

Shopping List:
Apple
Banana
Low-fat Milk

2.4.2 String
The textual values we passed to the print method or the constructor of the JFrame
class are instances of the String class. A sequence of characters separated by double
quotes is String constants. As String is a class, we can create an instance and give it
a name. For example,

String name;

name = new String("Jon Java");

will result in a situation as follows:

Unlike in other classes, the explicit use of new to create an instance is optional
for the String class. We can create a new String object, for example, in this way:

String name;

name = "Decafe Latte";

There are close to 50 methods defined in the String class. We will introduce
three of them here: substring, length, and indexOf. We can extract a substring from
a given string by specifying the beginning and ending positions. For example,

String text;

text = "Espresso";

System.out.print(text.substring(2, 7));

will display the dialog shown in Figure 2.13.

name

Jon Java

:String

substring

wu23399_ch02.qxd 12/12/06 17:26 Page 55

Notice the use of method composition in the last statement, where the result of
a method call is used as an argument in another method call. In the statement

System.out.print (text.substring(2,7));

the result of method call

text.substring(2,7)

is passed as an argument when calling the showMessageDialog method. The sample
statement is equivalent to

String tempStr;

tempStr = text.substring(2,7);
System.out.print(tempStr);

Individual characters in a String object are indexed from 0, as illustrated in
Figure 2.14. The first argument of the substring method specifies the position of the
first character, and the second argument specifies the value that is 1 more than the

56 Chapter 2 Getting Started with Java

press

String text;
text = "Espresso";
System.out.print(text.substring(2,7));

Code

Output

Figure 2.13 Result of extracting and displaying the substring of "Expresso" from index position’s 2 to 6.
The index position of the first character in a string is 0.

String text;
text = "Espresso";

E s p r e s s o

0 1 2 3 4 5 6 7

Figure 2.14 Individual characters in a string are numbered from 0.

method
composition

wu23399_ch02.qxd 1/11/07 11:47 Page 56

An error will result if you pass invalid arguments, such as negative values, the sec-
ond argument larger than the number of characters in a string, or the first argument
larger than the second argument.

We can find out the number of characters in a String object by using the length
method. For example, if the name text refers to a string Espresso, then

text.length()

will return the value 8, because there are eight characters in the string. Here are
some more examples:

2.4 Sample Java Standard Classes 57

p r e s s

0 1 2 3 4

E s p r e s s o

0 1 2 3 4 5 6 7

text.substring(2, 7)

Figure 2.15 The effect of the substring method is shown. Notice that a new string is created, and the
original string remains intact.

length

text.substring(6, 8) "so"

text.substring(0, 8) "Espresso"

text.substring(1, 5) "spre"

text1 = ""; //empty string
text2 = "Hello";
text3 = "Java";

text1.length() 0

text2.length() 5

text3.length() 4

position of the last character. Figure 2.15 shows how the substring method works.
Here are some more examples:

wu23399_ch02.qxd 12/12/06 17:26 Page 57

To locate the index position of a substring within another string, we use the
indexOf method. For example, if the name text refers to a string I Love Java, then

text.indexOf("Love")

will return the value 2, the index position of the first character of the designated
string Love. If the searched substring is not located in the string, then �1 is returned.
Notice that the search is done in a case-sensitive manner. Thus,

text.indexOf("java")

will return �1. If there is more than one occurrence of the same substring, the index
position of the first character of the first matching substring is returned. Here are
some more examples:

58 Chapter 2 Getting Started with Java

indexOf

string
concatenation

text = "I Love Java and Java loves me.";

text.indexOf("J") 7

text.indexOf("love") 21

text.indexOf("ove") 3

text.indexOf("ME") -1

3 7 21

Beyond the three methods we cover here and the remaining methods of the
String class, we have one very useful string operation in Java called string concate-
nation. We can create a new string from two strings by concatenating the two
strings. We use the plus symbol (�) for string concatenation. Here are the examples:

text1 = "Jon";
text2 = "Java";

text1 + text2 "JonJava"

text1 + " " + text2 "Jon Java"

"How are you, " + text1 + "?"

"How are you, Jon?"

wu23399_ch02.qxd 12/12/06 17:26 Page 58

The sample class Ch2StringProcessing divides the given full name into the first
and last names and displays the number of letters in the last name.

2.4 Sample Java Standard Classes 59

/*
Chapter 2 Sample Program: Simple String Processing

File: Ch2StringProcessing.java

*/

class Ch2StringProcessing {

public static void main(String[] args) {

String fullName, firstName, lastName, space;

fullName = new String("Decafe Latte");
space = new String(" ");

firstName = fullName.substring(0, fullName.indexOf(space));
lastName = fullName.substring(fullName.indexOf(space) + 1,

fullName.length());

System.out.println("Full Name: " + fullName);

System.out.println("First: " + firstName);

System.out.println("Last: " + lastName);

System.out.println("Your last name has " + lastName.length()
+ " characters.");

}
}

1. What will be the value of mystery when the following code is executed?

String text, mystery;

text = "mocha chai latte";
mystery = text.substring(1,5);

2. What will be displayed on the message dialog when the following code is
executed?

String text = "I, Claudius";

System.out.println(text.indexOf("I"));

wu23399_ch02.qxd 12/12/06 17:26 Page 59

3. What will be displayed on the message dialog when the following code is
executed?

String text = "Augustus";

System.out.println(text.length());

4. What will be the value of text3 when the following code is executed?

String text1 = "a" + "b";
String text2 = "c";

String text3 = text1 + text2 + text1;

2.4.3 Date and SimpleDateFormat
The Date class is used to represent a time instance to a millisecond (one-thousandth
of a second) precision. This class is in the java.util package. When a new Date
object is created, it is set to the time it is created (the current time is determined by
reading the time maintained by the operating system on your machine). The Date
class includes the toString method that converts its internal format to a string repre-
sentation, which we can use to display the time. For example, executing the code

Date today;

today = new Date();
System.out.println(today.toString());

will display the current time in this format:

Wed Jan 28 15:05:18 PDT 2006

Notice that the current time, when converted to a string format, includes the
date information also. Internally, the time is kept as an elapsed time in milliseconds
since the standard base time known as the epoch, which is January 1, 1970,
00:00:00 GMT (Greenwich Mean Time).

60 Chapter 2 Getting Started with Java

Why is the class called Date when its purpose is to keep track of time? The reason
is historical. In the older versions of Java, prior to JDK 1.1, the Date class was
indeed used to manipulate the year, month, and day components of the current
time. However, the way they are implemented was not amenable to internation-
alization. With the newer versions of Java, we use the GregorianCalendar class for
date manipulation. The GregorianCalendar class is explained in Chapter 3.

If we do not like the default format, say we want to display only the month and
year or only the hours and minutes in the AM/PM designation, then we can use the
SimpleDateFormat class. This class is in the java.text package. For example, if we

wu23399_ch02.qxd 12/12/06 17:26 Page 60

want to display the month, day, and year in the MM/dd/yy shorthand format, such
as 07/04/03, we write

Date today;
SimpleDateFormat sdf;

today = new Date();
sdf = new SimpleDateFormat("MM/dd/yy");

System.out.println(sdf.format(today));

If today is June 28, 2006, the code will display the date as

06/28/06

Notice the format designation is done by passing the formatting string when a
new SimpleDateFormat object is created. The letters in the formatting string are case-
sensitive. The formatting string in this example must be MM/dd/yy, and the letters d
and y must be in lowercase. By increasing the number of formatting letters, we can
change the length of the information, say, 2006 instead of 06. In case of the month,
we change it from the number to a name. For example, when we change sdf to

sdf = new SimpleDateFormat("MMMM dd, yyyy");

the dialog will display

June 28, 2006

If we want to display which day of the week today is, we can use the letter E as in

Date today;
SimpleDateFormat sdf;

today = new Date();
sdf = new SimpleDateFormat("EEEE");

System.out.println("Today is " + sdf.format(today));

Table 2.1 lists the common letters used in the formatting for SimpleDate-
Format. For more details, please consult the Java API documentation.

2.4 Sample Java Standard Classes 61

Table 2.1 is provided solely for the purpose of quick reference when you start
using the class in real programs. Nobody expects you to remember all those sym-
bols. What is important here is for you to grasp the key OOP concepts and the
fundamental way in which objects and classes are used, not to memorize minute
details that nobody remembers.

wu23399_ch02.qxd 12/12/06 17:26 Page 61

If you do not pass any string when creating a new SimpleDataFormat object,
the default formatting is used. The sample Ch2DateDisplay class displays today’s
date, using the default and programmer-designated format.

62 Chapter 2 Getting Started with Java

Ta
b

le
Table 2.1

Some common formatting symbols for SimpleDateFormat and their
meanings. Please check the Java API documentation for full details.

Symbol Meaning Value Sample

y Year Number yyyy → 2002

M Month in year Text or number MM → 10
MMM → Oct
MMMM → October

d Day in month Number dd → 20

D Day in year Number DDD → 289

h Hour in AM/PM Number hh → 09

H Hour in day (0–23) Number HH → 17

a AM/PM marker Text a → AM

m Minutes in hour Number mm → 35

s Seconds in minute Number ss → 54

S Millisecond Number mmm → 897

E Day in week Text E → Sat

EEEE → Saturday

/*
Chapter 2 Sample Program: Displays Formatted Date Information

File: Ch2DateDisplay.java
*/

import java.util.*; //for Date
import java.text.*; //for SimpleDateFormat

class Ch2DateDisplay {

public static void main(String[] args) {

Date today;

SimpleDateFormat simpleDF1,
simpleDF2;

today = new Date();

wu23399_ch02.qxd 12/12/06 17:26 Page 62

simpleDF1 = new SimpleDateFormat();
simpleDF2 = new SimpleDateFormat ("EEEE MMMM dd, yyyy");

//Default short format display
System.out.println("Today is " + simpleDF1.format(today));

//Programmer-designated long format display
System.out.println("Today is " + simpleDF2.format(today));

}
}

2.4 Sample Java Standard Classes 63

1. Write a code fragment to display today’s date in the 07-04-2002 format.

2. What will be displayed on the message dialog when the following code is
executed if today is July 4, 1776?

Date today;
SimpleDateFormat sdf;

today = new Date();
sdf = new SimpleDateFormat("MMM dd, yyyy");

System.out.println("Today is " + sdf.format(today));

2.4.4 Standard Input
Analogous to System.out for output, we have System.in for input. We call the tech-
nique to input data using System.in standard input. System.in accepts input from
the keyboard. We also use the term console input to refer to standard input. Using
System.in for input is slightly more complicated than using System.out for output.
System.in is an instance of the InputStream class that provides only a facility to
input 1 byte at a time with its read method. However, multiple bytes are required to
represent common types of data such as strings. The Scanner class from the java.util
package provides a necessary input facility to accommodate various input routines.
We limit our discussion here to input of string values. We extend our discussion to
input of numerical values in Chapter 3.

To input data from the standard input by using a Scanner object, we first cre-
ate it by passing System.in as follows:

import java.util.*;
...
Scanner scanner;

scanner = new Scanner(System.in);

System.in

standard input

console input

Scanner

wu23399_ch02.qxd 12/12/06 17:27 Page 63

Once we have a Scanner object, then we can input a single word by using its next
method. Here’s code to input the first name of a person:

Scanner scanner = new Scanner(System.in);

String firstName;

//prompt the user for input
System.out.print("Enter your first name: ");

firstName = scanner.next();

System.out.println("Nice to meet you, " + firstName + ".");

The user interaction of this sample code is shown in Figure 2.16. In the dia-
gram, the characters entered by the user are displayed in the console window as they
are typed in, so the user can see what’s been entered. Printing out the values just en-
tered is called echo printing. The string input is processed until the Enter (or Return)
key is pressed, so we can erase the characters by pressing the Backspace key while
entering the data.

Now let’s consider the case in which we want to input both the first name
and the last name. We can follow the sample code and input them one by one as
follows:

Scanner scanner = new Scanner(System.in);

String firstName, lastName;

System.out.print("Enter your first name: ");
firstName = scanner.next();

64 Chapter 2 Getting Started with Java

Figure 2.16 Sample interaction using System.in with Scanner and System.out. Keyboard input is echo-
printed in the console window.

Enter your first name: George ENTER
Nice to meet you, George.

System.out.print("Enter your first name: ");
firstName = scanner.next();
System.out.println("Nice to meet you, " + firstName + ".");

This is entered by the user and echo
printed by the system. To distinguish

the input and output in the diagram, the
input is displayed in a different color.

This icon shows the pressing of
the Enter (Return) key.

Note: The console window used by your Java tool
may or may not use a different color for echo printing.

echo printing

wu23399_ch02.qxd 1/12/07 10:26 Page 64

Bad Version

System.out.print("Enter your last name: ");
lastName = scanner.next();

System.out.println("Your name is " + firstName +
"" + lastName + ".");

Enter your first name: George

Enter your last name: Washington
Your name is George Washington.

What can we do if we want input both the first name and the last name
together as a single input? Consider the following (wrong) code:

Scanner scanner = new Scanner(System.in);

String fullName;

System.out.print("Enter your first and last names: ");
fullName = scanner.next();

System.out.println("Your name is " + fullName + ".");

Here’s a sample interaction of a user entering both the first name and the last name
on a single line:

Enter your first and last name: George Washington
Your name is George.

What happened to the last name? The blank space between the first name and the
last name is treated as a delimiter. So the system has accepted the characters up to,
but not including, the blank space as the input value. Because we know there are
first and last names, we can input them individually as follows:

Scanner scanner = new Scanner(System.in);

String first, last;

System.out.print("Enter your first and last name: ");
first = scanner.next();
last = scanner.next();

System.out.println("Your name is " + first + " "
+ last + ".");

Enter your first and last name: George Washington
Your name is George Washington.

Instead of treating each word individually, it is possible to enter a set of words
as a single input. To do so, we must reset the delimiter to other than the blank space.
Any character can be set as a delimiter, but since we want to input the whole line as a

ENTER

ENTER

ENTER

ENTER

2.4 Sample Java Standard Classes 65

wu23399_ch02.qxd 1/12/07 10:26 Page 65

single input, it is most reasonable to set the delimiter to the Enter key. Here’s how we
change the delimiter to the Enter key and accept the complete line as a single input:

Scanner scanner = new Scanner(System.in);

String lineSeparator
= System.getProperty("line.separator");

scanner.useDelimiter(lineSeparator);

String quote; Note we’re using println here.

System.out.println("Enter your favorite quote: ");
quote = scanner.next();

System.out.println("You entered: " + quote);

Enter your favorite quote:
There never was a good war or a bad peace.
You entered: There never was a good war or a bad peace.

We override the default delimiter by calling the useDelimiter method and pass
the appropriate argument. We use the class method getProperty of the System class
to retrieve the actual sequence of characters for the Enter key that is specific to the
platform which our program is running. For the Windows platform, for instance, we
can call the useDelimiter method as

scanner.useDelimiter("\r\n");

But such code is guaranteed only to work on the Windows platform. It may or may
not work on other platforms. To make the code general enough to work on all plat-
forms, we use System.getProperty. Incidentally, the backslash character (\) is called
a control character or an escape character. We’ll examine the use of control char-
acters later in the book.

ENTER

66 Chapter 2 Getting Started with Java

1. Write a code to input the last name of a user.

2. Show the content of the console window when the following code is executed
and the text Barbaro is entered:

Scanner scanner = new Scanner(System.in);

String winner;

System.out.print(
"Enter the name of the derby winner: ");

winner = scanner.next();

System.out.println("2006 Kentucky Derby Winner is "
+ name + ".");

wu23399_ch02.qxd 12/12/06 17:27 Page 66

2.5 Sample Development 67

Printing the Initials

Now that we have acquired a basic understanding of Java application programs, let’s
write a new application.We will go through the design, coding, and testing phases of the
software life cycle to illustrate the development process. Since the program we develop
here is very simple, we can write it without really going through the phases. However, it is
extremely important for you to get into a habit of developing a program by following the
software life cycle stages. Small programs can be developed in a haphazard manner, but
not large programs.We will teach you the development process with small programs first,
so you will be ready to use it to create large programs later.

We will develop this program by using an incremental development technique,
which will develop the program in small incremental steps. We start out with a bare-
bones program and gradually build up the program by adding more and more code to
it. At each incremental step, we design, code, and test the program before moving on
to the next step. This methodical development of a program allows us to focus our at-
tention on a single task at each step, and this reduces the chance of introducing errors
into the program.

Problem Statement

We start our development with a problem statement. The problem statement for our
sample programs will be short, ranging from a sentence to a paragraph, but the problem
statement for complex and advanced applications may contain many pages. Here’s the
problem statement for this sample development exercise:

Write an application that asks for the user’s first, middle, and last names and
replies with the user’s initials.

Overall Plan

Our first task is to map out the overall plan for development. We will identify classes nec-
essary for the program and the steps we will follow to implement the program.We begin
with the outline of program logic. For a simple program such as this one, it is kind of obvi-
ous; but to practice the incremental development, let’s put down the outline of program
flow explicitly.We can express the program flow as having three tasks:

1. Get the user’s first, middle, and last names.

2. Extract the initials to formulate the monogram.

3. Output the monogram.

Having identified the three major tasks of the program, we will now identify the
classes we can use to implement the three tasks. First, we need an object to handle the
input. At this point, we have learned about only the Scanner class, so we will use it
here. Second, we need an object to display the result. Again, we will use System.out, as
it is the only one we know at this point for displaying a string value. For the string

Sample Development2.5 Sample Development

program
tasks

wu23399_ch02.qxd 12/12/06 17:27 Page 67

68 Chapter 2 Getting Started with Java

2.5 Sample Development—continued

manipulation, we will use the String class. Finally, we will use these classes from the main
class, which we will call Ch2Monogram. Let’s summarize these in a design document:

Design Document: Monogram

Class Purpose

Ch2Monogram The main class of the program.

Scanner The next method is used for getting the full name.

String The class is used for string manipulation, extracting initials
from the first, middle, and last names.

(PrintStream) The standard output window is used for displaying the resulting
System.out monogram.

program
classes

The program diagram of Ch2Monogram is shown in Figure 2.17. Keep in mind that
this is only a preliminary design. Although we are not going to see any changes made to
this design document because this sample application is very simple, changes to the
design document are expected as the programs we develop become larger and more
complex.The preliminary document is really a working document that we will modify and
expand as we progress through the development steps.

Before we can actually start our development, we must sketch the steps we will fol-
low to develop the program.There is more than one possible sequence of steps to develop

Figure 2.17 The program diagram for Ch2Monogram.

Ch2Monogram

String PrintStream
(System.out)

Scanner

wu23399_ch02.qxd 12/12/06 17:27 Page 68

a program, and the number of possible sequences will increase as the program becomes
more complex. For this program, we will develop the program in two steps:

1. Start with the program template and add code to get input.

2. Add code to compute and display the monogram.

Step 1 Development: Getting Input

The problem states that the program is to input the user’s name and display its initials. It
does not specify how, so in the design stage, we will decide how to do this. Since, at this
point, we know only one way to input data, that is, using the Scanner class, we will use it
here. But in which form shall we input three pieces of data? There are two possible design
alternatives.

In the first design, we will input them separately:

String firstName, middleName, lastName;

Scanner scanner = new Scanner(System.in);

System.out.print("First Name: ");
firstName = scanner.next();

System.out.print("Middle Name: ");
middleName = scanner.next();

System.out.print("Last Name: ");
lastName = scanner.next();

In the second design, we will input them together:

String fullName;

Scanner scanner = new Scanner(System.in);

scanner.useDelimiter(System.getProperty("line.separator"));

System.out.print("Full Name: ");
fullName = scanner.next();

Which design is better? There is never “one correct answer”to the design problems.
We have to select the one from the possible alternatives that satisfies the different crite-
ria most effectively in a given situation. The criteria may include the user’s needs and
preferences, faster performance, development costs, time contraints, and other factors.
For example, in one situation, we may decide to forgo some great user interface features
so the development can be completed under budget.

In this sample development, we will consider the alternative designs from the
overall quality of the program’s user interface. In other words, we want to make our pro-
gram as user-friendly as possible. We want our users to have a pleasant experience using
our program. The program should not be cumbersome to use, or else the users will get
very frustrated in using the program. Which design would give the better user experi-
ence? In the first approach, the user enters the information separately with three dialogs,

2.5 Sample Development 69

develop-
ment steps

step 1
design

alternative
design 1

alternative
design 2

wu23399_ch02.qxd 12/12/06 19:29 Page 69

2.5 Sample Development—continued

while in the second approach, the user enters the information together with one dialog.
We choose the second approach because it allows quicker data entry, and in general, it is
more natural to treat the name as a single entity than as three separate entitites. If we
were to enter the name, address, and phone number, then we would use three dialogs as
they are three separate entities. In this situation, we consider the first, middle, and last
names as part of a single entity.

Notice that the decision to enter the full name by using one dialog makes our task
as the programmer slightly more difficult because we need to extract the first, middle,
and last names from a single string. In the first approach, as we get the first, middle, and
last names separately, there’s no such need. So, if we consider strictly the ease of develop-
ment, the first approach is better. It is important to remember, however, that we are de-
veloping the program for the sake of the users, not for ourselves.

70 Chapter 2 Getting Started with Java

We develop programs for the sake of users, not for ourselves. Ease of use has higher
priority than ease of development.

Let’s implement the second design alternative. In the code, notice the use of the output
statement that prints the string entered by the user. This printing of the input is another
form of echo printing (introduced in Section 2.4.4). By echo printing, we verify that the
input value is indeed read in correctly.

/*
Chapter 2 Sample Program: Displays the Monogram

File: Step1/Ch2Monogram.java

/*
import java.util.*;

class Ch2Monogram {

public static void main(String[] args) {

String name;

Scanner scanner = new Scanner(System.in);

step 1 code

wu23399_ch02.qxd 12/12/06 17:27 Page 70

scanner.useDelimiter(System.getProperty("line.separator"));

System.out.print("Enter your full name (first, middle, last):");

name = scanner.next();

System.out.println("Name entered: " + name);

}
}

2.5 Sample Development 71

After the program is written, we test the program to verify that the program runs as in-
tended. The step 1 program may seem so trivial and not so useful, but it does serve a very
useful purpose. Successful execution of this program verifies that the program setup is
okay, the necessary packages are imported, and the objects are declared correctly. Since
this program is very simple, there’s not much testing strategy we can employ other than
simply running it. For subsequent sample programs, however, the testing strategy will be
more involved. After the step 1 program is compiled and executed correctly, we move on
to step 2.

Step 2 Development: Computing and Displaying the Monogram

The next task is to extract initials from the input string. First, because of our limited
knowledge of programming at this point, we will assume the input is correct. That is,
the input string contains first, middle, and last names, and they are separated by single
blank spaces. Second, there are many possible solutions, but we will solve this problem
by using only the methods covered in this chapter. Reviewing the string methods we
covered in this chapter and the Ch2String Processing class, we know that a sequence
of indexOf and substring methods can divide a string (full name) into two substrings
(first and last names). How can we adapt this technique to now divide a string (full
name) into three substrings (first, middle, and last names)? Aha! We apply the sequence
one more time, as shown in Figure 2.18.

Once we divide the input name into first, middle, and last names, extracting the ini-
tials is a fairly straightforward application of the indexOf method.We can extract the first
letter of a string as

str.substring(0, 1)

And the monogram can be formulated by concatenating three initials as

first.substring(0, 1)
+ middle.substring(0, 1)

+ last.substring(0, 1)

step 1 test

step 2
design

wu23399_ch02.qxd 12/12/06 17:27 Page 71

2.5 Sample Development—continued

Here’s our step 2 code:

72 Chapter 2 Getting Started with Java

Figure 2.18 Apply the two sequences of indexOf and substring methods to extract three substrings
from a given string.

General Idea

String name;
name = "Jon Jay Java";

Jon Jay Java

Jon Jay Java

Jay Java

Actual Statements

Jon Jay Java

Jon Jay Java

Jay Java

first = name.substring(0,
 name.indexOf(" "));

name =
name.substring(name.indexOf(" ")+1,
 name.length());

middle = name.substring(0,
 name.indexOf(" "));

last =
name.substring(name.indexOf(" ")+1,
 name.length());

step 2 code

/*

Chapter 2 Sample Program: Displays the Monogram

File: Step2/Ch2Monogram.java

*/

wu23399_ch02.qxd 12/12/06 17:27 Page 72

import java.util.*;

class Ch2Monogram {

public static void main(String[] args) {

String name;

Scanner scanner = new Scanner(System.in);

scanner.useDelimiter(System.getProperty("line.separator"));

System.out.print("Enter your full name (first, middle, last):");

name = scanner.next();

System.out.println("Name entered: " + name);

}
}

Summary 73

To verify the computation is working correctly, we run the program multiple times and
enter different names. Remember that we are assuming there is no error in input; that is,
first, middle, and last names are separated by single blank spaces. Since there are two sub-
tasks involved in this step, it is important to test them separately. To verify that the input
string is divided into three substrings correctly, we place the following temporary test
output statements.

System.out.println("First:" + first);
System.out.println("Middle:" + middle);
System.out.println("Last:" + last);

These statements are not shown in the step 2 program listing, but they are included in the
actual sample code.

step 2 test

• The three basic components of a Java program are comments, import
statements, and class declarations.

• A Java program must have one class designated as the main class. The
designated main class must have the main method.

• An object must be declared and created before we can use it.

• To command an object or a class to perform a task, we send a message to it. We
use the expression calling a method synonymously with sending a message.

• A single name can be used to refer to different objects (of the same class) at
different times. An object with no reference will be returned to a system.

S u m m a r y

wu23399_ch02.qxd 12/12/06 17:27 Page 73

• We follow the edit-compile-run cycle to execute programs.

• A source file is compiled into a bytecode file by a Java compiler.

• A Java interpreter (also called a Java Virtual Machine) executes the bytecode.

• The standard classes introduced in this chapter are

JFrame SimpleDateFormat
Scanner String
Date System.out

System.in

• Table 2.2 lists the Java naming convention.

74 Chapter 2 Getting Started with Java

Ta
b

le

Table 2.2 Standard naming convention for Java

Category Convention Example

Class

Instance

Constant

Package

Use an uppercase letter for the first letter of
the class names. If the name consists of
multiple words, the first letter of every word
is capitalized.

Use a lowercase letter for the first letter of
the object names. If the name consists of
multiple words, the first letter of every word
(except the first word) is capitalized.

(Note: Sample use of a constant will appear
in Chap. 4.We include it here for
completeness and easy reference later.)
Use all uppercase letters. If the constant
consists of multiple words, the underscore
characters are used to separate the words.

Use all lowercase letters.

Customer
MainWindow
MyInputHandler

customer
inputHandler
myFirstApplication

DEFAULT_RATE
DEG_TO_RAD
CANCEL

java
game
finance

K e y C o n c e p t s

standard classes

program diagram

identifier

standard naming convention

new operator

garbage collection

comments

packages

dot notation

class declaration

method declaration

edit-compile-run cycle

source file

bytecode file

wu23399_ch02.qxd 12/12/06 17:27 Page 74

Exercises 75

E x e r c i s e s

1. Identify all errors in the following program (color highlighting is disabled):

/*

Program Exercise1

Attempting to display a frame window

//
import swing.JFrame;

class Exercise 1 {
public void Main() {

JFrame frame;
frame.setVisible(TRUE)

}
}

2. Identify all errors in the following program (color highlighting is disabled):

//

Program Exercise2

Attempting to display a frame of size 300 by 200 pixels

//

import Javax.Swing.*;

class two {

public static void main method() {
myFrame JFrame;
myFrame = new JFrame();
myFrame.setSize(300, 200);
myFrame.setVisible();

}
}

3. Identify all the errors in the following program (color highlighting is disabled):

/*

Program Exercise3

Attempting to display the number of characters
in a given input.

*/

class three {
public static void main() {

String input;
input = JOptionPane("input:");

wu23399_ch02.qxd 12/12/06 17:27 Page 75

System.out.print ("Input has " +
input.length() + " characters");

}
}

4. Describe the purpose of comments. Name the types of comments available.
Can you include comment markers inside a comment?

5. What is the purpose of the import statement? Does a Java program always
have to include an import statement?

6. Show the syntax for importing one class and all classes in a package.

7. Describe the class that must be included in any Java application.

8. What is a reserved word? List all the Java reserved words mentioned in this
chapter.

9. Which of the following are invalid Java identifiers?

a. R2D2
b. Whatchamacallit
c. HowAboutThis?
d. Java
e. GoodChoice
f. 12345

76 Chapter 2 Getting Started with Java

g. 3CPO
h. This is okay.
i. thisIsReallyOkay
j. DEFAULT_AMT
k. Bad-Choice
l. A12345

10. Describe the steps you take to run a Java application and the tools you use in
each step. What are source files and bytecode files? What different types of
errors are detected at each step?

11. Describe the difference between object declaration and object creation. Use
a state-of-memory diagram to illustrate the difference.

12. Show a state-of-memory diagram after each of these statements is executed:

JFrame window1;
Resident res1, res2;

window1 = new JFrame();
res1 = new Resident();
res2 = new Resident();

13. Show a state-of-memory diagram after each of these statements is executed:

Person person1, person2;

person1 = new Person();
person2 = new Person();
person2 = new Person();

14. Which of these identifiers violate the naming convention for class names?

a. r2D2
b. whatchamacallit
c. Java
d. GoodName

e. CPO
f. ThisIsReallyOkay
g. java
h. badName

wu23399_ch02.qxd 12/12/06 17:27 Page 76

15. Which of these identifiers violate the naming convention for object names?

a. R2D2
b. isthisokay?
c. Java
d. goodName

Exercises 77

e. 3CPO
f. ThisIsReallyOkay
g. java
h. anotherbadone

16. For each of these expressions, determine its result. Assume the value of text
is a string Java Programming.

String text = "Java Programming";

a. text.substring(0, 4)

b. text.length()

c. text.substring(8, 12)

d. text.substring(0, 1) + text.substring(7, 9)

e. text.substring(5,6)

+ text.substring(text.length()-3, text.length())

17. Write a Java application that displays today’s date in this format: Sunday
November 10, 2002.

18. Write a Java application that displays a frame window 300 pixels wide and
200 pixels high with the title My First Frame. Place the frame so that its top
left corner is at a position 50 pixels from the top of the screen and 100 pixels
from the left of the screen. To position a window at a specified location, you
use the setLocation method, as in

//assume mainWindow is declared and created
frame.setLocation(50, 50);

Through experimentation, determine how the two arguments in the
setLocation method affect the positioning of the window.

19. Write a Java application that displays the two messages I Can Design and
And I Can Program, using two separate dialogs.

20. Write a Java application that displays the two messages I Can Design and
And I Can Program, using one dialog but in two separate lines.

21. Write a Java application that displays a very long message. Try a message
that is wider than the display of your computer screen, and see what
happens.

22. Because today’s computers are very fast, you will probably not notice any
discernible difference on the screen between the code

JFrame myWindow;
myWindow = new JFrame();
myWindow.setVisible(true);

wu23399_ch02.qxd 12/12/06 17:27 Page 77

and

JFrame myWindow;
myWindow = new JFrame();
myWindow.setVisible(true);
myWindow.setVisible(false);
myWindow.setVisible(true);

One way to see the disappearance and reappearance of the window is to put
a delay between the successive setVisible messages. Here’s the magic code
that puts a delay of 0.5 s:

try {Thread.sleep(500);} catch(Exception e) { }

The argument we pass to the sleep method specifies the amount of delay in
milliseconds [note: 1000 milliseconds (ms) � 1 second (s)]. We will not
explain this magic code.

23. At the author’s website, you will find a Java package called galapagos. The
galapagos package includes a Turtle class that is modeled after Seymour
Papert’s logo. This Turtle has a pen, and when you move the Turtle, its pen
will trace the movement. So by moving a Turtle object, you can draw many
different kinds of geometric shapes. For example, this program commands a
Turtle to draw a square:

import galapagos.*;

class Square {
public static void main(String[] arg) {

Turtle turtle;
turtle = new Turtle();

turtle.move(50); //move 50 pixels
turtle.turn(90); //turn 90 deg counterclockwise

turtle.move(50);
turtle.turn(90);

turtle.move(50);
turtle.turn(90);

turtle.move(50);
}

}

Write a program to draw a triangle. Read the documentation and see
if you can find a way to draw the square in a different color and line
thickness.

24. Write a program to draw a star, using a Turtle from Exercise 23.

25. Write a program to draw a big letter J, using a Turtle from Exercise 23.

78 Chapter 2 Getting Started with Java

wu23399_ch02.qxd 12/12/06 17:27 Page 78

26. Using a Turtle from Exercise 23, write a Java application that displays the
text Hello as illustrated here:

27. Using a Turtle from Exercise 23 and employing the incremental development
steps, build a Java application that draws a house.

28. Add the moon and a tree to the house you drew in Exercise 27.

29. Follow the incremental development methodology explained in this chapter
to implement a program for the following problem statement. You must
clearly write down the program tasks, create a design document with class
descriptions, and draw the program diagram. Identify the development steps.
State any assumptions you must make about the input. Articulate any design
alternatives and justify your selection. Be sure to perform adequate testing at
the end of each development step.

Problem Statement: Write an application that asks the user for his or her
birth date and replies with the day of the week on which he or she was born.

We learned in this chapter that we can create a Date object for today’s date
by writing

import java.util.*;
...
Date today = new Date();

Hello Hello

Hello Hello

Hello

Exercises 79

wu23399_ch02.qxd 12/12/06 17:27 Page 79

To create a Date object for a date other than today, we can use the Date class
from the java.sql package. (A more general and flexible way to deal with a
date by using the GregorianCalendar class is introduced in Chap. 3.) Notice
that there are two distinct classes with the same name Date, but from
different packages—one from java.util and another from java.sql. To
distinguish the two, we will use the fully qualified names. To create a
new java.util.Date object, we can call the class method valueOf of the
java.sql.Date class with the string representation of a date. The string
representation must be in the format yyyy-MM-dd. For example, to create
a java.util.Date object for July 4, 1776, we write

java.util.Date bdate = java.sql.Date.valueOf("1776-07-04");

Notice that valueOf is a class method of the Date class in the java.sql
package. Calling it with a correct argument will return a java.util.Date object
for the specified date.

30. Repeat Exercise 29 for this problem statement:

Problem Statement: Write an application that asks the user for her or his
full name in the format

first middle last

and replies with the name in the format

last , first middle-initial.

where the last name is followed by comma and the middle initial is followed
by period.

For example, if the input is

Decafe Chai Latte

then the output is

Latte, Decafe C.

80 Chapter 2 Getting Started with Java

wu23399_ch02.qxd 12/12/06 17:27 Page 80

Numerical Data

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Select proper types for numerical data.

• Write arithmetic expressions in Java.

• Evaluate arithmetic expressions, following the
precedence rules.

• Describe how the memory allocation works for
objects and primitive data values.

• Write mathematical expressions, using
methods in the Math class.

• Use the GregorianCalendar class in
manipulating date information such as year,
month, and day.

• Use the DecimalFormat class to format
numerical data.

• Convert input string values to numerical data.

• Input numerical data by using System.in and
output numerical data by using System.out.

• Apply the incremental development technique
in writing programs.

• (Optional) Describe how the integers and real
numbers are represented in memory.

81

3

wu23399_ch03.qxd 12/13/06 17:38 Page 81

82 Chapter 3 Numerical Data

I n t r o d u c t i o n

hen we review the Ch2Monogram sample program, we can visualize three tasks:
input, computation, and output. We view computer programs as getting input, per-
forming computation on the input data, and outputting the results of the computa-
tions. The type of computation we performed in Chapter 2 is string processing. In
this chapter, we will study another type of computation, the one that deals with
numerical data. Consider, for example, a metric converter program that accepts
measurements in U.S. units (input), converts the measurements (computation), and
displays their metric equivalents (output). The three tasks are not limited to numer-
ical or string values, though. An input could be a mouse movement. A drawing pro-
gram may accept mouse dragging (input), remember the points of mouse positions
(computation), and draw lines connecting the points (output). Selecting a menu item
is yet another form of input. For beginners, however, it is easiest to start writing
programs that accept numerical or string values as input and display the result of
computation as output.

We will introduce more standard classes to reinforce the object-oriented style
of programming. The Math class includes methods we can use to express mathe-
matical formulas. The DecimalFormat class includes a method to format numerical
data so we can display the data in a desired precision. The GregorianCalendar class
includes methods to manipulate the date. In Chapter 2, we performed String input
and output by using the standard input (Scanner) and output (System.out). We will
describe the input and output routines for numerical data in this chapter.

Finally, we will continue to employ the incremental development technique
introduced in Chapter 2 in developing the sample application, a loan calculator pro-
gram. As the sample program gets more complex, well-planned development steps
will smooth the development effort.

3.1 Variables
Suppose we want to compute the sum and difference of two numbers. Let’s call the
two numbers x and y. In mathematics, we say

x + y

and

x – y

To compute the sum and the difference of x and y in a program, we must first declare
what kind of data will be assigned to them. After we assign values to them, we can
compute their sum and difference.

Let’s say x and y are integers. To declare that the type of data assigned to them
is an integer, we write

int x, y;

W

wu23399_ch03.qxd 12/13/06 17:38 Page 82

When this declaration is made, memory locations to store data values for x and y are
allocated. These memory locations are called variables, and x and y are the names
we associate with the memory locations. Any valid identifier can be used as a vari-
able name. After the declaration is made, we can assign only integers to x and y. We
cannot, for example, assign real numbers to them.

3.1 Variables 83

variable

A variable has three properties: a memory location to store the value, the type of
data stored in the memory location, and the name used to refer to the memory
location.

Although we must say “x and y are variable names” to be precise, we will use the
abbreviated form “x and y are variables” or “x and y are integer variables” whenever
appropriate.

The general syntax for declaring variables is

<data type> <variables> ;

where <variables> is a sequence of identifiers separated by commas. Every variable
we use in a program must be declared. We may have as many declarations as we
wish. For example, we can declare x and y separately as

int x;
int y;

However, we cannot declare the same variable more than once; therefore, the sec-
ond declaration below is invalid because y is declared twice:

int x, y, z;
int y;

There are six numerical data types in Java: byte, short, int, long, float, and
double. The data types byte, short, int, and long are for integers; and the data types
float and double are for real numbers. The data type names byte, short, and others
are all reserved words. The difference among these six numerical data types is in
the range of values they can represent, as shown in Table 3.1.

A data type with a larger range of values is said to have a higher precision. For
example, the data type double has a higher precision than the data type float. The
tradeoff for higher precision is memory space—to store a number with higher pre-
cision, you need more space. A variable of type short requires 2 bytes and a variable
of type int requires 4 bytes, for example. If your program does not use many
integers, then whether you declare them as short or int is really not that critical. The

variable
declaration
syntax

six numerical
data types

higher
precision

wu23399_ch03.qxd 12/13/06 17:38 Page 83

difference in memory usage is very small and not a deciding factor in the program
design. The storage difference becomes significant only when your program uses
thousands of integers. Therefore, we will almost always use the data type int for in-
tegers. We use long when we need to process very large integers that are outside the
range of values int can represent. For real numbers, it is more common to use dou-
ble. Although it requires more memory space than float, we prefer double because
of its higher precision in representing real numbers. We will describe how the num-
bers are stored in memory in Section 3.10.

84 Chapter 3 Numerical Data

Ta
b

le
Table 3.1 Java numerical data types and their precisions

† No default value is assigned to a local variable. A local variable is explained on page 184 in Section 4.8.
‡The character E indicates a number is expressed in scientific notation. This notation is explained on page 96.

Data Default
Type Content Value† Minimum Value Maximum Value

byte Integer 0 �128 127

short Integer 0 �32768 32767

int Integer 0 �2147483648 2147483647

long Integer 0 �9223372036854775808 9223372036854775807

float Real 0.0 �3.40282347E+38‡ 3.40282347E+38

double Real 0.0 �1.79769313486231570E+308 1.79769313486231570E+308

Application programs we develop in this book are intended for computers with
a large amount of memory (such as desktops or laptops), so the storage space is
not normally a major concern because we have more than enough. However,
when we develop applications for embedded or specialized devices with a very
limited amount of memory, such as PDAs, cellular phones, mobile robots for
Mars exploration, and others, reducing the memory usage becomes a major
concern.

Here is an example of declaring variables of different data types:

int i, j, k;
float numberOne, numberTwo;
long bigInteger;
double bigNumber;

At the time a variable is declared, it also can be initialized. For example, we may
initialize the integer variables count and height to 10 and 34 as in

int count = 10, height = 34;

wu23399_ch03.qxd 12/13/06 17:38 Page 84

We assign a value to a variable by using an assignment statement. To assign
the value 234 to the variable named firstNumber, for example, we write

firstNumber = 234;

Be careful not to confuse mathematical equality and assignment. For example, the
following are not valid Java code:

4 + 5 = x;
x + y = y + x;

The syntax for the assignment statement is

<variable> = <expression> ;

where <expression> is an arithmetic expression, and the value of <expression> is
assigned to the <variable>. The following are sample assignment statements:

sum = firstNumber + secondNumber;
solution = x * x - 2 * x + 1;
average = (x + y + z) / 3.0;

We will present a detailed discussion of arithmetic expressions in Section 3.2. One
key point we need to remember about variables is the following:

3.1 Variables 85

As we mentioned in Chapter 2, you can declare and create an object just as you
can initialize variables at the time you declare them. For example, the declaration

Date today = new Date();

is equivalent to

Date today;
today = new Date();

assignment
statement
syntax

assignment
statement

Before using a variable, first we must declare and assign a value to it.

The diagram in Figure 3.1 illustrates the effect of variable declaration and as-
signment. Notice the similarity with this and memory allocation for object declara-
tion and creation, illustrated in Figure 2.4 on page 36. Figure 3.2 compares the two.

wu23399_ch03.qxd 12/13/06 17:38 Page 85

What we have been calling object names are really variables. The only difference
between a variable for numbers and a variable for objects is the contents in the
memory locations. For numbers, a variable contains the numerical value itself; and
for objects, a variable contains an address where the object is stored. We use an
arrow in the diagram to indicate that the content is an address, not the value itself.

86 Chapter 3 Numerical Data

State of Memory

int firstNumber, secondNumber;

firstNumber = 234;
secondNumber = 87;

firstNumber = 234;
secondNumber = 87;

The variables firstNumber and secondNumber
are declared and set in memory.

A

B

int firstNumber, secondNumber; after is executed A

firstNumber

secondNumber

Values are assigned to the variables firstNumber
and secondNumber.

after is executed B

firstNumber

secondNumber

234

87

Figure 3.1 A diagram showing how two memory locations (variables) with names firstNumber and
secondNumber are declared, and values are assigned to them.

Object names are synonymous with variables whose contents are references to
objects (i.e., memory addresses).

Figure 3.3 contrasts the effect of assigning the content of one variable to an-
other variable for numerical data values and for objects. Because the content of a
variable for objects is an address, assigning the content of a variable to another
makes two variables that refer to the same object. Assignment does not create a new
object. Without executing the new command, no new object is created. We can view
the situation in which two variables refer to the same object as the object having two
distinct names.

wu23399_ch03.qxd 12/13/06 17:38 Page 86

For numbers, the amount of memory space required is fixed. The values for
data type int require 4 bytes, for example, and this won’t change. However, with ob-
jects, the amount of memory space required is not constant. One instance of the
Account class may require 120 bytes, while another instance of the same class may
require 140 bytes. The difference in space usage for the account objects would
occur if we had to keep track of checks written against the accounts. If one account
has 15 checks written and the second account has 25 checks written, then we need
more memory space for the second account than for the first account.

We use the new command to actually create an object. Remember that declar-
ing an object only allocates the variable whose content will be an address. On the

3.1 Variables 87

customer = new Customer();
customer = new Customer();

number = 237;
number = 35;

Numerical Data Object

int number; Customer customer;

int number;

number = 35;

number = 237;

Customer customer;

customer = new Customer();

customer = new Customer();

number customer

customer

customer

number 237

number 35

:Customer

:Customer :Customer

int number;

number = 237;

number = 35;

Customer customer;

customer = new Customer();

customer = new Customer();

Figure 3.2 A difference between object declaration and numerical data declaration.

wu23399_ch03.qxd 12/13/06 17:38 Page 87

88 Chapter 3 Numerical Data

Numerical Data Object

number1 = 237;
number2 = number1;

int number1, number2;

alan = new Professor();
turing = alan;

Professor alan, turing;

number2

number1

turing

alan

number2

number1

turing

alan

number1 = 237;

int number1, number2;

alan = new Professor();

Professor alan, turing;

number2 = number1; turing = alan;

:Professor

:Professor

number2

number1

turing

alan

number1 = 237;

int number1, number2;

alan = new Professor();

Professor alan, turing;

number2 = number1; turing = alan;

237

237

237

Figure 3.3 An effect of assigning the content of one variable to another.

other hand, we don’t “create” an integer because the space to store the value is
already allocated at the time the integer variable is declared. Because the contents
are addresses that refer to memory locations where the objects are actually stored,
objects are called reference data types. In contrast, numerical data types are called
primitive data types.

reference
versus
primitive data
types

wu23399_ch03.qxd 12/13/06 17:38 Page 88

3.1 Variables 89

In addition to the six numerical data types, there are two nonnumerical primitive
data types. The data type boolean is used to represent two logical values true and
false. For example, the statements

boolean raining;
raining = true;

assign the value true to a boolean variable raining. We will explain and start using
boolean variables beginning in Chapter 5. The second nonnumerical primitive
data type is char (for character). It is used to represent a single character (letter,
digit, punctuation marks, and others). The following example assigns the upper-
case letter A to a char variable letter:

char letter;
letter = 'A';

A char constant is designated by single quotes. We will study the char data type in
Chapter 9 on string processing.

1. Why are the following declarations all invalid (color highlighting is disabled)?

int a, b, a;
float x, int;
float w, int x;
bigNumber double;

2. Assuming the following declarations are executed in sequence, why are the
second and third declarations invalid?

int a, b;
int a;
float b;

3. Name six data types for numerical values.

4. Which of the following are valid assignment statements (assuming the
variables are properly declared)?

x = 12;
12 = x;
y + y = x;
y = x + 12;

5. Draw the state-of-memory diagram for the following code.

Account latteAcct, espressoAcct;

latteAcct = new Account();
espressoAcct = new Account();
latteAcct = espressoAcct;

wu23399_ch03.qxd 12/13/06 17:38 Page 89

3.2 Arithmetic Expressions
An expression involving numerical values such as

23 + 45

is called an arithmetic expression, because it consists of arithmetic operators and
operands. An arithmetic operator, such as + in the example, designates numerical
computation. Table 3.2 summarizes the arithmetic operators available in Java.

Notice how the division operator works in Java. When both numbers are inte-
gers, the result is an integer quotient. That is, any fractional part is truncated. Divi-
sion between two integers is called integer division. When either or both numbers
are float or double, the result is a real number. Here are some division examples:

90 Chapter 3 Numerical Data

arithmetic
operator

integer division

Ta
b

le

Table 3.2 Arithmetic operators

Java Value
Operation Operator Example (x � 10, y � 7, z � 2.5)

Addition + x + y 17

Subtraction – x – y 3

Multiplication * x * y 70

Division / x / y 1

x / z 4.0

Modulo division % x % y 3
(remainder)

Division Operation Result

23 / 5 4

23 / 5.0 4.6

25.0 / 5.0 5.0

The modulo operator returns the remainder of a division. Although real num-
bers can be used with the modulo operator, the most common use of the modulo
operator involves only integers. Here are some examples:

Modulo Operation Result

23 % 5 3

23 % 25 23

16 % 2 0

wu23399_ch03.qxd 12/13/06 17:38 Page 90

The expression 23 % 5 results in 3 because 23 divided by 5 is 4 with remainder 3.
Notice that x % y = 0 when y divides x perfectly; for example, 16 % 2 = 0. Also notice
that x % y = x when y is larger than x; for example, 23 % 25 = 23.

An operand in arithmetic expressions can be a constant, a variable, a method
call, or another arithmetic expression, possibly surrounded by parentheses. Let’s
look at examples. In the expression

x + 4

we have one addition operator and two operands—a variable x and a constant 4.
The addition operator is called a binary operator because it operates on two operands.
All other arithmetic operators except the minus are also binary. The minus and
plus operators can be both binary and unary. A unary operator operates on one
operand as in

–x

In the expression

x + 3 * y

the addition operator acts on operands x and 3 * y. The right operand for the addition
operator is itself an expression. Often a nested expression is called a subexpression.
The subexpression 3 * y has operands 3 and y. The following diagram illustrates this
relationship:

When two or more operators are present in an expression, we determine
the order of evaluation by following the precedence rules. For example, multi-
plication has a higher precedence than addition. Therefore, in the expression
x + 3 * y, the multiplication operation is evaluated first, and the addition operation
is evaluated next. Table 3.3 summarizes the precedence rules for arithmetic
operators.

y3

x

3.2 Arithmetic Expressions 91

operand

binary operator

subexpression

precedence
rules

wu23399_ch03.qxd 12/13/06 17:38 Page 91

The following example illustrates the precedence rules applied to a complex
arithmetic expression:

92 Chapter 3 Numerical Data

Ta
b

le
Table 3.3 Precedence rules for arithmetic operators and parentheses

Order Group Operator Rule

High Subexpression () Subexpressions are evaluated first. If
parentheses are nested, the innermost
subexpression is evaluated first. If two or
more pairs of parentheses are on the same
level, then they are evaluated from left to
right.

Unary operator -, + Unary minuses and pluses are evaluated
second.

Multiplicative *, /, % Multiplicative operators are evaluated
operator third. If two or more multiplicative

operators are in an expression, then they
are evaluated from left to right.

Low Additive operator +, - Additive operators are evaluated last. If
two or more additive operators are in an
expression, then they are evaluated from
left to right.

a * (b + -(c / d) / e) * (f - g % h)
1 5

6
2

3

4

7

8

When an arithmetic expression consists of variables and constants of the same
data type, then the result of the expression will be that data type also. For example,
if the data type of a and b is int, then the result of the expression

a * b + 23

is also an int. When the data types of variables and constants in an arithmetic ex-
pression are different data types, then a casting conversion will take place. A casting
conversion, or typecasting, is a process that converts a value of one data type to an-
other data type. Two types of casting conversions in Java are implicit and explicit.

implicit and
explicit type-
casting

wu23399_ch03.qxd 12/13/06 17:38 Page 92

An implicit conversion called numeric promotion is applied to the operands of an
arithmetic operator. The promotion is based on the rules stated in Table 3.4. This
conversion is called promotion because the operand is converted from a lower to a
higher precision.

Instead of relying on implicit conversion, we can use explicit conversion to
convert an operand from one data type to another. Explicit conversion is applied to
an operand by using a typecast operator. For example, to convert the int variable x
in the expression

x / 3

to float so the result will not be truncated, we apply the typecast operator (float) as

(float) x / 3

The syntax is

(<data type>) <expression>

The typecast operator is a unary operator and has a precedence higher than that of
any binary operator. You must use parentheses to typecast a subexpression; for ex-
ample, the expression

a + (double) (x + y * z)

will result in the subexpression x + y * z typecast to double.
Assuming the variable x is an int, then the assignment statement

x = 2 * (14343 / 2344);

will assign the integer result of the expression to the variable x. However, if the
data type of x is other than int, then an implicit conversion will occur so that the

3.2 Arithmetic Expressions 93

Ta
b

le

Table 3.4 Rules for arithmetic promotion

Operator Type Promotion Rule

Unary 1. If the operand is of type byte or short, then it is
converted to int.

2. Otherwise, the operand remains the same type.

Binary 1. If either operand is of type double, then the other operand
is converted to double.

2. Otherwise, if either operand is of type float, then the other
operand is converted to float.

3. Otherwise, if either operand is of type long, then the other
operand is converted to long.

4. Otherwise, both operands are converted to int.

numeric
promotion

typecast
operator

typecasting
syntax

wu23399_ch03.qxd 12/13/06 17:38 Page 93

data type of the expression becomes the same as the data type of the variable. An
assignment conversion is another implicit conversion that occurs when the vari-
able and the value of an expression in an assignment statement are not of the
same data type. An assignment conversion occurs only if the data type of the
variable has a higher precision than the data type of the expression’s value. For
example,

double number;
number = 25;

is valid, but

int number;
number = 234.56; INVALID

is not.
In writing programs, we often have to increment or decrement the value of a

variable by a certain amount. For example, to increase the value of sum by 5, we
write

sum = sum + 5;

We can rewrite this statement witout repeating the same variable on the left- and
right-hand sides of the assignment symbol by using the shorthand assignment
operator:

sum += number;

Table 3.5 lists five shorthand assignment operators available in Java.
These shorthand assignment operators have precedence lower than that of any

other arithmetic operators; so, for example, the statement

sum *= a + b;

is equivalent to

sum = sum * (a + b);

94 Chapter 3 Numerical Data

assignment
conversion

shorthand
assignment
operator

Ta
b

le

Table 3.5 Shorthand assignment operators

Operator Usage Meaning

+= a += b; a = a + b;

-= a -= b; a = a - b;

*= a *= b; a = a * b;

/= a /= b; a = a / b;

%= a %= b; a = a % b;

wu23399_ch03.qxd 12/13/06 17:38 Page 94

3.3 Constants 95

If we wish to assign a value to multiple variables, we can cascade the assignment
operations as

x = y = 1;

which is equivalent to saying

y = 1;
x = 1;

The assignment symbol = is actually an operator, and its precedence order is
lower than that of any other operators. Assignment operators are evaluated
right to left.

1. Evaluate the following expressions.

a. 3 + 5 / 7

b. 3 * 3 + 3 % 2

c. 3 + 2 / 5 + -2 * 4

d. 2 * (1 + -(3/4) / 2) * (2 - 6 % 3)

2. What is the data type of the result of the following expressions?

a. (3 + 5) / 7

b. (3 + 5) / (float) 7

c. (float) ((3 + 5) / 7)

3. Which of the following expressions is equivalent to �b(c � 34)�(2a)?

a. -b * (c + 34) / 2 * a

b. -b * (c + 34) / (2 * a)

c. -b * c + 34 / (2 * a)

4. Rewrite the following statements without using the shorthand operators.

a. x += y;

b. x *= v + w;

c. x /= y;

3.3 Constants
While a program is running, different values may be assigned to a variable at dif-
ferent times (thus the name variable, since the values it contains can vary), but in
some cases we do not want this to happen. In other words, we want to “lock” the
assigned value so that no changes can take place. If we want a value to remain fixed,
then we use a constant. A constant is declared in a manner similar to a variable but

constant

wu23399_ch03.qxd 12/13/06 17:38 Page 95

with the additional reserved word final. A constant must be assigned a value at the
time of its declaration. Here’s an example of declaring four constants:

final double PI = 3.14159;
final short FARADAY_CONSTANT = 23060; // unit is cal/volt
final double CM_PER_INCH = 2.54;
final int MONTHS_IN_YEAR = 12;

We follow the standard Java convention to name a constant, using only capi-
tal letters and underscores. Judicious use of constants makes programs more read-
able. You will be seeing many uses of constants later in the book, beginning with the
sample program in this chapter.

The constant PI is called a named constant or symbolic constant. We refer to
symbolic constants with identifiers such as PI and FARADAY_CONSTANT. The sec-
ond type of constant is called a literal constant, and we refer to it by using an actual
value. For example, the following statements contain three literal constants:

final double PI = 3.14159 ;
double area;
area = 2 * PI * 345.79 ;

When we use the literal constant 2, the data type of the constant is set to int by
default. Then how can we specify a literal constant of type long?1 We append the
constant with an l (a lowercase letter L) or L as in

2L * PI * 345.79

How about the literal constant 345.79? Since the literal constant contains a
decimal point, its data type can be only float or double. But which one? The answer
is double. If a literal constant contains a decimal point, then it is of type double by
default. To designate a literal constant of type float, we must append the letter f or
F. For example,

2 * PI * 345.79F

To represent a double literal constant, we may optionally append a d or D. So
the following two constants are equivalent:

2 * PI * 345.79 is equivalent to 2 * PI * 345.79D

We also can express float and double literal constants in scientific notation as

Number � 10exponent

96 Chapter 3 Numerical Data

named
constant

literal constant

Literal constants

1 In most cases, it is not significant to distinguish the two because of automatic type conversion; see Section 3.2.

wu23399_ch03.qxd 12/13/06 17:38 Page 96

which in Java is expressed as

<number> E <exponent>

3.4 Displaying Numerical Values 97

exponential
notation in
Java

Since a numerical constant such as 345.79 represents a double value, these
statements

float number;
number = 345.79;

for example, would result in a compilation error. The data types do not match,
and the variable (float) has lower precision than that of the constant (double).
To correct this error, we have to write the assignment statement as

number = 345.79f;

or

number = (float) 345.79;

This is one of the common errors that people make in writing Java programs, es-
pecially those with prior programming experience.

where <number> is a literal constant that may or may not contain a decimal point
and <exponent> is a signed or an unsigned integer. Lowercase e may be substituted
for the exponent symbol E. The whole expression may be suffixed by f, F, d, or D.
The <number> itself cannot be suffixed with symbols f, F, d, or D. Here are some
examples:

12.40e+209
23E33
29.0098e–102
234e+5D
4.45e2

Here are some additional examples of constant declarations:

final double SPEED_OF_LIGHT = 3.0E+10D; // unit is cm/s
final short MAX_WGT_ALLOWED = 400;

3.4 Displaying Numerical Values
In Chapter 2, we learned how to output string values to the console window
by using System.out. We can easily output numerical values to the console
window as well. We will use the same print and println methods to output

wu23399_ch03.qxd 1/11/07 11:49 Page 97

numerical values. Here’s a simple example that outputs the values of a constant
and a variable:

int num = 15;

System.out.print(num); //print a variable
System.out.print(" "); //print a blank space
System.out.print(10); //print a constant

Executing the code will result in the following console window:

We can use the println method to skip a line after printing out the value.
Executing

int num = 15;
System.out.println(num);
System.out.println(10);

will result in

By using the concatenation operation, it is possible to output multiple values
with a single print or println method. For example, the statement

System.out.print(30 + " " + 40);

is equivalent to

System.out.print(30);
System.out.print(" ");
System.out.print(40);

Notice that the expression

30 + " " + 40

mixes numerical values and a string. We learned in Chapter 2 that the plus symbol
is used to concatenate strings, for example,

"Benjamin" + " " + "Franklin"

98 Chapter 3 Numerical Data

15 10
Console
Window

15
10Console

Window

wu23399_ch03.qxd 12/13/06 17:38 Page 98

And, in this chapter, we learned the same plus symbol is used to add numerical
values, for example,

4 + 36

The plus symbol, therefore, could mean two different things: string concatenation
or numerical addition. When a symbol is used to represent more than one operation,
this is called operator overloading.

What happens when the plus symbol appears in a mixed expression? When the
Java compiler encounters an overloaded operator, the compiler determines the mean-
ing of a symbol by its context. If the left operand and the right operand of the plus
symbol are both numerical values, then the compiler will treat the symbol as addition;
otherwise, it will treat the symbol as concatenation. The plus symbol operator is eval-
uated from left to right, and the result of concatenation is a string, so the code

int x = 1;
int y = 2;
String output = "test" + x + y;

will result in output being set to

test12

while the statement

String output = x + y + "test";

will result in output being set to

3test

To get the result of test3, we have to write the statement as

String output = "test" + (x + y);

so the arithmetic addition is performed first.
Now let’s look at a small sample program that illustrates a typical use of

string concatenation in displaying computation results. In this sample program, we
compute the circumference and the area of a circle with a given radius. The value
for the radius is assigned in the program (we will discuss how to input this value in
Section 3.5). Here’s the program:

3.4 Displaying Numerical Values 99

operator
overloading

/*
Chapter 3 Sample Program: Compute Area and Circumference

File: Ch3Circle.java

*/

"test" 1

"test1"

"test12"

2

1 2

3

"3test"

"test"

(add)

wu23399_ch03.qxd 12/13/06 17:38 Page 99

When we run this program, we get the following output:

Notice the precision of decimal places displayed for the results, especially the one
for the circumference. Although we desire such a high level of precision provided
by double values during the computation, we may not when displaying the result.
We can restrict the number of decimal places to display by using the DecimalFormat
class from the java.text package.

Although the full use of the DecimalFormat class can be fairly complicated,
it is very straightforward if all we want is to limit the number of decimal places
to be displayed. To limit the decimal places to three, for example, we create a
DecimalFormat object as

DecimalFormat df = new DecimalFormat("0.000");

and use it to format the number as

double num = 234.5698709;
System.out.println("Num: " + df.format(num));

When we add an instance of the DecimalFormat class named df and change
the output statement of the Ch3Circle class to

System.out.println("Given Radius: " + df.format(radius));
System.out.println("Area: " + df.format(area));
System.out.println("Circumference: "

+ df.format(circumference));

100 Chapter 3 Numerical Data

class Ch3Circle {
public static void main(String[] args) {

final double PI = 3.14159;

double radius, area, circumference;

radius = 2.35;

//compute the area and circumference
area = PI * radius * radius;
circumference = 2.0 * PI * radius;

System.out.println("Given Radius: " + radius);
System.out.println("Area: " + area);
System.out.println("Circumference: " + circumference);

}
}

Given Radius: 2.35
Area: 17.349430775000002
Circumference: 14.765473

Console
Window

wu23399_ch03.qxd 12/13/06 17:38 Page 100

we produce the following result:

The modified class is named Ch3Circle2 (not shown here).
Instead of using one println method per line of output, it is possible to output

multiple lines with a single println or print method by embedding a new-line control
character in the output. We briefly mentioned a control character in Section 2.4.4. A
control character is for controlling the output, and we use the backslash symbol to
denote a control character. The new-line control character is denoted as \n and has the
effect of pressing the Enter key in the output. For example, the statements

System.out.println("Given Radius: " + radius);
System.out.println("Area: " + area);
System.out.println("Circumference: " + circumference);

can be written by using only one println statement as

System.out.println("Given Radius: " + radius + "\n" +
"Area: " + area + "\n" +
"Circumference: " + circumference);

There is no limit to the number of new-line control characters you can embed, so we
can easily skip two lines, for example, by putting two new-line control characters as
follows:

System.out.println("Number 1: " + num1 + "\n\n" +
"Number 2: " + num2);

Another useful control character is a tab, which is denoted as \t. We can use
the tab control character to output the labels, and this results in two columns as
follows:

System.out.println("Given Radius: " + "\t" + radius + "\n" +
"Area: " + "\t\t" + area + "\n" +
"Circumference: " + "\t" + circumference);

Notice there are two tabs before we output the area. You need to experiment with
the actual number of tabs to get the right output (the actual number of spaces used
for each tab could be different depending on your Java IDE). The resulting output
will be

3.4 Displaying Numerical Values 101

Given Radius: 2.350
Area: 17.349
Circumference: 14.765

Console
Window

new-line
control
character

tab
control
character

Given Radius: 2.35
Area: 17.349430775000002
Circumference: 14.765473

Console
Window

wu23399_ch03.qxd 12/13/06 17:38 Page 101

You can also adjust the output format by appending blank spaces in the label.
For example, you can rewrite the sample statement as

System.out.println("Given Radius: " + "\t" + radius + "\n" +
"Area: " + "\t" + area + "\n" +
"Circumference: " + "\t" + circumference);

And, as always, the use of symbolic constants will clean up the code:

...
final String TAB = "\t";
final String NEWLINE = "\n";
...
System.out.println(

"Given Radius: " + TAB + radius + NEWLINE +
"Area: " + TAB + area + NEWLINE +
"Circumference: " + TAB + circumference);

The new program that illustrates the use of both DecimalFormat and control char-
acters is named Ch3Circle3. Here’s the program:

102 Chapter 3 Numerical Data

/*

Chapter 3 Sample Program: Compute Area and Circumference

File: Ch3Circle3.java

*/

import java.text.*;

class Ch3Circle3 {

public static void main(String[] args) {

final double PI = 3.14159;
final String TAB = "\t";
final String NEWLINE = "\n";

double radius, area, circumference;

DecimalFormat df = new DecimalFormat("0.000");

radius = 2.35;

//compute the area and circumference
area = PI * radius * radius;
circumference = 2.0 * PI * radius;
//Display the results
System.out.println(

"Given Radius: " + TAB + df.format(radius) + NEWLINE +

wu23399_ch03.qxd 12/13/06 17:38 Page 102

3.5 Getting Numerical Input 103

1. What is the purpose of the control characters?

2. Which control character is used for a new line?

3. Using one print statement, output the following:

Hello, world!
My favorite Ben Franklin quote:

An investment in knowledge
always pays the best interest.

3.5 Getting Numerical Input
We learned how to input string values by using the Scanner class in Chapter 2. We
study how to input numerical values with the Scanner class in this section. To input
strings, we use the next method of the Scanner class. For the numerical input values,
we use an equivalent method that corresponds to the data type of the value we try
to input. For instance, to input an int value, we use the nextInt method. Here’s an
example of inputting a person’s age:

Scanner scanner = new Scanner(System.in);

int age;

System.out.print("Enter your age: ");

age = scanner.nextInt();

In addition to the int data type, we have five input methods that correspond to
the other numerical data types. The six input methods for the primitive numerical
data types are listed in Table 3.6.

Ta
b

le

Table 3.6 Methods to input six numerical data types

Method Example

nextByte() byte b = scanner.nextByte();

nextDouble() double d = scanner.nextDouble();

nextFloat() float f = scanner.nextFloat();

nextInt() int i = scanner.nextInt();

nextLong() long l = scanner.nextLong();

nextShort() short s = scanner.nextShort();

"Area: " + TAB + df.format(area) + NEWLINE +
"Circumference: " + TAB + df.format(circumference));

}
}

wu23399_ch03.qxd 12/13/06 17:38 Page 103

ENTER

ENTEREnter two integers: 12
87
num1 = 12 and num2 = 87

Since the new-line character (when we press the Enter key, this new-line char-
acter is entered into the system) is also treated as white space, we can enter the two
integers by pressing the Enter key after each number. Here’s a sample:

104 Chapter 3 Numerical Data

The following example inputs a person’s height in inches (int) and GPA (float):

Scanner scanner = new Scanner(System.in);

int height;
float gpa;

System.out.print("Enter your height in inches: ");

height = scanner.nextInt();

System.out.print("Enter your gpa: ");

gpa = scanner.nextFloat();

Remember that the default delimiter between the input values is a white space
(such as the blank space or a tab); it is possible to input more than one value on a
single line. The following code inputs two integers:

Scanner scanner = new Scanner(System.in);

int num1, num2;

System.out.print("Enter two integers: ");

num1 = scanner.nextInt();
num2 = scanner.nextInt();

System.out.print("num1 = " + num1 + " num2 = " + num2);

And here’s a sample interaction:

ENTER

When we enter data using System.in, they are placed in input buffer. And the
next available data in the input buffer are processed when one of the input methods
is called. This means that the actual processing of input data does not necessarily
correspond to the display timing of the prompts. Let’s look at an example. Consider
the following code:

Scanner scanner = new Scanner(System.in);

int num1, num2, num3;

Space separates the
two input values.

input buffer

Enter two integers: 12 8
num1 = 12 and num2 = 87

wu23399_ch03.qxd 12/13/06 17:38 Page 104

3.5 Getting Numerical Input 105

System.out.print("Enter Number 1: ");
num1 = scanner.nextInt();

System.out.print("Enter Number 2: ");
num2 = scanner.nextInt();

System.out.print("Enter Number 3: ");
num3 = scanner.nextInt();

System.out.print("Values entered are " +
num1 + " " + num2 + " " + num3);

We expect the majority of users will input three integers, one at a time, as requested
by the prompts:

Enter Number 1: 10

Enter Number 2: 20

Enter Number 3: 30

Values entered are 10 20 30

However, users do not really have to enter the values one at a time. It is possible
to enter all three values on a single line without waiting for prompts, for example. This
will result in an awkward display in the console window. Here’s an example:

Enter Number 1: 10, 20, 30
Enter Number 2: Enter Number 3: Values entered are 10 20 30

Although the display is awkward, the input values are assigned to the respec-
tive variables correctly. This is so because the three input values are placed in the
input buffer, and when the second and third nextInt methods are called, the corre-
sponding values are in the input buffer, so there’s no problem inputting them.

In Section 3.2, we explained the assignment conversion that allows us to
assign a value to a higher-precision variable (e.g., assigning an int value to a dou-
ble variable). This type of implicit conversion also occurs with the Scanner class.
For example, the nextDouble method works without a problem as long as the user
enters a value that is assignable to a double variable. Here’s an example:

Scanner scanner = new Scanner(System.in);

double num;

System.out.print("Enter a double: ");
num = scanner.nextDouble();

System.out.print("You entered " + num);

Enter a double: 35
You entered 35.0

ENTER

ENTER

ENTER

ENTER

ENTER

wu23399_ch03.qxd 12/13/06 17:38 Page 105

Bad Version

ENTER

ENTER

ENTER

Everything seems to be working okay. What will happen if the name of a horse has
more than one word, such as Sea Biscuit? The code will not work because only the
first word is assigned to the String variable horseName. Remember that the default
delimiter is the white space, so the blank space after the first word is treated as the
end of the first input. Here’s the result when you enter Sea Biscuit:

106 Chapter 3 Numerical Data

Enter the horse name: Sea Biscuit
Enter the age: java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:819)
at java.util.Scanner.next(Scanner.java:1431)
at java.util.Scanner.nextInt(Scanner.java:2040)
...

Only the first four lines of error
messages are shown here.

The nextDouble method accepts the value 35 and then converts it to a double data
type. The method returns a double value, so even if the user enters an integer, you
cannot assign the input to an int variable. The following code is therefore invalid:

Scanner scanner = new Scanner(System.in);

int num;

System.out.print("Enter an integer: ");
num = scanner.nextDouble(); Type mismatch

System.out.print("You entered " + num);

Now let’s study how we can mix the input of strings and numerical values. We
begin with an example. Consider inputting a racehorse’s name and age. Here are a
proposed code and a sample of expected interaction:

Scanner scanner = new Scanner(System.in);

String horseName;
int age;

System.out.print("Enter the horse name: ");
horseName = scanner.next();

System.out.print("Enter the age: ");
age = scanner.nextInt();

System.out.print(horseName + " is " + age + "years old.");

Enter the horse name: Barbaro

Enter the age: 3

Barbaro is 3 years old.

wu23399_ch03.qxd 12/13/06 17:38 Page 106

ENTER

ENTER

3.5 Getting Numerical Input 107

To input more than one string and primitive numerical data, set the line separator
as the delimiter and input one value per input line.

The most reasonable solution here is to change the delimiter to the line sepa-
rator, as described in Section 2.4.4. Here’s how:

Scanner scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator"));

//the rest is the same

Enter the horse name: Sea Biscuit
Enter the age: 3
Sea Biscuit is 3 years old.

For most situations, using the line separator as the delimiter and inputting one
value per input line are the best approach. We can, however, use any string for the
delimiter. So, for example, we can delimit the input values with a character such as
the pound sign (#), provided, of course, that the pound sign does not occur in the
actual input values.

Instead of using the data type specific methods such as nextInt, nextDouble,
and others of the Scanner class, we can input a numerical value in a string format
and convert it to an appropriate data type by ourselves. For example, we can use the
class method parseInt of the Integer class to convert a string to an int. Here’s a state-
ment that converts "14" to an int value 14:

int num = Integer.parseInt("14");

So, the statement

int num = Integer.parseInt(scanner.next());

is equivalent to

int num = scanner.nextInt();

Passing a string that cannot be converted to an int (e.g., "12b") will result in
an error. The conversion method is not particularly useful or necessary with the
scanner, but it can be when the input source is different from the scanner. Other
common conversion methods are parseDouble, parseFloat, and parseLong of the
Double, Float, and Long classes, respectively.

wu23399_ch03.qxd 12/13/06 17:38 Page 107

108 Chapter 3 Numerical Data

/*
Chapter 3 Sample Program: Compute Area and Circumference with

formatting and standard I/O

File: Ch3Circle4.java
*/

import java.text.*;
import java.util.*;

class Ch3Circle4 {

public static void main(String[] args) {

final double PI = 3.14159;
final String TAB = "\t";
final String NEWLINE = "\n";

double radius, area, circumference;

Scanner scanner = new Scanner(System.in);

DecimalFormat df = new DecimalFormat("0.000");

System.out.println("Enter radius: ");
radius = scanner.nextDouble();

//compute the area and circumference
area = PI * radius * radius;
circumference = 2.0 * PI * radius;

//Display the results
System.out.println(

"Given Radius: " + TAB + df.format(radius) + NEWLINE +
"Area: " + TAB + df.format(area) + NEWLINE +
"Circumference: " + TAB + df.format(circumference));

}
}

1. Write a code to input the height of a user in feet (int) and inches (int).

2. Write a code to input the full name of a person and his or her age. The full
name of a person includes the first name and the last name.

3. Write a code that creates a Scanner object and sets its delimiter to the pound sign.

We close this section by presenting a sample program that extends the
Ch3Circle3 class by accepting the radius of a circle as an input. Here’s the program:

wu23399_ch03.qxd 12/13/06 17:38 Page 108

3.6 The Math Class
Using only the arithmetic operators to express numerical computations is very lim-
iting. Many computations require the use of mathematical functions. For example,
to express the mathematical formula

�
1
2

� sin �x � �
�
�

y�
��

we need the trigonometric sine and square root functions. The Math class in the
java.lang package contains class methods for commonly used mathematical func-
tions. Table 3.7 is a partial list of class methods available in the Math class. The class
also has two class constants PI and E for � and the natural number e, respectively.
Using the Math class constant and methods, we can express the preceding formula as

(1.0 /2.0) * Math.sin(x - Math.PI / Math.sqrt(y))

3.6 The Math Class 109

Ta
b

le

Table 3.7 Math class methods for commonly used mathematical functions

Class Argument Result
Method Type Type Description Example

abs(a) int int Returns the absolute int abs(10) → 10
value of a. abs(�5) → 5

long long Returns the absolute
long value of a.

float float Returns the absolute
float value of a.

double double Returns the absolute
double value of a.

acos(a)† double double Returns the arccosine acos(�1)
of a. → 3.14159

asin(a)† double double Returns the arcsine asin(1)
of a. → 1.57079

atan(a)† double double Returns the arctangent atan(1)
of a. → 0.785398

ceil(a) double double Returns the smallest ceil(5.6) → 6.0
whole number greater ceil(5.0) → 5.0
than or equal to a. ceil(�5.6)

→ �5.0

cos(a)† double double Returns the trigonometric cos(��2) → 0.0
cosine of a.

exp(a) double double Returns the natural exp(2)
number e (2.718 . . .) → 7.389056099
raised to the power of a.

wu23399_ch03.qxd 12/13/06 17:38 Page 109

110 Chapter 3 Numerical Data

Ta
b

le
Table 3.7 Math class methods for commonly used mathematical functions (Continued)

Class Argument Result
Method Type Type Description Example

floor(a) double double Returns the largest floor(5.6) → 5.0
whole number less than floor(5.0) → 5.0
or equal to a. floor(�5.6)

→ �6.0

log(a) double double Returns the natural log(2.7183)
logarithm (base e) of a. → 1.0

max(a, b) int int Returns the larger of a max(10, 20)
and b. → 20

long long Same as above.

float float Same as above.

min(a, b) int int Returns the smaller of a min(10, 20)
and b. → 10

long long Same as above.

float float Same as above.

pow(a, b) double double Returns the number a pow(2.0, 3.0)
raised to the power of b. → 8.0

random() <none> double Generates a random Examples given
number greater than or in Chapter 5
equal to 0.0 and
less than 1.0.

round(a) float int Returns the int value of round(5.6) → 6
a rounded to the round(5.4) → 5
nearest whole number. round(�5.6)

→ �6

double long Returns the float value of
a rounded to the
nearest whole number.

sin(a)† double double Returns the sin(��2)
trigonometric sine of a. → 1.0

sqrt(a) double double Returns the square root sqrt(9.0) → 3.0
of a.

tan(a)† double double Returns the trigono- tan(��4)
metric tangent of a. → 1.0

toDegrees double double Converts the given toDegrees(��4)
angle in radians to → 45.0
degrees.

toRadians double double Reverse of toDegrees. toRadians(90.0)
→ 1.5707963

†All trigonometric functions are computed in radians.

wu23399_ch03.qxd 12/13/06 17:38 Page 110

Notice how the class methods and class constants are referred to in the ex-
pression. The syntax is

<class name> . <method name> (<arguments>)

or

<class name> . <class constant>

Let’s conclude this section with a sample program. Today is the final meet of
the women’s rowing team against the arch rival university before the upcoming
Division I NCAA championship. The cheerleaders of the rival team hoisted their
school flag on the other shore of the river to boost their moral. Not to be outdone,
we want to hoist our school flag, too. To bring the Goddess of Victory to our side,
we want our pole to be taller than theirs. Since they won’t let us, we can’t find the
height of their pole by actually measuring it. We can, however, determine the height
without actually measuring it if we know the distance b to their flagpole. We can use
the tangent of angle to determine the pole’s height h as follows:

Unfortunately, there’s no means for us to go across the river to find out the dis-
tance b. After a moment of deep meditation, it hits us that there’s no need to go
across the river. We can determine the pole’s height by measuring angles from two
points on this side of the riverbank, as shown below:

h

d

A

B

�

�

h
h � b · tan �

b
�

3.6 The Math Class 111

wu23399_ch03.qxd 12/13/06 17:38 Page 111

And the equation to compute the height h is

h �

Once we have this equation, all that’s left is to put together a Java program. Here’s
the program:

d sin � sin �
���
�sin(� �� �) sin�(� � ��)�

112 Chapter 3 Numerical Data

/*

Chapter 3 Sample Program: Estimate the Pole Height

File: Ch3PoleHeight.java

*/

import java.text.*;
import java.util.*;

class Ch3PoleHeight {

public static void main(String[] args) {

double height; //height of the pole
double distance; //distance between points A and B
double alpha; //angle measured at point A
double beta; //angle measured at point B
double alphaRad; //angle alpha in radians
double betaRad; //angle beta in radians

Scanner scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator"));

//Get three input values
System.out.print("Angle alpha (in degrees):");
alpha = scanner.nextDouble();

System.out.print("Angle beta (in degree):");
beta = scanner.nextDouble();

System.out.print("Distance between points A and B (ft):");
distance = scanner.nextDouble();

//compute the height of the tower
alphaRad = Math.toRadians(alpha);
betaRad = Math.toRadians(beta);

height = (distance * Math.sin(alphaRad) * Math.sin(betaRad))
/

Math.sqrt(Math.sin(alphaRad + betaRad) *
Math.sin(alphaRad - betaRad));

wu23399_ch03.qxd 12/13/06 17:38 Page 112

3.7 Random Number Generation 113

DecimalFormat df = new DecimalFormat("0.000");

System.out.println("lnln Estimating the height of the pole"
+ "\n\n"
+ "Angle at point A (deg): " + df.format(alpha) + "\n"
+ "Angle at point B (deg): " + df.format(beta) + "\n"
+ "Distance between A and B (ft): " + df.format(distance)+ "\n"
+ "Estimated height (ft): " + df.format(height));

}
}

1. What’s wrong with the following?

a. y = (1/2) * Math.sqrt(X);

b. y = sqrt(38.0);

c. y = Math.exp(2, 3);

d. y = math.sqrt(b*b - 4*a*c) / (2 * a);

2. If another programmer writes the following statements, do you suspect any
misunderstanding on the part of this programmer? What will be the value of y?

a. y = Math.sin(360) ;

b. y = Math.cos(45);

3.7 Random Number Generation
In many computer applications, especially in simulation and games, we need to gen-
erate random numbers. For example, to simulate a roll of dice, we can generate an
integer between 1 and 6. In this section, we explain how to generate random numbers
using the random method of the Math class. (Alternatively, you can use the Random
class. We refer you to the Java API documentation for information on this class.)

The method random is called a pseudorandom number generator and returns
a number (type double) that is greater than or equal to 0.0 but less than 1.0, that is,
0.0 � X � 1.0. The generated number is called a pseudorandom number because
the number is not truly random. When we call this method repeatedly, eventually the
numbers generated will repeat themselves. Therefore, theoretically the generated
numbers are not random; but for all practical purposes, they are random enough.

The random numbers we want to generate for most applications are integers.
For example, to simulate the draw of a card, we need to generate an integer between
1 and 4 for the suit and an integer between 1 and 13 for the number. Since the number
returned from the random method ranges from 0.0 up to but not including 1.0, we
need to perform some form of conversion so the converted number will fall in our de-
sired range. Let’s assume the range of integer values we want is [min, max]. If X is a

pseudorandom
number
generator

wu23399_ch03.qxd 12/13/06 17:38 Page 113

number returned by random, then we can convert it into a number Y such that Y is in
the range [min, max] that is, min � Y � max by applying the following fourmula:

Y � X � (max � min � 1) � min

For many applications, the value for min is 1, so the formula is simplified to

Y � X � max � 1

Expressing the general formula in Java will result in the following statement:

//assume correct values are assigned to 'max' and 'min'
int randomNumber

= (int) (Math.floor(Math.random() * (max-min+1))
+ min);

Notice that we have to typecast the result of Math.floor to int because the data
type of the result is double.

Let’s write a short program that selects a winner among the party goers of the
annual spring fraternity dance. The party goers will receive numbers M � 1, M � 2,
M � 3, and so on, as they enter the house. The starting value M is selected by the
chairperson of the party committee. The last number assigned is M � N if there are
N party goers. At the end of the party, we run the program that will randomly select
the winning number from the range of M � 1 and M � N. Here’s the program:

114 Chapter 3 Numerical Data

/*

Chapter 3 Sample Program: Select the Winning Number

File: Ch3SelectWinner.java
*/

import java.util.*;

class Ch3SelectWinner {

public static void main(String[] args) {

int startingNumber; //the starting number
int count; //the number of party goers
int winningNumber; //the winner
int min, max; //the range of random numbers to generate

Scanner scan = new Scanner(System.in);

//Get two input values
System.out.print("Enter the starting number M: ");
startingNumber = scan.nextInt();

System.out.print("Enter the number of party goers: ");
count = scan.nextInt();

wu23399_ch03.qxd 1/11/07 11:49 Page 114

3.8 The GregorianCalendar Class
In Chapter 2, we introduced the java.util.Date class to represent a specific instant in
time. Notice that we are using here the more concise expression “the java.util.Date
class” to refer to a class from a specific package instead of the longer expression “the
Date class from the java.util package.” This shorter version is our preferred way of
notation when we need or want to identify the package to which the class belongs.

3.8 The GregorianCalendar Class 115

//select the winner
min = startingNumber + 1;
max = startingNumber + count;
winningNumber = (int) (Math.floor(Math.random() * (max - min + 1))

+ min);
System.out.println("\nThe Winning Number is " + winningNumber);

}
}

When we need to identify the specific package to which a class belongs, we will
commonly use the concise expression with the full path name, such as
java.util.Date, instead of writing “the Date class from the java.util package.”

In addition to this class, we have a very useful class named java.util.Gregorian-
Calendar in manipulating calendar information such as year, month, and day. We can
create a new GregorianCalendar object that represents today as

GregorianCalendar today = new GregorianCalendar();

or a specific day, say, July 4, 1776, by passing year, month, and day as the parame-
ters as

GregorianCalendar independenceDay =
new GregorianCalendar(1776, 6, 4);

No, the value of 6 as the second parameter is not an error. The first month of a
year, January, is represented by 0, the second month by 1, and so forth. To avoid
confusion, we can use constants defined for months in the superclass Calendar
(GregorianCalendar is a subclass of Calendar). Instead of remembering that the

The value of 6
means July.

Gregorian-
Calendar

wu23399_ch03.qxd 12/13/06 17:38 Page 115

value 6 represents July, we can use the defined constant Calendar.JULY as

GregorianCalendar independenceDay =
new GregorianCalendar(1776, Calendar.JULY, 4);

Table 3.8 explains the use of some of the more common constants defined in the
Calendar class.

When the date and time are November 11, 2002, 6:13 p.m. and we run the
Ch3TestCalendar program, we will see the result shown in Figure 3.4.

116 Chapter 3 Numerical Data

Ta
b

le

Table 3.8

Constant Description

YEAR The year portion of the calendar date

MONTH The month portion of the calendar date

DATE The day of the month

DAY_OF_MONTH Same as DATE

DAY_OF_YEAR The day number within the year

DAY_OF_MONTH The day number within the month

DAY_OF_WEEK The day of the week (Sun—1, Mon—2, etc.)

WEEK_OF_YEAR The week number within the year

WEEK_OF_MONTH The week number within the month

AM_PM The indicator for AM or PM (AM—0 and PM—1)

HOUR The hour in 12-hour notation

HOUR_OF_DAY The hour in 24-hour notation

MINUTE The minute within the hour

Constants defined in the Calendar class for retrieved different pieces of
calendar/time information

Figure 3.4 Result of running the Ch3TestCalender program at November 11, 2002, 6:13 p.m.

wu23399_ch03.qxd 12/13/06 17:38 Page 116

Notice that the first line in the output shows the full date and time information.
The full date and time information can be accessed by calling the calendar object’s
getTime method. This method returns the same information as a Date object.

Notice also that we get only the numerical values when we retrieve the day
of the week or month information. We can spell out the information by using the
SimpleDateFormat class. Since the constructor of the SimpleDateFormat class ac-
cepts only the Date object, first we need to convert a GregorianCalendar object to
an equivalent Date object by calling its getTime method. For example, here’s how

3.8 The GregorianCalendar Class 117

/*
Chapter 3 Sample Program: Display Calendar Info

File: Ch3TestCalendar.java
*/

import java.util.*;

class Ch3TestCalendar {

public static void main(String[] args) {

GregorianCalendar cal = new GregorianCalendar();

System.out.println(cal.getTime());
System.out.println("");

System.out.println("YEAR: " + cal.get(Calendar.YEAR));
System.out.println("MONTH: " + cal.get(Calendar.MONTH));
System.out.println("DATE: " + cal.get(Calendar.DATE));

System.out.println("DAY_OF_YEAR: "
+ cal.get(Calendar.DAY_OF_YEAR));

System.out.println("DAY_OF_MONTH: "
+ cal.get(Calendar.DAY_OF_MONTH));

System.out.println("DAY_OF_WEEK: "
+ cal.get(Calendar.DAY_OF_WEEK));

System.out.println("WEEK_OF_YEAR: "
+ cal.get(Calendar.WEEK_OF_YEAR));

System.out.println("WEEK_OF_MONTH: "
+ cal.get(Calendar.WEEK_OF_MONTH));

System.out.println("AM_PM: " + cal.get(Calendar.AM_PM));
System.out.println("HOUR: " + cal.get(Calendar.HOUR));
System.out.println("HOUR_OF_DAY: "

+ cal.get(Calendar.HOUR_OF_DAY));
System.out.println("MINUTE: " + cal.get(Calendar.MINUTE));

}
}

getTime

wu23399_ch03.qxd 12/13/06 17:38 Page 117

we can display the day of the week on which our Declaration of Independence was
adopted in Philadelphia:

118 Chapter 3 Numerical Data

/*
Chapter 3 Sample Program: Day of the week the Declaration of

Independence was adopted

File: Ch3IndependenceDay.java
*/

import java.util.*;
import java.text.*;

class Ch3IndependenceDay {

public static void main(String[] args) {

GregorianCalendar independenceDay
= new GregorianCalendar(1776, Calendar.JULY, 4);

SimpleDateFormat sdf = new SimpleDateFormat("EEEE");

System.out.println("It was adopted on "
+ sdf.format(independenceDay.getTime()));

}
}

Let’s finish the section with a sample program that extends the Ch3Indepen-
denceDay program. We will allow the user to enter the year, month, and day; and we
will reply with the day of the week of the given date (our birthday, grandparent’s
wedding day, and so on). Here’s the program:

/*
Chapter 3 Sample Program: Find the Day of Week of a Given Date

File: Ch3FindDayOfWeek.java
*/

import java.util.*;
import java.text.*;

class Ch3FindDayOfWeek {

public static void main(String[] args) {

int year, month, day;

GregorianCalendar cal;
SimpleDateFormat sdf;

wu23399_ch03.qxd 12/13/06 17:38 Page 118

Notice that we are allowing the user to enter the month as an integer be-
tween 1 and 12, so we need to subtract 1 from the entered data in creating a new
GregorianCalendar object.

3.8 The GregorianCalendar Class 119

Scanner scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator"));

System.out.print("Year (yyyy): ");
year = scanner.nextInt();

System.out.print("Month (1-12): ");
month = scanner.nextInt();

System.out.print("Day (1-31): ");
day = scanner.nextInt();

cal = new GregorianCalendar(year, month-1, day);
sdf = new SimpleDateFormat("EEEE");

System.out.println("");
System.out.println("Day of Week: " + sdf.format(cal.getTime()));

}
}

The Gregorian calendar system was adopted by England and its colonies, including the
colonial United States, in 1752. So the technique shown here works only after this
adoption. For a fascinating story about calendars, visit
http://webexhibits.org/calendars/year-countries.html

Running Ch3IndpendenceDay will tell you that our venerable document was signed
on Thursday. History textbooks will say something like “the document was formally
adopted July 4, 1776, on a bright, but cool Philadelphia day” but never the day of the
week. Well, now you know. See how useful Java is? By the way, the document was
adopted by the Second Continental Congress on July 4, but the actual signing did
not take place until August 2 (it was Friday—what a great reason for a TGIF party)
after the approval of all 13 colonies. For more stories behind the Declaration of
Independence, visit
http://www.ushistory.org/declaration/

wu23399_ch03.qxd 12/13/06 17:38 Page 119

http://webexhibits.org/calendars/year-countries.html
http://www.ushistory.org/declaration/

Loan Calculator

In this section, we develop a simple loan calculator program.We develop this program by
using an incremental development technique, which develops the program in small in-
cremental steps.We start out with a bare-bones program and gradually build up the pro-
gram by adding more and more code to it. At each incremental step, we design, code, and
test the program before moving on to the next step. This methodical development of a
program allows us to focus our attention on a single task at each step, and this reduces
the chance of introducing errors into the program.

Problem Statement

The next time you buy a new TV or a stereo, watch out for those “0% down, 0% interest
until next July” deals. Read the fine print, and you’ll notice that if you don’t make the full
payment by the end of a certain date, hefty interest will start accruing.You may be better
off to get an ordinary loan from the beginning with a cheaper interest rate.What matters
most is the total payment (loan amount plus total interest) you’ll have to make. To com-
pare different loan deals, let’s develop a loan calculator. Here’s the problem statement:

Write a loan calculator program that computes both monthly and total
payments for a given loan amount, annual interest rate, and loan period.

Overall Plan

Our first task is to map out the overall plan for development. We will identify classes nec-
essary for the program and the steps we will follow to implement the program.We begin
with the outline of program logic. For a simple program such as this one, it is kind of obvi-
ous; but to practice the incremental development, let’s put down the outline of program
flow explicitly.We can express the program flow as having three tasks:

1. Get three input values: loanAmount, interestRate, and loanPeriod.

2. Compute the monthly and total payments.

3. Output the results.

Having identified the three major tasks of the program, we now identify the classes
we can use to implement the three tasks. For input and output, we continue to use the
Scanner class and System.out (PrintStream). For computing the monthly and total
payments, there are no standard classes that will provide such computation, so we have
to write our own code.

The formula for computing the monthly payment can be found in any mathemat-
ics book that covers geometric sequences. It is

Monthly payment �
L � R

��
1 � [1�(1 � R)]N

Sample Development3.9 Sample Development

120 Chapter 3 Numerical Data

program
tasks

wu23399_ch03.qxd 12/13/06 17:38 Page 120

where L is the loan amount,R is the monthly interest rate,and N is the number of payments.
The monthly rate R is expressed in a fractional value,for example,0.01 for 1 percent monthly
rate.Once the monthly payment is derived, the total payment can be determined by multi-
plying the monthly payment by the number of months the payment is made.Since the for-
mula includes exponentiation, we will have to use the pow method of the Math class.

Let’s summarize what we have decided so far in a design document:

3.9 Sample Development 121

program
classes

Design Document:LoanCalculator

Class Purpose

LoanCalculator The main class of the program.

Scanner The class is used to get three input values: loan amount,
annual interest rate, and loan period.

PrintStream System.out is used to display the input values and two
(System.out) computed results: monthly payment and total payment.

Math The pow method is used to evaluate exponentiation in the
formula for computing the monthly payment.This class is
from java.lang.Note: You don’t have to import
java.lang.The classes in java.lang are available to a
program without importing.

The program diagram based on the classes listed in the design document is shown
in Figure 3.5. Keep in mind that this is only a preliminary design. The preliminary docu-
ment is really a working document that we will modify and expand as we progress
through the development steps.

Before we can actually start our development, we must sketch the steps we will
follow to implement the program. There is more than one possible sequence of steps to
implement a program, and the number of possible sequences will increase as the program
becomes more complex. For this program, we will implement the program in four steps:

1. Start with code to accept three input values.

2. Add code to output the results.

3. Add code to compute the monthly and total payments.

4. Update or modify code and tie up any loose ends.

Notice how the first three steps are ordered. Other orders are possible to develop
this program. So why did we choose this particular order? The main reason is our desire to
defer the most difficult task until the end. It’s possible, but if we implement the computa-
tion part in the second incremental step, then we need to code some temporary output
routines to verify that the computation is done correctly. However, if we implement the
real output routines before implementing the computation routines, then there is no

develop-
ment steps

wu23399_ch03.qxd 12/13/06 17:38 Page 121

122 Chapter 3 Numerical Data

need for us to worry about temporary output routines. As for step 1 and step 2, their rela-
tive order does not matter much.We simply chose to implement the input routine before
the output routine because input comes before output in the program.

Step 1 Development: Input Three Data Values

The next task is to determine how we will accept the input values.The problem statement
does not specify the exact format of input, so we will decide that now. Based on how peo-
ple normally refer to loans, the input values will be accepted in the following format:

Input Format Data Type

Loan amount In dollars and cents (for example, 15000.00) double
Annual interest rate In percent (for example, 12.5) double
Loan period In years (for example, 30) int

Be aware that we need to convert the annual interest rate to the monthly interest rate and
the input value loan period to the number of monthly payments, to use the given
formula. In this case, the conversion is very simple, but even if the conversion routines
were more complicated, we must do the conversion. It is not acceptable to ask users to

step 1
design

3.9 Sample Development—continued

Figure 3.5 The object diagram for the program LoanCalculator.

LoanCalculator

Scanner

Math

System.out : PrintStream

wu23399_ch03.qxd 12/13/06 17:38 Page 122

3.9 Sample Development 123

enter an input value that is unnatural to them. For example, people do not think of inter-
est rates in fractional values such as 0.07. They think of interest in terms of percentages
such as 7 percent. Computer programs work for humans, not the other way round.
Programs we develop should not support an interface that is difficult and awkward for
humans to use.

When the user inputs an invalid value, for example, an input string value that can-
not be converted to a numerical value or that converts to a negative number, the program
should respond accordingly, such as by printing an error message. We do not possess
enough skills to implement such a robust program yet, so we will make the following
assumptions: (1) The input values are nonnegative numbers, and (2) the loan period is a
whole number.

One important objective of this step is to verify that the input values are read
in correctly by the program. To verify this, we will echo-print the input values to
System.out.

Here’s our step 1 program:step 1 code

/*
Chapter 3 Sample Development: Loan Calculator (Step 1)

File: Step1/Ch3LoanCalculator.java

Step 1: Input Data Values
*/

import java.util.*;

class Ch3LoanCalculator {

public static void main(String[] args) {

double loanAmount,
annualInterestRate;

int loanPeriod;

Scanner scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator"));

//get input values
System.out.print("Loan Amount (Dollars+Cents): ");
loanAmount = scanner.nextDouble();

System.out.print("Annual Interest Rate (e.g., 9.5): ");
annualInterestRate = scanner.nextDouble();

System.out.print("Loan Period - # of years: ");
loanPeriod = scanner.nextInt();

wu23399_ch03.qxd 12/13/06 17:38 Page 123

3.9 Sample Development—continued

124 Chapter 3 Numerical Data

//echo print the input values
System.out.println ("");
System.out.println("Loan Amount: $" + loanAmount);
System.out.println("Annual Interest Rate: "

+ annualInterestRate + "%");
System.out.println("Loan Period (years): " + loanPeriod);

}
}

To verify the input routine is working correctly, we run the program multiple times
and enter different sets of data. We make sure the values are displayed in the standard
output window as entered.

Step 2 Development: Output Values

The second step is to add code to display the output values.We will use the standard out-
put window for displaying output values. We need to display the result in a layout that is
meaningful and easy to read. Just displaying numbers such as the following is totally
unacceptable.

132.151.15858.1

We must label the output values so the user can tell what the numbers represent. In addi-
tion, we must display the input values with the computed result so it will not be mean-
ingless. Which of the two shown in Figure 3.6 do you think is more meaningful? The
output format of this program will be

For
Loan Amount: $ <amount>
Annual Interest Rate: <annual interest rate> %
Loan Period (years): <year>

Monthly payment is $ <monthly payment>
TOTAL payment is $ <total payment>

with <amount>, <annual interest rate>, and others replaced by the actual figures.

step 1 test

step 2
design

wu23399_ch03.qxd 12/13/06 17:38 Page 124

3.9 Sample Development 125

Since the computations for the monthly and total payments are not yet imple-
mented, we will use the following dummy assignment statements:

monthlyPayment = 135.15;
totalPayment = 15858.10;

We will replace these statements with the real ones in the next step.
Here’s our step 2 program with the newly added portion surrounded by a rectangle

and white background:

Only the computed
values (and their

labels) are shown.

Monthly payment: $ 143.47
Total payment: $ 17216.50

Both the input and
computed values (and

their labels) are shown.

For
Loan Amount: $ 10000.00
Annual Interest Rate: 12.0%
Loan Period (years): 10

Monthly payment is $ 143.47
 TOTAL payment is $ 17216.50

Figure 3.6 Two different display formats, one with input values displayed and the other with only the
computed values displayed.

step 2 code

/*

Chapter 3 Sample Development: Loan Calculator (Step 2)

File: Step2/Ch3LoanCalculator.java

Step 2: Display the Results

*/

import java.util.*;

class Ch3LoanCalculator {

public static void main(String[] args) {

double loanAmount,
annualInterestRate;

double monthlyPayment,
totalPayment;

int loanPeriod;

wu23399_ch03.qxd 12/13/06 17:38 Page 125

126 Chapter 3 Numerical Data

Scanner scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator"));

//get input values
System.out.print("Loan Amount (Dollars+Cents): ");
loanAmount = scanner.nextDouble();

System.out.print("Annual Interest Rate (e.g., 9.5): ");
annualInterestRate = scanner.nextDouble();

System.out.print("Loan Period - # of years: ");
loanPeriod = scanner.nextInt();

//compute the monthly and total payments
monthlyPayment = 132.15;
totalPayment = 15858.10;

//display the result
System.out.println("");
System.out.println("Loan Amount: $" + loanAmount);
System.out.println("Annual Interest Rate:"

+ annualInterestRate + "%");
System.out.println("Loan Period (years): " + loanPeriod);

System.out.println("\n"); //skip two lines
System.out.println("Monthly payment is $ " + monthlyPayment);
System.out.println(" TOTAL payment is $ " + totalPayment);

}
}

To verify the output routine is working correctly, we run the program and verify the
layout.Most likely,we have to run the program several times to fine-tune the arguments for
the println methods until we get the layout that looks clean and nice on the screen.

Step 3 Development: Compute Loan Amount

We are now ready to complete the program by implementing the formula derived in the de-
sign phase.The formula requires the monthly interest rate and the number of monthly pay-
ments.The input values to the program, however, are the annual interest rate and the loan
period in years.So we need to convert the annual interest rate to a monthly interest rate and
the loan period to the number of monthly payments.The two input values are converted as

monthlyInterestRate = annualInterestRate / 100.0 / MONTHS_IN_YEAR;

numberOfPayments = loanPeriod * MONTHS_IN_YEAR;

step 2 test

step 3
design

3.9 Sample Development—continued

wu23399_ch03.qxd 1/12/07 10:36 Page 126

3.9 Sample Development 127

where MONTHS_IN_YEAR is a symbolic constant with value 12. Notice that we need to
divide the input annual interest rate by 100 first because the formula for loan computa-
tion requires that the interest rate be a fractional value, for example, 0.01, but the input
annual interest rate is entered as a percentage point, for example, 12.0. Please read Exer-
cise 23 on page 142 for information on how the monthly interest rate is derived from a
given annual interest rate.

The formula for computing the monthly and total payments can be expressed as

monthlyPayment = (loanAmount * monthlyInterestRate)
/
(1 - Math.pow(1 /(1 + monthlyInterestRate),

numberOfPayments));

totalPayment = monthlyPayment * numberOfPayments;

Let’s put in the necessary code for the computations and complete the program.
Here’s our program:

step 3 code

/*

Chapter 3 Sample Development: Loan Calculator (Step 3)

File: Step3/Ch3LoanCalculator.java

Step 3: Display the Results

*/

import java.util.*;

class Ch3LoanCalculator {

public static void main(String[] args) {

final int MONTHS_IN_YEAR = 12;

double loanAmount,
annualInterestRate;

double monthlyPayment,
totalPayment;

double monthlyInterestRate;

int loanPeriod;

int numberOfPayments;

wu23399_ch03.qxd 12/13/06 17:38 Page 127

3.9 Sample Development—continued

128 Chapter 3 Numerical Data

Scanner scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator"));

//get input values
System.out.print("Loan Amount (Dollars+Cents): ");
loanAmount = scanner.nextDouble();

System.out.print("Annual Interest Rate (e.g., 9.5): ");
annualInterestRate = scanner.nextDouble();

System.out.print("Loan Period - # of years: ");
loanPeriod = scanner.nextInt();

//compute the monthly and total payments
monthlyInterestRate = annualInterestRate / MONTHS_IN_YEAR / 100;
numberOfPayments = loanPeriod * MONTHS_IN_YEAR;

monthlyPayment = (loanAmount * monthlyInterestRate)/
(1 - Math.pow(1/(1 + monthlyInterestRate),

numberOfPayments));

totalPayment = monthlyPayment * numberOfPayments;

//display the result
System.out.println("");
System.out.println("Loan Amount: $" + loanAmount);
System.out.println("Annual Interest Rate: "

+ annualInterestRate + "%");
System.out.println("Loan Period (years): " + loanPeriod);

System.out.println("\n"); //skip two lines
System.out.println("Monthly payment is $ " + monthlyPayment);
System.out.println(" TOTAL payment is $ " + totalPayment);

}
}

After the program is coded, we need to run the program through a number of tests.
Since we made the assumption that the input values must be valid, we will test the pro-
gram only for valid input values. If we don’t make that assumption, then we need to test
that the program will respond correctly when invalid values are entered. We will perform
such testing beginning in Chapter 5.To check that this program produces correct results,

step 3 test

wu23399_ch03.qxd 12/13/06 17:38 Page 128

3.9 Sample Development 129

Output
(shown up to three decimal

Input places only)

Annual Loan
Loan Interest Period Monthly Total

Amount Rate (Years) Payment Payment

10000 10 10 132.151 15858.088
15000 7 15 134.824 24268.363
10000 12 10 143.471 17216.514

0 10 5 0.000 0.000
30 8.5 50 0.216 129.373

Step 4 Development: Finishing Up

We finalize the program in the last step by making any necessary modifications or addi-
tions. We will make two additions to the program. The first is necessary while the second
is optional but desirable. The first addition is the inclusion of a program description. One
of the necessary features of any nontrivial program is the description of what the pro-
gram does for the user.We will print out a description at the beginning of the program to
System.out. The second addition is the formatting of the output values. We will format
the monthly and total payments to two decimal places, using a DecimalFormat object.

Here is our final program:

step 4
design

step 4 code

/*
Chapter 3 Sample Development: Loan Calculator (Step 4)

File: Step4/Ch3LoanCalculator.java

Step 4: Finalize the program
*/

import java.util.*;

import java.text.*;

class Ch3LoanCalculator {

public static void main(String[] args) {

final int MONTHS_IN_YEAR = 12;

we can run the program with the following input values.The right two columns show the
correct results.Try other input values as well.

wu23399_ch03.qxd 12/13/06 17:38 Page 129

3.9 Sample Development—continued

130 Chapter 3 Numerical Data

double loanAmount,
annualInterestRate;

double monthlyPayment,
totalPayment;

double monthlyInterestRate;

int loanPeriod;

int numberOfPayments;

Scanner scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator"));

DecimalFormat df = new DecimalFormat("0.00");

//describe the program
System.out.println("This program computes the monthly and total");
System.out.println("payments for a given loan amount, annual ");
System.out.println("interest rate, and loan period.");
System.out.println("Loan amount in dollars and cents,

e.g., 12345.50");
System.out.println("Annual interest rate in percentage,

e.g., 12.75");
System.out.println("Loan period in number of years, e.g., 15");
System.out.println("\n"); //skip two lines

//get input values
System.out.print("Loan Amount (Dollars+Cents): ");
loanAmount = scanner.nextDouble();

System.out.print("Annual Interest Rate (e.g., 9.5): ");
annualInterestRate = scanner.nextDouble();

System.out.print("Loan Period - # of years: ");
loanPeriod = scanner.nextInt();

//compute the monthly and total payments
monthlyInterestRate = annualInterestRate / MONTHS_IN_YEAR / 100;
numberOfPayments = loanPeriod * MONTHS_IN_YEAR;

monthlyPayment = (loanAmount * monthlyInterestRate) /
(1 - Math.pow(1/(1 + monthlyInterestRate),

numberOfPayments));

totalPayment = monthlyPayment * numberOfPayments;

wu23399_ch03.qxd 12/13/06 17:38 Page 130

3.10 Numerical Representation (Optional)
In this section we explain how integers and real numbers are stored in memory.
Although computer manufacturers have used various formats for storing numerical
values, today’s standard is to use the twos complement format for storing integers
and the floating-point format for real numbers. We describe these formats in this
section.

An integer can occupy 1, 2, 4, or 8 bytes depending on which data type
(i.e., byte, short, int, or long) is declared. To make the examples easy to follow,
we will use 1 byte (� 8 bits) to explain twos complement form. The same principle
applies to 2, 4, and 8 bytes. (They just utilize more bits.)

3.10 Numerical Representation (Optional) 131

//display the result
System.out.println("");
System.out.println("Loan Amount: $" + loanAmount);
System.out.println("Annual Interest Rate: "

+ annualInterestRate + "%");
System.out.println("Loan Period (years): " + loanPeriod);

System.out.println("\n"); //skip two lines

System.out.println("Monthly payment is $ "
+ df.format(monthlyPayment));

System.out.println(" TOTAL payment is $ "
+ df.format(totalPayment));

}
}

We repeat the test runs from step 3 and confirm the modified program still runs
correctly. Since we have not made any substantial additions or modifications, we fully
expect the program to work correctly. However, it is very easy to introduce errors in cod-
ing, so even if we think the changes are trivial, we should never skip the testing after even
a slight modification.

step 4 test

Always test after making any additions or modifications to a program, no matter
how trivial you think the changes are.

twos
complement

wu23399_ch03.qxd 12/13/06 17:38 Page 131

132 Chapter 3 Numerical Data

The following table shows the first five and the last four of the 256 positive
binary numbers using 8 bits. The right column lists their decimal equivalents.

8-Bit Binary Number Decimal Equivalent

00000000 0
00000001 1
00000010 2
00000011 3
00000100 4

. . .

11111100 252
11111101 253
11111110 254
11111111 255

Using 8 bits, we can represent positive integers from 0 to 255. Now let’s see
the possible range of negative and positive numbers that we can represent, using
8 bits. We can designate the leftmost bit as a sign bit: 0 means positive and 1 means
negative. Using this scheme, we can represent integers from �127 to �127 as
shown in the following table:

sign bit

8-Bit Binary Number
(with a Sign Bit) Decimal Equivalent

0 0000000 �0
0 0000001 �1
0 0000010 �2

. . .

0 1111111 �127
1 0000000 �0
1 0000001 �1

. . .

1 1111110 �126
1 1111111 �127

Notice that zero has two distinct representations (�0 � 00000000 and �0 �
10000000), which adds complexity in hardware design. Twos complement format
avoids this problem of duplicate representations for zero. In twos complement for-
mat, all positive numbers have zero in their leftmost bit. The representation of a
negative number is derived by first inverting all the bits (changing 1s to 0s and 0s to

wu23399_ch03.qxd 12/13/06 17:38 Page 132

3.10 Numerical Representation (Optional) 133

1s) in the representation of the positive number and then adding 1. The following
diagram illustrates the process:

13 = 00001101

invert

11110010

add 1

-13 = 11110011

The following table shows the decimal equivalents of 8-bit binary numbers by
using twos complement representation. Notice that zero has only one representation.

8-Bit Binary Number Decimal
(Twos Complement) Equivalent

00000000 �0
00000001 �1
00000010 �2

. . .

01111111 �127
10000000 �128
10000001 �127

. . .

11111110 �2
11111111 �1

Now let’s see how real numbers are stored in memory in floating-point format.
We present only the basic ideas of storing real numbers in computer memory here.
We omit the precise details of the Institute of Electronics and Electrical Engineers
(IEEE) Standard 754 that Java uses to store real numbers.

Real numbers are represented in the computer by using scientific notation. In
base-10 scientific notation, a real number is expressed as

A � 10N

where A is a real number and N is an integral exponent. For example, the mass of a
hydrogen atom (in grams) is expressed in decimal scientific notation as 1.67339 �
10–24, which is equal to 0.00000000000000000000000167339.

We use base-2 scientific notation to store real numbers in computer memory.
Base-2 scientific notation represents a real number as follows:

A � 2N

The float and double data types use 32 and 64 bits, respectively, with the num-
ber A and exponent N stored as follows:

floating-point

wu23399_ch03.qxd 12/13/06 17:38 Page 133

134 Chapter 3 Numerical Data

81

ANS

1

ANS

11 52

23

Sign bit:
 0 — positive
 1 — negative

Number of
bits used

The value A is a normalized fraction, where the fraction begins with a binary point,
followed by a 1 bit and the rest of the fraction. (Note: A decimal number has a dec-
imal point; a binary number has a binary point.) The following numbers are sample
normalized and unnormalized binary fractions:

normalized
fraction

Normalized Unnormalized

1.1010100 1.100111
1.100011 .0000000001
1.101110011 .0001010110

Since a normalized number always start with a 1, this bit does not actually
have to be stored. The following diagram illustrates how the A value is stored.

The sign bit S indicates the sign of a number, so A is stored in memory as an un-
signed number. The integral exponent N can be negative or positive. Instead of using
twos complement for storing N, we use a format called excess format. The 8-bit ex-
ponent uses the excess-127 format, and the 11-bit exponent uses the excess-1023
format. We will explain the excess-127 format here. The excess-1023 works
similarly. With the excess-127 format, the actual exponent is computed as

N � 127

Therefore, the number 127 represents an exponent of zero. Numbers less than 127
represent negative exponents, and numbers greater than 127 represent positive
exponents. The following diagram illustrates that the number 125 in the exponent
field represents 2125�127 � 2�2.

N

01111101

AS

201111101�127 � 2125�127 � 2�2

81

0 1 1 0 1 1 1 0 0 ... 0 0

0 1 1 0 1 1 1.1

NS

excess format

wu23399_ch03.qxd 12/13/06 17:38 Page 134

Key Concepts 135

• A variable is a memory location in which to store a value.

• A variable has a name and a data type.

• A variable must be declared before we can assign a value to it.

• There are six numerical data types in Java: byte, short, int, long, float, and
double.

• Object names are synonymous with variables whose contents are memory
addresses.

• Numerical data types are called primitive data types, and objects are called
reference data types.

• Precedence rules determine the order of evaluating arithemetic expressions.

• Symbolic constants hold values just as variables do, but we cannot change
their values.

• The standard classes introduced in this chapter are

Math
GregorianCalendar
DecimalFormat
PrintStream

• System.out is used to output multiple lines of text to the standard output window.

• System.in is used to input a stream of bytes. We associate a Scanner object to
System.in to input primitive data type.

• The Math class contains many class methods for mathematical functions.

• The GregorianCalendar class is used in the manipulation of calendar
information.

• The DecimalFormat class is used to format numerical data.

• (Optional) Twos complement format is used for storing integers, and
floating-pointing format is used for storing real numbers.

S u m m a r y

K e y C o n c e p t s

variables

primitive data types

reference data types

arithmetic expression

arithmetic operators

precedence rules

typecasting

implicit and explicit casting

assignment conversion

constants

standard output

standard input

echo printing

twos complement (optional)

floating point (optional)

wu23399_ch03.qxd 12/13/06 17:38 Page 135

136 Chapter 3 Numerical Data

E x e r c i s e s

1. Suppose we have the following declarations:

int i = 3, j = 4, k = 5;
float x = 34.5f, y = 12.25f;

Determine the value for each of the following expressions, or explain why it
is not a valid expression.

a. (x + 1.5) / (250.0 * (i/j))
b. x + 1.5 / 250.0 * i / j
c. -x * -y * (i + j) / k
d. (i / 5) * y
e. Math.min(i, Math.min(j,k))
f. Math.exp(3, 2)
g. y % x
h. Math.pow(3, 2)
i. (int)y % k
j. i / 5 * y

2. Suppose we have the following declarations:

int m, n, i = 3, j = 4, k = 5;
float v, w, x = 34.5f, y = 12.25f;

Determine the value assigned to the variable in each of the following
assignment statements, or explain why it is not a valid assignment.

a. w = Math.pow(3,Math.pow(i,j));
b. v = x / i;
c. w = Math.ceil(y) % k;
d. n = (int) x / y * i / 2;
e. x = Math.sqrt(i*i - 4*j*k);
f. m = n + i * j;
g. n = k /(j * i) * x + y;
h. i = i + 1;
i. w = float(x + i);
j. x = x / i / y / j;

3. Suppose we have the following declarations:

int i, j;
float x, y;
double u, v;

Which of the following assignments are valid?

a. i = x;
b. x = u + y;
c. x = 23.4 + j * y;
d. v = (int) x;
e. y = j / i * x;

wu23399_ch03.qxd 12/13/06 17:38 Page 136

4. Write Java expressions to compute each of the following.

a. The square root of B2 � 4AC (A and C are distinct variables)
b. The square root of X � 4Y3

c. The cube root of the product of X and Y
d. The area �R2 of a circle

5. Determine the output of the following program without running it.

class TestOutputBox {
public static void main(String[] args) {

System.out.println("One");
System.out.print("Two");
System.out.print("\n");

System.out.print("Three");
System.out.println("Four");
System.out.print("\n");

System.out.print("Five");
System.out.println("Six");

}
}

6. Determine the output of the following code.

int x, y;
x = 1;
y = 2;
System.out.println("The output is " + x + y);
System.out.println("The output is " + (x + y));

7. Write an application that displays the following pattern in the standard
output window.

Note: The output window is not drawn to scale.

8. Write an application to convert centimeters (input) to feet and inches
(output). 1 in � 2.54 cm.

OXOXOXOXOXOXOXOXOXOX
X O
O X
X O
O X
X O
OXOXOXOXOXOXOXOXOXOX

Starts from the second
line with five leading

blank spaces.

Exercises 137

wu23399_ch03.qxd 12/13/06 17:38 Page 137

9. Write an application that inputs temperature in degrees Celsius and prints
out the temperature in degrees Fahrenheit. The formula to convert degrees
Celsius to equivalent degrees Fahrenheit is

Fahrenheit � 1.8 � Celsius � 32

10. Write an application that accepts a person’s weight and displays the number
of calories the person needs in one day. A person needs 19 calories per
pound of body weight, so the formula expressed in Java is

calories = bodyWeight * 19;

(Note: We are not distinguishing between genders.)

11. A quantity known as the body mass index (BMI) is used to calculate the risk
of weight-related health problems. BMI is computed by the formula

BMI � �
(h�10

w
0.0)2�

where w is weight in kilograms and h is height in centimeters. A BMI of
about 20 to 25 is considered “normal.” Write an application that accepts
weight and height (both integers) and outputs the BMI.

12. Your weight is actually the amount of gravitational attraction exerted on you
by the Earth. Since the Moon’s gravity is only one-sixth of the Earth’s gravity,
on the Moon you would weigh only one-sixth of what you weigh on Earth.
Write an application that inputs the user’s Earth weight and outputs her or his
weight on Mercury, Venus, Jupiter, and Saturn. Use the values in this table.

Planet Multiply the Earth Weight by

Mercury 0.4
Venus 0.9
Jupiter 2.5
Saturn 1.1

13. When you say you are 18 years old, you are really saying that the Earth has
circled the Sun 18 times. Since other planets take fewer or more days than
Earth to travel around the Sun, your age would be different on other planets.
You can compute how old you are on other planets by the formula

y � �
x �

d

365
�

where x is the age on Earth, y is the age on planet Y, and d is the number of
Earth days the planet Y takes to travel around the Sun. Write an application
that inputs the user’s Earth age and print outs his or her age on Mercury,
Venus, Jupiter, and Saturn. The values for d are listed in the table.

138 Chapter 3 Numerical Data

wu23399_ch03.qxd 12/13/06 17:38 Page 138

d � Approximate Number of Earth
Days for This Planet to Travel

Planet around the Sun

Mercury 88
Venus 225
Jupiter 4,380
Saturn 10,767

14. Write an application to solve quadratic equations of the form

Ax2 � Bx � C � 0

where the coefficients A, B, and C are real numbers. The two real number
solutions are derived by the formula

x ��
�B 	 �

2
B
A

2 � 4�AC�
�

For this exercise, you may assume that A
 0 and the relationship

B2 � 4AC

holds, so there will be real number solutions for x.

15. Write an application that determines the number of days in a given
semester. Input to the program is the year, month, and day information of
the first and the last days of a semester. Hint: Create GregorianCalendar
objects for the start and end dates of a semester and manipulate their
DAY_OF_YEAR data.

16. Modify the Ch3FindDayOfWeek program by accepting the date information
as a single string instead of accepting the year, month, and day information
separately. The input string must be in the MM/dd/yyyy format. For
example, July 4, 1776, is entered as 07/04/1776. There will be exactly two
digits for the month and day and four digits for the year.

17. Write an application that accepts the unit weight of a bag of coffee in pounds
and the number of bags sold and displays the total price of the sale, computed as

totalPrice = unitWeight * numberOfUnits * 5.99;
totalPriceWithTax = totalPrice + totalPrice * 0.0725;

where 5.99 is the cost per pound and 0.0725 is the sales tax. Display the
result in the following manner:

Draw the program diagram.

Number of bags sold: 32
 Weight per bag: 5 lb
 Price per pound: $5.99
 Sales tax: 7.25%

 Total price: $ 1027.884

Exercises 139

wu23399_ch03.qxd 12/13/06 17:38 Page 139

18. If you invest P dollars at R percent interest rate compounded annually, in
N years, your investment will grow to

P(1 � R�100)N

dollars. Write an application that accepts P, R, and N and computes the
amount of money earned after N years.

19. Leonardo Fibonacci of Pisa was one of the greatest mathematicians of the
Middle Ages. He is perhaps most famous for the Fibonacci sequence, which
can be applied to many diverse problems. One amusing application of the
Fibonacci sequence is in finding the growth rate of rabbits. Suppose a pair of
rabbits matures in 2 months and is capable of reproducing another pair every
month after maturity. If every new pair has the same capability, how many
pairs will there be after 1 year? (We assume here that no pairs die.) The table
below shows the sequence for the first 7 months. Notice that at the end of the
second month, the first pair matures and bears its first offspring in the third
month, making the total two pairs.

Month No. Number of Pairs

1 1
2 1
3 2
4 3
5 5
6 8
7 13

The Nth Fibonacci number in the sequence can be evaluated with the
formula

FN � �
�
1
5�

� ���1 �

2
�5�
��

N

� ��1 �

2
�5�
��

N

�
Write an application that accepts N and displays FN. Note that the result of
computation using the Math class is double. You need to display it as an
integer.

20. According to Newton’s universal law of gravitation, the force F between two
bodies with masses M1 and M2 is computed as

F � k ��Md
1M

2
2

��
where d is the distance between the two bodies and k is a positive real
number called the gravitational constant. The gravitational constant k is
approximately equal to 6.67E-8 dyn � cm2/g2. Write an application that

140 Chapter 3 Numerical Data

wu23399_ch03.qxd 12/13/06 17:39 Page 140

(1) accepts the mass for two bodies in grams and the distance between the
two bodies in centimeters and (2) computes the force F. Use the standard
input and output, and format the output appropriately. For your information,
the force between the Earth and the Moon is 1.984E25 dyn. The mass of the
earth is 5.983E27 g, the mass of the moon is 7.347E25 g, and the distance
between the two is 3.844E10 cm.

21. Dr. Caffeine’s Law of Program Readability states that the degree of program
readability R (whose unit is mocha) is determined as

R � k � �
C

V

T
3

2

�

where k is Ms. Latte’s constant, C is the number of lines in the program that
contain comments, T is the time spent (in minutes) by the programmer
developing the program, and V is the number of lines in the program that
contain nondescriptive variable names. Write an application to compute the
program readability R. Ms. Latte’s constant is 2.5E2 mocha lines2/min2.
(Note: This is just for fun. Develop your own law, using various functions
from the Math class.)

22. If the population of a country grows according to the formula

y � cekx

where y is the population after x years from the reference year, then we can
determine the population of a country for a given year from two census
figures. For example, given that a country with a population of 1,000,000 in
1970 grows to 2,000,000 by 1990, we can predict the country’s population in
the year 2000. Here’s how we do the computation. Letting x be the number
of years after 1970, we obtain the constant c as 1,000,000 because

1,000,000 � cek0 � c

Then we determine the value of k as

y � 1,000,000ekx

�
2
1
,
,
0
0
0
0
0
0
,
,
0
0
0
0
0
0

� � e20k

k � �
2
1
0
� ln �

2
1
,
,
0
0
0
0
0
0
,
,
0
0
0
0
0
0

� � 0.03466

Finally we can predict the population in the year 2000 by substituting
0.03466 for k and 30 for x (2000 � 1970 � 30). Thus, we predict

y � 1,000,000e0.03466(30) � 2,828,651

as the population of the country for the year 2000. Write an application that
accepts five input values—year A, population in year A, year B, population
in year B, and year C—and predict the population for year C.

Exercises 141

wu23399_ch03.qxd 12/13/06 17:39 Page 141

23. In Section 3.9, we use the formula

MR � �
A
1
R
2
�

to derive the monthly interest rate from a given annual interest rate,
where MR is the monthly interest rate and AR is the annual interest
rate (expressed in a fractional value such as 0.083). This annual interest
rate AR is called the stated annual interest rate to distinguish it from the
effective annual interest rate, which is the true cost of a loan. If the
stated annual interest rate is 9 percent, for example, then the effective
annual interest rate is actually 9.38 percent. Naturally, the rate that the
financial institutions advertise more prominently is the stated interest
rate. The loan calculator program in Section 3.9 treats the annual
interest rate that the user enters as the stated annual interest rate. If the
input is the effective annual interest rate, then we compute the monthly
rate as

MR � (1 � EAR)1�12 � 1

where EAR is the effective annual interest rate. The difference between
the stated and effective annual interest rates is negligible only when
the loan amount is small or the loan period is short. Modify the loan
calculator program so that the interest rate that the user enters is
treated as the effective annual interest rate. Run the original and modified
loan calculator programs, and compare the differences in the monthly
and total payments. Use loan amounts of 1, 10, and 50 million dollars
with loan periods of 10, 20, and 30 years and annual interest rates of
0.07, 0.10, and 0.18 percent, respectively. Try other combinations also.

Visit several websites that provide a loan calculator for computing
a monthly mortgage payment (one such site is the financial page at
www.cnn.com). Compare your results to the values computed by the
websites you visited. Determine whether the websites treat the input
annual interest rate as stated or effective.

Development Exercises
For the following exercises, use the incremental development methodology
to implement the program. For each exercise, identify the program tasks,
create a design document with class descriptions, and draw the program
diagram. Map out the development steps at the start. State any assumptions
you must make about the input. Present any design alternatives and justify
your selection. Be sure to perform adequate testing at the end of each
development step.

24. Develop an application that reads a purchase price and an amount tendered
and then displays the change in dollars, quarters, dimes, nickels, and

142 Chapter 3 Numerical Data

wu23399_ch03.qxd 12/13/06 17:39 Page 142

http://www.cnn.com

pennies. Two input values are entered in cents, for example, 3480 for $34.80
and 70 for $0.70. Display the output in the following format:

Notice the input values are to be entered in cents (int data type), but
the echo printed values must be displayed with decimal points (float
data type).

25. MyJava Coffee Outlet runs a catalog business. It sells only one type of
coffee beans, harvested exclusively in the remote area of Irian Jaya. The
company sells the coffee in 2-lb bags only, and the price of a single 2-lb
bag is $5.50. When a customer places an order, the company ships the
order in boxes. The boxes come in three sizes: the large box holds 20 bags
of 2 lb, the medium 10 bags, and the small 5 bags. The cost of a large
box is $1.80; a medium box, $1.00; and a small box, $0.60. The order is
shipped using the least number of boxes. For example, the order of
52 bags will be shipped in two boxes, one large and one small. Develop
an application that computes the total cost of an order. Display the output
in the following format:

Number of Bags Ordered: 52 - $ 286.00

Boxes Used:
2 Large - $3.60
1 Medium - $1.00
1 Small - $0.60

Your total cost is: $ 291.20

26. Repeat Exercise 25, but this time, accept the date when the order is placed
and display the expected date of arrival. The expected date of arrival is two
weeks (14 days) from the date of order. The order date is entered as a
single string in the MM/dd/yyyy format. For example, November 1, 2004
is entered as 11/01/2004. There will be exactly two digits each for the

 Purchase Price: $ 34.80
Amount Tendered: $ 40.00

 Your change is: $ 5.20

 5 one-dollar bill(s)
 0 quarter(s)
 2 dime(s)
 0 nickel(s)
 0 penn(y/ies)

Thank you for your business. Come back soon.

Exercises 143

wu23399_ch03.qxd 12/13/06 17:39 Page 143

month and day and four digits for the year. Display the output in the
following format:

Number of Bags Ordered: 52 - $ 286.00

Boxes Used:
2 Large - $3.60
1 Medium - $1.00
1 Small - $0.60

Your total cost is: $ 291.20

Date of Order: November 1, 2004
Expected Date of Arrival: November 15, 2004

27. Using a Turtle object from the galapagos package, draw three rectangles.
Accept the width and the length of the smallest rectangle from the user. The
middle and the largest rectangles are 40 and 80 percent larger, respectively,
than the smallest rectangle. The galapagos package and its documentation
are available at www.drcaffeine.com.

28. Develop a program that draws a bar chart using a Turtle object. Input five int
values, and draw the vertical bars that represent the entered values in the
following manner:

Your Turtle must draw everything shown in the diagram, including the axes
and numbers.

10

5

7

12

3

144 Chapter 3 Numerical Data

wu23399_ch03.qxd 12/13/06 17:39 Page 144

http://www.drcaffeine.com

Defining Your Own
Classes—Part 1

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Define a class with multiple methods and data
members.

• Differentiate the local and instance variables.

• Define and use value-returning methods.

• Distinguish private and public methods.

• Distinguish private and public data members.

• Pass both primitive data and objects to a
method.

145

4

wu23399_ch04.qxd 12/13/06 17:59 Page 145

146 Chapter 4 Defining Your Own Classes—Part 1

I n t r o d u c t i o n

o far we have been using only standard classes such as System, String, and others
when we wrote programs. For a basic program, that is fine. However, we need to
to learn how to write programs using our own classes (in addition to using the stan-
dard classes) when the programs become large and complex. In this chapter, we
learn the basics of how to define our own classes. And, in Chapter 7, we will cover
more advanced topics on defining classes.

4.1 First Example: Defining and Using a Class
The most economical and effective means of on-campus transportation is without
doubt a bicycle. Suppose we want to develop a program that tracks the bicycles by
assigning to them some form of identification number along with the relevant
information, such the owner’s name and phone number. To develop such a Java
program, we need to design many different types of objects. For example, we need
objects to handle input, output, data storage, and other computational tasks. Among
the many types of objects necessary for this program, we will design a core class
that models a bicycle. There’s no such Bicycle class among the standard classes, of
course, so we need to define one ourselves. We will learn how to define the Bicycle
class in this section. We will start with a very simplistic Bicycle class. Using this
class, we can only assign and retrieve the owner’s name. Before we look inside the
Bicycle class and explain how the class is defined, let’s first look at how we might
use it in our program. The following sample program creates two Bicycle objects,
assigns the owners’ names to them, and displays the information:

class BicycleRegistration {

public static void main(String[] args) {

Bicycle bike1, bike2;
String owner1, owner2;

bike1 = new Bicycle(); //Create and assign values to bike1
bike1.setOwnerName("Adam Smith");

bike2 = new Bicycle(); //Create and assign values to bike2
bike2.setOwnerName("Ben Jones");

//Output the information
owner1 = bike1.getOwnerName();
owner2 = bike2.getOwnerName();

System.out.println(owner1 + " owns a bicycle.");
System.out.println(owner2 + " also owns a bicycle.");

}
}

S

wu23399_ch04.qxd 12/13/06 17:59 Page 146

The dependency diagram between the two classes is as follows:

When this program is executed, we get the following output on the standard output
window:

Adam Smith owns a bicycle.
Ben Jones also owns a bicycle.

This main class should look very familiar to all of us. The key difference lies in
the use of the Bicycle class instead of the standard classes we have been using so far.
The way we use the Bicycle class is the same. For example, we create a Bicycle object
bike2 by calling the new operator, and we assign the name of its owner by executing

bike2 = new Bicycle();
bike2.setOwnerName("Ben Jones");

BicycleRegistration Bicycle

Here’s the definition of the Bicycle class. To distinguish it from the standard
classes, we call the Bicycle and other classes we define programmer-defined classes.

4.1 First Example: Defining and Using a Class 147

programmer-
defined classes

class Bicycle {

// Data Member
private String ownerName;

//Constructor: Initialzes the data member
public Bicycle() {

ownerName = "Unknown";
}

//Returns the name of this bicycle's owner
public String getOwnerName() {

return ownerName;
}

//Assigns the name of this bicycle's owner
public void setOwnerName(String name) {

ownerName = name:
}

}

wu23399_ch04.qxd 12/13/06 17:59 Page 147

To get the name of the owner of bike2, we write

bike2.getOwnerName()

And we can assign the returned value to a variable if we write

String owner2;
...
owner2 = bike2.getOwnerName();

Although it is not a requirement, we will save one class definition per file to keep
things simple. For the file name, we will use the name of the class followed by the
java suffix. So, we save the Bicycle class in a file named Bicycle.java.

148 Chapter 4 Defining Your Own Classes—Part 1

Save one class definition per file. Use the name of the class followed by the suffix
java as the file name. Follow this rule to avoid any unnecessary complications.

For this sample program, we have created two classes—BicycleRegistration (the
main class) and Bicycle. So there are two source files for this program.

The Bicycle Class
Now let’s study the Bicycle class. Table 4.1 lists the three methods of the Bicycle
class and their description.

Here’s a template for the Bicycle class declaration:

class Bicycle {

//data members

//methods

}

BicycleRegistration.java Bicycle.java

Ta
b

le

Table 4.1 The three methods of the Bicycle class. The first method is called
a constructor

Method Parameter Description

Bicycle None Initializes the owner’s name to Unassigned.

getOwnerName None Returns the owner’s name.

setOwnerName Name of the Assigns the bicycle owner’s name to the passed
owner (string) value.

wu23399_ch04.qxd 12/13/06 18:00 Page 148

The class declaration begins with the reserved word class followed by the name.
Any valid identifier that is not a reserved word can be used as the class name.

We define the three methods inside the class declaration. But before we can
provide the method definitions, we need to consider the data members of the Bicycle
class. Remember, in Section 1.3, we stated that data members of a class are the data
values associated with the class or instances of the class, such as the current balance
of an Account object. What would be the data members of Bicycle objects? We need
to know the owner’s name of every Bicycle object, so we’ll define one data member
to store the owner’s name. The data members of a class are declared within the class
declaration. Here’s how we define the data member ownerName of the Bicycle class:

class Bicycle {

private String ownerName;

//definitions for the constructor,
//getOwnerName, and setOwnerName methods come here

}

The ownerName data member is an instance variable (we will learn how to de-
clare class constants later in this chapter and class variables in Chap. 7). Remember
that, in Section 1.3, we defined an instance variable as the data member we associate
to an individual instance and whose value can change over time. In other words, each
instance of the class will have its own copy. After the two Bicycle objects are created
and assigned their respective names by program, we have the following memory state:

The syntax for the data member declaration is

<modifier-list> <data type> <name> ;

where <modifier-list> designates different characteristics of the data member, <data
type> the class name or primitive data type, and <name> the name of the data mem-
ber. Here’s how the general syntax corresponds to the actual declaration:

Modifier

private ownerName ;

Data Type

String

Name

bike1

“Adam Smith”

:Bicycle

ownerName

bike2

“Ben Jones”

:Bicycle

ownerName

4.1 First Example: Defining and Using a Class 149

wu23399_ch04.qxd 12/13/06 18:00 Page 149

In this example, the data member has one modifier named private. This modifier is
called an accessibility modifier, or a visibility modifier, and it restricts who can have
a direct access to the data member. If the modifier is private, then only the methods
defined in the class can access it directly. We will provide a more detailed discus-
sion of the accessibility modifiers in Section 4.6. For now, it suffices to remember
that data members are declared private for the most part.

Now that the necessary data member is taken care of, we are ready to define the
three methods. We start with the setOwnerName method, which is declared as

public void setOwnerName(String name) {

ownerName = name;

}

The syntax for defining a method, as given in Chapter 2, is

<modifiers> <return type> <method name> (<parameters>) {

<statements>

}

The following diagram shows how the components in the general syntax cor-
respond to the actual elements in the setOwnerName method:

We explained in Chapter 1 that methods may or may not return a value. A
method that does not return a value, such as this setOwnerName method, is declared
as void. It is called a void method. The accessibility modifier for the setOwnerName
method is declared as public. This means the program that uses the Bicycle class can
access, or call, this method. It is possible (and could be useful) to declare a method
as private. If a method is declared as private, then it cannot be called from the pro-
gram that uses the class. It can only be called from the other methods of the same
class. For now we will limit our discussion to public methods. Here we declare all
methods as public because we want the programs that use the Bicycle class to be able
to call them. We will go over the use of private methods later in the chapter.

Modifier

public

}

setOwnerName (String name) {

Statements

Return Type

void

Method Name

Parameter

ownerName = name;

This refers to
instance variable

ownerName.

This refers to
parameter name.

150 Chapter 4 Defining Your Own Classes—Part 1

accessibility
modifier

void method

wu23399_ch04.qxd 12/13/06 18:00 Page 150

The getOwnerName method is defined as follows:

public String getOwnerName() {

return ownerName;

}

The following diagram shows how the components in the general syntax corre-
spond to the actual elements in the getOwnerName method:

This is a value-returning method. When this method is called, it returns a
value to the caller. The getOwnerName method returns a string value—the value of
instance variable ownerName—so its return type is declared as String. A value-
returning method must include a return statement of the format

return <expression> ;

The data type of <expression> must be compatible with the declared return
type of the method. For example, if the return type is int, then the data type of the
returned value must be compatible with int (data types int, short, and byte are all
compatible with int). Data type compatibilites are explained in Section 3.2.

If a method returns a value, then we can include a call to the method in an ex-
pression itself. For example, instead of writing

Bicycle bike;
...

String owner = bike.getOwnerName();
System.out.println(owner + "owns a bike.");

we can write

Bicycle bike;
...

System.out.println(bike.getOwnerName() + "owns a bike.");

Modifier

public

}

getOwnerName () {

Statements

Return Type

String

Method Name

Parameter

return ownerName;

This refers to
instance variable

ownerName.

4.1 First Example: Defining and Using a Class 151

value-returning
method

return state-
ment syntax

wu23399_ch04.qxd 12/13/06 18:00 Page 151

A method that returns information about an object (such as who is the owner
of a bicycle) is called an accessor. The getOwnerName method is an accessor. An
inverse of an accessor that sets a property of an object is called a mutator. The
setOwnerName method is a mutator. Accessors and mutators are commonly called
get and set methods, respectively.

A value-returning method can include more than one return statement. The
use of multiple return statements make sense only in the context of the control
statements, which we will discuss in Chapters 5 and 6. We will be seeing examples
of multiple return statements in these chapters.

The first method defined in the Bicycle class is a special method called a con-
structor. A constructor is a special method that is executed when a new instance of
the class is created, that is, when the new operator is called. Here’s the constructor
for the Bicycle class:

public Bicycle() {

ownerName = "Unassigned";
}

It follows the general syntax

public <class name> (<parameters>) {
<statements>

}

where <class name> is the name of the class to which this constructor belongs. The
following diagram shows how the components in the general syntax correspond to
the actual elements in the constructor of the Bicycle class:

Notice that a constructor does not have a return type and, consequently, will
never include a return statement. The modifier of a constructor does not have to be
public, but non-public constructors are rarely used. This example shows no parame-
ters, but it is very common to define a constructor with two or three parameters. We
will see an example of a constructor that accepts two parameters in Section 4.5.
Until then, we will define only a zero-parameter constructor.

The purpose of the Bicycle constructor is to initialize the data member to a
value that reflects the state to which the real name is not yet assigned. Since a
constructor is executed when a new instance is created, it is the most logical place

Modifier

public

}

() {

Statements

Class Name

Bicycle

Parameters

ownerName = "Unassigned";

152 Chapter 4 Defining Your Own Classes—Part 1

accessor

mutator

constructor

wu23399_ch04.qxd 12/13/06 18:00 Page 152

to initialize the data members and perform any other initialization tasks. Figure 4.1
shows a sequence of state-of-memory diagrams illustrating the effects of executing
the constructor and the setOwnerName method of the Bicycle class.

We stated earlier that the Bicycle class has three methods, of which one is a
constructor. However, a constructor is distinct from other “regular” methods, so it is
more common to state that the Bicycle class has one constructor and two methods.

4.1 First Example: Defining and Using a Class 153

Figure 4.1 A sequence of state-of-memory diagrams that illustrate the effects of executing the constructor
and the setOwnerName method of the Bicycle class.

bike

bike

“Unassigned”

:Bicycle

ownerName

Bicycle bike;

bike = new Bicycle();

Bicycle bike;

bike

“Jon Java”

:Bicycle

ownerName

Bicycle bike;

bike = new Bicycle();

bike.setOwnerName("Jon Java");

Instead of saying “a class has three methods including one constructor,” it is more
common to say “a class has one constructor and two methods.” We will use the later
expression in this book.

wu23399_ch04.qxd 12/13/06 18:00 Page 153

We will provide a more detailed discussion on constructors in Section 4.5.
The class diagram that lists the data member, the constructor, and two meth-

ods of the Bicycle class is shown in Figure 4.2.
In listing the data members and methods of a class, we will use the following

convention:

We list the data members first, then the constructor, and finally the methods.
Within each group, we list elements in alphabetical order. Keep in mind that
this convention for grouping elements and ordering them within a group is for our
convenience. The Java compiler does not care how we list the data members and
methods.

class <class name> {

 // data members

 // constructor

 // methods

}

154 Chapter 4 Defining Your Own Classes—Part 1

Data Member Listing

Method Listing

We include the data type
of an argument passed to
the method.

Bicycle

ownerName

Bicycle()

getOwnerName()

setOwnerName(String)

Figure 4.2 A class diagram of the Bicycle class with two methods and one data member.

class listing
convention

The Java compiler does not care how we order the methods and data members in
the class declaration. We adopt the listing convention to make the class declaration
easier for us to follow.

Compiling and Running BicycleRegistration
Up until now, when we ran the sample programs, we simply compiled and executed
the main class. That’s all we need to do because the main class is the only class we

wu23399_ch04.qxd 12/13/06 18:00 Page 154

created for the sample programs. But for this sample program, we have created two
classes—BicycleRegistration (the main class) and Bicycle. So there are two source
files for this program.

From now on, we will use the name of the main class to refer the whole pro-
gram. To run the BicycleRegistration program, we must first compile the two source
files and then run the main class. Here are the steps we follow to run this sample
program (we will illustrate the steps using the minimalist approach, see App. A):

1. Compile the Bicycle class.

javac Bicycle.java

2. Compile the BicycleRegistration class.

javac BicycleRegistration.java

3. Run the BicycleRegistration class.

java BicycleRegistration

There is one last thing to remember. The way the classes are written now, the
easiest way to manage a program that includes multiple programmer-defined
classes is to save the source files in the same folder (directory). We will learn how
to organize classes into a package in Chapter 7 so we can manage the organization
of classes in a more effective manner. Until then, just remember to place all sources
files for a program in the same folder. If you don’t do this, the Java compiler and
interpreter may not be able to compile and run the program.

BicycleRegistration.java

Source files for the BicycleRegistration program

Bicycle.java

These files must
be stored in the

same folder.

4.1 First Example: Defining and Using a Class 155

Place all source files for a program in the same folder (directory).

It is not necessary to create a separate folder for each program, though. In
other words, one folder can contain source files for multiple programs. For example,

wu23399_ch04.qxd 12/13/06 18:00 Page 155

we could create one folder to place all source files for this chapter’s sample code.
However, we recommend that students create a separate folder for each program-
ming assignment or lab project for easy management.

156 Chapter 4 Defining Your Own Classes—Part 1

The class declaration can be preceded with the accessibility modifier public or
private. For now, we do not use any accessibility modifier for the class dec-
laration. We will discuss the issue when we discuss a package organization in
Chapter 7.

1. Extend the Bicycle class by adding the second data member tagNo of type
String. Declare this data member as private.

2. Add a new method to the Bicycle class that assigns a tag number. This method
will be called as follows:

Bicycle bike;
bike = new Bicycle();
...
bike.setTagNo("2004–134R");

3. Add a another method to the Bicycle class that returns the bicycle’s tag number.
This method will be called as follows:

Bicycle bike;
bike = new Bicycle();
...
String tag = bike.getTagNo();

4.2 Second Example: Defining and Using Multiple Classes
Let’s write a second sample program to get more practice in defining classes. In
this example, we will define a new class named Account. An Account object has
the name of the owner (String) and the balance (double). We have two methods—
add and deduct—to deposit to and withdraw money from the account. There are
methods to set the initial balance and retrieve the current balance. These two
methods are named setInitialBalance and getCurrentBalance. Finally, we have
an accessor and mutator for the account owner’s name—getOwnerName and
setOwnerName.

wu23399_ch04.qxd 12/13/06 18:00 Page 156

The second sample program uses the Bicycle class from Section 4.1 and the
Account class we define shortly in this section. Here’s the second sample program:

4.2 Second Example: Defining and Using Multiple Classes 157

class SecondMain {
//This sample program uses both the Bicycle and Account classes

public static void main(String[] args) {

Bicycle bike;
Account acct;

String myName = "Jon Java";

bike = new Bicycle();
bike.setOwnerName(myName);

acct = new Account();
acct.setOwnerName(myName);
acct.setInitialBalance(250.00);

acct.add(25.00);
acct.deduct(50);

//Output some information
System.out.println(bike.getOwnerName() + " owns a bicycle and");
System.out.println("has $ " + acct.getCurrentBalance() +

" left in the bank");

}
}

This program creates one Bicycle object and one Account object, sets their
owner name to Jon Java, initializes the account balance to $250.00, adds $25.00 to
the account, deducts $50.00 from the account, and finally prints out some informa-
tion of bike and acct objects. The program diagram is as follows:

SecondMain

Bicycle

Account

wu23399_ch04.qxd 12/13/06 18:00 Page 157

We are using the Bicycle class from Section 4.1 without modification, so we
only have to consider defining the Account class. There are two data members for
the class, one to store the owner’s name and another to maintain the account bal-
ance. We have the following declaration for the two data members:

class Account {

private String ownerName;

private double balance;

//constructor and method declarations come here

}

The set and get methods for the owner’s name are identical to those defined
for the Bicycle class. The add and deduct methods modifiy the balance by adding or
deducting the passed amount. They are defined as follows:

public void add(double amt) {
balance = balance + amt;

}

public void deduct(double amt) {
balance = balance - amt;

}

The setInitialBalance and getCurrentBalance methods are similarly defined as the
other set and get methods. Here’s the complete definition of the Account class:

158 Chapter 4 Defining Your Own Classes—Part 1

class Account {

// Data Members
private String ownerName;

private double balance;

//Constructor
public Account() {

ownerName = "Unassigned";
balance = 0.0;

}

//Adds the passed amount to the balance
public void add(double amt) {

balance = balance + amt;
}

//Deducts the passed amount from the balance
public void deduct(double amt) {

balance = balance - amt;
}

wu23399_ch04.qxd 12/13/06 18:00 Page 158

Figure 4.3 shows a class diagram of the Account class.
The second sample program is composed of three classes (we are not count-

ing the standard classes).

We need to compile the three classes before we can run the program. However, we
do not have to compile all three classes every time we want to run the program. For
example, if the Bicycle class is already compiled and we are not making any changes
to it, then there’s no need to compile the class again. (Note: We are assuming here
that both programs are placed in the same directory. If the second program is in a
separate folder, then you need to copy the bytecode file Bicycle.class to this folder.)

Notice the second call to the deduct method from the main method of
SecondMain, which is

acct.deduct(10);

but the parameter for the deduct method is declared as type double. This call is valid
because we are passing a value that is assignment-compatible to the double data
type. We will elaborate on this topic in Section 4.3.

SecondMain.java

SecondMain Program

Bicycle.java Account.java

4.2 Second Example: Defining and Using Multiple Classes 159

//Returns the current balance of this account
public double getCurrentBalance() {

return balance;
}

//Returns the name of this account's owner
public String getOwnerName() {

return ownerName;
}

//Sets the initial balance of this account
public void setInitialBalance(double bal) {

balance = bal;
}

//Assigns the name of this account's owner
public void setOwnerName(String name) {

ownerName = name;
}

}

wu23399_ch04.qxd 12/13/06 18:00 Page 159

160 Chapter 4 Defining Your Own Classes—Part 1

Figure 4.3 A class diagram of the Account class with two data members, one constructor, and six methods.

Account

balance
ownerName

Account()
add(double)
deduct(double)
getCurrentBalance()
getOwnerName()
setInitialBalance(double)
setOwnerName(String)

1. What is the output from the following code fragment?

Account acct;
acct = new Account();
acct.setInitialBalance(250);
acct.add(20);

System.out.println("Balance: "
+ acct.getCurrentBalance());

2. Write a code fragment to declare and create two Account objects named acc1
and acct2. Initialize the balance to $300 and $500, respectively. Set the name
of owner for both accounts to John Doe.

4.3 Matching Arguments and Parameters
Consider the following sample class that includes a method named compute. This
method has three parameters—two int and one double.

class Demo {
...

public void compute(int i, int j, double x) {

//method body
//the actual statements in the body
//are irrelevant to the discussion

}

...
}

wu23399_ch04.qxd 12/13/06 18:00 Page 160

When we call the compute method, we must pass three values. The values we
pass must be assignment-compatible with the corresponding parameters. For exam-
ple, it is not okay to pass a double value to an int parameter. Here are some valid
calls from the main method:

class MyMain {

public static void main(String[] arg) {

Demo demo = new Demo();

int i, k, m;

i = 12;
k = 10;
m = 14;

demo.compute(3, 4, 5.5);

demo.compute(i, k, m);

demo.compute(m, 20, 40);
}

}

In the statement

demo.compute(m, 20, 40);

the values m, 20, and 40 are called arguments. An argument is a value we pass to a
method, and the value is assigned to the corresponding parameters. A parameter
is a placeholder in the called method to hold the value of a passed argument. The ar-
guments and parameters are matched in left-to-right order. As long as the data
type of an argument is assignment-compatible to the corresponding parameter, the
call is valid.

The identifier we use for an argument has no relation to the identifier used for
the corresponding parameter. In the statement

demo.compute(i, k, m);

the fact that the same identifier i is used for both the first parameter and the first ar-
gument has no significance. They are two distinct and separate variables, as shown
in Figure 4.4. The figure also shows how the matching is done.

4.3 Matching Arguments and Parameters 161

argument

parameter

A parameter receives the value of a corresponding argument. Because a
parameter is like a placeholder that will not hold a value until an argument is
passed to it, a parameter is called a formal parameter and an argument an
actual parameter.

wu23399_ch04.qxd 12/13/06 18:00 Page 161

4.4 Passing Objects to a Method
When calling the methods of the Bicycle and Account classes, we passed a numer-
ical value or a String. In this section, we study how to pass an object when calling
a method. Since a String is an object, in a sense, we actually know to pass an ob-
ject as an argument to a method. However, a String is treated much as a primitive
datum for the most part, so we will cover this topic using instances of our own
class.

First, we define the Student class. A Student object has a name (String) and an
email (String). Here’s the definition:

162 Chapter 4 Defining Your Own Classes—Part 1

class Demo {

 public void compute(int i, int j, double x) {
 ...
 }
}

Demo demo = new Demo();

int i = 5;
int k = 14;

demo.compute(i, k, 20);

Passing side

Receiving side

5i

Passing side Receiving side

Memory Allocation

14k

20

5i

14j

20.0x
This is a literal
constant so it
has no name.

Figure 4.4 This diagram illustrates how the argument values are assigned, or passed, to the matching
parameters.

class Student {

//Data Members
private String name;

private string email;

wu23399_ch04.qxd 12/13/06 18:00 Page 162

Then we define the LibraryCard class. A LibraryCard object is owned by a
Student, and it records the number of books being checked out. Here’s the definition:

4.4 Passing Objects to a Method 163

//Constructor
public Student() {

name = "Unassigned";
email = "Unassigned";

}

//Returns the email of this student
public String getEmail() {

return email;
}

//Returns the name of this student
public String getName() {

return name;
}

//Assigns the email of this student
public void setEmail(String address) {

email = address;
}

//Assigns the name of this student
public void setName(String studentName) {

name = studentName;
}

}

Student

name
email

Student()
getEmail()
getName()
setEmail(String)
setName(String)

class LibraryCard {

// Data Members

//student owner of this card
private Student owner;

//number of books borrowed
private int borrowCnt;

//Constructor
public LibraryCard() {

owner = null;
borrowCnt = 0;

}

LibraryCard

owner
borrowCnt

LibraryCard()
checkOut(int)
getNumberOfBooks()
getOwnerName()
setOwner(Student)
toString()

wu23399_ch04.qxd 12/13/06 18:00 Page 163

Notice that we initialize the data member owner to null in the constructor. The value
of null means that owner is pointing to no object. The setOwner method must be
called to assign a Student object. The method accepts a Student object as its para-
meter and sets the data member owner to this Student object.

The getOwnerName method returns the name of the owner. It is defined as

public String getOwnerName() {

return owner.getName();
}

Because the data member owner refers to a Student object, we can get the name of
this student by calling its getName method.

The toString method is a method that returns a string representation of an ob-
ject. Because an object can have a nested structure (e.g., an object’s data member
points to an instance of another class, the data members of this instance point to
instances of other classes, and so forth), it is convenient for those who use the class
to have a quick way to get printable information of an instance. Without such a
toString method, the programmer who uses the class must write a code to fetch the

164 Chapter 4 Defining Your Own Classes—Part 1

//numOfBooks are checked out
public void checkOut(int numOfBooks) {

borrowCnt = borrowCnt + numOfBooks;
}

//Returns the number of books borrowed
public int getNumberOfBooks() {

return borrowCnt;
}

//Returns the name of the owner of this card
public String getOwnerName() {

return owner.getName();
}

//Sets owner of this card to student
public void setOwner(Student student) {

owner = student;
}

//Returns the string representation of this card
public String toString() {

return "Owner Name: " + owner.getName() + "\n" +
" Email: " + owner.getEmail() + "\n" +
"Books Borrowed: " + borrowCnt;

}
}

wu23399_ch04.qxd 12/13/06 18:00 Page 164

values of the data members individually. This can be quite tedious. With the
toString method, she can display information of an instance by calling just one
method toString.

The power of being able to pass an object to a method comes in handy when
we want multiple objects to share the same object. For example, suppose a single
student owns two library cards (say, one for the general library and another for the
engineering library). Then we can make the data member owner of two LibraryCard
objects to refer to the same Student object. Here’s one such program:

4.4 Passing Objects to a Method 165

class Librarian {

public static void main(String[] args) {

Student student;
LibraryCard card1, card2;

student = new Student();
student.setName("Jon Java");
student.setEmail("jj@javauniv.edu");

card1 = new LibraryCard();
card1.setOwner(student);
card1.checkOut(3);

card2 = new LibraryCard();
card2.setOwner(student); //the same student is the owner

//of the second card, too

System.out.println("Card1 Info:");
System.out.println(card1.toString() + "\n");

System.out.println("Card2 Info:");
System.out.println(card2.toString() + "\n");

}
}

In this program, we create one Student object. Then we create two LibraryCard
objects. For each of these LibraryCard objects, we pass the same student when call-
ing their setOwner methods:

card1.setOwner(student);
...
card2.setOwner(student);

After the setOwner method of card2 is called in the main method, we have the
state of memory as shown in Figure 4.5.

wu23399_ch04.qxd 1/12/07 10:43 Page 165

mailto:jj@javauniv.edu

It is critical to realize that when we say pass an object to a method, we are not
sending a copy of an object, but rather a reference to the object. Figure 4.6 shows
how the passing of an object is done.

166 Chapter 4 Defining Your Own Classes—Part 1

Figure 4.5 The state where the data members of two objects (of LibraryCard) are pointing to the same
object (of Student).

card1

:LibraryCard

student

owner

3
borrowCnt

card2

:LibraryCard

owner

0
borrowCnt

“Jon Java”

:Student

name

“jj@javauniv.edu”
email

When we pass an object to a method, we are actually passing the address,
or reference, of an object to the method.

It is possible to return the Student object itself by defining the following method:

public Student getOwner() {

return owner;
}

We will discuss such a method that returns an instance of a programmer-defined
class in Chapter 7.

wu23399_ch04.qxd 12/13/06 18:00 Page 166

mailto:jj@javauniv.edu%E2%80%9D

4.5 Constructors
We provide more detailed coverage of the constructors in this section. The con-
structors we have defined so far accept no arguments. These constructors set the
data members to some initial values. For example, the constructor for the Bicycle
class in Section 4.1 initializes the value of owner (String) to Unassigned. For this
particular Bicycle class, such a simplistic constructor is adequate. However, most
cases require the constructors that accept one or more arguments. In fact, the way
we defined the constructor for the Account class in Section 4.2 could lead to poten-
tial problems. In this section, we describe the use of constructors that accept one
or more arguments, and we show how this solves the potential problems of the
Account class.

Let’s begin by reviewing the Account class from Section 4.2. We will identify
some potential problems and present a new constructor as a solution to rectify them.

4.5 Constructors 167

Figure 4.6 This diagram illustrates how an object is passed as an argument to a method.

class LibraryCard {

 public void setOwner(Student student) {
 owner = student;
 }
}

LibraryCard card2;

card2 = new LibraryCard();

card2.setOwner(student);

Passing side

Receiving side

Memory Allocation

1

2

Passing side Receiving side

For an object, the
content of a
variable is an
address, and this
address is passed
to the method.

1

2

student student

:LibraryCard

owner

0
borrowCnt

“Jon Java”

:Student

name

“jj@javauniv.edu”
email

card2

wu23399_ch04.qxd 12/13/06 18:00 Page 167

mailto:jj@javauniv.edu%E2%80%9D

Consider the following code:

Account acct;
acct = new Account();

acct.setInitialBalance(500);
acct.setInitialBalance(300);

What is the effect of such code? It is logically inconsistent to initialize the starting
balance more than once. It should be called exactly one, but there is no such Java
language feature that puts constraints on the number of times the setInitialBalance
method can be called. The existence of this method is a problem, and we can remove
it from the Account class by defining a constructor that sets the initial balance to a
specified amount.

Now consider the following code:

Account acct;
acct = new Account();

acct.add(200.00);

If an account can have the initial balance of zero, this code is acceptable. But if there
is a rule that says, for example, an account must have the initial balance of $25 or more,
then the setInitialBalance method must be called first to initialize the balance to 25.00
or more before any transactions (add or deduct) take place. This problem can also be
solved by the same constructor that sets the initial balance to a specified amount.

Here’s a new constructor that eliminates the two problems in one stroke:

public Account(double startingBalance) {

ownerName = "Unassigned";
balance = startingBalance;

}

Once this constructor is defined, there is no longer a need for the setInitialBalance
method, so we can safely remove it from the class defintion. Only the add and
deduct methods affect the balance after an object is created.

After the old constructor is replaced by this new constructor, we must create
an instance by passing one argument when calling the new operator. For example,
the code

Account acct;

acct = new Account(500.00);

will create a new Account object with its starting balance set to $500. We can no
longer create an instance by writing

Account acct;

acct = new Account();

because there is no matching constructor anymore.

168 Chapter 4 Defining Your Own Classes—Part 1

wu23399_ch04.qxd 12/13/06 18:00 Page 168

Instead of this one-parameter constructor, we can define a constructor that
accepts the name of the owner also, so that it, too, can be initialized at the time of
object creation. Here’s how we define the two-parameter constructor:

public Account(String name, double startingBalance) {

ownerName = name;
balance = startingBalance;

}

This is the constructor we will include in the modified Account class. With this two-
parameter constructor, here’s how we create an Account object:

Account acct;

acct = new Account("John Smith", 500.00);

Notice that, even with this new constructor, we will keep the setOwnerName
method in the class because we want to be able to change the name of the owner
after the account is created.

From the three different constructors possible for the Account class, we have
selected the two-parameter constructor to include in the class. Actually, it is possi-
ble to include all three constructors in the definition of the Account class. But until
we learn how to define multiple constructors in Chapter 7, we will define exactly
one constructor for our programmer-defined classes.

4.5 Constructors 169

It is possible to define more than one constructor to a class. Multiple contructors
are called overloaded constructors. It is almost always a good idea to define multi-
ple constructors to a class. But to keep things simple, we will manage with one
constructor per class until Chapter 7.

We are now ready to list the complete definition. Here’s the second version of
the Account class (for the actual class name we will use AccountVer2 to avoid con-
fusion when discussing different versions of the class definition):

class AccountVer2 {

// Data Members
private String ownerName;

private double balance;

//Constructor
public AccountVer2(String name, double startingBalance) {

wu23399_ch04.qxd 12/13/06 18:00 Page 169

Default Constructor
As a design guideline, we strongly recommend to include constructors to
programmer-defined classes, as we have been doing from the beginning of the
chapter. However, it is not a requirement to define a constructor explicitly in a
class. If no constructor is defined for a class, then the Java compiler will auto-
matically include a default constructor. A default constructor is a constructor that
accepts no arguments and has no statements in its body. For example, if we omit
a constructor from the Bicycle class, a default constructor

public Bicycle() {

}

will be added to the class by the compiler to ensure its instances can be created.
Even though a default constructor is automatically added by the compiler, we

should never rely on it. We should always define our own constructor so that we can

170 Chapter 4 Defining Your Own Classes—Part 1

ownerName = name;
balance = startingBalance;

}

//Adds the passed amount to the balance
public void add(double amt) {

balance = balance + amt;
}

//Deducts the passed amount from the balance
public void deduct(double amt) {

balance = balance - amt;
}

//Returns the current balance of this account
public double getCurrentBalance() {

return balance;
}

//Returns the name of this account's owner
public String getOwnerName() {

return ownerName;
}

//Assigns the name of this account's owner
public void setOwnerName(String name) {

ownerName = name;
}

}

default
constructor

wu23399_ch04.qxd 12/13/06 18:00 Page 170

initialize the data members properly and carry out any other initialization tasks.
This ensures an object is created in a valid state (such as setting the balance of an
account to more than the minimum).

4.5 Constructors 171

Always define a constructor and initialize data members fully in the
constructor so an object will be created in a valid state.

Once we define our own constructor, no default constructor is added. This means
that once the constructor, such as

public Account(String name, double startingBalance) {

ownerName = name;
balance = startingBalance;

}

is added to the Account class, we will no longer be able to create a Account object
anymore by executing

Account acct;
acct = new Account();

because no matching constructor can be found in the class.

Once a programmer has added an explicitly defined constructor to a class, no
default constructor will be added to the class by the compiler.

1. Which of the following constructors are invalid?

public int ClassA(int one) {

...
}

public ClassB(int one, int two) {

...
}

void ClassC() {

...
}

wu23399_ch04.qxd 12/13/06 18:00 Page 171

2. What is the main purpose of a constructor?

3. Complete the following constructor.

class Test {
private double score;

public Test(double val) {
//assign the value of parameter to
//the data member

}
}

4.6 Information Hiding and Visibility Modifiers
The modifiers public and private designate the accessibility, or visibility, of data
members and methods. Although it is valid in Java, we do not recommend that pro-
grammers, especially beginners, leave out the visibility modifier in declaring data
members and methods. From the object-oriented design standpoint, we recommend
that you always designate the data members and methods as private or public. We
explain how to use these modifiers in this section. But before we get into the details,
we first discuss the object-oriented design philosophy behind these modifiers.

Consider a mobile robot as an example. What kind of behavior do we expect
from a mobile robot? Behaviors such as moving forward, turning, stopping, and
changing speed come to mind easily. When we define a class, say, MobileRobot, we
will include public methods such as move, turn, stop, and changeSpeed. These
methods are declared public so the programmers who use a MobileRobot object can
call these methods from their programs. We call these programmers client program-
mers and their programs client programs.

Now let’s assume that the move method accepts an integer argument as a dis-
tance to travel in meters. Suppose this mobile robot has three wheels with a motor
attached to each of the left and right rear wheels. The robot has no steering mecha-
nism, so the turning is done by rotating the left and right rear wheels at different
speeds. For example, by rotating the left wheel faster than the right wheel, the robot
will make a gradual left turn. To move forward, the robot must send the same
amount of power to the two motors. While the motors are rotating, the robot must
constantly monitor the distance traveled and stop the motors when the designated
distance is traveled.

The MobileRobot class includes methods such as rotate to rotate the motor
and readDistance to read the distance traveled. These methods are declared private
because they are internal details that need to be hidden from the client program-
mers. From our perspective as a client programmer, all we care is that the mobile
robot exhibits the behavior of moving the desired distance when we call its move
method. We do not care what’s going on inside. This is called information hiding. It
is not our concern how many motors the robot has or what type of mechanism is
employed to move the robot. We say the mobile robot encapsulates the internal
workings.

172 Chapter 4 Defining Your Own Classes—Part 1

client
programmers

information
hiding

encapsulation

wu23399_ch04.qxd 12/13/06 18:00 Page 172

This encapsulation mechanism allows easier modification of program code.
For example, suppose the motion mechanism of a mobile robot is modified to a sin-
gle motor and rack-and-pinion steering. Both wheels are now connected to a single
axle, and the motor turns this axle (via gears). The internal mechanism has changed,
but this will not affect the client programs. Calling the move method still exhibits
the same behavior.

To implement its methods (both public and private), the MobileRobot class
will necessarily include many data members, such as current speed, current direc-
tion, power levels of the motors, and so forth. These data members are internal de-
tails of the class because it is not a concern of the client programmers to know
which and how many of them are defined in the class. As such, data members are
declared as private.

In summary, behavior of the instances is implemented by public methods,
while the internal details that must be hidden from the client programmers are im-
plemented by private methods and private data members.

4.6 Information Hiding and Visibility Modifiers 173

Public methods of a class determine the behavior of its instances. Internal
details are implemented by private methods and private data members.

Now let’s go through a concrete example to see what would happen if some-
thing that should be an internal detail is declared public. To illustrate why declaring
data members public is considered a bad design, let’s consider the AccountVer2
class. Suppose its data member balance is declared as public:

class AccountVer2 {

public double balance;

//the rest is the same
}

Moving a mobile robot forward in reality is actually a far more difficult task than
described in the text. First, applying the same power to the two motors does not
guarantee the straight movement due to the difference in the motor characteris-
tics and the floor condition. Second, the robot needs to carry out some form of ob-
stacle avoidance, using a device such as a sonar or infrared sensor, because we
normally do not want a robot to crash into a wall. Third, stopping is not achieved
by abruptly shutting off the power to the motors. This will make the stopping
too sudden. We want to gradually reduce the power level so the robot comes to
a smooth stop. And there are other complexities involved in actually moving a
physical robot.

wu23399_ch04.qxd 12/13/06 18:00 Page 173

If this were the class definition, we could not prohibit client programmers
from writing code such as

AccountVer2 myAcct;

myAcct = new AccountVer2("John Smith", 300.00);

myAcct.balance = 670.00;

This breaks the AccountVer2 class because the balance can be modified directly
by the client programmers. The purpose of removing the setInitialBalance method is
defeated because the client programmers will have direct access to the data member
balance. They can change its value as they wish. If the instance variable balance is
properly hidden by declaring it private, then the client programmers cannot modify its
value directly. They can update the value indirectly only via the add and deduct meth-
ods. This maintains the integrity of the class, because the values of the data members
are changed only via the public methods the class designer provides. The client pro-
grammers cannot access or modify the data members through the back door.

174 Chapter 4 Defining Your Own Classes—Part 1

Declaring the data members private ensures the integrity of the class.

To distingush the private and public components of a class in the program di-
agram, we use the plus symbol (�) for public and the minus symbol (�) for private.
Using these symbols, the diagram that shows both data members and methods for
the AccountVer2 class becomes

AccountVer2

� balance
� ownerName

� AccountVer2(String, double)
� add(double)
� deduct(double)
� getCurrentBalance()
� getOwnerName()
� setOwnerName(String)

1. If the data member speed is private, is the following statement valid in a
client program?

Robot aibo;
aibo = new Robot();
double currentSpeed = aibo.speed;

wu23399_ch04.qxd 12/13/06 18:00 Page 174

2. Suppose you wrote down important information, such as your bank account
number, student registration ID, and so forth, on a single sheet of paper. Will
this sheet be declared private and kept in your desk drawer, or public and
placed next to the dorm’s public telephone?

3. Identify the private methods from the following diagram.

4.7 Class Constants
We introduced the use of the reserved final in declaring constants in Section 3.3.
The constants we declared there were used by only one method—the main method.
In this section we will show how a class constant is declared. A class constant will
be shared by all methods of the class.

Let’s define another version of the Account class (the actual name will be
AccountVer3). This time we will charge a fixed fee whenever a deduction is made.
Here’s how the class is declared (we will not list the unchanged methods here):

MyClass

� mydata : double

� MyClass()
� methodOne(double) : void

� methodTwo(double) : double

� methodThree(double) : double

4.7 Class Constants 175

class AccountVer3 {

// Data Members
private static final double FEE = 0.50;

private String ownerName;

private double balance;

//Constructor
public AccountVer3(String name, double startingBalance) {

ownerName = name;
balance = startingBalance;

}

//Deducts the passed amount from the balance
public void deduct(double amt) {

balance = balance - amt - FEE;
}

Class constant
declaration

Fee is charged
every time

wu23399_ch04.qxd 12/13/06 18:00 Page 175

This is the output we get when we run the program:

Owner: Carl Smith
Bal : $18.50

Notice the use of a DecimalFormat object to display the result to two decimal places.
Here is the dependency relationship diagram (standard classes are not included)

DeductionWithFee AccountVer3

176 Chapter 4 Defining Your Own Classes—Part 1

//other methods are exactly the same as before, so
//we will omit them here

}

import java.text.*;

class DeductionWithFee {
//This sample program deducts money three times
//from the account

public static void main(String[] args) {

DecimalFormat df = new DecimalFormat("0.00");

AccountVer3 acct;

acct = new AccountVer3("Carl Smith", 50.00);

acct.deduct(10);
acct.deduct(10);
acct.deduct(10);
System.out.println("Owner: " + acct.getOwnerName());
System.out.println("Bal : $"

+ df.format(acct.getCurrentBalance()));
}

}

The following sample program shows that the fee of $1.50 is charged after
three deductions.

wu23399_ch04.qxd 12/13/06 18:00 Page 176

Bad Version

and the source files for the program are

The class constant FEE is declared as

private static final double FEE = 0.50;

The modifier final designates that the identifier FEE is a constant, and the modifier
static designates that it is a class constant. The reserved word static is used to de-
clare class components, such as class variables and class methods. The inclusion of
the reserved word static in the declaration of the main method indicates that it is a
class method. It is not so frequent that we use class variables and class methods
(except, of course, the main method), and we will not be seeing their examples until
later in the book.

Before we move to another example, consider the following (problematic)
declaration:

class AccountVer3 {

private final double FEE = 0.50;

//the rest is the same

}

This declaration is not an error, but it is inefficient. If FEE is declared as a class con-
stant, then there will be one copy for the class, and this single copy is shared by all in-
stances of the class. If FEE is declared without the static modifier, then it is an instance
constant. This means every instance of the class will have its own copy of the same
value. For example, instead of one copy of the value 0.50, there will be 100 copies of
the same value 0.50 if there are 100 instances of the class. So, to make effective use
of a memory, when we declare a data member as a constant, it should be declared as
a class constant. This problem was introduced in Chapter 1, and Figure 1.9 illustrates
the problem.

DeductionWithFee.java AccountVer3.java

4.7 Class Constants 177

If a data member is a constant, declare it as a class constant.

wu23399_ch04.qxd 12/13/06 18:00 Page 177

Let’s try another sample program. This time we will write a class that models
a die. Notice how the constants are used in the following Die class:

178 Chapter 4 Defining Your Own Classes—Part 1

class Die {

//Data Members

//the largest number on a die
private static final int MAX_NUMBER = 6;

//the smallest number on a die
private static final int MIN_NUMBER = 1;

//To represent a die that is not yet rolled
private static final int NO_NUMBER = 0;

private int number;

//Constructor
public Die() {

number = NO_NUMBER;
}

//Rolls the die
public void roll() {

number = (int) (Math.floor(Math.random() *
(MAX_NUMBER - MIN_NUMBER + 1)) + MIN_NUMBER);

}

//Returns the number on this die
public int getNumber() {

return number;
}

}

We use the instance variable number to store the value of a die after it is rolled.
Inside the constructor, we initialize number to the constant NO_NUMBER to repre-
sent the state before the die is rolled. The roll method uses the formula for random
number generation described in Chapter 3. The minimum and the maximum
numbers on a die are kept as the class constants. By changing their values, our soft-
ware die can be made to represent any range of values, not just 1 to 6. (Note: Yes,
we can change their values when we edit the class. A Java constant only means
that we cannot change its value while the program is running.)

wu23399_ch04.qxd 12/13/06 18:00 Page 178

Here’s a program that uses three Die objects to simulate a roll of three dice:

4.7 Class Constants 179

class RollDice {

//Simulates the rolling of three dice
public static void main(String[] args) {

Die one, two, three;

one = new Die();
two = new Die();
three = new Die();

one.roll();
two.roll();
three.roll();

System.out.println("Results are " + one.getNumber() + " " +
two.getNumber() + " " +
three.getNumber());

}
}

The dependency diagram and a sample output are as follows:

Results are 3 6 5

The output of this program is rather primitive, but it still conveys the neces-
sary information. We will learn some drawing techniques in Chapter 5, so we can
really draw the image of three dice.

Let’s adapt the implemention of the Die class to write another program.
Here’s the scenario for our next program. Getting a single-occupancy room in a
dormitory is very tough because of high demand. There’s one especially large and
comfortable single-occupancy room in your dorm that everybody covets. The
housing office runs a lottery at the beginning of a quarter. Students must submit

RollDice Die

wu23399_ch04.qxd 12/13/06 18:00 Page 179

their entries before the lottery (if there’s no winner, then the room will be auc-
tioned off at eBay). The result of the lottery will consist of three cards. The num-
bers on a card range from 10 to 15, and the color of a card can be red, green, or
blue. Here are some possible outcomes:

We will write a program that will select a winning combination of lottery
cards. Following the implementation style of the Die class, we will define a class
that models the lottery card. There will be two instance variables, one for color and
another for the number. We will use a random number generator to select a color and
a number for each lottery card. To represent a color, we will use a simple coding:
1 for red, 2 for green, and 3 for blue.

Here’s the LotteryCard class:

13 13 13 draw 1

draw 213 10 15

12 11 10 draw 3

180 Chapter 4 Defining Your Own Classes—Part 1

class LotteryCard {

// Data Members

//the largest number on a card
private static final int MAX_NUMBER = 15;

//the smallest number on a card
private static final int MIN_NUMBER = 10;

//to represent a card before drawing
private static final int NO_NUMBER = 0;

//the 'largest' color for a card
private static final int MAX_COLOR = 3;

//the 'smallest' color for a card
private static final int MIN_COLOR = 1;

//to represent a card before drawing
private static final int NO_COLOR = 0;

//selected number on this card
private int number;

//selected color of this card
private int color;

wu23399_ch04.qxd 12/13/06 18:00 Page 180

4.7 Class Constants 181

//Constructor
public LotteryCard() {

number = NO_NUMBER;
color = NO_COLOR;

}

//spin the card
public void spin() {

number = (int) (Math.floor(Math.random()
* (MAX_NUMBER - MIN_NUMBER + 1)) + MIN_NUMBER);

color = (int) (Math.floor(Math.random()
* (MAX_COLOR - MIN_COLOR + 1)) + MIN_COLOR);

}

//Returns the number on this card
public int getNumber() {

return number;
}

//Returns the color of this card
public int getColor() {

return color;
}

}

And here’s the main class that draws the winning card combination:

class RoomWinner {

//Simulates the rolling of three dice
public static void main(String[] args) {

LotteryCard one, two, three;

one = new LotteryCard();
two = new LotteryCard();
three = new LotteryCard();

one.spin();
two.spin();
three.spin();

System.out.println("Winning Card Combination: ");
System.out.println("1 - red; 2 - green; 3 - blue");
System.out.println(" ");

wu23399_ch04.qxd 12/13/06 18:00 Page 181

The dependency diagram is as follows:

When this program is executed, output similar to the following is displayed:

Winning Card Combination:
1 - red; 2 - green; 3 - blue

Color number
Card 1: 2 13
Card 2: 2 12
Card 3: 1 14

Again, the output is rather primitive. We will learn some drawing techniques in
Chapter 5 so we can draw the image of a card in the appropriate color.

Public Constants
We stated in Section 4.6 that data members should be declared private to ensure the
integrity of a class. Following this guideline, we declared the class constant data
members in both sample programs as private. But there is an exception. We may
want to declare certain types of class constants as public. Here are the reasons for
this exception. First, a constant is “read only” by its nature, so it won’t have a neg-
ative impact if we declare it as public. Second, a constant is a clean way to make
certain characteristics of the instances known to the client programs.

RoomWinner LotteryCard

182 Chapter 4 Defining Your Own Classes—Part 1

System.out.println(" color number");
System.out.println("Card 1: " + one.getColor()

+ " " + one.getNumber());
System.out.println("Card 2: " + two.getColor()

+ " " + two.getNumber());
System.out.println("Card 3: " + three.getColor()

+ " " + three.getNumber());
}

}

wu23399_ch04.qxd 12/13/06 18:00 Page 182

For example, if we want to make the amount of a fee public knowledge
(which is a good idea, because consumers need to know such information), we
make the class constant public as follows:

class AccountVer3 {

public static final double FEE = 0.50;

...
}

A client program can then access this information directly as

System.out.println("Fee charged per deduction is $ "
+ AccountVer3.FEE);

Notice that the class data members are accessed by the syntax

<class name> . <class data members>

The use of public class constants is quite common in Java, and we will be seeing
many examples of it in the later sample programs.

4.8 Local Variables 183

1. Declare two class constants named MIN_BALANCE and MAX_BALANCE whose
data types are double.

2. Is there any problem with the following declarations?

class Question {

private final int MAX = 20;
...

}

3. Modify the Die class so its instances will generate a number between 5 and 15,
inclusively.

4.8 Local Variables
We often need to use temporary variables while completing a task in a method.
Consider the deduct method of the Account class:

public void deduct(double amt) {

balance = balance - amt;
}

We can rewrite the method, using a local variable, as follows:

public void deduct(double amt) {

double newBalance; This is a local
variable

wu23399_ch04.qxd 12/13/06 18:00 Page 183

newBalance = balance - amt;

balance = newBalance;
}

The variable newBalance is called a local variable. They are declared within
the method declaration and used for temporary purposes, such as storing intermedi-
ate results of a computation.

Such two-step assignment to update the current balance may not seem so use-
ful here, but consider a situation in which we need to check for certain conditions
before actually changing the value of currentBalance. For example, we may want to
disallow the purchase if the balance goes below a preset minimum balance. So if
newBalance becomes lower than the set minimum, then we’ll leave balance un-
changed. If we don’t use any local variable, then we have to deduct the amount from
balance (temporarily) and change it back to the previous amount. Use of a tempo-
rary local variable will result in a much cleaner code. We will see how such check-
ing is done in Chapter 5 using a selection statement.

The methods in the sample classes from this chapter are still very short, so the
use of local variables may not be clear-cut. However, we will witness an increase in the
use of local variables in the coming chapters when the methods become complex.

While the data members of a class are accessible from all instance methods of
the class, local variables and parameters are accessible only from the method in which
they are declared, and they are available only while the method is being executed.
Memory space for local variables and parameters is allocated upon declaration and at
the beginning of the method, respectively, and erased upon exiting from the method.

184 Chapter 4 Defining Your Own Classes—Part 1

local variable

Local variables and parameters are erased when the execution of a method is
completed.

When you declare a local variable, make sure the identifier you use for it does
not conflict with the data members of a class. Consider the following hypothetical
class declaration:

class Sample {

private int number;
...

public void doSomething() {

int number;

number = 15;
}
...

}

The same identifier is used for both the
local variable and the instance variable.This changes the value

of the local variable, not
the instance variable.

wu23399_ch04.qxd 12/13/06 18:00 Page 184

This class declaration is not an error. It is acceptable to use the same identifier for a
local variable, but it is not advisable. The following association rules are used:

4.9 Calling Methods of the Same Class 185

Rules for associating an identifier to a local variable, a parameter, and a data
member:

1. If there’s a matching local variable declaration or a parameter, then the
identifier refers to the local variable or the parameter.

2. Otherwise, if there’s a matching data member declaration, then the identifier
refers to the data member.

3. Otherwise, it is an error because there’s no matching declaration.

So the assignment

number = 15;

will change the value of the local variable. This may or may not be the intent of the
programmer. Even if this is the programmer’s intention, it is cleaner and easier to
read, especially to other programmers, to use different identifiers for local variables.

Avoid using the same identifier for the local variables and the data members of a
class.

1. How is a local variable different from an instance variable?

2. Rewrite the following method, using local variables.

public int totalCharge(int amt) {

return (balance -
(int) Math.round(amt * 1.5));

}

4.9 Calling Methods of the Same Class
Up until now, whenever we called a method of some object, we used dot notation,
such as acct.deduct(12). Just as we can call a method of another object, it is possi-
ble to call a method from a method of the same object. Figure 4.7 illustrates the

wu23399_ch04.qxd 12/13/06 18:00 Page 185

difference between calling another method of the same object and calling a method
of a different object.

Let’s look at a few examples. In the first example, we modify the AccountVer3
class so the add and deduct methods call the private method adjust. Here’s how the
modified class is declared (the actual class name is AccountVer4, and only the rele-
vant portion is listed here):

186 Chapter 4 Defining Your Own Classes—Part 1

:AClass

public void myMethod(){
 BClass obj
 = new BClass();

 obj.doWork();
}

:BClass

public void doWork(){
 ...
}

public void myMethod(){

 doWork();
}

Dot notation is optional
when you are calling a
method of the same object.

Dot notation is necessary
when you are calling a
method of another object.

Figure 4.7 The difference between calling a method belonging to the same object and a method belonging
to a different object.

class AccountVer4 {
...

//Adds the passed amount to the balance
public void add(double amt) {

adjust(amt);
}

//Deducts the passed amount from the balance
public void deduct(double amt) {

adjust(-(amt+FEE));
}
...

//Adjusts the account balance
private void adjust(double adjustAmt) {

balance = balance + adjustAmt;
}

}

wu23399_ch04.qxd 12/13/06 18:00 Page 186

The add and deduct methods differ only in whether you add to or subtract the
amount from the balance. In the modified class, we redefine the two methods so
they call the common private method adjust. This method adds the passed amount
to the balance (in the case for the deduct method, we pass the negative amount be-
cause adding a negative value �X is equivalent to subtracting a positive value X).
Here’s how the add method is defined:

public void add(double amt) {

adjust(amt);

}
Notice there is no dot notation.This is calling another method that belongs
to the same class.

When we call a method that belongs to the same class, we just include the method
name, as follows:

adjust(amt);

No dot notation is necessary.

4.9 Calling Methods of the Same Class 187

No dot notation is necessary when you call a method from another method of the
same class.

Let’s look at the second example. In the original Die class, when a new in-
stance was created, we set its number to NO_NUMBER. This means if a programmer
calls the getNumber method of a Die object before calling its roll method, she will
get NO_NUMBER as a result. For a real die, there’s no such NO_NUMBER state, so
instead of instantiating a new Die object in such a state, we’ll redefine the class so a
die gets rolled when it is first created. The trick here is to call the roll method from
the constructor. Here’s how the modified Die class is declared (the class name is
DieVer2):

class DieVer2 {

//Data Members

//the largest number on a die
private static final int MAX_NUMBER = 6;

wu23399_ch04.qxd 12/13/06 18:00 Page 187

The constructor simply calls the roll method. So when a new Die object is cre-
ated, a number is already preselected. Notice that it is possible to declare the
constructor as

public DieVer2() {
number = (int) (Math.floor(Math.random()

* (MAX_NUMBER - MIN_NUMBER + 1))
+ MIN_NUMBER);

}

But this ends up duplicating the same code. Instead of repeating the same code in
the class, it is much better organizationally to define a single method and call this
method from multiple places. Duplication of code, in general, makes the modifica-
tion of code tedious and error-prone. Imagine the situation in which the same code
is repeated at 10 different locations. It is so easy to miss one or two of them at the
modification time.

188 Chapter 4 Defining Your Own Classes—Part 1

//the smallest number on a die
private static final int MIN_NUMBER = 1;

private int number;

//Constructor
public DieVer2() {

roll();
}

//Rolls the die
public void roll() {

number = (int) (Math.floor(Math.random()
* (MAX_NUMBER - MIN_NUMBER + 1)) + MIN_NUMBER);

}

//Returns the number on this die
public int getNumber() {

return number;
}

}

Avoid duplicating the same code. Duplication of code often means tedious and
error-prone activities when you modify the code.

wu23399_ch04.qxd 12/13/06 18:00 Page 188

4.10 Changing Any Class to a Main Class
In this section, we will show you a simple way to make any class (such as Bicycle)
also the main class of a program. Instead of defining a separate main class, as we
have done so far, it is possible to define the main method to a class so the class be-
comes the main class of a program also. There are a number of advantages in doing
this. First, we have one less class to manage if we don’t have to define a separate
main class. This advantage may not be seem so substantial. However, when we
write numerous classes (e.g., writing solutions to the chapter exercises), writing a
separate main class for all those classes so they become executable becomes te-
dious. Second, when we develop reusable classes (such as Die and Account) for
other programmers, we often want to include a simple example on how to use the
classes. Instead of providing a separate sample main class, it is more convenient to
add the main method to these classes.

We illustrate the procedure, using the Bicycle class from Section 4.1. Suppose
we want to show a sample use of this class. Instead of creating a separate sample main
class, we can define the main method to the Bicycle class. Here’s the Bicycle class that
is also a main class:

class Bicycle {

// Data Member
private String ownerName;

//Returns the name of this bicycle's owner
public String getOwnerName() {

return ownerName;

}

//Assigns the name of this bicycle's owner
public void setOwnerName(String name) {

ownerName = name;

}

//The main method that shows a sample
//use of the Bicycle class
public static void main(String[] args) {

Bicycle myBike;

myBike = new Bicycle();

4.10 Changing Any Class to a Main Class 189

1. Suppose a class Alpha includes a method called compute that accepts no
arguments. Define another method of Alpha named myMethod that calls the
compute method.

2. Why should duplication of code be avoided?

wu23399_ch04.qxd 12/13/06 18:00 Page 189

myBike.setOwnerName("Jon Java");

System.out.println(myBike.getOwnerName() +
"owns a bicycle");

}

}

Remember that the new Bicycle class having the main method does not pro-
hibit us from defining a separate main class. All Java requires us to do is to include
the main method to the classes we designate as the main class of the program. So it
is possible (although not likely) that every class in the program has the main
method, and we can select one of them to be the main class when we execute the
program. We will use this technique whenever appropriate in the textbook, begin-
ning with this chapter’s sample development section.

190 Chapter 4 Defining Your Own Classes—Part 1

Any class can include the main method. For a program to be executable, the desig-
nated main class must include the main method. Other classes in the program may
or may not include the main method. It is irrelevant to the execution of the program.

program
tasks

Loan Calculator

In Chapter 3, we wrote a loan calculator program that computes the monthly and total
payments for a given loan amount, loan period, and interest rate. We wrote the program
using the simplified program structure in which we had one main class with one method
(main). We will implement the program again, but this time we use classes called Loan
and LoanCalculator.

Problem Statement

The problem statement is the same as that in Chapter 3. We repeat the statement to
refresh your memory:

Write a loan calculator program that computes both monthly and total pay-
ments for a given loan amount, annual interest rate, and loan period.

Overall Plan

The tasks we identified in Chapter 3 for the program are still the same:

1. Get three input values: loanAmount, interestRate, and loanPeriod.

2. Compute the monthly and total payments.

3. Output the results.

Sample Development4.11 Sample Development

wu23399_ch04.qxd 12/13/06 18:00 Page 190

The main difference in this implementation lies in the use of additional classes. In-
stead of building the program by using only the main class and performing all the tasks
in one big main method, we will define two classes Loan and LoanCalculator. An
instance of the LoanCalculator class acts as a top-level agent that manages all other
objects in the program, such as Loan and Scanner. The Loan class captures the logic of
loan calculation. A single instance of the Loan class represents a loan, so if the program
deals with five loans, for example, then five Loan objects will be created in the program.
We will make the LoanCalculator class the main class of the program by adding the main
method to it. Figure 4.8 shows the program diagram.

Notice that the roles that LoanCalculator and Loan play in the program are quite
different.The Loan class is a generic class that provides a service (i.e., loan computation
and currency conversion) and is intended to be reused by different programs. The
LoanCalculator class, on the other hand, is a class designed specifically for this pro-
gram, so the class is not intended for reuse by other programs. It is important to recog-
nize this distinction because the way we design reusable and nonreusable classes is
quite different. We call the class that provides some type of service a service provider
and the class that manages other classes and objects in a program a controller. In gen-
eral, a service provider is designed as a reusable class, while a controller is designed as
a nonreusable class.

What would be the development steps for this program? If we have multiple
classes to implement, we can develop the program in either a top-down or a bottom-
up manner. With the top-down development, we develop in a kind of outside-in
fashion. We develop the top-level controller class first. But to test its functionalities
fully, we need the service objects it uses. In a top-down development, we use tempo-
rary dummy service objects that return a fake value from their methods. After we
verify that the controller class is working correctly, we then complete the service class
with the real methods. The top-down development for this program will implement
the LoanCalculator class first with the dummy Loan class and then the real Loan
class.

4.11 Sample Development 191

Scanner

LoanCalculator

Loan

Figure 4.8 The program diagram for the LoanCalculator program.

service
provider

controller

top-down
develop-
ment

wu23399_ch04.qxd 12/13/06 18:00 Page 191

4.11 Sample Development—continued

192 Chapter 4 Defining Your Own Classes—Part 1

develop-
ment steps

step 1
design

With the bottom-up development, we develop in the reverse inside-out fashion;
that is, we develop the service classes first. To test the service classes, we write a tempo-
rary dummy main class. After the service classes are done, we complete the top-level class
that uses these service classes.The bottom-up development for this program implements
the Loan class first fully and then the LoanCalculator class. For both approaches, the
classes are developed incrementally as usual.

For this sample development, we will adopt the top-down development. We will
leave the bottom-up development for this program as an exercise. For some sample ap-
plications in the later chapters, we will adopt the bottom-up development.We implement
this program in five steps:

1. Start a skeleton of the LoanCalculator class.The skeleton LoanCalculator class
will include only an object/variable declaration and a constructor to create
objects. Define a temporary placeholder Loan class.

2. Implement the input routine to accept three input values.

3. Implement the output routine to display the results.

4. Implement the computation routine to compute the monthly and total payments.

5. Finalize the program, implementing any remaining temporary methods and
adding necessary methods as appropriate.

Step 1 Development: Program Skeleton

Since the LoanCalculator object is the top-level agent of the program that manages
other objects, we need a method to create these objects.We do this in the constructor.We
define separate methods for input, computation, and output to organize the class more
logically. Designing a set of single-task methods is more manageable and easier to un-
derstand than having one method that performs all three tasks of input, computation,
and output. We will call the methods getInput, computePayment, and displayOutput.
We will also include one method called describeProgram that describes the purpose of
the program to the user.

Since an instance of the class is the top-level agent, much as a general contractor,
we will provide one method the programmer can call to control the whole operation.We
will name the method start and define it as follows:

public void start() {

describeProgram();
getInput();
computerPayment();
displayOutput();

}

bottom-up
develop-
ment

wu23399_ch04.qxd 12/13/06 18:00 Page 192

With this method, we can then call the main method as follows:

public static void main(String[] args){

LoanCalculator calculator = new LoanCalculator();

calculator.start();

}

It is possible to define the main method to make it call the four operation methods
(describeProgram, computePayment, getInput, and displayOutput) directly, elimi-
nating the need to define the start method. However, such organization limits the flexi-
bility and usability of the class. By defining the start method, if other programmers want
to use the LoanCalculator class in their programs, they need only call the start method.
Without the start method, they have to call the four methods and remember to call them
in the correct order. Although the difference is not dramatic in this particular case, it can
be in the cases when the classes are more complex and the number of classes in a pro-
gram is large.

Let’s summarize the methods we will define for the LoanCalculator class:

4.11 Sample Development 193

Design Document: The LoanCalculator Class

Method Visibility Purpose

start public Carries out the loan calculation by
calling the other private methods.

computePayment private Given three parameters—loan amount,
loan period, and interest rate—it com-
putes monthly and total payments.The
actual computation is done by a
Loan object.

describeProgram private Displays a short description of the
program.

displayOutput private Displays the result—monthly and total
payments.

getInput private Uses Scanner to get three input
values—loan amount, loan period, and
interest rate.

Notice that only the start method is public. We declare all other methods as private
because we do not want any client programmers to use them directly; we want the client
programmers to be able to call only the start method.

In this step, we define the four private methods with only a temporary output
statement inside the method body to verify that the methods are called correctly. A
method that has no “real” statements inside the method body is called a stub. The four

stub

wu23399_ch04.qxd 12/13/06 18:00 Page 193

4.11 Sample Development—continued

194 Chapter 4 Defining Your Own Classes—Part 1

methods are defined as follows:

private void describeProgram() {

System.out.println("inside describeProgram"); //TEMP
}

private void getInput() {

System.out.println("inside getInput"); //TEMP
}

private void computePayment() {

System.out.println("inside computePayment"); //TEMP
}

private void displayOutput() {

System.out.println("inside displayOutput"); //TEMP
}

Notice the comment marker //TEMP after the output statements. It is our convention to
attach this comment marker so we can easily and quickly locate temporary statements.
We use System.out for temporary output.

The purpose of the skeleton LoanCalculator class is to declare and create all the
necessary data members. At this step, we know of only one object that will be used by
LoanCalculator, namely, a Loan object.The declaration part of the LoanCalculator class
will be as follows:

class LoanCalculator {

private Loan loan;

...
}

At this point, the constructor for the LoanCalculator class is very simple. The only
data member is a Loan object, so we will create it in the constructor as follows:

public LoanCalculator() {
loan = new Loan();

}

For this constructor to work properly, we need the definition for the Loan class.We begin
with the minimalist skeleton code for the Loan class:

class Loan {

public Loan() {

}
}

wu23399_ch04.qxd 12/13/06 18:00 Page 194

Let’s put our design in an actual code.The skeleton LoanCalculator class is defined
as follows.

4.11 Sample Development 195

step 1 code

/*
Chapter 4 Sample Development: Loan Calculation (Step 1)

File: Step1/LoanCalculator.java
*/

class LoanCalculator {

//Data members
private Loan loan;

//Main method
public static void main(String[] arg) {

LoanCalculator calculator = new LoanCalculator();
calculator.start();

}

//Constructor
public LoanCalculator() {

loan = new Loan();
}

// Top-level method that calls other private methods
public void start() {

describeProgram(); //tell what the program does
getInput(); //get three input values
computePayment(); //compute the monthly payment and total
displayOutput(); //display the results

}

// Computes the monthly and total loan payments
private void computePayment() {

System.out.println("inside computePayment"); //TEMP
}

// Provides a brief explanation of the program to the user
private void describeProgram() {

System.out.println("inside describeProgram"); //TEMP
}

// Displays the input values and monthly and total payments
private void displayOutput() {

System.out.println("inside displayOutput"); //TEMP
}

wu23399_ch04.qxd 12/13/06 18:00 Page 195

4.11 Sample Development—continued

196 Chapter 4 Defining Your Own Classes—Part 1

// Gets three input values—loan amount, interest rate, and
// loan period—using an InputBox object
private void getInput() {

System.out.println("inside getInput"); //TEMP
}

}

And finally the skeleton Loan class is defined as follows.

We run the step 1 program and verify that the following text appears in the standard out-
put window:

inside describeProgram
inside getInput
inside computePayment
inside displayOutput

After the step 1 program is compiled and executed correctly, we move on to
step 2.

Step 2 Development: Accept Input Values

In the second step of coding, we implement the getInput method.We will reuse the input
routine we derived in Chapter 3.When we receive three input values, we must pass these
values to the Loan object loan. We will add three data members to keep track of the three

step 2
design

step 1 test

/*

Chapter 4 Sample Development: Loan Calculation (Step 1)

File: Step1/Loan.java

*/
class Loan {

public Loan() {

}
}

wu23399_ch04.qxd 12/13/06 18:00 Page 196

input values and one constant to aid the conversion:

class Loan {

private static final int MONTHS_IN_YEAR = 12;

private double loanAmount;
private double monthlyInterestRate;
private int numberOfPayments;

...
}

Notice that the annual interest rate and loan period expressed in the number of years are
the input,but we are keeping monthly interest rate and the number of monthly payments
for the loan period to make them more compatible to the loan calculation formula we are
using. We need to define three set methods (mutators) for interest rate, loan period, and
loan amount. A set method for the number of payments, for example, can be defined as
follows:

public void setPeriod(int periodInYear) {
numberOfPayments = periodInYear * MONTHS_IN_YEAR;

}

We define a complementary set of accessor methods. The getPeriod method, for
example, is defined as

public int getPeriod() {
return (numberOfPayments / MONTHS_IN_YEAR);

}

Notice that the value returned by an accessor may or may not be the data member. It is
possible that the value returned is derived from the data member, as was the case with
the getLoanPeriod method.

We mentioned in Section 4.4 the importance of a constructor initializing an object
properly. Now that we have associated data members to the Loan class, let’s define a con-
structor that accepts arguments:

public Loan(double amount, double rate, int period) {
setAmount(amount);
setRate (rate);
setPeriod(period);

}

Having this updated Loan class, we are now ready to tackle the getInput method
of the LoanCalculator class. We perform the input routine as we did in the sample pro-
gram from Chapter 3:

Scanner scanner = new Scanner(System.in);

System.out.print("Loan Amount (Dollars+Cents): ");
loanAmount = scanner.nextDouble();

4.11 Sample Development 197

wu23399_ch04.qxd 12/13/06 18:00 Page 197

4.11 Sample Development—continued

198 Chapter 4 Defining Your Own Classes—Part 1

System.out.print("Annual Interest Rate (e.g., 9.5): ");
annualInterestRate = scanner.nextDouble();

System.out.print("Loan Period - # of years: ");
loanPeriod = scanner.nextInt();

After getting three input values, we create a new Loan object as

loan = new Loan(loanAmount,
annualInterestRate,
loanPeriod);

Finally, we include test output statements to verify that the values are read in and
assigned to loan correctly:

System.out.println("Loan Amount: $"
+ loan.getAmount());

System.out.println("Annual Interest Rate:"
+ loan.getRate() + "%");

System.out.println("Loan Period (years):"
+ loan.getPeriod());

From this point on, to maintain a focus on the changes we are making, we show
only the portion where we made modifications or additions. Unchanged portions are
represented by three dots (. . .). Please refer to the actual source file for the viewing of
complete source code. Here’s the step 2 LoanCalculator class:

step 2 code

/*
Chapter 4 Sample Development: Loan Calculation (Step 2)

File: Step2/LoanCalculator.java
*/

import java.util.*;

class LoanCalculator {
. . .

public LoanCalculator() {

}

. . .

private void getInput(){
double loanAmount, annualInterestRate;

wu23399_ch04.qxd 12/13/06 18:00 Page 198

4.11 Sample Development 199

The step 2 Loan class is as follows:

int loanPeriod;

Scanner scanner = new Scanner(System.in);

System.out.print("Loan Amount (Dollars+Cents):");
loanAmount = scanner.nextDouble();

System.out.print("Annual Interest Rate (e.g., 9.5):");
annualInterestRate = scanner.nextDouble();

System.out.print("Loan Period - # of years:");
loanPeriod = scanner.nextInt();

//create a new loan with the input values
loan = new Loan(loanAmount, annualInterestRate,loanPeriod);

//TEMP
System.out.println("Loan Amount: $" + loan.getAmount());
System.out.println("Annual Interest Rate:"

+ loan.getRate() + "%");

System.out.println("Loan Period (years):" + loan.getPeriod());

//TEMP
}
. . .

}

/*
Chapter 4 Sample Development: Loan Calculation (Step 2)

File: Step2/Loan.java

*/

class Loan {

private final int MONTHS_IN_YEAR = 12;

private double loanAmount;

private double monthlyInterestRate;

private int numberOfPayments;

wu23399_ch04.qxd 12/13/06 18:00 Page 199

4.11 Sample Development—continued

200 Chapter 4 Defining Your Own Classes—Part 1

//Constructor
public Loan(double amount, double rate, int period) {

setAmount(amount);
setRate (rate);
setPeriod(period);

}

//Returns the loan amount
public double getAmount() {

return loanAmount;
}

//Returns the loan period in number of years
public int getPeriod() {

return numberOfPayments / MONTHS_IN_YEAR;
}

//Returns the loan's annual interest rate
public double getRate() {

return monthlyInterestRate * 100.0 * MONTHS_IN_YEAR;
}

//Sets the loan amount
public void setAmount(double amount) {

loanAmount = amount;
}

//Sets the annual interest rate
public void setRate(double annualRate) {

monthlyInterestRate = annualRate / 100.0 / MONTHS_IN_YEAR;
}

//Sets the loan period
public void setPeriod(int periodInYears) {

numberOfPayments = periodInYears * MONTHS_IN_YEAR;
}

}

As before, to verify the input routine is working correctly, we run the program multiple
times. For each run, we enter a different set of data to verify that the values entered are
displayed correctly.

step 2 test

wu23399_ch04.qxd 12/13/06 18:01 Page 200

Step 3 Development: Output Values

In the third step of development, we implement the displayOutput method. We will
reuse the design of output layout from Chapter 3. The actual task of computing the
monthly and total payments is now delegated to the Loan class, so we will add two
methods—getMonthlyPayment and getTotalPayment—to the Loan class.The focus in
step 3 is the layout for output, so we will define a temporary dummy code for these two
methods in the following manner:

public double getMonthlyPayment() {
return 132.15; //TEMP

}

public double getTotalPayment() {
return 15858.10; //TEMP

}

To display the monthly and total payments, we add the following code in the
displayOutput method:

private void displayOutput() {

//echo print the input values here

System.out.println("Monthly payment is $ " +
loan.getMonthlyPayment());

System.out.println(" TOTAL payment is $ " +
loan.getTotalPayment());

}

Notice that by defining the getMonthlyPayment and getTotalPayment methods in the
Loan class, the computePayment method of LoanCalculator becomes redundant and
no longer needed. So we will remove it in this step.

Here are the modified LoanCalculator and Loan classes:

4.11 Sample Development 201

step 3
design

step 3 code

/*
Chapter 4 Sample Development: Loan Calculation (Step 3)

File: Step3/LoanCalculator.java
*/

import java.util.*;

class LoanCalculator {
...
// computePayment method is removed from the source file

private void displayOutput() {

System.out.println("Loan Amount: $" + loan.getAmount());

wu23399_ch04.qxd 12/13/06 18:01 Page 201

4.11 Sample Development—continued

202 Chapter 4 Defining Your Own Classes—Part 1

System.out.println("Annual Interest Rate:"
+ loan.getRate() + "%");

System.out.println("Loan Period (years): " + loan.getPeriod());

System.out.println("Monthly payment is $ " +
loan.getMonthlyPayment());

System.out.println(" TOTAL payment is $ " +
loan.getTotalPayment());

}

private void getInput() {

//same code but the temporary echo print statements
//are removed

}
}

/*
Chapter 4 Sample Development: Loan Calculation (Step 3)

File: Step3/Loan.java
*/

class Loan {

...

public double getMonthlyPayment() {
return 132.15; //TEMP

}

public double getTotalPayment() {
return 15858.10; //TEMP

}

...
}

To verify the output routine is working correctly, we run the program multiple times and
verify that the layout looks okay for different values. It is common for a programmer to run
the program several times before the layout looks clean on the screen.

step 3 test

wu23399_ch04.qxd 12/13/06 18:01 Page 202

Bad Version

Step 4 Development: Compute Loan Amount

In the fourth step of development,we replace the temporary getMonthlyPayment and
getTotalPayment methods with the final version. The changes are made only to the
Loan class.The other two classes remain the same.

Here’s one possible way to define the two methods:

private double monthlyPayment;

public double getMonthlyPayment() {
monthlyPayment = ...;
return monthlyPayment;

}

public double getTotalPayment() {
return monthlyPayment * numberOfPayments;

}

The idea is to use the value of the data member monthlyPayment set by the
getMonthlyPayment method in computing the total payment.This setup is problematic
because the getTotalPayment method will not work correctly unless getMonthly-
Payment is called first. It is considered a very poor design, and generally unacceptable,
to require the client programmer to call a collection of methods in a certain order.
We must define the two methods so they can be called in any order, not necessarily in the
order of getMonthlyPayment and getTotalPayment. The correct way here is to call
getMonthlyPayment from the getTotalPayment method:

private double getTotalPayment() {
double totalPayment;

totalPayment = getMonthlyPayment() * numberOfPayments;

return totalPayment;
}

With this approach the data member monthlyPayment is not necessary.
Here’s the updated Loan class:

4.11 Sample Development 203

step 4
design

step 4 code

/*
Chapter 4 Sample Development: Loan Calculation (Step 4)

File: Step4/Loan.java
*/

class Loan {

...
public double getMonthlyPayment() {

double monthlyPayment;

wu23399_ch04.qxd 12/13/06 18:01 Page 203

4.11 Sample Development—continued

204 Chapter 4 Defining Your Own Classes—Part 1

After the method is added to the class, we need to run the program through a
number of test data. As in Chapter 3,we made the assumption that the input values must
be valid, so we will only test the program for valid input values. For sample test data, we
repeat the table from Chapter 3.The right two columns show the correct results. Remem-
ber that these input values are only suggestions, not a complete list of test data.You must
try other input values as well.

monthlyPayment = (loanAmount * monthlyInterestRate)
/

(1 - Math.pow(1/(1 + monthlyInterestRate),
numberOfPayments));

return monthlyPayment;
}

public double getTotalPayment() {
double totalPayment;

totalPayment = getMonthlyPayment() * numberOfPayments;

return totalPayment;
}

...
}

step 4 test

Input

Output
(shown up to three decimal

places only)

Loan
Amount

Annual
Interest

Rate

Loan
Period

(in Years)
Monthly
Payment

Total
Payment

10000 10 10 132.151 15858.088
15000 7 15 134.824 24268.363
10000 12 10 143.471 17216.514

0 10 5 0.000 0.000
30 8.5 50 0.216 129.373

Step 5 Development: Finalize

Now in the last step of development, we finalize the class declaration by completing the
describeProgram method, the only method still undefined. We may give a very long

step 5
design

wu23399_ch04.qxd 12/13/06 18:01 Page 204

description or a very terse one. An ideal program will let the user decide.We do not know
how to write such code yet, so we will display a short description of the program using
System.out.

Another improvement is the display of monetary values in two decimal places.
We can format the display to two decimal places by using the DecimalFormat class as
explained in Chapter 3.

Here’s the describeProgram method;

private void describeProgram() {
System.out.println

("This program computes the monthly and total");
System.out.println

("payments for a given loan amount, annual ");
System.out.println

("interest rate, and loan period (# of years).");
System.out.println("\n");

}

You may feel that there’s not much testing we can do in this step. After all, we add only a
single method that carries out a simple output routine. However, many things can go
wrong between step 4 and step 5.You may have deleted some lines of code inadvertently.
You may have deleted a necessary file by mistake. Anything could happen.The point is to
test after every step of development to make sure everything is in order.

Summary 205

step 5 code

step 5 test

• Data members of a class refer to the instance and class variables and
constants of the class.

• An object’s properties are maintained by a set of data members.

• Class methods can access only the class variables and class constants.

• Instance methods can access all types of data members of the class.

• Public methods define the behavior of an object.

• Private methods and data members (except certain class constants) are
considered internal details of the class.

• Components (data members and methods) of a class with the visibility
modifier private cannot be accessed by the client programs.

• Components of a class with the visibility modifier public can be accessed by
the client programs.

• A method may or may not return a value. One that does not return a value is
called a void method.

S u m m a r y

wu23399_ch04.qxd 12/13/06 18:01 Page 205

• A constructor is a special method that is executed when a new object is
created. Its purpose is to initialize the object into a valid state.

• Memory space for local variables and parameters is allocated when a method
is called and deallocated when the method terminates.

• A public method that changes a property of an object is called a mutator.

• A public method that retrieves a property of an object is called an accessor.

• Dot notation is not used when you call a method from another method of the
same class.

• Any class can be set as the main class of a program by adding the main
method to it. In the main method, an instance of this class is created.

206 Chapter 4 Defining Your Own Classes—Part 1

K e y C o n c e p t s

programmer-defined classes

accessibility (visibility) modifiers

void methods

value-returning methods

accessors

mutators

constructors

arguments

parameters

client programmers

information hiding

encapsulation

local variables

service providers

controllers

stub

E x e r c i s e s

1. Consider the following class declaration.

class QuestionOne {
public final int A = 345;
public int b;
private float c;

private void methodOne(int a) {
b = a;

}

public float methodTwo() {
return 23;

}
}

wu23399_ch04.qxd 12/13/06 18:01 Page 206

Identify invalid statements in the following main class. For each invalid
statement, state why it is invalid.

class Q1Main {
public static void main(String[] args) {

QuestionOne q1;
q1 = new QuestionOne();

q1.A = 12;
q1.b = 12;
q1.c = 12;

q1.methodOne(12);
q1.methodOne();
System.out.println(q1.methodTwo(12));
q1.c = q1.methodTwo();

}
}

2. What will be the output from the following code?

class Q2Main {
public static void main(String[] args) {

QuestionTwo q2;
q2 = new QuestionTwo();
q2.init();

q2.increment();
q2.increment();

System.out.println(q2.getCount());
}

}

class QuestionTwo {
private int count;

public void init() {
count = 1;

}

public void increment() {
count = count + 1;

}

public int getCount() {
return count;

}
}

Exercises 207

wu23399_ch04.qxd 12/13/06 18:01 Page 207

3. What will be the output from the following code? Q3Main and
Question Three classes are the slightly modified version of Q2Main and
QuestionTwo.

class Q3Main {
public static void main(String[] args) {

QuestionThree q3;
q3 = new QuestionThree();
q3.init();

q3.count = q3.increment() + q3.increment();

System.out.println(q3.increment());
}

}

class QuestionThree {
public int count;

public void init() {
count = 1;

}

public int increment() {
count = count + 1;
return count;

}
}

4. Is there any problem with the following class? Is the passing of an argument
to the private methods appropriate? Are the data members appropriate?
Explain.

208 Chapter 4 Defining Your Own Classes—Part 1

/*
Problem Question4

*/
class MyText {

private String word;
private String temp;
private int idx;

public String firstLetter() {
idx = 0;
return getLetter(word);

}

public String lastLetter() {
idx = word.length() - 1;
return getLetter(word);

}

wu23399_ch04.qxd 12/13/06 18:01 Page 208

5. In the RollDice program, we created three Die objects and rolled them once.
Rewrite the program so you will create only one Die object and roll it three
times.

6. Modify the Bicycle class so instead of assigning the name of an owner
(Student), you can assign the owner object itself. Model this new Bicycle
class after the LibraryCard class.

7. Extend the LibraryCard class by adding the expiration date as a new property
of a library card. Define the following four methods:

//sets the expiration date
public void setExpDate(GregorianCalendar date) {...}

//returns the expiration year
public int getExpYear() { ... }

//returns the expiration month
public int getExpMonth() { ... }

//returns the expiration day
public int getExpDay() { ... }

8. Write a program that displays the recommended weight (kg), given the user’s
age and height (cm). The formula for calculating the recommended weight is

recommendedWeight = (height - 100 + age / 10) * 0.90

Define a service class named Height and include an appropriate method for
getting a recommended weight of a designated height.

9. Write a program that computes the total ticket sales of a concert. There are
three types of seatings: A, B, and C. The program accepts the number of
tickets sold and the price of a ticket for each of the three types of seats. The
total sales are computed as follows:

totalSales = numberOfA_Seats * pricePerA_Seat +

numberOfB_Seats * pricePerB_Seat +
numberOfC_Seats * pricePerC_Seat;

Write this program, using only one class, the main class of the program.

10. Redo Exercise 9 by using a Seat class. An instance of the Seat class keeps
track of the ticket price for a given type of seat (A, B, or C).

Exercises 209

private String getLetter(String str) {
temp = str.substring(idx, idx+1);
return temp;

}
}

wu23399_ch04.qxd 12/13/06 18:01 Page 209

11. Write a program that computes the area of a circular region (the shaded area
in the diagram), given the radii of the inner and the outer circles, ri and ro,

respectively.

We compute the area of the circular region by subtracting the area of the
inner circle from the area of the outer circle. Define a Circle class that has
methods to compute the area and circumference. You set the circle’s radius
with the setRadius method or via a constructor.

12. Write a WeightConverter class. An instance of this class is created by
passing the gravity of an object relative to the Earth’s gravity (see
Exercise 12 on page 138). For example, the Moon’s gravity is
approximately 0.167 of the Earth’s gravity, so we create a
WeightConverter instance for the Moon as

WeightConverter moonWeight;
moonWeight = new WeightConverter(0.167);

To compute how much you weigh on the Moon, you pass your weight on
Earth to the convert method as

yourMoonWeight = moonWeight.convert(160);

Use this class and redo Exercise 12 on page 138.

Development Exercises

For the following exercises, use the incremental development methodology to
implement the program. For each exercise, identify the program tasks, create a
design document with class descriptions, and draw the program diagram. Map out
the development steps at the start. Present any design alternatives and justify your
selection. Be sure to perform adequate testing at the end of each development step.

13. Redo Exercise 26 on page 143, but this time define and use programmer-
defined classes.

ri ro

210 Chapter 4 Defining Your Own Classes—Part 1

wu23399_ch04.qxd 12/13/06 18:01 Page 210

14. Write a program that accepts the unit weight of a bag of coffee in pounds
and the number of bags sold and displays the total price of the sale,
computed as follows:

totalPrice = bagWeight * numberOfBags * pricePerLb;
totalPriceWithTax = totalPrice + totalPrice * taxrate;

Display the result in the following manner:

Number of bags sold: 32
Weight per bag: 5 lb
Price per pound: $5.99

Sales tax: 7.25%

Total price: $ 1027.88

Define and use a programmer-defined CoffeeBag class. Include class
constants for the price per pound and tax rate with the values $5.99 per
pound and 7.25 percent, respectively.

15. In the Turtle exercises from the earlier chapters, we dealt with only one
Turtle (e.g., see Exercise 28 on page 144). It is possible, however, to let
multiple turtles draw on a single drawing window. To associate multiple
turtles to a single drawing, we create an instance of TurtleDrawingWindow
and add turtles to it as follows:

TurtleDrawingWindow canvas = new TurtleDrawingWindow();
Turtle winky, pinky, tinky;

//create turtles;
//pass Turtle.NO_DEFAULT_WINDOW as an argument so
//no default drawing window is attached to a turtle.
winky = new Turtle(Turtle.NO_DEFAULT_WINDOW);
pinky = new Turtle(Turtle.NO_DEFAULT_WINDOW);
tinky = new Turtle(Turtle.NO_DEFAULT_WINDOW);

//now add turtles to the drawing window
canvas.add(winky);
canvas.add(pinky);
canvas.add(tinky);

Ordinarily, when you start sending messages such as turn and move to a
Turtle, it will begin moving immediately. When you have only one Turtle, this
is fine. However, if you have multiple turtles and want them to start moving
at the same time, you have to first pause them, then give instructions, and
finally command them to start moving. Here’s the basic idea:

winky.pause();
pinky.pause();
tinky.pause();

Exercises 211

Format to two
decimal places.

wu23399_ch04.qxd 12/13/06 18:01 Page 211

//give instructions to turtles here,
//e.g., pinky.move(50); etc.

//now let the turtles start moving
winky.start();
pinky.start();
tinky.start();

Using these Turtle objects, draw the following three triangles:

Use a different pen color for each triangle. Run the same program without
pausing and describe what happens.

pinky draws this
triangle.

winky draws this
triangle.

tinky draws this
triangle.

212 Chapter 4 Defining Your Own Classes—Part 1

wu23399_ch04.qxd 12/13/06 18:02 Page 212

Selection Statements

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Implement selection control in a program
using if statements.

• Implement selection control in a program
using switch statements.

• Write boolean expressions using relational and
boolean operators.

• Evaluate given boolean expressions correctly.

• Nest an if statement inside another if
statement’s then or else part correctly.

• Describe how objects are compared.

• Choose the appropriate selection control
statement for a given task.

• Define and use enumerated constants.

• Draw geometric shapes on a window.

213

5

wu23399_ch05.qxd 12/14/06 17:49 Page 213

ecisions, decisions, decisions. From the moment we are awake until the time
we go to sleep, we are making decisions. Should I eat cereal or toast? What
should I wear to school today? Should I eat at the cafeteria today? And so
forth. We make many of these decisions by evaluating some criteria. If the
number of students in line for registration seems long, then come back tomorrow
for another try. If today is Monday, Wednesday, or Friday, then eat lunch at the
cafeteria.

Computer programs are no different. Any practical computer program con-
tains many statements that make decisions. Often a course of action is determined
by evaluating some kind of a test (e.g., Is the remaining balance of a meal card
below the minimum?). Statements in programs are executed in sequence, which is
called sequential execution or sequential control flow. However, we can add
decision-making statements to a program to alter this control flow. For example,
we can add a statement that causes a portion of a program to be skipped if
an input value is greater than 100. Or we can add a statement to disallow the pur-
chase of food items if the balance of a meal card goes below a certain minimum.
The statement that alters the control flow is called a control statement. In this
chapter we describe some important control statements, called selection state-
ments. In Chapter 6 we will describe other control statements, called repetition
statements.

5.1 The if Statement
There are two versions of the if statement, called if–then–else and if–then. We begin
with the first version. Suppose we wish to enter a student’s test score and print out
the message You did not pass if the score is less than 70 and You did pass if the score
is 70 or higher. Here’s how we express this logic in Java:

Scanner scanner = new Scanner(System.in);

System.out.print("Enter test score: ");

int testScore = scanner.nextInt();

if (testScore < 70)

System.out.println("You did not pass");

else

System.out.println("You did pass");

We use an if statement to specify which block of code to execute. A block of code
may contain zero or more statements. Which block is executed depends on the

214 Chapter 5 Selection Statements

I n t r o d u c t i o n

D

sequential
execution

control
statement

if statement

This statement is
executed if testScore

is less than 70.

This statement is
executed if testScore

is 70 or higher.

wu23399_ch05.qxd 12/14/06 17:49 Page 214

result of evaluating a test condition, called a boolean expression. The if–then–else
statement follows this general format:

if (<boolean expression>)
<then block>

else
<else block>

Figure 5.1 illustrates the correspondence between the if–then–else statement we
wrote and the general format.

The <boolean expression> is a conditional expression that is evaluated
to either true or false. For example, the following three expressions are all
conditional:

testScore < 80
testScore * 2 > 350
30 < w / (h * h)

The six relational operators we can use in conditional expressions are:

< // less than
<= // less than or equal to
== // equal to
!= // not equal to
> // greater than
>= // greater than or equal to

Here are some more examples:

a * a <= c //true if a * a is less than or equal to c
x + y != z //true if x + y is not equal to z
a == b //true if a is equal to b

5.1 The if Statement 215

boolean
expression

if-then-else
syntax

relational
operators

testScore < 70)if (

else

System.out.println("You did not pass");

System.out.println("You did pass");

Boolean Expression

The then Block

The else Block

Figure 5.1 Mapping of the sample if–then–else statement to the general format.

wu23399_ch05.qxd 12/14/06 17:49 Page 215

If the boolean expression evaluates to true, then the statements in the <then
block> are executed. Otherwise, the statements in the <else block> are executed.
We will cover more complex boolean expressions in Section 5.2. Notice that we can
reverse the relational operator and switch the then and else blocks to derive the
equivalent code, for example,

if (testScore >= 70)
System.out.println("You did pass");

else
System.out.println("You did not pass");

Notice that the reverse of < is >=, not >.
The if statement is called a selection or branching statement because it selects

(or branches to) one of the alternative blocks for execution. In our example, either

System.out.println("You did not pass");

or

System.out.println("You did pass");

is executed depending on the value of the boolean expression. We can illustrate a
branching path of execution with the diagram shown in Figure 5.2.

216 Chapter 5 Selection Statements

One very common error in writing programs is to mix up the assignment and
equality operators. We frequently make the mistake of writing

if (x = 5) ...

when we actually wanted to say

if (x == 5) ...

selection
statement

testScore < 70?

System.out.println
("You did not pass");

System.out.println
("You did pass");

truefalse

Figure 5.2 The diagram showing the control flow of the sample if–then–else statement.

wu23399_ch05.qxd 12/14/06 17:49 Page 216

In the preceding if statement, both blocks contain only one statement. The
then or else block can contain more than one statement. The general format for both
the <then block> and the <else block> is either a

<single statement>

or a

<compound statement>

where <single statement> is a Java statement and <compound statement> is a
sequence of Java statements surrounded by braces, as shown below with n � 0
statements:

{
<statement 1>
<statement 2>
...
<statement n>

}

If multiple statements are needed in the <then block> or the <else block>, they must
be surrounded by braces { and }. For example, suppose we want to print out addi-
tional messages for each case. Let’s say we also want to print Keep up the good
work when the student passes and print Try harder next time when the student fails.
Here’s how:

5.1 The if Statement 217

Compound
Statements

if (testScore < 70)

{
System.out.println("You did not pass");
System.out.println("Try harder next time");

}

else

{
System.out.println("You did pass");
System.out.println("Keep up the good work");

}

The braces are necessary to delineate the statements inside the block. Without
the braces, the compiler will not be able to tell whether a statement is part of the
block or part of the statement that follows the if statement.

Notice the absence of semicolons after the right braces. A semicolon is never
necessary immediately after a right brace. A compound statement may contain zero

wu23399_ch05.qxd 12/14/06 17:49 Page 217

or more statements, so it is perfectly valid for a compound statement to include only
one statement. Indeed, we can write the sample if statement as

if (testScore < 70)
{
System.out.println("You did not pass");

}

else

{
System.out.println("You did pass");

}

Although it is not required, many programmers prefer to use the syntax for the com-
pound statement even if the then or else block includes only one statement. In this
textbook, we use the syntax for the compound statement regardless of the number
of statements inside the then and else blocks. Following this policy is beneficial for
a number of reasons. One is the ease of adding temporary output statements inside
the blocks. Frequently, we want to include a temporary output statement to verify
that the boolean expression is written correctly. Suppose we add output statements
such as these:

if (testScore < 70)
{

System.out.println("inside then: " + testScore);
System.out.println("You did not pass");

}
else
{

System.out.println("inside else: " + testScore);
System.out.println("You did pass");

}

If we always use the syntax for the compound statement, we just add and delete
the temporary output statements. However, if we use the syntax of the single state-
ment, then we have to remember to add the braces when we want to include a
temporary output statement. Another reason for using the compound statement
syntax exclusively is to avoid the dangling else problem. We discuss this problem
in Section 5.2.

The placement of left and right braces does not matter to the compiler. The
compiler will not complain if you write the earlier if statement as

if (testScore < 70)
{ System.out.println("You did not pass");
System.out.println("Try harder next time");} else

{
System.out.println("You did pass");
System.out.println("Keep up the good work");}

218 Chapter 5 Selection Statements

wu23399_ch05.qxd 12/14/06 17:49 Page 218

However, to keep your code readable and easy to follow, you should format
your if statements using one of the two most common styles:

if (<boolean expression>) {
...

} else {
...

}

if (<boolean expression>)
{

...
}
else
{

...
}

In this book, we will use style 1, mainly because this style adheres to the code con-
ventions for the Java programming language. If you prefer style 2, then go ahead
and use it. Whichever style you choose, be consistent, because a consistent look and
feel is very important to make your code readable.

5.1 The if Statement 219

Style 1

Style 2

The document that provides the details of code conventions for Java can be found at
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
This document describes the Java language coding standards dictated in the Java
Language Specification. It is important to follow the code conventions as closely as
possible to increase the readability of the software.

There is a second variation of style 1 in which we place the reserved word else
on a new line as

if (<boolean expression>) {
...

}
else {

...
}

Many programmers prefer this variation of style 1 because the reserved word else
aligns with the matching if. However, if we nitpick, style 3 goes against the logic
behind the recommended style 1 format, which is to begin a new statement at one
position with a reserved word. The reserved word else is a part of the if statement,
not the beginning of a new statement. Thus style 1 places the reserved word else to
the right of the matching if.

Style 3

wu23399_ch05.qxd 12/14/06 17:49 Page 219

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

Again, the actual format is not that important. Consistent use of the same for-
mat is. So, whichever style you use, use it consistently. To promote consistency
among all programmers, we recommend that everybody to adopt the code conven-
tions. Even though the recommended format may look peculiar at first, with some
repeated use, the format becomes natural in no time.

Let’s summarize the key points to remember:

220 Chapter 5 Selection Statements

Rules for writing the then and else blocks:

1. Left and right braces are necessary to surround the statements if the then or
else block contains multiple statements.

2. Braces are not necessary if the then or else block contains only one statement.

3. A semicolon is not necessary after a right brace.

Now let’s study a second version of the if statement called if–then. Suppose
we want to print out the message You are an honor student if the test score is 95 or
above and print out nothing otherwise. For this type of testing, we use the second
version of the if statement, whose general format is

if (<boolean expression>)
<then block>

The second version contains only the <then block>. Using this version and the
compound statement syntax, we express the selection control as

if (testScore >= 95) {
System.out.println("You are an honor student");

}

Figure 5.3 shows the diagram that illustrates the control flow for this if–then state-
ment. We will refer collectively to both versions as the if statement.

Notice that the if–then statement is not necessary, because we can write any
if–then statement using if–then–else by including no statement in the else block. For
instance, the sample if–then statement can be written as

if (testScore >= 95) {

System.out.println("You are an honor student");

} else { }

In this book, we use if–then statements whenever appropriate.
Let’s conclude this section with a sample class that models a circle. We

will name the class Ch5Circle, and its instances are capable of computing the

if-then syntax

wu23399_ch05.qxd 12/14/06 17:49 Page 220

circumference and area. We will include a test in this class so the methods such
as getArea and getCircumference return the constant INVALID_DIMENSION when
the dimension of the radius is invalid. Here’s the Ch5Circle class (most comments
are removed for the sake of brevity):

5.1 The if Statement 221

Figure 5.3 The diagram showing the control flow of the second version of the if statement.

System.out.println
("You are an honor student");

true

false

testScore >= 95?

/*
Chapter 5 The Circle class

File: Ch5Circle.java
*/

class Ch5Circle {

public static final int INVALID_DIMENSION = -1;

private double radius;

public Ch5Circle(double r) {
setRadius(r);

}

public double getArea() {

double result = INVALID_DIMENSION;

if (isRadiusValid()) {

result = Math.PI * radius * radius;

}

return result;
}

As the number of methods gets larger,
we will use this marker to quickly locate
the program components. Shaded icon

is used for a private element.

Data Members

getArea

wu23399_ch05.qxd 12/14/06 17:49 Page 221

public double getCircumference() {

double result = INVALID_DIMENSION;

if (isRadiusValid()) {

result = 2.0 * Math.PI * radius;
}

return result;
}

public double getDiameter() {

double diameter = INVALID_DIMENSION;

if (isRadiusValid()) {

diameter = 2.0 * radius;
}

return diameter;
}

public double getRadius() {
return radius;

}

public void setDiameter(double d) {

if (d > 0) {
setRadius(d/2.0);

} else {
setRadius(INVALID_DIMENSION);

}
}

public void setRadius(double r) {

if (r > 0) {
radius = r;

} else {
radius = INVALID_DIMENSION;

}
}

private boolean isRadiusValid() {

return radius != INVALID_DIMENSION;
}

}

222 Chapter 5 Selection Statements

getDiameter

getRadius

setDiameter

setRadius

isRadiusValid

getCircumference

wu23399_ch05.qxd 12/14/06 17:49 Page 222

Notice the if statement in the getArea method is written as

if (isRadiusValid()) {
...

}

The <boolean expression> in the if statement can be any expression that evaluates
to true or false, including a call to a method whose return type is boolean,
such as the isRadiusValid method. The use of such a boolean method often
makes the code easier to read, and easier to modify if the boolean method is called
from many methods (e.g., there are three methods calling the isRadiusValid
method).

Here’s a short main class to test the functionality of the Ch5Circle class:

5.1 The if Statement 223

/*
Chapter 5 Sample Program: Computing Circle Dimensions

File: Ch5Sample1.java
*/

import java.util.*;

class Ch5Sample1 {

public static void main(String[] args) {

double radius, circumference, area;

Ch5Circle circle;

Scanner scanner = new Scanner(System.in);

System.out.print("Enter radius: ");
radius = scanner.nextDouble();

circle = new Ch5Circle(radius);

circumference = circle.getCircumference();

area = circle.getArea();

System.out.println("Input radius: " + radius);
System.out.println("Circumference: " + circumference);
System.out.println("Area: " + area);

}
}

wu23399_ch05.qxd 12/14/06 17:49 Page 223

Notice that the program will display -1.0 when the input radius is invalid. We
can improve the display by adding an if test in the main program as follows:

System.out.print("Circumference: ");
if (circumference == Ch5Circle.INVALID_DIMENSION) {

System.out.println("Cannot compute. Input invalid");
} else {

System.out.println(circumference);
}

Another possible improvement in the main program is to check the input value first.
For instance,

radius = ... ;
if (radius > 0) {

//do the computation as the sample main method
} else {

//print out the error message
}

Even when a client programmer does not include appropriate tests in his program,
we must define a reusable class in a robust manner so it will not crash or produce
erroneous results. For the Ch5Circle class, we add a test so the data member radius
is set to either a valid datum or a specially designated value (INVALID_DIMENSION)
for any invalid data. By designing the class in this manner, we protect the class from
a possible misuse (e.g., attempting to assign a negative radius) and producing mean-
ingless results, such as –5.88. We always strive for a reliable and robust reusable
class that will withstand the abuse and misuse of client programmers.

224 Chapter 5 Selection Statements

1. Identify the invalid if statements:

a. if (a < b) then
x = y;

else
x = z;

b. if (a < b)
else x = y;

c. if (a < b)
x = y;
else {
x = z;
};

d. if (a < b) {
x = y; } else
x = z;

2. Are the following two if statements equivalent?

/*A*/ if (x < y)
System.out.println("Hello");

else
System.out.println("Bye");

/*B*/ if (x > y)
System.out.println("Bye");

else
System.out.println("Hello");

wu23399_ch05.qxd 12/14/06 17:49 Page 224

5.2 Nested if Statements
The then and else blocks of an if statement can contain any statement including
another if statement. An if statement that contains another if statement in either its
then or else block is called a nested if statement. Let’s look at an example. In the
earlier example, we printed out the messages You did pass or You did not pass
depending on the test score. Let’s modify the code to print out three possible mes-
sages. If the test score is lower than 70, then we print You did not pass, as before. If
the test score is 70 or higher, then we will check the student’s age. If the age is less
than 10, we will print You did a great job. Otherwise, we will print You did pass,
as before. Figure 5.4 is a diagram showing the logic of this nested test. The code
is written as follows:

if (testScore >= 70) {
if (studentAge < 10) {

System.out.println("You did a great job");
} else {

System.out.println("You did pass");//test score >= 70
} //and age >= 10

} else { //test score < 70

System.out.println("You did not pass");
}

5.2 Nested if Statements 225

nested if
statement

Figure 5.4 A diagram showing the control flow of the example nested if statement.

System.out.println
 ("You did a great job");

System.out.println
("You did pass");

truefalse
studentAge < 10?System.out.println

("You did not pass");

truefalse
testScore >= 70?

Another if
statement in the
then block of
the outer if

wu23399_ch05.qxd 12/14/06 17:49 Page 225

Since the then block of the outer if contains another if statement, the
outer if is called a nested if statement. It is possible to write if tests in different
ways to achieve the same result. For example, the preceding code can also be
expressed as

if (testScore >= 70 && studentAge < 10) {
System.out.println("You did a great job");

} else {
//either testScore < 70 OR studentAge >= 10

if (testScore >= 70) {
System.out.println("You did pass");

} else {
System.out.println("You did not pass");

}
}

Several other variations can also achieve the same result. As a general rule, we
strive to select the one that is most readable (i.e., most easily understood) and most
efficient. Often no one variation stands out, and the one you choose depends on your
preferred style of programming.

Here’s an example in which one variation is clearly a better choice. Suppose
we input three integers and determine how many of them are negative. Here’s
the first variation. To show the structure more clearly, we purposely do not use the
braces in the then and else blocks.

if (num1 < 0)
if (num2 < 0)

if (num3 < 0)
negativeCount = 3; //all three are negative

else
negativeCount = 2; //num1 and num2 are negative

else
if (num3 < 0)

negativeCount = 2; //num1 and num3 are negative
else

negativeCount = 1; //num1 is negative
else

if (num2 < 0)
if (num3 < 0)

negativeCount = 2; //num2 and num3 are negative
else

negativeCount = 1; //num2 is negative
else

if (num3 < 0)
negativeCount = 1; //num3 is negative

else
negativeCount = 0; //no negative numbers

226 Chapter 5 Selection Statements

In this and the following
examples, we purposely
do not use the braces so
we can provide a better
illustration of the topics
we are presenting.

wu23399_ch05.qxd 12/14/06 17:49 Page 226

It certainly did the job. But elegantly? Here’s the second variation:

negativeCount = 0;

if (num1 < 0)
negativeCount = negativeCount + 1;

if (num2 < 0)
negativeCount = negativeCount + 1;

if (num3 < 0)
negativeCount = negativeCount + 1;

Which version should we use? The second variation is the only reasonable
way to go. The first variation is not a viable option because it is very inefficient and
very difficult to read. We apply the nested if structure if we have to test conditions
in some required order. In this example these three tests are independent of one an-
other, so they can be executed in any order. In other words, it doesn’t matter whether
we test num1 first or last.

The statement

negativeCount = negativeCount + 1;

increments the variable by 1. This type of statement that changes the value of a vari-
able by adding a fixed number occurs frequently in programs. Instead of repeating
the same variable name twice, we can write it succinctly as

negativeCount++;

Similarly, a statement such as

count = count - 1;

can be written as

count--;

The double plus operator (��) is called the increment operator, and the double
minus operator (��) is the decrement operator (which decrements the variable
by 1). The increment and decrement operators have higher precedence than unary
operators. See Table 5.3 on page 235. Note: There are prefix and postfix increment/
decrement operators in which the operators come before and after the variable (or an
expression), respectively. We only use the postfix operators in this book, and the
precedence rules presented in the table apply to the postfix operators only.

Notice that we indent the then and else blocks to show the nested structure
clearly. Indentation is used as a visual guide for the readers. It makes no difference to
a Java compiler. For example, we make our intent clear by writing the statement as

if (x < y)
if (z != w)

a = b + 1;
else

a = c + 1;
else

a = b * c;

5.2 Nested if Statements 227

increment and
decrement
operators

wu23399_ch05.qxd 12/14/06 17:49 Page 227

228 Chapter 5 Selection Statements

It takes some practice before you can write well-formed if statements. Here are
some rules to help you write the if statements.

Rule 1: Minimize the number of nestings.
Rule 2: Avoid complex boolean expressions. Make them as simple as possible.

Don’t include many ANDs and ORs.
Rule 3: Eliminate any unnecessary comparisons.
Rule 4: Don’t be satisfied with the first correct statement. Always look for

improvement.
Rule 5: Read your code again. Can you follow the statement easily? If not, try to

improve it.

Test Score Grade

90 � score A

80 � score � 90 B

70 � score � 80 C

60 � score � 70 D

score � 60 F

The statement can be written as

if (score >= 90)
System.out.println("Your grade is A");

else
if (score >= 80)

System.out.println("Your grade is B");
else

if (score >= 70)
System.out.println("Your grade is C");

But to the Java compiler, it does not matter if we write the same code as

if (x < y)if (z != w)a = b + 1;else a = c + 1; else a = b * c;

Although indentation is not required to run the program, using proper inden-
tation is an important aspect of good programming style. Since the goal is to make
your code readable, not to follow any one style of indentation, you are free to
choose your own style. We recommend style 1 shown on page 219.

The next example shows a style of indentation accepted as standard for a
nested if statement in which nesting occurs only in the else block. Instead of deter-
mining whether a student passes or not, we will now display a letter grade based on
the following formula:

wu23399_ch05.qxd 12/14/06 17:49 Page 228

else
if (score >= 60)

System.out.println("Your grade is D");
else

System.out.println("Your grade is F");

However, the standard way to indent the statement is as follows:

if (score >= 90)
System.out.println("Your grade is A");

else if (score >= 80)
System.out.println("Your grade is B");

else if (score >= 70)
System.out.println("Your grade is C");

else if (score >= 60)
System.out.println("Your grade is D");

else
System.out.println("Your grade is F");

We mentioned that indentation is meant for human eyes only. For example, we
can clearly see the intent of a programmer just by looking at the indentation when
we read

if (x < y)
if (x < z)

System.out.println("Hello");
else

System.out.println("Good bye");

A Java compiler, however, will interpret the above as

if (x < y)
if (x < z)

System.out.println("Hello");
else

System.out.println("Good bye");

This example has a dangling else problem. The Java compiler matches an else
with the previous unmatched if, so the compiler will interpret the statement
by matching the else with the inner if (if (x < z)), whether you use indentation
style A or B. If you want to express the logic of indentation style A, you have to
express it as

if (x < y) {
if (x < z)

System.out.println("Hello");
} else

System.out.println("Good bye");

5.2 Nested if Statements 229

Indentation style A

Indentation style B

dangling else
problem

wu23399_ch05.qxd 12/14/06 17:49 Page 229

This dangling else problem is another reason why we recommend that beginners
use the syntax for <compound statement> in the then and else blocks. In other
words, always use the braces in the then and else blocks.

Let’s conclude this section by including tests inside the add and deduct methods
of the Account class from Chapter 4. For both methods, we will update the balance
only when the amount passed is positive. Furthermore, for the deduct method, we will
update the balance only if it does not become a negative number after the deduction.
This will require the use of a nested if statement. The following is the class declaration.
The name is Ch5Account, and this class is based on AccountVer2 from Chapter 4. We
only list the two methods here because other parts are the same as in AccountVer2.

230 Chapter 5 Selection Statements

class Ch5Account {

...

//Adds the passed amount to the balance
public void add(double amt) {

//add if amt is positive; otherwise, do nothing
if (amt > 0) {

balance = balance + amt;
}

}

//Deducts the passed amount from the balance
public void deduct(double amt) {

//deduct if amt is positive; do nothing otherwise
if (amt > 0) {

double newbalance = balance - amt;

if (newbalance >= 0) { //if a new balance is positive, then
balance = newbalance; //update the balance; otherwise,

} //do nothing.
}

}
...

}

add

deduct

1. Rewrite the following nested if statements without using any nesting.

a. if (a < c)
if (b < c)

x = y;
else

x = z;

wu23399_ch05.qxd 12/14/06 17:49 Page 230

else
x = z;

b. if (a == b)
x = y;

else
if (a > b)

x = y;
else

x = z;
c. if (a < b)

if (a >= b)
x = z;

else
x = y;

else
x = z;

2. Format the following if statements with indentation.

a. if (a < b) if (c > d) x = y;
else x = z;

b. if (a < b) { if (c > d) x = y; }
else x = z;

c. if (a < b) x = y; if (a < c) x = z;
else if (c < d) z = y;

5.3 Boolean Expressions and Variables
In addition to the arithmetic operators introduced in Chapter 3 and relational oper-
ators introduced in Section 5.2, boolean expressions can contain conditional and
boolean operators. A boolean operator, also called a logical operator, takes boolean
values as its operands and returns a boolean value. Three boolean operators are
AND, OR, and NOT. In Java, the symbols &&, ||, and ! represent the AND, OR, and
NOT operators, respectively. Table 5.1 explains how these operators work.

The AND operation results in true only if both P and Q are true. The OR op-
eration results in true if either P or Q is true. The NOT operation is true if A is false
and is false if P is true. Combining boolean operators with relational and arithmetic
operators, we can come up with long boolean expressions such as

(x + 150) == y || x < y && !(y < z && z < x)
(x < y) && (a == b || a == c)
a != 0 && b != 0 && (a + b < 10)

In Section 5.1 we stated that we can reverse the relational operator and switch
the then and else blocks to derive the equivalent code. For example,

if (age < 0) {
System.out.println("Invalid age is entered");

} else {
System.out.println("Valid age is entered");

}

5.3 Boolean Expressions and Variables 231

boolean
operator

wu23399_ch05.qxd 12/14/06 17:49 Page 231

is equivalent to

if (!(age < 0)) {
System.out.println("Valid age is entered");

} else {
System.out.println("Invalid age is entered");

}

which can be written more naturally as

if (age >= 0) {
System.out.println("Valid age is entered");

} else {
System.out.println("Invalid age is entered");

}

Reversing the relational operator means negating the boolean expression.
In other words, !(age < 0) is equivalent to (age >= 0). Now, consider the following
if-then-else statement:

if (temperature >= 65 && distanceToDestination < 2) {
System.out.println("Let's walk");

} else {
System.out.println("Let's drive");

}

If the temperature is greater than or equal to 65 degrees and the distance to
the destination is less than 2 mi., we walk. Otherwise (it’s too cold or too far
away), we drive. How do we reverse the if-then-else statement? We can rewrite
the statement by negating the boolean expression and switching the then and else
blocks as

if (!(temperature >= 65 && distanceToDestination < 2)) {
System.out.println("Let's drive");

} else {
System.out.println("Let's walk");

}

232 Chapter 5 Selection Statements

Ta
b

le
Table 5.1 Boolean operators and their meanings

P Q P && Q P | | Q !P

false false false false true

false true false true true

true false false true false

true true true true false

wu23399_ch05.qxd 12/14/06 17:49 Page 232

or more directly and naturally as

if (temperature < 65 || distanceToDestination >= 2) {
System.out.println("Let's drive");

} else {
System.out.println("Let's walk");

}

The expression

!(temperature >= 65 && distanceToDestination < 2)

is equivalent to

!(temperature >= 65) || !(distanceToDestination < 2)

which, in turn, is equivalent to

(temperature < 65 || distanceToDestination >= 2)

The logical equivalence is derived by applying the following DeMorgan’s law:

Table 5.2 shows their equivalence.
Now consider the following expression:

x / y > z || y == 0

What will be the result if y is equal to 0? Easy, the result is true, many of you might
say. Actually a runtime error called an arithmetic exception will result, because the
expression

x / y

Equivalence symbol

Rule 1: !(P && Q) !P || !Q

Rule 2: !(P || Q) !P && !Q

5.3 Boolean Expressions and Variables 233

arithmetic
exception

Ta
b

le

Table 5.2 The truth table illustrating DeMorgan’s law

P Q !(P && Q) !P | | !Q !(P | | Q) !P && !Q

false false true true true true

false true true true false false

true false true true false false

true true false false false false

wu23399_ch05.qxd 12/14/06 17:49 Page 233

causes a problem known as a divide-by-zero error. Remember that you cannot divide
a number by zero.

However, if we reverse the order to

y == 0 || x / y > z

then no arithmetic exception will occur because the test x / y > z will not be evalu-
ated. For the OR operator ||, if the left operand is evaluated to true, then the right
operand will not be evaluated, because the whole expression is true, whether the
value of the right operand is true or false. We call such an evaluation method a
short-circuit evaluation. For the AND operator &&, the right operand need not be
evaluated if the left operand is evaluated to false, because the result will then
be false whether the value of the right operand is true or false.

Just as the operator precedence rules are necessary to evaluate arithmetic
expressions unambiguously, they are required for evaluating boolean expressions.
Table 5.3 expands Table 3.3 by including all operators introduced so far.

In mathematics, we specify the range of values for a variable as

80 � x < 90

In Java, to test that the value for x is within the specified lower and upper bounds,
we express it as

80 <= x && x < 90

You cannot specify it as

80 <= x < 90

This is a syntax error because the relational operators (<, <=, etc.) are binary
operators whose operands must be numerical values. Notice that the result of the
subexpression

80 <= x

is a boolean value, which cannot be compared to the numerical value 90. Their data
types are not compatible.

The result of a boolean expression is either true or false, which are the two
values of data type boolean. As is the case with other data types, a value of a data
type can be assigned to a variable of the same data type. In other words, we can
declare a variable of data type boolean and assign a boolean value to it. Here are
examples:

boolean pass, done;

pass = 70 < x;
done = true;

One possible use of boolean variables is to keep track of the program settings
or user preferences. A variable (of any data type, not just boolean) used for this

234 Chapter 5 Selection Statements

divide-by-zero
error

short-circuit
evaluation

Wrong

wu23399_ch05.qxd 12/14/06 17:49 Page 234

purpose is called a flag. Suppose we want to allow the user to display either short
or long messages. Many people, when using a new program, prefer to see long
messages, such as Enter a person’s age and press the Enter key to continue. But
once they are familiar with the program, many users prefer to see short messages,
such as Enter age. We can use a boolean flag to remember the user’s preference. We
can set the flag longMessageFormat at the beginning of the program to true or false
depending on the user’s choice. Once this boolean flag is set, we can refer to the
flag at different points in the program as follows:

if (longMessageFormat) {

//display the message in long format

5.3 Boolean Expressions and Variables 235

flag

Ta
b

le
Table 5.3

Operator precedence rules. Groups are listed in descending order of prece-
dence. An operator with a higher precedence will be evaluated first. If two
operators have the same precedence, then the associativity rule is applied

Group Operator Precedence Associativity

Subexpression () 10 Left to right
(If parentheses are nested,
then innermost subexpres-

sion is evaluated first.)

Postfix ++ 9 Right to left
increment and --
decrement
operators

Unary - 8 Right to left
operators !

Multiplicative * 7 Left to right
operators /

%

Additive + 6 Left to right
operators -

Relational < 5 Left to right
operators <=

>
>=

Equality == 4 Left to right
operators !=

Boolean AND && 3 Left to right

Boolean OR || 2 Left to right

Assignment = 1 Right to left

wu23399_ch05.qxd 12/14/06 17:49 Page 235

} else {

//display the message in short format
}

Notice the value of a boolean variable is true or false, so even though it is
valid, we do not write a boolean expression as

if (isRaining == true) {
System.out.println("Store is open");

} else {
System.out.println("Store is closed");

}

but more succinctly as

if (isRaining) {
System.out.println("Store is open");

} else {
System.out.println("Store is closed");

}

Another point that we have to be careful about in using boolean variables is
the choice of identifier. Instead of using a boolean variable such as motionStatus, it
is more meaningful and descriptive to use the variable isMoving. For example, the
statement

if (isMoving) {
//the mobile robot is moving

} else {
//the mobile robot is not moving

}

is much clearer than the statement

if (motionStatus) {
//the mobile robot is moving

} else {
//the mobile robot is not moving

}

When we define a boolean data member for a class, it is a Java convention to
use the prefix is instead of get for the accessor.

We again conclude the section with a sample class. Let’s improve the
Ch5Account class by adding a boolean data member active to represent the state of
an account. When an account is first open, it is set to an active state. Deposits and

236 Chapter 5 Selection Statements

wu23399_ch05.qxd 12/14/06 17:49 Page 236

withdrawals can be made only when the account is active. If the account is inactive,
then the requested opertion is ignored. Here’s how the class is defined (the actual
class name is Ch5AccountVer2):

5.3 Boolean Expressions and Variables 237

class Ch5AccountVer2 {

// Data Members
private String ownerName;

private double balance;

private boolean active;

//Constructor
public Ch5AccountVer2(String name, double startingBalance) {

ownerName = name;
balance = startingBalance;

setActive(true);
}

//Adds the passed amount to the balance
public void add(double amt) {

//add if amt is positive; do nothing otherwise
if (isActive() && amt > 0) {

balance = balance + amt;
}

}

//Closes the account; set 'active' to false
public void close() {

setActive(false);
}

//Deducts the passed amount from the balance
public void deduct(double amt) {

//deduct if amt is positive; do nothing otherwise
if (isActive() && amt > 0) {

double newbalance = balance - amt;

if (newbalance >= 0) { //don't let the balance become negative
balance = newbalance;

}
}

}

Data Members

add

close

deduct

wu23399_ch05.qxd 12/14/06 17:49 Page 237

//Returns the current balance of this account
public double getCurrentBalance() {

return balance;
}

//Returns the name of this account's owner
public String getOwnerName() {

return ownerName;
}

//Is the account active?
public boolean isActive() {

return active;
}

//Assigns the name of this account's owner
public void setOwnerName(String name) {

ownerName = name;
}

//Sets 'active' to true or false
private void setActive(boolean state) {

active = state;
}

}

238 Chapter 5 Selection Statements

getCurrentBalance

getOwnerName

setOwnerName

isActive

setActive

1. Evaluate the following boolean expressions. Assume x, y, and z have some
numerical values.

a. 4 < 5 || 6 == 6
b. 2 < 4 && (false || 5 <= 4)
c. x <= y && !(z != z) || x > y
d. x < y || z < y && y <= z

2. Identify errors in the following boolean expressions and assignments. Assume
x and y have some numerical values.

a. boolean done;
done = x = y;

b. 2 < 4 && (3 < 5) + 1 == 3
c. boolean quit;

quit = true;
quit == (34 == 20) && quit;

wu23399_ch05.qxd 12/14/06 17:49 Page 238

5.4 Comparing Objects
With primitive data types, we have only one way to compare them, but with objects
(reference data type), we have two ways to compare them. We discuss the ways
the objects can be compared in this section. First, let’s review how we compare
primitive data types. What would be the output of the following code?

int num1, num2;

num1 = 15;
num2 = 15;

if (num1 == num2) {
System.out.println("They are equal");

} else {
System.out.println("They are not equal");

}

Because the two variables hold the same value, the output is

They are equal

Now, let’s see how the objects can be compared. We will use String objects for
illustration. Since we use string data all the time in our programs, it is very impor-
tant for us to understand perfectly how String objects can be compared.

Consider the following code that attempts to compare two String objects:

String str1, str2;

str1 = new String("Java");
str2 = new String("Java");

if (str1 == str2) {
System.out.println("They are equal");

5.4 Comparing Objects 239

We introduced the logical AND and OR operations using the symbols && and ||.
In Java, there are single ampersand and single vertical bar operations. For exam-
ple, if we write an if statement as

if (70 <= x & x < 90)

it will compile and run. Unlike the double ampersand, the single ampersand will
not do a short-circuit evaluation. It will evaluate both left and right operands. The
single vertical bar works in an analogous manner. So, which one should we use?
Use double ampersand for AND and double vertical bars for OR.We will most likely
never encounter a situation where we cannot use the double ampersand or the
double vertical bars.

wu23399_ch05.qxd 12/14/06 17:49 Page 239

} else {
System.out.println("They are not equal");

}

What would be an output? The answer is

They are not equal

The two objects are constructed with the same sequence of characters, but the result
of comparison came back that they were not equal. Why?

When two variables are compared, we are comparing their contents. In the
case of primitive data types, the content is the actual value. In case of reference data
types, the content is the address where the object is stored. Since there are two dis-
tinct String objects, stored at different addresses, the contents of str1 and str2 are
different, and therefore, the equality testing results in false. If we change the code to

String str1, str2;

str1 = new String("Java");
str2 = str1;

if (str1 == str2) {
System.out.println("They are equal");

} else {
System.out.println("They are not equal");

}

then the output would be

They are equal

because now we have one String object and both variables str1 and str2 point to this
object. This means the contents of str1 and str2 are the same because they refer to
the same address. Figure 5.5 shows the distinction.

What can we do if we need to check whether two distinct String objects have
the same sequence of characters? Many standard classes include different types
of comparison methods. The String class, for example, includes the equals and
equalsIgnoreCase comparison methods. The equals method returns true if two String
objects have the exact same sequence of characters. The equalsIgnoreCase method
does the same as the equals method, but the comparison is done in a case-insensitive
manner. Using the equals method, we can rewrite the first sample code as

String str1, str2;

str1 = new String("Java");
str2 = new String("Java");

if (str1.equals(str2)) {
System.out.println("They are equal");

} else {
System.out.println("They are not equal");

}

240 Chapter 5 Selection Statements

No new object is created here.The content
(address) of str1 is copied to str2, making
them both point to the same object.

Use the equals
method.

wu23399_ch05.qxd 12/14/06 17:49 Page 240

and get the result

They are equal

Just as the String and many standard classes provide the equals method, it is
common to include such an equals method in programmer-defined classes also.
Consider a Fraction class. We say two Fraction objects are equal if they have the
same value for the numerator and the denominator. Here’s how we can define the
equals method for the Fraction class:

class Fraction {

private int numerator;

private int denominator;

...

//constructor and other methods

...

public int getNumerator() {
return numerator;

}

5.4 Comparing Objects 241

:String

Java

String str1, str2;

str1 = new String("Java");
str2 = new String("Java");

str1

Case A: Two variables refer to two different objects.

:String

Java

:String

Java

str1 �� str2 false

String str1, str2;

str1 = new String("Java");
str2 = str1;

str1 �� str2 true

str2

str1

Case B: Two variables refer to the same object.

str2

Figure 5.5 How the equality == testing works with the objects.

wu23399_ch05.qxd 12/14/06 17:49 Page 241

public int getDenominator() {
return denominator;

}

public boolean equals(Fraction number) {
return (numerator == number.getNumerator()

&& denominator == number.getDenominator());
}

}

Notice that the body of the equals method is a concise version of

if (numerator == number.getNumerator()
&& denominator == number.getDenominator()) {

return true;

} else {

return false;
}

Using the equals method, we can compare two Fraction objects in the follow-
ing manner:

Fraction frac1, frac2;

//create frac1 and frac2 objects
...

if (frac1.equals(frac2)) {
...

}

or equivalently as

if (frac2.equals(frac1)) {
...

}

Note that the equals method as defined is incomplete. For example, if we
compare fractions 4�8 and 3�6, using this equals method, we get false as the result
because the method does not compare the fractions in their simplified form. The
method should have reduced both 4�8 and 3�6 to 1�2 and then compared. To
implement a method that reduces a fraction to its simplest form, we need to use a
repetition control statement. We will revisit this problem when we learn how to
write repetition control statements in Chapter 6. Also, we will provide the complete
definition of the Fraction class in Chapter 7.

We conclude this section by presenting an exception to the rule for comparing
objects. This exception applies to the String class only. We already mentioned in

242 Chapter 5 Selection Statements

Compare this object’s values to the
values of number

wu23399_ch05.qxd 12/14/06 17:49 Page 242

Chapter 2 that for the String class only, we do not have to use the new operator to
create an instance. In other words, instead of writing

String str = new String("Java");

we can write

String str = "Java";

which is a more common form. These two statements are not identical in terms
of memory allocation, which in turn affects how the string comparisons work.
Figure 5.6 shows the difference in assigning a String object to a variable. If we do
not use the new operator, then string data are treated as if they are a primitive data
type. When we use the same literal String constants in a program, there will be
exactly one String object.

This means we can use the equal symbol == to compare String objects when
no new operators are used. However, regardless of how the String objects are cre-
ated, it is always correct and safe to use the equals and other comparison methods
to compare two strings.

5.4 Comparing Objects 243

:String

Java

String word1, word2;

word1 = new String("Java");

word2 = new String("Java");

word1

:String

Java

:String

Java

word1 �� word2 false

word2

word1 word2

Whenever the new operator is used,
there will be a new object.

String word1, word2;

word1 = "Java";

word2 = "Java";

word1 �� word2 true

Literal string constant such as “Java” will
always refer to one object.

Figure 5.6 Difference between using and not using the new operator for String.

Always use the equals and other comparison methods to compare String objects.
Do not use == even though it may work correctly in certain cases.

wu23399_ch05.qxd 12/14/06 17:49 Page 243

244 Chapter 5 Selection Statements

1. Determine the output of the following code.

String str1 = "Java";
String str2 = "Java";

boolean result1 = str1 == str2;
boolean result2 = str1.equals(str2);

System.out.println(result1);
System.out.println(result2);

2. Determine the output of the following code.

String str1 = new String("latte");
String str2 = new String("LATTE");

boolean result1 = str1 == str2;
boolean result2 = str1.equals(str2);

System.out.println(result1);
System.out.println(result2);

3. Show the state of memory after the following statements are executed.

String str1, str2, str3;
str1 = "Jasmine";
str2 = "Oolong";
str3 = str2;
str2 = str1;

5.5 The switch Statement
Another Java statement that implements a selection control flow is the switch
statement. Suppose we want to direct the students to the designated location for
them to register for classes. The location where they register is determined by their
grade level. The user enters 1 for freshman, 2 for sophomore, 3 for junior, and 4 for
senior. Using the switch statement, we can write the code as

int gradeLevel;

Scanner scanner = new Scanner(System.in);

System.out.print("Grade (Frosh-1,Soph-2,...): ");

gradeLevel = scanner.nextInt();

switch (gradeLevel) {

case 1: System.out.println("Go to the Gymnasium");
break;

case 2: System.out.println("Go to the Science Auditorium");
break;

switch
statement

wu23399_ch05.qxd 12/14/06 17:49 Page 244

case 3: System.out.println("Go to Halligan Hall Rm 104");
break;

case 4: System.out.println("Go to Root Hall Rm 101");
break;

}

The syntax for the switch statement is

switch (<integer expression>) {

<case label 1> : <case body 1>
...
<case label n> : <case body n>

}

Figure 5.7 illustrates the correspondence between the switch statement we wrote
and the general format.

The <case label i> has the form

case <integer constant> or default

and <case body i> is a sequence of zero or more statements. Notice that <case body i>
is not surrounded by left and right braces. The <constant> can be either a named or
literal constant.

The data type of <arithmetic expression> must be char, byte, short, or int.
(Note: We will cover the data type char in Chap. 9.) The value of <arithmetic
expression> is compared against the constant value i of <case label i>. If there is a

5.5 The switch Statement 245

switch
statement
syntax

default
reserved word

Figure 5.7 Mapping of the sample switch statement to the general format.

gradeLevel) {switch (

}

case 1:

case 2:

System.out.println("Go to the Gymnasium");
break;

System.out.println("Go to the Science Auditorium");
break;

case 3: System.out.println("Go to Halligan Hall Rm 104");
break;

case 4: System.out.println("Go to Root Hall Rm 101");
break;

Integer
Expression

CL1
CB1

CL2
CB2

CL3
CB3

CL4
CB4

CB - case body
CL - case label

wu23399_ch05.qxd 12/14/06 17:49 Page 245

matching case, then its case body is executed. If there is no matching case, then
the execution continues to the statement that follows the switch statement. No two
cases are allowed to have the same value for <constant>, and the cases can be
listed in any order.

Notice that each case in the sample switch statement is terminated with the
break statement. The break statement causes execution to continue from the state-
ment following this switch statement, skipping the remaining portion of the switch
statement. The following example illustrates how the break statement works:

//Assume necessary declaration and object creation are done

selection = 1;

switch (selection) {
case 0: System.out.println(0);
case 1: System.out.println(1);
case 2: System.out.println(2);
case 3: System.out.println(3);

}

When this code is executed, the output is

1
2
3

because after the statement in case 1 is executed, statements in the remaining cases
will be executed also. To execute statements in one and only one case, we need
to include the break statement at the end of each case, as we have done in the first
example. Figure 5.8 shows the effect of the break statement.

The break statement is not necessary in the last case, but for consistency we
place it in every case. Also, by doing so we don’t have to remember to include the
break statement in the last case when we add more cases to the end of the switch
statement.

Individual cases do not have to include a statement, so we can write some-
thing like this:

Scanner scanner = new Scanner(System.in);

System.out.print("Input: ");

int ranking = scanner.nextInt();

switch (ranking) {
case 10:
case 9:
case 8: System.out.println("Master");

break;
case 7:
case 6: System.out.println("Journeyman");

break;

246 Chapter 5 Selection Statements

break
statement

wu23399_ch05.qxd 12/14/06 17:49 Page 246

case 5:
case 4: System.out.println("Apprentice");

break;
}

The code will print Master if the value of ranking is 10, 9, or 8; Journeyman if the
value of ranking is either 7 or 6; or Apprentice if the value of ranking is either 5 or 4.

We may include a default case that will always be executed if there is no
matching case. For example, we can add a default case to print out an error message
if any invalid value for ranking is entered.

switch (ranking) {

case 10:
case 9:
case 8: System.out.println("Master");

break;

case 7:
case 6: System.out.println("Journeyman");

break;

case 5:

5.5 The switch Statement 247

Figure 5.8 A diagram showing the control flow of the switch statement with and without the break statements.

false

false

false

true

true

true

true

true

true

switch (N) {
case 1: x = 10; break;
case 2: x = 20; break;
case 3: x = 30; break;
}

switch (N) {
case 1: x = 10;
case 2: x = 20;
case 3: x = 30;
}

x = 10;N == 1?

x = 20;N == 2?

x = 30;N == 3?

false

false

false

N == 1?

N == 2?

N == 3?

x = 10;

break;

break;

break;

x = 20;

x = 30;

wu23399_ch05.qxd 12/14/06 17:49 Page 247

case 4: System.out.println("Apprentice");
break;

default: System.out.println("Error: Invalid Data");
break;

}

There can be at most one default case. Since the execution continues to the next
statement if there is no matching case (and no default case is specified), it is safer to
always include a default case. By placing some kind of output statement in the
default case, we can detect an unexpected switch value. Such a style of program-
ming is characterized as defensive programming. Although the default case does not
have to be placed as the last case, we recommend you do so, in order to make the
switch statement more readable.

248 Chapter 5 Selection Statements

defensive
programming

1. What’s wrong with the following switch statement?

switch (N) {
case 0:
case 1: x = 11;

break;
default: System.out.println("Switch Error");

break;
case 2: x = 22;

break;
case 1: x = 33;

break;
}

2. What’s wrong with the following switch statement?

switch (ranking) {
case >4.55: pay = pay * 0.20;

break;

case =4.55: pay = pay * 0.15;
break;

default: pay = pay * 0.05;
break;

}

5.6 Drawing Graphics
We introduce four standard classes related to drawing geometric shapes on a
window. These four standard classes will be used in Section 5.7 on the sample
development. We describe their core features here. More details can be found in the
online Java API documentation.

wu23399_ch05.qxd 12/14/06 17:49 Page 248

java.awt.Graphics
We can draw geometric shapes on a frame window by calling appropriate methods
of the Graphics object. For example, if g is a Graphics object, then we can write

g.drawRect(50, 50, 100, 30);

to display a rectangle 100 pixels wide and 30 pixels high at the specified position
(50, 50). The position is determined as illustrated in Figure 5.9. The complete pro-
gram is shown below. The top left corner, just below the window title bar, is posi-
tion (0, 0), and the x value increases from left to right and the y value increases from
top to bottom. Notice that the direction in which the y value increases is opposite to
the normal two-dimensional graph.

The area of a frame which we can draw is called the content pane of a frame.
The content pane excludes the area of a frame that excludes the regions such as the
border, scroll bars, the title bar, the menu bar, and others. To draw on the content
pane of a frame window, first we must get the content pane’s Graphic object. Then
we call this Graphics method to draw geometric shapes. Here’s a sample:

5.6 Drawing Graphics 249

java.awt.
Graphics

content pane
of a frame

/*
Chapter 5 Sample Program: Draw a rectangle on a frame

window's content pane

File: Ch5SampleGraphics.java
*/

import javax.swing.*; //for JFrame
import java.awt.*; //for Graphics and Container

class Ch5SampleGraphics {

public static void main(String[] args) {

JFrame win;
Container contentPane;
Graphics g;

win = new JFrame("My First Rectangle");
win.setSize(300, 200);
win.setLocation(100,100);
win.setVisible(true);

contentPane = win.getContentPane();
g = contentPane.getGraphics();
g.drawRect(50,50,100,30);

}
}

win must be visible on the
screen before you get its
content pane.

wu23399_ch05.qxd 12/14/06 17:49 Page 249

Here are the key points to remember in drawing geometric shapes on the con-
tent pane of a frame window.

250 Chapter 5 Selection Statements

To draw geometric shapes on the content pane of a frame window:

1. The content pane is declared as a Container, for example,

Container contentPane;

2. The frame window must be visible on the screen before we can get its content
pane and the content pane’s Graphics object.

Depending on the speed of your PC, you may have to include the following try
statement

try {Thread.sleep(200);} catch (Exception e) {}

to put a delay before drawing the rectangle. Place this try statement before the
last statement. The argument in the sleep method specifies the amount of delay
in milliseconds (1000 ms = 1 s). If you still do not see a rectangle drawn in the
window after including the delay statement, increase the amount of delay until
you see the rectangle drawn.We will describe the try statement in Chapter 8.

graphic.drawRect(<x>, <y>, <width>, <height>);

graphic.drawRect(50, 50, 100, 30);

Syntax
A rectangle <width>

wide and <height>
high is displayed at
position (<x>, <y>).

Position (50, 50)

Position (0, 0)

30

100

�x

�y

Example:

Figure 5.9 The diagram illustrates how the position of the rectangle is determined by the drawRect method.

wu23399_ch05.qxd 12/14/06 17:49 Page 250

Table 5.4 lists some of the available graphic drawing methods.

5.6 Drawing Graphics 251

Ta
b

le

Table 5.4 A partial list of drawing methods defined for the Graphics class

Method Meaning

drawLine(x1,y1,x2,y2) Draws a line between (x1,y1) and
(x2,y2).

drawRect(x,y,w,h) Draws a rectangle with width w and height h
at (x,y).

drawRoundRect(x,y,w,h,aw,ah) Draws a rounded-corner rectangle with
width w and height h at (x,y). Parameters
aw and ah determine the angle for the
rounded corners.

(x,y)

h

w

aw

ah

(x,y)

h

w

(x1,y1)

(x2,y2)

If there is a window that covers the area in which the drawing takes place or the draw-
ing window is minimized and restored to its normal size, the drawn shape (or portion of
it, in the case of the overlapping windows) gets erased. The DrawingBoard class used in
the sample development (Sec. 5.7) eliminates this problem. For information on the
technique to avoid the disappearance of the drawn shape, please check our website at
www.drcaffeine.com

wu23399_ch05.qxd 12/14/06 17:49 Page 251

http://www.drcaffeine.com

Notice the distinction between the draw and fill methods. The draw method
will draw the boundary only, while the fill method fills the designated area with the
currently selected color. Figure 5.10 illustrates the difference.

java.awt.Color
To designate the color for drawing, we will use the Color class from the standard
java.awt package. A Color object uses a coloring scheme called the RGB scheme,
which specifies a color by combining three values, ranging from 0 to 255, for red,
green, and blue. For example, the color black is expressed by setting red, green,
and blue to 0, and the color white by setting all three values to 255. We create, for
example, a Color object for the pink color by executing

Color pinkColor;
pinkColor = new Color(255,175,175);

252 Chapter 5 Selection Statements

Ta
b

le
Table 5.4 A partial list of drawing methods defined for the Graphics class (Continued)

Method Meaning

drawOval(x,y,w,h) Draws an oval with width w and height h at
(x,y).

drawString("text",x,y) Draws the string text at (x,y).

fillRect(x,y,w,h) Same as the drawRect method but fills the
region with the currently set color.

fillRoundRect(x,y,w,h,aw,ah) Same as the drawRoundRect method
but fills the region with the currently
set color.

fillOval(x,y,w,h) Same as the drawOval method but fills the
region with the currently set color.

(x,y)

text

(x,y)

h

w

java.awt.Color

wu23399_ch05.qxd 12/14/06 17:49 Page 252

Instead of dealing with the three numerical values, we can use the public class
constants defined in the Color class. The class constants for common colors are

Color.BLACK Color.MAGENTA
Color.BLUE Color.ORANGE
Color.CYAN Color.PINK
Color.DARK_GRAY Color.RED
Color.GRAY Color.WHITE
Color.GREEN Color.YELLOW
Color.LIGHT_GRAY

The class constants in lowercase letters are also defined (such as Color.black,
Color.blue, and so forth). In the older versions of Java, only the constants in
lowercase letters were defined. But the Java convention is to name constants using
only the uppercase letters, so the uppercase color constants are added to the class
definition.

Each of the above is a Color object with its RGB values correctly set up. We
will pass a Color object as an argument to the setColor method of the Graphics class
to change the color. To draw a blue rectangle, for example, we write

//Assume g is set correctly
g.setColor(Color.BLUE);
g.drawRect(50, 50, 100, 30);

We can also change the background color of a content pane by using the
setBackground method of Container as

contentPane.setBackground(Color.LIGHT_GRAY);

5.6 Drawing Graphics 253

g.drawRect(50, 50, 100, 30); g.fillRect(175, 50, 100, 30);

Figure 5.10 The diagram illustrates the distinction between the draw and fill methods.We assume the
currently selected color is black (default).

wu23399_ch05.qxd 12/14/06 17:49 Page 253

Running the following program will result in the frame shown in Figure 5.11.

254 Chapter 5 Selection Statements

Figure 5.11 A frame with a white background content pane and two rectangles.

/*
Chapter 5 Sample Program: Draw one blue rectangle and

one filled red rectangle on light gray
background content pane

File: Ch5SampleGraphics2.java
*/

import javax.swing.*;
import java.awt.*;

class Ch5SampleGraphics2 {

public static void main(String[] args) {

JFrame win;
Container contentPane;
Graphics g;

win = new JFrame("Rectangles");
win.setSize(300, 200);
win.setLocation(100,100);
win.setVisible(true);

contentPane = win.getContentPane();
contentPane.setBackground(Color.LIGHT_GRAY);

g = contentPane.getGraphics();
g.setColor(Color.BLUE);
g.drawRect(50,50,100,30);

wu23399_ch05.qxd 12/14/06 17:49 Page 254

g.setColor(Color.RED);
g.fillRect(175,50,100,30);

}
}

5.6 Drawing Graphics 255

java.awt.Point
A Point object is used to represent a point in two-dimensional space. It contains x
and y values, and we can access these values via its public data member x and y.
Here’s an example to assign a position (10, 20):

Point pt = new Point();
pt.x = 10;
pt.y = 20;

It is also possible to set the position at the creation time as follows:

Point pt = new Point(10, 20);

java.awt.Dimension
In manipulating shapes, such as moving them around a frame’s content pane, the
concept of the bounding rectangle becomes important. A bounding rectangle is a
rectangle that completely surrounds the shape. Figure 5.12 shows some examples of
bounding rectangles.

Just as the (x, y) values are stored as a single Point object, we can store the width
and height of a bounding rectangle as a single Dimension object. The Dimension class
has the two public data members width and height to maintain the width and height
of a bounding rectangle. Here’s an example to create a 40 pixels by 70 pixels high
bounding rectangle:

Dimension dim = new Dimension();
dim.width = 40;
dim.height = 70;

Bounding rectangle
of a rectangle is the
rectangle itself.

Bounding rectangle

Figure 5.12 Bounding rectangles of various shapes.

wu23399_ch05.qxd 12/14/06 17:49 Page 255

It is also possible to set the values at the creation time as follows:

Dimension dim = new Dimension(40, 70);

Let’s apply the drawing techniques to an early sample program. In Chapter 4,
we wrote the RoomWinner program that randomly selects and displays the dorm
room lottery cards. The display was only in text, something like this:

Winning Card Combination:
1 - red; 2 - green; 3 - blue

color number
Card 1: 2 13
Card 2: 2 12
Card 3: 1 14

We will make a graphical version of the program. Figure 5.13 shows a sample
output.

Here’s the main class Ch5RoomWinner, which has a structure similar to the
one for Ch5SampleGraphics2.

256 Chapter 5 Selection Statements

Figure 5.13 Sample output of Ch5RoomWinner program.

import java.awt.*;
import javax.swing.*;

class Ch5RoomWinner {

public static void main(String[] args) {

JFrame win;
Container contentPane;
Graphics g;

wu23399_ch05.qxd 12/14/06 17:49 Page 256

GraphicLotteryCard one, two, three;

win = new JFrame("Room Winner");
win.setSize(300, 200);
win.setLocation(100,100);
win.setVisible(true);

contentPane = win.getContentPane();
contentPane.setBackground(Color.WHITE);

g = contentPane.getGraphics();

one = new GraphicLotteryCard();
two = new GraphicLotteryCard();
three = new GraphicLotteryCard();

one.spin();
two.spin();
three.spin();

one.draw(g, 10, 20);
two.draw(g, 50, 20);
three.draw(g, 90, 20);

}
}

5.6 Drawing Graphics 257

These objects will draw themselves
on g at the specified positions.

We modify the LotteryCard class from Chapter 4 by adding code that will draw a
card on a given Graphics context. The name of the new class is GraphicLotteryCard.
Here’s the class definition (we list only the portions that are new):

import java.awt.*;

class GraphicLotteryCard {

// Data Members

//width of this card for drawing
public static final int WIDTH = 30;

//height of this card for drawing
public static final int HEIGHT = 40;

//the other data members and methods are the same as before

public void draw(Graphics g, int xOrigin, int yOrigin) {

switch (color) {
case 1: g.setColor(Color.RED);

break;

wu23399_ch05.qxd 12/14/06 17:49 Page 257

case 2: g.setColor(Color.GREEN);
break;

case 3: g.setColor(Color.BLUE);
break;

}

g.fillRect(xOrigin, yOrigin, WIDTH, HEIGHT);

g.setColor(Color.WHITE); //draw text in white

g.drawString("" + number, xOrigin + WIDTH/4, yOrigin + HEIGHT/2);
}

}

258 Chapter 5 Selection Statements

This is a quick way to convert a
numerical value to String

Notice that the statements in Ch5RoomWinner

one.draw(g, 10, 20);
two.draw(g, 50, 20);
three.draw(g, 90, 20);

are not as flexible as they can be. If the values for the constant WIDTH and HEIGHT
in the GraphicLotteryCard class are changed, these three statements could result in
drawing the card inadequately (such as overlapping cards). The two constants are
declared public for a reason. Using the WIDTH constant, for example, we can rewrite
the three statements as

int cardWidth = GraphicLotteryCard.WIDTH;
one.draw(g, 10, 20);
two.draw(g, 10 + cardWidth + 5, 20);
three.draw(g, 10 + 2*(cardWidth+ 5), 20);

The statements will draw cards with a 5-pixel interval between cards. This code will
continue to work correctly even after the value of WIDTH is modified.

5.7 Enumerated Constants
We learned in Section 3.3 how to define numerical constants and the benefits of
using them in writing readable programs. In this section, we will introduce an
additional type of constant called enumerated constants that were added to the Java
language from Version 5.0. Let’s start with an example. Suppose we want to define
a Student class and define constants to distinguish four undergraduate grade

enumerated
constants

wu23399_ch05.qxd 12/14/06 17:49 Page 258

levels—freshman, sophomore, junior, and senior. Using the numerical constants,
we can define the grade levels as such:

class Student {
public static final int FRESHMAN = 0;
public static final int SOPHOMORE = 1;
public static final int JUNIOR = 2;
public static final int SENIOR = 3;

...
}

With the new enumerated constants, this is how we can define the grade lev-
els in the Student class:

class Student {
public static enum GradeLevel

{FRESHMAN, SOPHOMORE, JUNIOR, SENIOR}

...
}

The word enum is a new reserved word, and the basic syntax for defining enumer-
ated constants is

enum <enumerated type> { <constant values> }

where <enumerated type> is an identifier and <constant values> is a list of identi-
fiers separated by commas. Notice that for the most common usage of enumerated
constants, we append the modifiers public and static; but they are not a required part
of defining enumerated constants. Here are more examples:

enum Month {JANUARY, FEBRUARY, MARCH, APRIL,
MAY, JUNE, JULY, AUGUST,
SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER}

enum Gender {MALE, FEMALE}

enum SkillLevel {NOVICE, INTERMEDIATE, ADVANCED, EXPERT}

One restriction when declaring an enumerated type is that it cannot be a local
declaration. In other words, we must declare it outside of any method, just as for the
other data members of a class.

Unlike numerical constants, which are simply identifiers with fixed numerical
values, enumerated constants do not have any assigned numerical values. They are
said to belong to, or be members of, the associated enumerated type. For example,
two enumerated constants MALE and FEMALE belong to the enumerated type
Gender. (Note: We keep the discussion of the enumerated type to its simplest form
here. It is beyond the scope of an introductory programming textbook to discuss
Java’s enumerated type in full detail.)

5.7 Enumerated Constants 259

enumerated
type

wu23399_ch05.qxd 12/14/06 17:49 Page 259

Just as with any other data types, we can declare variables of an enumerated
type and assign values to them. Here is an example (for the sake of brevity, we list
the enum declaration and its usage together, but remember that the declaration in
the actual use cannot be a local declaration):

enum Fruit {APPLE, ORANGE, BANANA}

Fruit f1, f2, f3;

f1 = Fruit.APPLE;

f2 = Fruit.BANANA;

f3 = f1;

Because variables f1, f2, and f3 are declared to be of the type Fruit, we can only
assign one of the associated enumerated constants to them. This restriction supports
a desired feature called type safety. So what is the big deal? Consider the following
numerical constants and assignment statements:

final int APPLE = 1;
final int ORANGE = 2;
final int BANANA = 3;

int fOne, fTwo, fThree;

fOne = APPLE;

fTwo = ORANGE;

fThree = fOne;

The code may look comparable to the one that uses enumerated constants, but
what will happen if we write the following?

fOne = 45;

The assignment is logically wrong. It does not make any sense to assign meaning-
less value such as 45 to the variable fOne if it is supposed to represent one of the de-
fined fruit. However, no compiler error will result because the data type of fOne is
int. The statement may or may not cause the runtime error depending on how the
variable fOne is used in the rest of the program. In either case, the program cannot
be expected to produce a correct result because of the logical error.

By defining an enumerated type, a variable of that type can only accept the
associated enumerated constants. Any violation will be detected by the compiler.
This will eliminate the possibility of assigning a nonsensical value as seen in
the case for the numerical constants. Type safety means that we can assign only
meaningful values to a declared variable.

Another benefit of the enumerated type is the informative output values. As-
suming the variables fTwo and f2 retain the values assigned to them in the sample
code, the statement

System.out.println("Favorite fruit is " + fTwo);

260 Chapter 5 Selection Statements

NOTE: The constant value is prefixed
by the name of the enumerated type.

type safety

wu23399_ch05.qxd 12/14/06 17:49 Page 260

will produce a cryptic output:

Favorite fruit is 2

In contrast, the statement

System.out.println("Favorite fruit is " + f2);

will produce a more informative output:

Favorite fruit is BANANA

We will describe other advantages of using enumerated types later in the book.
As shown, when referring to an enumerated constant in the code, we must pre-

fix it with its enumerated type name, for example,

Fruit f = Fruit.APPLE;

. . .

if (f == Fruit.ORANGE) {
System.out.println("I like orange, too.");

}

. . .

A case label for a switch statement is the only exception to this rule. Instead of
writing, for example,

Fruit fruit;

fruit = ... ;

switch (fruit) {
case Fruit.APPLE: . . .;

break;
case Fruit.ORANGE: . . .;

break;
case Fruit.BANANA: . . .;

break;
}

we can specify the case labels without the prefix as in

Fruit fruit;

fruit = ...;

switch (fruit) {

case APPLE: . . .;
break;

5.7 Enumerated Constants 261

wu23399_ch05.qxd 12/14/06 17:49 Page 261

case ORANGE: . . .;
break;

case BANANA: . . .;
break;

}

262 Chapter 5 Selection Statements

It is not necessary to prefix the enumerated constant with its enumerated type
name when it is used as a case label in a switch statement.

The enumerated type supports a useful method named valueOf. The method
accepts one String argument and returns the enumerated constant whose value
matches the given argument. For example, the following statement assigns the enu-
merated constant APPLE to the variable fruit:

Fruit fruit = Fruit.valueOf("APPLE");

In which situations could the valueOf method be useful? One is the input rou-
tine. Consider the following:

Scanner scanner = new Scanner(System.in);

System.out.print("Enter your favorite fruit " +
"(APPLE, ORANGE, BANANA): ");

String fruitName = scanner.next();

Fruit favoriteFruit = Fruit.valueOf(fruitName);

Be aware, however, that if you pass a String value that does not match any of the de-
fined constants, it will result in a runtime error. This means if the user enters
Orange, for example, it will result in an error (the input has to be all capital letters
to match). We will discuss how to handle such runtime errors without causing the
program to terminate abruptly in Chapter 8.

To access the enumerated constants in a programmer-defined class from outside
the class, we must reference them through the associated enumerated type (assuming,
of course, the visibility modifier is public). Consider the following Faculty class:

class Faculty {

public static enum Rank
{LECTURER, ASSISTANT, ASSOCIATE, FULL}

private Rank rank;

. . .

wu23399_ch05.qxd 12/14/06 17:49 Page 262

public void setRank(Rank r) {
rank = r;

}

public Rank getRank() {
return rank;

}

. . .
}

Notice how the enumerate type Rank is used in the setRank and getRank methods.
It is treated just as any other types are. To access the Rank constants from outside of
the Faculty class, we write

Faculty.Rank.ASSISTANT

Faculty.Rank.FULL

and so forth. Here’s an example that assigns the rank of ASSISTANT to a Faculty
object:

Faculty prof = new Faculty(...);

prof.setRank(Faculty.Rank.ASSISTANT);

And here’s an example to retrieve the rank of a Faculty object:

Faculty teacher;

//assume 'teacher' is properly created

Faculty.Rank rank;

rank = teacher.getRank();

5.7 Enumerated Constants 263

1. Define an enumerated type Day that includes the constants SUNDAY through
SATURDAY.

2. What is the method that returns an enumerated constant, given the matching
String value?

3. Detect the error(s) in the following code:

enum Fruit {APPLE, ORANGE, BANANA}

Fruit f1, f2;
int f3;

f1 = 1;

f2 = ORANGE;

f3 = f1;

f1 = "BANANA";

wu23399_ch05.qxd 12/14/06 17:49 Page 263

Sample Development
Drawing Shapes

When a certain period of time passes without any activity on a computer,a screensaver be-
comes active and draws different types of geometric patterns or textual messages.
In this section we will develop an application that simulates a screensaver.We will learn a
development skill very commonly used in object-oriented programming. Whether we
develop alone or as a project team member, we often find ourselves writing a class that
needs to behave in a specific way so that it works correctly with other classes. The other
classes may come from standard Java packages or could be developed by the other team
members.

In this particular case, we use the DrawingBoard class (written by the author). This
is a helper class that takes care of programming aspects we have not yet mastered,such as
moving multiple geometric shapes in a smooth motion across the screen. It is not an issue
of whether we can develop this class by ourselves, because no matter how good we be-
come as programmers, we would rarely develop an application completely on our own.

We already used many predefined classes from the Java standard libraries, but
the way we will use the predefined class here is different. When we developed programs
before, the classes we wrote called the methods of predefined classes. Our main method
creating a GregorianCalendar object and calling its methods is one example.Here, for us
to use a predefined class, we must define another class that provides necessary services
to this predefined class. Figure 5.14 differentiates the two types of predefined classes.
The first type does not place any restriction other than calling the methods correctly,
while the second type requires us to implement helper classes in a specific manner to
support it.

In our case, the predefined class DrawingBoard will require another class named
DrawableShape that will assume the responsibility of drawing individual geometric
shapes. So, to use the DrawingBoard class in our program, we must implement the class
named DrawableShape. And we must implement the DrawableShape class in a specific
way.The use of the DrawingBoard class dictates that we define a set of fixed methods in
the DrawableShape class. We can add more, but we must at the minimum provide the
specified set of fixed methods because the DrawingBoard class will need to call these
methods.The methods are “fixed”in the method signature—method name, the number of
parameters and their types, and return type—but the method body can be defined in any
way we like.This is how the flexibility is achieved.For example,the DrawableShape class we
define must include a method named draw with the dictated signature. But it’s up to us to
decide what we put in the method body. So we can choose, for example, to implement the
method to draw a circle, rectangle, or any other geometric shape of our choosing.

As always, we will develop this program following incremental development steps.
The incremental development steps we will take here are slightly different in character
from those we have seen so far. In the previous incremental developments, we knew all
the ingredients, so to speak. Here we have to include a step to explore the DrawingBoard
class.We will find out shortly that to use the DrawingBoard class, we will have to deal with
some Java standard classes we have not seen yet. Pedagogically, a textbook may try to

264 Chapter 5 Selection Statements

5.8 Sample Development

wu23399_ch05.qxd 12/14/06 17:50 Page 264

5.8 Sample Development 265

Figure 5.14 Two types of predefined classes.The first type does not require us to do anything more
than use the predefined classes by calling their methods.The second type requires us to define helper
classes for the predefined classes we want to use.

MyClass2

To use type 2 predefined
classes, we must define
helper classes required by
the predefined classes.

There's no restriction in
using type 1 predefined
classes other than calling
their methods correctly.

MyClass1 Type1Class

Type2Class MyHelperClass

A class we implement

A class given to us

explain beforehand everything that is necessary to understand the sample programs.
But no textbook can explain everything.When we develop programs, there will always be
a time when we encounter some unknown classes. We need to learn how to deal with
such a situation in our development steps.

Problem Statement

Write an application that simulates a screensaver by drawing various geometric
shapes in different colors. The user has the option of choosing a type (ellipse or
rectangle), color, and movement (stationary, smooth, or random).

Overall Plan

We will begin with our overall plan for the development. Let’s begin with the outline of
program logic. We first let the user select the shape, its movement, and its color, and we
then start drawing.We express the program flow as having four tasks:

1. Get the shape the user wants to draw.

2. Get the color of the chosen shape.

3. Get the type of movement the user wants to use.

4. Start the drawing.

program
tasks

wu23399_ch05.qxd 12/14/06 17:50 Page 265

5.8 Sample Development—continued

266 Chapter 5 Selection Statements

Let’s look at each task and determine an object that will be responsible for handling
the task. For the first three tasks, we can use our old friend Scanner. We will get into the
details of exactly how we ask the users to input those values in the later incremental
steps. For the last task of actually drawing the selected shape, we need to define our own
class. The task is too specific to the program, and there is no suitable object in the stan-
dard packages that does the job. As discussed earlier, we will use a given predefined class
DrawingBoard and define the required helper class DrawableShape.

We will define a top-level control object that manages all these objects.We will call
this class Ch5DrawShape. As explained in Section 4.10, we will make this control object
the main class. Here’s our working design document:

Design Document: Ch5DrawShape

Class Purpose

Ch5DrawShape The top-level control object that manages other objects
in the program.This is the main class, as explained in
Section 4.10.

DrawingBoard The given predefined class that handles the movement of
DrawableShape objects.

DrawableShape The class for handling the drawing of individual shapes.

Scanner The standard class for handling input routines.

program
classes

Ch5DrawShape Scanner

DrawingBoard DrawableShape

Figure 5.15 The program diagram for the Ch5DrawShape program.

Figure 5.15 is the program diagram for this program.

wu23399_ch05.qxd 12/14/06 17:50 Page 266

5.8 Sample Development 267

We will implement this program in the following six major steps:

1. Start with a program skeleton. Explore the DrawingBoard class.

2. Define an experimental DrawableShape class that draws a dummy shape.

3. Add code to allow the user to select a shape. Extend the DrawableShape and
other classes as necessary.

4. Add code to allow the user to specify the color. Extend the DrawableShape and
other classes as necessary.

5. Add code to allow the user to specify the motion type. Extend the DrawableShape
and other classes as necessary.

6. Finalize the code by tying up loose ends.

Our first task is to find out about the given class. We could have designed the input rou-
tines first, but without knowing much about the given class, it would be difficult to design
suitable input routines.When we use an unknown class, it is most appropriate to find out
more about this given class before we plan any input or output routines. Just as the de-
velopment steps are incremental, our exploration of the given class will be incremental.
Instead of trying to find out everything about the class at once, we begin with the basic
features and skeleton code. As we learn more about the given class incrementally, we
extend our code correspondingly.

Step 1 Development: Program Skeleton

We begin the development with the skeleton main class.The main purpose in step 1 is to
use the DrawingBoard class in the simplest manner to establish the launch pad for the
development. To do so, we must first learn a bit about the given DrawingBoard class.
Here’s a brief description of the DrawingBoard class. In a real-world situation, we would
be finding out about the given class by reading its accompanying documentation or
some other external sources. The documentation may come in form of online javadoc
documents or reference manuals.

development
steps

step 1
design

DrawingBoard

An instance of this class will support the drawing of DrawableShape objects. Shapes
can be drawn at fixed stationary positions, at random positions, or in a smooth motion
at the specified speed.The actual drawing of the individual shapes is done inside the
DrawableShape class.The client programmer decides which shape to draw.

public void addShape (DrawableShape shape)
Adds shape to this DrawingBoard object.You can add an unlimited number
of DrawableShape objects.

(Continued)

wu23399_ch05.qxd 12/14/06 17:50 Page 267

5.8 Sample Development—continued

268 Chapter 5 Selection Statements

DrawingBoard (Continued)

public void setBackground(java.awt.Color color)
Sets the background color of this DrawingBoard object to the designated
color.The default background color is black.

public void setDelayTime(double delay)
Sets the delay time between drawings to delay seconds.The smaller the delay
time, the faster the shapes move. If the movement type is other than SMOOTH,
then setting the delay time has no visual effect.

public void setMovement(Movement type)
Sets the movement type to type. Class constants for three types of motion are
Movement.STATIONARY—draw shapes at fixed positions,
Movement.RANDOM—draw shapes at random positions, and
Movement.SMOOTH—draw shapes in a smooth motion.

public void setVisible(boolean state)
Makes this DrawingBoard object appear on or disappear from the screen
if state is true or false, respectively. To simulate the screensaver,
setting it visible will cause a maximized window to appear on the screen.

public void start()
Starts the drawing. If the window is not visible yet, it will be made visible before
the drawing begins.

Among the defined methods, we see the setVisible method is the one to make
it appear on the screen. All other methods pertain to adding DrawableShape objects
and setting the properties of a DrawingBoard object. We will explain the standard
java.awt.Color class when we use the setBackground method in the later step. In this
step, we will keep the code very simple by only making it appear on the screen. We will
deal with other methods in the later steps.

Our working design document for the Ch5DrawShape class is as follows:

Design Document: The Ch5DrawShape Class

Method Visibility Purpose

<constructor> public Creates a DrawingBoard object.

main public This is main method of the class.

start public Starts the program by opening a
DrawingBoard object.

wu23399_ch05.qxd 1/25/07 13:50 Page 268

Since this is a skeleton code, it is very basic. Here’s the code:

5.8 Sample Development 269

step 1 code

The purpose of step 1 testing is to verify that a DrawingBoard object appears
correctly on the screen. Since this is our first encounter with the DrawingBoard class,
it is probable that we are not understanding its documentation fully and completely.
We need to verify this in this step. When a maximized window with the black back-
ground appears on the screen, we know the main class was executed properly.
After we verify the correct execution of the step 1 program, we will proceed to imple-
ment additional methods of Ch5DrawShape and gradually build up the required
DrawableShape class.

Step 2 Development: Draw a Shape

In the second development step, we will implement a preliminary DrawableShape
class and make some shapes appear on a DrawingBoard window. To draw shapes,
we need to add them to a DrawingBoard window. And to do so, we need to define the

step 1 test

step 2
design

/*
Chapter 5 Sample Development: Drawing Shapes (Step 1)

The main class of the program.
*/

class Ch5DrawShape {

private DrawingBoard canvas;

public Ch5DrawShape() {

canvas = new DrawingBoard();
}

public void start() {

canvas.setVisible(true);

}

public static void main(String[] args) {

Ch5DrawShape screensaver = new Ch5DrawShape();

screensaver.start();
}

}

wu23399_ch05.qxd 12/14/06 17:50 Page 269

5.8 Sample Development—continued

270 Chapter 5 Selection Statements

DrawableShape class with the specified set of methods. Here are the required methods
and a brief description of what to accomplish in them:

Required Methods of DrawableShape

public void draw(java.awt.Graphics)
Draw a geometric shape on the java.awt.Graphics. The DrawingBoard
window calls the draw method of DrawableShape objects added to it.

public java.awt.Point getCenterPoint()
Return the center point of this shape.

public java.awt.Dimension getDimension()
Return the bounding rectangle of this shape as a Dimension.

public void setCenterPoint(java.awt.Point)
Set the center point of this shape.The DrawingBoard window calls the
setCenterPoint method of DrawableShape objects to update their
positions in the SMOOTH movement type.

At this stage, the main task is for us to confirm our understanding of the require-
ments in implementing the DrawableShape class. Once we get this confirmation, we can
get into the details of the full-blown DrawableShape class.

To keep the preliminary class simple, we draw three filled circles of a fixed size and
color. The DrawableShape class includes a single data member centerPoint to keep
track of the shape’s center point. If we fix the radius of the circles to 100 pixels, that is, the
bounding rectangle is 200 pixels by 200 pixels, and the color to blue, then the draw
method can be written as follows:

public void draw(Graphics g) {

g.setColor(Color.blue);
g.fillOval(centerPoint.x-100, centerPoint.y-100, 200, 200);

}

Since the size is fixed, we simply return a new Dimension object for the
getDimension method:

public Dimension getDimension() {

return new Dimension(200, 200);
}

For the setCenterPoint and getCenterPoint methods, we assign the passed para-
meter to the data member centerPoint and return the current value of the data member
centerPoint, respectively.

200

200

100

wu23399_ch05.qxd 12/14/06 17:50 Page 270

We are now ready to modify the Ch5DrawShape class to draw three filled circles.
We will implement this by modifying the start method. First we need to create three
DrawableShape objects and add them to the DrawingBoard object canvas:

DrawableShape shape1 = new DrawableShape();
DrawableShape shape2 = new DrawableShape();
DrawableShape shape3 = new DrawableShape();

shape1.setCenterPoint(new Point(250,300));
shape2.setCenterPoint(new Point(500,300));
shape3.setCenterPoint(new Point(750,300));

canvas.addShape(shape1);
canvas.addShape(shape2);
canvas.addShape(shape3);

Then we set the motion type to SMOOTH movement, make the window appear on the
screen, and start the drawing:

canvas.setMovement(DrawingBoard.Movement.SMOOTH);
canvas.setVisible(true);
canvas.start();

Here’s the code for the preliminary DrawableShape class:

5.8 Sample Development 271

step 2 code

import java.awt.*;

/*
Step 2: Add a preliminary DrawableShape class

A class whose instances know how to draw themselves.
*/
class DrawableShape {

private Point centerPoint;

public DrawableShape() {

centerPoint = null;
}

public void draw(Graphics g) {

g.setColor(Color.blue);
g.fillOval(centerPoint.x-100, centerPoint.y-100, 200, 200);

}

Data Members

Constructors

draw

wu23399_ch05.qxd 12/14/06 17:50 Page 271

5.8 Sample Development—continued

The Ch5DrawShape class now has the modified start method as designed (the rest of
the class remains the same):

272 Chapter 5 Selection Statements

public Point getCenterPoint() {

return centerPoint;
}

public Dimension getDimension() {

return new Dimension(200, 200);
}

public void setCenterPoint(Point point) {

centerPoint = point;
}

}

getCenterPoint

getDimension

setCenterPoint

import java.awt.*;

/*
Chapter 5 Sample Development: Start drawing shapes (Step 2)

The main class of the program.
*/

class Ch5DrawShape {

. . .

public void start() {

DrawableShape shape1 = new DrawableShape();
DrawableShape shape2 = new DrawableShape();
DrawableShape shape3 = new DrawableShape();

shape1.setCenterPoint(new Point(250,300));
shape2.setCenterPoint(new Point(500,300));
shape3.setCenterPoint(new Point(750,300));

canvas.addShape(shape1);
canvas.addShape(shape2);
canvas.addShape(shape3);

start

wu23399_ch05.qxd 12/14/06 17:50 Page 272

canvas.setMovement(DrawingBoard.Movement.SMOOTH);

canvas.setVisible(true);
canvas.start();

}
. . .

}

5.8 Sample Development 273

Now we run the program and verify the three bouncing circles moving around. To
test other options of the DrawingBoard class, we will try the other methods with different
parameters:

Method Test Parameter

setMovement Try both DrawingBoard.STATIONARY and
DrawingBoard.RANDOM.

setDelayTime Try values ranging from 0.1 to 3.0.

setBackground Try several different Color constants such
as Color.white, Color.red, and
Color.green.

We insert these testing statements before the statement

canvas.setVisible(true);

in the start method.
Another testing option we should try is the drawing of different geometric shapes.

We can replace the drawing statement inside the draw method from

g.fillOval(centerPoint.x-100, centerPoint.y-100,
200, 200);

to

g.fillRect(centerPoint.x-100, centerPoint.y-100,
200, 200);

or

g.fillRoundRect(centerPoint.x-100, centerPoint.y-100,
200, 200, 50, 50);

to draw a filled rectangle or a filled rounded rectangle, respectively.

step 2 test

wu23399_ch05.qxd 12/14/06 17:50 Page 273

5.8 Sample Development—continued

Step 3 Development: Allow the User to Select a Shape

Now that we know how to interact with the DrawingBoard class, we can proceed to
develop the user interface portion of the program. There are three categories in which
the user can select an option: shape, color, and motion. We will work on the shape selec-
tion here and on the color and motion selection in the next two steps. Once we are done
with this step, the next two steps are fairly straightforward because the idea is essentially
the same.

Let’s allow the user to select one of three shapes—ellipse, rectangle, and rounded
rectangle—the shapes we know how to draw at this point.We can add more fancy shapes
later. In what ways should we allow the user to input the shape? There are two possible
alternatives:The first would ask the user to enter the text and spell out the shape, and the
second would ask the user to enter a number that corresponds to the shape (1 for ellipse,
2 for rectangle, 3 for rounded rectangle, e.g.).Which is the better alternative?

We anticipate at least two problems with the first input style.When we need to get
a user’s name, for example, there’s no good alternative other than asking the user to enter
his or her name. But when we want the user to select one of the few available choices, it is
cumbersome and too much of a burden for the user. Moreover, it is prone to mistyping.

To allow the user to make a selection quickly and easily, we can let the user select
one of the available choices by entering a corresponding number.We will list the choices
with numbers 1, 2, and 3 and get the user’s selection as follows:

System.out.print("Selection: Enter the Shape number\n" +
" 1 - Ellipse \n" +
" 2 - Rectangle \n" +
" 3 - Rounded Rectangle \n");

int selection = scanner.nextInt();

For getting the dimension of the shape, we accept the width and height values
from the user. The values cannot be negative, for sure, but we also want to restrict the
values to a certain range. We do not want the shape to be too small or too large. Let’s set
the minimum to 100 pixels and the maximum to 500 pixels. If the user enters a value
outside the acceptable range, we will set the value to 100.The input routine for the width
can be written as follows:

System.out.print("Enter the width of the shape\n" +
"between 100 and 500 inclusive: ");

int width = scanner.nextInt();

if (width < 100 || width > 500) {
width = 100;

}

The input routine for the height will work in the same manner.

274 Chapter 5 Selection Statements

step 3
design

design
alternative 1

design
alternative 2

wu23399_ch05.qxd 12/14/06 17:50 Page 274

For getting the x and y values of the shape’s center point, we follow the pattern of
getting the width and height values. We will set the acceptable range for the x value to
200 and 800, inclusive, and the y value to 100 and 600, inclusive.

Our next task is to modify the DrawableShape class so it will be able to draw three
different geometric shapes. First we change the constructor to accept the three input
values:

public DrawableShape(Type sType, Dimension sDim,
Point sCenter) {

type = sType;
dimension = sDim;
centerPoint = sCenter;

}

The variables type, dimension, and centerPoint are data members for keeping track of
necessary information.

Next, we define the data member constants as follows:

public static enum Type {ELLIPSE, RECTANGLE, ROUNDED_RECTANGLE}

private static final Dimension DEFAULT_DIMENSION
= new Dimension(200, 200);

private static final Point DEFAULT_CENTER_PT
= new Point(350, 350);

In the previous step, the draw method drew a fixed-size circle.We need to modify it
to draw three different geometric shapes based on the value of the data member type.
We can modify the method to

public void draw(Graphics g) {

g.setColor(Color.blue);

drawShape(g);

}

with the private method drawShape defined as

private void drawShape(Graphics g) {

switch (type) {

case ELLIPSE:
//code to draw a filled oval comes here
break;

case RECTANGLE:
//code to draw a filled rectangle comes here
break;

5.8 Sample Development 275

wu23399_ch05.qxd 12/14/06 17:50 Page 275

5.8 Sample Development—continued

case ROUNDED_RECTANGLE:
//code to draw a filled rounded rectangle
//comes here
break;

}
}

Here’s the modified main class Ch5DrawShape:

276 Chapter 5 Selection Statements

step 3 code

import java.awt.*;
import java.util.*;

/*
Chapter 5 Sample Development: Handle User Input for Shape Type (Step 3)

The main class of the program.
*/

class Ch5DrawShape {

. . .

public void start() {

DrawableShape shape1 = getShape();

canvas.addShape(shape1);

canvas.setMovement(DrawingBoard.SMOOTH);

canvas.setVisible(true);
canvas.start();

}

private DrawableShape getShape() {

DrawableShape.Type type = inputShapeType();

Dimension dim = inputDimension();

Point centerPt = inputCenterPoint();

DrawableShape shape = new DrawableShape(type, dim, centerPt);

return shape;
}

start

getShape

wu23399_ch05.qxd 1/12/07 10:45 Page 276

private DrawableShape.Type inputShapeType() {

System.out.print("Selection: Enter the Shape number\n" +
" 1 - Ellipse \n" +
" 2 - Rectangle \n" +
" 3 - Rounded Rectangle \n");

int selection = scanner.nextInt();

DrawableShape.Type type;

switch (selection) {

case 1: type = DrawableShape.Type.ELLIPSE;
break;

case 2: type = DrawableShape.Type.RECTANGLE;
break;

case 3: type = DrawableShape.Type.ROUNDED_RECTANGLE;
break;

default: type = DrawableShape.Type.ELLIPSE;
break;

}

return type;
}

private Dimension inputDimension() {

System.out.print("Enter the width of the shape\n" +
"between 100 and 500 inclusive: ");

int width = scanner.nextInt();

if (width < 100 || width > 500) {
width = 100;

}

System.out.print("Enter the height of the shape\n" +
"between 100 and 500 inclusive: ");

int height = scanner.nextInt();

if (height < 100 || height > 500) {
height = 100;

}

return new Dimension(width, height);
}

5.8 Sample Development 277

inputShapeType

inputDimension

wu23399_ch05.qxd 12/14/06 17:51 Page 277

5.8 Sample Development—continued

private Point inputCenterPoint() {

System.out.print("Enter the x value of the center point\n" +
"between 200 and 800 inclusive: ");

int x = scanner.nextInt();

if (x < 200 || x > 800) {
x = 200;

}

System.out.print("Enter the y value of the center point\n" +
"between 100 and 500 inclusive: ");

int y = scanner.nextInt();

if (y < 100 || y > 500) {
y = 100;

}

return new Point(x, y);
}
. . .

}

278 Chapter 5 Selection Statements

inputCenterPoint

Data Members

The DrawableShape class is now modified to this:

import java.awt.*;

/*
Step 3: Draw different shapes

A class whose instances know how to draw themselves.
*/

class DrawableShape {

public static enum Type {ELLIPSE, RECTANGLE, ROUNDED_RECTANGLE}

private static final Dimension DEFAULT_DIMENSION
= new Dimension(200, 200);

wu23399_ch05.qxd 12/14/06 17:51 Page 278

private static final Point DEFAULT_CENTER_PT = new Point(350, 350);

private Point centerPoint;

private Dimension dimension;

private Type type;

public DrawableShape(Type sType, Dimension sDim, Point sCenter) {

type = sType;
dimension = sDim;
centerPoint = sCenter;

}

public void draw(Graphics g) {

g.setColor(Color.blue);

drawShape(g);
}

. . .

public void setType(Type shapeType) {

type = shapeType;
}

private void drawShape(Graphics g) {
switch (type) {

case ELLIPSE:
g.fillOval(centerPoint.x - dimension.width/2,

centerPoint.y - dimension.height/2,
dimension.width,
dimension.height);

break;

case RECTANGLE:
g.fillRect(centerPoint.x - dimension.width/2,

centerPoint.y - dimension.height/2,
dimension.width,
dimension.height);

break;

case ROUNDED_RECTANGLE:
g.fillRoundRect(centerPoint.x - dimension.width/2,

centerPoint.y - dimension.height/2,
dimension.width,
dimension.height,

5.8 Sample Development 279

Constructor

draw

setType

drawShape

wu23399_ch05.qxd 12/14/06 17:51 Page 279

5.8 Sample Development—continued

(int) (dimension.width * 0.3),
(int) (dimension.height * 0.3));

break;
}

}

}

280 Chapter 5 Selection Statements

Notice how we add code for handling the case when an invalid number is entered in
the inputShapeType method. We use the default case to set the shape type to ELLIPSE
if an invalid value is entered. In addition to handling the invalid entries, it is critical for us
to make sure that all valid entries are handled correctly. For example, we cannot leave the
type undefined or assigned to a wrong value when one of the valid data is entered.

When we write a selection control statement, we must make sure that all possible
cases are handled correctly.

Now we run the program multiple times, trying various shape types, dimensions,
and center points. After we verify that everything is working as expected, we proceed to
the next step.

Step 4 Development: Allow the User to Select a Color

In the fourth development step, we add a routine that allows the user to specify the color
of the selected shape. We adopt the same input style for accepting the shape type as in
step 3. We list five different color choices and let the user select one of them by entering
the corresponding number. We use a default color when an invalid number is entered.
Analogous to the shape selection routine,we will add a method named inputColor to the
Ch5DrawShape class.The structure of this method is identical to that of the input meth-
ods, except the return type is Color. Using the inputColor method, we can define the
getShape method as follows:

private DrawableShape getShape() {

DrawableShape.Type type = inputShapeType();

Dimension dim = inputDimension();

step 3 test

step 4
design

wu23399_ch05.qxd 12/14/06 17:51 Page 280

Point centerPt = inputCenterPoint();

Color color = inputColor();

DrawableShape shape

= new DrawableShape(type, dim, centerPt, color);

return shape;
}

We make a small extension to the DrawableShape class by changing the con-
structor to accept a color as its fourth argument and adding a data member to keep track
of the selected color.

Here’s the modified Ch5DrawShape class:

5.8 Sample Development 281

step 4 code

import java.awt.*;
import java.util.*;

/*
Chapter 5 Sample Development: Color selection (Step 4)

The main class of the program.
*/

class Ch5DrawShape {

. . .

private DrawableShape getShape() {

DrawableShape.Type type = inputShapeType();
Dimension dim = inputDimension();
Point centerPt = inputCenterPoint();
Color color = inputColor();

DrawableShape shape
= new DrawableShape(type, dim, centerPt, color);

return shape;
}

private Color inputColor() {

System.out.print("Selection: Enter the Color number\n" +
" 1 - Red \n" +
" 2 - Green \n" +
" 3 - Blue \n" +
" 4 - Yellow \n" +
" 5 - Magenta \n");

int selection = scanner.nextInt();

getShape

inputColor

wu23399_ch05.qxd 12/14/06 17:51 Page 281

5.8 Sample Development—continued

Color color;
switch (selection) {

case 1: color = Color.red;
break;

case 2: color = Color.green;
break;

case 3: color = Color.blue;
break;

case 4: color = Color.yellow;
break;

case 5: color = Color.magenta;
break;

default: color = Color.red;
break;

}

return color;
}

. . .
}

282 Chapter 5 Selection Statements

The DrawableShape class is now modified to this:

import java.awt.*;

/*
Step 4: Adds the color choice

A class whose instances know how to draw themselves.
*/
class DrawableShape {

. . .

private static final Color DEFAULT_COLOR = Color.BLUE;

. . . Data Members

wu23399_ch05.qxd 12/14/06 17:51 Page 282

private Color fillColor;

. . .

public DrawableShape(Type sType, Dimension sDim,
Point sCenter, Color sColor) {

type = sType;
dimension = sDim;
centerPoint = sCenter;
fillColor = sColor;

}

public void draw(Graphics g) {
g.setColor(fillColor);

drawShape(g);

}
. . .

}

5.8 Sample Development 283

Constructor

draw

Now we run the program several times,each time selecting a different color,and we
verify that the shape is drawn in the chosen color. After we verify the program, we move
on to the next step.

Step 5 Development: Allow the User to Select a Motion Type

In the fifth development step, we add a routine that allows the user to select the motion
type. We give three choices to the user: stationary, random, or smooth. The same design
we used in steps 3 and 4 is applicable here, so we adopt it for the motion type selection
also. Since we adopt the same design, we can ease into the coding phase.

Here’s the modified main class Ch5DrawShape:

step 4 test

step 5
design

step 5 code

import java.awt.*;
import java.util.*;

/*
Chapter 5 Sample Development: Color selection (Step 5)

The main class of the program.
*/
class Ch5DrawShape {

. . .

wu23399_ch05.qxd 12/14/06 17:51 Page 283

5.8 Sample Development—continued

public void start() {

DrawableShape shape1 = getShape();

canvas.addShape(shape1);

canvas.setMovement(inputMotionType());

canvas.setVisible(true);
canvas.start();

}

. . .

private DrawingBoard.Movement inputMotionType() {

System.out.print("Selection: Enter the Motion number\n" +
" 1 - Stationary (no movement) \n" +
" 2 - Random Movement \n" +
" 3 - Smooth Movement \n");

int selection = scanner.nextInt();

DrawingBoard.Movement type;
switch (selection) {

case 1: type = DrawingBoard.Movement.STATIONARY;
break;

case 2: type = DrawingBoard.Movement.RANDOM;
break;

case 3: type = DrawingBoard.Movement.SMOOTH;
break;

default: type = DrawingBoard.Movement.SMOOTH;
break;

}

return type;
}
. . .

}

284 Chapter 5 Selection Statements

start

inputMotionType

No changes are required for the DrawableShape class, as the DrawingBoard class
is the one responsible for the shape movement.

wu23399_ch05.qxd 12/14/06 17:51 Page 284

Now we run the program multiple times and test all three motion types. From what
we have done, we can’t imagine the code we have already written in the earlier steps to
cause any problems; but if we are not careful, a slight change in one step could cause the
code developed from the earlier steps to stop working correctly (e.g., erroneously reusing
data members in newly written methods). So we should continue to test all aspects of the
program diligently. After we are satisfied with the program, we proceed to the final step.

Step 6 Development: Finalize

We will perform a critical review of the program, looking for any unfinished method,
inconsistency or error in the methods, unclear or missing comments, and so forth. We
should also not forget to improve the program for cleaner code and better readability.
Another activity we can pursue in the final step is to look for extensions.

There are several interesting extensions we can make to the program. First is the
morphing of an object. In the current implementation, once the shape is selected, it will
not change. It would be more fun to see the shape changes; for example, the width and
height of the shape’s dimension can be set to vary while the shape is drawn. Another
interesting variation is to make a circle morph into a rectangle and morph back into a
circle. Second is the drawing of multiple shapes. Third is the variation in color while the
shape is drawn. Fourth is the drawing of a text (we “draw” a text on the Graphics context
just as we draw geometric shapes). You can make the text scroll across the screen from
right to left by setting the motion type of DrawingBoard to STATIONARY and updating
the center point value within our DrawableShape class. All these extensions are left as
exercises.

Summary 285

step 5 test

program
review

possible
extensions

• A selection control statement is used to alter the sequential flow of control.

• The if and switch statements are two types of selection control.

• The two versions of the if statement are if–then–else and if–then.

• A boolean expression contains conditional and boolean operators and
evaluates to true or false.

• Three boolean operators in Java are AND (&&), OR (||), and NOT (!).

• DeMorgan’s laws state !(P &&Q) and !P || !Q are equivalent and !(P || Q) and
!P && !Q are equivalent.

• Logical operators && and || are evaluated by using the short-circuit
evaluation technique.

• A boolean flag is useful in keeping track of program settings.

• An if statement can be a part of the then or else block of another if statement
to formulate nested if statements.

• Careful attention to details is important to avoid illogically constructed
nested if statements.

S u m m a r y

wu23399_ch05.qxd 12/14/06 17:51 Page 285

• When the equality symbol == is used in comparing the variables of reference
data type, we are comparing the addresses.

• The switch statement is useful for expressing a selection control based on
equality testing between data of type char, byte, short, or int.

• The break statement causes the control to break out of the surrounding
switch statement (note: also from other control statements introduced in
Chap. 6).

• The standard classes introduced in this chapter are

286 Chapter 5 Selection Statements

java.awt.Graphics
java.awt.Color

java.awt.Point
java.awt.Dimension

K e y C o n c e p t s

sequential execution

control statements

if statement

boolean expressions

relational operators

selection statements

nested if statements

increment and decrement operators

boolean operators

switch statements

break statements

defensive programming

content pane of a frame

enumerated constants

• The java.awt.Graphics class is used to draw geometric shapes.

• The java.awt.Color class is used to set the color of various GUI components.

• The java.awt.Point class is used to represent a point in two-dimensional space.

• The java.awt.Dimension class is used to represent a bounding rectangle of
geometric shapes and other GUI components.

• The enumerated constants provide type safety and increase the program
readability.

E x e r c i s e s

1. Indent the following if statements properly.

a. if (a == b) if (c == d) a = 1; else b = 1; else c = 1;

b. if (a == b) a = 1; if (c == d) b = 1; else c = 1;

c. if (a == b) {if (c == d) a = 1; b = 2; } else b = 1;

d. if (a == b) {

if (c == d) a = 1; b = 2; }

else {b = 1; if (a == d) d = 3;}

2. Which two of the following three if statements are equivalent?

a. if (a == b)

if (c == d) a = 1;

else b = 1;

wu23399_ch05.qxd 12/14/06 17:51 Page 286

b. if (a == b) {

if (c == d) a = 1; }

else b = 1;

c. if (a == b)

if (c == d) a = 1;

else b = 1;

3. Evaluate the following boolean expressions. For each of the following
expressions, assume x is 10, y is 20, and z is 30. Indicate which of the
following boolean expressions are always true and which are always false,
regardless of the values for x, y, or z.

a. x < 10 || x > 10

b. x > y && y > x

c. (x < y + z) && (x + 10 <= 20)

d. z - y == x && Math.abs(y - z) == x

e. x < 10 && x > 10

f. x > y || y > x

g. !(x < y + z) || !(x + 10 <= 20)

h. !(x == y)) && (x != y) && (x < y || y < x)

4. Express the following switch statement by using nested if statements.

switch (grade) {
case 10:
case 9: a = 1;

b = 2;
break;

case 8: a = 3;
b = 4;
break;

default: a = 5;
break;

}

5. Write an if statement to find the smallest of three given integers without
using the min method of the Math class.

6. Draw control flow diagrams for the following two switch statements.

Exercises 287

switch (choice) {
case 1: a = 0;

break;

case 2: b = 1;
break;

case 3: c = 2;
break;

default: d = 3;
break;

}

switch (choice) {
case 1: a = 0;

case 2: b = 1;

case 3: c = 2;

default: d = 3;
}

wu23399_ch05.qxd 12/14/06 17:51 Page 287

7. Write an if statement that prints out a message based on the following rules:

288 Chapter 5 Selection Statements

If the Total Points Are Message to Print

� 100 You won a free cup of coffee.

� 200 You won a free cup of coffee and a regular-size doughnut.

� 300 You won a free cup of coffee and a regular-size
doughnut and a 12-oz orange juice.

� 400 You won a free cup of coffee and a regular-size dough-
nut and a 12-oz orange juice and a combo breakfast.

� 500 You won a free cup of coffee and a regular-size
doughnut and a 12-oz orange juice and a combo
breakfast and a reserved table for one week.

8. Rewrite the following if statement, using a switch statement.

selection = scanner.nextInt();

if (selection == 0)
System.out.println("You selected Magenta");

else if (selection == 1)
System.out.println("You selected Cyan");

else if (selection == 2)
System.out.println("You selected Red");

else if (selection == 3)
System.out.println("You selected Blue");

else if (selection == 4)
System.out.println("You selected Green");

else
System.out.println("Invalid selection");

9. At the end of movie credits you see the year movies are produced in Roman
numerals, for example, MCMXCVII for 1997. To help the production staff
determine the correct Roman numeral for the production year, write an applet
or application that reads a year and displays the year in Roman numerals.

Roman Numeral Number

I 1
V 5
X 10
L 50
C 100
D 500
M 1000

Remember that certain numbers are expressed by using a “subtraction,” for
example, IV for 4, CD for 400, and so forth.

wu23399_ch05.qxd 12/14/06 17:51 Page 288

10. Write a program that replies either Leap Year or Not a Leap Year, given a
year. It is a leap year if the year is divisible by 4 but not by 100 (for
example, 1796 is a leap year because it is divisible by 4 but not by 100). A
year that is divisible by both 4 and 100 is a leap year if it is also divisible by
400 (for example, 2000 is a leap year, but 1800 is not).

11. One million is 106 and 1 billion is 109. Write a program that reads a power
of 10 (6, 9, 12, etc.) and displays how big the number is (Million, Billion,
etc.). Display an appropriate message for the input value that has no
corresponding word. The table below shows the correspondence between
the power of 10 and the word for that number.

Power of 10 Number

6 Million
9 Billion

12 Trillion
15 Quadrillion
18 Quintillion
21 Sextillion
30 Nonillion

100 Googol

12. Write a program RecommendedWeightWithTest by extending the
RecommendedWeight (see Exercise 8 on page 209). The extended program
will include the following test:

if (the height is between 140cm and 230cm)

compute the recommended weight

else

display an error message

13. Extend the RecommendedWeightWithTest program in Exercise 12 by
allowing the user to enter his or her weight and printing out the message You
should exercise more if the weight is more than 10 lb over the ideal weight
and You need more nourishment if the weight is more than 20 lb under the
recommended weight.

14. Employees at MyJava Lo-Fat Burgers earn the basic hourly wage of $7.25.
They will receive time-and-a-half of their basic rate for overtime hours. In
addition, they will receive a commission on the sales they generate while
tending the counter. The commission is based on the following formula:

Exercises 289

Sales Volume Commission

$1.00 to $99.99 5% of total sales

$100.00 to $299.99 10% of total sales

� $300.00 15% of total sales

Write an application that inputs the number of hours worked and the total
sales and computes the wage.

wu23399_ch05.qxd 12/14/06 17:51 Page 289

15. Using the DrawingBoard class, write a screensaver that displays a scrolling
text message. The text messages moves across the window, starting from the
right edge toward the left edge. Set the motion type to stationary, so the
DrawingBoard does not adjust the position. You have to adjust the text’s
position inside your DrawableShape.

16. Define a class called Triangle that is capable of computing the perimeter and
area of a triangle, given its three sides a, b, and c, as shown below. Notice
that side b is the base of the triangle.

b

ca

290 Chapter 5 Selection Statements

Perimeter � a � b � c

Area � �s(s � a�)(s � b�)(s � c�)�

where s � �
a �

2
b � c
�

The design of this class is identical to that for the Ch5Circle class from
Section 5.1. Define a private method isValid to check the validity of three
sides. If any one of them is invalid, the methods getArea and getPerimeter
will return the constant INVALID_DIMENSION.

17. Modify the Ch5RoomWinner class so the three dorm lottery cards are drawn
vertically. Make the code for drawing flexible by using the HEIGHT constant
in determining the placement of three cards.

Development Exercises
For the following exercises, use the incremental development methodology to
implement the program. For each exercise, identify the program tasks, create
a design document with class descriptions, and draw the program diagram.
Map out the development steps at the start. Present any design alternatives and
justify your selection. Be sure to perform adequate testing at the end of each
development step.

18. MyJava Coffee Outlet (see Exercise 25 from Chap. 3) decided to give
discounts to volume buyers. The discount is based on the following table:

Order Volume Discount

� 25 bags 5% of total price

� 50 bags 10% of total price

� 100 bags 15% of total price

� 150 bags 20% of total price

� 200 bags 25% of total price

� 300 bags 30% of total price

wu23399_ch05.qxd 12/14/06 17:51 Page 290

Each bag of beans costs $5.50. Write an application that accepts the number
of bags ordered and prints out the total cost of the order in the following
style:

Number of Bags Ordered: 173 - $ 951.50

Discount:
20% - $ 190.30

Your total charge is: $ 761.20

19. Combine Exercises 18 and 25 of Chap. 3 to compute the total charge
including discount and shipping costs. The output should look like the
following:

Number of Bags Ordered: 43 - $ 236.50

Discount:
5% - $ 11.83

Boxes Used:
1 Large - $1.80
2 Medium - $2.00

Your total charge is: $ 228.47

Note: The discount applies to the cost of beans only.

20. You are hired by Expressimo Delivery Service to develop an application
that computes the delivery charge. The company allows two types of
packaging—letter and box—and three types of service—Next Day Priority,
Next Day Standard, and 2-Day. The following table shows the formula for
computing the charge:

Exercises 291

Package Next Day Next Day
Type Priority Standard 2-Day

Letter $12.00, up to 8 oz $10.50, up to 8 oz Not available

Box $15.75 for the first $13.75 for the first $7.00 for the first
pound. Add $1.25 pound. Add $1.00 pound. Add $0.50
for each additional for each additional for each additional
pound over the first pound over the first pound over the first
pound. pound. pound.

The program will input three values from the user: type of package, type of
service, and weight of the package.

wu23399_ch05.qxd 12/14/06 17:51 Page 291

21. Ms. Latte’s Mopeds ‘R Us rents mopeds at Monterey Beach Boardwalk. To
promote business during the slow weekdays, the store gives a huge discount.
The rental charges are as follows:

292 Chapter 5 Selection Statements

Moped Type Weekday Rental Weekend Rental

50cc Mopette $15.00 for the first 3 h, $30.00 for the first 3 h,
$2.50 per hour after the $7.50 per hour after the
first 3 h. first 3 h.

250cc Mohawk $25.00 for the first $35.00 for the first 3 h,
3 h, $3.50 per hour after $8.50 per hour after the
the first 3 h. first 3 h.

Write a program that computes the rental charge, given the type of moped,
when it is rented (either weekday or weekend), and the number of hours
rented.

22. Write an application program that teaches children how to read a clock. Use
JOptionPane to enter the hour and minute. Accept only numbers between
0 and 12 for hour and between 0 and 59 for minute. Print out an appropriate
error message for an invalid input value. Draw a clock that looks something
like this:

To draw a clock hand, you use the drawLine method of the Graphics class.
The endpoints of the line are determined as follows:

(ox � K cos �, oy � K sin �)

(ox, oy)

Note: We subtract here because
the y value in pixel coordinates
for windows increases in the
downward direction.

wu23399_ch05.qxd 12/14/06 17:51 Page 292

The value for constant K determines the length of the clock hand. Make the
K larger for the minute hand than for the hour hand. The angle � is expressed
in radians. The angle �min of the minute hand is computed as

(90 � Minute 	 6.0) �
1
�

80
�

and the angle �hr of the hour hand is computed as

�90 � �Hour � �
M

6
i
0
n
.
u
0
te

�� 	 30.0� �
1
�

80
�

where Hour and Minute are input values. The values 6.0 and 30.0 designate
the degrees for 1 min and 1 h (i.e., the minute hand moves 6 degrees in
1 min and the hour hand moves 30.0 degrees in 1 h). The factor ��180
converts a degree into the radian equivalent.

You can draw the clock on the content pane of a frame window by
getting the content pane’s Graphic object as described in the chapter. Here’s
some sample code:

import javax.swing.*;
import java.awt.*; //for Graphics
...
JFrame win;
Container contentPane;
Graphics g;
...
win = new JFrame();
win.setSize(300, 300);
win.setLocation(100,100);
win.setVisible(true);
...
contentPane = win.getContentPane();
g = contentPane.getGraphics();
g.drawOval(50,50,200,200);

23. Extend the application in Exercise 22 by drawing a more realistic, better-
looking clock, such as this one:

39

12

6

Exercises 293

wu23399_ch05.qxd 12/14/06 17:51 Page 293

24. After starting a successful coffee beans outlet business, MyJava Coffee
Outlet is now venturing into the fast-food business. The first thing the
management decides is to eliminate the drive-through intercom. MyJava
Lo-Fat Burgers is the only fast-food establishment in town that provides a
computer screen and mouse for its drive-through customers. You are hired as
a freelance computer consultant. Write a program that lists items for three
menu categories: entree, side dish, and drink. The following table lists the
items available for each entry and their prices. Choose appropriate methods
for input and output.

Entree Side Dish Drink

Tofu Burger $3.49 Rice Cracker $0.79 Cafe Mocha $1.99
Cajun Chicken $4.59 No-Salt Fries $0.69 Cafe Latte $1.99
Buffalo Wings $3.99 Zucchini $1.09 Espresso $2.49
Rainbow Fillet $2.99 Brown Rice $0.59 Oolong Tea $0.99

294 Chapter 5 Selection Statements

wu23399_ch05.qxd 12/14/06 17:51 Page 294

Repetition Statements

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Nest a loop repetition statement inside
another repetition statement.

• Choose the appropriate repetition control
statement for a given task.

• (Optional) Write simple recursive methods.

• Format output values by using the Formatter
class.

295

• Implement repetition control in a program
using while statements.

• Implement repetition control in a program
using do–while statements.

• Implement a generic loop-and-a-half
repetition control statement.

• Implement repetition control in a program
using for statements.

6

wu23399_ch06.qxd 12/14/06 17:53 Page 295

he selection statements we covered in Chapter 5 alter the control flow of a program.
In this chapter we will cover another group of control statements called repetition
statements. Repetition statements control a block of code to be executed for a fixed
number of times or until a certain condition is met. We will describe Java’s three
repetition statements: while, do–while, and for. Finally, in optional Section 6.11, we
will describe recursive methods. A recursive method is a method that calls itself.
Instead of a repetition statement, a recursive method can be used to program the
repetition control flow.

6.1 The while Statement
Suppose we want to compute the sum of the first 100 positive integers 1, 2, . . . , 100.
Here’s how we compute the sum, using a while statement:

int sum = 0, number = 1;

while (number <= 100) {
sum = sum + number;
number = number + 1;

}

Let’s analyze the while statement. The statement follows the general format

while (<boolean expression>)

<statement>

where <statement> is either a <single statement> or a <compound statement>. The
<statement> of the sample while statement is a <compound statement> and there-
fore has the left and right braces. Repetition statements are also called loop state-
ments, and we characterize the <statement> as the loop body. Figure 6.1 shows how
this while statement corresponds to the general format. As long as the <boolean
expression> is true, the loop body is executed. Figure 6.2 is a diagram showing the
control flow of the sample code.

Let’s modify the loop so this time we keep on adding the numbers 1, 2, 3, and
so forth, until the sum becomes more than 1,000,000. Here’s how we write the while
statement:

int sum = 0, number = 1;

while (sum <= 1000000) {
sum = sum + number;
number = number + 1;

}

296 Chapter 6 Repetition Statements

I n t r o d u c t i o n

T

while state-
ment syntax

loop body

recursive
method

repetition
statements

wu23399_ch06.qxd 12/14/06 17:53 Page 296

Notice how the <boolean expression> is modified, and it is the only part of the while
statement that is modified.

Let’s try another example. This time, we compute the product of the first
20 odd integers. (Note: The ith odd integer is 2 * i – 1. For example, the fourth odd
integer is 2 * 4 – 1 = 7.)

int product = 1, number = 1, count = 20, lastNumber;

lastNumber = 2 * count - 1;

while (number <= lastNumber) {
product = product * number;
number = number + 2;

}

The first and the third sample while statements are called count-controlled
loops because the loop body is executed for a fixed number of times (as if we were
counting).

6.1 The while Statement 297

count-
controlled loop

number <= 100) {while (

 sum = sum + number;

 number = number + 1;
}

Boolean Expression

Statement
(loop body)

Figure 6.1 Correspondence of the example while statement of the general format.

Figure 6.2 A diagram showing the control flow of a while statement.

true

false

number <= 100?

sum = sum + number;

number = number + 1;

int sum = 0, number = 1;

wu23399_ch06.qxd 12/14/06 17:53 Page 297

Improving User Interface with a Loop
Now let’s study how the repetition control in the program will improve the user in-
terface of the program. In earlier sample programs, we assumed the input data were
valid. The programs we have written may produce wrong results or simply stop run-
ning if the user enters an invalid value. Assuming that the input values are valid
makes the writing of programs easier because we do not have to write code to han-
dle the invalid values. Although it is easier for us to write such programs, it would
be an inferior interface from the user’s standpoint. Requiring the user to make no
mistake in entering input values is too restrictive and not user-friendly. We need to
develop programs that are more user-friendly. Imagine you successfully entered
19 values, but on the 20th input value, you mistyped. A user-hostile program would
stop, and you would have to run the program again. A more user-friendly program
would allow you to reenter a correct 20th value.

All we could have done using a selection statement was either to print out an
error message or to set a default value if the user enters an invalid value. In the
inputShapeType method of the Chapter 5 sample development, for example, if the
user enters any invalid value, we set the shape type to ellipse. Instead of quitting
the program after displaying an error message or continuing the program with a de-
fault value, it would be better in general to allow the user to reenter the value until
the correct value is entered. We need a repetition control to achieve this.

Let’s look at an example. Suppose we want to input a person’s age, and the
value must be between 0 and 130. We know the age cannot be negative, so the age
input must be greater than or equal to 0. We set the upper bound to 130 to take into
account the possibility of some long-living human beings in a remote hamlet in
Timbuktu. Let’s say we will let the user enter the age until a valid age is entered. We
can code this repetition control, using a while statement:

Scanner scanner = new Scanner(System.in);

int age;

System.out.print("Your Age (between 0 and 130): ");

age = scanner.nextInt();

while (age < 70 || age > 130) {

System.out.println(
"An invalid age was entered. Please try again.");

System.out.print ("Your Age (between 0 and 130): ");

age = scanner.nextInt();
}

Notice that we included the statements

System.out.print("Your Age (between 0 and 130): ");

age = scanner.nextInt();

to input the age before the while statement. Without this input statement, the vari-
able age will not have a value when the boolean expression is evaluated for the very

298 Chapter 6 Repetition Statements

wu23399_ch06.qxd 12/14/06 17:53 Page 298

first time. This reading of a value before the testing is done is called a priming read.
We will discuss this issue of priming read further in Section 6.4.

As the second example, let’s modify the inputShapeType method from Sec-
tion 5.6. To refresh our memory, here’s the original code:

private DrawableShape.Type inputShapeType() {

System.out.print("Selection: Enter the Shape number\n" +
" 1 - Ellipse \n" +
" 2 - Rectangle \n" +
" 3 - Rounded Rectangle \n");

int selection = scanner.nextInt();

DrawableShape.Type type;

switch (selection) {

case 1: type = DrawableShape.Type.ELLIPSE;
break;

case 2: type = DrawableShape.Type.RECTANGLE;
break;

case 3: type = DrawableShape.Type.ROUNDED_RECTANGLE;
break;

default: type = DrawableShape.Type.ELLIPSE;
break;

}

return type;
}

To allow the user to reenter the value until the valid entry is made, we can modify
the method to the following:

private int inputShapeType() {

int selection = getSelection();

DrawableShape.Type type;
switch (selection) {

case 1: type = DrawableShape.Type.ELLIPSE;
break;

case 2: type = DrawableShape.Type.RECTANGLE;
break;

case 3: type = DrawableShape.Type.ROUNDED_RECTANGLE;
break;

default: System.out.println
("Internal Error: Proceed with Default");
type = DrawableShape.Type.ELLIPSE;
break;

6.1 The while Statement 299

priming read

getSelection is defined
after this method.

This default case should
never happen if getSelection
is implemented correctly.We

put this here to catch any
internal coding error.

wu23399_ch06.qxd 12/14/06 17:53 Page 299

}

return type;
}

private int getSelection() {

int selection;

System.out.print("Selection: Enter the Shape number\n" +
" 1 - Ellipse \n" +
" 2 - Rectangle \n" +
" 3 - Rounded Rectangle \n");

selection = scanner.nextInt();

while (selection < 1 || selection > 3) {

System.out.println(
"An invalid age was entered. Please try
again.\n");

System.out.print("Selection: Enter the Shape
number\n" +
" 1 - Ellipse \n" +
" 2 - Rectangle \n" +
" 3 - Rounded Rectangle \n");

selection = scanner.nextInt();

}

return selection;
}

The next example keeps reading in integers and computes their running sum
until a negative number is entered.

int sum = 0; number;

Scanner scanner = new Scanner(System.in);

System.out.print("Enter integer ");

number = scanner.nextInt();

while (number >= 0) {

sum = sum + number;

System.out.print("Enter integer ");

number = scanner.nextInt();
}

The previous three sample while statements are called sentinel-controlled
loops. With a sentinel-controlled loop, the loop body is executed repeatedly until
any one of the designated values, called a sentinel, is encountered. The sentinels for
the three examples, respectively, are any value between 0 and 130, any value from
1 to 3, and any negative number.

300 Chapter 6 Repetition Statements

sentinel-
controlled loop

wu23399_ch06.qxd 12/14/06 17:53 Page 300

Sample Program with a Loop
Let’s write a short sample program that illustrates the use of a while statement. It is
a well-known fact that students in college do not get enough sleep, some studying
hard while others are enjoying life too much. Which dorm they live in also makes a
huge difference, so let’s develop a program that determines the average sleeping
time of the residents in a given dorm. This information can be made available on the
housing office website so the students can make an informed decision on which
dorm to choose for the next academic year.

Using Scanner, first we will input the dorm name. Then we loop and input the
length of sleep of the residents until the input value of zero is entered. When the
input is done, the average sleep time is displayed. We use zero as a sentinel value in-
stead of a negative number such as –1 because we do not want to consider a zero as
a valid entry. Here’s the program listing:

6.1 The while Statement 301

/*
Chapter 6 Sample Program: Sleep Statistics for Dorm Residents

File: Ch6SleepStatistics.java
*/

import java.text.*;
import java.util.*;

class Ch6SleepStatistics {

private Scanner scanner;

public static void main (String[] args) {
Ch6SleepStatistics prog = new Ch6SleepStatistics();
prog.start();

}

public Ch6SleepStatistics() {
scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator"));

}

public void start() {

double sleepHour, sum = 0;
int cnt = 0;

//enter the dorm name
System.out.print("Dorm name: ");
String dorm = scanner.next();

//Loop: get hours of sleep for each resident
// until 0 is entered.
sleepHour = getDouble("Enter sleep hours (0 - to stop:");

main

start

Constructor

wu23399_ch06.qxd 12/14/06 17:53 Page 301

while (sleepHour != 0) {

sum += sleepHour;
cnt++;

sleepHour = getDouble("Enter sleep hours (0 - to stop):");
}

if (cnt == 0) {

System.out.println ("No Data Entered");

} else {

DecimalFormat df = new DecimalFormat("0.00");
System.out.println(

"Average sleep time for " +
dorm + " is \n\n " +
df.format(sum/cnt) + " hours.");

}
}

private double getDouble(String message) {
double result;

System.out.print(message);

result = scanner.nextDouble();

return result;
}

}

302 Chapter 6 Repetition Statements

getDouble

Finding the Greatest Common Divisor
Let’s close this section with a slightly more complicated example of using a loop
statement. In Section 5.4, we defined the equals method for the Fraction class. We
indicated that the fully functional equals method needs to call another method to re-
duce a fraction to its simplest from (e.g., the simplest form of 16/32 is 1/2). To sim-
plify a fraction, we need to find the greatest common divisor of its numerator and
denominator. For example, the greatest common divisor of 16 and 32 is 16. Divid-
ing both the numerator and the denominator by their greatest common denominator
will reduce the fraction to its simplest form. Here we will define a method that
returns the greatest common divisor of two given arguments. (Note: We will de-
velop a full definition of the Fraction class in Chapter 7 when we introduce additional
concepts on programmer-defined classes.)

We will first provide a brute-force solution (inelegant) and then a clever solu-
tion based on the Euclidean algorithm (elegant). The brute-force approach derives

wu23399_ch06.qxd 12/14/06 17:53 Page 302

the solution by applying the definition of greatest common divisor directly. Given
two positive integers M and N, where M < = N, we find their greatest common divi-
sor by dividing M and N with values from 1 to M. The last integer that divided both
M and N perfectly (i.e., there is no remainder), is the greatest common divisor.
Consider 24 and 36, for example. The numbers that divide 24 and 36 perfectly are
1, 2, 3, 4, 6, and 12. So the greatest common divisor is 12. The fraction 24/36 is
reduced to its simplest form 2/3 by dividing 24 and 36 by 12. We can see if a num-
ber j divides another number i perfectly by using the modulo arithmetic. If i % j ==
0, then j divides i perfectly because the remainder of the division is 0.

Here’s the brute-force method:

public int gcd_bruteforce(int m, int n) {

//assume m, n >= 1

int last = Math.min(m, n);

int gcd;
int i = 1;

while (i <= last) {

if (m % i == 0 && n % i == 0) {

gcd = i;
}

i++;
}

return gcd;
}

Now let’s study an elegant solution based on the Euclidean algorithm. We
begin with an example. Consider two positive integers 44 and 16. We will use the
notation gcd(a, b) to stand for the greatest common divisor of a and b. Notice that
gcd(44, 16) = 4. Here’s how the Euclidean algorithm works. First divide 44 by 16.
The remainder is 12. We have the relation

44 = 2 * 16 + 12

From this, we can conclude that the greatest common divisor G that divides 44 and
16 must also divide 12. If it doesn’t, then we get a contradiction. If a number G can
divide 16 perfectly but cannot divide 12 perfectly, then 44 % G = (2*16 + 12) % G
will result in a nonzero value. This is a contradiction. So now we can reduce the
problem of finding gcd(44, 16) to gcd(16, 12). We repeat the process.

16 = 1 * 12 + 4

Now we reduce the problem to gcd(12, 4). Since

12 = 3 * 4 + 0

6.1 The while Statement 303

wu23399_ch06.qxd 12/14/06 17:53 Page 303

shows no remainder, we finish the process and return the answer 4 as the
greatest common divisor. The sequence of reduction is gcd(44, 16) = gcd(16, 12) =
gcd(12, 4) = 4.

How do we translate this concept into a working code? Let’s map out the
sequence of reductions graphically:

From this diagram, we see that M at one stage becomes N in the next stage and the
remainder R becomes M in the next stage. We repeat this process until the remain-
der becomes 0. The value of M (4 in this example) at the end of the repetition is the
greatest common divisor. Here’s the gcd method that implements this idea:

public int gcd(int m, int n) {

//it doesn't matter which of n and m is bigger
//this method will work fine either way

//assume m,n >= 1

int r = n % m;

while (r !=0) {

n = m;

m = r;

r = n % m;
}

return m;
}

Here’s how we trace the repetition:

gcd(44, 16)

gcd(16, 12)

gcd(12, 4)

44 % 16 � 12

16 % 12 � 4

12 % 4 � 0

N M R � N % M

304 Chapter 6 Repetition Statements

Repetition
Count n m r

0 44 16 12

1 16 12 4

2 12 4 0

The first column indicates the number of times the while loop is executed. So the
first row shows the values of n, m, and r after zero repetitions, that is, before the while
statement is executed. The third row shows the values after the second repetition is

wu23399_ch06.qxd 12/14/06 17:53 Page 304

completed. At the point where the third repetition is attempted, the value of r is 0, so
the while loop is terminated and the value of m, which is 4, is returned.

The two versions of finding the greatest common denominator produce the
correct results. If they both produce the same results, which version shall we prefer?
The brute-force method is probably a lot easier to understand, at least initially, be-
cause it reflects the definition of greatest common divisor clearly. We always prefer
the one that is clearer and easier to understand, but only when their performances
are relatively the same. In this example, the Euclidean gcd method far outperforms
the gcd_bruteforce method. In other words, the Euclidean gcd method finds the
solution much faster than gcd_bruteforce. And the gap widens dramatically when
the values of M become large.We will analyze the performance of these two meth-
ods experimentally by recording their execution times in Section 6.10.

6.2 Pitfalls in Writing Repetition Statements 305

1. Write a while statement to add numbers 11 through 20. Is this a count-
controlled or sentinel-controlled loop?

2. Write a while statement to read in real numbers and stop when a negative
number is entered. Is this a count-controlled or sentinel-controlled loop?

6.2 Pitfalls in Writing Repetition Statements
No matter what you do with the while statement (and other repetition statements),
make sure that the loop will eventually terminate. Watch out for an infinite loop such
as this one:

int product = 0;

while (product < 500000) {
product = product * 5;

}

Do you know why this is an infinite loop? The variable product is multiplied by 5
in the loop body, so the value for product should eventually become larger than
500000, right? Wrong. The variable product is initialized to 0, so product remains 0.
The boolean expression product < 500000 will never be false, and therefore this
while statement is an infinite loop. You have to make sure the loop body contains a
statement that eventually makes the boolean expression false.

Here’s another example of an infinite loop:

int count = 1;

while (count != 10) {
count = count + 2;

}

Since the variable count is initialized to 1 and the increment is 2, count will
never be equal to 10. Note: In theory, this while statement is an infinite loop, but

infinite loop

wu23399_ch06.qxd 12/14/06 17:53 Page 305

in programming languages other than Java, this loop will eventually terminate
because of an overflow error. An overflow error will occur if you attempt to
assign a value larger than the maximum value the variable can hold. When an
overflow error occurs, the execution of the program is terminated in almost all
programming languages. With Java, however, an overflow will not cause program
termination. When an overflow occurs in Java, a value that represents infinity
(IEEE 754 infinity, to be precise) is assigned to a variable and no abnormal ter-
mination of a program will occur. Also, in Java an overflow occurs only with
float and double variables; no overflow will happen with int variables. When you
try to assign a value larger than the maximum possible integer that an int variable
can hold, the value “wraps around” and becomes a negative value.

Whether the loop terminates or not because of an overflow error, the logic of the
loop is still an infinite loop, and we must watch out for it. When you write a loop, you
must make sure that the boolean expression of the loop will eventually become false.

Another pitfall for you to avoid is the using of real numbers for testing and
increment. Consider the following two loops:

//Loop 1
double count = 0.0;

while (count != 1.0)
count = count + 0.333333333333333;

//there are fifteen 3s

//Loop 2
double count = 0.0;

while (count != 1.0)
count = count + 0.3333333333333333;

//there are sixteen 3s

The second while terminates correctly, but the first while is an infinite loop. Why the
difference? Because only an approximation of real numbers can be stored in a com-
puter. We know in mathematics that

�
1
3

� � �
1
3

� � �
1
3

�

is equal to 1. However, in a computer, an expression such as

1.0/3.0 + 1.0/3.0 + 1.0/3.0

may or may not get evaluated to 1.0, depending on how precise the approximation is.
The problem here is not that the number 1/3 is a repeating decimal. A decimal

number such as 0.1 cannot be stored precisely in a computer memory either. Con-
sider the following example:

double count = 0.0;

while (count != 1.0) {
count = count + 0.10;

}

306 Chapter 6 Repetition Statements

overflow error

imprecise loop
counter

wu23399_ch06.qxd 12/14/06 17:53 Page 306

This repetition statement looks simple enough. We initialize count to 0.0 and re-
peatedly add 0.10 to it, so after 10 repetitions, the loop should terminate. Wrong.
The counter variable count never becomes equal to 1.0. The closest it gets is
0.9999999999999999. Let’s change the loop to

double count = 0.0;

while (count <= 1.0) {
count = count + 0.10;
System.out.println(count);

}

so we can see the values assigned to count. Here’s the output from this code:

0.1
0.2
0.30000000000000004
0.4
0.5
0.6
0.7
0.7999999999999999
0.8999999999999999
0.9999999999999999
1.0999999999999999

As these examples illustrate, we should avoid using real numbers as counter vari-
ables because of the imprecision.

6.2 Pitfalls in Writing Repetition Statements 307

Another thing to watch out for in writing a loop is the off-by-1 error. Suppose
we want to execute the loop body 10 times. Does the following code work?

count = 1;
while (count < 10) {

...
count++;

}

No, the loop body is executed 9 times. How about the following code?

count = 0;
while (count <= 10) {

...
count++;

}

Avoid using real numbers for counter variables as much as possible. If you use
them, then be aware of the pitfall and ensure that the loop terminates.

off-by-1 error

wu23399_ch06.qxd 12/14/06 17:53 Page 307

No, this time the loop body is executed 11 times. The correct while loop is

count = 0;
while (count < 10) {

...
count++;

}

or

count = 1;
while (count <= 10) {

...
count++;

}

Yes, we can write the desired loop as

count = 1;
while (count != 10) {

...
count++;

}

but this condition for stopping the count-controlled loop is dangerous. We already
mentioned about the potential trap of an infinite loop. In summary,

308 Chapter 6 Repetition Statements

Watch out for the off-by-1 error (OBOE).

To show you just how commonly the off-by-1 error occurs in everyday life, con-
sider the following two questions. When you want to put a fencepost every 10 ft,
how many posts do you need for a 100-ft fence? If it takes 0.5 s for an elevator to
rise one floor, how long does it take to reach the fourth floor from the first level?
The answers that come immediately are 10 posts and 2 s, respectively. But after a
little more thought, we realize the correct answers are 11 posts (we need the final
post at the end) and 1.5 s (there are three floors to rise to reach the fourth floor
from the first level).

Another common mistake made by beginning programmers is the inclusion of
avoidable test in a loop. Consider the following loop statement:

int oddSum = 0;
int evenSum = 0;
int num = 1;

wu23399_ch06.qxd 12/14/06 17:53 Page 308

while (num < 1001) {

if (num / 2 == 0) { //even #

evenSum = evenSum + num;

} else { //odd #

oddSum = oddSum + num;
}

num = num + 2;
}

The code computes the sum of even numbers and the sum of odd numbers between
1 and 1000, inclusive. To compute the two sums, the if test is executed 1000 times.
Is it necessary? No. We can compute the two sums more efficiently by writing two
separate loops:

int oddSum = 0;
int evenSum = 0;
int num = 1;

while (num < 1001) {

oddSum = oddSum + num;

num = num + 2;
}

num = 2;

while (num < 1001) {

evenSum = evenSum + num;

num = num + 2;
}

We can improve the code even further by usign only one loop as follows:

int oddSum = 0;
int evenSum = 0;
int num = 1;

while (num < 1001) {

oddSum = oddSum + num;

evenSum = evenSum + (num + 1);

num = num + 2;
}

6.2 Pitfalls in Writing Repetition Statements 309

This test can be avoided by
writing two loops.

wu23399_ch06.qxd 12/14/06 17:53 Page 309

And here are the points for you to remember in writing a loop.

310 Chapter 6 Repetition Statements

The checklist for the repetition control:

1. Make sure the loop body contains a statement that will eventually cause the
loop to terminate.

2. Make sure the loop repeats exactly the correct number of times.

3. If you want to execute the loop body N times, then initialize the counter to 0
and use the test condition counter � N or initialize the counter to 1 and use the
test condition counter �� N.

1. Which of the following is an infinite loop?

a. int sum = 0, i = 0;
while (i >= 0) {

sum += i;
i++;

}

b. int sum = 0, i = 100;
while (i != 0) {

sum += i;
i--;

}

2. For each of the following loop statements, determine the value of sum after
the loop is executed.

a. int count = 0, sum = 0;
while (count < 10) {

sum += count;
count++;

}

b. int count = 1, sum = 0;
while (count <= 30) {

sum += count;
count += 3;

}

c. int count = 0, sum = 0;
while (count < 20) {

sum += 3*count;
count += 2;

}

wu23399_ch06.qxd 12/14/06 17:53 Page 310

6.3 The do–while Statement
The while statement is characterized as a pretest loop because the test is done before
execution of the loop body. Because it is a pretest loop, the loop body may not be ex-
ecuted at all. The do–while is a repetition statement that is characterized as a posttest
loop. With a posttest loop statement, the loop body is executed at least once.

The general format for the do–while statement is

do

<statement>

while (<boolean expression>) ;

The <statement> is executed until the <boolean expression> becomes false.
Remember that <statement> is either a <single statement> or a <compound state-
ment>. We will adopt the same policy for the if statement; that is, we will use
the syntax of <compound statement> even if there is only one statement in the
loop body. In other words, we will use the left and right braces even if the loop body
contains only one statement.

Let’s look at a few examples. We begin with the second example from Sec-
tion 6.1, which adds the whole numbers 1, 2, 3, . . . until the sum becomes larger
than 1,000,000. Here’s the equivalent code in a do–while statement:

int sum = 0, number = 1;
do {

sum += number;
number++;

} while (sum <= 1000000);

Figure 6.3 shows how this do–while statement corresponds to the general format,
and Figure 6.4 is a diagram showing the control flow of this do–while statement.

Let’s rewrite the routine that inputs a person’s age by using the do–while state-
ment. Here’s our first attempt:

do {

System.out.print("Your Age (between 0 and 130): ");

age = scanner.nextInt();

} while (age < 0 || age > 130);

It works, but unlike the version using the while statement, the code does not display
an error message. The user could be puzzled as to why the input is not accepted.
Suppose the user tries to enter 130 but actually enters 139 unintentionally. Without
an error message to inform the user that the input was invalid, he or she may won-
der why the program is asking again for input. A program should not be confusing
to the user. We must strive for a program with a user-friendly interface.

6.3 The do–while Statement 311

do-while
statement

do–while
syntax

pretest loop

posttest loop

wu23399_ch06.qxd 12/14/06 17:53 Page 311

To display an error message, we rewrite the do–while statement as

do {

System.out.print("Your Age (between 0 and 130): ");

age = scanner.nextInt();

if (age < 0 || age > 130) {
System.out.println(
"An invalid age was entered. Please try again.");

} while (age < 0 || age > 130);

This code is not as good as the version using the while statement. Do you know
why? This do–while statement includes an if statement inside its loop body. Since
the loop body is executed repeatedly, it is important not to include any extraneous
statements. The if statement is repeating the same boolean expression of the
do–while. Duplicating the testing conditions tends to make the loop statement
harder to understand. For this example, we can avoid the extra test inside the loop

312 Chapter 6 Repetition Statements

while (sum <= 1000000);}

do {

 sum += number;
 number++; Boolean Expression

Statement
(loop body)

Figure 6.3 Correspondence of the example do–while statement to the general format.

true

false

sum <= 1000000?

sum += number;
number++;

int sum = 0,
 number = 1;

Figure 6.4 A diagram showing the control flow of the do–while statement.

wu23399_ch06.qxd 12/14/06 17:53 Page 312

body and implement the control flow a little more clearly by using a while state-
ment. In general, the while statement is more frequently used than the do–while
statement. However, the while statement is not universally better than the do–while
statement. It depends on a given task, and our job as programmers is to use the most
appropriate one. We choose the repetition statement that implements the control
flow clearly, so the code is easy to understand.

When you have multiple conditions to stop the loop and you need to execute
different responses to each of the multiple conditions, then the use of boolean
variables often clarifies the meaning of the loop statement. Consider the following
example. Suppose we need to compute the sum of odd integers entered by the user.
We will stop the loop when the sentinel value 0 is entered, an even integer is en-
tered, or the sum becomes larger than 1000. Without using any boolean variables,
we can write this loop as follows:

sum = 0;
do {

System.out.print("Enter integer: ");

num = scanner.nextInt();

if (num == 0) { //sentinel
System.out.print("Sum = " + sum);

} else if (num % 2 == 0) //invalid data
System.out.print("Error: even number was entered");

} else {
sum += num;
if (sum > 1000) { //pass the threshold

System.out.print("Sum became larger than 1000");
}

}

} while (!(num % 2 == 0 || num == 0 || sum > 1000));

The ending condition is tricky. We need to stop the loop if any one of the three
conditions num % 2 == 0, num == 0, or sum > 1000 is true. So we repeat the loop
when none of the three conditions are true, which is expressed as

!(num % 2 == 0 || num == 0 || sum > 1000)

We can also state the condition as

do {

...

} while(num % 2 != 0 && num != 0 && sum <= 1000);

which means “repeat the loop while num is odd and num is not 0 and sum is less
than or equal to 1000.” Regardless of the method used, the test conditions are
duplicated inside the loop body and in the boolean expression.

6.3 The do–while Statement 313

boolean vari-
able and loop

Note:
!(a || b) is equal to (!a &&!b)

wu23399_ch06.qxd 12/14/06 17:53 Page 313

Set the variable to
false so the loop

terminates.

Now, by using a boolean variable, the loop becomes

314 Chapter 6 Repetition Statements

Note: continue is a
reserved word in Java,
while repeat is not.

boolean repeat = true;

sum = 0;
do {

System.out.print("Enter integer: ");

num = scanner.nextInt();

if (num % 2 == 0) { //invalid data
System.out.print("Error: even number was entered");
repeat = false;

} else if (num == 0) { //sentinel
System.out.print("Sum = " + sum);
repeat = false;

} else {
sum += num;
if (sum > 1000) { //pass the threshold

System.out.print("Sum became larger than 1000");
repeat = false;

}
}

} while (repeat);

This loop eliminates duplicate tests. The use of boolean variables is helpful in mak-
ing loop statements readable, especially when the loop has multiple stop conditions.

As the last example of this section, here’s the gcd method implemented by using
the do–while statement (we’ll call it gcd_do to differentiate it from other versions):

public int gcd_do(int m, int n) {

//it doesn't matter which of n and m is bigger
//this method will work fine either way

//assume m,n >= 1

int r;

do {

r = n % m;

n = m;

m = r;

} while (r != 0);

return n; //NOTE: we're returning n, not m
// because m == r == 0 after the loop

}

wu23399_ch06.qxd 12/14/06 17:53 Page 314

6.4 Loop-and-a-Half Repetition Control 315

1. Write a do–while loop to compute the sum of the first 30 positive odd integers.

2. Rewrite the following while loops as do–while loops.

a. int count = 0, sum = 0;
while (count < 10) {

sum += count;
count++;

}

b. int count = 1, sum = 0;
while (count <= 30) {

sum += count;
count += 3;

}

loop-and-a-half
control

6.4 Loop-and-a-Half Repetition Control
When we compare the while and do–while repetition control, we realize the key dif-
ference is the position of the testing relative to the loop body. The while loop tests
the terminating condition before the loop body, but the do–while tests the terminat-
ing condition after the loop body. What happens when we want to test the terminat-
ing condition right in the middle of the loop body? Such repetition control can be
characterized as a loop-and-a-half control because only the top half of the loop body
is executed for the last repetition. Do we ever need such a looping statement?

Consider the following while loop with the priming read:

String name;

System.out.print("Your name: ");

name = scanner.next();

while (name.length() == 0) {

System.out.println("Invalid entry. " +
"You must enter at least one character.");

System.out.print("Your name: ");

name = scanner.next();
}

Because the while loop tests the terminating condition at the beginning, we must
place some statements before the loop to ensure the condition can be evaluated. The
same statements are repeated inside the loop, so the terminating condition can be
evaluated correctly after each repetition. This duplication of the statements can
become tedious depending on what is to be duplicated. We can avoid the duplication

wu23399_ch06.qxd 12/14/06 17:53 Page 315

of code with the loop-and-a-half structure. Java does not support any special re-
served word for the loop-and-a-half repetition control. Rather, we implement it
using the while, if, and break reserved words. Here’s how we express the sample
priming read while loop in a loop-and-a-half format:

String name;

while (true) {

System.out.print("Your name: ");

name = scanner.next();

if (name.length() == 0) break;

System.out.println("Invalid entry. " +
"You must enter at least one character. ");

}

We have seen the use of the break statement in Chapter 5. Execution of the
break statement causes the control to jump out of the switch statement. We can in
fact use the break statement with any control statement. In this example, the break
statement causes the control to jump out of the while statement. Since it is executed
when the if test is true, the String variable name contains at least one character. If
the test fails, the next statement is executed and the control loops back to the top of
the while loop. Expressing this control flow in a flowchart will result in the one
shown in Figure 6.5.

There are two concerns when we use the loop-and-a-half control. The first is
the danger of an infinite loop. Notice the boolean expression of the while state-
ment is simply true, which, of course, will always evaluate to true. So, if we forget
to include an if statement to break out of the loop, it will end up in an infinite loop.

316 Chapter 6 Repetition Statements

If the test evaluates
to true, then jump

out of the loop.

false

true

name.length() > 0?

name = scanner.next();

System.out.println(...);

Figure 6.5 A diagram showing the control flow of a loop-and-a-half statement.

wu23399_ch06.qxd 12/14/06 17:53 Page 316

The second concern is the complexity of multiple exit points. It is possible to write
a loop-and-a-half statement with multiple break statements, something like this:

while (true) {
...
if (<condition 1>) break;
...
if (<condition 2>) break;
...
if (<condition 3>) break;
...

}

It gets tricky to write a correct control loop with multiple exit points. One of the
frequently cited software engineering practices for reliable code is to enforce the
one-entry one-exit control flow. In other words, there is one entry point to the loop
and one exit point from the loop. With the standard while and do–while with no
break statements inside the loop, we have this one-entry one-exit control flow. A
loop-and-a-half control with multiple break statements, however, violates it.

If we watch out for these two points, a loop-and-a-half control can be quite
handy and can make the code more readable. Here are the things to remember in
using the loop-and-a-half control.

6.4 Loop-and-a-Half Repetition Control 317

one-entry
one-exit
control

The checklist for the loop-and-a-half control:

1. To avoid an infinite loop, make sure the loop body contains at least one if
statement that breaks out of the loop.

2. To keep the control simple and easy to read, avoid using multiple if statements
that break out of the loop.

3. Make sure the loop is short to keep the control logic as self-evident as possible.
(Notice this applies to all loop statements, but more so for a loop-and-a-half.)

In this textbook, we will be using loop-and-a-half statements whenever ap-
propriate, that is, whenever it makes the code more readable and clearer. Before we
conclude this section, here’s another loop-and-a-half statement. The loop evaluates
the average score, and it terminates when the input is a negative number.

int cnt = 0;
double score, sum = 0.0;

while (true) {

System.out.print("Enter score: ");

score = scanner.nextDouble();

wu23399_ch06.qxd 12/14/06 17:53 Page 317

if (score < 0) break;
sum += score;
cnt++;

}

if (cnt > 0) {
avg = sum / cnt;

} else {
//error: no input

}

Again, we will use the gcd method as the last example. Here’s the gcd method
using the loop-and-a-half repetition control (we’ll call this version gcd_LaH):

public int gcd_LaH(int m, int n) {

//it doesn't matter which of n and m is bigger
//this method will work fine either way

//assume m,n >= 1

int r;

while (true) {

r = n % m;

if (r == 0) break;

n = m;

m = r;
}

return m;
}

318 Chapter 6 Repetition Statements

1. Translate the following while loop to a loop-and-a-half format.

int sum = 0, num = 1;
while (num <= 50) {

sum += num;
num++;

}

2. Translate the following do–while loop to a loop-and-a-half format.

int sum = 0, num = 1;
do {

sum += num;
num++;

} while (sum <= 5000);

wu23399_ch06.qxd 12/14/06 17:53 Page 318

6.5 The for Statement 319

control variable

; ;) {i <= 100for (

 sum += i;

}

i = 1 i++

Initialization Update

Boolean Expression

Statement
(loop body)

Figure 6.6 Correspondence of the example for statement to the general format.

6.5 The for Statement
The for statement is the third repetition control statement and is especially suitable
for count-controlled loops. Let’s begin with an example. The following code com-
putes the sum of the first 100 positive integers:

int i, sum = 0;
for (i = 1; i <= 100; i++) {

sum += i; //equivalent to sum = sum + i;
}

The general format of the for statement is

for (<initialization>; <boolean expression>; <update>)

<statement>

Figure 6.6 shows the correspondence of the sample code above to the general
format. The diagram in Figure 6.7 shows how this statement is executed. The vari-
able i in the statement is called a control variable, and it keeps track of the number

true
<statement>

<boolean expression>

<initialization>

(loop body)

<increment>

false
i <= 100?

i = 1;

sum += i;

i++;

Figure 6.7 A diagram showing the control flow of the example for statement.

wu23399_ch06.qxd 12/14/06 17:53 Page 319

of repetitions. In the sample code, the control variable i is first initialized to 0, and
immediately the boolean expression is evaluated. If the evaluation results in
true, the loop body is executed. Otherwise, the execution of the for statement is
terminated, and the control flows to the statement following this for statement.
Every time the loop body is executed, the increment operator (i++) is executed and
then the boolean expression is evaluated.

The <initialization> component also can include a declaration of the control
variable. We can do something like this

for (int i = 1; i <= 100; i++)

instead of

int i;
for (i = 0; i < 10; i++)

The control variable may be initialized to any value, although it is almost always 0 or 1.
The <update> expression in the example increments the control variable by 1.

We can increment it with values other than 1, including negative values, for example,

for (int i = 0; i < 100; i += 5) //i = 0, 5, 10, . .. , 95

for (int j = 2; j < 40; j *= 2)//j = 2, 4, 8, 16, 32

for (int k = 100; k > 0; k--) //k = 100, 99, 98, 97, ..., 1

Notice that the control variable appears in all three components: <initialization>,
<conditional expression>, and <update>. A control variable does not have to appear
in all three components, but this is the most common style. Many other variations
are allowed for these three components, but for novices, it is safer to use this style
exclusively.

Let’s look at an example from physics. When an object is dropped from height
H, the position P of the object at time t can be determined by the formula

P � �16t2 � H

For example, if a watermelon is dropped from the roof of a 256-ft-high dormitory,
it will drop like this:

256 ft at t � 0
240 ft at t � 1

192 ft at t � 2

112 ft at t � 3

0 ft at t � 4

320 Chapter 6 Repetition Statements

wu23399_ch06.qxd 12/14/06 17:53 Page 320

We can use a for statement to compute the position P at time t. We will input
the initial height and compute the position every second. We repeat this computa-
tion until the watermelon touches the ground. The time the watermelon touches the
ground is derived by solving for t when P � 0.

0 � �16t2 � H

t � ��
1
H

6
��

6.5 The for Statement 321

/*
Chapter 6 Sample Program: Dropping a Watermelon

File: Ch6DroppingWaterMelon.java

*/

import java.util.*;

class Ch6DroppingWaterMelon {

public static void main(String[] args) {

double initialHeight,
position,
touchTime;

Scanner scanner = new Scanner(System.in);

System.out.print("Initial Height:");
initialHeight = scanner.nextDouble();

touchTime = Math.sqrt(initialHeight / 16.0);
touchTime = Math.round(touchTime * 10000.0) / 10000.0;

//convert to four decimal places

System.out.println("\n\n Time t Position at Time t \n");

for (int time = 0; time < touchTime; time++) {
position = -16.0 * time*time + initialHeight;
System.out.print(" " + time);
System.out.println(" " + position);

}

//print the last second
System.out.println(" " + touchTime + " 0.00");

}
}

wu23399_ch06.qxd 12/14/06 17:53 Page 321

322 Chapter 6 Repetition Statements

Figure 6.8 The positions of a watermelon dropped from a height of 500 ft.

Java 5.0 introduces a new form of the for statement. There is no formal name for
the newest for loop, but the name for-each loop is used most often. The for-each
loop is a very convenient way to iterate over a collection of items. We will
introduce the new for loop in Chapter 10 and see its use in the data structure
chapters.

The format for the for loop presented in this section is the most basic version.
The Java language allows more complex for statements. For instance, the
<initialization> and <update> parts of the for statement are not limited to a single
statement. They can contain zero or more statements. The following two state-
ments, for example, are both valid.

int val, i, j;
for (i = 0, j = 100, val = 0; //init

i < 100 && j > 50; //bool expr
i++, j--) { //increment

val += i - j;
}

System.out.println("val = " + val);
Scanner scanner = new Scanner(System.in);

Running the program with the input value 500.0 for the initial height and using
System.out as output will result in the window shown in Figure 6.8.

wu23399_ch06.qxd 12/14/06 17:53 Page 322

6.5 The for Statement 323

We have introduced three forms of repetition statements—while, do–while, and
for. They are equivalent in their expressive power. In other words, a loop written in
one form of repetition statement can be written by using the other two forms of
repetition statement.Although they are equivalent, in many cases one form would
express the repetition control in a more natural and direct manner. It is your
responsibility as a programmer to implement the repetition control using the
most appropriate form.

int sum, cnt, n;
for (sum = 0, cnt = 0; //init

cnt < 10; //bool expr
//increment

System.out.print("Enter number: "),
n = scanner.nextInt(),

sum += n,
cnt++) {

}

Do you ever need to write such intricate for statements? Most likely, no. The two
sample statements can be written more clearly and logically in other ways. We
strongly recommend that you stick to the basic, and most logical, form of the for
statement.

1. Write a for loop to compute the following.

a. Sum of 1, 2, . . . , 100
b. Sum of 2, 4, . . . , 500
c. Product of 5, 10, . . . , 50

2. Rewrite the following while loops as for statements.

a. int count = 0, sum = 0;
while (count < 10) {

sum += count;
count++;

}

b. int count = 1, sum = 0;
while (count <= 30) {

sum += count;
count += 3;

}

wu23399_ch06.qxd 12/14/06 17:53 Page 323

inner
forouter

for

6.6 Nested for Statements
In many processing tasks, we need to place a for statement inside another for state-
ment. In this section, we introduce a simple nested for statement. We will see more
examples of nested for statements later in the book, especially in Chapter 10 on
array processing.

Suppose we want to display a quick reference table for clerks at the Rugs-R-
Us carpet store. The table in Figure 6.9 lists the prices of carpets ranging in size
from 11 � 5 ft to 20 � 25 ft (using System.out for output). The width of a carpet
ranges from 11 to 20 ft with an increment of 1 ft. The length of a carpet ranges
from 5 to 25 ft with an increment of 5 ft. The unit price of a carpet is $19 per
square foot.

We use a nested for statement to print out the table. Let’s concentrate first on
printing out prices. We’ll worry about printing out length and width values later.
The following nested for statement will print out the prices:

int price;

for (int width = 11; width <= 20; width++) {

for (int length = 5; length <= 25; length += 5) {
price = width * length * 19; //$19 per sq ft.
System.out.print(" " + price);

}

//finished one row; now move on to the next row
System.out.println("");

}

324 Chapter 6 Repetition Statements

Figure 6.9 The price table for carpets ranging in size from 11 � 5 ft to 20 � 25 ft whose unit price is $19 per
square foot.

Length

Width

wu23399_ch06.qxd 12/14/06 17:53 Page 324

Added
statements

The outer for statement is set to range from the first row (width = 11) to the
last row (width = 20). For each repetition of the outer for, the inner for statement is
executed, which ranges from the first column (length = 5) to the fifth column
(length = 25). The loop body of the inner for computes the price of a single carpet
size and prints out this price. So the complete execution of the inner for, which
causes its loop body to be executed 5 times, completes the output of one row. The
following shows the sequence of values for the two control variables.

width length

11

5

10

15

20

25

12

5

10

15

20

25

13

5

10
.
.
.

Now let’s add the code to print out the row and column index values for width
and length.

int price;

System.out.print(" 5 10 15 20 25");
System.out.print("\n\n");

for (int width = 11; width <= 20; width++) {

System.out.print(width + " ");

for (int length = 5; length <= 25; length += 5) {
price = width * length * 19; //$19 per sq ft.
System.out.print(" " + price);

}

//finished one row; now move on to the next row
System.out.print("\n");

}

6.6 Nested for Statements 325

Completes the printing
of the first row

Completes the printing
of the second row

wu23399_ch06.qxd 12/14/06 17:53 Page 325

The next improvement is to include the labels Width and Length in the output.
This enhancement is left as Exercise 19 at the end of the chapter. Also, in the ex-
ample, literal constants are used for the carpet sizes and the increment value on
length (11, 20, 5, 25, and 5), but in a real program, named constants should be used.

326 Chapter 6 Repetition Statements

1. What will be the value of sum after the following nested for loops are
executed?

a. int sum = 0;
for (int i = 0; i < 5; i++) {

sum = sum + i;
for (int j = 0; j < 5; j++) {

sum = sum + j;
}

}

b. int sum = 0;
for (int i = 0; i < 5; i++) {

sum = sum + i;
for (int j = i; j < 5; j++) {
sum = sum + j;

}
}

2. What is wrong with the following nested for loop?

int sum = 0;
for (int i = 0; i < 5; i++) {

sum = sum + i;
for (int i = 5; i > 0; i--) {
sum = sum + j;

}
}

6.7 Formatting Output
In the table shown in Figure 6.10, the values are aligned very nicely. We purposely
selected the unit price and the ranges of width and length so that the table output
would look good. Notice that the output values are all four-digit numbers. Realisti-
cally, we cannot expect output values to be so uniform. Let’s change the unit price
to $15 and the range of widths to 5 through 14 ft and see what happens. The result
is shown in Figure 6.10, which is not as neat as the previous output. What we need
is a way to format the output so the values are printed out with the proper alignment.

In the code, we used the fixed number of spaces between the values, and it
worked because the output values have the same number of digits. To align the val-
ues with a varying number of digits, we must vary the number of spaces in front of
the values, as shown in Figure 6.11.

The basic idea of formatted output is to allocate the same amount of space for
the output values and align the values within the allocated space. We call the space

wu23399_ch06.qxd 12/14/06 17:53 Page 326

occupied by an output value the field and the number of characters allocated to a
field its field width. In Figure 6.11, the field width is 6.

We have already used two formatting classes—DecimalFormat and Simple-
DateFormat—introduced in Chapters 2 and 3. The most recent version of Java SDK
1.5 has a new general-purpose formatting class called Formatter that includes the
functionalities of DecimalFormat and SimpleDateFormat. For its power, using the
Formatter class is slightly more complicated than using the DecimalFormat and
SimpleDateFormat classes.

To format output using Formatter, first we create its instance by passing the
destination of the output as an argument. Suppose we want to send the formatted
output to System.out; then we create a Formatter object as follows:

Formatter formatter = new Formatter(System.out);

Next we call its format method to output the formatted values. For example, to out-
put an integer with the field width of 6, we write

int num = 467;
formatter.format("%6d", num);

6.7 Formatting Output 327

Figure 6.10 The price table for carpets with $15 per square foot and width ranging from 5 through 14 ft.

Figure 6.11 How to place a varying number of spaces to align the output values. Hyphen is used here to
indicate the blank space.

field

– – – – –3

– – – 4 45

Each value occupies six spaces. If
the value has three digits, we put
three blank spaces in front. If the
value has four digits, we put two
blank spaces in front, and so forth.

– – – – 34

– – – 3 39

– – 56 8 4

– – –2 3 4

– – – – 98

– – – 4 53

– – –2 31

– – 34 44

wu23399_ch06.qxd 12/14/06 17:53 Page 327

The string %6d is called a control string, and it directs how the formatting will take
place. The value 6 specifies the field width, and the control character d indicates the
output value is a decimal integer.

The general syntax for the format method is as follows:

format(<control string>, <expr1>, <expr2>, ...)

The first argument is the control string, and it is followed by zero or more expres-
sions. The control string may include the actual output string in addition to control
values. For example, the statement

int num1, num2, num3;

num1 = 34;
num2 = 9;
num3 = num1 + num2;

formatter.format("%3d + %3d = %5d", num1, num2, num3);

will output

34 + 9 = 43

Figure 6.12 shows how the control values are matched left to right against the
arguments. The figure also illustrates how the noncontrol values (such as + and =
symbols) are output to the destination.

We can change the default left-to-right argument matching by including the
argument index in the control string. The arguments can be indexed as 1$, 2$, and
so forth. For example, the output of

formatter.format("%3$3d is the sum of %2$3d and %1$3d",
num1, num2, num3);

will be

43 is the sum of 9 and 34

328 Chapter 6 Repetition Statements

control string

Figure 6.12 The control values are matched left to right.

3

formatter.format ("%3d + %3d = %5d", num1, num2, num3);

4 + 9 = 4 3

wu23399_ch06.qxd 12/14/06 17:53 Page 328

To format real numbers, we include the number of decimal places along with
the field width in the following format:

%<field width> . <decimal places> f

The control letter f designates formatting a floating-point number. Here’s an exam-
ple to format 345.9867 using a field of width 15 and two decimal places:

formatter.format("%15.3f", 345.9867);

To format a string, we use the control letter s. Here’s an example:

String name = "John";

formatter.format("Hello, %s. Nice to meet you.", name);

The output will be

Hello, John. Nice to meet you.

We can also use the format method to format the date information. We use the
control letter t for formatting an instance of GregorianCalendar or Date. The control
letter t must be followed by another control letter that designates the formatting of
the components of the date information, such as month, day, or year. For example,
if we write

GregorianCalendar day = new GregorianCalendar(1776, 6, 4);

formatter.format("%1$tB %1$te, %1$tY", day);

the output will be

July 4, 1776

The date control letter B designates the full month name, e designates the day in two
digits, and Y designates the year in four digits. For other data control letters, please
consult the documentation. Notice that there is only one output argument, and it is
referred to as 1$ three times in the control string.

The use of the Formatter class gives us the most control over the formatting,
but for common output formatting, we can do it by using the format method of
System.out or the String class instead. (In this section, we presented only a subset of
common formatting.) For example, the following code

System.out.format("%5s is %3d years old", "Bill", 20);

is equivalent to

Formatter formatter = new Formatter(System.out);
formatter.format("%5s is %3d years old", "Bill", 20);

6.7 Formatting Output 329

wu23399_ch06.qxd 12/14/06 17:53 Page 329

(Note: For those who are familiar with C or C++, there’s a method named printf de-
fined for System.out that works exactly the same as the format method. However,
Java’s printf is similar but not identical to the one in C or C++.)

Instead of printing out, it is possible to create a formatted string and assign it
to a variable with the format method of the String class. Here’s an example:

String outputStr
= String.format("%3d + %3d = %5d", num1, num2, num3);

We close the section with a program that produces the carpet price table with
proper alignment for the range of values used in producing the table in Figure 6.10.
Running this program will produce the table shown in Figure 6.13.

330 Chapter 6 Repetition Statements

Figure 6.13 Carpet price table of Figure 6.11 with proper alignment.

/*
Chapter 6 Sample Program: Sample formatting statements

File: Ch6CarpetPriceTableWithFormat.java

*/

class Ch6CarpetPriceTableWithFormat {

public static void main (String[] args) {

int price;

//print out the column labels
System.out.print(" "); //put three blank spaces first

for (int colLabel = 5; colLabel <=25; colLabel += 5) {
System.out.format("%8d", colLabel);

}

wu23399_ch06.qxd 12/14/06 17:53 Page 330

6.8 Loan Tables 331

System.out.println("");
System.out.println("");

//print out rows of prices
for (int width = 5; width <= 14; width++) {

System.out.format("%3d", width);

for (int length = 5; length <= 25; length += 5) {
price = width * length * 15;

System.out.format("%8d", price);
}

//finished one row; now move on to the next row
System.out.println("");

}

System.out.println("");
System.out.println("");

}
}

1. Determine the output of the following code.

System.out.format("%3d + %3d = %3d, 1, 2, 3);
System.out.format("%tY", new Date());
System.out.format("%2$s,%1$s, "John", "Smith");

2. What’s wrong with the following code?

Formatter f = new Formatter();
f.format("%8.3f", 232.563);

6.8 Loan Tables
The LoanCalculator program computed the monthly and total payments for a given
loan amount, annual interest rate, and loan period. To see the monthly payment for
the same loan amount and loan period but with a different interest rate, we need to
repeat the calculation, entering the three values again. To illustrate the use of the
concepts introduced in this chapter, let’s design a program that generates a loan
table (similar to the carpet price table) for a given loan amount so we can compare
different monthly payments easily and quickly. The columns of the table are the
loan periods in number of years (5, 10, 15, 20, 25, 30), and the rows are interest
rates ranging from 6 to 10 percent in increments of 0.25.

wu23399_ch06.qxd 12/14/06 17:53 Page 331

In this section, we provide a discussion of the relevant methods only. Let’s
begin with a design of the topmost start method of the top-level controller class.
The start method can be expressed as

tell the user what the program does;

prompt the user "Do you want to generate a loan table?";
while (the user says YES) {

input the loan amount;
generate the loan table;

prompt the user "Do you want another loan table?";
}

The start method is expressed in pseudocode. Pseudocode is an informal language
we often use to express an algorithm. Pseudocode is useful in expressing an algo-
rithm without being tied down to the rigid syntactic rules of a programming lan-
guage. We can express a simple algorithm in the actual programming language
statements, but for a more complex algorithm, especially those involving nonse-
quential control flow logic, pseudocode is very helpful in expressing the algorithm
concisely and clearly. Whenever appropriate, we will use pseudocode to express
more complex algorithms in the remainder of the book.

Translating the pseudocode into Java code will result in

private static enum Response {YES, NO}

public void start() {

Response response;

describeProgram();

response = prompt("Generate a loan table?");

while (response == Response.YES) {

loanAmount = getLoanAmount(); //get input
generateLoanTable(loanAmount); //generate table

response = prompt("Generate another loan table?");
}

}

private Response prompt(String question) {

String input;

Response response = Response.NO;

System.out.print(question + " (Yes - y; No - n): ");

input = scanner.next();

332 Chapter 6 Repetition Statements

pseudocode

scanner is created in a
constructor

wu23399_ch06.qxd 12/14/06 17:53 Page 332

if (input.equals("Y") || input.equals("y")) {
response = Response.YES;

}

return response;
}

Notice how the actual start method is almost as easy to read as the pseudocode. By
using objects and well-designed (sub)methods, we can express methods that are as
easy to read as pseudocode.

The describeProgram method tells the user what the program does if the user
requests it. The getLoanAmount method gets the loan amount from the user. The
method will allow the user to enter the loan amount between 100.0 and 500000.0. The
generateLoanTable method generates the loan table, which we explain in detail next.

We use a nested loop to generate the table. Both the inner and outer loops are
count-controlled loops. The loop for columns (years) will range from 5 to 30 with
an increment of 5 and the loop for rows (rates) will range from 6.0 to 10.0 with an
increment of 0.25. So the nested loop can be written as follows:

private static final int BEGIN_YEAR = 5;
private static final int END_YEAR = 30;
private static final int YEAR_INCR = 5;

private static final double BEGIN_RATE = 6.0;
private static final double END_RATE = 10.0;
private static final double RATE_INCR = 0.25;

...

for (double rate = BEGIN_RATE; rate <= END_RATE;
rate += RATE_INCR){

for (int year = BEGIN_YEAR; year <= END_YEAR;
year += YEAR_INCR){

...

//compute and display the monthly loan payment
//for a given year and rate

}
}

Notice the outer loop is using double as the loop counter, something we dis-
couraged in Section 6.2. In this particular case, with the increment value of 0.25,
there will be no problem because this value can be represented precisely in com-
puter memory. Moreover, the terminating condition rate <= END_RATE guarantees
that the loop will terminate eventually if we keep adding RATE_INCR to rate.

To compute the monthly loan payment, we simply reuse the Loan class we
defined in Chapter 4 as follows:

double amount = ... ;
double rate = ... ;
int period = ... ;

6.8 Loan Tables 333

wu23399_ch06.qxd 12/14/06 17:53 Page 333

Loan loan = new Loan();

double monthlyPayment
= loan.getMonthlyPayment(amount, rate, period);

This is the power of object-oriented programming. Because a single well-
defined task of loan computation and nothing else is coded in the Loan class, we are
able to reuse it here easily. What would happen had we not designed the Loan class?
It was certainly possible for us to complete the Chapter 4 sample development pro-
gram with one service class that handles everything: input, output, and computation
tasks. The chance of reusing such a class, however, is very low. Just as we do not
expect to buy a textbook that teaches all five subject matters of single-variable cal-
culus, introduction to economics, organic chemistry, introduction to programming,
and western civilization, we do not want a service class that is overloaded with
many different types of tasks. We do not want one class that does everything.
Rather, we want many classes, with each class doing one task effectively and effi-
ciently. This will allow us to mix and match the classes easily.

Finally, the output values can be formatted by using the technique introduced
in Section 6.7. Overall design is now complete. It is left as an exercise (Exercise 17)
to implement the loan table calculation program.

6.9 Estimating the Execution Time
We promised at the end of Section 6.1 to compare the two versions of gcd methods
experimentally. Detailed analysis of algorithms is beyond the scope of this book
(we provide a little bit of analytical comparisons of sorting algorithms in this book),
but experimental analysis is within our realm. We can compare the performance of
different methods by actually running them and clocking their execution times.

Here’s the basic idea:

Start the clock (stopwatch)

Run the method

Stop the clock

Report the elapsed time

There is no clock or stopwatch standard class, but we can time the execution
by using the Date class from the java.util package. Before we call the method we
want to time, we record the start time by creating a Date object. After the method is
completed, we record the end time by creating a second Date object. Calling the
getTime method of the Date class returns the number of milliseconds (1 ms �
1/1000 s) since January 1, 1970 00:00:00 Greenwich Mean Time. So by subtracting
the start time from the end time, we can get the elapsed time in milliseconds. Here’s
the general idea:

Date startTime = new Date();

//the method call comes here

334 Chapter 6 Repetition Statements

wu23399_ch06.qxd 12/14/06 17:53 Page 334

Date endTime = new Date();

long elapsedTimeInMilliseconds =
endTime.getTime() - startTime.getTime();

Now let’s write a short program to time the performance of gcd and
gcd_bruteforce. The program includes many of the techniques discussed in this
chapter. Here’s the program (we do not repeat the method bodies of gcd and
gcd_bruteforce here):

6.9 Estimating the Execution Time 335

/*
Chapter 6 Sample Program: Time the performance of gcd methods

File: Ch6TimeGcd.java

*/

import java.util.*;

class Ch6TimeGcd {

private static enum ComputationType {BRUTE_FORCE, EUCLID}

private Scanner scanner;

public static void main(String[] args) {

Ch6TimeGcd tester = new Ch6TimeGcd();

tester.start();

System.exit(0);
}

public Ch6TimeGcd() {
scanner = new Scanner(System.in);

}

public void start() {

long bruteForceTime, euclidTime;
int m, n;

while (isContinue()) {

m = getPositiveInteger();
n = getPositiveInteger();

//Time the brute force method
bruteForceTime = timeMethod(m, n, ComputationType.BRUTE_FORCE);

//Time the Euclidean method
euclidTime = timeMethod(m, n, ComputationType.EUCLID);

wu23399_ch06.qxd 12/14/06 17:53 Page 335

336 Chapter 6 Repetition Statements

System.out.println("M: " + m);
System.out.println("N: " + n);
System.out.println("Brute Force Time: " + bruteForceTime);
System.out.println("Euclidean Time: " + euclidTime + "\n");

}
}

private long timeMethod(int m, int n, ComputationType type) {

Date startTime, endTime;

startTime = new Date();

if (type == ComputationType.BRUTE_FORCE) {

gcd_bruteforce(m, n);

} else {

gcd(m, n);
}

endTime = new Date();

return (endTime.getTime() - startTime.getTime());
}

private int getPositiveInteger() {

int input;

while (true) {

System.out.print("Enter positive integer (0 is okay):");
input = scanner.nextInt();

if (input >= 0) break;

System.out.println("Input must be 0 or more");
}

return input;
}

private boolean isContinue() {

String input;

boolean response = false;

System.out.print("Run test? ");

input = scanner.next();

if (input.equals("Y") || input.equals("y")) {
response = true;

}

wu23399_ch06.qxd 12/14/06 17:53 Page 336

return response;
}

private int gcd_bruteforce(int m, int n) {

. . .
}

private int gcd(int m, int n) {

. . .
}

}

6.9 Estimating the Execution Time 337

Here’s a sample interaction:

Run test? y
Enter positive integer (0 is okay):4567820
Enter positive integer (0 is okay):2147483640
M: 4567820
N: 2147483640
Brute Force Time: 94
Euclidean Time: 0

Run test? y
Enter positive integer (0 is okay):1457689098
Enter positive integer (0 is okay):2147483640
M: 1457689098
N: 2147483640
Brute Force Time: 31953
Euclidean Time: 0

Run test? n

The value of 0 for Euclidean time does not imply that it took no time to com-
pute the result. It means that the time it took was so miniscule, we weren’t able to
detect it by the technique we used. Notice that, for the brute-force approach, the dif-
ference in the running times between the small and large values for M is substantial,
while the difference for the Euclidean approach is not discernible. Detailed analysis
will actually tell us that the running time for the brute-force approach is linearly
proportional to the input size M, while the Euclidean approach is logarithmically
proportional to the input size M. So, for the second comparison in the sample run,
there will be 1,457,689,098 divisions performed (actually twice this number
because we are executing m % i == 0 && n % i == 0) in gcd_bruteforce, but only log
1,457,689,098 � 9 divisions. See how superior the Euclidean approach is?

wu23399_ch06.qxd 12/14/06 17:53 Page 337

Keep in mind that the value we get for the elapsed time is a rough estimate. For
one thing, the values we get for the elapsed time differ dramatically according to
which CPU we run the program on and whether other processes are running at the
same time (e.g., if a garbage collection routine kicks in while a method is running,
then the runtime estimate can be way off). Also, the granularity is very coarse when
timed from a high-level language such as Java. For example, it is not possible to dis-
tinguish between the program that runs in 5 ms and the program that runs in 6 ms.
Although the value is a rough estimate, it still give us useful information such as the
rate of increase in execution time as we increase the size of input values.

338 Chapter 6 Repetition Statements

To estimate the running time of a loop statement:

1. Record the start time by creating a Date object, say, startTime, before the loop
statement.

2. Record the end time by creating another Date object, say, endTime, after the
loop statement.

3. Elapsed time (in milliseconds) is computed as follows:

elapsedTime = endTime.getTime()
– startTime.getTime();

6.10 Recursive Methods (Optional)
In addition to the three repetition control statements we introduced in this chapter,
there is a fourth way to control the repetition flow of a program by using recursive
methods. A recursive method is a method that contains a statement (or statements)
that makes a call to itself. We explain recursive methods briefly in this section.
Realistic examples of recursive methods will be given in Chapter 15.

So far, we have seen only methods that call other methods, something like this:

methodOne(...) {
...
methodTwo(...); //methodOne called methodTwo
...

}

methodTwo(...) {
...

}

A recursive method calls itself, and it looks something like this:

methodOne(...) {
...

recursive
method

wu23399_ch06.qxd 12/14/06 17:53 Page 338

methodOne (...); //calls the method itself
...

}

At first glance, it seems as if a recursive call will never end since the call is made to
the same method. Indeed, if you do not follow the rules, you could end up with
infinite recursive calls. In this section we explain how to write recursive methods
correctly.

Suppose we want to compute the factorial of N. The factorial of N is the prod-
uct of the first N positive integers, denoted mathematically as

N! = N * (N-1) * (N-2) * ... * 2 * 1

We will write a recursive method to compute the factorial of N. Mathemati-
cally, we can define the factorial of N recursively as

6.10 Recursive Methods (Optional) 339

factorial(N)= �
1 if N = 1

N * factorial (N-1) otherwise

The definition states that if N is 1, then the function factorial(N) has the
value 1. Otherwise, the function factorial(N) is the product of N and factorial(N –1).
For example, the function factorial(4) is evaluated as follows:

The recursive factorial method parallels the preceding mathematical defini-
tion. The method is defined thus:

//Assume N is greater than 0
public int factorial(int N) {

if (N == 1)

return 1;

else

return N * factorial(N-1);
}

factorial(4)

4 * factorial(3)
24

6

2

1

3 * factorial(2)

2 * factorial(1)

1

Recursive case:
recursion continues with
another recursive call.

Test to stop or continue.

End case: recursion stops.

wu23399_ch06.qxd 12/14/06 17:53 Page 339

The diagram in Figure 6.14 illustrates the sequence of calls for the recursive
factorial method. Recursive methods will contain three necessary components.

340 Chapter 6 Repetition Statements

The three necessary components in a recursive method are

1. A test to stop or continue the recursion.

2. An end case that terminates the recursion.

3. A recursive call(s) that continues the recursion.

To ensure that the recursion will stop eventually, we must pass arguments different
from the incoming parameters. In the factorial method, the incoming parameter was
N, while the argument passed in the recursive call was N�1. This difference of 1 be-
tween the incoming parameter and the argument will eventually make the argument
in a recursive call be 1, and the recursion will stop.

Let’s implement two more mathematical functions using recursion. The next
method computes the sum of the first N positive integers 1, 2, . . ., N. Notice how this
method includes the three necessary components of a recursive method.

public int sum (int N) { //assume N >= 1
if (N == 1)

return 1;
else

return N + sum(N-1);
}

The last method computes the exponentiation AN, where A is a real number
and N is a positive integer. This time, we have to pass two arguments—A and N.
The value of A will not change in the calls, but the value of N is decremented after
each recursive call.

public double exponent (double A, int N) {
if (N == 1)

return A;
else

return A * exponent(A, N-1);
}

So far we used only mathematical functions to illustrate recursive methods,
but recursion is not limited to mathematical functions. Let’s look at one example.
We know the length method of the String class returns the number characters in a
given string. Let’s write a recursive method that does the same thing. Here’s how we
think recursively. The total number of characters in a string is 1 plus the number of
characters in the substring from the second position to the end of the string. If the

wu23399_ch06.qxd 12/14/06 17:53 Page 340

6.10 Recursive Methods (Optional) 341

int factorial(int N){
if (N==1)

 return 1;

 else

 return N * factorial(N–1);
}

N�4

24

int factorial(int N){
if (N==1)

 return 1;

 else

 return N * factorial(N–1);
}

N�3

6

int factorial(int N){
if (N==1)

 return 1;

 else

 return N * factorial(N–1);
}

N�2

2

int factorial(int N){
if (N==1)

 return 1;

 else

 return N * factorial(N–1);
}

N�1

1

Figure 6.14 The sequence of calls for the recursive factorial method.

wu23399_ch06.qxd 12/14/06 17:53 Page 341

string has no characters, then the length is zero. Puting this idea into an actual
method, we have

public int length(String str) {

if (str.equals("")) { //str has no characters
return 0;

} else {

return 1 + length(str.substring(1));
}

}

We will present more examples of recursive methods that implement nonnu-
merical operations in Chapter 15.

We used factorial, sum, exponentiation, and length as examples to introduce
some of the basic concepts of recursion, but we should never actually write these
methods using recursion. The methods can be written more efficiently in an itera-
tive (i.e., nonrecursive) manner using a simple for loop. In practice, we use recur-
sion if certain conditions are met.

342 Chapter 6 Repetition Statements

Index of the second
position is 1.

Use recursion if

1. A recursive solution is natural and easy to understand.

2. A recursive solution does not result in excessive duplicate computation.

3. The equivalent iterative solution is too complex.

As a final review of the topic, we conclude this section with the recursive
version of the Euclidean gcd method. Remember the logic behind the Euclidean
gcd method is a sequence of reducing the problem, for example, gcd(48, 16) =
gcd(16, 12) = gcd(12, 4) = 4. Here’s how we can express this thinking recursively:

public int gcd_recursive(int m, int n) {

int result;

if (m == 0) { //test

result = n; //end case

} else {

result = gcd_recursive(n % m, m); //recursive case

}

return result;
}

wu23399_ch06.qxd 12/14/06 17:53 Page 342

6.11 Sample Development 343

Sample Development 6.11 Sample Development

Hi-Lo Game

In this section we will develop a program that plays a Hi-Lo game.This program illustrates
the use of repetition control, the random number generator, and the testing strategy.The
objective of the game is to guess a secret number between 1 and 100. The program will
respond with HI if the guess is higher than the secret number and LO if the guess is lower
than the secret number.The maximum number of guesses allowed is six. If we allow up to
seven, one can always guess the secret number. Do you know why?

Problem Statement

Write an application that will play Hi-Lo games with the user.The objective of the
game is for the user to guess the computer-generated secret number in the least
number of tries. The secret number is an integer between 1 and 100, inclusive.
When the user makes a guess, the program replies with HI or LO depending on
whether the guess is higher or lower than the secret number.The maximum num-
ber of tries allowed for each game is six.The user can play as many games as she
wants.

Overall Plan

We will begin with our overall plan for the development. Let’s identify the major tasks of
the program. The first task is to generate a secret number every time the game is played,
and the second task is to play the game itself.We also need to add a loop to repeat these
two tasks every time the user wants to play the Hi-Lo game.We can express this program
logic in pseudocode as follows:

do {

Task 1: generate a secret number;

Task 2: play one game;

} while (the user wants to play);

Let’s look at the two tasks and determine objects that will be responsible for han-
dling the tasks.For the first task,we will use the random method of the Math class.We will
examine this method in detail later to determine whether it is the one we can use in the
program. If this method does not meet our needs, then we will explore further and most
likely will have to derive our own random number generator.

For the second task of playing the game itself, we use objects that handle I/O and
the logic of repeatedly asking for the next guess until the game is over. For input and out-
put, we use a Scanner and System.out. We will define a class to handle the logic of play-
ing the game. This class will control the other two classes. We will name this class
Ch6HiLo, and it will be an instantiable main class.

program
tasks

wu23399_ch06.qxd 12/14/06 17:53 Page 343

344 Chapter 6 Repetition Statements

6.11 Sample Development—continued

Here’s our working design document:

Design Document: Ch6HiLo

Class Purpose
Ch6HiLo The top-level control object handles the logic of

playing games and manages other objects.This is
the instantiable main class.

Scanner This standard class is for inputting user guesses.

PrintStream This standard class is for displaying hints and other
(System.out) messages.

Figure 6.15 is the program diagram for this program. A keen observer may have noticed
that the Ch6HiLo class is handling both types of tasks: handling of user interface and con-
trolling the logic of game playing. We will revisit this design in the GUI chapter and
provide an alternative. The one-class design we adopt here may not be an ideal design,
but may be acceptable for a simplistic game such as this one. The design also provides
us with a meaningful comparison when we present an alternative design in the GUI
chapter.

We will implement this program using the following four major steps:

1. Start with a skeleton Ch6HiLo class.

2. Add code to the Ch6HiLo class to play a game using a dummy secret number.

3. Add code to the Ch6HiLo class to generate a random number.

4. Finalize the code by removing temporary statements and tying up loose ends.

Step 1 Development: Program Skeleton

The structure of the HiLoMain class is the same as other main classes. All we need to do is
to declare, create, and start a HiLo object. Instead of forcing the user to play at least one

program
classes

Figure 6.15 The program diagram for the HiLo program.

Ch6HiLo PrintStream
(System.out)

Scanner

develop-
ment steps

step 1
design

wu23399_ch06.qxd 12/14/06 17:53 Page 344

game,we will implement the program so the user has an option of not playing a game at
all. In pseudocode we can express this logic as follows:

describe the game rules;

prompt the user to play a game or not;

while (answer is yes) {

generate the secret number;

play one game;

prompt the user to play another game or not;
}

Notice that we use a while loop here, so the user can quit the program without
playing a game. If we use a do–while loop instead, then the user must play at least one
game before stopping the program. We opt to use the while loop because the user may
not want to play the game at all after reading the game rules.

We use a private method describeRules to display the game rules. Another private
method named prompt gets a yes/no reply from the user.We call this method to ask if the
user wants to play a game.To generate a secret number, we have the third private method
generateSecretNumber. Lastly, we define the fourth private method playGame to play
one game. We declare these four methods private because these methods are for inter-
nal use. As always, we will use the constructor to perform necessary object creation and
initialization.

Our working design document for the HiLo class is as follows:

6.11 Sample Development 345

Design Document: The Ch6HiLo Class

Method Visibility Purpose
<constructor> public Creates and initializes the objects

used by a HiLo object.

start public Starts the Hi-Lo game playing.The
user has an option of playing a game
or not.

describeRules private Displays the game rules in
System.out.

generateSecretNumber private Generates a secret number for the
next Hi-Lo game.

playGame private Plays one Hi-Lo game.

prompt private Prompts the user for a yes/no reply.

wu23399_ch06.qxd 12/14/06 17:53 Page 345

6.11 Sample Development—continued

346 Chapter 6 Repetition Statements

For the skeleton program, we include temporary output statements in the private
methods to verify that they are called correctly in the right order. Here’s the skeleton
Ch6HiLo class:

step 1 code

import java.util.*;

/*

Chapter 6 Sample Development: Hi-Lo Game (Step 1)

The instantiable main class of the program.

*/

class Ch6HiLo {

private static enum Response {YES, NO}

private Scanner scanner;

//Main Method
public static void main (String[] args) {

Ch6HiLo hiLo = new Ch6HiLo();
hiLo.start();

}

public Ch6HiLo() {

scanner = new Scanner(System.in);
}

public void start() {
Response answer;

describeRules();

answer = prompt("Do you want to play a Hi-Lo game?");

while (answer == Response.YES) {

generateSecretNumber();

playGame();

answer = prompt("Do you want to play another Hi-Lo game?");
}

System.out.println("Thank you for playing Hi-Lo.");
}

Constructor

start

main

wu23399_ch06.qxd 12/14/06 17:54 Page 346

private void describeRules() {
System.out.println("Inside describeRules"); //TEMP

}

private void generateSecretNumber() {
System.out.println("Inside generateSecretNumber"); //TEMP

}

private void playGame() {
System.out.println("Inside playGame"); //TEMP

}

private Response prompt(String question) {

String input;

Response response = Response.NO;

System.out.print(question + " (Yes - y; No - n): ");

input = scanner.next();

if (input.equals("Y") || input.equals("y")) {
response = Response.YES;

}

return response;
}

6.11 Sample Development 347

describeRules

generateSecretNumber

playGame

prompt

We execute the skeleton Ch6HiLo class to verify that the class is coded correctly. To
verify the correct execution of step 1, we attempt to play the game

1. Zero times

2. One time

3. One or more times

For the first run, we select No to the prompt Do you want to play a Hi-Lo game?
and make sure the program stops without playing a game. For the second run, we select
Yes to the first prompt and verify that the messages Inside generateSecretNumber and
Inside playGame are shown in the console window. We select No to the prompt Do you
want to play another Hi-Lo game? and make sure the program stops. For the third run,
we make sure we can play more than one game. After we verify all the scenarios work
correctly, we proceed to the next step.

step 1 test

wu23399_ch06.qxd 12/14/06 17:54 Page 347

6.11 Sample Development—continued

Step 2 Development: Play a Game with a Dummy Secret Number

In the second development step, we add a routine that plays a Hi-Lo game. Let’s begin
with the control flow of the playGame method. There are two cases to end a Hi-Lo
game: The user either guesses the number in less than six tries or uses up all six tries
without guessing the number. So we need a counter to keep track of the number of
guesses made. Let’s call this counter guessCount. We stop the game when guessCount
becomes larger than 6 or the user’s guess is equal to the secret number. At the end
of the game, we output an appropriate message. Expressing this in pseudocode, we
have

//Method: playGame

set guessCount to 0;

do {
get next guess;

increment guessCount;

if (guess < secretNumber) {
print the hint LO;

} else if (guess > secretNumber) {
print the hint HI;

}

} while (guessCount < number of guesses allowed &&
guess != secretNumber);

if (guess == secretNumber) {

print the winning message;

} else {
print the losing message;

}

All variables used in this method will be local except secretNumber, which will be an in-
stance variable. The value for secretNumber is set inside the generateSecretNumber
method.

To support a better user interface, we will include an input error handling that allows
the user to enter only values between 1 and 100. We will do this input-error-checking rou-
tine in a new private method getNextGuess because we do want to keep the playGame
method clean and simple. If we included the code for input error handling directly inside

348 Chapter 6 Repetition Statements

step 2
design

wu23399_ch06.qxd 12/14/06 17:54 Page 348

the playGame method, the method would become too cluttered and lose the overall clar-
ity of what the method is doing. Pseudocode for the getNextGuess method is

//Method: getNextGuess

while (true) {
get input value;

if (valid input) return input value;

print error message;
}

The working design document of the class now includes this new private method:

6.11 Sample Development 349

step 2 code

Design Document: The Ch6HiLo Class

Method Visibility Purpose

...

getNextGuess private Returns the next guess from the user. Only
accepts a guess between 1 and 100. Prints
an appropriate error message when an
invalid guess is entered.

In the step 2 coding, we need to implement three methods. In addition to
the playGame and getNextGuess methods, we need to define a temporary gen-
erateSecretNumber method so we can test the playGame method. The temporary
generateSecretNumber method assigns a dummy secret number to the instance vari-
able secretNumber. The temporary method is coded as follows:

private void generateSecretNumber() {
secretNumber = 45; //TEMP

}

Any number will do; we simply picked the number 45. Knowing that the secret number is
45, we will be able to test whether the playGame method is implemented correctly.

We implement the playGame method thus:

private void playGame() {
int guessCount = 0;
int guess;

do {

//get the next guess
guess = getNextGuess();

guessCount++;

getNextGuess is a
new private method.

wu23399_ch06.qxd 12/14/06 17:54 Page 349

6.11 Sample Development—continued

//check the guess
if (guess < secretNumber) {

System.out.println
"Your guess is LO");

} else if (guess > secretNumber) {
System.out.println

"Your guess is HI");
}

} while (guessCount < MAX_GUESS_ALLOWED &&
guess != secretNumber);

//output appropriate message
if (guess == secretNumber) {

System.out.println
"You guessed it in "
+ guessCount + " tries.");

} else {
System.out.println

"You lost. Secret No. was "
+ secretNumber);

}
}

The getNextGuess method will accept an integer between 1 and 100. The method
uses a while loop to accomplish this:

private int getNextGuess() {

int input;

while (true) {

System.out.print("Next Guess: ");
input = scanner.nextInt();

if (LOWER_BOUND <= input && input <= UPPER_BOUND) {
return input;

}

//invalid input; print error message
System.out.println("Invalid Input: " +

"Must be between " + LOWER_BOUND +
"and " + UPPER_BOUND);

}
}

350 Chapter 6 Repetition Statements

Repeat the loop if
the number of tries
is not used up and

the correct guess is
not made.

This class constant
is set to 6.

wu23399_ch06.qxd 12/14/06 17:54 Page 350

The necessary constant and instance variable are declared in the data member sec-
tion of the HiLo class as follows:

//---------------------------------
// Data Members
//---------------------------------
private final int MAX_GUESS_ALLOWED = 6;
private final int LOWER_BOUND = 1;
private final int UPPER_BOUND = 100;

private int secretNumber;

We need to test two methods in this step. To verify the getNextGuess method, we
input both invalid and valid guesses. We verify the method by running the following tests:

1. Enter a number less than 1.

2. Enter a number greater than 100.

3. Enter a number between 2 and 99.

4. Enter 1.

5. Enter 100.

The first two test cases are called error cases, the third is called the normal case, and
the last two are called end cases. One of the common errors beginners make is to create a
loop statement that does not process the end cases correctly. When our code handles all
three types of cases correctly, we will proceed to test the playGame method.

To verify the playGame method, we need to perform a more elaborate testing.
Knowing that the dummy secret number is 45, we verify the playGame method by run-
ning the following tests:

1. Enter a number less than 45 and check that the correct hint LO is displayed.

2. Enter a number greater than 45 and check that the correct hint HI is displayed.

3. Enter the correct guess, and check that the game terminates after displaying the
appropriate message.

4. Enter six wrong guesses, and check that the game terminates after displaying the
appropriate message.

When all four tests are successfully completed, we proceed to the next step.

Step 3 Development: Generate a Random Number

In step 3,we add a routine that generates a random number between 1 and 100. As
explained in Chapter 3, we can use the method random from the Math package. Since

6.11 Sample Development 351

step 2 test

test cases

step 3
design

wu23399_ch06.qxd 12/14/06 17:54 Page 351

6.11 Sample Development—continued

the range is between 1 and 100, we can simplify the formula as

secretNumber = X � 100 � 1

where 0.0 ≤ X < 1.0.
The generateSecretNumber method is defined thus:

private void generateSecretNumber() {
double X = Math.random();

secretNumber = (int) Math.floor(X * 100) + 1;

System.out.println("Secret Number: " + secretNumber);
// TEMP

}

The method includes a temporary statement to output the secret number so we can stop
the game anytime we want by entering the correct guess.

To verify that the method generates correct random numbers, we will write a sepa-
rate test program. If we don’t use such a test program and instead include the method
immediately in the Ch6HiLo class, we have to play the game, say, 100 times to verify that
the first 100 generated numbers are valid. The test program generates N random num-
bers and stops whenever an invalid number is generated. We will set N to 1000. Here’s the
test program:

class TestRandom {
public static void main (String[] args) {

int N = 1000, count = 0, number;
double X;

do {

count++;

X = Math.random();
number = (int) Math.floor(X * 100) + 1;

} while (count < N &&
1 <= number && number <= 100);

if (number < 1 || number > 100) {
System.out.println("Error: " + number);

} else {
System.out.println("Okay");

}
}

}

352 Chapter 6 Repetition Statements

step 3 code

step 3 test

TestRan-
dom class
for testing

wu23399_ch06.qxd 12/14/06 17:54 Page 352

Keep in mind that successfully generating 1000 valid random numbers does
not guarantee that the 1001st number is also valid. We did not offer any formal
mathematical proof that the routine for the random number generator works correctly.
What we are doing here is making an assumption that no user wants to play more than
1000 Hi-Lo games in one session, which we believe is a practical and reasonable
assumption. After the TestRandom class is executed correctly, we make the necessary
changes to the Ch6HiLo class and run it. When we verify that the program runs as
expected, we proceed to the final step.

Step 4 Development: Finalize

We finalize the program in the last step. We will perform a critical review of the program,
looking for any unfinished method, inconsistency, or error in the methods; unclear or
missing comments; and so forth. We should also not forget to keep an eye on any im-
provement we can make to the existing code.

We still have a temporary code inside the describeRules method, so we will
complete the method by adding code to describe the game rules. This method is left as
Exercise 18.

There are still temporary output statements that we used for verification purposes.
We can either delete them from the program or comment them out. We will leave them
in the program by commenting them out so when the time comes for us to modify,
debug, or update the program, we do not have to reenter them.

Summary 353

program
review

• A repetition control statement is used to repeatedly execute a block of code
until a certain condition is met.

• Three repetition control statements are while, do–while, and for.

• The count-controlled loop executes the loop body for a fixed number of
times.

• The sentinel-controlled loop executes the loop body until any one of the
designated values called a sentinel is encountered.

• Count-controlled loops can be implemented most naturally with the for
statements.

• Sentinel-controlled loops can be implemented most naturally with the while
or do–while statements.

• The while statement is called a pretest loop, and the do–while statement is
called a posttest loop. The for statement is also a pretest loop.

• Reading a value before the loop statement is called a priming read.

• Off-by-1 error and infinite loop are two common mistakes in writing a loop
control.

S u m m a r y

wu23399_ch06.qxd 12/14/06 17:54 Page 353

• The loop-and-a-half repetition control is the most general way of writing a
loop. The break statement is used within the loop body to exit the loop when
a certain condition is met.

• The nested for statement is used very often because it is ideally suited to
process tabular data.

• Output values can be formatted by using the Formatter class.

• Execution time can be estimated by using the Dafe class.

354 Chapter 6 Repetition Statements

repetition statements

while statements

do–while statements

for statements

off-by-1 error

infinite loop

priming read

nested for statements

pseudocode

loop-and-a-half control

one-entry-one-exit control

count-controlled loops

sentinel-controlled loops

pretest and posttest loops

formatting output values

recursive methods (optional)

K e y C o n c e p t s

1. Identify all the errors in the following repetition statements. Some errors are
syntactical while others are logical (e.g., infinite loops).

a. for (int i = 10; i > 0; i++) {

x = y;

a = b;

}

b. int sum = 0;

Scanner scanner = new Scanner(System.in);

do {

num = scanner.nextInt();

sum += num;

} until (sum > 10000);

c. while (x < 1 && x > 10) {

a = b;

}

d. while (a == b) ;

{

a = b;

x = y;

}

E x e r c i s e s

wu23399_ch06.qxd 12/14/06 17:54 Page 354

e. for (int i = 1.0; i <= 2.0; i += 0.1) {

x = y;

a = b;

}

2. Write for, do–while, and while statements to compute the following sums
and products.

a. 1 � 2 � 3 � . . . � 100
b. 5 � 10 � 15 � . . . � 50
c. 1 � 3 � 7 � 15 � 31 � . . . � (220 � 1)

d. 1 � �
1
2

� � �
1
3

� � �
1
4

� � . . . � �
1
1
5
�

e. 1 � 2 � 3 � . . . � 20
f. 1 � 2 � 4 � 8 � . . . � 220

3. What will be the value of sum after each of the following nested loops is
executed?

a. sum = 0;
for (int i = 0; i <= 10; i++)

for (int j = 0; j <= 10; j++)
sum += i ;

b. sum = 0;
j = 0;
do {

j++;
for (int i = 5; i > j; i--)

sum = sum + (i+j);
} while (j < 11);

c. sum = 0;
i = 0;
while (i < 5) {

j = 5;
while (i != j) {

sum += j;
j--;

}
i++;

}

d. sum = 0;
for (int i = 0; i <= 10; i++)

for (int j = 10; j > 2*i; j--)
sum = sum + (j - i);

Exercises 355

wu23399_ch06.qxd 12/14/06 17:54 Page 355

4. Determine the output from the following code without actually executing it.

System.out.format("%4d", 234);
System.out.format("%5d", 234);

System.out.format("%s", "\n");

System.out.format("$%6.2f", 23.456);
System.out.format("%s", "\n");

System.out.format("%1$3d+%1$3d=%2$5d", 5, (5+5));

5. Rewrite the following nested for statements, using nested do–while and
while statements.

a. sum = 0;
number = 0;
for (int i = 0; i <= 10; i++)

for (int j = 10; j >= i; j--) {
number++;
sum = sum + (j - i);

}

b. product = 1;
number = 0;
for (int i = 1; i < 5; i++)

for (int j = 1; j < 5; j++) {
number++;
product *= number;

}

6. You can compute sin x and cos x by using the following power series:

sin x � x � �
3
x3

!
� � �

5
x5

!
� � �

7
x7

!
� � . . .

cos x � 1� �
2
x2

!
� � �

4
x4

!
� � �

6
x6

!
� � . . .

Write a program that evaluates sin x and cos x by using the power series. Use
the double data type, and increase the number of terms in the series until the
overflow occurs. You can check if the overflow occurs by comparing the
value against Double. POSITIVE_INFINITY. Compare the results you obtain to
the values returned by the sin and cos methods of the Math class.

7. Write an application to print out the numbers 10 through 49 in the following
manner:

10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49

356 Chapter 6 Repetition Statements

wu23399_ch06.qxd 12/14/06 17:54 Page 356

How would you do it? Here is an example of poorly written code:

for (int i = 10; i < 50; i++) {
switch (i) {

case 19:
case 29:
case 39: System.out.println(" " + i); //move to the

break; //next line
default: System.out.print(" " + i);

}
}

This code is not good because it works only for printing 10 through 49. Try
to develop the code so that it can be extended easily to handle any range of
values. You can do this coding in two ways: with a nested for statement or
with modulo arithmetic. (If you divide a number by 10 and the remainder is
9, then the number is 9, 19, 29, or 39, and so forth.)

8. A prime number is an integer greater than 1 and divisible by only itself and
1. The first seven prime numbers are 2, 3, 5, 7, 11, 13, and 17. Write a
method that returns true if its parameter is a prime number.

9. There are 25 primes between 2 and 100, and there are 1229 primes between
2 and 10,000. Write a program that inputs a positive integer N � 2 and
displays the number of primes between 2 and N (inclusive). Use the timing
technique explained in Section 6.9 to show the amount of time it took to
compute the result.

10. Instead of actually computing the number of primes between 2 and N, we
can get an estimate by using the Prime Number Theorem, which states that

prime(N) � �
ln

N

(N)
�

where prime(N) is the number of primes between 2 and N (inclusive). The
function ln is the natural logarithm. Extend the program for Exercise 9 by
printing the estimate along with the actual number. You should notice the
pattern that the estimate approaches the actual number as the value of N gets
larger.

11. A perfect number is a positive integer that is equal to the sum of its proper
divisors. A proper divisor is a positive integer other than the number itself
that divides the number evenly (i.e., no remainder). For example, 6 is a
perfect number because the sum of its proper divisors 1, 2, and 3 is equal
to 6. Eight is not a perfect number because 1 � 2 � 4 � 8 . Write an
application that accepts a positive integer and determines whether the
number is perfect. Also, display all proper divisors of the number. Try a
number between 20 and 30 and another number between 490 and 500.

12. Write an application that lists all perfect numbers between 6 and N, an upper
limit entered by the user. After you verify the program with a small number

Exercises 357

wu23399_ch06.qxd 12/14/06 17:54 Page 357

for N, gradually increase the value for N and see how long the program takes
to generate the perfect numbers. Since there are only a few perfect numbers,
you might want to display the numbers that are not perfect so you can easily
tell that the program is still running.

13. Write a program that displays all integers between low and high that are the
sum of the cube of their digits. In other words, find all numbers xyz such that
xyz � x3 � y3 � z3, for example, 153 � 13 � 53 � 33. Try 100 for low and
1000 for high.

14. Write a method that returns the number of digits in an integer argument; for
example, 23,498 has five digits.

15. Your freelance work with MyJava Lo-Fat Burgers was a success (see
Exercise 22 of Chap. 5). The management loved your new drive-through
ordering system because the customer had to order an item from each of the
three menu categories. As part of a public relations campaign, however,
management decided to allow a customer to skip a menu category. Modify
the program to handle this option. Before you list items from each category,
use a confirmation dialog to ask the customer whether he or she wants to
order an item from that category.

16. Extend the program in Exercise 15 so that customers can order more than
one item from each menu category. For example, the customer can buy two
orders of Tofu Burgers and three orders of Buffalo Wings from the Entree
menu category.

17. Complete the loan table program discussed in Section 6.8.

18. Implement the describeRules method of the Ch6HiLo class from Section 6.9.
Use a confirmation dialog to ask the user whether or not to display the game
rules.

19. The price table for carpet we printed out in Section 6.6 contains index values
for width and length, but not labels to identify them. Write an application to
generate the table shown next:

358 Chapter 6 Repetition Statements

wu23399_ch06.qxd 12/14/06 17:54 Page 358

20. Extend the HiLo class to allow the user to designate the lower and upper
bounds of the secret number. In the original HiLo class, the bounds are set to
1 and 100, respectively.

21. A formula to compute the Nth Fibonacci number was given in Exercise 19 in
Chapter 3. The formula is useful in finding a number in the sequence, but a
more efficient way to output a series of numbers in the sequence is to use the
recurrence relation FN � FN�1 � FN�2, with the first two numbers in the
sequence F1 and F2 both defined as 1. Using this recurrence relation, we can
compute the first 10 Fibonacci numbers as follows:

F1 = 1
F2 = 1
F3 = F2 + F1 = 1 + 1 = 2
F4 = F3 + F2 = 2 + 1 = 3
F5 = F4 + F3 = 3 + 2 = 5
F6 = F5 + F4 = 5 + 3 = 8
F7 = F6 + F5 = 8 + 5 = 13
F8 = F7 + F6 = 13 + 8 = 21
F9 = F8 + F7 = 21 + 13 = 34
F10 = F9 + F8 = 34 + 21 = 55

Write an application that accepts N, N 	 1, from the user and displays the
first N numbers in the Fibonacci sequence. Use appropriate formatting to
display the output cleanly.

22. Modify the application of Exercise 21 to generate and display all the
numbers in the sequence until a number becomes larger than the value
maxNumber entered by the user.

23. Improve the LoanCalculator class from Chapter 4 to accept only the valid
input values for loan amount, interest rate, and loan period. The original
LoanCalculator class assumed the input values were valid. For the exercise,
let the loan amount between $100.00 and $1,000,000.00, the interest rate
between 5 and 20 percent, and the loan period between 1 year and 30 years
be valid.

24. Extend Exercise 22 on page 292 by drawing a more realistic clock. Instead
of drawing a clock like this

Exercises 359

wu23399_ch06.qxd 12/14/06 17:54 Page 359

draw a circle at 5-min intervals as follows:

Use a for loop to draw 12 circles.

25. In the formatting examples from the chapter, we always provided a fixed
control string, such as

System.out.format("%4d", 23);

It is possible, however, to dynamically create the control string, as in

int i = 4;
System.out.format("%" + i + "d", 23);

Using this idea of dynamically creating a control string, write a code
fragment that outputs 50 X’s, using a separate line for each X. An X on a
single line is preceded by two more leading spaces than the X on the
previous line. The following figure shows the output for the first five lines.

26. (Optional) Write a recursive method to compute the sum of the first N
positive integers. Note: This is strictly for exercise. You should not write the
real method recursively.

27. (Optional) Write a recursive method to compute the sum of the first N
positive odd integers. Note: This is strictly for exercise. You should not write
the real method recursively.

Development Exercises
For the following exercises, use the incremental development methodology to
implement the program. For each exercise, identify the program tasks, create a
design document with class descriptions, and draw the program diagram. Map out
the development steps at the start. Present any design alternatives and justify your
selection. Be sure to perform adequate testing at the end of each development step.

X

 X

 X

 X

 X

360 Chapter 6 Repetition Statements

wu23399_ch06.qxd 12/14/06 17:54 Page 360

28. Write an application that draws nested N squares, where N is an input to the
program. The smallest square is 10 pixels wide, and the width of each
successive square increases by 10 pixels. The following pattern shows seven
squares whose sides are 10, 20, 30, . . . , and 70 pixels wide.

29. The monthly payments for a given loan are divided into amounts that apply
to the principal and to the interest. For example, if you make a monthly
payment of $500, only a portion of the $500 goes to the principal and the
remainder is the interest payment. The monthly interest is computed by
multiplying the monthly interest rate by the unpaid balance. The monthly
payment minus the monthly interest is the amount applied to the principal.
The following table is the sample loan payment schedule for a 1-year loan of
$5000 with a 12 percent annual interest rate.

Payment Unpaid Total Interest
No. Interest Principal Balance to Date

1 50.00 394.24 4605.76 50.00
2 46.06 398.19 4207.57 96.06
3 42.08 402.17 3805.40 138.13
4 38.05 406.19 3399.21 176.19
5 33.99 410.25 2988.96 210.18
6 29.89 414.35 2574.61 240.07
7 25.75 418.50 2156.11 265.82
8 21.56 422.68 1733.42 287.38
9 17.33 426.91 1306.51 304.71

10 13.07 431.18 875.34 317.78
11 8.75 435.49 439.85 326.53
12 4.40 439.85 0.00 330.93

Write an application that accepts a loan amount, annual interest rate,
and loan period (in number of years) and displays a table with five columns:
payment number, the interest and principal paid for that month, the
remaining balance after the payment, and the total interest paid to date.

Drawing Board

not drawn to scale

Exercises 361

wu23399_ch06.qxd 12/14/06 17:54 Page 361

Note: The last payment is generally different from the monthly payment,
and your application should print out the correct amount for the last
payment. Use the Format class to align the output values neatly.

30. Instead of dropping a watermelon from a building, let’s shoot it from a
cannon and compute its projectile. The (x, y) coordinates of a watermelon at
time t are

x � V cos(
) . t

y � V sin(
) . t ��
g

2

. t2

�

where g is the acceleration of gravity, V is the initial velocity, and
 (alpha)
is the initial angle. The acceleration of gravity on earth is 9.8 m/s2.

Write an application that inputs an initial velocity V (m/s) and an initial
angle alpha (degrees) and computes the projectile of a watermelon
cannon ball. The program should repeat the computation until the user wants
to quit. The program outputs the (x, y) oordinate value for every second,
that is, t = 0, 1, 2, and so forth. The program stops the output when the y
value becomes 0 or less. To use the cos and sin methods of the Math class,
don’t forget that you have to convert the input angle given in degrees to
radians. You can convert a degree to equivalent radians by using the
following

Radian � �
degr

1
e
8
e
0
� �
�

or calling the toRadians method of the Math class. Note: Air resistance is not
considered in the formula. Also, we assumed the watermelon will not get
smashed upon firing.

31. Write an application that simulates a slot machine. The player starts out with
M coins. The value for M is an input to the program, and you charge 25 cents
per coin. For each play, the player can bet 1 to 4 coins. If the player enters 0
as the number of coins to bet, then the program stops playing. At the end of
the game, the program displays the number of coins left and how much the
player won or lost in the dollar amount. There are three slots on the machine,
and each slot will display one of the three possible pieces: BELL, GRAPE,

�x

�y

(x, y)

�

362 Chapter 6 Repetition Statements

wu23399_ch06.qxd 12/14/06 17:54 Page 362

and CHERRY. When certain combinations appear on the slots, the machine
will pay the player. The payoff combinations are as follows:

Payoff (Times
the Betting

No. Combination Amount)

1 BELL BELL BELL 10
2 GRAPE GRAPE GRAPE 7
3 CHERRY CHERRY CHERRY 5
4 CHERRY CHERRY ----------- 3
5 CHERRY ----------- CHERRY 3
6 ----------- CHERRY CHERRY 3
7 CHERRY ----------- ----------- 1
8 ----------- CHERRY ----------- 1
9 ----------- ----------- CHERRY 1

The symbol ----------- means any piece. If the player bets 4 coins and get
combination 5, for example, the machine pays the player 12 coins.

Exercises 363

wu23399_ch06.qxd 12/14/06 17:54 Page 363

wu23399_ch06.qxd 12/14/06 17:54 Page 364

Defining Your Own
Classes—Part 2

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Define overloaded methods and constructors.

• Describe the uses of the reserved word this.

• Define class methods and variables.

• Describe how the arguments are passed to the
parameters in method definitions with the
pass-by-value scheme.

• Describe how objects are returned from
methods.

• Document classes with javadoc comments.

• Organize classes into a package.

365

7

wu23399_ch07.qxd 12/15/06 19:53 Page 365

366 Chapter 7 Defining Your Own Classes—Part 2

I n t r o d u c t i o n

In Chapter 4, we covered the basics of programmer-defined classes with illustrative
examples. There we focused our attention on straightforward cases. After seeing
more sample programs in Chapters 5 and 6, we are now ready to attack advanced
topics of programmer-defined classes. In addition to introducing several new topics,
we will revisit some of the topics from Chapter 4 and provide a more in-depth dis-
cussion. In Chapters 5 and 6, we used the Fraction class to illustrate some of the
concepts. We will continue to use the Fraction class in this chapter to illustrate the
key concepts introduced here. Toward the end of this chapter, we will provide a
complete definition of the Fraction class. In addition to this Fraction class, we will
go over other sample classes to help students master the key concepts.

7.1 Returning an Object from a Method
Up until now, when we define a value-returning method, we return either primitive
data types, such as int or boolean, or a String. In this section, we learn how to return
objects from methods. Again, a String is an object, so in a sense, we know how to re-
turn an object from a method. However, a String is treated much as a primitive
datum for the most part. Here, we provide a more complete picture of what is going
on when we return an object of other standard and programmer-defined classes.

We use the Fraction class to illustrate the returning of an object from a
method. Here’s the portion of the class definition that includes the constructor,
accessors, and mutators (we will add other methods gradually as we cover more
topics):

class Fraction {

private int numerator;

private int denominator;

public Fraction(int num, int denom) {
setNumerator(num);
setDenominator(denom);

}

public int getDenominator() {

return denominator;
}

public int getNumerator() {

return numerator;
}

return objects
from methods

We assume both
parameters are
nonnegative.
We remove this
assumption
when listing the
final version in
Section 7.8.

wu23399_ch07.qxd 12/15/06 19:53 Page 366

public void setDenominator(int denom) {
if (denom == 0) {

//Fatal error
System.err.println("Fatal Error");
System.exit(1);

}
denominator = denom;

}

public void setNumerator(int num) {
numerator = num;

}

public String toString() {

return getNumerator() + "/" + getDenominator();
}

//other methods come here

}

Notice that we do not allow a fraction to have 0 as its denominator. If there is an
attempt to assign 0 as a fraction’s denominator, we will terminate the whole pro-
gram. This is quite a draconian measure, but we will do it this way until we learn
exception handling in Chapter 8.

Now, let’s study the simplify method that reduces a fraction to its simplest
form. How about the following?

public void simplify() {

int num = getNumerator();
int denom = getDenominator();
int gcd = gcd(num, denom);

setNumerator(num/gcd);
setDenominator(denom/gcd);

}

We use the gcd method that returns the greatest common divisor (int) as de-
scribed in Chapter 6. We get the simplified form by dividing the numerator and the
denominator by their greatest common divisor. Here’s a sample use of the method:

Fraction f1 = new Fraction(24, 36);

f1.simplify(); //f1 is changed!

Notice that the value of f1 is now changed because the method updates the data
members of the receiving object (in this example, f1 is a receiving object because
we are calling the add method of f1).

Is it acceptable to change the values of the receiving object f1? In this case,
is better to keep the values of f1 unchanged and to return a Fraction object that is
in the simplified form. This will give flexibility to client programmers. Here’s the

7.1 Returning an Object from a Method 367

wu23399_ch07.qxd 12/15/06 19:53 Page 367

improved version of the simplify method. (We will make an additional improvement
in Section 7.8 to properly handle the case when gcd is zero.)

public Fraction simplify() {

int num = getNumerator();
int denom = getDenominator();
int gcd = gcd(num, denom);

Fraction simp = new Fraction(num/gcd, denom/gcd);

return simp;
}

The following is the sample use of the improved version:

Fraction f1, f2;

f1 = new Fraction(24, 36);

f2 = f1.simplify();

System.out.println(f1.toString() + "can be reduced to " +
f2.toString());

The output will be

24/36 can be reduced to 2/3

Be aware that we can produce such output easily because we did not change the val-
ues of f1. Now, if we really want to reduce f1 itself to simplest form, then we just
have to assign the result back to f1 as in

f1 = f1.simplify();

Let’s study the effect of the simplify method when it returns an object. Fig-
ure 7.1 shows the state of memory after the simp object is created and assigned the
values. Notice that simp is a local variable, but the object itself is created in the heap
memory. The return statement at the end of the simplify method returns the value of
simp, which is a reference to the Fraction object. Figure 7.2 shows the state after the
simplify method is complete. The value of simp is assigned to f2, and now the vari-
able f2 points to this Fraction object. It is critical to realize that when we say return
an object from a method, we are in fact returning a reference to the object.

368 Chapter 7 Defining Your Own Classes—Part 2

When we say “return an object from a method,” we are actually returning the
address, or reference, of an object to the caller.

wu23399_ch07.qxd 12/15/06 19:54 Page 368

7.1 Returning an Object from a Method 369

f2 = f1.simplify();

public Fraction simplify() {

 Fraction simp;
 ...
 simp = new Fraction(...);

 return simp;
}

At before return1

1

f1

f2

:Fraction

numerator

denominator

24

36

:Fraction

numerator

denominator

2

3

simp
Only the local variable
simp is shown here.

Figure 7.1 This illustration shows the state after the simp object is created and assigned with the correct values.

f2 = f1.simplify();

public Fraction simplify() {

 Fraction simp;
 ...
 simp = new Fraction(...);

 return simp;
}

At after simplify is complete2

2

f1

f2

:Fraction

numerator

denominator

24

36

:Fraction

numerator

denominator

2

3

simp

Dotted lines indicate
the memory space is
deallocated.

The value of simp, which is a reference
to the Fraction object, is returned to
the caller and assigned the variable f2.
Memory space for simp is deallocated upon
the completion of the method.

Figure 7.2 Continuation of Figure 7.1.This illustration shows how an object (actually the reference to it) is
returned to the calling program.

wu23399_ch07.qxd 12/15/06 19:54 Page 369

We will be seeing more examples of object-returning methods in this and later
chapters.

370 Chapter 7 Defining Your Own Classes—Part 2

It is not necessary to create an object for every variable we use. Many novice pro-
grammers often make this mistake. For example, we write

Fraction f1, f2;
f1 = new Fraction(24, 36);
f2 = f1.simplify();

We didn’t write

Fraction f1, f2;
f1 = new Fraction(24, 36);
f2 = new Fraction(1, 1); //not necessary

f2 = f1.simplify();

because it is not necessary.The simplify method returns a Fraction object, and in
the calling program, all we need is a name we can use to refer to this returned
Fraction object. Don’t forget that the object name (variable) and the actual object
instance are two separate things.

1. What’s wrong with the following declaration?

class Question {
Person student;

public void getStudent() {

return student;
}

...
}

2. Define a Vehicle class. It has a data member owner of type Person. Include
an accessor to retrieve the owner person and a mutator to set the
owner.

7.2 The Reserved Word this
Let’s continue the implementation of the Fraction class. We now consider the four
arithmetic operations for fractions; see Figure 7.3. When defining the methods for
the four arithmetic operations, we introduce the use of the reserved word this. The

wu23399_ch07.qxd 12/15/06 19:54 Page 370

reserved word this is called a self-referencing pointer because it is used to refer to
the receiving object of a message from within this object’s method.

Let’s start with the add method that adds two fractions:

public Fraction add(Fraction frac) {

int a, b, c, d;

Fraction sum;

a = this.getNumerator(); //get the receiving
b = this.getDenominator(); //object's num and denom

c = frac.getNumerator(); //get frac's num
d = frac.getDenominator(); //and denom

sum = new Fraction(a*d + b*c, b*d);

return sum;

}

Let’s first look at how this add method is used. The following code adds two
fractions f1 and f2 and assigns the sum to f3:

Fraction f1, f2, f3;

f1 = new Fraction(1, 2);
f2 = new Fraction(1, 4);

f3 = f1.add(f2);

System.out.println("Sum of " + f1.toString() + " and " +
f2.toString() + " is " +
f3.toString();

This code, when executed, will produce the following output:

Sum of 1/2 and 1/4 is 6/8

7.2 The Reserved Word this 371

self-
referencing
pointer

Addition a
b

c
d

ad � bc
bd� �

a
b

c
d

ad
bc� � a

b
c
d

ac
bd� �

a
b

c
d

ad � bc
bd� �Subtraction

Division Multiplication

Figure 7.3 Rules for adding, subtracting, multiplying, and dividing fractions.

Explicit use of the
reserved word this

Not simplified because
the simplify method is
not called.

wu23399_ch07.qxd 12/15/06 19:54 Page 371

In the statement

f3 = f1.add(f2);

we are calling the add method of f1 and passing the argument f2. So in this case, the
receiving object is f1. Figure 7.4 shows the state of memory at the point where the
add method of f1 is called. Notice that the self-referencing pointer this is referring
to f1 because it is the receiving object.

Because f2 is also a Fraction object, we can write the statement as

f3 = f2.add(f1);

and get the same result (since the operation is addition). In this case, the receiv-
ing object is f2, and the argument is f1. Figure 7.5 shows the state of memory at
the point where the add method of f2 is called. Notice how the objects referenced
by frac and this are swapped. This time the self-referencing pointer this is refer-
ring to f2.

372 Chapter 7 Defining Your Own Classes—Part 2

f3 = f1.add(f2);

public Fraction add(Fraction frac) {

 Fraction sum;
 ...
 sum = new Fraction(...);

 return sum;
}

At when the method is called

this points to f1

1

1

f2

f1

f3

:Fraction

numerator

denominator

1

4

:Fraction

numerator

denominator

1

2

frac

this

Figure 7.4 This illustration shows the state of memory for f1.add(f2).

wu23399_ch07.qxd 12/15/06 19:54 Page 372

7.2 The Reserved Word this 373

f3 = f2.add(f1);

public Fraction add(Fraction frac) {

 Fraction sum;
 ...
 sum = new Fraction(...);

 return sum;
}

At when the method is called

this points to f2

1

1

f2

f1

f3

:Fraction

numerator

denominator

1

4

:Fraction

numerator

denominator

1

2

frac

this

Figure 7.5 This illustration shows the state of memory for f2.add(f1).

The add method computes the sum of the receiving Fraction object and the
argument Fraction object. We used the identifier frac for the parameter, so

c = frac.getNumerator();
d = frac.getDenominator();

will retrieve the numerator and the denominator of the argument Fraction
object.

To retrieve the numerator and the denominator of the receiving Fraction
object, we write

a = this.getNumerator();
b = this.getDenominator();

because the reserved word this refers to the receiving object.

wu23399_ch07.qxd 12/15/06 19:54 Page 373

The use of the reserved word this is actually optional. If we do not include it
explicitly, then the compiler will insert the reserved word for us. For example, if we
write

class Sample {

public void m1() {
...

}

public void m2() {
m1();

}
}

then the compiler will interpret the definition as

class Sample [

public void m1() {
...

}

public void m2() {

this.m1();
}

}

This is the reason why we were able to call a method from another method of
the same class without the use of dot notation. In fact, it was dot notation with the
reserved word this. We will discuss the use of this when referring to data members
of class at the end of this section.

The methods for the other three arithmetic operations are defined in a similar
manner:

public Fraction divide(Fraction frac) {
int a, b, c, d;

Fraction quotient;

a = this.getNumerator();
b = this.getDenominator();
c = frac.getNumerator();
d = frac.getDenominator();

quotient = new Fraction(a*d, b*c);

return quotient;
}

374 Chapter 7 Defining Your Own Classes—Part 2

The reserved word this is
added by the compiler.

wu23399_ch07.qxd 12/15/06 19:54 Page 374

public Fraction multiply(Fraction frac) {
int a, b, c, d;

Fraction product;

a = this.getNumerator();
b = this.getDenominator();
c = frac.getNumerator();
d = frac.getDenominator();

product = new Fraction(a*c, b*d);

return product;
}

public Fraction subtract(Fraction frac) {
int a, b, c, d;

Fraction diff;

a = this.getNumerator();
b = this.getDenominator();
c = frac.getNumerator();
d = frac.getDenominator();

diff = new Fraction(a*d - b*c, b*d);

return diff;
}

We could have defined the four arithmetic methods as void methods, instead
of returning the result as a Fraction object. But doing so will severely limit the flex-
ibility. Because the methods are object-returning methods, we can write a statement
such as

f3 = f1.add(f2);

that reflects the mathematical expression

f3 = f1 + f2

naturally. Moreover, because the add method returns a Fraction object as the sum,
we can compose the calls to implement multiple additions. For example, the math-
ematical expression

f4 = f1 + f2 + f3

can be written as

f4 = f1.add(f2.add(f3));

7.2 The Reserved Word this 375

wu23399_ch07.qxd 12/15/06 19:54 Page 375

Bad Version

where the sum of f2 and f3 is passed as an argument to the add method of f1. We can
also write the expression as

f4 = f1.add(f2).add(f3);

because f1.add(f2) refers to a (unnamed) Fraction object, and we can call this un-
named object’s add method with f3 as an argument.

Another Use of this
Consider the following class declaration:

class MusicCD {

private String artist;
private String title;

private String id;

public MusicCD(String name1, String name2) {

artist = name1;
title = name2;
id = artist.substring(0,2) + "-" +

title.substring(0,9);

}
...

}

The constructor has two String parameters, one for the artist and another for the
title. An id for a MusicCD object is set to be the first two letters of the artist name
followed by a hyphen and the first nine letters of the title.

Now, consider what happens if we include (say, inadvertently) a local decla-
ration for the identifier id like this:

public MusicCD(String name1, String name2) {
String id;

artist = name1;
title = name2;
id = artist.substring(0,2) + "-" +

title.substring(0,9);
}

Because there is a matching local declaration for id, the identifier refers to the local
variable, not to the third data member anymore. When an identifier is encountered
in a method, the following rules are applied to determine the association.

376 Chapter 7 Defining Your Own Classes—Part 2

This id is now a
local variable.

Local declaration
for id.

wu23399_ch07.qxd 12/15/06 19:54 Page 376

Why does the Java compiler not catch such an error? When would anyone want
to use the same identifier for both the data member and the local variable or parame-
ter? It is true that we strongly recommend to always use an identifier different from
any data member in declaring a local variable. But there is a situation in which we
may want to use the same identifier for a parameter and a data member. In the
MusicCD constructor, we declared the parameters name1 and name2 to avoid naming
conflict. It would actually be more meaningful to use the conflicting identifiers artist
and title. To do so, we rewrite the method by using the reserved word this as follows.

public MusicCD(String artist, String title) {

this.artist = artist;
this.title = title;
id = artist.substring(0,2) + "-" +

title.substring(0,9);
}

Following the stated rules, the identifier artist refers to the parameter. To refer
to the data member artist from within this constructor, we prefix the identifier artist
with the reserved word this, using dot notation, as this.artist. In the modified con-
structor, we did not use the reserved word this to refer to the data member id because
it was not necessary. Its use is optional, so we could have written

this.id = artist.substring(0,2) + "-" +
title.substring(0,9);

to make the code look more consistent. The reserved word this can always be used to
refer to the receiving object’s data members, whether there is a naming conflict or not.

7.2 The Reserved Word this 377

Rules for associating an identifier to a local variable, a parameter, and a data
member

1. If there’s a matching local variable declaration or a parameter, then the
identifier refers to the local variable or the parameter.

2. Otherwise, if there’s a matching data member declaration, then the identifier
refers to the data member.

3. Otherwise, it is an error because there’s no matching declaration.

This refers to the
data member.

This refers to the
parameter.

Optionally, dot notation with the reserved this can be used to refer to an object’s
data member from the object’s methods and constructors.

wu23399_ch07.qxd 12/15/06 19:54 Page 377

In general, following the common practice, we do not use dot notation (with
the reserved word this) to refer to an object’s data members from the object’s meth-
ods unless it is necessary.

Note that we can also avoid the naming conflict and still use a meaningful
name for a parameter by prefixing an article to the parameter. For example, we
could use the identifiers anArtist and aTitle instead of name1 and name2. This nam-
ing will not conflict with the data members, so the use of the reserved word this is
not necessary in the constructor. As long as you use meaningful identifiers, which
technique you adopt to avoid naming conflict is more of a personal preference.

378 Chapter 7 Defining Your Own Classes—Part 2

1. Write a single statement to express the following operations on fractions, using
the methods from the Fraction class.

f5 = (f1 + f2) / (f3 - f4)

2. If the add method is defined thus

public void add(Fraction frac) {

int a, b, c, d;

a = this.getNumerator(); //get this fraction's
b = this.getDenominator(); //num and denom

c = frac.getNumerator(); //get frac's num
d = frac.getDenominator(); //and denom

setNumerator(a*b + c*b); //updates this
setDenominator(b*d); //fraction's num and denom

}

why is it wrong to call the method as follows?

f3 = f1.add(f2);

3. Write statements to assign the sum of fractions f1 and f2 to fraction f3,
using the add method defined in question 2.

7.3 Overloaded Methods and Constructors
Let’s continue to improve the Fraction class. Given the Fraction class in its cur-
rent form, how can a client programmer express the following mathematical
expression?

f3 = 2/3 + 9

wu23399_ch07.qxd 12/15/06 19:54 Page 378

One way is to convert the integer 9 to a fraction 9/1 and then use the add method.

Fraction f1, f2, f3;

f1 = new Fraction(2, 3);
f2 = new Fraction(9, 1);

f3 = f1.add(f2);

This is not bad, but it would be nicer if we could write something like this:

Fraction f1, f3;

f1 = new Fraction(2, 3);

f3 = f1.add(9);

In other words, instead of passing a Fraction object, we want to pass a simple inte-
ger value. Of course, with the current Fraction class, the statement

f3 = f1.add(9);

will result in an error because no matching method is defined in the class. So what
we want here is two versions of addition, one that accepts a Fraction object and
another that accepts an integer. Here are the two definitions:

//Version 1
public Fraction add(Fraction frac) {

//same as before

}

//Version 2
public Fraction add(int number) {

Fraction sum;
int a, b, c, d;

a = getNumerator();
b = getDenominator();
c = number;
d = 1;

sum = new Fraction(a*d + c*b, b*d);
return sum;

}

With the second add method, we now have two methods in the class that have
the same name. This is not a problem as long as certain rules are met. The methods
having the same name are called overloaded methods.

7.3 Overloaded Methods and Constructors 379

Including d here is redundant because its
value is 1. We include it here anyway for
the sake of clarity.

overloaded
methods

wu23399_ch07.qxd 12/15/06 19:54 Page 379

Bad Version

Multiple methods can share the same name as long as one of the following
rules is met:

1. They have a different number of parameters.

2. The parameters are of different data types when the number of parameters is
the same.

The two add methods of the Fraction class satisfy the second rule. The fol-
lowing is an example in which two methods satisfy the first rule:

public void myMethod(int x, int y) { ... }

public void myMethod(int x) { ... }

More formally, we say two methods can be overloaded if they do not have the
same signature. The method signature refers to the name of the method and the
number and types of its parameters. The two myMethod methods have different sig-
natures because the data types of the second parameter are different.

Two methods cannot be overloaded just by the different return types because
two such methods would have the same signature. For example, the following two
methods cannot be defined in the same class:

public double getInfo(String item) { ... }

public int getInfo(String item) { ... }

Now, let’s look at the second add method again. Instead of defining it as we
have, we can define it by calling the first add method. Here’s how:

//More concise Version 2

public Fraction add(int number) {

Fraction frac = new Fraction(number, 1);

Fraction sum = add(frac); //calls the first add method

return sum;
}

In defining overloaded methods, it is common for one of them to call another. Such
implemenation indicates their relationship clearly—that they are different versions
of the same logical operation. It also makes the modification easier because we need
to change the code in only one method. Other methods calling this method require
no changes. We can define the overloaded methods for the other three arithmetic
operations in a similar manner.

Overloading Constructors
Up until now, our programmer-defined classes included exactly one constructor.
But a constructor is also a method, so it, too, can be overloaded. Indeed, it is much

380 Chapter 7 Defining Your Own Classes—Part 2

method
signature

wu23399_ch07.qxd 12/15/06 19:54 Page 380

more common to define multiple constructors in a programmer-defined class. The
same rules for overloaded methods apply. Defining multiple constructors for a class
gives the client programmer flexibility in creating instances. The client programmer
can pick one of the several constructors that is suitable for her needs at hand. Let’s
define multiple constructors for the Fraction class. Here are the four constructors
(including the one already defined before at the bottom):

public Fraction() { //creates 0/1
setNumerator(0);
setDenominator(1);

}

public Fraction(int number) { //creates number/1
setNumerator(number);
setDenominator(1);

}

public Fraction(Fraction frac) { //copy constructor
setNumerator(frac.getNumerator());
setDenominator(frac.getDenominator());

}

public Fraction(int num, int denom) {
setNumerator(num);
setDenominator(denom);

}

The third constructor that accepts a Fraction object and creates a copy of the
passed Fraction object is called a copy constructor. A copy constructor can be quite
handy when we need to create instances of a class that includes many data mem-
bers. Often we want to create a copy before changing the values of or experiment-
ing with the original object.

As another example, here’s a Bicycle class with two constructors that initialize
the two data members:

class Bicycle {

// Data Members

private String id;

private String ownerName;

// Constructors
public Bicycle() {

id = "XXXX-XXXX";
ownerName = "Unassigned";

}

7.3 Overloaded Methods and Constructors 381

multiple
constructors

copy
constructor

wu23399_ch07.qxd 12/15/06 19:54 Page 381

public Bicycle(String tagNo, String name) {

id = tagNo;
ownerName = name;

}

//the rest of the class
. . .

}

Calling a Constructor From Another Constructor by Using this
The last use of the reserved word this is to call a constructor from another con-
structor of the same class. Here’s how we can rewrite the four constructors of the
Fraction class by using the reserved word this:

public Fraction() { //creates 0/1
this(0, 1);

}

public Fraction(int number) { //creates number/1
this(number, 1);

}

public Fraction(Fraction frac) { //copy constructor
this(frac.getNumerator(),

frac.getDenominator());
}

public Fraction(int num, int denom) {
setNumerator(num);
setDenominator(denom);

}

The syntax for calling a constructor from another constructor of the same
class is

this(<parameter-list>);

The constructor that matches the parameter list will be called. We can add more
statements after the this statement in a constructor, but not before it. In other words,
the call to this in a constructor must be the first statement of the constructor.

382 Chapter 7 Defining Your Own Classes—Part 2

This constructor is
called by the other
three constructors.

When you use this to call a constructor from another constructor of the same class,
the this statement must be the first statement in the constructor.

wu23399_ch07.qxd 12/15/06 19:54 Page 382

7.4 Class Variables and Methods 383

1. Are there any conflicts in the following three constructors for ClassX to be
valid?

public ClassX(int X) {

...
}

public ClassX(float X) {

...
}

public ClassX(int Y) {

...
}

2. Define a Student class. A Student has a name. Define two constructors, one
with no argument and another with the name as its argument. Initialize the
name to a default value Unknown for the zero-argument constructor.

3. Rewrite the following constructors, so the first one calls the second one.

public ClassOne(int alpha) {
this.alpha = alpha;
this.beat = 0;

}

public ClassOne(int alpha, int beta) {

this.alpha = alpha;
this.beta = beta;

}

7.4 Class Variables and Methods
We introduced the concepts of class methods, class variables, and class constants in
Chapter 1. We saw how class constants are declared in the actual Java statements in
Chapter 4. We complete our study of class components in this section by describing
how class methods and class variables are used in Java programs. Let’s begin with
the class methods.

The Math class includes a class method called min to compare two numbers.
We use this class method as follows:

int i, j, smaller;

i = ...;
j = ...;

smaller = Math.min(i, j);

wu23399_ch07.qxd 12/15/06 19:54 Page 383

Now suppose we want to have a method to find the smaller of two Fraction objects.
Where do we define such a method? The logical place is, of course, the Fraction
class. But will this method be an instance method? No, a class method, which fol-
lows the pattern of the min method of the Math class, is most appropriate. We can
define a class method called min that accepts two Fraction objects as arguments and
returns the smaller fraction. Here’s how we define the min method:

class Fraction {

...

public static Fraction min(Fraction f1, Fraction f2) {

//convert to decimals and then compare

double f1_dec = f1.decimal();
double f2_dec = f2.decimal();

if (f1_dec <= f2_dec) {

return f1;

} else {

return f2;
}

}

private double decimal() {
//returns the decimal equivalent
return (double) getNumerator() / getDenominator();

}

...
}

The reserved word static indicates that the min method is a class method. A
class method is called by using dot notation with the class name. Here’s a sample use:

Fraction f1, f2, smaller;

f1 = new Fraction(1, 6);
f2 = new Fraction(4, 5);

smaller = Fraction.min(f1, f2);

Remember, in Chapter 6 we discussed the need for finding the greatest com-
mon divisor of two integers to simplify a given fraction. Following the logic of the
min method, we can define the gcd method as a class method. Here’s how:

public static int gcd(int m, int n) {

//the code implementing the Euclidean algorithm

}

384 Chapter 7 Defining Your Own Classes—Part 2

wu23399_ch07.qxd 12/15/06 19:54 Page 384

Notice that the arguments to this method are two integers. When this method is
called from another method of the Fraction class, the numerator and the denomina-
tor are passed as the arguments. We declare this method public so the client pro-
grammers of the Fraction class can use it also. If this is not necessary, then we can
declare it private. (Note: Logically, the gcd method should be a class method, but
there will be no serious consequences if we define it as an instance method.)

In a manner similar to the min and gcd methods, we can define the methods
for arithmetic operations as class methods. For example, here’s how:

public static Fraction add(Fraction f1, Fraction f2) {

int a, b, c, d;

Fraction sum;

a = f1.getNumerator();
b = f1.getDenominator();
c = f2.getNumerator();
d = f2.getDenominator();

sum = new Fraction(a*d + b*c, b*d);

return sum;
}

To use this class method, we write something like this:

Fraction x = new Fraction(1, 8);
Fraction y = new Fraction(4, 9);

Fraction sum = Fraction.add(x, y);

The class method add, however, becomes awkward when we try to compose
additions. To add three fractions x, y, and z, for example, we have to write

Fraction sum = Fraction.add(Fraction.add(x,y), z);

The instance method add, as we defined at the beginning of the chapter,
allows a lot more natural and flexible use.

Now let’s look at an example of class variables (we have been using class con-
stants since Chap. 4). Suppose we want to assign a tag number automatically when
a new instance of the Bicycle class is created. We want the tag numbers to be
ABC-101, ABC-102, ABC-103, and so forth. What we need to define in the Bicycle
class is a counter that counts up from 101. Only one counter is necessary for the
whole class, so it is logical to define this counter as a class variable.

First, we declare and initialize the class variable counter:

class Bicycle {

private static int counter = 101;

...
}

7.4 Class Variables and Methods 385

wu23399_ch07.qxd 12/15/06 19:54 Page 385

Then we adjust the constructor, so the id of a bicycle is assigned correctly. Here’s
how:

public Bicycle() {

id = "ABC-" + counter;
...
counter++;

}

Static Initializer
There are cases in which we may need to do more than a simple assignment to ini-
tialize a class variable. For example, we may be required to read the starting value
for the class variable counter of the Bicycle class from a file. If we need to perform
more than a simple assignment to initialize a class variable, then we define a static
initializer. A static initializer is a code that gets executed when a class is loaded into
the Java system. It is defined in the following manner:

class XYZ {

...

static {

//code to initialize
//class variables and perform
//other tasks

}

...

}

As an illustration, here’s how we define the static initializer for the Bicycle class to
set the starting value of counter to 101:

class Bicycle {

private static int counter;

...

static {

counter = 101;

}

...
}

We conclude this section with important reminders.

386 Chapter 7 Defining Your Own Classes—Part 2

static initializer

wu23399_ch07.qxd 12/15/06 19:54 Page 386

7.5 Call-by-Value Parameter Passing
We will provide more detailed coverage on how arguments are passed to a method.
Let’s first review some key facts. Local variables are used for temporary purposes,
such as storing intermediate results of a computation. While the data members of a
class are accessible from all instance methods of the class, local variables and para-
meters are accessible only from the method in which they are declared, and they are
available only while the method is being executed. Memory space for local vari-
ables and parameters is allocated upon declaration and at the beginning of the
method, respectively, and erased upon exiting from the method.

When a method is called, the value of the argument is passed to the matching
parameter, and separate memory space is allocated to store this value. This way of
passing the value of arguments is called a pass-by-value or call-by-value scheme.
Since separate memory space is allocated for each parameter during the execution
of the method, the parameter is local to the method, and therefore changes made to
the parameter will not affect the value of the corresponding argument.

Consider the following myMethod method of the Tester class. The method
does not do anything meaningful. We use it here to illustrate how the call-by-value
scheme works.

class Tester {

public void myMethod(int one, double two) {

one = 25;
two = 35.4;

}
}

What will be the output from the following code?

Tester tester;
int x, y;

tester = new Tester();
x = 10;
y = 20;

tester.myMethod(x, y);

System.out.println(x + " " + y);

7.5 Call-by-Value Parameter Passing 387

1. Class methods can access only the class variables and the class constants of
the class.

2. Instance methods, including constructors, can access all types of data members.

3. Class methods cannot call instance methods of the same class.

4. Instance methods can call all other methods of the same class.

call-by-value
scheme

wu23399_ch07.qxd 12/15/06 19:54 Page 387

The output will be

10 20

because with the pass-by-value scheme, the values of arguments are passed to the
parameters, but changes made to the parameters are not passed back to the argu-
ments. Figure 7.6 shows how the pass-by-value scheme works.

Notice that the arguments are matched against the parameters in the left-to-
right order; that is, the value of the leftmost argument is passed to the leftmost pa-
rameter, the value of the second-leftmost argument is passed to the second-leftmost
parameter, and so forth. The number of arguments in the method call must match
the number of parameters in the method definition. For example, the following calls
to myMethod of the Tester class are all invalid because the number of arguments
and number of parameters do not match.

tester.myMethod(12);
tester.myMethod(x, y, 24.5);

Since we are assigning the value of an argument to the matching parameter,
the data type of an argument must be assignment-compatible with the data type of
the matching parameter. For example, we can pass an integer argument to a float pa-
rameter, but not vice versa. In the following, the first call is valid, but the second one
is invalid:

tester.myMethod(12, 25);
tester.myMethod(23.0, 34.5);

The name of the parameter and the name of the argument can be the same.
Keep in mind, however, that the values of arguments are still passed to a method by
the pass-by-value scheme; that is, local copies are made whether the argument and
the parameter share the same name or not.

388 Chapter 7 Defining Your Own Classes—Part 2

Remember these key points about arguments and parameters:

1. Arguments are passed to a method by using the pass-by- value scheme.

2. Arguments are matched to the parameters from left to right.The data type
of an argument must be assignment-compatible with the data type of the
matching parameter.

3. The number of arguments in the method call must match the number of
parameters in the method definition.

4. Parameters and arguments do not have to have the same name.

5. Local copies, which are distinct from arguments, are created even if the
parameters and arguments share the same name.

6. Parameters are input to a method, and they are local to the method. Changes
made to the parameters will not affect the value of corresponding arguments.

wu23399_ch07.qxd 12/15/06 19:54 Page 388

7.5 Call-by-Value Parameter Passing 389

Figure 7.6 How memory space for the parameters is allocated and deallocated.

1
execution f low

Local variables do not exist
before the method execution.

x = 10;
y = 20;
tester.myMethod(x, y);

public void myMethod(int one, double two) {

 one = 25;
 two = 35.4;
}

at before calling myMethod1

1

10x

20y
state of memory

2

Memory space for myMethod is allocated, and the values
of arguments are copied to the parameters.

x = 10;
y = 20;
tester.myMethod(x, y);

public void myMethod(int one, double two) {

 one = 25;
 two = 35.4;
}

values are copied at 2

2

10x

20y

10one

20.0two

3

The values of parameters are
changed.

x = 10;
y = 20;
tester.myMethod(x, y);

public void myMethod(int one, double two) {

 one = 25;
 two = 35.4;

}at before return3

3

10x

20y

25one

35.4two

4

Memory space for myMethod is deallocated, and
parameters are erased. Arguments are unchanged.

x = 10;
y = 20;
tester.myMethod(x, y);

public void myMethod(int one, double two) {

 one = 25;
 two = 35.4;
}

at after myMethod4

4

10x

20y

wu23399_ch07.qxd 12/15/06 19:54 Page 389

Now let’s look at a similar example again, but this time with objects. Consider
the following class:

class ObjectTester {

public void swap(Fraction f1, Fraction f2) {

Fraction temp;

temp = f1; //swap the two fractions
f1 = f2;
f2 = temp;

}
}

What will be the output from the following code?

ObjectTester tester;
Fraction x, y;

tester = new ObjectTester();

x = new Fraction(1, 2);

y = new Fraction(3, 4);

tester.swap(x, y);

System.out.println("x = " + x.toString());
System.out.println("y = " + y.toString());

The output will be

x = 1/2
y = 3/4

because the changes made to the parameters are not passed back to the arguments.
It does not matter whether we are passing primitive data values or objects (actually,
references to the objects). Figure 7.7 shows the effect of calling the swap method.

Changes made to the parameters are not passed back to the arguments, but
when we are passing objects to a method, then the changes made to the object itself
are reflected back to the caller because the calling side still has the same reference
to the object. Let’s look at an example. Consider the following class:

class ObjectTester2 {

public void change(Fraction f1) {

f1.setNumerator(10);
}

}

390 Chapter 7 Defining Your Own Classes—Part 2

wu23399_ch07.qxd 12/15/06 19:54 Page 390

7.5 Call-by-Value Parameter Passing 391

Figure 7.7 This illustration shows the effect of calling the swap method.

:Fraction

numerator

denominator

3

4

:Fraction

numerator

denominator

1

2

f1

f2

x

y

:Fraction

numerator

denominator

3

4

:Fraction

numerator

denominator

1

2

f1

f2

x

y

:Fraction

numerator

denominator

3

4

:Fraction

numerator

denominator

1

2

f1

f2

x

y

At the beginning of
the swap method.

At the end of the swap
method when f1 and
f2 are swapped.

After the swap method
terminates. No changes
made to parameters f1
and f2 are reflected
back to the arguments.
Both x and y still point
to the same objects as
before the call.

wu23399_ch07.qxd 12/15/06 19:54 Page 391

What will be the output from the following code?

ObjectTester2 tester;
Fraction x;

tester = new ObjectTester();

x = new Fraction(1, 2);

tester.change(x);
System.out.println("x = " + x.toString());

The output will be

x = 10/2

Figure 7.8 shows the effect of calling the change method. Notice that the variable x
continues to point to the same object, but the object itself has been modified.

392 Chapter 7 Defining Your Own Classes—Part 2

Pass-by-value (also known as call-by-value) is the only parameter passing mech-
anism Java supports. Because we are passing references when objects are passed
to methods, many people with background in other programming languages
use the term pass by reference (or call by reference) when referring to the passing
of objects to methods.This is wrong. Pass by reference means an address (or ref-
erence) of a variable is passed, whereas pass by value means the content of a
variable is passed (and copied into a parameter). In Java, the content of a variable
is either a value of primitive data type or a reference to an object (this is the
source of confusion). But it doesn’t matter what the content of a variable is; as
long as the content of a variable is passed and copied into a parameter, it is a
call by value. If a programming language supports the pass-by-reference
mechanism, then it is possible, for example, to swap the values of two arguments
in a single method call. No such thing is possible in Java.

1. What is the name of the scheme used in Java to pass arguments to a method?

2. What is the output from the following code?

class Question {
private int one;

public void myMethod(int one) {
this.one = one;
one = 12;

}
}

class Test {

public static void main(String[] arg) {
int one = 30;

wu23399_ch07.qxd 12/15/06 19:54 Page 392

7.5 Call-by-Value Parameter Passing 393

Figure 7.8 This illustration shows the effect of calling the change method.

:Fraction

numerator

denominator

1

2

Numerator is
changed to 10.

At the beginning of
the change method.

At the end of the
change method when
the numerator of the
Fraction object is
changed.

After the change
method terminates.
The variable x still
points to the same
object, but the object
itself has been
modified.

f1x

:Fraction

numerator

denominator

10

2

f1x

:Fraction

numerator

denominator

10

2

f1x

Question q = new Question();
q.myMethod(one);

System.out.println(one);
}

}

wu23399_ch07.qxd 12/15/06 19:54 Page 393

7.6 Organizing Classes into a Package
For simplicity, we have placed all programmer-defined classes of a program in the
same folder since Chapter 4. This approach works fine while we are learning pro-
gramming and do not deal with many classes. But in a more real-life context, we
need to manage classes more effectively. For example, following the approach, we
have to copy the Fraction class to multiple folders if we want to use this class in dif-
ferent programs.

The correct approach to reusing programmer-defined classes is to organize
them into packages, just as the standard classes are organized into packages. We
illustrate the process by using the Fraction class. Let’s name the package to place the
Fraction class myutil. It is a Java convention to name the package with all low-
ercase letters. Once this package is set up correctly, we can use the classes in the
package by importing it, just as we have been doing with the standard packages.

import myutil.*;

class MyClient {
Fraction f1;
...

}

To set up the programmer-defined packages for general reuse, not just use by
the programs in the same folder, we have to perform the following tasks:

1. Include the statement

package myutil;

as the first statement of the source file for the Fraction class.

2. The class declaration must include the visibility modifier public as

public class Fraction {
...

}

3. Create a folder named myutil, the same name as the package name. In Java,
the package must have a one-to-one correspondence with the folder.

4. Place the modified Fraction class into the myutil folder and compile it.

5. Modify the CLASSPATH environment variable to include the folder that
contains the myutil folder. See below.

Step 5 is the most troublesome step for those new to Java. Since the exact
steps to change the CLASSPATH environment variable are different from each
platform (Windows, Unix, Mac) and Java IDE (Eclipse, NetBeans, jGRASP, BlueJ,
etc.), we will describe only the general idea for the Windows platform here.
Suppose we have a folder named JavaPrograms under the C: drive, and the myutil
package (folder) is placed inside this JavaPrograms folder. Then to use the classes in

394 Chapter 7 Defining Your Own Classes—Part 2

programmer-
defined
packages

wu23399_ch07.qxd 12/15/06 19:54 Page 394

the myutil package, the classpath environment should make a reference to the
JavaPrograms folder (not to the package myutil itself):

set classpath=.;c:\JavaPrograms

The period after the equals symbol refers to the current folder (the folder where the
client program we are trying to execute is located). Without this reference to the cur-
rent folder, the client program will not recognize other classes in the same folder.

7.7 Using Javadoc Comments for Class Documentation 395

To make the programmer-defined packages accessible to all client programs, the
CLASSPATH environment variable must be set up correctly.

7.7 Using Javadoc Comments for Class Documentation
We mentioned in Chapter 2 that there are three styles of comments in Java. We have
been using the two of them. We introduce the third style called javadoc comments in
this section. Many of the programmer-defined classes we design are intended to be
used by other programmers. It is, therefore, very important to provide meaningful
documentation to the client programmers so they can understand how to use our
classes correctly. By adding javadoc comments to the classes we design, we can
provide a consistent style of documenting the classes. Once the javadoc comments
are added to a class, we can use a special program (comes as a part of Java 2 SDK)
to generate HTML files for documentation. (Note: An HTML file is a specially
marked file intended for a Web browser.) We mentioned in Chapter 2 that the docu-
mentation for the standard classes can be found at http://java.sun.com/j2se/1.5/
docs/api/index.html.

This documentation is derived from the javadoc comments embedded in the
standard classes.

We will describe how to use javadoc comments and generate the corresponding-
HTML documentation files. Before we get into the details, we first show the end result
so you can visualize where the process is leading. Figure 7.9 shows a portion of the
HTML documentation for the Fraction class displayed in a browser.

A javadoc comment is used as header comment for a class, a data member, or
a method. Let’s begin with the class header comment for the Fraction class in the
javadoc format:

/**
* An instance of this class represents a fraction.
*
* @author Dr. Caffeine
*
*/
class Fraction {

...
}

javadoc
comments

wu23399_ch07.qxd 12/15/06 19:54 Page 395

http://java.sun.com/j2se/1.5/

The javadoc comments begin with the marker /** and end with the marker */. The
asterisks on the lines between the first and the last markers have no significance;
they are there to provide a visual aid to highlight the comments in the program.
It is an accepted standard to use the asterisks in this manner for the javadoc
comments.

Inside the javadoc comments, we can use a number of javadoc tags, special
markers that begin with the @ mark. In this example, we see one javadoc tag
@author, which we use to list the authors of the class.

396 Chapter 7 Defining Your Own Classes—Part 2

Figure 7.9 A browser showing the HTML documentation file derived from the javadoc comments for the
Fraction class.

javadoc tags

@author tag

wu23399_ch07.qxd 12/15/06 19:54 Page 396

Here’s how we comment a data member in javadoc:

/**
* The numerator portion of this fraction
*/
private int numerator;

When the length of a comment is short and fits in a single line, then we can write the
javadoc comment as

/** The numerator portion of this fraction */
private int numerator;

The javadoc comment for a method is similar to the one for the class header
comment. It will include a number of javadoc tags in addition to a general descrip-
tion. Here’s how a method is commented by using javadoc:

/**
* Returns the sum of this Fraction
* and the parameter frac. The sum
* returned is NOT simplified.
*
* @param frac the Fraction to add to this
* Fraction
*
* @return the sum of this and frac
*/
public Fraction add(Fraction frac) {

...
}

The purpose of the method header comment is to record the method’s pur-
pose, list of parameters passed to the method, and value returned from the method.
This method receives one parameter, so there is one @param tag. We attach a short
description of the parameter in addition to the parameter’s name. The syntax for the
@param javadoc tag is

@param <parameter name> <description>

The <description> portion can go beyond one line. As this method returns a value,
we add the @return tag. Its syntax is

@return <description>

A javadoc comment for a constructor is defined in a manner similar to the
one for a method, except there will never be an @return tag for a constructor.
Figure 7.10 shows the HTML document that is generated from this javadoc com-
ment. Notice the effect of @param and @return tags.

7.7 Using Javadoc Comments for Class Documentation 397

@param tag

@return tag

wu23399_ch07.qxd 12/15/06 19:54 Page 397

The use of the javadoc comments does not preclude the use of other types of
comments. We still need to use regular comments to describe the code as necessary.
For example, we will continue to include the group comment for methods, as in

so that programmers reading the class will have a handy reference to the list of
methods without referring to any online documentation. This is especially useful
when the programmers are reading a hard copy of the class source file. Notice that
we don’t use the javadoc style for a quick reference list because javadoc comments
are used only for describing the class and its data members and methods.

Once all the javadoc comments are added to a class, we are ready to generate
the corresponding HTML documentation file. For easy reference, we call it the

//––
// Public Methods:
//
// Fraction add (Fraction)
// Fraction add (int)
//
// ...
//––

398 Chapter 7 Defining Your Own Classes—Part 2

Figure 7.10 The portion of the HTML documentation file that is derived from the javadoc header comment
for the add method.

wu23399_ch07.qxd 12/15/06 19:54 Page 398

javadoc file. Many Java editors and IDEs include a menu option that you can use
to generate javadoc files easily and quickly. Here we describe the steps you can
take to generate javadoc files using the minimalist approach (see App. A). In the
command prompt window, we used the commands javac and java to compile and
run Java programs, respectively. Similarly, to generate javadoc files, we use the
javadoc command. For example, to generate a javadoc file for the Fraction class,
we enter

javadoc -private Fraction.java

We specify the -private option because we want to generate the documentation for
all types of methods (so far, we have covered two of these—private and public). The
-private option generates the most complete documentation. When the command is
executed, status messages such as these are displayed.

After the command is executed successfully, there will actually be a collection
of HTML files, not just the expected Fraction.html. You can view the content shown
in Figure 7.9 by opening the file index.html and clicking the Fraction link. Open the
Fraction.html directly from your browser and see the difference. We encourage you
to open other HTML files to see how these files are related. The generated HTML
files are located in the same directory where the source file Fraction.java is located.
You can change the directory by setting the -d option and specifying the directory
to store the generated HTML files (alternatively, you can move the files using an op-
erating system’s file manager). We ordinarily do not generate javadoc files one class
at a time. Rather, it is more common to generate a complete set of javadoc files for
all classes in a single package at once, as in

javadoc -private *.java

We will refer you to websites for a more complete discussion of javadoc.

7.7 Using Javadoc Comments for Class Documentation 399

wu23399_ch07.qxd 12/15/06 19:54 Page 399

7.8 The Complete Fraction Class
In this section, we will list a complete definition for the myutil.Fraction class. In the
final version of the class, we will include improvements to one of the constructors
and the simplify method. Earlier in the chapter, we presented the fourth constructor
as follows:

public Fraction(int num, int denom) {

setNumerator(num);
setDenominator(denom);

}

400 Chapter 7 Defining Your Own Classes—Part 2

General information on javadoc is located at
http://java.sun.com/j2se/javadoc
Detailed reference on how to use javadoc on Windows is located at
http://java.sun.com/j2se/1.5/docs/tooldocs/windows/javadoc.html

Is it really important to use javadoc comments? It’s true that we have to learn a few
extra items to use javadoc comments, but the benefits warrant a little extra effort.
First, by using javadoc comments, we can easily produce the standard online
documentation. Even if we don’t have an immediate need to produce an online
documentation, we can use javadoc comments because they are really not that
different from other styles of commenting, and their use gives us an option to
produce an online documentation later. Second, since javadoc is a standard, other
programmers will have an easier time reading your code with javadoc comments
than reading code with a nonstandard style of comments.

1. Add javadoc comments to the following class.

class Instructor {
private String name;

public void setName(String name) {
this.name = name;

}

public String getName() {
return name;

}
}

2. What is the purpose of @author tag?

wu23399_ch07.qxd 12/15/06 19:54 Page 400

http://java.sun.com/j2se/javadoc
http://java.sun.com/j2se/1.5/docs/tooldocs/windows/javadoc.html

For this constructor to function properly, we made an assumption that the values
for both parameters are nonnegative. Let’s remove this assumption and make the
necessary modifications to the constructor.

Consider the following two statements:

Fraction f1 = new Fraction(-2, 9);
Fraction f2 = new Fraction(2, -9);

Both represent the same value, namely,� �
2
9

�. With the given constructor, f1 will have

the values �2 and 9 for its data members numerator and denominator, respectively.
And f2 will have the values 2 and �9 for its data members numerator and denom-
inator, respectively. This means that we have two distinct ways to represent the
same value. It is always preferable to maintain a consistent representation because
multiple representations for the same value would lead to a more complex code for
handling different representations correctly. We will improve this constructor so
that a negative fraction is always represented by a negative value for numerator and
a positive value for denominator.

Now, consider the following two statements:

Fraction f3 = new Fraction(2, 9);
Fraction f4 = new Fraction(-2, -9);

Both objects represent the same positive fraction �
2
9

�. Again, to maintain consistent

representation, a positive fraction is always represented by positive values for both
numerator and denominator.

Finally, consider the following two statements:

Fraction f3 = new Fraction(0, 9);
Fraction f4 = new Fraction(0, -5);

Both objects represent the numerical value of 0. We will always represent the numer-
ical value of 0 by storing 0 in the data member numerator and 1 in denominator.

Here’s the modified constructor:

public Fraction(int num, int denom) {

if (denom < 0) {
num = -num;
denom = -denom;

}

if (num == 0) {
denom = 1;

}

setNumerator(num);
setDenominator(denom);

}

7.8 The Complete Fraction Class 401

wu23399_ch07.qxd 12/15/06 19:54 Page 401

We will also make a modification to the simplify method. The original simplify
method fails when someone tries to simplify a zero fraction (i.e., a fraction with
numerical value of 0). To reduce a fraction to its simplified form, we find the
greatest common divisor of its numerator and denominator and divide them by
the greatest common divisor. What happens when the numerator is 0? The greatest
common divisor of 0 and any other value is 0. So we would end up dividing the
numerator and denominator by 0! Here’s the new simplify method that avoids this
problem:

public Fraction simplify() {

int num = getNumerator();
int denom = getDenominator();

int divisor = 1;

if (num != 0) {
divisor = gcd(Math.abs(num), denom);

}

return new Fraction(num/divisor, denom/divisor);
}

402 Chapter 7 Defining Your Own Classes—Part 2

package myutil;
/**
* An instance of this class represents a fraction.
*
*
*/

public class Fraction {

/** the numerator of this fraction */
private int numerator;

/** the denominator of this fraction */
private int denominator;

//---
// Constructors
//---

/**
* Creates a fraction 0/1
*/

public Fraction() {
this(0, 1);

}

Data Members

Constructors

wu23399_ch07.qxd 12/15/06 19:54 Page 402

7.8 The Complete Fraction Class 403

/**
* Creates a fraction number/1
*
* @param number the numerator
*/
public Fraction(int number) {

this(number, 1);
}

/**
* Creates a copy of frac
*
* @param frac a copy of this parameter is created
*/
public Fraction(Fraction frac) {

this(frac.getNumerator(), frac.getDenominator());
}

/**
* Creates a fraction num/denom. Create a negative
* fraction as -num and denom. If negative values
* are specified for both num and denom, the fraction
* is converted to a positive. If num is positive and
* denom is negative, the fraction will be converted to
* have negative num and positive denom.
* When the num is zero, denom is set to 1. Zero is
* always represented as 0/1
*
* @param num the numerator
* @param denom the denominator
*/
public Fraction(int num, int denom) {

if (denom < 0) {
num = -num;
denom = -denom;

}

if (num == 0) {
denom = 1;

}

setNumerator(num);
setDenominator(denom);

}

//---
// Class Methods
//
//---

wu23399_ch07.qxd 12/15/06 19:54 Page 403

/**
* Returns the greatest common divisor of
* the parameters m and n
*
* @param m the first number
* @param n the second number
*
* @return the greatest common divisor of m and n
*/

public static int gcd(int m, int n) {

int r = n % m;

while (r !=0) {

n = m;

m = r;

r = n % m;

}

return m;

}

/**
* Returns the smaller of the two parameters f1 and f2
*
* @param f1 the first fraction to compare
* @param f2 the second fraction to compare
*
* @return the smaller of the two parameters

*/
public static Fraction min(Fraction f1, Fraction f2) {

//convert to decimals and then compare
double f1_dec = f1.decimal();
double f2_dec = f2.decimal();

if (f1_dec <= f2_dec) {

return f1;

} else {

return f2;

}
}

404 Chapter 7 Defining Your Own Classes—Part 2

gcd

min

wu23399_ch07.qxd 1/12/07 10:48 Page 404

//---
// Public Instance Methods
//
//---

/**
* Returns the sum of this Fraction
* and the parameter frac. The sum
* returned is NOT simplified.
*
* @param frac the Fraction to add to this
* Fraction
*
* @return the sum of this and frac
*/

public Fraction add(Fraction frac) {
int a, b, c, d;

Fraction sum;

a = this.getNumerator();
b = this.getDenominator();
c = frac.getNumerator();
d = frac.getDenominator();

sum = new Fraction(a*d + b*c, b*d);

return sum;
}

/**
* Returns the sum of this Fraction
* and the int parameter number. The sum
* returned is NOT simplified.
*
* @param number the integer to add to this
* Fraction
* @return the sum of this Fraction and number
*/

public Fraction add(int number) {

Fraction frac = new Fraction(number, 1);

Fraction sum = add(frac);

return sum;

}

7.8 The Complete Fraction Class 405

add

add

wu23399_ch07.qxd 12/15/06 19:54 Page 405

/**
* Returns the quotient of this Fraction
* divided by the parameter frac. The quotient
* returned is NOT simplified.
*
* @param frac the divisor of the division
*
* @return the quotient of this fraction
* divided by frac
*/

public Fraction divide(Fraction frac) {
int a, b, c, d;

Fraction quotient;

a = this.getNumerator();
b = this.getDenominator();
c = frac.getNumerator();
d = frac.getDenominator();

quotient = new Fraction(a*d, b*c);

return quotient;
}

/**
* Returns the quotient of this Fraction
* divided by the int parameter number. The quotient
* returned is NOT simplified.
*
* @param number the divisor
*
* @return the quotient of this Fraction divided by number
*/

public Fraction divide(int number) {

Fraction frac = new Fraction(number, 1);

Fraction quotient = divide(frac);

return quotient;
}

/**
* Compares this fraction and the parameter frac for
* equality. This method compares the two by first
* reducing them to the simplest form.
*
* @param frac the fraction object to compare
*
* @return true if this Fraction object and frac are equal
*/

406 Chapter 7 Defining Your Own Classes—Part 2

divide

divide

wu23399_ch07.qxd 12/15/06 19:54 Page 406

public boolean equals(Fraction frac) {

Fraction f1 = simplify(); //simplify itself
Fraction f2 = frac.simplify(); //simplify frac

return (f1.getNumerator() == f2.getNumerator() &&
f1.getDenominator() == f2.getDenominator());

}

/**
* Returns the denominator of this fraction
*
* @return the denominator of this fraction
*/

public int getDenominator() {
return denominator;

}

/**
* Returns the numerator of this fraction
*
* @return the numerator of this fraction
*/

public int getNumerator() {
return numerator;

}

/**
* Returns the product of this Fraction
* and the parameter frac. The product
* returned is NOT simplified.
*
* @param frac the multiplier of the multiplication
*
* @return the product of this fraction
* and the parameter frac
*/
public Fraction multiply(Fraction frac) {

int a, b, c, d;

Fraction product;

a = this.getNumerator();
b = this.getDenominator();

c = frac.getNumerator();
d = frac.getDenominator();

product = new Fraction(a*c, b*d);

return product;
}

7.8 The Complete Fraction Class 407

equals

getDenominator

getNumerator

multiply

wu23399_ch07.qxd 12/15/06 19:54 Page 407

/**
* Returns the product of this Fraction
* and the int parameter number. The product
* returned is NOT simplified.
*
* @param number the multiplier
*
* @return the product of this Fraction and number
*/

public Fraction multiply(int number) {

Fraction frac = new Fraction(number, 1);

Fraction product = multiply(frac);

return product;
}

/**
* Sets the denominator of this fraction
*
* @param denom the denominator of this fraction
*/

public void setDenominator(int denom) {
if (denom == 0) {

//Fatal error
System.out.println("Fatal Error");
System.exit(1);

}
denominator = denom;

}

/**
* Sets the numerator of this fraction
*
* @param num the numerator of this fraction
*/

public void setNumerator(int num) {
numerator = num;

}

/**
* Returns a new Fraction object that is in
* the simplest form of this Fraction object. If
* this Fraction is zero, then a simple copy of
* it is returned.
*
* @return a Fraction object in the simplest form
* of this Fraction
*/

408 Chapter 7 Defining Your Own Classes—Part 2

multiply

setDenominator

setNumerator

wu23399_ch07.qxd 12/15/06 19:54 Page 408

public Fraction simplify() {

int num = getNumerator();
int denom = getDenominator();

int divisor = 1;

if (num != 0) {
divisor = gcd(Math.abs(num), denom);

}

return new Fraction(num/divisor, denom/divisor);
}

/**
* Returns the difference of this Fraction
* and the parameter frac. The difference
* returned is NOT simplified.
*
* @param frac the Fraction to subtract from
* this Fraction
*
* @return the difference of this and frac
*/
public Fraction subtract(Fraction frac) {

int a, b, c, d;

Fraction diff;

a = this.getNumerator();
b = this.getDenominator();
c = frac.getNumerator();
d = frac.getDenominator();

diff = new Fraction(a*d - b*c, b*d);

return diff;
}

/**
* Returns the difference of this Fraction
* and the int parameter number. The difference
* returned is NOT simplified.
*
* @param number the int value to subtract
*
* @return the difference of this and number
*/

public Fraction subtract(int number) {

Fraction frac = new Fraction(number, 1);

Fraction difference = subtract(frac);

return difference;
}

7.8 The Complete Fraction Class 409

simplify

subtract

subtract

wu23399_ch07.qxd 12/15/06 19:54 Page 409

/**
* Returns the String representation of this Fraction
*
* @return the String representation of this Fraction
*/

public String toString() {

return getNumerator() + "/" + getDenominator();
}

//---
// Private Methods
//
//---

//**
* Returns the decimal equivalent of this fraction
*
* @return the decimal equivalent of this fraction
*/

private double decimal() {
//returns the decimal equivalent
return (double) getNumerator() / getDenominator();

}
}

410 Chapter 7 Defining Your Own Classes—Part 2

toString

decimal

Library Overdue Checker

How many library books are lying around in your room waiting to be returned? How
much have you accrued in late charges on those overdue books? Let’s write a program
that computes the total charges for overdue library books. The program allows you to
input the title, overdue charge per day, maximum possible charge, and due date for each
book you enter. The due date is the only required input. The other three input values are
optional, and when they are not provided, preset default values are used by the program.
We assume that an upper limit is set for overdue charges, so your charge will not increase
beyond this limit. This limit is entered as the maximum possible charge. For example, a
library may set $1.50 as the overdue charge per day and $30 as the maximum overdue
charge for a single overdue book.We enter the overdue charge per day and the maximum
overdue charge for every book, because depending on the types of books, they could be
different. For example, a charge for books with a 3-day loan period may be much higher
than for books with a regular 2-week loan period.

After you enter information for all books, the program displays the entered book
data.Then the program will allow you to enter different return dates. For each return date
you enter, the program will display the total overdue charges. Being able to enter different

Sample Development7.9 Sample Development

wu23399_ch07.qxd 12/15/06 19:54 Page 410

return dates will let you make an informed decision, such as “I’ll wait till tomorrow since it’s
raining heavily today and it costs only $2 more if I return them tomorrow.” (We always
encourage you to return library books promptly for the sake of fellow library users.)

A better program will warn you when there’s a looming due date so you won’t end
up paying the overdue charges. We will discuss this and other possible extensions at the
end of this section.All the possible extensions we will discuss require techniques yet to be
studied. The program we develop here is implemented by the techniques we have
already mastered and by using one simple helper class.

Problem Statement

Write an application that computes the total charges for the overdue library
books. For each library book, the user enters the due date and (optionally) the
overdue charge per day, the maximum charge, and the title. If the optional values
are not entered, then the preset default values are used. A complete list of book
information is displayed when the user finishes entering the input data. The user
can enter different return dates to compare the overdue charges.

Overall Plan

As always, we begin our overall plan for the development with the outline of program
logic.We first let the user enter the information on all books. After finishing the book data
entry, we display them as a list. Then we ask repeatedly for return dates. For each return
date entered, we provide the total overdue charge. We express the program flow as hav-
ing three tasks:

1. Get the information for all books.

2. Display the entered book data.

3. Ask for the return date and display the total charge. Repeat this step until the user
quits.

Let’s look at each task and determine objects required for handling the task. The
first step sounds simple enough, but it hides the complexity of the whole program. It
indicates the need for at least three types of objects. One is to carry out the actual input
routines, another is to retain four pieces of information for each book, and yet another is
to keep track of multiple books entered by the user. Notice that there’s no limit on the
number of books the user can enter, because putting such a limit will reduce the usability
of the program. This means we need a class to manage a collection of book information.
We have not yet learned how to manage a collection of objects (Chap. 10 covers the
topic), so we will use the helper class named BookTracker. This class is actually very
straightforward, once we learn the relevant topic.The class is written generically and does
not contain much application-specific logic.

We will define a class named LibraryBook that keeps track of book information. An
instance of this class represents a single library book. The LibraryBook class is the key
worker bee in this program. A LibraryBook object keeps track of four pieces of informa-
tion and is responsible for computing the overdue charge. Notice that the class is the

7.9 Sample Development 411

program
tasks

wu23399_ch07.qxd 12/15/06 19:54 Page 411

7.9 Sample Development—continued

most appropriate place to perform the computation of the overdue charge because it is
where all pieces of information necessary to compute the charge are stored.

We will define another class for performing the actual input routines. An instance of
this class will input the data, create a LibraryBook object with the input data, and add this
object to a BookTracker. As it uses other objects, it will be the main controller of the pro-
gram. We will name the class OverdueChecker. We will define it as an instantiable main
class. For this program, we will use console input. It is a straightforward exercise to modify
the OverdueChecker class to handle input by using JOptionPane or other types of GUI.

Now let’s study the second task of displaying the entered book data. To be
consistent with the console input, we will use console output. An OverdueChecker will
handle the output, but the data to display come from a BookTracker, as it is the one
maintaining the collection of LibraryBook objects. The BookTracker class has one
method called getBookList. This method returns the book list as a single String value.
The OverdueChecker displays the returned string on the standard output window.
Notice that the BookTracker class is not programmed to do the output directly, because
doing so will reduce its usability. By returning the book list as a String datum, the client of
the Book-Tracker class retains the option of using either console output or GUI. This
helps to keep the flexibility and increases the usability of a class.

For the last task, an OverdueChecker interacts with the user to get the return
dates. For each return date entered, it asks BookTracker for the total charge and dis-
plays the returned value. The BookTracker in turn asks individual LibraryBook objects
for their charges by calling the computeCharge method and computes the sum. This is
the reason why we must include the method named computeCharge in the
LibraryBook class that computes the overdue charge for a single book. We will discuss
the details of this and other requirements in defining the LibraryBook class shortly.

Here’s our working design document:

412 Chapter 7 Defining Your Own Classes—Part 2

program
classes

Design Document: Library OverdueChecker

Class Purpose

OverdueChecker The top-level control object that manages other objects
in the program.This is an instantiable main class, as
explained in Section 4.10.

BookTracker The predefined helper class that keeps track of library
books.

LibraryBook An instance of this class represents a single library book.
A library book for this program has four properties—
title, charge per day, maximum charge, and due date. It is
also responsible for computing the overdue charges.

Scanner The standard class for handling input routines.

wu23399_ch07.qxd 12/15/06 19:54 Page 412

Figure 7.11 is the program diagram for this program.
We will implement this program in the following five major steps:

1. Define the basic LibraryBook class. Use a test main class to confirm the
implementation of the LibraryBook class.

2. Explore the given BookTracker class and integrate it with the LibraryBook class.
Modify or extend the LibraryBook class as necessary.

3. Define the top-level OverdueChecker class. Implement the complete input
routines. Modify or extend the LibraryBook class as necessary.

4. Complete the LibraryBook class by fully implementing the overdue charge
computation.

5. Finalize the program by tying up loose ends.

Again, the development strategy we indicate here is one of the possible alterna-
tives.We could start from the skeleton main controller class OverdueChecker, as we nor-
mally did in the previous sample development examples. For this program, however, we
start with the LibraryBook class because of its importance in the program. We want to
start from the most important workhorse class. Also, before we implement any elaborate
input and output routines, we need to know how the BookTracker class works, and to
explore this helper class fully, we need the LibraryBook class.

Step 1 Development: The Basic LibraryBook class

We begin the development with the basic LibraryBook class.The main purpose in step 1
is to start with the main workhorse class to establish the foundation for the development.
Since this class is used by the BookTracker class, we need to find out the compatibility
requirements so we won’t define any methods that will violate the compatibility. There

7.9 Sample Development 413

OverdueChecker Scanner

BookTracker LibraryBook

Figure 7.11 The program diagram for the OverdueChecker program. We will implement the
OverdueChecker and LibraryBook classes. The Scanner class is the standard class for console input,
and the BookTracker class is the helper class provided for this program.

develop-
ment steps

step 1
design

wu23399_ch07.qxd 12/15/06 19:54 Page 413

7.9 Sample Development—continued

are two methods used by the BookTracker class,so we need to define them in the Library-
Book class. Here are the two required methods and their descriptions:

414 Chapter 7 Defining Your Own Classes—Part 2

Required Methods of LibraryBook

public String toString()

Returns the String representation of itself. This string is used by the BookTracker
class to generate a complete book list.

public double computeCharge(GregorianCalendar returnDate)

Computes and returns the overdue charge for this book, given the return date.

The key design task for this step is to identify the data members for storing relevant
information and to define their accessors and mutators as appropriate. Also, we will de-
sign multiple constructors so an instance of this class can be created in a flexible manner.

We define data members for the four pieces of required information for each book
as follows:

private GregorianCalendar dueDate;

private String title;

private double chargePerDay;

private double maximumCharge;

For each of these data members,we will define the corresponding accessors and mutators.
We define four constructors. Because the due date is something that must be

assigned when a new LibraryBook is created, every constructor requires the due date as
its argument. When other optional values are not passed to the constructor, then preset
default values are assigned. We define the multiple constructors using the technique we
learned in this chapter.The signatures for these constructors are as follows:

public LibraryBook(GregorianCalendar dueDate)

public LibraryBook(GregorianCalendar dueDate,
double chargePerDay)

public LibraryBook(GregorianCalendar dueDate,
double chargePerDay,
double maximumCharge)

public LibraryBook(GregorianCalendar dueDate,
double chargePerDay,
double maximumCharge,
String title)

wu23399_ch07.qxd 12/15/06 19:54 Page 414

We won’t be using the BookTracker class in this step, so we do not have to define
the two required methods yet. However, we can use the toString method now to verify
the correct operations of constructors and other methods, so we define it now.We use the
formatting techniques learned in Section 6.8 to format the string we return from
toString. Here’s how we define the toString method:

public String toString() {

return String.format(
"%-30s $%5.2f $%7.2f %4$tm/%4$td/%4$ty",
getTitle(), getChargePerDay(),
getMaxCharge(), dueDate.getTime());

}

A sample string returned from the method will formatted in the following manner:

Introduction to OOP with Java $ 0.75 $ 50.00 07/10/06

Alternatively, we can format the string by using the SimpleDateFormat and
DecimalFormat classes.

public String toString() {

String tab = "\t";

SimpleDateFormat sdf
= new SimpleDateFormat("MM/dd/yy");

DecimalFormat df = new DecimalFormat("0.00");

return getTitle() + tab + "$ " +
df.format(getChargePerDay()) + tab + "$ " +
df.format(getMaxCharge()) + tab +
sdf.format(dueDate.getTime());

}

We are now ready to implement the class. Here’s the step 1 code (minus javadoc
and most other comments):

7.9 Sample Development 415

step 1 code

/*
Chapter 7 Library Overdue Checker

Step 1 LibraryBook class

File: LibraryBook.java
*/

wu23399_ch07.qxd 12/15/06 19:54 Page 415

7.9 Sample Development—continued

import java.util.*;

class LibraryBook {

private static final double CHARGE_PER_DAY = 0.50;

private static final double MAX_CHARGE = 50.00;

private static final String DEFAULT_TITLE = "Title unknown";

private GregorianCalendar dueDate;

private String title;

private double chargePerDay;

private double maximumCharge;

public LibraryBook(GregorianCalendar dueDate) {

this(dueDate, CHARGE_PER_DAY);
}

public LibraryBook(GregorianCalendar dueDate,
double chargePerDay) {

this(dueDate, chargePerDay, MAX_CHARGE);
}

public LibraryBook(GregorianCalendar dueDate,
double chargePerDay,
double maximumCharge) {

this(dueDate, chargePerDay,
maximumCharge, DEFAULT_TITLE);

}

public LibraryBook(GregorianCalendar dueDate,
double chargePerDay,
double maximumCharge,
String title) {

setDueDate(dueDate);
setChargePerDay(chargePerDay);
setMaximumCharge(maximumCharge);
setTitle(title);

}

public double getChargePerDay() {
return chargePerDay;

}

416 Chapter 7 Defining Your Own Classes—Part 2

wu23399_ch07.qxd 12/15/06 19:54 Page 416

public GregorianCalendar getDueDate() {
return dueDate;

}

public double getMaxCharge() {
return maximumCharge;

}

public String getTitle() {
return title;

}

public void setChargePerDay(double charge) {
chargePerDay = charge;

}

public void setDueDate(GregorianCalendar date) {
dueDate = date;

}

public void setMaximumCharge(double charge) {
maximumCharge = charge;

}

public void setTitle(String title) {
this.title = title;

}

public String toString() {
return String.format(

"%-30s $%5.2f $%7.2f %4$tm/%4$td/%4$ty",
getTitle(), getChargePerDay(),
getMaxCharge(), dueDate.getTime());

}
}

7.9 Sample Development 417

The purpose of step 1 testing is to verify we can create LibraryBook objects using
different constructors. In addition, we check that the other methods are working cor-
rectly, especially the toString method. Here’s one possible test main class:

step 1 test

/*
Introduction to OOP with Java 4th ed., McGraw-Hill

File: Step1/Step1Main.java
*/

wu23399_ch07.qxd 12/15/06 19:54 Page 417

7.9 Sample Development—continued

import java.util.*;

class Step1Main {

public static void main(String[] args) {

//Create three LibraryBook objects and output them
GregorianCalendar dueDate;
LibraryBook book1, book2, book3, book4;

dueDate = new GregorianCalendar(2006, Calendar.MARCH, 14);
book1 = new LibraryBook(dueDate);

dueDate = new GregorianCalendar(2006, Calendar.FEBRUARY, 13);
book2 = new LibraryBook(dueDate, 0.75);
book2.setTitle("Introduction to oop with Java");

dueDate = new GregorianCalendar(2006, Calendar.JANUARY, 12);
book3 = new LibraryBook(dueDate, 1.00, 100.00);
book3.setTitle("Java for Smarties");

dueDate = new GregorianCalendar(2006, Calendar.JANUARY, 1);
book4 = new LibraryBook(dueDate, 1.50, 230.00,

"Me and My Java");

System.out.println(book1.toString());
System.out.println(book2.toString());
System.out.println(book3.toString());
System.out.println(book4.toString());

}
}

418 Chapter 7 Defining Your Own Classes—Part 2

Running this program will produce the following output on the standard output
window:

Title unknown $ 0.50 $ 50.00 03/14/06
Introduction to OOP with Java $ 0.75 $ 50.00 02/13/06
Java for Smarties $ 1.00 $ 100.00 01/12/06
Me and My Java $ 1.50 $ 230.00 01/01/06

wu23399_ch07.qxd 12/15/06 19:55 Page 418

7.9 Sample Development 419

Step 2 Development: Integrate the BookTracker Class into the Program

In the second development step, we will bring in the helper BookTracker class into the
program. Our main concern in this step is to understand how to interact with a Book-
Tracker object correctly and adjust the LibraryBook class, as necessary, to make it com-
patible with the BookTracker class.

The BookTracker class is actually a fairly straightforward class. You are encouraged
to view the source file of the class.To understand the class fully, you need to learn about an
ArrayList, a topic covered in Chapter 10. But even without this knowledge, you should be
able to understand the majority of the code when you view the source file.We will discuss
the implementation of the BookTracker class in Chapter 10. Here’s the class description:

step 2
design

BookTracker

An instance of this class maintains a list of LibraryBook objects.

public BookTracker()

Creates a new instance of the class.

public void add(LibraryBook book)

Adds book to the book list it maintains.

public double getCharge()

Returns the total overdue charge for the books in the list. Uses today as the
return date.

public double getCharge(GregorianCalendar returnDate)

Returns the total overdue charge for the books in the list.The parameter is the date
the book is to be returned.

public String getList()

Returns information on all books in the list as a single string.

As stated in step 1, the BookTracker class requires two specific methods in the
LibraryBook class. We already defined the toString method. Since we will be imple-
menting the full computeCharge method in step 4, we define a stub method for this
step as

public double computeCharge(GregorianCalendar returnDate){

return 1.00; //Stub method for Step 2
}

To check our understanding on how to interact with the BookTracker class, we will
write a test main class. From this main class, we will create and add multiple book objects
to the book tracker and experiment with the getList and getCharge methods.

The only change we make to the LibraryBook class is the addition of the stub
computeCharge method, so the BookTracker class can be integrated with it. To test

step 2 code

wu23399_ch07.qxd 12/15/06 19:55 Page 419

7.9 Sample Development—continued

the BookTracker class, we define a test main class that checks the cases when the book
list is empty and has 20 books. Here’s the test main class:

420 Chapter 7 Defining Your Own Classes—Part 2

/*
Introduction to OOP with Java 4th ed., McGraw-Hill

File: Step2/Step2Main.java

*/
import java.util.*;

class Step2Main {

public static void main(String[] args) {

//Create 20 LibraryBook objects
BookTracker bookTracker = new BookTracker();

GregorianCalendar dueDate, returnDate;
LibraryBook book;

returnDate = new GregorianCalendar(2006, Calendar.MARCH, 15);

//Check the error condition
System.out.println("Error: No books added. Return code - " +

bookTracker.getCharge(returnDate));

System.out.println("Output for empty book list:\n" +
bookTracker.getList());

//Add 20 books
System.out.println("\nAdding 20 books...\n");

for (int i = 0; i < 20; i++) {

dueDate = new GregorianCalendar(2006, Calendar.MARCH, i+1);

book = new LibraryBook(dueDate);
book.setTitle("Book Number " + (i+1));

bookTracker.add(book);
}

System.out.println("Total Charge: $"
+ bookTracker.getCharge(returnDate));

System.out.println("\n");
System.out.println("List: \n" + bookTracker.getList());

}
}

wu23399_ch07.qxd 12/15/06 19:55 Page 420

We run the test main class and verify that we get the expected results. We will try
other variations to increase our confidence before continuing to the next step.

Step 3 Development: Define the OverdueChecker Class

After the working LibraryBook and BookTracker classes, we are now ready to start im-
plementing the top-level controller class. Besides managing a single BookTracker object
and multiple LibraryBook objects, an OverdueChecker object’s main responsibility is
the handling of input and output routines. As dictated in the problem statement, we have
to first input information on books and then repeatedly ask the user for return dates.
Expressing this logic in pseudocode, we have

GregorianCalendar returnDate;

String reply, table;
double totalCharge;

inputBooks(); //read in all book information

table = bookTracker.getList();
System.out.println(table);

//try different return dates
do {

returnDate = read return date ;

totalCharge = bookTracker.getCharge(returnDate);

displayTotalCharge(totalCharge);

reply = prompt the user to continue or not;

} while (reply is yes);

The body of the inputBooks method will include a loop that reads information for
one book on each repetition.The method body can be expressed thus:

while (isContinue()) {

title = readString("Title : ");
chargePerDay = readDouble("Charge per day: ");
maxCharge = readDouble("Maximum charge: ");
dueDate = readDate ("Due Date : ");

book = createBook(title, chargePerDay,
maxCharge, dueDate);

bookTracker.add(book);
}

Notice that there are three types of input data, and we define a method for each type,
namely, readDouble, readDate, and readString. These methods read input from a scan-
ner (console input) after prompting the user.

7.9 Sample Development 421

step 2 test

step 3
design

wu23399_ch07.qxd 12/15/06 19:55 Page 421

7.9 Sample Development—continued

Code to handle the input of String and double values is straightforward, but the
one to handle the input of the date requires some thinking. We need to decide in which
format the user can enter the date. For instance, should we prompt for the year, month,
and day individually? This may be acceptable if you enter the date once. When you have
to input date information many times, this input routine gets tedious. For this application,
we will require the user to enter the date correctly as a single string value in the
MM/dd/yyyy format. Given a string value in this format, we use a sequence of substring
methods to break it down into three pieces—month, day, and year. This operation is
similar to the one we used in the Chapter 2 sample application. Then we use the
Integer.parseInt method, introduced in Chapter 3, to convert them to int values. From
these three int values, we finally create and return a GregorianCalendar object that
represents the entered date.

After the four values are entered, a new book is created via the createBook method.
This method handles the situation when the input value is empty. For example, the user
may press only the Enter key if she wants default values for the single-day charge and
maximum possible charge.

The other methods are straightforward, so we’ll refer you to the complete class list-
ing without further explanation. Here’s the instantiable main class OverdueChecker:

422 Chapter 7 Defining Your Own Classes—Part 2

step 3 code

/*
Chapter 7 Library Overdue Checker

Step 3 Implement the Main Controller

*/

import java.util.*;

class OverdueChecker {

private static enum Response {YES, NO}

private static final String DATE_SEPARATOR = "/";

private Scanner scanner;

private BookTracker bookTracker;

//---
// Constructors
//---

public OverdueChecker() {

scanner = new Scanner(System.in);

wu23399_ch07.qxd 12/15/06 19:55 Page 422

scanner.useDelimiter(System.getProperty("line.separator"));

bookTracker = new BookTracker();
}

//---
// Main Method
//---

public static void main(String[] args) {

OverdueChecker checker = new OverdueChecker();
checker.start();

}

//---
// Public Methods
//---

public void start() {

GregorianCalendar returnDate;

String table;
double charge;
Response response;

inputBooks();

table = bookTracker.getList();
System.out.println(table);

System.out.println("\nNow check the over due charges...\n");

//try different return dates

do {

//read return date
returnDate = readDate("\nReturn Date: ");

charge = bookTracker.getCharge(returnDate);

displayTotalCharge(charge);

response = prompt("\nRun Again (yes/no)? ");

} while (response == Response.YES);

System.out.println(
"\n\nThank you for using Library Overdue Checker");

}

//---
// Private Methods
//---

7.9 Sample Development 423

wu23399_ch07.qxd 12/15/06 19:55 Page 423

7.9 Sample Development—continued

private LibraryBook createBook(String title,
double chargePerDay,
double maxCharge,
GregorianCalendar dueDate) {

if (dueDate == null) {
dueDate = new GregorianCalendar(); //set today as due date

}

LibraryBook book = new LibraryBook(dueDate);

if (title.length() > 0) {
book.setTitle(title);

}

if (chargePerDay > 0.0) {
book.setChargePerDay(chargePerDay);

}

if (maxCharge > 0.0) {
book.setMaximumCharge(maxCharge);

}

return book;
}

private void display(String text) {
System.out.print(text);

}

private void displayTotalCharge(double charge) {

System.out.format("\nTOTAL CHARGE:\t $%8.2f", charge);
}

private void inputBooks() {

double chargePerDay, maxCharge;
String title;

GregorianCalendar dueDate;
LibraryBook book;

//Keeps on reading input from a console
//until stopped by the end user

while (isContinue()) {
System.out.println("\n");

title = readString("Title : ");
chargePerDay = readDouble("Charge per day: ");

424 Chapter 7 Defining Your Own Classes—Part 2

wu23399_ch07.qxd 12/15/06 19:55 Page 424

maxCharge = readDouble("Maximum charge: ");
dueDate = readDate ("Due Date : ");

book = createBook(title, chargePerDay,
maxCharge, dueDate);

bookTracker.add(book);

}
}

private boolean isContinue() {

Response response = prompt("\nMore books to enter (y/n)?");

return (response == Response.YES);
}

private Response prompt(String question) {

String input;

Response response = Response.NO;

System.out.print(question + " (Yes - y; No - n): ");

input = scanner.next();

if (input.equals("Y") || input.equals("y")) {
response = Response.YES;

}

return response;
}

private double readDouble(String prompt) {

display(prompt);

return scanner.nextDouble();
}

private GregorianCalendar readDate(String prompt) {

GregorianCalendar cal;

String yearStr, monthStr, dayStr, line;

int sep1, sep2;

display(prompt);

line = scanner.next();

7.9 Sample Development 425

wu23399_ch07.qxd 12/15/06 19:55 Page 425

7.9 Sample Development—continued

if (line.length() == 0) {
cal = null;

} else {

sep1 = line.indexOf(DATE_SEPARATOR);
sep2 = line.lastIndexOf(DATE_SEPARATOR);

monthStr = line.substring(0, sep1);
dayStr = line.substring(sep1 + 1, sep2);
yearStr = line.substring(sep2 + 1, line.length());

cal = new GregorianCalendar(Integer.parseInt(yearStr),
Integer.parseInt(monthStr)-1,
Integer.parseInt(dayStr));

}

return cal;
}

private String readString(String prompt) {

display(prompt);

return scanner.next();
}

}

426 Chapter 7 Defining Your Own Classes—Part 2

step 3 test Now we run the program multiple times, trying different input types and values.We
also confirm that all control loops are implemented and working correctly. At this point,
the code to compute the overdue charge is still a stub, so we will always get the same
overdue charge for the same number of books. After we verify that everything is working
as expected, we proceed to the next step.

Step 4 Development: Compute the Overdue Charge

In step 4, we complete the stub method that computes the overdue charge in the
LibraryBook class. We have two GregorianCalendar objects for the due date and the
return date. We first need to find out the number of days between the two. We then mul-
tiply this number by the amount of charge per day to derive the total overdue charge. If
this amount is more than the maximum possible charge, then the total charge is reset to
this maximum value. Also, we need to check for the situation in which the return date has
not passed the due date. The logic of this process is a simple computation once we find
out the number of days between the two dates. So, how can we find it?

step 4
design

wu23399_ch07.qxd 12/15/06 19:55 Page 426

Reviewing the GregorianCalendar class, we see the get method can be used to
retrieve different pieces of date information, such as year, month, and day. Using the
method, we can get the month, day, and year information for two dates and compare
these values. It may sound easy, but things can get tricky very quickly. Complexity arises
from the facts that not every month has the same number of days and that the number of
days for February can vary from year to year. This approach is doable, but not recom-
mended.

When we explore the class further, we notice there’s another method, namely get-
Time, that returns a Date object. In Chapter 6, we used this Date class to compute the ex-
ecution time of a loop by finding the difference between the start and end times. We
can apply the same technique here. But instead of using the getTime method, we can
actually use the getTimeInMillis method and bypass the Date class altogether. The
getTimeInMillis method returns the time elasped since the epoch to the date in mil-
liseconds.By subtracting this since-the-epoch milliseconds value of the due date from the
same of the return date, we can find the difference between the two. If the difference is
negative, then it’s not past due, so there’s no charge. If the difference is positive, then we
convert the milliseconds to the equivalent number of days and multiply it by the per-day
charge to compute the total charge. Here’s a simple way to do the conversion:

private static final double MILLISEC_TO_DAY
= 1.0 / 1000 / 60 / 60 / 24;

...
dayCnt = millisec * MILLISEC_TO_DAY;

We will adopt the second approach. Here’s the final computeCharge method of
the LibraryBook class:

public double computeCharge(GregorianCalendar returnDate){

double charge = 0.0;

long dueTime = dueDate.getTimeInMillis();
long returnTime = returnDate.getTimeInMillis();

long diff = returnTime - dueTime;

if (diff > 0) {
charge = chargePerDay * diff * MILLISEC_TO_DAY;

if (charge > maximumCharge) {
charge = maximumCharge;

}
}

return charge;
}

We run the program mutiple times again, possibly using the same set of input data.
We enter different input variations to try out all possible cases for the computeCharge

7.9 Sample Development 427

step 4 code

design
alternative 1

design al-
ternative 2

step 4 test

wu23399_ch07.qxd 12/15/06 19:55 Page 427

7.9 Sample Development—continued

method. Try cases such as the return date and due date are the same, the return date oc-
curs before the due date, the charge is beyond the maximum, and so forth. After we ver-
ify the program, we move on to the next step.

Step 5 Development: Tying Up the Loose Ends and Future Extensions

As always, we will perform a critical review of the program, looking for any unfinished
method, inconsistency or error in the methods, unclear or missing comments, and so
forth.We should also not forget to improve the program for cleaner code and better read-
ability.This is especially true for the input routines. Are all the possible cases handled? Are
the input routines easy to use? Will it be better if we allow different formats for entering
the date information?

We stated at the beginning of this section that it would be a better program if it
warned the user, say, by popping a warning window or ringing an alarm, when the due
date was approaching. Using this extended program, we enter the book data at the time
we check out the book from the library.The program will store the entered information in
a file, so we don’t have to reenter the same data whenever we want to find out the total
overdue charge. We can execute the program daily and be warned about the looming
due dates. We can still run the program to find out the charges for the overdue books.
Techniques necessary to implement such an extended program are covered in the later
chapters of this book.

428 Chapter 7 Defining Your Own Classes—Part 2

program
review

possible
extensions

S u m m a r y

• When a method returns an object, it is actually returning a reference to this
object.

• The reserved word this is used to refer to a receiving object of a message
from within this object’s method.

• A class may include multiple methods with the same name as long as their
signatures are different. The signature of a method refers to the name of the
method and the number and data types of its parameters. They are called
overloaded methods.

• A class may include multiple constructors as long as their signatures are
different. They are called overloaded constructors.

• A constructor can call another constructor of the same class using the
reserved word this.

• Class variables and class methods are declared by using the reserved word
static.

• Class methods can access only the class variables and the class constants.

wu23399_ch07.qxd 12/15/06 19:55 Page 428

• Instance methods can access all types of data members (i.e., both class and
instance components).

• Arguments are passed to the methods by using the call-by-value scheme in
which the value of an argument is passed. The value is the actual data in the
case of a primitive data type and a reference to an object in the case of a
reference data type.

• Programmer-defined classes can be grouped into a programmer-defined
package.

• The javadoc comment is the third style of comments used in Java. From the
javadoc comments in a class, a tool can generate its documentation in the
HTML format.

Exercises 429

K e y C o n c e p t s

E x e r c i s e s

returning objects from methods

self referencing pointer (this)

overloaded methods

method signatures

multiple constructors

copy constructors

static initializers

call-by-value scheme

programmer-defined packages

javadoc comments

1. Consider the following classes.

class Cat {
private String name;
private Breed breed;
private double weight;

public Cat(String name, Breed breed, double weight){
this.name = name;
this.breed = breed;
this.weight = weight;

}

public Breed getBreed() {
return breed;

}

public double getWeight() {
return weight;

}

//other accessors and mutators
. . .

}

wu23399_ch07.qxd 12/15/06 19:55 Page 429

class Breed {

private String name;
private double averageWgt; //in lbs.

public Breed(String name, double averageWgt){
this.name = name;
this.averageWgt = averageWgt;

}

public double getWeight() {
return averageWgt;

}

//other accessors and mutators
. . .

}

Identify the invalid statements in the following main class. For each invalid
statement, state why it is invalid.

class Q1Main {
public static void main(String[] args) {

Breed persian = new Breed("Persian", 10.0);

Cat chacha = new Cat("Cha Cha", persian, 12.0);

Cat bombom = new Cat("Bom Bom", "mix", 10.0);

Cat puffpuff = new Cat("Puff Puff", chacha, 9.0);

double diff = chacha.getWeight()
- persian.getWeight();

System.out.println(
puffpuff.getBreed().getWeight());

}
}

2. Given the Cat and Breed classes from Exercise 1, what will be the output
from the following code?

class Q2Main {
public static void main(String[] args) {

Cat myCat = new Cat("winky",
new Breed("mix", 10.5), 9.5);

System.out.println(myCat.getWeight());
System.out.println(myCat.getBreed().getWeight());

}
}

430 Chapter 7 Defining Your Own Classes—Part 2

wu23399_ch07.qxd 12/15/06 19:55 Page 430

3. Given the Fraction class from Section 7.8, draw the state-of-memory
diagram at the point immediately after the last statement is executed.

Fraction f1, f2, f3;

f1 = new Fraction(3, 8);
f2 = new Fraction(2, 3);
f3 = f1.add(f2);

4. Consider the following class.

class Dog {
. . .

private double weight;
. . .

public boolean isBiggerThan(Dog buddy) {
return this.getWeight() > buddy.getWeight();

}

public double getWeight() {
return weight;

}
. . .

}

For each of the following codes, complete the state-of-memory diagram by
filling in the arrows for this and buddy.

a. Dog tuffy = new Dog(...);
Dog puffy = new Dog(...);

puffy.isBiggerThan(tuffy);

tuffy

puffy

:Dog :Dog

this

buddy

Exercises 431

wu23399_ch07.qxd 12/15/06 19:55 Page 431

b. Dog tuffy = new Dog(...);
Dog puffy = new Dog(...);

tuffy.isBiggerThan(puffy);

5. Complete the following constructor.

class Student {
private String name;
private int age;
private Address address;

public Student(String name, int age, Address address){

//assign passed values to the data members

}

6. Which of the following groups of overloaded constructors are valid?

a. public Cat(int age) { ... }
public Cat(double wgt) { ... }

b. public Dog(String name, double weight) { ... }
public Dog(String name, double height) { ... }

c. public Dog(String name, double weight) { ... }
public Dog(double weight, String name) { ... }

d. public Cat(String name) { ... }
public Cat(String name, double weight) { ... }
public Cat(double weight) { ... }

7. Which of the following groups of overloaded methods are valid?

a. public void compute(int num) { ... }
public int compute(double num) { ... }

b. public void move(double length) { ... }
public void move() { ... }

tuffy

puffy

:Dog :Dog

this

buddy

432 Chapter 7 Defining Your Own Classes—Part 2

wu23399_ch07.qxd 12/15/06 19:55 Page 432

c. public int adjust(double amount) { ... }
public void adjust(double amount, double charge) { ... }

d. public void doWork() { ... }
public void doWork(String name) { ... }
public int doWork(double num) { ... }

8. Complete the first four constructors of the following class. Each of the four
constructors calls the fifth one by using the reserved word this.

class Cat {
private static final String DEFAULT_NAME = "No name";
private static final int DEFAULT_HGT = 6;
private static final double DEFAULT_WGT = 10.0;

private String name;
private int height;
private double weight;

public Cat() {
//assign defaults to all data members

}

public Cat(String name) {
//assign the passed name to the data member
//use defaults for height and weight

}

public Cat(String name, int height) {
//assign passed values to name and height
//use default for weight

}

public Cat(String name, double weight) {
//assign passed values to name and weight
//use default for height

}

public Cat(String name, int height, double weight){
this.name = name;
this.height = height;
this.weight = weight;

}

...
}

9. Define a class method (static) named compare to the Fraction class. The
compare method accepts two Fraction objects f1 and f2. The method returns

-1 if f1 is less than f2
0 if f1 is equal to f2

+1 if f1 is greater than f2

Exercises 433

wu23399_ch07.qxd 12/15/06 19:55 Page 433

10. Rewrite the compare method from Exercise 9 by changing it to an instance
method. This method accepts a Fraction object and compares it to the
receiving object. The method is declared as follows:

public int compare(Fraction frac) {

//compare the Fraction objects this and frac
//return the result of comparison

}

11. Discuss the pros and cons of the compare methods from Exercise 8 and
Exercise 9.

12. Consider the following class.

class Modifier {
public static change(int x, int y){

x = x - 10;
y = y + 10;

}
}

What will be an output from the following code?

int x = 40;
int y = 20;

Modifier.change(x,y);

System.out.println("x = " + x);
System.out.println("y = " + y);

13. Modify the following class to make it a part of the package named myutil. In
addition to adjusting the source file, what are the steps you need to take so
that the class becomes usable/accessible from other classes that are outside
of this myutil package?

class Person {

private String name;

public Person() {
name = "Unknown";

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}
}

14. (Optional) Although we have not discussed the internal workings of the
BookTracker class, it is not too difficult to realize the portion that handles the

434 Chapter 7 Defining Your Own Classes—Part 2

wu23399_ch07.qxd 12/15/06 19:55 Page 434

generation of book list. Define a new method called getListWithCharge
based on the getList method. Generate a book list as the getList method does,
but include the overdue charge for each book also.

15. Design a class that keeps track of a student’s food purchases at the campus
cafeteria. A meal card is assigned to an individual student. When a meal card
is first issued, the balance is set to the number of points. If the student does
not specify the number of points, then the initial balance is set to 100 points.
Points assigned to each food item are a whole number. A student can
purchase additional points at any time during a semester. Every time food
items are bought, points are deducted from the balance. If the balance
becomes negative, the purchase of food items is not allowed. There is
obviously more than one way to implement the MealCard class. Any design
that supports the key functionalities is acceptable.

Development Exercises
For the following exercises, use the incremental development methodology to
implement the program. For each exercise, identify the program tasks, create a
design document with class descriptions, and draw the program diagram. Map out
the development steps at the start. Present any design alternatives and justify your
selection. Be sure to perform adequate testing at the end of each development step.

16. Write an application that plays the game of Fermi. Generate three distinct
random digits between 0 and 9. These digits are assigned to positions 1, 2,
and 3. The goal of the game is for the player to guess the digits in three
positions correctly in the least number of tries. For each guess, the player
provides three digits for positions 1, 2, and 3. The program replies with a
hint consisting of Fermi, Pico, or Nano. If the digit guessed for a given
position is correct, then the reply is Fermi. If the digit guessed for a given
position is in a different position, the reply is Pico. If the digit guessed for a
given position does not match any of the three digits, then the reply is Nano.
Here are sample replies for the three secret digits 6, 5, and 8 at positions 1,
2, and 3, respectively:

Guess Hint Explanation

1 2 5 Nano Nano Pico The value 5 matches but
at the wrong position.

8 5 3 Pico Fermi Nano The value 5 matches at
the correct position. The
value 8 matches but at
the wrong position.

5 8 6 Pico Pico Pico All match at the wrong
positions.

Notice that if the hints like the above are given, the player can tell which
number did not match. For example, given the hint for the second guess, we

Exercises 435

wu23399_ch07.qxd 12/15/06 19:55 Page 435

can tell that 3 is not one of the secret numbers. To avoid this, provide hints in
a random order or in alphabetical order (e.g., it will be Fermi Nano Pico
instead of Pico Fermi Nano for the second reply).

Play games repeatedly until the player wants to quit. After each game,
display the number of guesses made.

Use javadoc comments to document the classes you design for this
application.

17. Write an application that teaches children fraction arithmetic. For each
training session, randomly generate 10 questions involving addition,
subtraction, division, and multiplication of two fractions. At the beginning
of each session, the user has the option of specifying the time limit for
answering the questions. If the time limit is not specified, then use 30 s as a
default time limit. After you pose a question, wait until the user answers the
question. Award points based on the following rules:

Answer Time Points

Correct Under limit 10
Correct Over limit 6
Wrong Under limit 3
Wrong Over limit 0

After one session is over, use the console output to display the grade
distribution and the total points in the following manner:

Under Over
Time Limit Time Limit

Correct Answers 4 3

Wrong Answers 2 1

TOTAL POINTS: 64 (40 + 18 + 6 + 0)

After one session is over, give the user the option to play another session.

436 Chapter 7 Defining Your Own Classes—Part 2

wu23399_ch07.qxd 12/15/06 19:55 Page 436

Exceptions and Assertions

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Improve the reliability of code by
incorporating exception-handling and
assertion mechanisms.

• Write methods that propagate exceptions.

• Implement the try-catch blocks for catching
and handling the thrown exceptions.

• Write programmer-defined exception classes.

• Distinguish between the checked and
unchecked, or runtime, exceptions.

• Use assertions in methods to increase the
chance of detecting bugs during the
development.

437

8

wu23399_ch08.qxd 12/15/06 19:57 Page 437

hen someone says his or her program is reliable, what do we expect from the
program? The majority of people would probably reply correctness as the most
important criterion in determining the reliability of a program. When a program is
claimed to be reliable, we certainly expect the program will produce correct results
for all valid input. It is hardly a reliable program if it produces correct results only
for some input values. As we all know by now, writing a correct program is easier
said than done. If we are not diligent and careful enough, we can easily introduce
bugs in our programs. And often we fail to eradicate them. A mechanism called an
assertion can be used to improve the likelihood of catching logical errors during the
development. We will introduce assertions in this chapter and show how to use them
effectively in our programs.

Program correctness guarantees correct results for all valid input. But
what happens when the input is invalid? Another important criterion of program
reliability is the robustness, which measures how well the program runs under
various conditions. If a program crashes too easily when a wrong type of argu-
ment is passed to a method or an invalid input value is entered, we cannot say
the program is very reliable. A mechanism called exception handling can be
used to improve the program’s robustness. In this chapter, we will describe
how to code this exception-handling mechanism in Java to improve the program’s
robustness.

8.1 Catching Exceptions
In Chapters 5 and 6 we presented two types of control flows: selection control and
repetition control. Using these control structures, we alter the default sequential
flow of control. We use a selection control to select and execute one block of code
out of many choices, and we use a repetition control to execute a block of code
repeatedly until certain conditions are met. The exception-handling mechanism
can be viewed as another form of control structure. An exception represents an
error condition that can occur during the normal course of program execution.
When an exception occurs, the normal sequence of flow is terminated and the
exception-handling routine is executed. When an exception occurs, we say an
exception is thrown. When the matching exception-handling code is executed, we say
the thrown exception is caught. By using exception-handling routines judiciously in
our code, we can increase its robustness. In this section, we will show how the
thrown exceptions can be caught and processed.

We have been dealing with exceptions all along. For example, consider this
code:

Scanner scanner = new Scanner(System.in);

System.out.print("Enter integer: ");
int number = scanner.nextInt();

438 Chapter 8 Exceptions and Assertions

I n t r o d u c t i o n

W

assertion

exception
handling

exception

wu23399_ch08.qxd 12/15/06 19:57 Page 438

What would happen if we entered, say, abc123, an input value that is not an int? We
would get an error message like this:

Exception in thread "main" java.util.InputMismatchException
at java.util.Scanner.throwFor(Scanner.java:819)
at java.util.Scanner.next(Scanner.java:1431)
at java.util.Scanner.nextInt(Scanner.java:2040)
at java.util.Scanner.nextInt(Scanner.java:2000)
at Ch8Sample1.main(Ch8Sample1.java:35)

This error message indicates the system has caught an exception called the Input-
MismatchException, an error that occurs when we try to convert a string that cannot
be converted to a numerical value. Up until now, we have let the system handle
the thrown exceptions. However, when we let the system handle the exceptions,
a single thrown exception most likely will result in erroneous results or a program
termination. Instead of depending on the system for exception handling, we can
increase the program’s reliability and robustness if we catch the exceptions our-
selves by including error recovery routines in our program.

Let’s begin with a short program to illustrate the exception-handling
mechanism. We will define a service class that supports a method to input a
person’s age. This class is mainly for the illustrative purpose of introducing the
exceptionhandling concept.We first define it without exception handling and then
improve it gradually by adding exception-handling features. Because we will be
defining many different versions of the class, we will name them AgeInputVer1,
AgeInputVer2, and so forth. Here’s the AgeInputVer1 class without exception
handling:

8.1 Catching Exceptions 439

/*
Chapter 8 Sample Class: Class to input age

File: AgeInputVer1.java
*/

import java.util.*;

class AgeInputVer1 {

private static final String DEFAULT_MESSAGE = "Your age: ";

private Scanner scanner;

public AgeInputVer1() {
scanner = new Scanner(System.in);

}

public int getAge() {
return getAge(DEFAULT_MESSAGE);

}

wu23399_ch08.qxd 12/15/06 19:57 Page 439

Using this service class, we can write a program that gets a person’s age and
replies with the year in which the person was born. Notice the program takes into con-
sideration whether the person already had a birthday this year. Here’s the program:

440 Chapter 8 Exceptions and Assertions

public int getAge(String prompt) {

System.out.print(prompt);
int age = scanner.nextInt();

return age;
}

}

/*
Chapter 8 Sample Program: Input a person's age

File: Ch8AgeInputMain.java
*/

import java.util.*;

class Ch8AgeInputMain {

public static void main(String[] args) {

GregorianCalendar today;

int age, thisYear, bornYr;

String answer;

Scanner scanner = new Scanner(System.in);

AgeInputVer1 input = new AgeInputVer1();
age = input.getAge("How old are you? ");

today = new GregorianCalendar();
thisYear = today.get(Calendar.YEAR);

bornYr = thisYear - age;

System.out.print("Already had your birthday this year? (Y or N)");
answer = scanner.next();

if (answer.equals("N") || answer.equals("n")) {
bornYr--;

}

System.out.println("\nYou are born in " + bornYr);
}

}

wu23399_ch08.qxd 12/15/06 19:57 Page 440

The program works fine as long as valid input is entered. But what happens if
the user spells out the age, say, nine instead of 9? An input mismatch exception is
thrown because the input value nine cannot be converted to an integer by using the
parseInt method. With the current implementation, the system will handle the
thrown exception by displaying the error message

Exception in thread "main" java.util.InputMismatchException
at java.util.Scanner.throwFor(Scanner.java:819)
at java.util.Scanner.next(Scanner.java:1431)
at java.util.Scanner.nextInt(Scanner.java:2040)
at java.util.Scanner.nextInt(Scanner.java:2000)
at AgeInputVer1.getAge(AgeInputVer1.java:48)
at Ch8AgeInputMain.main(Ch8AgeInputMain.java:30)

and terminating the program. It would be a much better program if we could handle
the thrown exception ourselves. Let’s modify the getAge method so that it will loop
until a valid input that can be converted to an integer is entered. To do this, we need
to wrap the statements that can potentially throw an exception with the try-catch
control statement. In this example, there’s only one statement that can potentially
throw an exception, namely,

age = scanner.nextInt();

We put this statement inside the try block and the statements we want to be executed
in response to the thrown exception in the matching catch block. If we just want
to display an error message when the exception is thrown, then we can write the
try-catch statement as follows:

System.out.print(prompt);

try {

age = scanner.nextInt();

} catch (InputMismatchException e) {

System.out.println(
"Invalid Entry. Please enter digits only.");

}

Statements in the try block are executed in sequence. When one of the state-
ments throws an exception, then control is passed to the matching catch block and
statements inside the catch block are executed. The execution next continues to the
statement that follows this try block statement, ignoring any remaining statements
in the try block. If no statements in the try block throw an exception, then the catch
block is ignored and execution continues with the statement that follows this

8.1 Catching Exceptions 441

try-catch

A statement that
could throw an

exception

The type of exception
to be caught

wu23399_ch08.qxd 12/15/06 19:57 Page 441

try-catch statement. Figure 8.1 shows the two possible control flows: one when an
exception is thrown and another when no exceptions are thrown.

In the sample code, we have only one statement in the try block. If the input
statement does not throw an exception, then we want to exit from the method and
return the integer. If there’s an exception, we display an error message inside the
catch block, and repeat the input routine. To accomplish this repetition, we will put
the whole try-catch statement inside a loop:

public int getAge(String prompt) {

int age;
boolean keepGoing = true;

while (keepGoing) {

System.out.print(prompt);

try {

age = scanner.nextInt();

keepGoing = false;

} catch (InputMismatchException e) {

scanner.next(); //remove the leftover garbage
//from the input buffer

System.out.println(

442 Chapter 8 Exceptions and Assertions

Assume <t–stmt–3> throws an exception.

Exception

try {
 <t–stmt–1>
 <t–stmt–2>
 <t–stmt–3>
 <t–stmt–4>
 ...
 <t-stmt-n>

} catch (Exception e) {
 <c–stmt–1>
 ...
 <c–stmt–n>
}

 <next stmt>

This part is
skipped.

No exception

try {
 <t–stmt–1>
 <t–stmt–2>
 <t–stmt–3>
 <t–stmt–4>
 ...
 <t–stmt n>

} catch (Exception e) {
 <c–stmt–1>
 ...
 <c–stmt–n>
}

 <next stmt>

Figure 8.1 Two possible control flows of the try-catch statement with one catch block. Assume <t-stmt-3>
throws an exception.

This statement is executed
only if no exception

is thrown.

This will remove
“garbage” left in the

input buffer.

wu23399_ch08.qxd 12/15/06 19:57 Page 442

"Invalid Entry.Please enter digits only.");
}

}

return age;
}

Notice the first statement

scanner.next();

inside the catch block. It is used to remove any data that remain in the input buffer.
When an exception is thrown, an input value that has caused an exception still
remains in the input buffer. We need to remove this “garbage” from the input buffer,
so we can process the next input value. If we don’t include this statement, the code
will result in an infinite loop because the nextInt method continues to process the
same invalid input.

We can get rid of the boolean variable by rewriting the statement as

while (true) {

System.out.print(prompt);

try {

age = scanner.nextInt();

return age;

} catch (InputMismatchException e) {

scanner.next(); //remove the leftover garbage
//from the input buffer

System.out.println(
"Invalid Entry. Please enter digits only.");

}
}

The improved class with the exception-handling getAge method is named
AgeInputVer2.

There are many types of exceptions the system can throw, and we must specify
which exception we are catching in the catch block’s parameter list (there can be
exactly one exception in the list). In the sample code, we are catching the input
mismatch exception, and the parameter e represents an instance of the InputMis-
matchException class. In Java an exception is represented as an instance of the
Throwable class or its subclasses. The Throwable class has two subclasses, Error and
Exception. The Error class and its subclasses represent serious problems that should
not be caught by ordinary applications, while the Exception class and its subclasses
represent error conditions that should be caught. So for all practical purposes, we are
only interested in the Exception class and its subclasses in our program. Later in the
chapter we will learn how to define our own exception classes. We will declare these
programmer-defined exception classes as subclasses of the Exception class.

8.1 Catching Exceptions 443

wu23399_ch08.qxd 12/15/06 19:57 Page 443

There are two methods defined in the Throwable class that we can call to get
some information about the thrown exception: getMessage and printStackTrace. We
can call these methods inside the catch block as follows:

try {

age = scanner.nextInt();

return age;

} catch (InputMismatchException e) {

scanner.next (); //remove the leftover garbage
//from the input buffer

System.out.println(e.getMessage());
e.printStackTrace();

}

With this modified code, if we enter ten as an input, then we will receive the
following output:

null
java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:819)
at java.util.Scanner.next(Scanner.java:1431)
at java.util.Scanner.nextInt(Scanner.java:2040)
at java.util.Scanner.nextInt(Scanner.java:2000)
at AgeInputVer2.getAge(AgeInputVer2.java:54)
at Ch8AgeInputMain.main(Ch8AgeInputMain.java:30)

Notice that the result we see from the printStackTrace method is the one we saw when
the system handled the thrown exception. The stack trace shows the sequence of calls
made from the main method of the main class to the method that throws the exception.

444 Chapter 8 Exceptions and Assertions

getMessage

printStackTrace

1. What will be displayed on the console window when the following code is
executed and the user enters abc123 and 14?

Scanner scanner = new Scanner(System.in);
try {

int num1 = scanner.nextInt();

System.out.println("Input 1 accepted");

int num2 = scanner.nextInt();

System.out.println("Input 2 accepted");

} catch (InputMismatchException e) {

System.out.println("Invalid Entry");
}

wu23399_ch08.qxd 12/15/06 19:57 Page 444

2. What is wrong with the following code? It attempts to loop until the valid input
is entered.

Scanner scanner = new Scanner(System.in);

try {
while (true) {

System.out.print("Enter input: ");

int num = scanner.nextInt();
}

} catch (InputMismatchException e) {

scanner.next();
System.out.println("Invalid Entry");

}

8.2 Throwing Exceptions and Multiple catch Blocks
Compared to the original AgeInputVer1 class, the AgeInputVer2 class is more robust
because the program does not terminate abruptly when an invalid value is entered.
However, the improved class is not robust enough yet. There is still room for im-
provements. For example, the current implementation accepts invalid negative inte-
gers. Since negative age is not possible, let’s improve the code by disallowing the input
of negative integers. Notice that a negative integer is an integer, so the nextInt method
will not throw an exception. We will define the third class, AgeInputVer3, to throw
(and catch) an exception when the invalid input of a negative integer is detected.
Here’s the while loop of the modified getAge method of the AgeInputVer3 class:

while (true) {
System.out.print(prompt);

try {
age = scanner.nextInt();

if (age < 0) {
throw new Exception("Negative age is invalid");

}

return age; //input okay so return the value & exit

} catch (InputMismatchException e) {

scanner.next();

System.out.println("Input is invalid.\n" +
"Please enter digits only");

} catch (Exception e) {

System.out.println("Error: " + e.getMessage());
}

}

8.2 Throwing Exceptions and Multiple catch Blocks 445

Throws an excep-
tion when age is a

negative integer.

The thrown exception
is caught by this

catch block.

wu23399_ch08.qxd 12/15/06 19:57 Page 445

An exception is thrown by using the throw statement. Its syntax is

throw <a throwable object>

where <a throwable object> is an instance of the Throwable class or its subclasses.
As mentioned earlier, in common applications, it will be an instance of the Exception
class or its subclasses. In the sample code, we threw an instance of the Exception
class. When we create an instance of the Exception class, we can pass the string that
describes the error. The thrown exception is caught by the corresponding catch
block, and this error message is displayed.

Notice the multiple catch blocks in the sample code. When there are multi-
ple catch blocks in a try-catch statement, they are checked in sequence, and
because the exception classes form an inheritance hierarchy, it is important to check
the more specialized exception classes before the more general exception classes.
For example, if we reverse the order of the catch blocks to

try {
...

} catch (Exception e) {
...

} catch (InputMismatchException e) {
...

}

then the second catch block will never be executed because any exception object
that is an instance of Exception or its subclasses will match the first catch block.
When an exception is thrown, a matching catch block is executed and all other catch
blocks are ignored. This is similar to the switch statement with break at the end of
each case block. The execution continues to the next statement that follows the
trycatch statement. When no exception is thrown, all catch blocks are ignored and
the execution continues to the next statement. Figure 8.2 illustrates the control flow
of the try-catch statement with multiple catch blocks.

446 Chapter 8 Exceptions and Assertions

List the catch blocks in the order of specialized to more general exception classes.
At most one catch block is executed, and all other catch blocks are ignored.

The sample code given at the beginning of this section illustrates how an ex-
ception can be thrown and caught by the matching catch block. Instead of catching the
thrown exception immediately, it is possible to let others handle the exception. This
can be achieved by not including a matching catch block. We assume in Figure 8.2
that one of the catch blocks will match the thrown exception, but it is not a require-
ment. It is possible that none of the catch blocks matches the thrown exception.

wu23399_ch08.qxd 12/15/06 19:57 Page 446

If there is no matching catch block, then the system will search down the stack trace
for a method with a matching catch block. If none is found, then the system will
handle the thrown exception. We will explain this traversing of the stack trace in
greater detail in Section 8.3.

If there is a block of code that needs to be executed regardless of whether an
exception is thrown, then we use the reserved word finally. Consider this code.

try {
num = scanner.nextInt();

if (num > 100) {
throw new Exception("Out of bound");

}

} catch (InputMismatchException e) {

scanner.next();

System.out.println("Not an integer");

} catch (Exception e) {

System.out.println("Error: "+ e.getMessage());

} finally {

System.out.println("DONE");
}

8.2 Throwing Exceptions and Multiple catch Blocks 447

Assume <t–stmt–3> throws an exception and
<catch–block–3> is the matching catch block.

Exception

try {
 <t–stmt–1>
 <t–stmt–2>
 <t–stmt–3>
 <t–stmt–4>
 ...
 <t–stmt–n>
}
 <catch–block–1>
 <catch–block–2>
 <catch–block–3>
 <catch–block–4>
 ...
 <catch–block–n>

 <next stmt>

try {
 <t–stmt–1>
 <t–stmt–2>
 <t–stmt–3>
 <t–stmt–4>
 ...
 <t–stmt–n>
}
 <catch–block–1>
 <catch–block–2>
 <catch–block–3>
 <catch–block–4>
 ...
 <catch–block–n>

 <next stmt>

No exception

Skipped portion

Figure 8.2 Two possible control flows of the try-catch statement with multiple catch blocks. Assume
<t-stmt-3> throws an exception and <catch-block-3> is the matching catch block.

wu23399_ch08.qxd 12/15/06 19:57 Page 447

If there is no error in input, then no exception is thrown and the output will be

DONE

If there is an error in input, one of the two exceptions is thrown and the output
will be

Not an integer
DONE

or

Error: Out of bound
DONE

The example shows that the finally block is always executed. This feature is use-
ful in a situation where we need to execute some cleanup code after the try-catch state-
ment. For example, suppose we open a communication channel from our Java program
to a remote Web server to exchange data. If the data exchange is successfully com-
pleted in the try block, then we close the communication channel and finish the opera-
tion. If the data exchange is interrupted for some reason, an exception is thrown and the
operation is aborted. In this case also, we need to close the communication channel,
because leaving the channel open by one application blocks other applications from
using it. Closing a channel is much like hanging up the phone. The code to close the
communication channel should therefore be placed in the finally block. Figure 8.3
shows two possible control flows for the try-catch statement with the finally clause.

448 Chapter 8 Exceptions and Assertions

Assume <t–stmt–i> throws an exception and
<catch–block–i> is the matching catch block.

Exception

try {
 <t–stmt–1>
 ...
 <t–stmt–i>
 ...
 <t–stmt–n>
}
 <catch–block–1>
 ...
 <catch–block–i>
 ...
 <catch–block–n>

 finally {
 ...
 }
 <next statement>

try {
 <t–stmt–1>
 ...
 <t–stmt–i>
 ...
 <t–stmt–n>
}
 <catch–block–1>
 ...
 <catch–block–i>
 ...
 <catch–block–n>

 finally {
 ...
 }
 <next statement>

No exception

Skipped portion

Figure 8.3 Two possible control flows of the try-catch statement with multiple catch blocks and the finally
block.The finally block is always executed.

wu23399_ch08.qxd 12/15/06 19:57 Page 448

Note that even if there’s a return statement inside the try block, the finally
block is executed. When the return statement is encountered in the try block,
statements in the finally block are executed before actually returning from the
method.

8.2 Throwing Exceptions and Multiple catch Blocks 449

1. What’s wrong with the following code? Identify all errors.

Scanner scanner = new Scanner(System.in);

try {
int num = scanner.nextInt();

if (num > 100) {
catch new Exception("Out of bound");

}

} catch (InputMismatchException e) {

System.out.println("Invalid Entry");

} finally(Exception e) {

System.out.println("DONE");
}

2. Determine the output of the following code when the input a12 is entered.

Scanner scanner = new Scanner(System.in);

try {
int num = scanner.nextInt();

if (num < 0) {
throw new Exception("No negative");

}

} catch (InputMismatchException e) {

System.out.println("Invalid Entry");

} catch (Exception e) {

System.out.println("Error: "+ e.getMessage());

} finally {

System.out.println("DONE");
}

wu23399_ch08.qxd 12/15/06 19:57 Page 449

3. Determine the output of the following code when the input a12 is entered.

Scanner scanner = new Scanner(System.in);

try {
int num = scanner.nextInt();

if (num < 0) {
throw new Exception("No negative");

}

} catch (Exception e) {

System.out.println("Error: "+ e.getMessage());

} catch (InputMismatchException e) {

System.out.println("Invalid Entry");
}

8.3 Propagating Exceptions
In Section 8.2 we introduced the possibility of no catch block matching the thrown
exception, but we did not explain exactly how the system handles such a case. We
stated only briefly that the system will search down the stack trace for a method
with a matching catch block, and if no matching catch block is found, the system
will handle the thrown exception. We now describe this mechanism in detail.

To present a precise description, we start with some definitions. When a
method may throw an exception, either directly by including a throw statement or
indirectly by calling a method that throws an exception, we call the method an
exception thrower. Every exception thrower must be one of the two types: catcher or
propagator. An exception catcher is an exception thrower that includes a matching
catch block for the thrown exception, while an exception propagator does not. For
example, the getAge method of the AgeInputVer1 class is an exception propagator,
while the getAge method of the AgeInputVer2 class is an exception catcher. Note
that the designation of a method as being a catcher or propagator is based on a sin-
gle exception. Suppose a method throws two exceptions. This method can be a
catcher of the first exception and a propagator of the second exception.

Let’s consider the sequence of method calls shown in Figure 8.4. Method A
calls method B, method B in turn calls method C, and so forth. Notice the stack
trace in the figure. Every time a method is executed, the method’s name is placed
on top of the stack. By the time method D is executed, we have A, B, C, and D in
the stack. When an exception is thrown, the system searches down the stack from
the top, looking for the first matching exception catcher. Method D throws an
exception, but no matching catch block exists in the method, so method D is
an exception propagator. The system then checks method C. This method is also an
exception propagator. Finally, the system locates the matching catch block in
method B, and therefore, method B is the catcher for the exception thrown by
method D.

450 Chapter 8 Exceptions and Assertions

exception
thrower

exception
catcher

exception
propagator

wu23399_ch08.qxd 12/15/06 19:57 Page 450

Method A also includes the matching catch block, but it will not be executed
because the thrown exception is already caught by method B, and method B does
not propagate this exception. Although the technique is not used often, an exception
catcher can also be set to propagate the caught exception. For example, if we rewrite
method B as

try {
C();

} catch (Exception e) {
... //do something here
throw e; //propagate the caught exception to the

//method below this one in the trace stack
}

it is both a catcher and a propagator. With the modified method B, method A’s
matching catch block will get executed, because method B, in addition to handling
the exception, throws the same exception, causing the system to look for a match-
ing catcher down the stack.

We have one last detail to complete the description of the exception propaga-
tion mechanism. If a method is an exception propagator, we need to modify its

8.3 Propagating Exceptions 451

Call sequence

Stack trace

Method A

Catcher Propagator Propagator

try {
 B();
}
catch (Exception e) {
 output.println("A");
}

Method B

try {
 C();
}
catch (Exception e) {
 output.println("B");
}

Method C

D();

Method D

Method A Method B

D
C
B
A

C
B
A

B
A

Method C Method D

if (cond) {
 throw
 new Exception();
}

A

Figure 8.4 A sequence of method calls among the exception throwers. Method D throws an instance of
Exception. The green arrows indicate the direction of calls.The red arrows show the reversing of call sequence,
looking for a matching catcher. Method B is the catcher in this example.The call sequence is traced by using a
stack. (Note: output == System.out.)

wu23399_ch08.qxd 12/15/06 19:57 Page 451

header to declare the type of exceptions the method propagates. We use the reserved
word throws for this declaration. Methods C and D in Figure 8.4 must have the fol-
lowing declaration (visibility modifier and return type are not relevant here):

void C() throws Exception {
...

}

void D() throws Exception {
...

}

Without the required throws Exception clause, the program will not compile.
There is one exception (no pun intended) to this rule. For the exceptions of the
type called runtime exceptions, the throws clause is optional. For example,
the getAge method of AgeInputVer1 does not include the throws clause be-
cause InputMismatchException is a runtime exception. Its being optional means
we can include it to explicitly state the fact if we want to. If we restate the
declaration to

public int getAge(String prompt)

throws InputMismatchException {
...

}

the code will compile just fine. We will explain further about different types of
exceptions in Section 8.4.

Now that the exception propagation mechanism is explained, let’s study how
we can apply it in designing useful service classes.

First, consider the Fraction class from Chapter 7. The setDenominator method
of the Fraction class was defined as follows:

public void setDenominator(int denom) {

if (denom == 0) {
System.out.println("Fatal Error");
System.exit(1);

}

denominator = denom;
}

We stated in Chapter 7 that it is too drastic to terminate a whole program when one
attempts (inadvertently or otherwise) to set the denomintor to 0. Throwing an ex-
ception is a much better approach. Here’s the modified method that throws an
IllegalArgumentException when the value of 0 is passed as an argument:

public void setDenominator(int denom)
throws IllegalArgumentException {

452 Chapter 8 Exceptions and Assertions

wu23399_ch08.qxd 12/15/06 19:57 Page 452

if (denom == 0) {
throw new IllegalArgumentException(

"Denominator cannot be 0");
}
denominator = denom;

}

Now let’s study another example. Consider the AgeInputVer3 class. It dis-
allows input of negative integers. When that happens, an exception is thrown.
Instead of disallowing only negative integers, wouldn’t it make more sense to
restrict the valid input by specifying the lower and upper bounds? For example, we
may want to restrict the input to an integer between 10 and 20 for one application
and between 0 and 250 (e.g., entering the age of a building on the campus) for
another application. To illustrate this concept, we will define the fourth class,
AgeInputVer4, that allows the client programmers to specify the lower and upper
bounds of acceptable input values.

The client specifies the lower and upper bounds at the time of object creation,
for example,

AgeInputVer4 input = new AgeInputVer4(10, 20);

This constructor will set the lower and upper bounds to 0 and 99, respectively. The
lower and upper bounds are kept as data members lowerBound and upperBound,
respectively, and they are initialized in the constructor.

How should the getAge respond when it detects the input is outside the
range of the client-designated lower and upper bounds? Instead of catching it,
we will propagate the thrown exception to the caller of this method. Our responsi-
bility as a provider of the service class is to tell the client by throwing an excep-
tion when a condition set by the client is violated. We will let the client handle
the thrown exception. The condition is set by the client, so it is more appropriate
for this client to decide what to do in case of an exception. For the number format
exception, the getAge method is still the catcher because this exception is thrown
when a condition not dependent on any one specific client is violated. This
exception is not a client-specific exception, but a generic exception suitably han-
dled by the service class. So the modified getAge method is a propagator of an
Exception (thrown when the bounds set by the client are violated) and a catcher
of an InputMismatchException (thrown when the input is not an integer). Here’s
the method:

public int getAge(String prompt) throws Exception {

int age;

while (true) {
System.out.print(prompt);

try {
age = scanner.nextInt();

8.3 Propagating Exceptions 453

Propagates an
Exception

wu23399_ch08.qxd 12/15/06 19:57 Page 453

if (age < lowerBound || age > upperBound) {
throw new Exception("Input out of bound");

}

return age;

} catch (InputMismatchException e) {

scanner.next();

System.out.println("Input is invalid.\n" +
"Please enter digits only");

}
}

}

454 Chapter 8 Exceptions and Assertions

No catch block for
Exception

Don’t catch an exception that is thrown as a result of violating the condition set
by the client programmer. Instead, propagate the exception back to the client
programmer’s code and let him or her handle it.

The second getAge method that uses a default prompt calls this method, so we
need to rewrite the second getAge method as

public int getAge() throws Exception {

return getAge(DEFAULT_MESSAGE);
}

We have to specify the additional data members and the constructors to com-
plete the AgeInputVer4 class. The new data members are declared as

private static final int DEFAULT_LOWER_BOUND = 0;
private static final int DEFAULT_UPPER_BOUND = 99;

private int lowerBound;
private int upperBound;

What about the constructors? Are the following constructors acceptable?

public AgeInputVer4() {
this(DEFAULT_LOWER_BOUND, DEFAULT_UPPER_BOUND);

}

public AgeInputVer4(int low, int high) {
lowerBound = low;
upperBound = high;
scanner = new Scanner(System.in);

}

This call can throw an
Exception so the method
header must include the
correct throws clause.

wu23399_ch08.qxd 12/15/06 19:58 Page 454

Bad Version

Yes, if we didn’t know about exception handling. But now with the knowledge of
exception handling, we can make the class more robust by ensuring that low is less
than or equal to high. If this condition is not met, then we throw an exception. The
IllegalArgumentException class is precisely the class we can use for this situation.
Here’s the more robust constructor:

public AgeInputVer4(int low, int high)
throws IllegalArgumentException {

if (low > high) {
throw new IllegalArgumentException(

"Low (" + low + ") was " +
"larger than high(" + high + ")");

} else {
lowerBound = low;
upperBound = high;
scanner = new Scanner(System.in);

}
}

Now, what about the default constructor? Since the default constructor calls
the other two-argument constructor, which can throw an exception, this constructor
must handle the exception. One approach is to propagate the exception by declaring
it as

public AgeInputVer4() throws IllegalArgumentException {
this(DEFAULT_LOWER_BOUND, DEFAULT_UPPER_BOUND);

}

This declaration is problematic, however, because when we use the throws clause,
we are announcing that this method can potentially throw an exception. But this
constructor will never throw an exception as long as the class is programmed cor-
rectly. The only time this constructor can throw an exception is when we set the
value for DEFAULT_LOWER_BOUND or DEFAULT_UPPER_BOUND incorrectly. It is an
internal error and must be corrected. Since this constructor should not throw an ex-
ception, we might be tempted to make this constructor an exception catcher as

public AgeInputVer4() {
try {
this(DEFAULT_LOWER_BOUND, DEFAULT_UPPER_BOUND);

} catch (IllegalArgumentException e) {
//never happens, so do nothing

}
}

Logically, this is what we want to accomplish. But syntactically, it is an error. Java
requires the call to another constructor using the reserved word this to be the first

8.3 Propagating Exceptions 455

wu23399_ch08.qxd 12/15/06 19:58 Page 455

statement. In the bad version, the try statement is the first statement. To correct this
problem, we can define a private method init as

private void init(int low, int high) {
lowerBound = low;
upperBound = high;
scanner = new scanner(System.in);

}

and write the two constructors as

public AgeInputVer4() {
init(DEFAULT_LOWER_BOUND, DEFAULT_UPPER_BOUND);

}

public AgeInputVer4(int low, int high)
throws IllegalArgumentException {

if (low > high) {
throw new IllegalArgumentException(

"Low (" + low + ") was " +
"larger than high(" + high + ")");

} else {
init(low, high);

}
}

Here’s the complete AgeInputVer4 class:

456 Chapter 8 Exceptions and Assertions

/*
Chapter 8 Sample Class: Class to input age

File: AgeInputVer4.java

*/

import javax.swing.*;

class AgeInputVer4 {

private static final String DEFAULT_MESSAGE = "Your age:";
private static final int DEFAULT_LOWER_BOUND = 0;
private static final int DEFAULT_UPPER_BOUND = 99;

private int lowerBound;
private int upperBound;

private Scanner scanner;

Data members

wu23399_ch08.qxd 12/15/06 19:58 Page 456

public AgeInputVer4() {
init(DEFAULT_LOWER_BOUND, DEFAULT_UPPER_BOUND);

}

public AgeInputVer4(int low, int high)
throws IllegalArgumentException {

if (low > high) {
throw new IllegalArgumentException(

"Low (" + low + ") was " +
"larger than high(" + high + ")");

} else {
init(low, high);

}
}

public int getAge() throws Exception {

return getAge(DEFAULT_MESSAGE);
}

public int getAge(String prompt) throws Exception {

int age;

while (true) {
System.out.print(prompt);

try {
age = scanner.nextInt();

if (age < lowerBound || age > upperBound) {
throw new Exception("Input out of bound");

}

return age; //input okay so return the value & exit

} catch (InputMismatchException e) {

scanner.next();

System.out.println("Input is invalid.\n" +
"Please enter digits only");

}
}

}

private void init(int low, int high) {
lowerBound = low;
upperBound = high;
scanner = new Scanner(System.in);

}
}

8.3 Propagating Exceptions 457

Constructors

getAge

init

wu23399_ch08.qxd 12/15/06 19:58 Page 457

458 Chapter 8 Exceptions and Assertions

1. What’s wrong with the following code?

public void check(int num) {
if (num < 0) {

throw new Exception();
}

}

2. What is the difference between the reserved words throw and throws?

3. What’s wrong with the following code?

public InputMismatchException getData() {

Scanner scanner = new Scanner(System.in);

try {
System.out.print("Input: ");
int num = scanner.nextInt();

return num;
}

}

8.4 Types of Exceptions
We mentioned briefly in Section 8.1 that all types of thrown errors are instances of
the Throwable class or its subclasses. Serious errors that signal abnormal conditions
are represented by the instances of the Error class or its subclasses. Exceptional
cases that common applications are expected to handle are represented by the
instances of the Exception class or its subclasses. Figure 8.5 shows a very small por-
tion of the inheritance hierarchy rooted in the Throwable class.

There are two types of exceptions: checked and unchecked. A checked
exception is an exception that is checked at compile time. All other exceptions are
unchecked exceptions, also called runtime exceptions, because they are unchecked
at compile time and are detected only at runtime. Trying to divide a number by 0
(ArithmeticException) and trying to convert a string with letters to an integer
(NumberFormatException) are two examples of runtime exceptions.

If a method is a propagator (a method that throws but does not catch an
exception) of checked exceptions, then the method must have the throws clause. If a
method is a propagator of runtime exceptions or errors (instances of Error or its sub-
classes), the throws clause is optional. When we call a method that can throw
checked exceptions, then we must use the try-catch statement and place the call in the
try block, or we must modify our method header to include the appropriate throws
clause. When we call a method that can throw runtime exceptions or errors, then
there’s is no such requirement. We just make a call in our method. Figure 8.6 shows
the valid callers of a method that throws checked exceptions, and Figure 8.7
shows the valid callers of a method that throws runtime, or unchecked, exceptions.

checked and
unchecked
exception

wu23399_ch08.qxd 12/15/06 19:58 Page 458

Enforcing the requirement of explicitly handling runtime exceptions means,
for all methods we write, that they must either have the throws clause in the header
or have the try-catch statement in the body because almost every method we call
from our methods can throw runtime exceptions. This is hardly effective program-
ming so we don’t have to handle runtime exceptions explicitly in the program. For
the errors of type Error and its subclasses, they indicate problems too serious for any
ordinary application to handle, so we are not required to handle them explicitly.
There’s really nothing we can do even if we catch them, so we don’t.

8.4 Types of Exceptions 459

IllegalArgumentException

NumberFormatException

ArithmeticException NullPointerException

RuntimeExceptionAssertionError

Error

IOException

Exception

Throwable

Figure 8.5 Some classes in the inheritance hierarchy from the Throwable class.There are over 60 classes in
the hierarchy.

Caller A (catcher)

void callerA() {
try {
 doWork();
} catch (Exception e) {
 ...
}

Caller B (propagator)

void callerB()
throws Exception {

 ...
doWork();

 ...
}

doWork throws Exception

public void doWork
throws Exception {
 ...
throw new Exception();
 ...
}

Figure 8.6 Callers of a method that can throw a checked exception must explicitly include the try-catch
statement in the method body or the throws clause in the method header.

wu23399_ch08.qxd 12/15/06 19:58 Page 459

460 Chapter 8 Exceptions and Assertions

Caller A (catcher)

void callerA() {
try {
doWork();

} catch (
 RuntimeException e) {
 ...
}

Caller B (propagator)

void callerB() throws
 RuntimeException {
 ...

doWork();
 ...
}

Caller C (propagator)

void callerC() {
 ...

doWork();
 ...
}

doWork throws RuntimeException

public void doWork {
 ...
throw new
 RuntimeException();
 ...
}

This is the most common
style for runtime exceptions.
Notice that caller C is a
propagator implicitly.

Figure 8.7 It is optional for the callers of a method that can throw runtime, or unchecked, exceptions to
include the try-catch statement in the method body or the throws clause in the method header.

If a method throws a checked exception, the caller of this method must explicitly in-
clude the try-catch statement or the throws clause in the method header. If a
method throws a runtime, or unchecked, exception, the use of the try-catch
statement or the throws clause is optional.

1. Is this code wrong?

public void check(int num) {
if (num < 0) {

throw new IllegalArgumentException();
}

}

2. What is the difference between the checked and unchecked exceptions?

wu23399_ch08.qxd 12/15/06 19:58 Page 460

8.5 Programmer-Defined Exceptions
In the AgeInputVer4 class, the getAge methods throw an instance of the Exception
class. The catch clause of the caller of the getAge method can use the getMessage
method to retrieve the error message or use printStackTrace to display the sequence
of method calls from the main method to the method that threw an exception. But
there’s no way for the client to get any other useful information such as the value
actually entered by the user. Instead of using generic exception classes, we can de-
fine our own exception classes so we can attach useful information to the exception
objects.

Let’s define a class named AgeInputException as a subclass of the Exception
class. To provide useful information to the client, we will define the class so the
instances will carry three pieces of information: lower bound, upper bound, and the
value entered by the user (in addition to the message inherited from the Exception
class). We will define three public methods to access these data. Here’s the class
definition:

8.5 Programmer-Defined Exceptions 461

/*
Chapter 8 Sample Class: Customized Exception Class

File: AgeInputException.java
*/

class AgeInputException extends Exception {

private static final String DEFAULT_MESSAGE = "Input out of bounds";

private int lowerBound;
private int upperBound;
private int value;

public AgeInputException(int low, int high, int input) {
this(DEFAULT_MESSAGE, low, high, input);

}

public AgeInputException(String msg,
int low, int high, int input) {

super(msg);

if (low > high) {
throw new IllegalArgumentException();

}

lowerBound = low;
upperBound = high;
value = input;

}

wu23399_ch08.qxd 12/15/06 19:58 Page 461

public int lowerBound() {

return lowerBound;
}

public int upperBound() {

return upperBound;
}

public int value() {
return value;

}
}

462 Chapter 8 Exceptions and Assertions

The new AgeInputVer5 class is essentially the same as the AgeInputVer4 class
except the getAge method of the new class throws an AgeInputException. A sample
main class that uses the AgeInputVer5 is as follows:

/*
Chapter 8 Sample Program: Input a person’s age

File: Ch8TestAgeInputVer5.java
*/

class Ch8TestAgeInputVer5 {

public static void main(String[] args) {

int entrantAge;

try {

AgeInputVer5 input = new AgeInputVer5(25, 50);

entrantAge = input.getAge("Your Age:");

System.out.println("Input Okay. Age = " + entrantAge);

} catch (AgeInputException e) {
System.out.println(

"Error: " + e.value() + " is entered. It is " +
"outside the valid range of [" + e.lowerBound() +
", " + e.upperBound() + "]");

}
}

}

e’s methods are called
to get info

wu23399_ch08.qxd 12/15/06 19:58 Page 462

8.6 Assertions
In this section we will describe a Java assertion and explain how to use it effec-
tively in our programs. A Java assertion is a language feature we use to detect
logical errors in a program. We will illustrate the key points with a very simple
class that includes a logical error. Because the sample class is simple, the use of
assertion may not seem so helpful. Keep in mind that this class is for illustrative
purposes only. The real benefit of using the assertion feature becomes obvious when
the program logic gets more complex and the number of classes in the program
increases.

Here’s a bank account class that allows withdrawals and deposits. There’s one
logical error in the class:

class BankAccount {
private double balance;

public BankAccount(double initialBalance) {
balance = initialBalance;

}

8.6 Assertions 463

To provide useful information to the client programmers when an exception occurs,
define a new exception class. Make this customized exception class a subclass of
Exception.

When we create a new customized exception class, we should define it as a
checked exception, and the most logical choice for its superclass is the Exception
class. We should not define the customized exception class as an unchecked
exception. If we did, then the client programmers would have an option of omit-
ting the try-catch statement or the throws clause in their code. This is not a good
idea.The goal of defining a customized exception class is to ensure that the client
programmers handle the thrown exceptions of the customized class explicitly in
their code, to increase the robustness of the whole program.

1. When do we want to define a customized exception class?

2. Should a customized exception class be a checked or unchecked exception?

wu23399_ch08.qxd 12/15/06 19:58 Page 463

public void deposit(double amount) {
double oldBalance = balance;

balance -= amount;

assert balance > oldBalance;
}
public void withdraw(double amount) {

double oldBalance = balance;

balance -= amount;

assert balance < oldBalance;
}

public double getBalance() {
return balance;

}
}

Notice the two occurences of the reserved word assert in the class definition.
The syntax for the assert statement is

assert <boolean expression> ;

where <boolean expression> represents the condition that must be true if the code
is working correctly. When the statement is executed, the <boolean expression> is
evaluated. If it results in true, then the normal execution of the program continues.
Otherwise, an AssertionError (subclass of Error) is thrown.

In this example, we want to assert that balance is more than oldBalance when
we deposit and less than oldBalance when we withdraw, so we write

assert balance > oldBalance;

and

assert balance < oldBalance;

at the end of the deposit and withdraw methods, respectively.
Now let’s see what happens when we use this BankAccount class in our pro-

gram. Here’s a simplistic main class to test the BankAccount class:

import javax.swing.*;

class Ch8TestAssertMain {

public static void main(String[] args) {

BankAccount acct = new BankAccount(200);

acct.deposit(25);

System.out.println(
"Current Balance: " + acct.getBalance());

}
}

464 Chapter 8 Exceptions and Assertions

Here’s a logical error. We
should add the amount.

If this boolean expression
results in false, then an

AssertionError is thrown.

wu23399_ch08.qxd 12/15/06 19:58 Page 464

To run this program with the assertion feature enabled, we must include the
designation -ea as follows:

java -ea Ch8TestAssertMain

(Note: For most Java IDE, you specify this option in the Preference dialog. Please
consult your Java IDE for details.)

If we do not provide the -ea option, then the program is executed without
checking the assertions. When do we ever want to ignore the assertions we inten-
tionally included in the program? Checking all assertions included in the program
can be quite costly. By having an option of enabling or disabling the assertions, we
can choose to enable the assertions while developing and testing the program and
disable them once the program is fully developed and tested.

8.6 Assertions 465

To run the program with assertions enabled, use

java -ea <main class>

With the assert statements enabled, executing the Ch8TestAssertMain main
class will result in the following error message:

Exception in thread "main" java.lang.AssertionError
at BankAccount.deposit(BankAccount.java:13)
at Ch8TestAssertMain.main(Ch8TestAssertMain.java:34)

The error message indicates an AssertionError is thrown at line 13 (the actual line
number would be different if the source code included comments) of the Bank-
Account class, which is the assert statement

assert balance > oldBalance;

We can use the second form of the assert statement to provide a customized
error message. The syntax for the second form is

assert <boolean expression > : <expression>;

where <expression> represents the value that is passed as an argument to the con-
structor of the AssertionError class. The value serves as the detailed message of a
thrown error. For example, using the second form, we can rewrite the deposit
method as

public void deposit(double amount) {
double oldBalance = balance;

balance -= amount;

wu23399_ch08.qxd 12/15/06 19:58 Page 465

assert balance > oldBalance :
"Serious Error -- balance becomes less" +
"after deposit";

}

With this modified deposit method, the error message will be

Exception in thread "main" java.lang.AssertionError:
Serious Error -- balance becomes less after deposit
at BankAccount.deposit(BankAccount.java:14)
at Ch8TestAssertMain.main(Ch8TestAssertMain.java:34)

Encountering this error message during the development, we are made aware
of the existence of a bug in the program. Without the assertion feature, we may not
be able to detect the bug until very late in the development, or we may not be able
to detect it at all.

Again, for a small class such as BankAccount, the benefit of using assertions
may not be obvious. However, in designing and building classes that solve diffi-
cult and complex problems, effective use of assertions can be an indispensable aid,
especially when it is combined with a full set of testing. We will be seeing more
examples of assertions (and exceptions, also) in the later sample code.

Types of Assertions
The type of assertion we see in the withdraw and deposit methods is called a
postcondition assertion. This assertion checks for a condition that must be true after
a method is executed. Opposite to the postcondition assertion is a precondition
assertion, a checking of condition that must be true before a method is executed.
The third type of assertion is called a control flow invariant. Consider the following
switch statement. It adds the appropriate fee to the tuition based on whether the
student is a dorm resident or a dorm resident or a commuter.

switch (residenceType) {

case COMMUTER: totalFee = tuition + parkingFee;
break;

case DORM_RESIDENT: totalFee = tuition + roomAndBoard;
break;

}

Now every student must be a dorm resident or a commuter, so if the variable resi-
denceType has a value other than COMMUTER or DORM_RESIDENT, then there’s a
bug somewhere. To detect such bug, we can rewrite the statement as

switch (residenceType) {

case COMMUTER: totalFee = tuition + parkingFee;
break;

466 Chapter 8 Exceptions and Assertions

postcondition
assertion

precondition
assertion

control flow
invariant

wu23399_ch08.qxd 12/15/06 19:58 Page 466

Bad Version

case DORM_RESIDENT: totalFee = tuition + roomAndBoard;
break;

default: assert false:
"Value of residenceType " +
"is invalid. Value = " +
residenceType;

}

This statement documents the fact that the default case should never be executed
when the program is running correctly. This is called a control flow invariant
because the control must flow invariably to one of the two cases. Alternatively, we
can place an assertion before the switch statement as

assert (residenceType == COMMUTER ||
residenctType == DORM_RESIDENT) :
"Value of residenceType is invalid. Value = " +
residenceType;

switch (residenceType) {

case COMMUTER: totalFee = tuition + parkingFee;
break;

case DORM_RESIDENT: totalFee = tuition + roomAndBoard;
break;

}

Differentiating Assertions and Exceptions
Because both the assertion and the exception mechanisms are intended to improve
the program reliability, their use is often mixed up. For example, if we are not
attentive, we could end up using the assertion feature wrongly in places where
exceptionhandling routines should be used. Consider the following case. In defining
the deposit and the withdraw methods, we did not bother to check the value of the
parameter (for the sake of a simplified class definition). The passed amount must
be greater than zero for the methods to work correctly. How shall we include such
testing? One possibility (a wrong approach) is to use the assertion feature as (we
only show the withdraw method).

public void withdraw(double amount) {

assert amount > 0;

double oldBalance = balance;

balance -= amount;

assert balance < oldBalance;
}

8.6 Assertions 467

wu23399_ch08.qxd 12/15/06 19:58 Page 467

This is not a correct use of assertions. We should not use the assertion feature
to ensure the validity of an argument. In principle, we use assertions to detect the
internal programming errors, and we use exceptions to notify the client program-
mers of the misuse of our classes. The BankAccount class is intended as a service
class used by many different programs. It is the responsibility of the client pro-
grammers to pass the valid arguments. If they don’t, then we throw an exception to
notify them of the misuse. Another problem is that assertions can be enabled or dis-
abled when the program is run. But the validity checking of the arguments should
never be disabled.

468 Chapter 8 Exceptions and Assertions

Use assertions to detect internal errors. Use exceptions to notify the client program-
mers of the misuse of our class.

The correct way to implement the methods is as follows (only the withdraw
method is shown here):

public void withdraw(double amount)
throws IllegalArgumentException {

if (amount <= 0) {
throw new IllegalArgumentException(

"Amount must be positive");
}

double oldBalance = balance;

balance -= amount;

assert balance < oldBalance;
}

1. Why is the following code wrong?

public void doWork(int num) {
assert num > 0;
total += num;

}

2. Name three types of assertions.

wu23399_ch08.qxd 12/15/06 19:58 Page 468

Sample Development
Keyless Entry System

We will develop a program that simulates a secure keyless entry system for a dormi-
tory. Inside the entrance hall of a dorm, there is an entry system where the dorm resi-
dents must enter their names, room numbers, and passwords. Upon entry of valid data,
the system will unlock the inner door that leads to the dorm’s living quarters. To imple-
ment this program, two helper classes are provided. The Door class simulates unlock-
ing of the inner door. The Dorm class manages resident information. An instance of the
Dorm class is capable of adding and deleting resident information, reading and saving
resident information from and to a file, and retrieving information if given the resi-
dent’s name. We can verify the validity of the entered data by checking them against
the information kept by a Dorm object.

8.7 Sample Development 469

8.7 Sample Development

We can turn our simulation program into a real one by replacing the Door
class with a class that actually controls the door. Java provides a mechanism
called Java Native Interface (JNI) which can be used to embed a link to a low-
level device driver code, so calling the open method actually unlocks the
door.

Problem Statement

Implement a sentry program that asks for three pieces of information: resident’s
name, room number, and a password. A password is any sequence of characters
ranging in length from 4 to 8 and is unique to an individual dorm resident. If
everything matches, then the system unlocks and opens the door. We assume no
two residents have the same name. Use the provided support classes Door and
Dorm.

Overall Plan

To provide a complete system, we actually have to write two separate programs. The
first one is the administrative module for adding, removing, and updating the resident
information. The second is the user module that interacts with the residents. Figure 8.8
shows the program diagrams for the two modules.

In this section, we implement the user module. The administrative module is left
as an exercise. To begin our development effort, we must first find out the capabilities
of the Dorm and Door classes. Also, for us to implement the class correctly, we need the
specification of the Resident class.

wu23399_ch08.qxd 12/15/06 19:58 Page 469

8.7 Sample Development—continued

Resident

The Resident class maintains information on individual dorm residents. We will be deal-
ing with many instances of this class in the program. A password assigned to a resident
must be a sequence of 4 to 8 characters. For this class to work properly with the Dorm
class, the class must include these public methods:

470 Chapter 8 Exceptions and Assertions

Dorm

Door

ResidentUser module

Dorm Resident

A helper class
provided to us

A class we
implement

One or more classes
we implement

Administrative
module

Figure 8.8 Program diagrams for the user and administrative modules. Notice the same Dorm and
Resident classes are used in both programs. User and administrative modules will include one or more
classes (at least one is programmer-defined).

Public Methods of Resident

public Resident()
Default constructor that creates a Resident object with name
= “unassigned”, room = “000”, and id = “@13&”.

public Resident(String name, String room, String password)
throws IllegalArgumentException

Creates a Resident object with the passed values.
IllegalArgumentException is thrown when the given password has less
than four or more than eight characters.

wu23399_ch08.qxd 12/15/06 19:58 Page 470

8.7 Sample Development 471

public void setName(String name)
Assigns the name.

public void setPassword(String id)
throws IllegalArgumentException

Assigns the password.IllegalArgumentException is thrown when the
given password has less than four or more than eight characters.

public void setRoom(String room)
Assigns the room.

public String getName()
Returns the name.

public String getPassWord()
Returns the password.

public String getRoom()
Returns the room number.

One important restriction to the Resident class is the requirement for the class to
implement the Serializable interface. Because the Resident objects are saved to a file,
Java requires the class definition to include the phrase implements Serializable as

import java.io.*;

class Resident implements Serializable {

...

}

Details on the significance of the clause implements Serializable will be given
when we discuss the file input and output in Chapter 12.

For any object we need to save to a file, its class definition must include the phrase
implements Serializable.

Dorm

The Dorm class is a helper class provided to us. A Dorm object is capable of managing
a list of Resident objects. It allows the client to add, delete, and retrieve Resident
objects. In addition, it is capable of saving a list to a file or reading a list from a file. By

wu23399_ch08.qxd 12/15/06 19:58 Page 471

8.7 Sample Development—continued

having these file input and output features, our program can work with different lists of
residents much as a word processor can work with different documents (files). The class
definition is as follows:

472 Chapter 8 Exceptions and Assertions

Public Methods of Dorm

public Dorm()
Default constructor that creates a Dorm object.

public Dorm(String filename)
Creates a Dorm object with the resident list read from the file with the
name filename.Throws FileNotFoundException when the
designated file cannot be found and IOException when the file cannot
be read.

public void openFile(String filename)
Reads the resident list from the designated file.Throws
FileNotFoundException when the designated file cannot be found and
IOException when the file cannot be read.

public void saveFile(String filename)
Saves the resident list to the designated file. Throws IOException when the
file cannot be saved.

public void add(Resident resident)
Adds the resident to the list. Throws IllegalArgumentException
when a resident with the same name already exists in the list.We do not allow
duplicate names. Every resident must have a unique name.

public void delete(String name)
Deletes the designated resident from the list. If no such resident is in the list,
nothing happens.

public Resident getResident(String name)
Returns the Resident object with the given name. Returns null if no
matching Resident is found.

public String getResidentList()
Returns a list of residents as a String. A line separator is used after each
resident. For each resident, the list contains his or her name, room number,
and password.

Door

The Door class is another helper class. It simulates the opening of the door. In a real
control program, a Door object can have an embedded low-level device driver code,

wu23399_ch08.qxd 12/15/06 19:58 Page 472

so it really opens the door. The class definition is as follows:

8.7 Sample Development 473

Public Methods of Door

public Door()
Default constructor that creates a new Door object.

public void open()
Opens the door. For this simulator class, it displays a simple message dialog.

Now let’s study the overall design of the program. In addition to the given helper
classes and the Resident class, what other classes should we define for this program?
As the number of classes gets larger, we need to plan the classes carefully. For this
program, we will define a controller class named Ch8EntranceMonitor whose instance
will manage all other objects. We will set this class as the program’s main class. The user
interface of the program is handled by the InputHandler class. Its instance is used to
allow the user to enter his or her name, room number, and password. After the required
input data are entered by the user, a Ch8EntranceMonitor checks the validity of the
input data with help from a service Dorm object. If the Dorm object confirms the input
data, the controller then instructs another service object, an instance of Door, to open
the door. The following is our working design document, and Figure 8.9 is the program
diagram.

overall
design

Ch8EntranceMonitorInputHandler Dorm

DoorJOptionPane Resident

User module

Figure 8.9 The program diagram for the Ch8EntranceMonitor program. There are three classes in the
user module.

wu23399_ch08.qxd 12/15/06 19:58 Page 473

8.7 Sample Development—continued

We will implement the user module in three major steps:

1. Define the Resident class and explore the Dorm class. Start with a program
skeleton to test the Resident class.

2. Define the user interface InputHandler class. Modify the top-level control class
as necessary.

3. Finalize the code by making improvements and tying up loose ends.

Step 1 Development: Program Skeleton

Our first task is to find out about the given Dorm class. (The Door class is a very simple
simulator class so there’s not much to explore.) To be able to test-run the Dorm class,
we must provide the Resident class, so this will be our first step. The purpose of the
skeleton main class in this step is to verify the operations of the Dorm class.

The specification for the Resident class was given to us, so our task is to implement
it according to the specification. No design work is necessary. When we can interact with
an instance of the Dorm class correctly, it confirms that our implementation of the
Resident class is working. To verify the key operations of the Dorm class, the top-level
supervisor object Ch8EntranceMonitor will open a file and list the contents of the file.

Here’s the Resident class:

474 Chapter 8 Exceptions and Assertions

Design Document: Ch8EntranceMonitor

Class Purpose
Ch8EntranceMonitor The top-level control object manages other objects

in the program.This is an instantiable main class.

Door The given predefined class simulates the opening of
a door.

Dorm The given predefined class maintains a list of
Resident objects.

InputHandler The user interface class is for handling input
routines.

program
classes

develop-
ment steps

step 1
design

step 1 code

/*
Chapter 8 Sample Development: Keyless Entry System.

File: Resident.java

*/

wu23399_ch08.qxd 12/15/06 19:58 Page 474

import java.io.*;

class Resident implements Serializable {

private String name;
private String room;
private String password;

public Resident() {
this("unassigned", "000", "@13&");

}

public Resident(String name, String room, String pwd)
throws IllegalArgumentException {

setName(name);
setRoom(room);
setPassword(pwd);

}

public String getName() {
return name;

}

public String getPassword() {
return password;

}

public String getRoom() {
return room;

}

public void setName(String name) {
this.name = name;

}

public void setPassword(String pwd) {
int length = pwd.length();

if (length < 4 || length > 8) {
throw new IllegalArgumentException();

} else {
this.password = pwd;

}
}

public void setRoom(String room) {
this.room = room;

}
}

8.7 Sample Development 475

Data members

Constructors

Accessors

Mutators

wu23399_ch08.qxd 12/15/06 19:58 Page 475

8.7 Sample Development—continued

The skeleton main class is defined as follows:

476 Chapter 8 Exceptions and Assertions

/*
Chapter 8 Sample Development: Keyless Entry System. (Step 1)

File: Ch8EntranceMonitor.java
*/

import javax.swing.*;
import java.io.*;

class Ch8EntranceMonitor { //Step 1 main class

private Dorm manager;

private Scanner scanner;

public Ch8EntranceMonitor() {

manager = new Dorm();
scanner = new Scanner(System.in);

}

public static void main(String[] args) {

Ch8EntranceMonitor sentry = new Ch8EntranceMonitor();
sentry.start();

}

public void start() {

openFile();

String roster = manager.getResidentList();

System.out.println(roster);
}

private void openFile() {
String filename;

while (true) {

System.out.println("File to open ('x' to cancel):");
filename = scanner.next();

if (filename.equals("x")) {//input routine is canceled
System.out.println("Program is canceled.");
System.exit(0);

}

start

openFile

wu23399_ch08.qxd 12/15/06 19:58 Page 476

try {
manager.openFile(filename);
return;

} catch (FileNotFoundException e) {

System.out.println("No such file");

} catch (IOException e) {

System.out.println("Error in reading file");
}

}
}

8.7 Sample Development 477

The purpose of step 1 testing is to verify that the Dorm class is used correctly to
open a file and get the contents of the file. To test it, we need a file that contains the resi-
dent information. A sample test file can be created by executing the following program,
which we can modify to create other test data files.

step 1 test

/*
Chapter 8 Sample Development: Keyless Entry System.

A simple class to create dummy test data.

File: SampleCreateResidentFile.java
*/
import java.util.*;
import java.io.*;

class SampleCreateResidentFile {
public static void main(String[] args)throws IOException {

Resident res;
Dorm manager = new Dorm();

res = new Resident("john", "1-101", "3457");
manager.add(res);

res = new Resident("java", "1-102", "4588");
manager.add(res);

res = new Resident("jill", "3-232", "8898");
manager.add(res);

wu23399_ch08.qxd 12/15/06 19:58 Page 477

8.7 Sample Development—continued

res = new Resident("jack", "3-232", "8008");
manager.add(res);

Scanner scanner = new Scanner(System.in);
System.out.println("Save to which file:");
String filename = scanner.next();

manager.saveFile(filename);

System.exit(0); //terminate the program
}

}

478 Chapter 8 Exceptions and Assertions

Step 2 Development: Create the User Interface

In the second development step, we will implement the user interface class
InputHandler, whose task is to get three pieces of information. The main controller
Ch8EntranceMonitor will call an InputHandler to get input data. An InputHandler
will then go through a sequence of getting the three pieces of data. Once the data are
entered, Ch8EntranceMonitor will ask the InputHandler for these data. The logic of
Ch8EntranceMonitor can be expressed as follows:

InputHandler input = new InputHandler();

. . .

input.getInput();

String name = input.getName();
String room = input.getRoomNumber();
String pwd = input.getPassword();

Given the input data, we can check for the match as

Dorm manager = new Dorm();

. . .

Resident res = manager.getResident(name);

if (res == null) {
System.out.println("Invalid Entry");

step 2
design

wu23399_ch08.qxd 12/15/06 19:58 Page 478

} else if (res.getName().equals(name) &&
res.getRoom().equals(room) &&
res.getPassword().equals(password)) {

door.open();

} else {
System.out.println ("Invalid Entry");

}

The getInput method of the InputHandler class calls the scanner three times to
get the name, room, and password. Each input is recorded in the corresponding data
member. The accessors, such as getName, will simply return the value of the requested
data member.

We will list first the InputHandler class and then the modified Ch8Entrance-
Monitor class. Here’s the InputHandler class:

8.7 Sample Development 479

step 2 code

/*
Chapter 8 Sample Development: Keyless Entry System

File: InputHandler.java
*/

import java.util.*;
class InputHandler {

private static final String BLANK = "";

private String name;
private String room;
private String pwd;
private Scanner scanner;

public InputHandler() {

name = BLANK;
room = BLANK;
pwd = BLANK;
scanner = new Scanner(System.in);

}

public void getInput() {

System.out.print("Enter Name:");
name = scanner.next();

System.out.print("Enter Room No.:");
room = scanner.next();

System.out.print("Enter Password:");
pwd = scanner.next();

}

Data members

Constructor

getInput

wu23399_ch08.qxd 12/15/06 19:58 Page 479

8.7 Sample Development—continued

public String getName() {

return name;
}

public String getRoom() {

return room;
}

public String getPassword() {

return pwd;
}

}

480 Chapter 8 Exceptions and Assertions

The main class is now modified to control an InputHandler object and to check en-
tered information as the resident list maintained by a Dorm object. Here’s the step 2
Ch8EntranceMonitor class:

/*
Chapter 8 Sample Development: Keyless Entry System.

File: Ch8EntranceMonitor.java (Step 2)
*/

import java.util.*;
import java.io.*;

class Ch8EntranceMonitor {

private Dorm manager;

private Door door;

private InputHandler input;

private Scanner scanner;

public Ch8EntranceMonitor() {

manager = new Dorm();
scanner = new Scanner(System.in);
input = new InputHandler();
door = new Door();

}

Data members

Constructors

Accessors

wu23399_ch08.qxd 12/15/06 19:58 Page 480

public static void main(String[] args) {

Ch8EntranceMonitor sentry = new Ch8EntranceMonitor();
sentry.start();

}

public void start() {

openFile();

String roster = manager.getResidentList(); //TEMP

System.out.println(roster); //TEMP

processInputData();
}

private void openFile() {
String filename;

while (true) {

System.out.println("File to open ('x' to cancel):");
filename = scanner.next();

if (filename.equals("x")) {//input routine is canceled
System.out.println("Program is canceled.");
System.exit(0);

}

try {
manager.openFile(filename);
return;

} catch (FileNotFoundException e) {

System.out.println("No such file");

} catch (IOException e) {

System.out.println("Error in reading file");
}

}
}

private void processInputData() {

String name, room, pwd;

while (true) {

input.getInput();

name = input.getName();
room = input.getRoom();
pwd = input.getPassword();

8.7 Sample Development 481

start

openFile

processInputData

wu23399_ch08.qxd 12/15/06 19:58 Page 481

8.7 Sample Development—continued

validate(name, room, pwd);
}

}

private void validate(String name, String room, String password) {

Resident res = manager.getResident(name);

if (res == null) {
System.out.println("Invalid Entry");

} else if (res.getName().equals(name) &&
res.getRoom().equals(room) &&
res.getPassword().equals(password)) {

door.open();

} else {
System.out.println("Invalid Entry");

}
}

}

482 Chapter 8 Exceptions and Assertions

Notice that the loop inside the processInputData method is an infinite loop. In
other words, when the program starts, it will execute indefinitely. To terminate such a
program, you must either close the Command window or select an appropriate menu
choice (or click on a toolbar icon) in your Java IDE. We will discuss another way to ter-
minate the program in step 3.

The purpose of step 2 testing is to verify the correct behavior of an InputHandler
object. We need to test both successful and unsuccessful cases. We must verify that the
door is in fact opened when valid information is entered. We must also verify that the
error message is displayed when there’s an error in input. We should test invalid cases
such as entering nonexistent name, corrent name but wrong password, not entering all
information, and so forth.

Step 3 Development: Improve and Finalize

There are several key improvements we can make to the program. The first and foremost
is the improved user interface. Instead of getting three pieces of data individually by
using a scanner, it would be nicer to have a frame window such as the one shown in
Figure 8.10, where the user can enter all three pieces of information.We will describe how
to develop such a frame window in Chapter 14.

step 2 test

validate

wu23399_ch08.qxd 12/15/06 19:58 Page 482

Another improvement is to allow the administrator to terminate the program by
entering special code.This is left as an exercise.

Summary 483

• Two techniques to improve program reliability are exception handling and
assertion.

• Exception handling is another type of control flow.

• An exception represents an error condition, and when it occurs, we say an
exception is thrown.

• A thrown exception must be handled by either catching it or propagating it to
other methods.

• If the program does include code to handle the thrown exceptions, then the
system will handle them.

• A single method can be both a catcher and a propagator of an exception.

• The standard classes described or used in this chapter are

Throwable RuntimeException

Error IllegalArgumentException

Exception InputMismatchException

IOException

• The assertion feature is new to Java 2 SDK 1.4. You must use this version of
the compiler to use assertions in the program.

• The assertion feature is used to detect internal logic errors.

Figure 8.10 A frame window that allows the user to enter the three pieces of information together.
Notice the input entered for the password is displayed back to the user as a sequence of asterisks.

S u m m a r y

wu23399_ch08.qxd 12/15/06 19:58 Page 483

484 Chapter 8 Exceptions and Assertions

E x e r c i s e s

1. Determine the output of the following code when the input is (a) �1, (b) 0,
and (c) 12XY.

Scanner scanner = new Scanner(System.in);

try {
int num = scanner.nextInt();

if (num != 0) {

throw new Exception("Not zero");
}

System.out.println("I'm happy with the input.");

} catch (InputMismatchException e) {

System.out.println("Invalid Entry");

} catch (Exception e) {

System.out.println("Error: "+ e.getMessage());
}

2. Determine the output of the following code when the input is (a) �1, (b) 0,
and (c) 12XY. This is the same question as Exercise 1, but the code here has
the finally clause.

Scanner scanner = new Scanner(System.in);

try {

int num = scanner.nextInt();

if (num != 0) {

throw new Exception("Not zero");
}

System.out.println("I'm happy with the input.");

} catch (InputMismatchException e) {

System.out.println("Invalid Entry");

K e y C o n c e p t s

exceptions

try-catch

finally

throws

throw

exception hierarchy

programmer-defined exceptions

assertions

precondition assertions

postcondition assertions

wu23399_ch08.qxd 12/15/06 19:58 Page 484

} catch (Exception e) {

System.out.println("Error: "+ e.getMessage());

} finally {

System.out.println("Finally Clause Executed");
}

3. Why is the following code not a good use of the assertion?

public void compute(int size) {

assert size > 0;

//computation code comes here
}

4. Modify the following code by adding the assert statement. The value of
gender is either MALE or FEMALE if the program is running correctly.

switch (gender) {

case MALE: totalFee = tuition + parkingFee;
break;

case FEMALE: totalFee = tuition + roomAndBoard;
break;

}

5. Modify the following method by adding the assert statement. Assume the
variable factor is a data member of the class.

public double compute(double value) {

return (value * value) / factor;
}

6. Modify the getInput method of the InputHandler class from Section 8.7 so
that the method will throw an exception when a blank string (a sequence of
one or more blank spaces) is entered for the name, room, or password.
Define a new exception class EmptyInputException.

7. The user module of the keyless entry system in Section 8.7 does not include
any logic to terminate the program. Modify the program so it will terminate
when the values Admin, X123, and $maTrix%TwO$ are entered for name,
room, and password, respectively.

Development Exercises
For the following exercises, use the incremental development methodology to
implement the program. For each exercise, identify the program tasks, create
a design document with class descriptions, and draw the program diagram.
Map out the development steps at the start. Present any design alternatives and
justify your selection. Be sure to perform adequate testing at the end of each
development step.

Exercises 485

wu23399_ch08.qxd 12/15/06 19:58 Page 485

8. In the sample development, we developed the user module of the keyless
entry system. For this exercise, implement the administrative module that
allows the system administrator to add and delete Resident objects and
modify information on existing Resident objects. The module will also allow
the user to open a list from a file and save the list to a file. Is it proper to
implement the administrative module by using one class? Wouldn’t it be
a better design if we used multiple classes with each class doing a single,
well-defined task?

9. Write an application that maintains the membership lists of five social clubs
in a dormitory. The five social clubs are the Computer Science Club, Biology
Club, Billiard Club, No Sleep Club, and Wine Tasting Club. Use the Dorm
class to manage the membership lists. Members of the social clubs are
Resident objects of the dorm. Use a separate file to store the membership
list for each club. Allow the user to add, delete, and modify members of
each club.

486 Chapter 8 Exceptions and Assertions

wu23399_ch08.qxd 12/15/06 19:58 Page 486

Characters and Strings

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Declare and manipulate data of the char type.

• Write string processing programs, using
String, StringBuilder, and StringBuffer
objects.

• Specify regular expressions for searching a
pattern in a string.

• Differentiate the String, StringBuilder, and
StringBuffer classes and use the correct class
in solving a given task.

• Tell the difference between equality and
equivalence testings for String objects.

• Use the Pattern and Matcher classes.

487

9

wu23399_ch09.qxd 12/15/06 20:05 Page 487

arly computers in the 1940s and 1950s were more like gigantic calculators because
they were used primarily for numerical computation. However, as computers have
evolved to possess more computational power, our use of computers is no longer
limited to numerical computation. Today we use computers for processing infor-
mation of diverse types. In fact, most application software today such as Web
browsers, word processors, database management systems, presentation software,
and graphics design software is not intended specifically for number crunching.
These programs still perform numerical computation, but their primary data are
text, graphics, video, and other nonnumerical data. We have already seen examples
of nonnumerical data processing. We introduced the String class and string process-
ing in Chapter 2. A nonnumerical data type called boolean was used in Chapters 5
and 6. In this chapter, we will delve more deeply into the String class and present
advanced string processing. We will also introduce the char data type for represent-
ing a single character and the StringBuffer class for an efficient operation on a
certain type of string processing.

9.1 Characters
In Java single characters are represented by using the data type char. Character
constants are written as symbols enclosed in single quotes, for example, ‘a’, ‘X’,
and ‘5’. Just as we use different formats to represent integers and real numbers
using 0s and 1s in computer memory, we use special codes of 0s and 1s to represent
single characters. For example, we may assign 1 to represent ’A’ and 2 to repre-
sent ‘B’. We can assign codes similarly to lowercase letters, punctuation marks,
digits, and other special symbols. In the early days of computing, different com-
puters used not only different coding schemes but also different character sets. For
example, one computer could represent the symbol 1⁄4, while other computers
could not. Individualized coding schemes did not allow computers to share infor-
mation. Documents created by using one scheme are complete gibberish if we
try to read these documents by using another scheme. To avoid this problem, U.S.
computer manufacturers devised several coding schemes. One of the coding
schemes widely used today is ASCII (American Standard Code for Information
Interchange). We pronounce ASCII “ăs kē.” Table 9.1 shows the 128 standard
ASCII codes.

Adding the row and column indexes gives you the ASCII code for a
given character. For example, the value 87 is the ASCII code for the character
‘W’. Not all characters in the table are printable. ASCII codes 0 through 31
and 127 are nonprintable control characters. For example, ASCII code 7 is the
bell (the computer beeps when you send this character to output), and code 9
is the tab.

488 Chapter 9 Characters and Strings

I n t r o d u c t i o n

E

char

ASCII

wu23399_ch09.qxd 12/15/06 20:05 Page 488

To represent all 128 ASCII codes, we need 7 bits ranging from 000 0000 (0)
to 111 1111 (127). Although 7 bits is enough, ASCII codes occupy 1 byte (8 bits)
because the byte is the smallest unit of memory you can access. Computer manu-
facturers use the extra bit for other nonstandard symbols (e.g., lines and boxes).
Using 8 bits, we can represent 256 symbols in total—128 standard ASCII codes and
128 nonstandard symbols.

9.1 Characters 489

When we use a word processor to create a document, the file that contains the
document includes not only the contents but also the formatting information.
Since each software company uses its own coding scheme for storing this informa-
tion, we have to use the same word processor to open the document. Often it is
even worse. We cannot open a document created by a newer version of the same
word processor with an older version. If we just want to exchange the text of a
document, then we can convert it to ASCII format. Any word processor can open
and save ASCII files. If we would like to retain the formatting information also,
we can convert the document, using software such as Adobe Acrobat. This soft-
ware converts a document (including text, formatting, images, etc.) created by
different word processors to a format called PDF. Anybody with a free Acrobat
Reader can open a PDF file. Many of the documents available from our website
are in this PDF format.

Ta
b

le

Table 9.1 ASCII codes

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

10 lf vt ff cr so si dle dc1 dc2 dc3

20 cd4 nak syn etb can em sub esc fs gs

30 rs us sp ! " # $ % & '

40 () * + , - . / 0 1

50 2 3 4 5 6 7 8 9 : ;

60 < = > ? @ A B C D E

70 F G H I J K L M N O

80 P Q R S T U V W X Y

90 Z [\] ^ _ ` a b c

100 d e f g h i j k l m

110 n o p q r s t u v w

120 x y z { | } ~ del

wu23399_ch09.qxd 12/15/06 20:05 Page 489

The standard ASCII codes work just fine as long as we are dealing with the
English language because all letters and punctuation marks used in English are
included in the ASCII codes. We cannot say the same for other languages. For lan-
guages such as French and German, the additional 128 codes may be used to repre-
sent character symbols not available in standard ASCII. But what about different
currency symbols? What about non-European languages? Chinese, Japanese, and
Korean all use different coding schemes to represent their character sets. Eight bits
is not enough to represent thousands of ideographs. If we try to read Japanese char-
acters by using ASCII, we will see only meaningless symbols.

To accommodate the character symbols of non-English languages, the
Unicode Consortium established the Unicode Worldwide Character Standard,
commonly known simply as Unicode, to support the interchange, processing, and
display of the written texts of diverse languages. The standard currently contains
34,168 distinct characters, which cover the major languages of the Americas,
Europe, the Middle East, Africa, India, Asia, and Pacifica. To accommodate such a
large number of distinct character symbols, Unicode characters occupy 2 bytes.
Unicode codes for the character set shown in Table 9.1 are the same as ASCII
codes.

Java, being a language for the Internet, uses the Unicode standard for repre-
senting char constants. Although Java uses the Unicode standard internally to store
characters, to use foreign characters for input and output in our programs, the oper-
ating system and the development tool we use for Java programs must be capable of
handling the foreign characters.

Characters are declared and used in a manner similar to data of other types.
The declaration

char ch1, ch2 = 'X';

declares two char variables ch1 and ch2 with ch2 initialized to ‘X’. We can display
the ASCII code of a character by converting it to an integer. For example, we can
execute

System.out.println("ASCII code of character X is "
+ (int)'X');

Conversely, we can see a character by converting its ASCII code to the char data
type, for example,

System.out.println(
"Character with ASCII code 88 is " + (char)88);

Because the characters have numerical ASCII values, we can compare charac-
ters just as we compare integers and real numbers. For example, the comparison

'A' < 'c'

returns true because the ASCII value of ‘A’ is 65 while that of ‘c’ is 99.

490 Chapter 9 Characters and Strings

Unicode

wu23399_ch09.qxd 12/15/06 20:05 Page 490

9.2 Strings 491

1. Determine the output of the following statements.

a. System.out.println((char) 65);

b. System.out.println((int) 'C');

c. System.out.println('Y');

d. if ('A' < '?')

System.out.println('A');

else

System.out.println('?');

2. How many distinct characters can you represent by using 8 bits?

9.2 Strings
A string is a sequence of characters that is treated as a single value. Instances of the
String class are used to represent strings in Java. Rudimentary string processing
was already presented in Chapter 2, using methods such as substring, length, and
indexOf. In this section we will learn more advanced string processing, using other
methods of the String class.

To introduce additional methods of the String class, we will go through a num-
ber of common string processing routines. The first is to process a string looking for
a certain character or characters. Let’s say we want to input a person’s name and de-
termine the number of vowels that the name contains. The basic idea is very simple:

for each character ch in the string {
if (ch is a vowel) {

increment the counter
}

}

There are two details we need to know before being able to translate that into actual
code. First, we need to know how to refer to an individual character in the string.
Second, we need to know how to determine the size of the string, that is, the num-
ber of characters the string contains, so we can write the boolean expression to stop
the loop correctly. We know from Chapter 2 that the second task is done by using
the length method. For the first task, we use charAt.

We access individual characters of a string by calling the charAt method of
the String object. For example, to display the individual characters of the string
Sumatra one at a time, we can write

String name = "Sumatra";
int size = name.length();

for (int i = 0; i < size; i++) {
System.out.println(name.charAt(i));

}

Each character in a string has an index that we use to access the character. We
use zero-based indexing; that is, the first character has index 0, the second character

String

charAt

wu23399_ch09.qxd 12/15/06 20:05 Page 491

has index 1, the third character has index 2, and so forth. To refer to the first char-
acter of name, for example, we say

name.charAt(0)

Since the characters are indexed from 0 to size-1, we could express the pre-
ceding for loop as

for (int i = 0; i <= size - 1; i++)

However, we will use the first style almost exclusively to be consistent.
Figure 9.1 illustrates how the charAt method works. Notice that name refers

to a String object, and we are calling its charAt method that returns a value of prim-
itive data type char. Strictly speaking, we must say “name is a variable of type
String whose value is a reference to an instance of String.” However, when the value
of a variable X is a reference to an instance of class Y, we usually say “X is an
instance of Y” or “X is a Y object.”

492 Chapter 9 Characters and Strings

S u m r aa t

0 1 2 5 63 4

String name = "Sumatra";

name

The variable refers to the
whole string.

name.charAt(3)

The method returns the
character at position 3.

Figure 9.1 An indexed expression is used to refer to individual characters in a string.

If the value of a variable X is a reference to an object of class Y, then we say “ X is a Y
object” or “ X is an instance of Y.”

Since String is a class, we can create an instance of a class by using the new
method. The statements we have been using so far, such as

String name1 = "Kona";

String name2;
name2 = "Espresso";

work as a shorthand for

String name1 = new String("Kona");

String name2;
name2 = new String("Espresso");

wu23399_ch09.qxd 12/15/06 20:05 Page 492

Be aware that this shorthand works for the String class only. Moreover, although the
difference will not be critical in almost all situations, they are not exactly the same.
We will discuss the subtle difference between the two in Section 9.5.

Here is the code for counting the number of vowels:

9.2 Strings 493

/*
Chapter 9 Sample Program: Count the number of vowels

in a given string

File: Ch9CountVowels.java
*/

import java.util.*;

class Ch9CountVowels {

public static void main (String[] args) {

Scanner scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator"));

String name;

int numberOfCharacters,
vowelCount = 0;

char letter;

System.out.print("What is your name?");
name = scanner.next();

numberOfCharacters = name.length();

for (int i = 0; i < numberOfCharacters; i++) {

letter = name.charAt(i);

if (letter == 'a' || letter == 'A' ||
letter == 'e' || letter == 'E' ||
letter == 'i' || letter == 'I' ||
letter == 'o' || letter == 'O' ||
letter == 'u' || letter == 'U') {

vowelCount++;
}

}

System.out.println(name + ", your name has " +
vowelCount + " vowels");

}
}

wu23399_ch09.qxd 12/15/06 20:05 Page 493

494 Chapter 9 Characters and Strings

We can shorten the boolean expression in the if statement by using the
toUpperCase method of the String class. This method converts every character in a
string to uppercase. Here’s the rewritten code:

/*
Chapter 9 Sample Program: Count the number of vowels

in a given string using toUpperCase

File: Ch9CountVowels2.java
*/

import java.util.*;

class Ch9CountVowels2 {

public static void main (String[] args) {

Scanner scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator?"));

String name, nameUpper;

int numberOfCharacters,
vowelCount = 0;

char letter;

System.out.print("What is your name?");
name = scanner.next();

numberOfCharacters = name.length();
nameUpper = name.toUpperCase();

for (int i = 0; i < numberOfCharacters; i++) {

letter = nameUpper.charAt(i);

if (letter == 'A' ||
letter == 'E' ||
letter == 'I' ||
letter == 'O' ||
letter == 'U') {

vowelCount++;
}

}

(name + ", your name has " +
vowelCount + " vowels");

}
}

wu23399_ch09.qxd 12/15/06 20:05 Page 494

Bad Version

Bad Version

Notice that the original string name is unchanged. A new, converted string is
returned from the toUpperCase method and assigned to the second String variable
nameUpper.

Let’s try another example. This time we read in a string and count how many
words the string contains. For this example we consider a word as a sequence of
characters separated, or delimited, by blank spaces. We treat punctuation marks and
other symbols as part of a word. Expressing the task in pseudocode, we have the
following:

read in a sentence;

while (there are more characters in the sentence) {

look for the beginning of the next word;

now look for the end of this word;

increment the word counter;
}

We use a while loop here instead of do–while to handle the case when the
input sentence contains no characters, that is, when it is an empty string. Let’s
implement the routine. Here’s our first attempt:

//Attempt No. 1

static final char BLANK = ' ';

Scanner scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator "));

int index, wordCount, numberOfCharacters;

System.out.println("Enter a sentence: ");
String sentence = scanner.next();

numberOfCharacters = sentence.length();
index = 0;
wordCount = 0;

while (index < numberOfCharacters) {

//ignore blank spaces
while (sentence.charAt(index) == BLANK) {

index++;
}

//now locate the end of the word
while (sentence.charAt(index) != BLANK) {

index++;
}

//another word has been found, so increment the counter
wordCount++;

}

9.2 Strings 495

toUpperCase

Skip blank spaces until
a character that is not a
blank space is encoun-
tered.This is the begin-

ning of a word.

Once the beginning of
a word is detected, we
skip nonblank charac-

ters until a blank space
is encountered.This is

the end of the word.

wu23399_ch09.qxd 12/15/06 20:05 Page 495

This implementation has a problem. The counter variable index is incre-
mented inside the two inner while loops, and this index could become equal to
numberOfCharacters, which is an error, because the position of the last character
is numberOfCharacters – 1. We need to modify the two while loops so that index
will not become larger than numberOfCharacters –1. Here’s the modified code:

496 Chapter 9 Characters and Strings

/*
Chapter 9 Sample Program: Count the number of words

in a given string

File: Ch9CountWords.java (Attempt 2)
*/

import java.util.*;

class Ch9CountWords { //Attempt 2

private static final char BLANK = ' ';

public static void main (String[] args) {

Scanner scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator "));

int index, wordCount, numberOfCharacters;

System.out.println("Enter a sentence: ");
String sentence = scanner.next();

numberOfCharacters = sentence.length();
index = 0;
wordCount = 0;

while (index < numberOfCharacters) {

//ignore blank spaces
while (index < numberOfCharacters &&

sentence.charAt(index) == BLANK) {

index++;
}

//now locate the end of the word
while (index < numberOfCharacters &&

sentence.charAt(index) != BLANK) {

index++;
}

//another word is found, so increment the counter
wordCount++;

}

wu23399_ch09.qxd 12/15/06 20:05 Page 496

//display the result
System.out.println("\n input sentence: " + sentence);
System.out.println(" Word count: " + wordCount + " words");

}
}

9.2 Strings 497

Notice that the order of comparisons in the boolean expression

index < numberOfCharacters
&& sentence.charAt(index) == BLANK

is critical. If we switch the order to

sentence.charAt(index) == BLANK
&& index < numberOfCharacters

and if the last character in the string is a space, then an out-of-bound exception will
occur because the value of index is a position that does not exist in the string
sentence. By putting the expression correctly as

index < numberOfCharacters && sentence.charAt(index) != ' '

we will not get an out-of-bound exception because the boolean operator && is
a shortcircuit operator. If the relation index < numberOfCharacters is false, then
the second half of the expression sentence.charAT(index) != BLANK will not get
evaluated.

There is still a problem with the attempt 2 code. If the sentence ends with one
or more blank spaces, then the value for wordCount will be 1 more than the actual
number of words in the sentence. It is left as an exercise to correct this bug (see
Exercise 15 at the end of the chapter).

Our third example counts the number of times the word Java occurs in
the input. The repetition stops when the word STOP is read. Lowercase and upper-
case letters are not distinguished when an input word is compared to Java, but
the word STOP for terminating the loop must be in all uppercase letters. Here’s the
pseudocode:

javaCount = 0;

while (true) {
read in next word;

if (word is "STOP") {
break;

out-of-bound
exception

wu23399_ch09.qxd 12/15/06 20:05 Page 497

} else if (word is "Java" ignoring cases) {
javaCount++;

}
}

And here’s the actual code. Pay close attention to how the strings are
compared.

498 Chapter 9 Characters and Strings

/*
Chapter 9 Sample Program:

Count the number of times the word 'java' occurs
in input. Case-insensitive comparison is used here.
The program terminates when the word STOP (case-sensitive)
is entered.

File: Ch9CountJava.java
*/

import java.util.*;

class Ch9CountJava {

public static void main (String[] args) {

Scanner scanner = new Scanner(System.in);

int javaCount = 0;

String word;

while (true) {

System.out.print("Next word: ");
word = scanner.next();

if (word.equals("STOP")) {
break;

} else if (word.equalsIgnoreCase("Java")) {
javaCount++;

}
}

System.out.println("'Java' count: " + javaCount);
}

}

wu23399_ch09.qxd 12/15/06 20:05 Page 498

String comparison is done by two methods—equals and equalsIgnoreCase—
whose meanings should be clear from the example. Another comparison method is
compareTo. This method compares two String objects str1 and str2 as in

str1.compareTo(str2);

and returns 0 if they are equal, a negative integer if str1 is less than str2, and a pos-
itive integer if str1 is greater than str2. The comparison is based on the lexicographic
order of Unicode. For example, caffeine is less than latte. Also, the string jaVa is
less than the string java because the Unicode value of V is smaller than the Unicode
value of v. (See the ASCII table, Table 9.1.)

Some of you may be wondering why we don’t say

if (word == "STOP")

We can, in fact, use the equality comparison symbol == to compare two String
objects, but the result is different from the result of the method equals. We will
explain the difference in Section 9.5.

Let’s try another example, using the substring method we introduced in
Chapter 2. To refresh our memory, here’s how the method works. If str is a String
object, then the expression

str.substring (beginIndex, endIndex)

returns a new string that is a substring of str from position beginIndex to endIndex – 1.
The value of beginIndex must be between 0 and str.length() – 1, and the value of
endIndex must be between 0 and str.length(). In addition, the value of beginIndex
must be less than or equal to the value of endIndex. Passing invalid values for
beginIndex or endIndex will result in a runtime error.

In this example, we print out the words from a given sentence, using one line
per word. For example, given an input sentence

I want to be a Java programmer

the code will print out

I
want
to
be
a
Java
programmer

9.2 Strings 499

compareTo

wu23399_ch09.qxd 12/15/06 20:05 Page 499

This sample code is similar to the previous one that counts the number
of words in a given sentence. Instead of just counting the words, we need to extract
the word from the sentence and print it out. Here’s how we write the code:

500 Chapter 9 Characters and Strings

/*
Chapter 9 Sample Program:

Extract the words in a given sentence and
print them, using one line per word.

File: Ch9ExtractWords.java
*/

import java.util.*;

class Ch9ExtractWords {

private static final char BLANK = ' ';

public static void main (String[] args) {

Scanner scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator"));

int index, numberOfCharacters,
beginIdx, endIdx;

String word, sentence;
System.out.print("Input: ");
Sentence = scanner.next();

numberOfCharacters = sentence.length();
index = 0;

while (index < numberOfCharacters) {

//ignore leading blank spaces
while (index < numberOfCharacters &&

sentence.charAt(index) == BLANK) {

index++;
}

beginIdx = index;

//now locate the end of the word
while (index < numberOfCharacters &&

sentence.charAt(index) != BLANK) {

index++;
}

wu23399_ch09.qxd 12/15/06 20:05 Page 500

endIdx = index;

if (beginIdx != endIdx) {

//another word is found, extract it from the
//sentence and print it out

word = sentence.substring(beginIdx, endIdx);

System.out.println(word);
}

}
}

}

9.2 Strings 501

Notice the signficance of the test

if (beginIdx != endIdx)

in the code. For what kinds of input sentences will the variables beginIdx and
endIdx be equal? We’ll leave this as an exercise (see Exercise 16 at the end of the
chapter).

1. Determine the output of the following code.

a. String str = "Programming";

for (int i = 0; i < 9; i+=2) {

System.out.print(str.charAt(i));

}

b. String str = "World Wide Web";

for (int i = 0; i < 10; i ++) {
if (str.charAt(i) == 'W') {

System.out.println('M');
} else {

System.out.print(str.charAt(i));
}

}

2. Write a loop that prints out a string in reverse. If the string is Hello, then the
code outputs olleH.

wu23399_ch09.qxd 12/15/06 20:05 Page 501

502 Chapter 9 Characters and Strings

3. Assume two String objects str1 and str2 are initialized as follows:

String str1 = "programming";
String str2 = "language";

Determine the value of each of the following expressions if they are valid. If
they are not valid, state the reason why.

a. str1.compareTo(str2)
b. str2.compareTo(str2)
c. str2.substring(1, 1)
d. str2.substring(0, 7)
e. str2.charAt(11)
f. str1.length() + str2.length()

4. What is the difference between the two String methods equals and
equalsIgnoreCase?

9.3 Pattern Matching and Regular Expression
One sample code from Section 9.2 searched for the word Java in a given string. This
sample code illustrated a very simplified version of a well-known problem called
pattern matching. Word processor features such as finding a text and replacing a
text with another text are two specialized cases of a pattern-matching problem.

The matches Method
Let’s begin with the matches method from the String class. In its simplest form, it
looks very similar to the equals method. For example, given a string str, the two
statements

str.equals("Hello");

str.matches("Hello");

both evaluate to true if str is the string Hello. However, they are not truly equivalent,
because, unlike equals, the argument to the matches method can be a pattern, a fea-
ture that brings great flexibility and power to the matches method.

Suppose we assign a three-digit code to all incoming students. The first digit
represents the major, and 5 stands for the computer science major. The second digit
represents the home state: 1 is for in-state students, 2 is for out-of-state students, and
3 is for foreign students. And the third digit represents the residence of the student.
On-campus dormitories are represented by digits from 1 through 7. Students living
off campus are represented by digit 8. For example, the valid encodings for students
majoring in computer science and living off campus are 518, 528, and 538. The
valid three-digit code for computer science majors living in one of the on-campus
dormitories can be expressed succinctly as

5[123][1-7]

pattern
matching

wu23399_ch09.qxd 12/15/06 20:05 Page 502

and here’s how we interpret the pattern:

The pattern is called a regular expression that allows us to denote a large (often in-
finite) set of words succinctly. The “word” is composed of any sequence of symbols
and is not limited to alphabets. The brackets [] are used here to represent choices,
so [123] means 1, 2, or 3. We can use the notation for alphabets also. For example,
[aBc] means a, B, or c. Notice the notation is case-sensitive. The hyphen in the brack-
ets shows the range, so [1-7] means any digit from 1 to 7. If we want to allow any
lowercase letter, then the regular expression will be [a-z]. The hat symbol ^ is used
for negation. For example, [^abc] means any character except a, b, or c. Notice that
this expression does not restrict the character to lowercase letters; it can be any
character including digits and symbols. To refer to all lowercase letters except a, b,
or c, the correct expression is [a-z&&[^abc]]. The double ampersand represents an
intersection. Here are more examples:

It must be
1, 2, or 3.

It must be any
digit from 1 to 7.

It must be 5 for
the computer

science majors.

first
digit

second
digit

third
digit

5 [123] [1–7]

9.3 Pattern Matching and Regular Expression 503

regular
expression

Expression Description

[013] A single digit 0,1, or 3.

[0–9][0–9] Any two-digit number from 00 to 99.

A[0–4]b[05] A string that consists of four characters.The first
character is A.The second character is 0,1,2,3, or 4.
The third character is b. And the last character is
either 0 or 5.

[0–9&&[ˆ4567]] A single digit that is 0,1,2,3,8, or 9.

[a–z0–9] A single character that is either a lowercase letter or a
digit.

We can use repetition symbols * or + to designate a sequence of unbounded
length. The symbol * means 0 or more times, and the symbol + means 1 or more
times. Let’s try an example using a repetition symbol. Remember the definition
for a valid Java identifier? We define it as a seqence of alphanumeric characters,
underscores, and dollar signs, with the first character being an alphabet. In regular
expression, we can state this definition as

[a-zA-Z][a-zA-Z0-9_$]*

wu23399_ch09.qxd 12/15/06 20:05 Page 503

Let’s write a short program that will input a word and determine whether it is
a valid Java identifier. The program stops when the word entered is STOP. Here’s the
program:

504 Chapter 9 Characters and Strings

/*
Chapter 9 Sample Program: Checks whether the input

string is a valid identifier.

File: Ch9MatchJavaIdentifier.java
*/

import java.util.*;

class Ch9MatchJavaIdentifier {

private static final String STOP = "STOP";
private static final String VALID = "Valid Java identifier";
private static final String INVALID = "Not a valid Java identifier";

private static final String VALID_IDENTIFIER_PATTERN
= "[a-zA-Z][a-zA-Z0-9_$]*";

public static void main (String[] args) {

Scanner scanner = new Scanner (System.in);

String str, reply;

while (true) {

System.out.print ("Identifier: ");
str = scanner.next();

if (str.equals(STOP)) break;

if (str.matches(VALID_IDENTIFIER_PATTERN)) {
reply = VALID;

} else {
reply = INVALID;

}

System.out.println(str + ": " + reply + "\n");
}

}
}

It is also possible to designate a sequence of fixed length. For example, to spec-
ify four-digit numbers, we write [0-9]{4}. The number in the braces { and } denotes
the number of repetitions. We can specify the minimum and maximum numbers of

wu23399_ch09.qxd 1/11/07 11:50 Page 504

repetitions also. Here are the rules:

Here’s an example of using a sequence of fixed length. Suppose we want to
determine whether the input string represents a valid phone number that follows the
pattern of

xxx-xxx-xxxx

where x is a single digit from 0 through 9. The following is a program that inputs a
string continually and replies whether the input string conforms to the pattern. The
program terminates when a single digit 0 is entered. Structurally this program is
identical to the Ch9MatchJavaIdentifier class. Here’s the program:

Expression Description

X{N} Repeat X exactly N times, where X is a regular
expression for a single character.

X{N,} Repeat X at least N times.

X{N,M} Repeat X at least N but no more than M times.

9.3 Pattern Matching and Regular Expression 505

/*
Chapter 9 Sample Program: Checks whether the input

string conforms to the phone number
pattern xxx-xxx-xxxx.

File: Ch9MatchPhoneNumber.java
*/

import java.util.*;

class Ch9MatchPhoneNumber {

private static final String STOP = "0";
private static final String VALID = "Valid phone number";
private static final String INVALID = "Not a valid phone number";

private static final String VALID_PHONE_PATTERN
= "[0-9]{3}-[0-9]{3}-[0-9]{4}";

public static void main (String[] args) {

Scanner scanner = new Scanner (System.in);

String phoneStr, reply;

while (true) {

System.out.print ("Phone#: ");
phoneStr = scanner.next();

wu23399_ch09.qxd 12/15/06 20:05 Page 505

Suppose, with the proliferation of cell phones, the number of digits used for a
prefix increases from three to four in major cities. (In fact, Tokyo now uses a four-
digit prefix. Phenomenal growth in the use of fax machines in both offices and
homes caused the increase from three to four digits.) The valid format for phone
numbers then becomes

xxx-xxx-xxxx or xxx-xxxx-xxxx

This change can be handled effortlessly by defining VALID_PHONE_PATTERN as

private static final String VALID_PHONE_PATTERN
= "[0-9]{3}-[0-9]{3,4}-[0-9]{4}";

This is the power of regular expression and pattern-matching methods. All we
need to do is to make one simple adjustment to the regular expression. No other
changes are made to the program. Had we written the program without using the
pattern-matching technique (i.e., written the program using repetition control to test
the first to the last character individually), changing the code to handle both a three-
digit and a four-digit prefix requires substantially greater effort.

The period symbol (.) is used to match any character except a line terminator
such as \n or \r. (By using the Pattern class, we can make it match a line terminator
also. We discuss more details on the Pattern class later.) We can use the period sym-
bol with the zero-or-more-times notation * to check if a given string contains a
sequence of characters we are looking for. For example, suppose a String object
document holds the content of some document, and we want to check if the phrase
“zen of objects” is in it. We can do it as follows:

String document;

document = ...; //assign text to 'document'

if (document.matches(".*zen of objects.*") {

System.out.println("Found");

506 Chapter 9 Characters and Strings

if (phoneStr.equals(STOP)) break;

if (phoneStr.matches(VALID_PHONE_PATTERN)) {
reply = VALID;

} else {
reply = INVALID;

}

System.out.println(phoneStr + ": " + reply + "\n");
}

}
}

wu23399_ch09.qxd 12/15/06 20:05 Page 506

} else {

System.out.println("Not found");

}

The brackets [and] are used for expressing a range of choices for a single
character. If we need to express a range of choices for multiple characters, then we
use the parentheses and the vertical bar. For example, if we search for the word
maximum or minimum, we express the pattern as

(max|min)imum

Here are some more examples:

The replaceAll Method
Using the replaceAll method, we can replace all occurrences of a substring that
matches a given regular expression with a given replacement string. For example,
here’s how to replace all vowels in the string with the @ symbol:

String originalText, modifiedText;
originalText = ...; //assign string to 'originalText'

modifiedText = originalText.replaceAll("[aeiou]", "@");

Notice the original text is unchanged. The replaceAll method returns a modified text
as a separate string. Here are more examples:

Expression Description

[wb](ad|eed) Matches wad,weed,bad, and beed.

(pro|anti)-OO? Matches pro-OOP and anti-OOP.

(AZ|CA|CO)[0–9]{4} Matches AZxxxx,CAxxxx, and COxxxx,
where x is a single digit.

9.3 Pattern Matching and Regular Expression 507

Expression Description

str.replaceAll("OOP", Replace all occurrences of OOP with
"object-oriented programming") object-oriented programming.

str.replaceAll(Replace all social security numbers
"[0-9]{3}-[0-9]{2}-[0-9]{4}", with xxx-xx-xxxx.
"xxx-xx-xxxx")
str.replaceAll("o{2,}", "oo") Replace all occurrences of a sequence

that has two or more of letter o with oo.

wu23399_ch09.qxd 12/15/06 20:05 Page 507

If we want to match only the whole word, we have to use the \b symbol to des-
ignate the word boundary. Suppose we write

str.replaceAll("temp", "temporary");

expecting to replace all occurrences of the abbreviated word temp by temporary.
We will get a surprising result. All occurrences of the sequence of characters temp
will be replaced; so, for example, words such as attempt or tempting would be
replaced by attemporaryt or temporaryting, respectively. To designate the sequence
temp as a whole word, we place the word boundary symbol \b in the front and end
of the sequence.

str.replaceAll("\\btemp\\b", "temporary");

Notice the use of two backslashes. The symbol we use in the regular expres-
sion is \b. However, we must write this regular expression in a String representation.
And remember that the backslash symbol in a string represents a control character
such as \n, \t, and \r. To specify the regular expression symbol with a backslash, we
must use additional backslash, so the system will not interpret it as some kind of
control character. The regular expression we want here is

\btemp\b

To put it in a String representation, we write

"\\btemp\\b"

Here are the common backslash symbols used in regular expressions:

508 Chapter 9 Characters and Strings

String
Expression Representation Description

\d "\\d" A single digit. Equivalent to [0–9].

\D "\\D" A single nondigit. Equivalent to [^0–9].

\s "\\s" A white space character, such as space,
tab, new line, etc.

\S "\\S" A non-white-space character.

\w "\\w" A word character. Equivalent to
[a–zA–Z_0–9].

\W "\\W" A nonword character.

\b "\\b" A word boundary (such as a white space
and punctuation mark).

\B "\\B" A nonword boundary.

We also use the backslash if we want to search for a command character. For
example, the plus symbol designates one or more repetitions. If we want to search
for the plus symbol in the text, we use the backslash as \+ and to express it as a

wu23399_ch09.qxd 12/15/06 20:05 Page 508

string, we write “\\+”. Here’s an example. To replace all occurrences of C and C++
(not necessarily a whole word) with Java, we write

str.replaceAll("(C|C\\+\\+)", "Java");

9.4 The Pattern and Matcher Classes 509

1. Describe the string that the following regular expressions match.

a. a*b
b. b[aiu]d
c. [Oo]bject(s|)

2. Write a regular expression for a state vehicle license number whose format is
a single capital letter, followed by three digits and four lowercase letters.

3. Which of the following regular expressions are invalid?

a. (a-z)*+
b. [a|ab]xyz
c. abe-14
d. [a-z&&^a^b]
e. [//one]two

9.4 The Pattern and Matcher Classes
The matches and replaceAll methods of the String class are shorthand for using the
Pattern and Matcher classes from the java.util.regex package. We will describe how
to use these two classes for more efficient pattern matching.

The statement

str.matches(regex);

where str and regex are String objects is equivalent to

Pattern.matches(regex, str);

which in turn is equivalent to

Pattern pattern = Pattern.compile(regex);
Matcher matcher = pattern.matcher(str);
matcher.matches();

Similarly, the statement

str.replaceAll(regex, replacement);

where replacement is a replacement text is equivalent to

Pattern pattern = Pattern.compile(regex);
Matcher matcher = pattern.matcher(str);
matcher.replaceAll(replacement);

wu23399_ch09.qxd 12/15/06 20:05 Page 509

Explicit creation of Pattern and Matcher objects gives us more options and
greater efficiency. We specify regular expressions as strings, but for the system to
actually carry out the pattern-matching operation, the stated regular expression
must first be converted to an internal format. This is done by the compile method
of the Pattern class. When we use the matches method of the String or Pattern
class, this conversion into the internal format is carried out every time the
matches method is executed. So if we use the same pattern multiple times, then it
is more efficient to convert just once, instead of repeating the same conversion,
as was the case for the Ch9MatchJavaIdentifier and Ch9MatchPhoneNumber
classes. The following is Ch9MatchJavaIdentifierPM, a more efficient version of
Ch9MatchJavaIdentifier:

510 Chapter 9 Characters and Strings

/*
Chapter 9 Sample Program: Checks whether the input

string is a valid identifier. This version
uses the Matcher and Pattern classes.

File: Ch9MatchJavaIdentifierPM.java
*/

import java.util.*;
import java.util.regex.*;

class Ch9MatchJavaIdentifierPM {

private static final String STOP = "STOP";
private static final String VALID = "Valid Java identifier";
private static final String INVALID = "Not a valid Java identifier";

private static final String VALID_IDENTIFIER_PATTERN
= "[a-zA-Z][a-zA-Z0-9_$]*";

public static void main (String[] args) {

Scanner scanner = new Scanner(System.in);

String str, reply;
Matcher matcher;
Pattern pattern

= Pattern.compile(VALID_IDENTIFIER_PATTERN);

while (true) {

System.out.print("Identifier: ");
str = Scanner.next();

if (str.equals(STOP)) break;

matcher = pattern.matcher(str);

if (matcher.matches()) {
reply = VALID;

wu23399_ch09.qxd 12/15/06 20:05 Page 510

} else {
reply = INVALID;

}

System.out.println(str + ": " + reply + "\n");
}

}
}

9.4 The Pattern and Matcher Classes 511

We have a number of options when the Pattern compiles into an internal format.
For example, by default, the period symbol does not match the line terminator char-
acter. We can override this default by passing DOTALL as the second argument as

Pattern pattern = Pattern.compile(regex, Pattern.DOTALL);

To enable case-insensitive matching, we pass the CASE_INSENSITIVE constant.
The find method is another powerful method of the Matcher class. This

method searches for the next sequence in a string that matches the pattern. The
method returns true if the patten is found. We can call the method repeatedly until
it returns false to find all matches. Here’s an example that counts the number of
times the word java occurs in a given document. We will search for the word in a
case-insensitive manner.

/*
Chapter 9 Sample Program:

Count the number of times the word 'java' occurs
in input sentence using pattern matching.

File: Ch9CountJavaPM.java
*/

import java.util.*;
import java.util.regex.*;

class Ch9CountJavaPM {

public static void main (String[] args) {

Scanner scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator"));

String document;
int javaCount;

Matcher matcher;
Pattern pattern = Pattern.compile("java",

Pattern.CASE_INSENSITIVE);

wu23399_ch09.qxd 12/15/06 20:05 Page 511

System.out.println("Sentence: ");
document = scanner.next();

javaCount = 0;
matcher = pattern.matcher(document);

while (matcher.find()) {

javaCount++;
}

System.out.println("The word 'java' occurred " +
javaCount + " times.");

}
}

512 Chapter 9 Characters and Strings

When a matcher finds a matching sequence of characters, we can query the
location of the sequence by using the start and end methods. The start method
returns the position in the string where the first character of the pattern is found, and
the end method returns the value 1 more than the position in the string where the
last character of the pattern is found. Here’s the code that prints out the matching
sequences and their locations in the string when searching for the word java in a
case-insensitive manner.

/*
Chapter 9 Sample Program:

Displays the positions of the word 'java'
in a given string using pattern-matching technique.

File: Ch9LocateJavaPM.java
*/

import javax.swing.*;
import java.util.regex.*;

class Ch9LocateJavaPM {

public static void main (String[] args) {

Scanner scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator"));

String document;

Matcher matcher;
Pattern pattern = Pattern.compile("java",

Pattern.CASE_INSENSITIVE);

wu23399_ch09.qxd 12/15/06 20:05 Page 512

System.out.println("Sentence: ");
document = scanner.next();

matcher = pattern.matcher(document);

while (matcher.find()) {

System.out.println(document.substring(matcher.start(),
matcher.end())

+ " found at position "
+ matcher.start());

}
}

}

9.5 Comparing Strings 513

1. Replace the following statements with the equivalent ones using the Pattern
and Matcher classes.

a. str.replaceAll("1", "one");
b. str.matches("alpha");

2. Using the find method of the Matcher class, check if the given string
document contains the whole word Java.

9.5 Comparing Strings
We already discussed how objects are compared in Chapter 5. The same rule applies
for the string, but we have to be careful in certain situations because of the differ-
ence in the way a new String object is created. First, we will review how the objects
are compared. The difference between

String word1, word2;
...

if (word1 == word2) ...

and

if (word1.equals(word2)) ...

is illustrated in Figure 9.2. The equality test == is true if the contents of variables are
the same. For a primitive data type, the contents are values themselves; but for a ref-
erence data type, the contents are addresses. So for a reference data type, the equality
test is true if both variables refer to the same object, because they both contain the
same address. The equals method, on the other hand, is true if the String objects to
which the two variables refer contain the same string value. To distinguish the two
types of comparisons, we will use the term equivalence test for the equals method.

�� versus
equals

equivalence
test

wu23399_ch09.qxd 12/15/06 20:05 Page 513

As long as we create a new String object as

String str = new String("Java");

using the new operator, the rule for comparing objects applies to comparing strings.
However, when the new operator is not used, for example, in

String str = "Java";

we have to be careful. Figure 9.3 shows the difference in assigning a String object
to a variable. If we do not use the new operator, then string data are treated as if they

514 Chapter 9 Characters and Strings

word1 == word2 is true

word1.equals(word2) is true
:String

word1

Case A: Referring to the same object.

Java

word2

Note: If x �� y is true, then x.equals(y) is
also true. The reverse is not always true.

word1 == word2 is false

word1.equals(word2) is true
:String

word1

Case B: Referring to different objects having identical string values.

Java

:String

Java

word2

word1 == word2 is false

word1.equals(word2) is false
:String

word1

Case C: Referring to different objects having different string values.

Bali

:String

Java

word2

Figure 9.2 The difference between the equality test and the equals method.

wu23399_ch09.qxd 12/15/06 20:05 Page 514

are primitive data type. When we use the same literal String constants in a program,
there will be exactly one String object.

9.6 StringBuffer and StringBuilder 515

String word1, word2;

word1 = new String("Java");

word2 = new String("Java");

Whenever the new operator is used,
there will be a new object.

String word1, word2;

word1 = "Java";

word2 = "Java";

Literal string constant such as “Java” will
always refer to the one object.

:String

word1

Java

word2

:String

word1

Java

:String

Java

word2

Figure 9.3 Difference between using and not using the new operator for String.

1. Show the state of memory after the following statements are executed.

String str1, str2, str3;
str1 = "Jasmine";
str2 = "Oolong";
str3 = str2;
str2 = str1;

9.6 StringBuffer and StringBuilder
A String object is immutable, which means that once a String object is created, we
cannot change it. In other words, we can read individual characters in a string, but
we cannot add, delete, or modify characters of a String object. Remember that the
methods of the String class, such as replaceAll and substring, do not modify the
original string; they return a new string. Java adopts this immutability restriction
to implement an efficient memory allocation scheme for managing String objects.
The immutability is the reason why we can treat the string data much as a primitive
data type.

wu23399_ch09.qxd 12/15/06 20:05 Page 515

Creating a new string from the old one will work for most cases, but some
times manipulating the content of a string directly is more convenient. When we
need to compose a long string from a number of words, for example, being able to
manipulate the content of a string directly is much more convenient than creating a
new copy of a string. String manipulation here means operations such as replacing
a character, appending a string with another string, deleting a portion of a string, and
so forth. If we need to manipulate the content of a string directly, we must use either
the StringBuffer or the StringBuilder class. Here’s a simple example of modifying
the string Java to Diva using a StringBuffer object:

StringBuffer word = new StringBuffer("Java");
word.setCharAt(0, 'D');
word.setCharAt(1, 'i');

Notice that no new string is created, the original string Java is modified. Also, we
must use the new method to create a StringBuffer object.

The StringBuffer and StringBuilder classes behave exactly the same (i.e., they
support the same set of public methods), but the StringBuilder class in general has a
better performance. The StringBuilder class is new to Java 2 SDK version 1.5, so it
cannot be used with the older versions of Java SDK. There are advanced cases
where you have to use the StringBuffer class, but for the sample string processing
programs in this book, we can use either one of them. Of course, to use the String-
Builder class, we must be using version 1.5 SDK. We can also continue to use the
StringBuffer class with version 1.5.

Because the StringBuffer class can be used with all versions of Java SDK, and
the string processing performance in not our major concern here, we will be using
the StringBuffer class exclusively in this book. If the string processing performance
is a concern, then all we have to do is to replace all occurrences of the word String-
Buffer to StringBuilder in the program and run it with version 1.5 SDK.

Let’s look at some examples using StringBuffer objects. The first example
reads a sentence and replaces all vowels in the sentence with the character X.

516 Chapter 9 Characters and Strings

string
manipulation

StringBuffer

/*
Chapter 9 Sample Program: Replace every vowel in a given sentence

with 'X' using StringBuffer.

File: Ch9ReplaceVowelsWithX.java
*/

import java.util.*;

class Ch9ReplaceVowelsWithX {

public static void main (String[] args) {

Scanner scanner = new Scanner(System.in);
scanner.useDelimiter(System.getProperty("line.separator"));

wu23399_ch09.qxd 12/15/06 20:05 Page 516

Bad Version

StringBuffer tempStringBuffer;
String inSentence;

int numberOfCharacters;
char letter;

System.out.println("Sentence: ");
inSentence = scanner.next();

tempStringBuffer = new StringBuffer(inSentence);

numberOfCharacters = tempStringBuffer.length();

for (int index = 0; index < numberOfCharacters; index++) {

letter = tempStringBuffer.charAt(index);

if (letter == 'a' || letter == 'A' ||
letter == 'e' || letter == 'E' ||
letter == 'i' || letter == 'I' ||
letter == 'o' || letter == 'O' ||
letter == 'u' || letter == 'U') {

tempStringBuffer.setCharAt(index,'X');
}

}

System.out.println("Input: " + inSentence);
System.out.println("Output: " + tempStringBuffer);

}
}

9.6 StringBuffer and StringBuilder 517

Notice how the input routine is done. We are reading in a String object and
converting it to a StringBuffer object, because we cannot simply assign a String
object to a StringBuffer variable. For example, the following code is invalid:

StringBuffer strBuffer = scanner.next();

We are required to create a StringBuffer object from a String object as in

String str = "Hello";
StringBuffer strBuf = new StringBuffer(str);

We cannot input StringBuffer objects. We have to input String objects and
convert them to StringBuffer objects.

wu23399_ch09.qxd 12/15/06 20:05 Page 517

Our next example constructs a new sentence from input words that have an
even number of letters. The program stops when the word STOP is read. Let’s begin
with the pseudocode:

set tempStringBuffer to empty string;

repeat = true;

while (repeat) {

read in next word;

if (word is "STOP") {

repeat = false;

} else if (word has even number of letters) {

append word to tempStringBuffer;
}

}

And here’s the actual code:

518 Chapter 9 Characters and Strings

/*
Chapter 9 Sample Program: Constructs a new sentence from

input words that have an even number of letters.

File: Ch9EvenLetterWords.java
*/

import javax.swing.*;

class Ch9EvenLetterWords {

public static void main (String[] args) {

Scanner scanner = new Scanner(System.in);

boolean repeat = true;

String word;

StringBuffer tempStringBuffer = new StringBuffer("");

while (repeat) {

System.out.print("Next word: ");
word = scanner.next();

if (word.equals("STOP")) {

repeat = false;

} else if (word.length() % 2 == 0) {

tempStringBuffer.append(word + " ");
}

}

Create StringBuffer object
with an empty string.

Append word
and a space to
tempStringBuffer.

wu23399_ch09.qxd 12/15/06 20:05 Page 518

System.out.println("Output: " + tempStringBuffer);

}
}

9.6 StringBuffer and StringBuilder 519

We use the append method to append a String or a StringBuffer object to the
end of a StringBuffer object. The method append also can take an argument of the
primitive data type. For example, all the following statements are valid:

int i = 12;
float x = 12.4f;
char ch = 'W';

StringBuffer str = new StringBuffer("");

str.append(i);
str.append(x);
str.append(ch);

Any primitive data type argument is converted to a string before it is appended to a
StringBuffer object.

Notice that we can write the second example using only String objects. Here’s
how:

boolean repeat = true;
String word, newSentence;

newSentence = ""; //empty string
while (repeat) {

System.out.print("Next word: ");
word = scanner.next();

if (word.equals("STOP")) {
repeat = false;

} else if (word.length() % 2 == 0) {
newSentence = newSentence + word;

//string concatenation
}

}

Although this code does not explicitly use any StringBuffer object, the Java
compiler may use StringBuffer when compiling the string concatenation operator.
For example, the expression

newSentence + word

can be compiled as if the expression were

new StringBuffer().append(word).toString()

wu23399_ch09.qxd 12/15/06 20:05 Page 519

Using the append method of StringBuffer is preferable to using the string concate-
nation operator + because we can avoid creating temporary string objects by using
StringBuffer.

In addition to appending a string at the end of StringBuffer, we can insert a string
at a specified position by using the insert method. The syntax for this method is

<StringBuffer> . insert (<insertIndex>, <value>) ;

where <insertIndex> must be greater than or equal to 0 and less than or equal to the
length of <StringBuffer> and the <value> is an object or a value of the primitive data
type. For example, to change the string

Java is great

to

Java is really great

we can execute

StringBuffer str = new StringBuffer("Java is great");
str.insert(8, "really ");

520 Chapter 9 Characters and Strings

1. Determine the value of str after the following statements are executed.

a. StringBuffer str
= new StringBuffer("Caffeine");

str.insert(0, "Dr. ");
b. String str = "Caffeine";

StringBuffer str1 =
new StringBuffer(str.substring(1, 3));

str1.append('e');
str = "De" + str1;

c. String str = "Caffeine";
StringBuffer str =

new StringBuffer(str.substring(4, 8);
str1.insert (3,'f');
str = "De" + str1

2. Assume a String object str is assigned as a string value. Write a code segment
to replace all occurrences of lowercase vowels in a given string to the letter C
by using String and StringBuffer objects.

3. Find the errors in the following code.

String str = "Caffeine";
StringBuffer str1 = str.substring(1, 3);
str1.append('e');
System.out(str1);
str1 = str1 + str;

wu23399_ch09.qxd 12/15/06 20:05 Page 520

Sample Development
Building Word Concordance

One technique to analyze a historical document or literature is to track word occurrences.
A basic form of word concordance is a list of all words in a document and the number of
times each word appears in the document. Word concordance is useful in revealing the
writing style of an author. For example, given a word concordance of a document, we can
scan the list and count the numbers of nouns, verbs, prepositions, and so forth. If the
ratios of these grammatical elements differ significantly between the two documents,
there is a high probability that they are not written by the same person. Another appli-
cation of word concordance is seen in the indexing of a document, which, for each
word, lists the page numbers or line numbers where it appears in the document. In this
sample development, we will build a word concordance of a given document, utilizing
the string-processing technique we learned in this chapter.

9.7 Sample Development 521

9.7 Sample Development

word con-
cordance

One of the most popular search engine websites on the Internet today is
Google (www.google.com). At the core of their innovative technology is a
concordance of all Web pages on the Internet. Every month the company’s
Web crawler software visits 3 billion (and steadily growing) Web pages, and
from these visits, a concordance is built. When the user enters a query, the
Google servers search the concordance for a list of matching Web pages and
return the list in the order of relevance.

Problem Statement

Write an application that will build a word concordance of a document. The
output from the application is an alphabetical list of all words in the given
document and the number of times they occur in the document. The docu-
ments are a text file (contents of the file are ASCII characters), and the output
of the program is saved as an ASCII file also.

Overall Plan

As usual, let’s begin the program development by first identifying the major tasks of the
program. The first task is to get a text document from a designated file. We will use a
helper class called FileManager to do this task. File processing techniques to implement
the FileManager class will be presented in Chapter 12. The whole content of an ASCII file
is represented in the program as a single String object. Using a pattern-matching tech-
nique, we extract individual words from the document. For each distinct word in the doc-
ument, we associate a counter and increment it every time the word is repeated. We will
use the second helper class called WordList for maintaining a word list. An entry in this list
has two components—a word and how many times this word occurs in the document.

wu23399_ch09.qxd 12/15/06 20:05 Page 521

http://www.google.com

9.7 Sample Development—continued

522 Chapter 9 Characters and Strings

A WordList object can handle an unbounded number of entries. Entries in the list are
arranged in alphabetical order. We will learn how to implement the WordList class in
Chapter 10.

We can express the program logic in pseudocode as

while (the user wants to process another file) {

Task 1: read the file;

Task 2: build the word list;

Task 3: save the word list to a file;
}

Let’s look at the three tasks and determine objects that will be responsible for
handling the tasks. For the first task, we will use the helper class FileManager. For the
second task of building a word list,we will define the Ch9WordConcordance class,whose
instance will use the Pattern and Matcher classes for word extraction, and another
helper class WordList for maintaining the word list. The last task of saving the result is
done by the FileManager class also.

Finally, we will define a top-level control object that manages all other objects. We
will call this class Ch9WordConcordanceMain. This will be our instantiable main class.
Here’s our working design document:

program
tasks

program
classes

Design Document: Ch9WordConcordanceMain

Class Purpose
Ch9WordConcordanceMain The instantiable main class of the program

that implements the top-level program
control.

Ch9WordConcordance The key class of the program. An instance of
this class manages other objects to build the
word list.

FileManager A helper class for opening a file and saving
the result to a file. Details of this class can be
found in Chapter 12.

WordList Another helper class for maintaining a word
list. Details of this class can be found in
Chapter 10.

Pattern/Matcher Classes for pattern-matching operations.

Figure 9.4 is the working program diagram.

wu23399_ch09.qxd 12/15/06 20:05 Page 522

We will implement this program in four major steps:

1. Start with a program skeleton. Define the main class with data members.To test
the main class, we will also define a skeleton Ch9WordConcordance class with
just a default constructor.

2. Add code to open a file and save the result. Extend the step 1 classes as necessary.

3. Complete the implementation of the Ch9WordConcordance class.

4. Finalize the code by removing temporary statements and tying up loose ends.

9.7 Sample Development 523

Figure 9.4 The program diagram for the Ch9WordConcordanceMain program. Base system classes
such as String and JOptionPane are not shown.

WordList

Ch9Word
Concordance

Pattern

FileManager

Matcher

Ch9Word
ConcordanceMain

A helper class
provided to us

A class we
implement

System
classes

In lieu of the Pattern and Matcher classes, we could use the String-
Tokenizer class. This class is fairly straightforward to use if the white space
(tab, return, blank, etc.) is a word delimiter. However, using this class becomes
a little more complicated if we need to include punctuation marks and
others as a word delimiter also. Overall, the Pattern and Matcher classes
are more powerful and useful in many types of applications than the String-
Tokenizer class.

development
steps

wu23399_ch09.qxd 12/15/06 20:05 Page 523

9.7 Sample Development—continued

Step 1 Development: Skeleton

The design of Ch9WordConcordanceMain is straightforward, as its structure is very sim-
ilar to that of other main classes. We will make this an instantiable main class and define
the start method that implements the top-level control logic. We will define a default
constructor to create instances of other classes. A skeleton Ch9WordConcordance class
is also defined in this step so we can compile and run the main class. The skeleton
Ch9WordConcordance class only has an empty default constructor.The working design
document for the Ch9WordConcordanceMain class is as follows:

524 Chapter 9 Characters and Strings

step 1
design

step 1 code

Design Document: The Ch9WordConcordanceMain Class

Method Visibility Purpose
<constructor> public Creates the instances of other classes in the

program.

start private Implements the top-level control logic of
the program.

For the skeleton, the start method loops (doing nothing inside the loop in this
step) until the user selects No on the confirmation dialog. Here’s the skeleton:

/*
Chapter 9 Sample Development: Word Concordance

File: Step1/Ch9WordConcordanceMain.java
*/

import java.util.*;

class Ch9WordConcordanceMain {

private static enum Response {YES, NO}

private FileManager fileManager;
private Ch9WordConcordance builder;
private Scanner scanner;

//----------------------------------
// Main method
//----------------------------------
public static void main(String[] args) {

Ch9WordConcordanceMain main = new Ch9WordConcordanceMain();
main.start();

}

wu23399_ch09.qxd 12/15/06 20:05 Page 524

public Ch9WordConcordanceMain() {

fileManager = new FileManager();
builder = new Ch9WordConcordance();

scanner = new Scanner(System.in);
}

private void start() {

Response userReply;

while (true) {

userReply = prompt("Run the program?");

if (userReply == Response.NO) {
break;

}
}

System.out.println("Thank you for using the program. Good-Bye");
}

private Response prompt(String question) {

String input;

Response response = Response.NO;

System.out.print(question + " (Yes - y; No - n): ");

input = scanner.next();

if (input.equals("Y") || input.equals("y")) {
response = Response.YES;

}

return response;
}

}

9.7 Sample Development 525

class Ch9WordConcordance {

public Ch9WordConcordance() {

}
}

The skeleton Ch9WordConcordance class has only an empty default constructor.
Here’s the skeleton class:

wu23399_ch09.qxd 12/15/06 20:05 Page 525

9.7 Sample Development—continued

We run the program and verify that the constructor is executed correctly, and the
repetition control in the start method works as expected.

Step 2 Development: Open and Save Files

In the second development step, we add routines to handle input and output.The tasks of
opening and saving a file are delegated to the service class FileManager. We will learn the
implementation details of the FileManager class in Chapter 12. Our responsibility right
now is to use the class correctly.The class provides two key methods:one to open a file and
another to save a file. So that we can create and view the content easily, the FileManager
class deals only with text files. To open a text file, we call its openFile method. There are
two versions.With the first version, we pass the filename. For example, the code

FileManager fm = new FileManager();
String doc = ...; //assign string data

fm.saveFile("output1.txt", doc);

will save the string data doc to a file named output1.txt. With the second version, we will
let the end user select a file, using the standard file dialog. A sample file dialog is shown in
Figure 9.5.With the second version, we pass only the string data to be saved as

fm.saveFile(doc);

When there’s an error in saving a file, an IOException is thrown.
To open a text file, we use one of the two versions of the openFile method. The

distinction is identical to the one for the saveFile methods. The first version requires the

526 Chapter 9 Characters and Strings

step 1 test

step 2
design

Figure 9.5 A sample file dialog for opening a file.

wu23399_ch09.qxd 12/15/06 20:05 Page 526

filename to open.The second version allows the end user to select a file to save the data,
so we pass no parameter. The openFile method will throw a FileNotFoundException
when the designated file cannot be found and an IOException when the designated
file cannot be opened correctly.

Here’s the summary of the FileManager class:

9.7 Sample Development 527

Public Methods of FileManager

public String openFile(String filename)
throws FileNotFoundException, IOException

Opens the text file filename and returns the content as a String.

public String openFile()
throws FileNotFoundException, IOException

Opens the text file selected by the end user, using the standard file open dialog,
and returns the content as a String.

public String saveFile(String filename, String data)
throws IOException

Save the string data to filename.

public String saveFile(String data) throws IOException
Saves the string data to a file selected by the end user, using the standard file
save dialog.

We modify the start method to open a file, create a word concordance, and then
save the generated word concordance to a file.The method is defined as follows:

private void start() {

Response userReply;

String document, wordList;

while (true) {

userReply = prompt("Run the program?");

if (userReply == Response.NO) {
break;

}

document = inputFile(); //open file

wordList = build(document); //build concordance

saveFile(wordList); //save the generated concordance
}
... //'Good-bye' message dialog

}

Added portion

wu23399_ch09.qxd 12/15/06 20:05 Page 527

9.7 Sample Development—continued

The inputFile method is defined as follows:

private String inputFile() {
String doc = "";

try {
doc = fileManager.openFile();

} catch (FileNotFoundException e) {
System.out.println("File not found.");

} catch (IOException e) {
System.out.println("Error in opening file: "

+ e.getMessage());
}

System.out.println("Input Document:\n" + doc); //TEMP

return doc;
}

with a temporary output to verify the input routine. Because the openFile method of
FileManager throws exceptions, we handle them here with the try-catch block.

The saveFile method is defined as follows:

private void saveFile(String list) {

try {
fileManager.saveFile(list);

} catch (IOException e) {
System.out.println("Error in saving file: "

+ e.getMessage());
}

}

The method is very simple as the hard work of actually saving the text data is done by our
FileManager helper object.

Finally, the build method is defined as

private String build(String document) {

String concordance;

concordance = builder.build(document);

return concordance;
}

528 Chapter 9 Characters and Strings

wu23399_ch09.qxd 12/15/06 20:05 Page 528

The Ch9WordConcordanceMain class is now complete. To run and test this class,
we will define a stub build method for the Ch9WordConcordance class. The method is
temporarily defined as

public String build(String document) {

//TEMP
String list

= "one 14\ntwo 3\nthree 3\nfour 5\nfive 92\n";

return list;

//TEMP
}

We will implement the method fully in the next step.
Here’s the final Ch9WordConcordanceMain class:

9.7 Sample Development 529

step 2 code

/*
Chapter 9 Sample Development: Word Concordance

File: Step2/Ch9WordConcordanceMain.java
*/
import java.io.*;
import java.util.*;

class Ch9WordConcordanceMain {

...

private String build(String document) {

String concordance;

concordance = builder.build(document);

return concordance;
}

private String inputFile() {
String doc = "";

try {
doc = fileManager.openFile();

} catch (FileNotFoundException e) {
System.out.println("File not found.");

} catch (IOException e) {
System.out.println("Error in opening file: " + e.getMessage());

}

build

inputFile

wu23399_ch09.qxd 12/15/06 20:05 Page 529

9.7 Sample Development—continued

System.out.println("Input Document:\n" + doc); //TEMP

return doc;
}

private void saveFile(String list) {

try {
fileManager.saveFile(list);

} catch (IOException e) {
System.out.println("Error in saving file: " + e.getMessage());

}
}

private void start() {
while (true) {

...
document = inputFile();

wordList = build(document);

saveFile(wordList);
}
...

}
}

530 Chapter 9 Characters and Strings

start

saveFile

The temporary Ch9WordConcordance class now has the stub build method:

class Ch9WordConcordance {
...
public String build(String document) {

//TEMP
String list = "one 14\ntwo 3\nthree 3\nfour 5\nfive 92\n";

return list;
//TEMP

}
}

wu23399_ch09.qxd 12/15/06 20:05 Page 530

We are ready to run the program.The step 2 directory contains several sample input
files. We will open them and verify the file contents are read correctly by checking the
temporary echo print output to System.out. To verify the output routine, we save to the
output (the temporary output created by the build method of Ch9WordConcordance)
and verify its content. Since the output is a text file, we can use any word processor or text
editor to view its contents. (Note: If we use NotePad on the Windows platform to view the
file, it may not appear correctly. See the box below on how to avoid this problem.)

9.7 Sample Development 531

step 2 test

step 3
design

The control characters used for a line separator are not the same for each plat-
form (Windows, Mac, Unix, etc.) . One platform may use \n for a line separator
while another platform may use \r\n for a line separator. Even on the same
platform, different software may not interpret the control characters in the
same way. To make our Java code work correctly across all platforms, we do,
for example,

String newline
= System.getProperties().getProperty("line.separator");

String output = "line 1" + newline + "line 2" + newline;

instead of

String output = "line 1\nline 2\n";

Step 3 Development: Generate Word Concordance

In the third development step, we finish the program by implementing the Ch9Word-
Concordance class, specifically, its build method. Since we are using another helper class
in this step, first we must find out how to use this helper class. The WordList class sup-
ports the maintenance of a word list. Every time we extract a new word from the docu-
ment, we enter this word into a word list. If the word is already in the list, its count is
incremented by 1. If the word occurs for the first time in the document, then the word
is added to the list with its count initialized to 1.When we are done processing the docu-
ment, we can get the word concordance from a WordList by calling its getConcordance
method. The method returns the list as a single String with each line containing a word
and its count in the following format:

2 Chapter
1 Early
1 However
2 In
1 already
1 also
1 an

wu23399_ch09.qxd 12/15/06 20:05 Page 531

9.7 Sample Development—continued

7 and
1 are
2 as
1 because

Because a single WordList object handles multiple documents, there’s a method
called reset to clear the word list before processing the next document. Here’s the
method summary:

532 Chapter 9 Characters and Strings

Public Methods of WordList

public void add(String word)
Increments the count for the given word. If the word is already in the list, its count
is incremented by 1. If the word does not exist in the list, then it is added to the list
with its count set to 1.

public String getConcordance()
Returns the word concordance in alphabetical order of words as a single string.
Each line consists of a word and its count.

public void reset()
Clears the internal data structure so a new word list can be constructed. This
method must be called every time before a new document is processed.

The general idea behind the build method of the Ch9WordConcordance class is
straightforward. We need to keep extracting a word from the document, and for every
word found, we add it to the word list. Expressed in pseudocode, we have

while (document has more words) {

word = next word in the document;
wordList.add(word);

}

String concordance = wordList.getConcordance();

The most difficult part here is how to extract words from a document. We can write
our own homemade routine to extract words, based on the technique presented in
Section 9.2. However, this is too much work to get the task done. Writing a code that
detects various kinds of word terminators (in addition to space,punctuation mark,control
characters such as tab, new line, etc., all satisfy as the word terminator) is not that easy.
Conceptually, it is not that hard, but it can be quite tedious to iron out all the details.
Instead, we can use the pattern-matching technique provided by the Pattern and
Matcher classes for a reliable and efficient solution.

The pattern for finding a word can be stated in a regular expression as

\w+

wu23399_ch09.qxd 12/15/06 20:05 Page 532

Putting it in a string format results in

"\\w+"

The Pattern and Matcher objects are thus created as

Pattern pattern = Pattern.compile("\\w+");
Matcher matcher = pattern.matcher(document);

and the control loop to find and extract words is

wordList.reset();

while (matcher.find()) {

wordList.add(document.substring(matcher.start(),
matcher.end()));

}

Here’s the final Ch9WordConcordance class:

9.7 Sample Development 533

step 3 code

/*
Chapter 9 Sample Development: Word Concordance

File: Step3/Ch9WordConcordance.java
*/

import java.util.regex.*;

class Ch9WordConcordance {
private static final String WORD = "\\w+";
private WordList wordList;
private Pattern pattern;

public Ch9WordConcordance() {
wordList = new WordList();
pattern = Pattern.compile(WORD); //pattern is compiled only once

}

public String build(String document) {

Matcher matcher = pattern.matcher(document);

wordList.reset();

while (matcher.find()){
wordList.add(document.substring(matcher.start(),

matcher.end()));
}

return wordList.getConcordance();
}

}

build

wu23399_ch09.qxd 12/15/06 20:05 Page 533

9.7 Sample Development—continued

Notice how short the class is, thanks to the power of pattern matching and the
helper WordList class.

We run the program against varying types of input text files. We can use a long
document such as the term paper for the last term’s economy class (don’t forget to save it
as a text file before testing). We should also use some specially created files for testing
purposes. One file may contain only one word repeated 7 times, for example. Another file
may contain no words at all. We verify that the program works correctly for all types of
input files.

Step 4 Development: Finalize

As always, we finalize the program in the last step. We perform a critical review to find
any inconsistency or error in the methods, any incomplete methods, places to add more
comments, and so forth.

In addition, we may consider possible extensions. One is an integrated user inter-
face where the end user can view both the input document files and the output word list
files. Another is the generation of different types of list. In the sample development, we
count the number of occurrences of each word. Instead, we can generate a list of posi-
tions where each word appears in the document. The WordList class itself needs to be
modified for such extension.

534 Chapter 9 Characters and Strings

step 3 test

program
review

• The char data type represents a single character.

• The char constant is denoted by a single quotation mark, for example, ‘a’.

• The character coding scheme used widely today is ASCII (American
Standard Code for Information Exchange).

• Java uses Unicode, which is capable of representing characters of diverse
languages. ASCII is compatible with Unicode.

• A string is a sequence of characters, and in Java, strings are represented by
String objects.

• The Pattern and Matcher classes are introduced in Java 2 SDK 1.4. They
provide support for pattern-matching applications.

• Regular expression is used to represent a pattern to match (search) in a given
text.

• The String objects are immutable. Once they are created, they cannot be
changed.

• To manipulate mutable strings, use StringBuffer.

S u m m a r y

wu23399_ch09.qxd 12/15/06 20:05 Page 534

• Strings are objects in Java, and the rules for comparing objects apply when
comparing strings.

• Only one String object is created for the same literal String constants.

• The standard classes described or used in this chapter are

String Pattern

StringBuffer Matcher

StringBuilder

Exercises 535

K e y C o n c e p t s

characters

strings

string processing

regular expression

pattern matching

character encoding

String comparison

E x e r c i s e s

1. What is the difference between ’a’ and ”a”?

2. Discuss the difference between

str = str + word; //string concatenation

and

tempStringBuffer.append(word)

where str is a String object and tempStringBuffer is a StringBuffer object.

3. Show that if x and y are String objects and x == y is true, then x.equals(y) is
also true, but the reverse is not necessarily true.

4. What will be the output from the following code?

StringBuffer word1, word2;
word1 = new StringBuffer("Lisa");
word2 = word1;
word2.insert(0, "Mona ");
System.out.println(word1);

5. Show the state of memory after the execution of each statement in the
following code.

String word1, word2;
word1 = "Hello";
word2 = word1;
word1 = "Java";

wu23399_ch09.qxd 12/15/06 20:05 Page 535

6. Using a state-of-memory diagram, illustrate the difference between a null
string and an empty string—a string that has no characters in it. Show
the state-of-memory diagram for the following code. Variable word1 is a
null string, while word2 is an empty string.

String word1, word2;
word1 = null;
word2 = "";

7. Draw a state-of-memory diagram for each of the following groups of
statements.

String word1, word2; String word1, word2;

word1 = "French Roast"; word1 = "French Roast";
word2 = word1; word2 = "French Roast";

8. Write an application that reads in a character and displays the character’s
ASCII. The getText method of the JTextField class returns a String object, so
you need to extract a char value, as in

String inputString = inputField.getText();
char character = inputString.charAt(0);

Display an error message if more than one character is entered.

9. Write a method that returns the number of uppercase letters in a String object
passed to the method as an argument. Use the class method isUpperCase of
the Character class, which returns true if the passed parameter of type char is
an uppercase letter. You need to explore the Character class from the
java.lang package on your own.

10. Redo Exercise 9 without using the Character class. Hint: The ASCII of any
uppercase letter will fall between 65 (code for ’A’) and 90 (code for ’Z’).

11. Write a program that reads a sentence and prints out the sentence with all
uppercase letters changed to lowercase and all lowercase letters changed to
uppercase.

12. Write a program that reads a sentence and prints out the sentence in reverse
order. For example, the method will display

?uoy era woH

for the input

How are you?

13. Write a method that transposes words in a given sentence. For example,
given an input sentence

The gate to Java nirvana is near

the method outputs

ehT etag ot avaJ anavrin si raen

536 Chapter 9 Characters and Strings

wu23399_ch09.qxd 12/15/06 20:05 Page 536

To simplify the problem, you may assume the input sentence contains no
punctuation marks. You may also assume that the input sentence starts with a
nonblank character and that there is exactly one blank space between the
words.

14. Improve the method in Exercise 13 by removing the assumptions. For
example, an input sentence could be

Hello, how are you? I use JDK 1.2.2. Bye-bye.

An input sentence may contain punctuation marks and more than one blank
space between two words. Transposing the above will result in

olleH, woh era uoy? I esu KDJ 1.2.2. eyB-eyb.

Notice the position of punctuation marks does not change and only one
blank space is inserted between the transposed words.

15. The Ch9CountWords program that counts the number of words in a
given sentence has a bug. If the input sentence has one or more blank
spaces at the end, the value for wordCount will be 1 more than the
actual number of words in the sentence. Correct this bug in two ways:
one with the trim method of the String class and another without using
this method.

16. The Ch9ExtractWords program for extracting words in a given sentence
includes the test

if (beginIdx != endIdx) ...

Describe the type of input sentences that will result in the variables beginIdx
and endIdx becoming equal.

17. Write an application that reads in a sentence and displays the count of
individual vowels in the sentence. Use any output routine of your
choice to display the result in this format. Count only the lowercase
vowels.

Vowel counts for the sentence

Mary had a little lamb.

of 'a' : 4
of 'e' : 1
of 'i' : 1
of 'o' : 0
of 'u' : 0

18. Write an application that determines if an input word is a palindrome. A
palindrome is a string that reads the same forward and backward, for
example, noon and madam. Ignore the case of the letter. So, for example,
maDaM, MadAm, and mAdaM are all palindromes.

Exercises 537

wu23399_ch09.qxd 12/15/06 20:05 Page 537

19. Write an application that determines if an input sentence is a palindrome, for
example, A man, a plan, a canal, Panama! You ignore the punctuation
marks, blanks, and case of the letters.

Development Exercises
For the following exercises, use the incremental development methodology to
implement the program. For each exercise, identify the program tasks, create a
design document with class descriptions, and draw the program diagram. Map
out the development steps at the start. Present any design alternatives and
justify your selection. Be sure to perform adequate testing at the end of each
development step.

20. Write an Eggy-Peggy program. Given a string, convert it to a new string by
placing egg in front of every vowel. For example, the string

I Love Java

becomes

eggI Leegoveege Jeegaveega

21. Write a variation of the Eggy-Peggy program. Implement the following four
variations:

• Sha Add sha to the beginning of every word.

• Na Add na to the end of every word.

• Sha Na Na Add sha to the beginning and na na to the end of every
word.

• Ava Move the first letter to the end of the word and add ava
to it.

Allow the user to select one of four possible variations.

22. Write a word guessing game. The game is played by two players, each
taking a turn in guessing the secret word entered by the other player. Ask the
first player to enter a secret word. After a secret word is entered, display a
hint that consists of a row of dashes, one for each letter in the secret word.
Then ask the second player to guess a letter in the secret word. If the letter is
in the secret word, replace the dashes in the hint with the letter at all
positions where this letter occurs in the word. If the letter does not appear in
the word, the number of incorrect guesses is incremented by 1. The second
player keeps guessing letters until either

• The player guesses all the letters in the word. or

• The player makes 10 incorrect guesses.

Here’s a sample interaction with blue indicating the letter entered by the player:

- - - -
S
- - - -

538 Chapter 9 Characters and Strings

wu23399_ch09.qxd 12/15/06 20:05 Page 538

A
- A - A
V
- A V A
D
- A V A
J
J A V A
Bingo! You won.

Support the following features:

• Accept an input in either lowercase or uppercase.

• If the player enters something other than a single letter (a digit, special
character, multiple letters, etc.), display an error message. The number
of incorrect guesses is not incremented.

• If the player enters the same correct letter more than once, reply with
the previous hint.

• Entering an incorrect letter the second time is counted as another
wrong guess. For example, suppose the letter W is not in the secret
word. Every time the player enters W as a guess, the number of
incorrect guesses is incremented by 1.

After a game is over, switch the role of players and continue with
another game. When it is the first player’s turn to enter a secret word, give
an option to the players to stop playing. Keep the tally and announce the
winner at the end of the program. The tally will include for each player the
number of wins and the total number of incorrect guesses made for all
games. The player with more wins is the winner. In the case where both
players have the same number of wins, the one with the lower number of
total incorrect guesses is the winner. If the total numbers of incorrect guesses
for both players are the same also, then it is a draw.

23. Write another word guessing game similar to the one described in Exercise 22.
For this word game, instead of using a row of dashes for a secret word, a
hint is provided by displaying the letters in the secret word in random order.
For example, if the secret word is COMPUTER, then a possible hint is
MPTUREOC. The player has only one chance to enter a guess. The player
wins if he guessed the word correctly. Time how long the player took to
guess the secret word. After a guess is entered, display whether the guess is
correct or not. If correct, display the amount of time in minutes and seconds
used by the player.

The tally will include for each player the number of wins and the total
amount of time taken for guessing the secret words correctly (amount of
time used for incorrect guesses is not tallied). The player with more wins
is the winner. In the case where both players have the same number of wins,
the one who used the lesser amount of time for correct guesses is the winner.
If the total time used by both players is the same also, then it is a draw.

Exercises 539

wu23399_ch09.qxd 12/15/06 20:05 Page 539

24. The word game Eggy-Peggy is an example of encryption. Encryption has
been used since ancient times to communicate messages secretly. One of the
many techniques used for encryption is called a Caesar cipher. With this
technique, each character in the original message is shifted N positions. For
example, if N � 1, then the message

I d r i n k o n l y d e c a f

becomes

J ! e s j o l ! p o m z ! e f d b g

The encrypted message is decrypted to the original message by shifting back
every character N positions. Shifting N positions forward and backward is
achieved by converting the character to ASCII and adding or subtracting N.
Write an application that reads in the original text and the value for N and
displays the encrypted text. Make sure the ASCII value resulting from
encryption falls between 32 and 126. For example, if you add 8 (value of N)
to 122 (ASCII code for ‘z’), you should “wrap around” and get 35.

Write another application that reads the encrypted text and the value
for N and displays the original text by using the Caesar cipher technique.
Design a suitable user interface.

25. Another encryption technique is called a Vignere cipher. This technique is
similar to a Caesar cipher in that a key is applied cyclically to the original
message. For this exercise a key is composed of uppercase letters only.
Encryption is done by adding the code values of the key’s characters to the
code values of the characters in the original message. Code values for the
key characters are assigned as follows: 0 for A, 1 for B, 2 for C, . . . , and
25 for Z. Let’s say the key is COFFEE and the original message is I drink
only decaf. Encryption works as follows:

I d r i n k o n l y d e c a f
| | | | |
+ + + + . . . +
| | | | |
C O F F E E C O F F E E C O F F E E

K – i W . . . j

Decryption reverses the process to generate the original message. Write an
application that reads in a text and displays the encrypted text. Make sure the
ASCII value resulting from encryption or decryption falls between 32 and
126. You can get the code for key characters by (int) keyChar - 65.

Write another application that reads the encrypted text and displays the
original text, using the Vignere cipher technique.

540 Chapter 9 Characters and Strings

wu23399_ch09.qxd 12/15/06 20:05 Page 540

26. A public-key cryptography allows anyone to encode messages while only
people with a secret key can decipher them. In 1977, Ronald Rivest, Adi
Shamir, and Leonard Adleman developed a form of public-key cryptography
called the RSA system.

To encode a message using the RSA system, one needs n and e. The
value n is a product of any two prime numbers p and q. The value e is any
number less than n that cannot be evenly divided into y (that is, y � e would
have a remainder), where y � (p � 1) � (q � 1). The values n and e can be
published in a newspaper or posted on the Internet, so anybody can encrypt
messages. The original character is encoded to a numerical value c by using
the formula

c � me mod n

where m is a numerical representation of the original character (for example,
1 for A, 2 for B, and so forth).

Now, to decode a message, one needs d. The value d is a number that
satisfies the formula

e � d mod y � 1

where e and y are the values defined in the encoding step. The original
character m can be derived from the encrypted character c by using the
formula

m � cd mod n

Write a program that encodes and decodes messages using the RSA system.
Use large prime numbers for p and q in computing the value for n, because
when p and q are small, it is not that difficult to find the value of d. When p
and q are very large, however, it becomes practically impossible to
determine the value of d. Use the ASCII values as appropriate for the
numerical representation of characters. Visit http://www.rsasecurity.com for
more information on how the RSA system is applied in the real world.

Exercises 541

wu23399_ch09.qxd 12/15/06 20:05 Page 541

http://www.rsasecurity.com

wu23399_ch09.qxd 12/15/06 20:05 Page 542

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Manipulate a collection of data values, using
an array.

• Declare and use an array of primitive data
types in writing a program.

• Declare and use an array of objects in writing a
program.

• Define a method that accepts an array as its
parameter and a method that returns an array.

• Describe how a two-dimensional array is
implemented as an array of arrays.

• Manipulate a collection of objects, using lists
and maps.

543

10Arrays and
Collections

wu23399_ch10.qxd 12/28/06 12:38 Page 543

eople collect all sorts of items from bottle caps to exotic cars. For proof, just go to
eBay (www.ebay.com) and see millions and millions of collectibles up for auction.
Now with computers, people amass intangible items such as music files. Exactly
how many MP3 files do you have on your computer? Probably in the hundreds and
you lost track of exactly how many. You may want to develop a custom software, so
you can store the information you want in the format you like, to keep track of all
MP3 files downloaded from the Web.

When we write a program to deal with a collection of items, say, 500 Student
objects, 200 integers, 300 MP3 files, and so forth, simple variables will not work. It
is just not practical or feasible to use 500 variables to process 500 Student objects.
In theory, you can, but honestly, do you want to type in identifiers for 500 variables
(student1, student2, . . .)? A feature supported by programming languages to ma-
nipulate a collection of values is an array.

In this chapter we will learn about Java arrays. We will learn the basics of
array manipulation and how to use different types of arrays properly and effec-
tively. In addition, we will study several collection classes from the java.util
package that provide more advanced data management features not found in the
basic Java arrays.

10.1 Array Basics
Suppose we want to compute the annual average rainfall from 12 monthly averages.
We can use three variables and compute the annual average as follows (in this and
other code fragment examples, we assume scanner is a properly declared and cre-
ated Scanner object):

double sum, rainfall, annualAverage;

sum = 0.0;

for (int i = 0; i < 12; i++) {

System.out.print("Rainfall for month " + (i+1) + ": ");
rainfall = scanner.nextDouble();

sum += rainfall;
}

annualAverage = sum / 12.0;

Now suppose we want to compute the difference between the annual and
monthly averages for every month and display a table with three columns, similar
to the one shown in Figure 10.1.

544 Chapter 10 Arrays and Collections

I n t r o d u c t i o n

P

wu23399_ch10.qxd 12/28/06 12:38 Page 544

http://www.ebay.com

To compute the difference between the annual and monthly averages, we need
to remember the 12 monthly rainfall averages. Without remembering the 12 monthly
averages, we won’t be able to derive the monthly variations after the annual average
is computed. Instead of using 12 variables januaryRainfall, februaryRainfall, and so
forth to solve this problem, we use an array.

An array is a collection of data values of the same type. For example, we may
declare an array consisting of double, but not an array consisting of both int and
double. The following declares an array of double:

double[] rainfall;

The square brackets indicate the array declaration. The brackets may be attached to
a variable instead of the data type. For example, the declaration

double rainfall[];

is equivalent to the previous declaration. In Java, an array is a reference data type.
Unlike the primitive data type, the amount of memory allocated to store an array
varies, depending on the number and type of values in the array. We use the new
operator to allocate the memory to store the values in an array. Although we use the
same reserved word new for the array memory allocation as for the creation of a
new instance of a class, strictly speaking, an array is not an object.

10.1 Array Basics 545

Annual Average Rainfall: 15.03 mm

Month
1
2
3
4
5
6
7
8
9

10
11
12

Average
13.3
14.9
14.7
23.0
25.8
27.7
12.3
10.0
9.8
8.7
8.0

12.2

Variation
1.73
0.13
0.33
7.97

10.77
12.67
2.73
5.03
5.23
6.33
7.03
2.83

Figure 10.1 Monthly rainfall figures and their variation from the annual average.

array

array
declaration

In Java, an array is a reference data type. We use the new operator to allocate the
memory to store the values in an array.

wu23399_ch10.qxd 12/28/06 12:38 Page 545

The following statement allocates the memory to store 12 double values and asso-
ciates the identifier rainfall to it.

rainfall = new double[12]; //create an array of size 12

Figure 10.2 shows this array.
We can also declare and allocate memory for an array in one statement, as in

double[] rainfall = new double[12];

The number 12 designates the size of the array—the number of values the array con-
tains. We use a single identifier to refer to the whole collection and use an indexed
expression to refer to the individual values of the collection. An individual value in
an array is called an array element. Zero-based indexing is used to indicate the po-
sitions of an element in the array. They are numbered 0, 1, 2, . . . , and size – 1, where
size is the size of an array. For example, to refer to the third element of the rainfall
array, we use the indexed expression

rainfall[2]

Instead of a literal constant such as 2, we can use an expression such as

rainfall[i+3]

Notice that the index for the first position in an array is zero. As for a String
object, Java uses zero-based indexing for an array.

546 Chapter 10 Arrays and Collections

rainfall[2]

0 1 2 3 4 5 6 7 8 9 10 11
rainfall

double[] rainfall = new double[12];

This is an indexed expression
referring to the element at
position 2, that is, the third
element of the array.

Figure 10.2 An array of 12 double values.

indexed
expression

array element

The index of the first position in an array is 0.

wu23399_ch10.qxd 12/28/06 12:38 Page 546

Using the rainfall array, we can input 12 monthly averages and compute the
annual average as

double[] rainfall = new double[12];
double annualAverage,

sum = 0.0;

for (int i = 0; i < 12; i++) {

System.out.print("Rainfall for month " + (i+1) + ": ");
rainfall[i] = scanner.nextDouble();

sum += rainfall[i];
}

annualAverage = sum / 12.0;

Figure 10.3 shows how the array will appear after all 12 values are entered.
After the 12 monthly averages are stored in the array, we can print out the

table (alignment of the columns is not done here, but will be in the complete
program listing).

double difference;

for (int i = 0; i < 12; i++) {
System.out.print(i+1); //month #

//average rainfall for the month
System.out.print(" " + rainfall[i]);

//difference between the monthly and annual averages
difference = Math.abs(rainfall[i] - annualAverage);
System.out.println(" " + difference);

}

Here’s the complete program:

10.1 Array Basics 547

Can also be declared as
double rainfall[]

= new double[12];

rainfall[2] �� 28.6

24.5 32.7 18.3 12.5 24.8 9.5 4.5 5.5 12.5 24.5 27.2

0 1 2 3 4 5 6 7 8 9 10 11

28.6

rainfall

Figure 10. 3 An array of 12 double values after all 12 are assigned values.

/*
Chapter 10 Sample Program: Compute the annual average rainfall

and the variation from monthly average.

File: Ch10Rainfall.java
*/

wu23399_ch10.qxd 12/28/06 12:38 Page 547

548 Chapter 10 Arrays and Collections

import java.util.*;

class Ch10Rainfall {

public static void main (String[] args) {

Scanner scanner = new Scanner (System.in);

double[] rainfall = new double[12];

double annualAverage,
sum,
difference;

sum = 0.0;

for (int i = 0; i < 12; i++) {

System.out.print("Rainfall for month " + (i+1) + ": ");
rainfall[i] = scanner.nextDouble();

sum += rainfall[i];
}

annualAverage = sum / 12.0;

System.out.format("Annual Average Rainfall:%5.2f\n\n",
annualAverage);

for (int i = 0; i < 12; i++) {

System.out.format("%3d", i+1); //month #

//average rainfall for the month
System.out.format("%15.2f", rainfall[i]);

//difference between the monthly and annual averages
difference = Math.abs(rainfall[i] - annualAverage);
System.out.format("%15.2f\n", difference);

}
}

}

Notice that the values displayed in the columns are aligned by using the formatting
string.

An array has a public constant length for the size of an array. Using this con-
stant, we can rewrite the for loop as

for (int i = 0; i < rainfall.length; i++) {
...

}

length

wu23399_ch10.qxd 12/28/06 12:38 Page 548

This for loop is more general since we do not have to modify the loop statement when
the size of an array is changed. Also, the use of length is necessary when the size of
an array is not known in advance. This happens, for example, when we write a method
with an array as its parameter. We will provide an example of such a method in
Section 10.3.

Notice the prompts for getting the values in the previous example are Rainfall
for month 1, Rainfall for month 2, and so forth. A better prompt will spell out the
month name, for example, Rainfall for January, Rainfall for February, and so forth.
We can easily achieve a better prompt by using an array of strings. Here’s how:

double[] rainfall = new double[12]; //an array of double

String[] monthName = new String[12]; //an array of String
double annualAverage,

sum = 0.0;

monthName[0] = "January";
monthName[1] = "February";
monthName[2] = "March";
monthName[3] = "April";
monthName[4] = "May";
monthName[5] = "June";
monthName[6] = "July";
monthName[7] = "August";
monthName[8] = "September";
monthName[9] = "October";
monthName[10] = "November";
monthName[11] = "December";

for (int i = 0; i < rainfall.length; i++) {

System.out.print("Rainfall for month" +
monthName[i] + ": ");

rainfall[i] = scanner.nextDouble();

sum += rainfall[i];
}

annualAverage = sum / 12.0;

10.1 Array Basics 549

It is very easy to mix up the length value of an array and the length method of a
String object.The length is a method for a String object, so we use the syntax for
calling a method.

String str = "This is a string";
int size = str.length();

But for an array, which is not an object but a reference data type, we do not use the
syntax of method calling.We refer to the length value as

int size = rainfall.length;

wu23399_ch10.qxd 12/28/06 12:38 Page 549

Instead of assigning array elements individually, we can initialize the array at
the time of declaration. We can, for example, initialize the monthName array by

String[] monthName = { "January", "February", "March",
"April", "May", "June", "July",
"August", "September", "October",
"November", "December" };

Notice that we do not specify the size of an array if the array elements are initialized
at the time of declaration. The size of an array is determined by the number of val-
ues in the list. In the above example, there are 12 values in the list, so the size of the
array monthName is set to 12.

Let’s try some more examples. We assume the rainfall array is declared, and
all 12 values are read in. The following code computes the average rainfall for the
odd months (January, March, . . .) and the even months (February, April, . . .).

double oddMonthSum, oddMonthAverage,
evenMonthSum, evenMonthAverage;

oddMonthSum = 0.0;
evenMonthSum = 0.0;

//compute the average for the odd months
for (int i = 0; i < rainfall.length; i += 2) {

oddMonthSum += rainfall[i];
}
oddMonthAverage = oddMonthSum / 6.0;

//compute the average for the even months
for (int i = 1; i < rainfall.length; i += 2) {

evenMonthSum += rainfall[i];
}
evenMonthAverage = evenMonthSum / 6.0;

We can compute the same result by using one for loop.

for (int i = 0; i < rainfall.length; i += 2) {
oddMonthSum += rainfall[i];
evenMonthSum += rainfall[i+1];

}

oddMonthAverage = oddMonthSum / 6.0;
evenMonthAverage = evenMonthSum / 6.0;

To compute the average for each quarter (quarter 1 has January, February, and
March; quarter 2 has April, May, and June; and so forth), we can write

for (int i = 0; i < 3; i++) {
quarter1Sum += rainfall[i];
quarter2Sum += rainfall[i+3];
quarter3Sum += rainfall[i+6];
quarter4Sum += rainfall[i+9];

}

550 Chapter 10 Arrays and Collections

No size is specified.

wu23399_ch10.qxd 12/28/06 12:38 Page 550

quarter1Average = quarter1Sum / 3.0;
quarter2Average = quarter2Sum / 3.0;
quarter3Average = quarter3Sum / 3.0;
quarter4Average = quarter4Sum / 3.0;

We can use another array to store the quarter averages instead of using four variables:

double[] quarterAverage = new double[4];

for (int i = 0; i < 4; i++) {

sum = 0;

for (int j = 0; j < 3; j++) { //compute the sum of
sum += rainfall[3*i + j]; //one quarter

}

quarterAverage[i] = sum / 3.0;//average for quarter i+1
}

Notice how the inner for loop is used to compute the sum of one quarter. The fol-
lowing table illustrates how the values for the variables i and j and the expression
3*i + j change.

10.1 Array Basics 551

i j 3*i + j

0 0 0
1 1
2 2

1 0 3
1 4
2 5

2 0 6
1 7
2 8

3 0 9
1 10
2 11

/*
Chapter 10 Sample Program: Compute different statistics

from monthly rainfall averages.

File: Ch10RainfallStat.java
*/

Here’s the complete program:

wu23399_ch10.qxd 12/28/06 12:38 Page 551

552 Chapter 10 Arrays and Collections

import java.util.*;

class Ch10RainfallStat {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

String[] monthName = { "January", "February", "March",
"April", "May", "June", "July",
"August", "September", "October",
"November", "December" };

double[] rainfall = new double[12];

double[] quarterAverage = new double[4];

double annualAverage,
sum,
difference;

double oddMonthSum, oddMonthAverage,
evenMonthSum, evenMonthAverage;

sum = 0.0;

for (int i = 0; i < rainfall.length; i++) {

System.out.print("Rainfall for month " + monthName[i] + ": ");
rainfall[i] = scanner.nextDouble();

sum += rainfall[i];

}

annualAverage = sum / 12.0;

System.out.format("Annual Average Rainfall:%6.2f\n\n",
annualAverage);

oddMonthSum = 0.0;
evenMonthSum = 0.0;

///////////// Odd and Even Month Averages //////////////////

//compute the average for the odd months
for (int i = 0; i < rainfall.length; i += 2) {

oddMonthSum += rainfall[i];
}

oddMonthAverage = oddMonthSum / 6.0;

//compute the average for the even months
for (int i = 1; i < rainfall.length; i += 2) {

evenMonthSum += rainfall[i];
}

wu23399_ch10.qxd 12/28/06 12:38 Page 552

10.1 Array Basics 553

evenMonthAverage = evenMonthSum / 6.0;

System.out.format("Odd Month Rainfall Average: %6.2f\n",
oddMonthAverage);

System.out.format("Even Month Rainfall Average:%6.2f\n\n",
evenMonthAverage);

/////////////////// Quarter Averages //////////////////////

for (int i = 0; i < 4; i++) {

sum = 0;

for (int j = 0; j < 3; j++) { //compute the sum of
sum += rainfall[3*i + j]; //one quarter

}

quarterAverage[i] = sum / 3.0; //average for quarter i+1

System.out.format("Rainfall Average Qtr.%3d:%6.2f\n",
i+1, quarterAverage[i]);

}
}

}

In the previous examples, we used a constant to specify the size of an array,
such as the literal constant 12 in the following declaration:

double[] rainfall = new double[12];

Using constants to declare array sizes does not always lead to efficient space usage.
We call the declaration of arrays with constants a fixed-size array declaration. There
are two potential problems with fixed-size array declarations. Suppose, for exam-
ple, we declare an integer array of size 100:

int[] number = new int[100];

The first problem is that the program can process only up to 100 numbers. What
if we need to process 101 numbers? We have to modify the program and compile
it again. The second problem is a possible underutilization of space. The above de-
claration allocates 100 spaces whether they are used or not. Suppose the program
on average processes 20 numbers. Then the program’s average space usage is
only 20 percent of the allocated space. With Java, we are not limited to fixed-size
array declaration. We can declare an array of different size every time we run the

fixed-size array
declaration

wu23399_ch10.qxd 12/28/06 12:38 Page 553

program. The following code prompts the user for the size of an array and de-
clares an array of designated size:

int size;
int[] number;

System.out.print("Size of an array: ");
size = scanner.nextInt();

number = new int[size];

With this approach, every time the program is executed, only the needed
amount of space is allocated for the array. Any valid integer arithmetic expression
is allowed for size specification, for example,

System.out.print("Enter int: ");
size = scanner.nextInt();

number = new int[size*size + 2* size + 5];

We call the creation of arrays with nonconstant values a variable-size array creation.
This capability comes very handy, for example, when an array runs out of space and
we need to create a new, larger array. Suppose we start with an array of 20 elements.
What would happen when we had to add the 21st element? We can create a new,
larger array, say, twice as large as the original array. We then copy the values from
the original array to the new array and finally add the 21st element to the new array.
We will show you a concrete example of this scenario in Section 10.7.

554 Chapter 10 Arrays and Collections

variable-size
array creation

Notice the first index position of an array is 0. Java adopted this feature from the
programming language C. Using the zero-based indexing, the index value of an
element indicates the number of elements in front of the element.For example, an
index value of 0 for the first element indicates that there are zero elements in front
of it; an index value of 4 for the fifth element indicates that there are four elements
in front of it. Zero-based indexing allows a simpler formula to compute the actual
memory address of array elements.

1. Which of the following statements are invalid?

a. float number[23];

b. float number = { 1.0f, 2.0f, 3.0f };

c. int number;

number = new Array[23];

d. int[] number = [1, 2, 3, 4];

wu23399_ch10.qxd 12/28/06 12:38 Page 554

2. Write a code fragment to compute the sum of all positive real numbers stored
in the following array.

double[] number = new double[25];

3. Describe the difference between the following two code fragments.

//code fragment 1
for (int i = 0; i < number.length; i++) {

if (i % 2 == 0) {
System.out.println(number[i]);

}
}

//code fragment 2
for (int i = 0; i < number.length; i++) {

if (number[i] % 2 == 0) {
System.out.println(number[i]);

}
}

10.2 Arrays of Objects
Array elements are not limited to primitive data types. Indeed, since a String is an
object, we actually have seen an example of an array of objects in Section 10.1. In
this section we will explore arrays of objects. To illustrate the processing of an array
of objects, we will use the Person class in the following examples. We will define
this Person class later in the chapter to introduce additional object-oriented concepts.
Here’s the portion of the Person class definition we will use in this section:

10.2 Arrays of Objects 555

Public Methods of the Person Class

public int getAge ()
Returns the age of a person. Default age of a person is set to 0.

public char getGender()
Returns the gender of a person.The character F stands for female and M for male.
Default gender of a person is set to the character U for unknown.

public String getName ()
Returns the name of a person. Default name of a person is set to Not Given.

public void setAge (int age)
Sets the age of a person.

public void setGender(char gender)
Sets the gender of a person to the argument gender.The character F stands for
female and M for male.The character U designates unknown gender.

public void setName (String name)
Sets the name of a person to the argument name.

wu23399_ch10.qxd 12/28/06 12:38 Page 555

The following code creates a Person object:

Person latte;

latte = new Person();
latte.setName("Ms. Latte");
latte.setAge(20);
latte.setGender('F');

System.out.println("Name: " + latte.getName());
System.out.println("Age : " + latte.getAge());
System.out.println("Sex : " + latte.getGender());

Now let’s study how we can create and manipulate an array of Person objects.
An array of objects is declared and created just as an array of primitive data types
is. The following are a declaration and a creation of an array of Person objects.

Person[] person; //declare the person array
person = new Person[20]; //and then create it

Execution of the above code will result in a state shown in Figure 10.4.
Notice that the elements, that is, Person objects, are not yet created; only the

array is created. Array elements are initially null. Since each individual element is
an object, it also must be created. To create a Person object and set it as the array’s
first element, we write

person[0] = new Person();

Figure 10.5 shows the state after the first Person object is added to the array.
Notice that no data values are assigned to the object yet. The object has default

values at this point. To assign data values to this object, we can execute

person[0].setName ("Ms. Latte");
person[0].setAge (20);
person[0].setGender('F');

The indexed expression

person[0]

556 Chapter 10 Arrays and Collections

Figure 10.4 An array of Person objects after the array is created.

0 1 2 3 4

•••

16 17 18 19

person

- null
Person[] person;
person = new Person[20];

wu23399_ch10.qxd 12/28/06 12:38 Page 556

refers to the first object in the person array. Since this expression refers to an object,
we write

person[0].setAge(20);

to call this Person object’s setAge method, for example. This is the syntax we use to
call an object’s method. We are just using an indexed expression to refer to an ob-
ject instead of a simple variable.

Let’s go through typical array processing to illustrate the basic operations.
The first is to create Person objects and set up the person array. We assume that the
person array is already declared and created.

String name, inpStr;
int age;
char gender;

for (int i = 0; i < person.length; i++) {

//read in data values
System.out.print("Enter name: ");
name = scanner.next();

System.out.print("Enter age: ");
age = scanner.nextInt();

System.out.print("Enter gender: ");
inpStr = scanner.next();
gender = inpStr.charAt(0);

//create a new Person and assign values
person[i] = new Person();

person[i].setName (name);
person[i].setAge (age);
person[i].setGender(gender);

}

10.2 Arrays of Objects 557

Figure 10.5 The person array with one Person object added to it.

0 1 2 3 4

•••

16 17 18 19

person

:Person

Not Given

0

U

No values are assigned
yet, so this object has
default values.

wu23399_ch10.qxd 12/28/06 12:38 Page 557

Note: To focus on array processing, we used the most simplistic input routine. For
instance, we did not perform any input error checking, but this is not to say that input
error checking is unimportant. We simply want to focus on array processing here.

To find the average age, we execute

double sum = 0, averageAge;

for (int i = 0; i < person.length; i++) {
sum += person[i].getAge();

}

averageAge = sum / person.length;

To print out the name and age of the youngest and the oldest persons, we can
execute

String nameOfYoungest, nameOfOldest;
int min, max, age;

nameOfYoungest = nameOfOldest = person[0].getName();
min = max = person[0].getAge();

for (int i = 1; i < person.length; i++) {
age = person[i].getAge();

if (age < min) { //found a younger person
min = age;
nameOfYoungest = person[i].getName();

}else if (age > max) { //found an older person
max = age;
nameOfOldest = person[i].getName();

}
}
System.out.println("Oldest : " + nameOfOldest + " is "

+ max + " years old.");

System.out.println("Youngest: " + nameOfYoungest + " is "
+ min + " years old.");

Instead of using separate String and int variables, we can use the index to the
youngest and the oldest persons. Here’s the code:

int minIdx, //index to the youngest person
maxIdx; //index to the oldest person

minIdx = maxIdx = 0;

for (int i = 1; i < person.length; i++) {

if (person[i].getAge() < person[minIdx].getAge()) {
//found a younger person
minIdx = i;

558 Chapter 10 Arrays and Collections

find the
average age

find the
youngest and
the oldest
persons

wu23399_ch10.qxd 12/28/06 12:38 Page 558

10.2 Arrays of Objects 559

Figure 10.6 An array of Person objects with two Person variables.

0 1 2 3 4

•••

••• •••

16 17 18 19person

:Person

Jane

87

F

:Person

Latte

20

F

•••

oldest youngest

}else if (person[i].getAge() > person[maxIdx.getAge()){
//found an older person
maxIdx = i;

}
}

System.out.println("Oldest : " + person[maxIdx].getName()
+ " is "
+ person[maxIdx].getAge()
+ " years old.");

System.out.println("Youngest: " + person[minIdx].getName()
+ " is "
+ person[minIdx].getAge()
+ " years old.");

Yet another approach is to use variables for Person objects. Figure 10.6 shows
how the Person variables oldest and youngest point to objects in the person array.
Here’s the code using Person variables:

Person youngest, //points to the youngest person
oldest; //points to the oldest person

youngest = oldest = person[0];

for (int i = 1; i < person.length; i++) {

if (person[i].getAge() < youngest.getAge()) {
//found a younger person
youngest = person[i];

}

wu23399_ch10.qxd 12/28/06 12:38 Page 559

else if (person[i].getAge() > oldest.getAge()) {
//found an older person
oldest = person[i];

}
}

System.out.println("Oldest : " + oldest.getName()
+ " is " + oldest.getAge() + " years old.");

System.out.println("Youngest: " + youngest.getName()
+ " is " + youngest.getAge() + " years old.");

Our next example is to search for a particular person. We can scan through the
array until the desired person is found. Suppose we want to search for a person
whose name is Latte. If we assume the person is in the array, then we can write

int i = 0;
while (!person[i].getName().equals("Latte")) {

i++;
}

System.out.println("Found Ms. Latte at position " + i);

The expression

person[i].getName().equals("Latte")

is evaluated left to right and is equivalent to

Person p = person[i];
String str= p.getName();

str.equals("Latte");

In this example, we assume that the person for whom we are searching is in
the array. If we cannot assume this, then we need to rewrite the terminating condi-
tion to take care of the case when the person is not in the array. Here’s how:

int i = 0;

while (i < person.length &&//still more persons to search
!person[i].getName().equals("Latte")) {

i++;
}

if (i == person.length) {
//not found - unsuccessful search
System.out.println("Ms. Latte was not in the array");

} else {
//found - successful search
System.out.println("Found Ms. Latte at position " + i);

}

560 Chapter 10 Arrays and Collections

find a particu-
lar person

wu23399_ch10.qxd 12/28/06 12:38 Page 560

Here’s the complete program that summarizes the topics covered so far in this
section:

10.2 Arrays of Objects 561

/*
Chapter 10 Sample Program: Illustrate the processing

of an array of Person objects

File: Ch10ProcessPersonArray.java
*/

import java.util.*;

class Ch10ProcessPersonArray {

public static void main (String[] args) {

Person[] person; //declare the person array
person = new Person[5]; //and then create it

//----------- Create person Array -------------------//

String name, inpStr;
int age;
char gender;

for (int i = 0; i < person.length; i++) {

//read in data values
System.out.print("Enter name: ");
name = scanner.next();

System.out.print("Enter age: ");
age = scanner.nextInt();

System.out.print("Enter gender: ");
inpStr = scanner.next();
gender = inpStr.charAt(0);

//create a new Person and assign values
person[i] = new Person();

person[i].setName (name);
person[i].setAge (age);
person[i].setGender(gender);

}

//-------------- Compute Average Age --------------//

float sum = 0, averageAge;

for (int i = 0; i < person.length; i++) {

sum += person[i].getAge();
}

wu23399_ch10.qxd 12/28/06 12:38 Page 561

averageAge = sum / (float) person.length;

System.out.println("Average age: " + averageAge);
System.out.println("\n");

//------ Find the youngest and oldest persons ----------//
//------ Approach No. 3: Using person reference --------//

Person youngest, //points to the youngest person
oldest; //points to the oldest person

youngest = oldest = person[0];

for (int i = 1; i < person.length; i++) {

if (person[i].getAge() < youngest.getAge()) {
//found a younger person
youngest = person[i];

}
else if (person[i].getAge() > oldest.getAge()) {

//found an older person
oldest = person[i];

}
}

System.out.println("Oldest : " + oldest.getName()
+ " is " + oldest.getAge() + " years old.");

System.out.println("Youngest: " + youngest.getName()
+ " is " + youngest.getAge() + " years old.");

//----------- Search for a particular person ------------//

System.out.print("Name to search: ");
String searchName = scanner.next();

int i = 0;

while (i < person.length && //still more persons to search
!person[i].getName().equals(searchName)) {

i++;
}

if (i == person.length) {
//not found - unsuccessful search
System.out.println(searchName + " was not in the array");

} else {
//found - successful search

System.out.println("Found " + searchName + " at position " + i);
}

}
}

562 Chapter 10 Arrays and Collections

wu23399_ch10.qxd 12/28/06 12:38 Page 562

Now let’s consider the deletion operation. The deletion operation requires some
kind of a search routine to locate the Person object to be removed. To concentrate on
the deletion operation, we will assume there’s a search method that returns the index
of the Person object in the array to be removed. There are two possible ways to remove
an object from the array. The first approach is to reset the array element to null. Re-
member that each element in an array of objects is a reference to an object, so remov-
ing an object from an array could be accomplished by setting the reference to null.
Figure 10.7 illustrates how the object at position 1 is deleted by using approach 1.

Since any index position can be set to null, there can be “holes,” that is, null
references, anywhere in the array. Instead of intermixing real and null references,
the second approach will pack the elements so that the real references occur at the
beginning and the null references at the end:

10.2 Arrays of Objects 563

Figure 10.7 Approach 1 deletion: setting a reference to null. The array length is 4.

0 1

Before

Remove this

2 3

person
0 1

After

2 3

person

int delIdx = 1;
person[delIdx] = null;

A Person object at index 1
is removed.

A

:Person

C

:Person

D

:Person

A B C D

:Person :Person :Person :Person

delete a
particular
person

Real references null references

0 1 2

person
17i+1i

••• •••

18 19

With approach 2, we must fill the hole. There are two possible solutions. The
first solution is to pack the elements. If an object at position J is removed (i.e., this po-
sition is set to null), then elements from position J+1 up to the last non-null reference
are shifted one position lower. And, finally, the last non-null reference is set to null.
The second solution is to replace the removed element by the last element in the

wu23399_ch10.qxd 12/28/06 12:38 Page 563

array. The first solution is necessary if the Person objects are arranged in some order
(e.g., in ascending order of age). The second solution is a better one if the Person ob-
jects are not arranged in any order. Since we are not arranging them in any order, we
will use the second solution. Figure 10.8 illustrates how the object at position 1 is
replaced by the last element.

The search routine we presented earlier in this section assumes the full array;
that is, all elements are non-null references. With the deletion routine, either ap-
proach 1 or 2, given above, an array element could be a null. The search routine
must therefore be modified to skip the null references (for approach 1) or to stop the
search when the first null reference is encountered (for approach 2).

In both Figures 10.7 and 10.8, we removed the icon for Person B in the diagrams
when the array element was set to null as though the object were erased from the
memory. Eventually, the object will indeed be erased, but the operation of assigning
null to the array element will not erase the object by itself. The operation simply
initiates a chain reaction that will eventually erase the object from the memory.

As we have shown several times already, a single object can have multiple ref-
erences pointing to it. For example, the following code will result in two references
pointing to a single Person object:

Person p1, p2;

p1 = new Person();
p2 = p1;

p1 p2

:Person

564 Chapter 10 Arrays and Collections

0 1

Before

2 3

person
0 1

After

2 3

person

int delIdx = 1;
int last = 3;

person[delIdx] = person[last];

person[last] = null;

A Person object at index 1 is removed,
and the last object at index 3 replaces
the removed object.

A B C D

:Person :Person :Person :Person

A

:Person

C

:Person

D

:Person

Remove this

Figure 10.8 Approach 2 deletion: replace the removed element with the last element in the array. The array
length is 4.

wu23399_ch10.qxd 12/28/06 12:38 Page 564

When an object has no references pointing to it, then the system will erase the object
and make the memory space available for other uses. We call the erasing of an
object deallocation of memory, and the process of deallocating memory is called
garbage collection. Unlike in other programming languages, garbage collection is
automatically done in Java, so we do not have to be conscious of it when develop-
ing Java programs.

10.3 The For-Each Loop 565

garbage
collection

1. Which of these statements are invalid?

a. Person[25] person;
b. Person[] person;
c. Person person[] = new Person[25];
d. Person person[25] = new Person[25];

2. Write a code fragment to print out the names of those who are older than 20.
Assume the following declaration and that the array is already set up
correctly.

Person[] friend = new Person[100];

10.3 The For-Each Loop
In Chapter 6, we mentioned a new form of the for loop that is introduced in Java 5.0.
There is no official name to this for loop, but the term for-each is used most often.
The term enhanced for loop is also used by many to refer to this for loop. We will
use both terms interchangeably in this book.

We will show here how to use the for-each loop in processing an array. We will
show how to use it in processing a collection in Section 10.5. Let’s assume number
is an int array of 100 integers. Using the standard for loop, we compute the sum of
all elements in the number array as follows:

int sum = 0;

for (int i = 0; i < number.length; i++) {

sum = sum + number[i];
}

We can also compute the sum by using a for-each loop as follows:

int sum = 0;

for (int value : number) {

sum = sum + value;
}

wu23399_ch10.qxd 12/28/06 12:38 Page 565

The loop iterates over every element in the number array, and the loop body is
executed for each iteration. The variable value refers to each element in the array
during the iteration. So we can interpret this loop as saying something like “For
each value in number, execute the following loop body.”

The general syntax for the for-each loop is

for (<type> <variable> : <array>)

<loop body>

where <type> is the data type of <variable>, <array> the name of the array, and
<loop body> is a sequence of 0 or more statements (the left and right braces are
required if there is more than one statement in the loop body).

Let’s look at another example. This time we use an array of objects. Suppose
we have an array of 100 Person objects called person:

Person[] person = new Person[100];

The Person class is defined in Section 10.2. Assuming that 100 Person objects are
created and assigned to person[0] to person[99], we can list the name of every
person in the array by using the following for-each loop:

for (Person p : person) {

System.out.println(p.getName());
}

Contrast this to the standard for loop:

for (int i = 0; i < person.length; i++) {

System.out.println(person[i].getName());
}

The for-each loop is, in general, cleaner and easier to read.
There are several restrictions on using the for-each loop. First, you cannot

change an element in the array during the iteration. The following code does not
reset the array elements to 0:

int [] number = {10, 20, 30, 40, 50};

for (int value : number){

value = 0;
}

for (int value : number) {

System.out.println(value);
}

566 Chapter 10 Arrays and Collections

This loop has no effect.

wu23399_ch10.qxd 12/28/06 12:38 Page 566

The first for-each loop has no effect, so the output from this code will be

10
20
30
40
50

We can characterize the for-each loop as a read-only iteration of the elements.

10.3 The For-Each Loop 567

The for-each loop only allows access to the elements. The elements cannot
be changed.

For an array of objects, an element is actually a reference to an object, so the fol-
lowing for-each loop is ineffective. Specifically, it does not reset the elements to null.

Person[] person = new Person[100];

for (int i = 0; i < person.length; i++) {
person[i] = ...; //code to create a new Person object

}

for (Person p : person) {

p = null;
}

Although we cannot change the elements of an array, we can change the
content of an object if the element is a reference to an object. For example, the
following for-each loop will reset the names of all objects to Java:

Person[] person = new Person[100];

for (int i = 0; i < person.length; i++) {
person[i] = ...; //code to create a new Person object

}

for (Person p : person) {

p.setName("Java");
}

Notice that we are not changing the elements (references to objects) themselves, but
the content of the objects referenced by these elements. Thus, the code is effective.

This loop is effective. The
name of every Person
object is set to Java.

This loop has no effect.

wu23399_ch10.qxd 12/28/06 12:38 Page 567

The second restriction is that we cannot access more than one array using a
single for-each loop. Suppose we have two integer arrays num1 and num2 of length
200 and want to create a third array num3 whose elements are sum of the corre-
sponding elements in num1 and num2. Here’s the standard for loop:

int[] num1 = new int[200];
int[] num2 = new int[200];
int[] num3 = new int[200];

//code to assign values to the elements of num1 and num2

//compute the sums
for (int i = 0; i < num3.length; i++) {

num3[i] = num1[i] + num2[i];
}

Such a loop cannot be written with a for-each loop.

568 Chapter 10 Arrays and Collections

The for-each loop allows access to only a single array.

The third restriction is that we must access all elements in an array from the
first to the last element. We cannot, for example, access only the first half or the last
half of the array. We cannot access elements in reverse order either.

The for-each loop iterates over every element of an array from the first to the last
element. We cannot use the for-each loop to access only a portion of an array or
to access the elements in reverse order.

This restriction complicates the matter when we try to access elements in an
array of objects. Consider the following code:

Person[] person = new Person[100];

for (int i = 0; i < 50; i++) {
person[i] = ...; //code to create a new Person object

}

wu23399_ch10.qxd 12/28/06 12:38 Page 568

10.4 Passing Arrays to Methods 569

1. Rewrite the following for loop by using a for-each loop.

for (int i = 0; i < number.length; i++) {

System.out.println(number[i]);
}

2. Rewrite the following for loop by using the standard for loop.

for (Person p : person) {
System.out.println(p.getName());

}

3. Why can’t the following for loop be expressed as a for-each loop?

for (int i = 0; i < number.length; i++) {

number[i] = number[i] + 50;
}

10.4 Passing Arrays to Methods
We discussed the passing of an object to a method by using String objects as illus-
trations in Chapter 4. Since both an array and an object are a reference data type, the
rules for passing an object to a method and returning an object from the method
apply to arrays also. However, there are some additional rules we need to remember
in passing an array to a method and returning it from a method. We will cover these
topics in this section.

Let’s define a method that returns the index of the smallest element in an array
of real numbers. The array to search for the smallest element is passed to the
method. Here’s the method:

public int searchMinimum(double[] number) {

int indexOfMinimum = 0;

for (int i = 1; i < number.length; i++) {
if (number[i] < number[indexOfMinimum]) { //found a

for (Person p : person) {
System.out.println(

p.getName());
}

This code will crash when the variable p is set to the 51st element (i.e., an element
at index position 50), because the element is null. Notice that only the first 50 ele-
ments actually point to Person objects. The elements in the second half of the array
are all null.

This loop will result in a
NullPointerException error.

wu23399_ch10.qxd 12/28/06 12:38 Page 569

indexOfMinimum = i; //smaller element
}

}

return indexOfMinimum;
}

Notice that we use the square brackets to designate that number is an array. The
square brackets may also be attached to the parameter, as in

public int searchMinimum(double number[])

To call this method (from a method of the same class), we write something
like this:

double[] arrayOne, arrayTwo;

//create and assign values to arrayOne and arrayTwo
...
//get the index of the smallest element of arrayOne
int minOne = searchMinimum(arrayOne);

//get the index of the smallest element of arrayTwo
int minTwo = searchMinimum(arrayTwo);

//output the result
System.out.print("Minimum value in Array One is ");
System.out.print(arrayOne[minOne] +" at position "

+ minOne);

System.out.print("\n\n");

System.out.print("Minimum value in Array Two is ");
System.out.print(arrayTwo[minTwo] + " at position "

+ minTwo);

Just like other objects, an array is a reference data type, so we are passing the
reference to an array, not the whole array, when we call the searchMinimum method.
For example, when the method is called with arrayOne as its argument, the states of
memory illustrated in Figures 10.9 and 10.10 will result. There are two references
to the same array. The method does not create a separate copy of the array.

570 Chapter 10 Arrays and Collections

When an array is passed to a method, only its reference is passed. A copy of the array
is not created in the method.

Now let’s try another example in which we return an array (actually the refer-
ence to the array) from a method. Suppose we want to define a method that inputs

wu23399_ch10.qxd 12/28/06 12:38 Page 570

10.4 Passing Arrays to Methods 571

double values and returns the values as an array of double. We can define the
method as follows:

public double[] readDoubles() {
double[] number;
System.out.print("How many input values? ");
int N = scanner.nextInt();

number = new double[N];

for (int i = 0; i < N; i++) {
System.out.print("Number " + i + ": ");
number[i] = scanner.nextDouble();

}

return number;
}

arrayOne

1 execution f low

Local variables do not exist
before the method execution.

minOne = searchMinimum(arrayOne);

public int searchMinimum(double[] number) {
 ...

}

at before calling searchMinimum1

1

state of memory

• • •

2

Memory space for the parameter of searchMinimum
is allocated, and the value of arrayOne, which is a
reference (address) to an array, is copied to
number. So now both variables refer to the same
array.

minOne = searchMinimum(arrayOne);

public int searchMinimum(double[] number) {
 ...

}

at after the parameter is assigned2

2

arrayOne number

• • •

Figure 10.9 Passing an array to a method means we are passing a reference to an array. We are not passing
the whole array.

wu23399_ch10.qxd 12/28/06 12:38 Page 571

The square brackets beside the method return type double indicate that the
method returns an array of double. Because an array is a reference data type, when
we say “returns an array of double,” we are really saying “returns the reference to
an array of double.” We will use the shorter expression in general and use the longer
expression only when we need to be precise.

The readDoubles method is called in this manner:

double[] arrayOne, arrayTwo;

//assign values to arrayOne and arrayTwo
arrayOne = readDoubles();

arrayTwo = readDoubles();

572 Chapter 10 Arrays and Collections

arrayOne

4

minOne = searchMinimum(arrayOne);

public int searchMinimum(double[] number) {
 ...

}

at after searchMinimum4

4

• • •

3

After the sequence of activities,
before returning from the method.

Memory space for searchMinimum is deallocated upon
exiting the method. The array itself is not part of
memory allocated for searchMinimum and will not be
deallocated upon exit.

minOne = searchMinimum(arrayOne);

public int searchMinimum(double[] number) {
 ...

}

at before return3

3

Note: The searchMinimum method did not make any
changes to the contents of the array. However, if it did,
then the changes made to the array contents will remain
in effect because the array is not deallocated.

arrayOne number

• • •

Figure 10.10 Continuation of Figure 10.9.

wu23399_ch10.qxd 12/28/06 12:38 Page 572

Bad Version

Since a new array is created by the method, we do not have to create an array from
the calling side. In other words, we don’t have to do this:

double[] arrayOne, arrayTwo;

arrayOne = new double[30]; //this is NOT necessary

arrayOne = readDoubles();

It won’t cause an error if we create an array from the calling side, but we are doing
a very wasteful operation. First, it takes up extra memory space. Second, it slows
down the whole operation because the computer must garbage-collect the extra
memory space that is not being used.

Let’s try an alternative approach. This time, instead of creating an array inside
the method and returning the array, the calling side creates an array and passes this
array to the method:

int[] myIntArray = new int[50];

readIntegers(myIntArray);

The method readIntegers fills the passed array with integers. The method is defined
as follows:

public void readIntegers(int[] number) {
for (int i = 0; i < number.length; i++) {

System.out.print("Number " + i + ": ");
number[i] = scanner.nextDouble();

}
}

Notice the return type of readIntegers is void because we are not returning an array.
The method modifies the array that is passed to it.

Be careful not to mix the two alternative approaches. The following method
will not work:

public void badMethod(double[] number) {
System.out.print("How many input values? ");
int N = scanner.nextInt();
number = new double[N];

for (int i = 0; i < N; i++) {
System.out.print("Number " + i + ": ");
number[i] = scanner.nextDouble();

}
}

10.4 Passing Arrays to Methods 573

wu23399_ch10.qxd 12/28/06 12:38 Page 573

Code such as

double[] arrayOne = new double[30];

badMethod(arrayOne);

will leave arrayOne unchanged. Figures 10.11 and 10.12 show the effect of creating
a local array in badMethod and not returning it. (Note: The return type of bad-
Method is void.)

574 Chapter 10 Arrays and Collections

arrayOne

1 Execution f low

Local variables do not exist
before the method execution.

badMethod(arrayOne);

badMethod(arrayOne);

public void badMethod(double[] number) {
 ...
 number = new double[N];
 ...
}

public void badMethod(double[] number) {
 ...
 number = new double[N];
 ...
}

at before calling searchMinimum1

1

state of memory

• • •

2

Memory space for the parameter of badMethod
is allocated, and the value of arrayOne, which is a
reference (address) to an array, is copied to
number. So now both variables refer to the same
array.

at after the parameter is assigned2

2

arrayOne number

• • •

Figure 10.11 Effect of creating a local array and not returning it.

1. What will be an output from the following code?

int[] list = {10, 20, 30, 40 };
myMethod(list);
System.out.println(list[1]);

wu23399_ch10.qxd 12/28/06 12:38 Page 574

System.out.println(list[3]);

...
public void myMethod(int[] intArray) {

for (int i = 0; i < intArray.length; i+=2) {
intArray[i] = i;

}
}

2. If we replace myMethod of question 1 with the following, what will be an output?

public void myMethod(int[] intArray)
{

int[] local = intArray;
for (int i = 0; i < local.length; i+=2) {

local[i] = i;
}

}

10.4 Passing Arrays to Methods 575

badMethod(arrayOne);

public void badMethod(double[] number) {
 ...
 number = new double[N];
 ...
}

3

A separate array is created and the
variable number now refers to this
“local” array.

at after the local array is created3

3

arrayOne number

• • • • • •

This is a newly created array completely
separate and different from the argument
array. Changes made to this array will not
affect the original array.

badMethod(arrayOne);

public void badMethod(double[] number) {
 ...
 number = new double[N];
 ...
}

4

Memory space for badMethod is deallocated
upon exiting the method. The array created
by this method now has no variable referring
to it, so this array is deallocated also.

at after badMethod4

4

arrayOne

• • •

Figure 10.12 Continuation of Figure 10.11.

wu23399_ch10.qxd 12/28/06 12:38 Page 575

10.5 Two-Dimensional Arrays
A table organized in rows and columns is a very effective means for communicating
many different types of information. Figure 10.13 shows sample data displayed in a
tabular format. In Java, we represent tables as two-dimensional arrays. The arrays
we have discussed so far are one-dimensional arrays because they have only one
index. In this section, we describe how two-dimensional arrays are used in Java.

Let’s begin with an example. Consider the following table with four rows and
five columns. The table contains the hourly rate of programmers based on their skill
level. The rows (horizontal) represent the grade levels, and the columns (vertical)

576 Chapter 10 Arrays and Collections

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

2

1 2

4

6

8

10

12

14

16

18

3

3

6

9

12

15

18

21

24

27

4

4

8

12

16

20

24

28

32

36

5

5

Multiplication Table

10

15

20

25

30

35

40

45

6

6

12

18

24

30

36

42

48

54

7

7

14

21

28

35

42

49

56

63

8

8

16

24

32

40

48

56

64

72

9

9

18

27

36

45

54

63

72

81

Los Angeles

San Francisco

San Jose

San Diego

Monterey

Los
Angeles

San
Francisco San Jose San Diego Monterey

—

600

500

150

450

600

—

100

750

150

500

100

—

650

 50

150

750

650

—

600

450

150

 50

600

—

Distance Table (in miles)

Tuition Table

Grades 1–6

Grades 7–8

Grades 9–12

$16,000.00

$19,000.00

$22,500.00

Day
Students

$28,000.00

$31,000.00

$34,500.00

Boarding
Students

Figure 10.13 Examples of information represented as tables.

two-
dimensional
array

wu23399_ch10.qxd 12/28/06 12:38 Page 576

represent the steps within a grade level. Reading the table, we know a programmer
with skill grade level 2, step 1 earns $36.50 per hour.

10.5 Two-Dimensional Arrays 577

Figure 10.14 Accessing an element of a two-dimensional array.

0

0

1

1

2

Row # Column #

2 36.50

3

3

4

payScaleTable[2][1]

Step
0 1 2 3 4

0 10.50 12.00 14.50 16.75 18.00

1 20.50 22.25 24.00 26.25 28.00

2 34.00 36.50 38.00 40.35 43.00

3 50.00 60.00 70.00 80.00 99.99
G

ra
d

e

We declare the pay scale table as

double[][] payScaleTable;

or

double payScaleTable[][];

and create the array as

payScaleTable = new double[4][5];

The payScaleTable array is a two-dimensional array because two indices—
one for the row and another for the column—are used to refer to an array element.
For example, to refer to the element at the second column (column 1) of the third
row (row 2), we say

payScaleTable[2][1]

Figure 10.14 illustrates how the two indices are used to access an array element of
a two-dimensional array.

wu23399_ch10.qxd 12/28/06 12:38 Page 577

Let’s go over some examples to see how the elements of two-dimensional
arrays are manipulated. This code finds the average pay of the grade 2 programmers.

double average, sum = 0.0;

for (int j = 0; j < 5; j++) {
sum += payScaleTable[2][j];

}

average = sum / 5;

The next example prints out the pay difference between the lowest and highest
steps for each grade level.

double difference;

for (int i = 0; i < 4; i++) {
difference = payScaleTable[i][4] - payScaleTable[i][0];
System.out.println("Pay difference at Grade Level " +

i + " is " + difference);
}

This code adds $1.50 to every skill level.

for (int i = 0; i < 4; i++) {
for (int j = 0; j < 5; j++) {

payScaleTable[i][j] += 1.50;
}

}

In the previous examples, we used literal constants such as 5 and 4 to keep them
simple. For real programs, we need to write a loop that will work for two-dimensional
arrays of any size, not just with the one with four rows and five columns. We can use
the length field of an array to write such a loop. Using the length field, we can
rewrite the third example as

for (int i = 0; i < payScaleTable.length; i++) {
for (int j = 0; j < payScaleTable[i].length; j++) {

payScaleTable[i][j] += 1.50;
}

}

Do you notice a subtle difference in the code? Let’s examine the difference
between the expressions

payScaleTable.length

and

payScaleTable[i].length

578 Chapter 10 Arrays and Collections

wu23399_ch10.qxd 12/28/06 12:38 Page 578

First, there is actually no explicit structure called two-dimensional array in Java.
We only have one-dimensional arrays in Java. However, we can have an array of
arrays, and this is how the conceptual two-dimensional array is implemented in
Java. The sample array creation

payScaleTable = new double[4][5];

is really a shorthand for

payScaleTable = new double[4][];

payScaleTable[0] = new double[5];
payScaleTable[1] = new double[5];
payScaleTable[2] = new double[5];
payScaleTable[3] = new double[5];

which is equivalent to

payScaleTable = new double[4][];

for (int i = 0; i < 4; i++) {
payScaleTable[i] = new double[5];

}

Figure 10.15 shows the effect of executing the five statements. The expression

payScaleTable.length

refers to the length of the payScaleTable array itself.

And the expression

payScaleTable[1].length

refers to the length of an array stored at row 1 of payScaleTable.

0 0 1 2 3 4

1

2

3

payScaleTable

payScaleTable[1].length == 5

payScaleTable

payScaleTable.length == 4

0

1

2

3

10.5 Two-Dimensional Arrays 579

wu23399_ch10.qxd 12/28/06 12:38 Page 579

580 Chapter 10 Arrays and Collections

Figure 10.15 Executing the statements on the left in sequence will create the array of arrays shown on
the right.

payScaleTable

payScaleTable[3] = new double[5];

0

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

1

2

3

5

payScaleTable

payScaleTable[2] = new double[5];

0

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4
1

2

3

4

payScaleTable

payScaleTable[1] = new double[5];

0

0 1 2 3 4

0 1 2 3 4

1

2

3

3

payScaleTable

payScaleTable[0] = new double[5];

0

0 1 2 3 4

1

2

3

2

payScaleTable

payScaleTable = new double[4][];

0

1

2

3

1

Executing... Will result in...

wu23399_ch10.qxd 12/28/06 12:38 Page 580

We call an array that is part of another a subarray. The payScaleTable has four
subarrays of the same length. Since we allocate the subarrays individually, we can
create subarrays of different lengths. The following code creates a triangular array
whose subarray triangularArray[i] has length i.

triangularArray = new double[4][];

for (int i = 0; i < 4; i++)
triangularArray[i] = new double[i+1];

The resulting triangularArray looks like this:

An array of arrays can be initialized at the time of declaration. The following
declaration initializes the payScaleTable array:

double[][] payScaleTable
= { {10.50, 12.00, 14.50, 16.75, 18.00},

{20.50, 22.25, 24.00, 26.25, 28.00},
{34.00, 36.50, 38.00, 40.35, 43.00},
{50.00, 60.00, 70.00, 80.00, 99.99} };

Here’s the complete sample program:

triangularArray

0

0

0 1

0 1 2

0 1 2 3

1

2

3

10.5 Two-Dimensional Arrays 581

/*

Chapter 10 Sample Program: Sample program for processing
2-D array of double.

File: Ch10PayScaleTable.java
*/

class Ch10PayScaleTable {
public static void main (String[] args) {

double[][] payScaleTable
= { {10.50, 12.00, 14.50, 16.75, 18.00},

{20.50, 22.25, 24.00, 26.25, 28.00},
{34.00, 36.50, 38.00, 40.35, 43.00},
{50.00, 60.00, 70.00, 80.00, 99.99} };

wu23399_ch10.qxd 12/28/06 12:38 Page 581

//Find the average pay of level 2 employees
double sum = 0.0, average;

for (int j = 0; j < 5; j++) {
sum += payScaleTable[2][j];

}

average = sum / 5;

System.out.println(" Average of Level 2 Employees: " + average);
System.out.println("\n");

//Display the pay difference at each grade level
double difference;

for (int i = 0; i < 4; i++) {
difference = payScaleTable[i][4] - payScaleTable[i][0];
System.out.println("Pay difference at Grade Level " +

i + " is " + difference);
}

//Print out the pay scale table
System.out.println("\n");

for (int i = 0; i < payScaleTable.length; i++) {

for (int j = 0; j < payScaleTable[i].length; j++) {

System.out.print(payScaleTable[i][j] + " ");
}

System.out.println("");
}

//Increase the pay by 1.50 for every level/step
//and display the resulting table
System.out.println("\n");

for (int i = 0; i < payScaleTable.length; i++) {

for (int j = 0; j < payScaleTable[i].length; j++) {

payScaleTable[i][j] += 1.50;

System.out.print(payScaleTable[i][j] + " ");
}

System.out.println("");
}

}
}

582 Chapter 10 Arrays and Collections

wu23399_ch10.qxd 12/28/06 12:38 Page 582

We can nest for-each loops to process a two-dimensional array. Remember
that the two-dimensional array is structurally an array of arrays (as illustrated in
Figure 10.15), and the nested for-each loops will make this fact explict. To print out
the pay scale table, for example, we write

for (double[] row : payScaleTable) {

for (double pay : row) {

System.out.print(pay + " ");
}

System.out.println("");
}

The outer loop iterates over the rows in the payScaleTable two-dimensional array. Each
row is one-dimensional array of double, so the type is declared as double[]. And the
inner loop iterates over the elements in each row. Notice that we cannot rewrite the
other loop statements in the Ch10PayScaleTable program by using the for-each loop.

There is no limit to the number of dimensions an array can have. We can
declare three-dimensional, four-dimensional, and higher-dimensional arrays. How-
ever, arrays with a dimension higher than 2 are not frequently used in object-
oriented languages. For example, data that were represented as a three-dimensional
array in a non-object-oriented language can be represented more naturally as a one-
dimensional array of objects with each object containing an array or some other
form of data structure (see Exercise 12 on page 615).

10.6 Lists and Maps 583

1. Write a code fragment to compute the average pay of the pays stored in the
payScaleTable array.

2. Write a code fragment that finds the largest integer in this two-dimensional array.

int[][] table = new int[10][10];

3. What is an output from this code?

int[][] table = new int[10][5];

System.out.println(table.length);
System.out.println(table[4].length);

10.6 Lists and Maps
Once an array is created, its capacity cannot be changed. For example, if we create
an array of 20 elements, then we are limited to store at most 20 elements in using
this array. If we need to add elements, then we have to create a new array. (Note: We
will learn how to do this in Section 10.7.) We call the condition in which an array
does not have any unused position left to add another element an array overflow.

array overflow

wu23399_ch10.qxd 12/28/06 12:38 Page 583

Bad Version

Whenever we use arrays in an application, we need to consider the possibility
of an array overflow. We can usually avoid an array overflow by declaring its capac-
ity to be a large number. However, if we declare the capacity of an array too large,
we may avoid an array overflow but end up underutilizing the space (e.g., using only
20 positions in an array with the capacity of 500). If we do not want our application
to be limited to some fixed capacity, we need to write code that handles an array
overflow by allocating a larger array.

If we need to handle an array overflow for multiple arrays we use in an appli-
cation, we can define a class that handles the array overflow so we don’t have to im-
plement an overflow-handling code for individual arrays. We might call the new
class ExpandableArray. By using this class, we can keep adding new elements with-
out worrying about the overflow condition, because the class handles the overflow
condition automatically.

It turns out there’s no need for us to write such an ExpandableArray class because
the Java standard library java.util already includes various classes and (interfaces) for
maintaining a collection of objects. They are collectively referred as the Java Collec-
tion Framework, or JCF. We will study the basic ones in this section.

The first is the List interface. Like a class, an interface is a reference data type;
but unlike a class, an interface includes only constants and abstract methods. An
abstract method has only the method header (or, more formally, the method proto-
type); that is, it has no method body. The abstract methods of an interface define a
behavior. For example, the List interface includes 25 abstract methods that collec-
tively define a behavior of a linear list, such as adding an element, removing an
element, and so forth.

We cannot create an instance of a Java interface. (Note: To differentiate a user
interface from a reference data type interface, we will use the term Java interface to
refer to the latter.) For example, the following will result in a compile-time error:

List myList = new List ();

To create an instance that will support a List behavior, we need a class that im-
plements the List interface. We say a class implements an interface if it provides the
method body to all the abstract methods defined in the Java interface.

There are two classes in JCF that implement the List interface: ArrayList and
LinkedList. Because they implement the same interface, they behave exactly the
same. That is, there’s no difference in using them (as long as we use the methods
defined in the List interface). They differ in the internal data structure they use to
implement the interface. The ArrayList class uses an array, and the LinkedList class
uses a technique called linked-node representation. We choose one over the other
depending on the nature of application (e.g., choose LinkedList if the application
requires frequent insertions and deletions of elements but occasional searching for
elements in the list). It is beyond our scope to provide an in-depth comparative
analysis here. In most situations, the ArrayList class would be preferable so we will
use it for the examples in this chapter. We will provide more detailed coverage and
analysis on the array versus linked-node representation in Chapters 16 and 18.

584 Chapter 10 Arrays and Collections

JCF

interface

abstract
method

java.util

wu23399_ch10.qxd 12/28/06 12:38 Page 584

Let’s study how we can use the methods of the List interface. First we need to
declare and create an instance of a class that implements the List interface. Let’s use
the ArrayList class. From what we have learned so far about declaring and creating
an instance of a class, we would write something like

ArrayList myList;
... Not recommended

myList = new ArrayList();

if the class is ArrayList. This would work (you’ll get only a compiler warning), but it
is not a recommended style of programming. There are two improvements we
should make. The first is to declare the variable as the Java interface and to assign an
instance of the class that implements the interface. Applying this improvement will
result in

List myList; myList is declared as

... type List

myList = new ArrayList();

Basically this style of declaration improves the ease of program modification.
Suppose, for example, there are many methods that accept a list object

public void myMethod(ArrayList aList)

With this declaration, we can only pass an instance of ArrayList. Now suppose at a
later time we decide to use LinkedList to improve performances for certain types of
operations. We have to go back and make changes to all those method headers. But
what if we declare the method from the beginning as follows?

public void myMethod(List aList)

Since we can pass an instance of either ArrayList or LinkedList (or an instance of any
class that implements the List interface), no changes are required. We will study the
Java interface in greater detail in Chapter 13.

The second improvement is specific to Java 5.0 JCF classes. If we declare a
list object as

List myList = new ArrayList();

there are no restrictions on the type of objects we can add to the list. For example, we
can add String objects, Person objects, Vehicle objects, and so forth to this myList.

10.6 Lists and Maps 585

There is another “expandable array” in the JCF called Vector. The Vector class pre-
dates the JCF classes, but from Java 2 SDK 1.2, the class was modified to implement
the List interface. Because it was designed before the JCF classes, it includes many
methods in addition to the List methods. In general, the ArrayList class is recom-
mended for most situations.

wu23399_ch10.qxd 12/28/06 12:38 Page 585

We call such list a heterogeneous list. In most applications, there is no need to
maintain such heterogeneous lists. What we need is a homogeneous list, where the
elements are restricted to a specific type such as a list of Person objects, a list of
String objects, a list of Book objects, and so forth. Specifying the element type im-
proves the program reliability because an error such as trying to add a wrong type of
object to a list can be caught during the compile time. It is strongly recommended to
use homogeneous lists.

To specify a homogeneous list, we must include the type of elements in the
declaration and creation statements. Here’s an example that declares and creates a
list of Person objects:

List<Person> friends;
...
friends = new ArrayList<Person>();

The general syntax for the declaration is

interface-or-class-name < element-type > identifier;

And the general syntax for the creation is

identifier = new class-name < element-type > (parameters) ;

We can combine the two into a single statement as

interface-or-class-name < element-type > identifier
= new class-name <element-type> (parameters) ;

for example,

List<Person> friends = new ArrayList<Person>{);

Now we are ready to study the basic operations of the List interface. Once a list
is created properly, we can start adding elements. In the following example, we cre-
ate a list named friends and add four Person objects to the list:

List<Person> friends = new ArrayList<Person>{);
Person person;

person = new Person("Jane", 10, 'F');
friends.add(person);

person = new Person("Jack", 16, 'M');
friends.add(person);

person = new Person("Jill", 8, 'F');
friends.add(person);

person = new Person("John", 12, 'M');
friends.add(person);

586 Chapter 10 Arrays and Collections

add

heterogeneous
list

homogeneous
list

wu23399_ch10.qxd 12/28/06 12:38 Page 586

To find out the number of elements in a list, we use its size method. The
following code will print out 3:

List<String> sample = new ArrayList<String>{);

sample.add("One Java");
sample.add("One Java");
sample.add("One Java");

System.out.println(sample.size());

We can access objects in a list by giving their index position in the list, much
as we did with the array. We use the get method to access an object at index posi-
tion i. For example, to access the Person object at position 3 (note: the first element
is at position 0) in the friends list, we write

Person p = friends.get(3);

An invalid argument, such as a negative value or a value greater than size() – 1, will
result in an IndexOutOfBoundsException error.

One of the most common operations we perform on a list is traversal. This op-
eration, also called scanning or iteration, accesses all elements in a list. To traverse
a list from the first to the last element, we can use the for-each loop. Here’s how we
can print out the names of all those in the friends list by using the for-each loop:

for (Person p : friends) {

System.out.println(p.getName());
}

This for-each loop, new to Java 5.0, is actually a shortcut for using an iterator
pattern. When we call the iterator method of a list, it returns an Iterator object (an
instance of a class that implements the Iterator interface) that supports the two
methods hasNext and next. Here’s the code to print out the names of all those in the
friends list by using an iterator:

Person p;

Iterator<Person> itr = friends.iterator();

while (itr.hasNext()) {

p = itr.next();

System.out.println(p.getName());
}

Again, the for-each loop is built on top of the iterator pattern as a syntactical
shortcut, and wherever the iterator pattern is available, we can (and should) use the
cleaner and less error-prone for-each loop.

10.6 Lists and Maps 587

get

size

traversal

iterator

wu23399_ch10.qxd 12/28/06 12:38 Page 587

The traversal operation is necessary to search a list for elements that meet
some criterion. Let’s say we want to print out the names of those in the friends list
who are older than 10. Here’s the code:

for (Person p : friends) {

if (p.age() > 10) {
System.out.println(p.getName());

}
}

Instead of simply printing out their names, we could create another list to keep track
of those who are older than 10:

List<Person> olderThan10List = new ArrayList<Person>();

for (Person p : friends) {

if (p.age() > 10) {
olderThan10List.add(p);

}
}

The original friends list remains unchanged; that is, no objects are removed from
the list. We simply have a second list that points to a subset of elements in the
friends list. The situation can be illustrated as follows (two Person objects are older
than 10):

To remove an element from a list, we use the remove method. There are two
versions: one specifies the index position of the object to remove, and the other spec-
ifies the object itself (i.e., the reference to this object). If we use the first version,
here’s how we remove the Person object at index position 2 in the friends list:

friends.remove(2);

The second version of the remove method requires a reference to an object.
One way to acquire a reference to an object we want to remove is via traversal.

friends

olderThan10List

:Person :Person :Person :Person :Person :Person

•••

•••

588 Chapter 10 Arrays and Collections

remove

wu23399_ch10.qxd 12/28/06 12:38 Page 588

Bad Version

Here’s the code that traverses the friends list and removes all Person objects who are
older than 10:

List<Person> tempList = new ArrayList<Person>();

//first we collect those we want to remove from the
//friends list in a separate list
for (Person p : friends) {

if (p.age() > 10) {
tempList.add(p);

}
}

//then we remove every element in tempList
//from the friends list
for (Person p : tempList) {

friends.add(p);
}

Some of you might have thought about the following code:

for (Person p : friends) {

if (p.age() > 10) {
friends.remove(p);

}
}

This is an invalid operation. We are not allowed to modify the list we are traversing.
The for-each loop (and the underlying iterator pattern) is a read-only traversal.

10.6 Lists and Maps 589

No changes can be made to a list while traversing it with an iterator or a for-each
loop.

Lists and Primitive Data Types
With an array, we can store either primitive data values (int, double, etc.) or ob-
jects. With a list, we can store only objects. If we need to store primitive data values

wu23399_ch10.qxd 12/28/06 12:38 Page 589

in a list, then we must use wrapper classes such as Integer, Float, and Double. To
add integers to a list, we have to do something like this:

List<Integer> intList = new ArrayList<Integer>();

intList.add(new Integer(15));
intList.add(new Integer(30));
...

When we access the elements of intList, which are Integer objects, we need to
use the intValue method to get the integer value. The following code computes the
sum of integer values stored in intList:

int sum = 0;

for (Integer intObj : intList) {

sum = sum + intObj.intValue();
}

Instead of this tedious way of dealing with primitive data values, Java 5.0 in-
troduces automatic boxing and unboxing features. With Java 5.0, we can write the
code as if we could store primitive data values in lists. For example, the following
code is valid with Java 5.0:

List<Integer> intList = new ArrayList<Integer>();

intList.add(15);
intList.add(30);
...

int sum = 0;

for (int value : intList) {

sum = sum + value;
}

Keep in mind that there are no structural changes. We are still adding Integer
objects to intList (see the declaration for intList). It is just a syntactical shortcut.
When we write, for example,

intList.add(30);

the compiler translates it to

intList.add(new Integer(30));

This is called auto boxing. And when we write

int num = intList.get(1);

590 Chapter 10 Arrays and Collections

wu23399_ch10.qxd 12/28/06 12:38 Page 590

the compiler translates it to

int num = intList.get(1).intValue();

This is called auto unboxing.
Let’s conclude our discussion of the List interface with the BookTracker helper

class we used in the Sample Development section of Chapter 7. The BookTracker
class uses an ArrayList to keep track of library books. Here’s the definition:

10.6 Lists and Maps 591

/*
Chapter 7 Sample Development: Library Overdue Checker

File: BookTracker.java
*/

import java.util.*;

class BookTracker {

public static final int ERROR = -1;

private List<LibraryBook> books;

public BookTracker() {
books = new LinkedList<LibraryBook>();

}

public void add(LibraryBook book) {
books.add(book);

}

public double getCharge() {
return getCharge(new GregorianCalendar()); //set today as due date

}

public double getCharge(GregorianCalendar returnDate) {

if (books.isEmpty()) {
return ERROR;

} else {
return totalCharge(returnDate);

}
}

public String getList() {

StringBuffer result = new StringBuffer("");

String lineSeparator = System.getProperty("line.separator");

for (LibraryBook book: books) {
result.append(book.toString() + lineSeparator);

}

Constructor

add

getCharge

getList

wu23399_ch10.qxd 12/28/06 12:38 Page 591

return result.toString();
}

private double totalCharge(GregorianCalendar returnDate) {

double totalCharge = 0.0;

for (LibraryBook book: books) {
totalCharge += book.computeCharge(returnDate);

}

return totalCharge;
}

}

592 Chapter 10 Arrays and Collections

totalCharge

Map
Let’s move on to another useful interface called Map. There are two classes that im-
plement this interface: HashMap and TreeMap. We will describe the TreeMap class
in this section because this is the class we used in implementing the helper WordList
class in Chapter 9. The TreeMap class actually implements a subinterface of Map
called SortedMap, where the entries in the map are sorted.

A map consists of entries, with each entry divided into two parts: key and
value. No duplicate keys are allowed in the map. Both key and value can be an in-
stance of any class. The main advantage of a map is its performance in locating an
entry, given the key. Consider, for example, that we want to maintain a table of
course evaluations. For each course offered on campus, we want to keep an evalua-
tion that is summarized from the student opinion poll collected at the end of the
term. The course number (e.g., CS0101) is the key, and the evaluation is the value.
We would want to store the information as a map because we need to look up the
evaluation of a course efficiently, as there are hundreds or thousands of courses. The
search would take too long if we used other data structures.

As we know, a Java array allows only integer indices. In some situations we may
want to use an array with indices other than integers. For example, a WordList
from Chapter 9 can be viewed as an array of numbers with words (String) as its
indices. A map can be characterized as an expandable array with instances of
any class as its indices. So whenever we need an array of values with noninteger
indices, a map is a possible solution.

When declaring and creating a map, we must specify the type for the key and
the value. For example, to declare and create a map with String as both its key and
value, we write

Map<String,String> table;

table = new TreeMap<String,String>();

wu23399_ch10.qxd 12/28/06 12:38 Page 592

We use its put method to add the key-value pairs to the map as

table.put("CS0101", "Great course. Take it");

where the first argument is the key and the second argument is the value. To remove
an entry, we use the remove method with the key of an entry to remove from the
map, for example,

table.remove("CS2300");

Instead of removing individual elements, we can remove all of them at once
by calling the clear method. The statement

table.clear();

removes everything from the map, making it an empty map.
To retrieve the value associated to a key, we call the map’s get method.

String courseEval = table.get("CS102");

We can ask the map if it contains a given key. To check, for example, whether
the map contains an evaluation for course number CS0455, we write

boolean result = table.containsKey("CS0455");

If there’s no matching entry, then the value null is returned.
To traverse a map, we must first call its entrySet method to get a set of ele-

ments. The method returns an instance of a class that implements the Set interface,
another interface in JCF, that models a mathematical set. Those interested in using
the Set interface are referred to the Java API documentation. The methods defined
in the Set interface are very similar to those defined in the List interface. If we
know how to use the List interface, then it won’t take long for us to understand the
Set interface.

An element in a map is a key-value pair, so the entrySet method returns a set
of key-value pairs. A key-value pair is an instance of a class that implements the
Map.Entry interface. The dot notation indicates that the Entry interface is defined in
the declaration of the Map interface. Such a nested declaration is useful in avoiding
a naming conflict.

Two useful methods defined in the Map.Entry interface are the getKey and
getValue, whose purpose is to retrieve the key and the value of an entry, respec-
tively. To put it all together, here’s an example that outputs the course numbers and
their evaluations stored in the table map:

for (Map.Entry<String,String> entry : table.entrySet()) {

System.out.println(entry.getKey() + ":\n" +
entry.getValue() + "\n");

}

10.6 Lists and Maps 593

put

remove

clear

get

contains key

entrySet

wu23399_ch10.qxd 12/28/06 12:38 Page 593

Notice the type declaration for the loop variable entry is Map.Entry<String, String>.
Because the key and value component of Map.Entry can be of any class, we need to
indicate the actual type for the key and the value specific to this entry.

We are now ready to present the WordList class. It uses a TreeMap object to
keep track of distinct words in a document and how many times they occur in the
document. Notice the TreeMap class actually implements a more specialized map
interface called SortedMap, a subinterface of the Map interface that adds the be-
havior of sorting the elements in ascending key order. This is exactly the data struc-
ture we want to use here because we want to access and display the words and their
count in alphabetical order. Here’s the definition:

594 Chapter 10 Arrays and Collections

/*
Chapter 9 Sample Development: Word Concordance

File: WordList.java
*/

import java.util.*;

class WordList {

SortedMap<String, Integer> table;

public WordList() {

table = new TreeMap<String, Integer>();
}

public void add(String word) {

int val;

if (table.containsKey(word)) {

val = table.get(word) + 1;

} else {
//word occurs for the first time
val = 1;

}

table.put(word, val);
}

public String getConcordance(){
String line;
String lineTerminator

= System.getProperties().getProperty("line.separator");
StringBuffer strBuf = new StringBuffer("");

for (Map.Entry<String,Integer> entry : table.entrySet()) {

Constructor

add

getConcordance

Auto boxing and unboxing
are used in this method.

wu23399_ch10.qxd 12/28/06 12:38 Page 594

line = entry.getValue().toString() + "\t" +
entry.getKey() + lineTerminator;

strBuf.append(line);
}

return strBuf.toString();
}

public void reset() {
table.clear();

}
}

10.6 Lists and Maps 595

Compared to the amount of work the class has to perform, the length of its
source code is rather short. This is so because the hard part of maintaining the data
structure is done by the TreeMap class. Had we tried to implement the WordList
class without using the TreeMap class, the source code would have been much
longer. A little effort to study the JCF classes pays handsomely when the time comes
for us to implement an efficient data manager class, such as the WordList class.

reset

1. What is the output from the following code?

List<String> list = new ArrayList<String>();

for(int i = 0; i < 6; i++) {
list.add("element " + i);
System.out.println(list.size());

}

2. What is the output from the following code?

List<String> list = new ArrayList<String>();

for(int i = 0; i < 6; i++) {
list.add("element " + i);

}

list.remove(1);
list.remove(3);

System.out.println(list.get(2));

3. Identify all errors in the following code.

List<String> list = new ArrayList<Integer>();

List<Person> people = new List<Person>();

Map<String> table = new Map();

wu23399_ch10.qxd 12/28/06 12:38 Page 595

596 Chapter 10 Arrays and Collections

The Address Book

In this section, we will design a class called an AddressBook to maintain a collection of
Person objects. The AddressBook class is implemented by using an array. We will use
the Person class defined in Section 10.2. Through the design of the AddressBook
class, we will reiterate the key principles of object-oriented design.

Notice that we are not developing a complete program here. We are designing
only one of the many classes we need for a complete address book program. For the
complete program, we need a main window, objects for doing input and output, and so
forth. In this section, we will concentrate on one class that is only responsible for main-
taining a collection of Person objects. This class will not perform, for example, input and
output of Person objects, following the single-task object (STO) principle introduced in
Chapter 4. We will discuss the importance of the STO principle while we develop the
AddressBook class. One objective we have in designing the AddressBook class is to
make the class reusable in many different programs. Many of the design decisions we
will make during the development are based on implementing a reusable class.

Problem Statement

Write an AddressBook class that manages a collection of Person objects. An
AddressBook object will allow the programmer to add, delete, or search for a
Person object in the address book.

Overall Plan

Our first task is to come up with an overall design of the class. Let’s begin by first identify-
ing the core operations that an address book object must support. The problem state-
ment indicated three major operations: add, delete, and search. These three operations
are pretty much a standard in any collection of data values.For any kind of collections,you
will always want to be able to add a new item, delete an old item, and search for an item
or items. An address book is no exception as it is a collection of information about people
for whom you would want to add, delete, and search data.

Our task here is to design a class that will maintain an address book by supporting
these three operations.We will define three methods for the class: add,delete,and search.

Our working design document for the AddressBook class is therefore as follows:

Sample Development10.7 Sample Development

Design Document: The Public Methods of the AddressBook Class

Method Purpose
AddressBook A constructor to initialize the object. We will include multiple

constructors as necessary.

add Adds a new Person object to the address book.

delete Deletes a specified Person object from the address book.

search Searches for a specified Person object in the address book
and returns this person if found.

wu23399_ch10.qxd 12/28/06 12:38 Page 596

10.7 Sample Development 597

We will implement the class in this order:

1. Implement the constructor(s).

2. Implement the add method.

3. Implement the search method.

4. Implement the delete method.

5. Finalize the class.

This order of development follows a natural sequence. To implement any instance
method of a class, we need to be able to create a properly initialized object, so we will
begin the class implementation by defining a constructor. As a part of defining a con-
structor, we will identify necessary data members.We will add more data members as we
progress through the development steps. The second step is to implement the add rou-
tine, because without being able to add a new Person object, we won’t be able to test
other operations. For the third step, we will implement the search routine. And for the
fourth step, we will implement the last routine. Although we could implement the delete
routine before the search routine, we need some form of searching to test the correctness
of the delete routine. In other words, we delete a person and attempt to search for this
person, verifying that the search will not find the deleted person. So we will implement
the search routine before the delete routine.

Step 1 Development: Skeleton with Constructors

In step 1, we will identify the data members and define the constructor(s) to initialize
them. The key data member for the class is a structure we will use to keep track of a col-
lection of Person objects. We will use an array for this data structure. Our decision to use
an array is based on pedagogy. Using a List from JCF will simplify our development effort,
but it is more important to learn how to use arrays.

We will create an array of Person objects in the constructor. At the time we create
an array, we must declare its size. Remember that the size of an array is the maximum
number of elements this array can hold. The actual number of Person objects stored in
the array will be anywhere from zero to the size of the array.

We have two possible alternatives for specifying the size of an array. First, we can
let the programmer pass the size as an argument to the constructor. Second, we can
set the size to a default value. Both alternatives are useful. If the programmer has a
good estimate of the number of Person objects to manage, she can specify the size in
the constructor. Otherwise, she can use the default size by not specifying the size in
the constructor. We will define two constructors to support both alternatives. This will
give programmers flexibility in creating an AddressBook object.

If we are going to provide a constructor in which the programmer can pass the
size of an array, then we need to write the constructor so it won’t crash when an invalid
value is passed as an argument.What would be an invalid argument value? Since we are
dealing with a collection of objects and the size of a collection cannot be negative, an
argument value of less than zero is invalid. Also, even though a collection whose size is
zero may make sense in theory, such a collection makes no sense in practice. Therefore,

develop-
ment steps

step 1
design

wu23399_ch10.qxd 12/28/06 12:38 Page 597

10.7 Sample Development—continued

we will consider zero also as an invalid argument value. We will require an argument to
a constructor to be a positive integer. We will throw an IllegalArgumentException for
an invalid value.

At this point, we have only one data member—an array of objects. We will call it
entry because a Person object is a single entry in an address book. We will set the
default size of entry to 25. There is no particular reason for selecting this size. We
simply picked a number that is not too small or too big. We can change this value later
if we need to.

We will define two constructors. The first constructor will call the second con-
structor with the value 25 (default size) as its argument. The second constructor creates
an array of Person objects of the size passed as its parameter. Inside the second con-
structor, we include a temporary test output statement. The class is defined as follows:

598 Chapter 10 Arrays and Collections

step 1 code

/**
* This class is designed to manage an address book that contains
* Person objects. The user can specify the size of the address book
* when it is created. If no size is specified, then the default size
* is set to 25 Person objects.
*
* @author Dr. Caffeine
*
*/

class AddressBook {

private static final int DEFAULT_SIZE = 25;
private Person[] entry;

public AddressBook() {

this(DEFAULT_SIZE);
}

public AddressBook(int size) {

if (size <= 0) { //invalid data value, use default
throw new IllegalArgumentException("Size must be positive.");

}
entry = new Person[size];

System.out.println("array of "+ size + " is created."); //TEMP
}

}

Constructors

Data members

wu23399_ch10.qxd 12/28/06 12:38 Page 598

To test this class,we have included a temporary output statement inside the second
constructor. We will write a test program to verify that we can create an AddressBook
object correctly.The test data are as follows:

10.7 Sample Development 599

step 1 test

Step 1 Test Data

Data Value Purpose
Negative numbers Test the invalid data.

0 Test the end case of invalid data.

1 Test the end case of valid data.

�� 1 Test the normal cases.

We will use a very simple test program:

/*
Chapter 10 Sample Program: A test main program for

verifying the step 1 AddressBook class.

File: TestAddressBook.java
*/
import java.util.*;

class TestAddressBook { //Step 1 Test Main

public static void main(String args[]) {

AddressBook myBook;
String inputStr;
int size;

Scanner scanner = new Scanner(System.in);

while (true) {

System.out.print("Array size: ");
inputStr = scanner.next();

if (inputStr.equalsIgnoreCase("stop")) {
break;

}

size = Integer.parseInt(inputStr);

wu23399_ch10.qxd 12/28/06 12:38 Page 599

10.7 Sample Development—continued

600 Chapter 10 Arrays and Collections

try {
myBook = new AddressBook(size);

} catch (IllegalArgumentException e) {
System.out.println("Exception Thrown: size = " + size);

}
}

}
}

Run the program several times with a different set of test data and verify that we
get the correct results.

Step 2 Development: Implement the add Method

In the second development step, we will implement the add method. We mentioned in
the overall design step that this class will not do any input or output of person data.
This decision is based on the STO principle. A single object doing both the input/
output routines and maintaining the array will reduce its usability. For example, had the
AddressBook class used some GUI objects to handle the input and output of person
data, the use of this class would dictate or impose the style of input and output rou-
tines on the programmers. The programmer will not have an option of using the input
and output objects appropriate for his or her uses.

Following the STO principle, we will let the programmer decide how she will
input and output person data. The task of the add method is to accept a Person ob-
ject as its parameter and add the passed Person object to the array. Since the array is
limited in size, what should we do if there is no more space to add another Person
object? There are two alternatives. Alternative design 1 is to return false if a new
Person object cannot be added to the array, that is, if the array is full. The method will
return true otherwise. Alternative design 2 is to increase the array size. Since the size
of an array object cannot be changed once the object is created, we need to create
another array with a larger size than that of the original if we choose to implement
the second alternative.

Since the second alternative is more accommodating and less restrictive to the
programmer, we will implement this alternative. When the array is full, we will create a
new array, copy the objects from the original array to this new array, and finally set the
variable entry to point to this new array.We will set the size of the new array to 1.5 times
larger than the original array.This size increment is just an estimate. Any value between
125 and 200 percent of the old array is reasonable. You don’t want to make it too small,

step 2
design

alternative
design 1

alternative
design 2

wu23399_ch10.qxd 12/28/06 12:38 Page 600

say, 105 percent, since that will cause the enlarge method to be called too frequently.
You don’t want to make it too large either, since that will likely result in wasted space.
Figure 10.16 illustrates the process of creating a larger array.

Now let’s think about how to add a Person object to the array. To add a new ob-
ject, we need to locate a position where we can insert the object. Since we are not
maintaining Person objects in any particular order, we will add a new person at the
first available position. If we fill the positions from the low to high indices (0, 1, 2, . . .),
we can use a variable to remember the index of the next available position. Since we

10.7 Sample Development 601

A

0 1 2 3

entry

B C D

:Person :Person :Person :Person

0 1 2 3 4 5

temp

Person[] temp;
int newLength = (int) (1.5 * entry.length);

temp = new Person[newLength];

A

0 1 2 3

entry

B C D

:Person :Person :Person :Person

0 1 2 3 4 5

temp

for (int i = 0; i < entry.length; i++) {
 temp[i] = entry[i];
}
entry = temp;

Note: The old array will eventually
get returned to the system via
garbage collection.

Figure 10.16 How a new array that is 150 percent of the original array is created. The size of the
original array is 4.

wu23399_ch10.qxd 12/28/06 12:38 Page 601

10.7 Sample Development—continued

602 Chapter 10 Arrays and Collections

are using an array, the index of the next available position is also the number of Person
objects currently in the array, so we will call this variable count. Figure 10.17 illustrates
the add operation.

First we add a new instance variable count to the class:

//--------------------------
// Data Members
//--------------------------

private int count; //number of elements in the array,
//which is also the position at which to add
//the next Person object

We modify the constructor to initialize this data member:

public AddressBook(int size) {
count = 0;
//same as before

}

(Note: Because we defined the first constructor to call the second constructor, we
can implement this change by rewriting only one constructor instead of two.) The add

0 1

count �� 2

newPerson

2 3

entry
0 1

count �� 3

Before After

2 3

entry

entry[count] = newPerson;

count++;

A

:Person

A

:Person

B

:Person

B

:Person

C

:Person

newPerson

C

:Person

Figure 10.17 Adding a new Person object to the next available location.The array length is 4.

step 2 code

wu23399_ch10.qxd 12/28/06 12:38 Page 602

10.7 Sample Development 603

method is defined as follows:

public void add(Person newPerson) {

assert count >=0 &&
count <= entry.length;

if (count == entry.length) { //no more space left,
enlarge(); //create a new, larger array

}

//at this point, entry refers to a new, larger array
entry[count] = newPerson;
count++;

}

Notice the use of the assertion feature.We place the assert statement to make sure
the value of count is valid. The expand method is a new private method that creates a
new, larger array.

Design Document: The AddressBook Class

Method Visibility Purpose
.

expand private Creates a new array that is 150 percent of the
old array.

private void expand() {

//create a new array whose size is 150% of
//the current array
int newLength = (int) (1.5 * entry.length);
Person[] temp = new Person[newLength];

//now copy the data to the new array
for (int i = 0; i < entry.length; i++) {

temp[i] = entry[i];
}

//finally set the variable entry to point to the new array
entry = temp;

System.out.println("Inside the method enlarge"); //TEMP
System.out.println("Size of a new array: "

+ entry.length); //TEMP
}

Notice the use of the
assertion feature here.

wu23399_ch10.qxd 12/28/06 12:38 Page 603

10.7 Sample Development—continued

We will write a test program to verify that a new Person object is added to the
array correctly. In addition, we need to test that a new array 150 percent larger than the
old one is created when there are no more spaces left in the array. The test data are as
follows:

604 Chapter 10 Arrays and Collections

step 2 test

The step 2 test program is as follows:

/*
Chapter 10 Sample Program: A test main program for

verifying the step 2 AddressBook class.

File: TestAddressBook.java
*/

class TestAddressBook {

public static void main(String[] args) {

AddressBook myBook;
Person person;

myBook = new AddressBook(4);

//add four Person objects
for (int i = 0; i < 4; i++) {

person = new Person("Ms. X" + i, 10, 'F');
myBook.add(person);

}

//add the fifth person and see if
//a new array is created

Step 2 Test Data

Test Sequence Purpose
Create the array of size 4. Test that the array is created correctly.

Add four Person objects. Test that the Person objects are added
correctly.

Add the fifth Person object. Test that the new array is created and the
Person object is added correctly (to the new
array).

wu23399_ch10.qxd 12/28/06 12:38 Page 604

person = new Person("fifth one", 10, 'F');
myBook.add(person);

}
}

10.7 Sample Development 605

step 3
design

Run the program several times with different sizes for the address book and verify
that we get the correct results.

Step 3 Development: Implement the search Method

In the third development step, we implement the search method. This method can return
one or more Person objects that meet the search criteria. We have several options for the
search criteria.Since we keep track of name,age,and gender for each person,we can use any
one of these values as the search criterion. In this implementation, we will use the person’s
name.The search routine for the other two criteria will be left as an exercise (see Exercise 14).

To implement the search method, we will make an assumption that the name is
unique so that there will be at most one matching Person object. If the name is not
unique, then there are two possibilities. The search method can return one Person ob-
ject (among many) that matches the given name or return all Person objects that
match the given name. We will leave the case when the name is not unique as an exer-
cise (see Exercise 13). Notice that the add method we implemented in step 2 does not
check the person data. In other words, there is no mechanism to disallow the addition
of a Person object with a duplicate name. We will leave the implementation of the
modified add method as an exercise (see Exercise 15).

There are two possible outcomes with the search method—a successful or an un-
successful search. The method has to return a value by which the programmer can verify
the result of the search.We will define the search method so that it will return a matching
Person object if it is found and will return null otherwise. The search routine will start
scanning the array from the first position until the desired Person object is found (suc-
cessful search) or until no more Person objects are left in the array (unsuccessful search).
Expressing the search routine in pseudocode, we have

loc = 0;
while (loc < count &&

name of Person at entry[loc] != searchName) {
loc++;

}

if (loc == count) {
foundPerson = null;

} else {
foundPerson = entry[loc];

}
return foundPerson;

wu23399_ch10.qxd 12/28/06 12:38 Page 605

10.7 Sample Development—continued

Translating the pseudocode to an actual method will result in the following method:

public Person search(String searchName) {
Person foundPerson;
int loc = 0;

assert count >= 0 && count <= entry.length;

while (loc < count &&
!searchName.equals(entry[loc].getName())) {

loc++;
}

if (loc == count) {
foundPerson = null;

} else {
foundPerson = entry[loc];

}

return foundPerson;
}

To test the search method, we will build an address book that contains five
Person objects. We will give names Ms.X0, Ms.X1, . . . , and Ms.X4 to them. After the
address book is set up, we test various cases of the search. We test for successful and
unsuccessful searches. For the successful searches, we test for the end cases and nor-
mal cases. The end cases involve searching for persons stored in the first and last posi-
tions of the array. Off-by-1 error (OBOE) is very common in processing an array, so it is
very important to test these end cases.

After a successful execution, we will test the class again by changing the size of
the array. One test size we should not forget to test is the end case for the array size, which
is 1.Also,we need to test the cases where the array is not fully filled,such as an array of size
5 containing only two Person objects.

The test data are as follows:

606 Chapter 10 Arrays and Collections

step 3 code

step 3 test

Step 3 Test Data

Test Sequence Purpose
Create the array of size 5 and add
five Person objects with unique
names.

Test that the array is created and set up
correctly. Here, we will test the case where
the array is 100 percent filled.

Search for the person in the first
position of the array.

Test that the successful search works
correctly for the end case.

wu23399_ch10.qxd 12/28/06 12:38 Page 606

The step 3 test program is written as follows:

10.7 Sample Development 607

Search for the person in the last
position of the array.

Search for a person somewhere
in the middle of the array.

Test the normal case.

Test another version of the end case.

Search for a person not in the array. Test for the unsuccessful search.

Repeat the above steps with an array
of varying sizes, especially the array
of size 1.

Test that the routine works correctly for
arrays of different sizes.

Repeat the testing with the cases where
the array is not fully filled, say, array
length is 5 and the number of objects
in the array is 0 or 3.

Test that the routine works correctly for
other cases.

/*
Chapter 10 Sample Program: A test main program for

verifying the step 3 AddressBook class.

File: TestAddressBook.java
*/

class TestAddressBook {

AddressBook myBook;
Person person;

public static void main(String[] args) {

TestAddressBook tester = new TestAddressBook();
tester.setupArray(5);
tester.testSearch();

}

public void setupArray(int N) {
myBook = new AddressBook(N);

//add N Person objects
for (int i = 0; i < N; i++) {

person = new Person("Ms. X"+i, 10, 'F');
myBook.add(person);

}
}

public void testSearch() {
//test for the end case
person = myBook.search("Ms. X2");

wu23399_ch10.qxd 12/28/06 12:38 Page 607

10.7 Sample Development—continued

if (person == null) {
System.out.println

("Error: Didn't find the person it should");
} else {

System.out.println
(person.getName() + " is found okay.");

}
}

}

608 Chapter 10 Arrays and Collections

Notice the TestAddressBook class is now an instantiable main class.Since the code
for testing is getting longer, it is not practical anymore to do everything in a single main
method. For testing, we will modify the method body of setupArray and testSearch as
necessary to test all other cases described in the test data table.

Step 4 Development: Implement the delete Method

In the fourth development step, we implement the delete method. To delete a Person
object, the programmer must somehow specify which Person object to remove from the
address book. As we did with the search method, we will use the name of a person to
specify which person to delete. Since we assume the name is unique, the delete method
will remove at most one Person object. There are two possible outcomes: the specified
person is removed from the address book (successful operation) and the specified person
is not removed because he or she is not in the address book (unsuccessful operation).We
will define the delete method so that it will return true if the operation is successful and
false otherwise.

The removal of an element in an array of objects is done by setting the element to
null. This will leave a “hole.” We will fill this hole by replacing the removed element with
the last element, as explained earlier (see Figure 10.8). This filling operation is necessary
for other methods, specifically the add method, to work correctly.

To fill the hole, we need to know the location of the hole. To find this location, we
write a private search method called findIndex. The method is very similar to the search
method.The only difference is that the return value of findIndex is an index of an element
in the array, whereas the return value of search is a Person object.By using this findIndex
method, the delete method can be expressed as

boolean status;
int loc;

loc = findIndex(searchName);

step 4
design

wu23399_ch10.qxd 12/28/06 12:39 Page 608

if (loc is not valid) {
status = false;

} else { //found, pack the hole
replace the element at index loc+1 by the last element
at index count;

status = true;

count--; //decrement count,
//since we now have one less element

assert count is valid;
}

return status;

The private findIndex method will look like this:

private int findIndex(String searchName) {
int loc = 0;

assert count >=0 && count <= entry.length;

while (loc < count &&
!searchName.equals(entry[loc].getName())) {

loc++;
}

if (loc == count) {
loc = NOT_FOUND;

}

return loc;
}

The constant NOT_FOUND is set in the data member section as

//---------------------------
// Data Members
//---------------------------

private static final int NOT_FOUND = -1;

By using this findIndex method, the delete method is defined as follows:

public boolean delete(String searchName) {
boolean status;
int loc;

loc = findIndex(searchName);

if (loc == NOT_FOUND) {
status = false;

} else { //found, pack the hole

10.7 Sample Development 609

step 4 code

wu23399_ch10.qxd 12/28/06 12:39 Page 609

10.7 Sample Development—continued

entry[loc] = entry[count-1];

status = true;
count--; //decrement count,

//since we now have one less element

assert count >= 0 && count <= entry.length;
}

return status;
}

To test the delete method, we will build an address book that contains five Person
objects, as before.Test cases are to delete the first person in the array, delete the last per-
son in the array, delete someone in the middle (normal case), and try to delete a nonexis-
tent person.

After a successful execution, we will test the class again by changing the size of an
array. One test size we should not forget to test is the end case for the array size, which is
1. Also, we need to test the cases where the array is not fully filled, such as an array of size
5 containing only two Person objects.

The test data are as follows:

610 Chapter 10 Arrays and Collections

step 4 test

Step 4 Test Data

Test Sequence Purpose
Create the array of size 5 and add five
Person objects with unique names.

Search for a person to be deleted next. Verify that the person is in the array
before deletion.

Delete the person in the array. Test that the delete method works
correctly.

Search for the deleted person. Test that the delete method works
correctly by checking that the value
null is returned by the search.

Attempt to delete a nonexistent person. Test that the unsuccessful operation
works correctly.

Repeat the above steps by deleting
persons at the first and last positions.

Test that the routine works correctly for
arrays of different sizes.

Repeat testing where the array is not fully
filled, say, an array length is 5 and the
number of objects in the array is 0 or 3.

Test that the routine works correctly for
other cases.

Test that the array is created and set up
correctly. Here, we will test the case where
the array is 100 percent filled.

wu23399_ch10.qxd 12/28/06 12:39 Page 610

The step 4 test program is written as follows:

10.7 Sample Development 611

/*
Chapter 10 Sample Program: A test main program for

verifying the step 4 AddressBook class.

File: TestAddressBook.java
*/

class TestAddressBook {
AddressBook myBook;
Person person;

public static void main(String[] args) {
TestAddressBook tester = new TestAddressBook();
tester.setupArray(5);
tester.testDelete();

}

public void setupArray(int N) {
myBook = new AddressBook(N);

//add N Person objects
for (int i = 0; i < N; i++) {

person = new Person("Ms. X" + i, 10, 'F');
myBook.add(person);

}
}

public void testDelete() {
//first make sure the person is in the array

person = myBook.search("Ms. X2");

if (person == null) {
System.out.println("Error: Didn't find the person it should");

} else {

System.out.println(person.getName() + " is found okay.");

boolean success = myBook.delete("Ms. X2");

if (success) {

person = myBook.search("Ms. X2");

if (person == null) {

System.out.println("Okay: Deletion works");
} else {

wu23399_ch10.qxd 12/28/06 12:39 Page 611

10.7 Sample Development—continued

System.out.println("Error: Person is still there");
}

} else {

System.out.println("Error: Deletion has a problem");
}

}
}

}

612 Chapter 10 Arrays and Collections

Modify the method body of setupArray and testDelete as necessary to test all
other cases described in the step 4 test data table.

Step 5 Development: Finalize

As always, we finalize the program in the last step. We perform a critical program review
to find any inconsistency or error in the methods, incomplete methods, places to add
comments, and so forth.

Since the three operations of add, delete, and search are interrelated, it is critical
to test these operations together. The test program should try out various combinations
of add, delete, and search operations to verify that they work together correctly.

After we complete the class implementation and testing, we may consider
improvement or extension. In addition to the several alternative designs, it is possible
to add other operations. For example, we may want to add an operation to modify a
Person object. Another common operation that is useful in manipulating a collection
of objects is the traversal operation described in Section 10.6. Implementation of this
operation is left as Exercise 16.

prograrn
review

final test

• An array is an indexed collection of data values.

• Data values in an array are called array elements.

• Individual elements in an array are accessed by the indexed expression.

• Array elements can be values of primitive data type or objects.

• In Java, an array can include only elements of the same data type.

• A Java array is a reference data type.

• A Java array is created with the new operator.

• An array can have multiple indices.

S u m m a r y

wu23399_ch10.qxd 12/28/06 12:39 Page 612

• When an array is passed to a method as an argument, only a reference to an
array is passed. A copy of an array is not created. Note: The reference to an
array we are passing is a value of an array variable, and therefore the call-
by-value scheme is used here also.

• The standard classes and interfaces described or used in this chapter are

List

ArrayList

LinkedList

Exercises 613

Iterator

Map

HashMap

TreeMap

• The Java Collection Framework includes many data structure classes such as
lists and maps.

• The List interface represents a linear ordered collection of objects.

• The ArrayList and LinkedList classes are two implementations of the List
interface.

• The Map interface represents a collection of key-value pairs.

• The TreeMap and HashMap classes are two implementations of the Map
interface.

K e y C o n c e p t s

arrays arrays of objects

array elements multidimensional arrays

index expression lists

arrays of primitive data type maps

E x e r c i s e s

1. Identify problems with this code:

public int searchAccount(int[25] number) {
number = new int[15];

for (int i = 0; i < number.length; i++) {
number[i] = number[i-1] + number[i+1];

}
return number;

}

2. Declare an array of double of size 365 to store daily temperatures for one
year. Using this data structure, write the code to find

• The hottest and coldest days of the year.

• The average temperature of each month.

wu23399_ch10.qxd 12/28/06 12:39 Page 613

• The difference between the hottest and coldest days of every month.

• The temperature of any given day. The day is specified by two input
values: month (1, . . . , 12) and day (1, . . . , 31). Reject invalid
input values (e.g., 13 for month and 32 for day).

3. Repeat Exercise 2, using a two-dimensional array of double with 12 rows
and each row having 28, 30, or 31 columns.

4. Repeat Exercise 2, using an array of Month objects with each Month object
having an array of double of size 28, 30, or 31.

5. For Exercises 2 to 4, the following three data structures are used:

• One-dimensional array of double of size 365.

• Two-dimensional array of double with 12 rows. Each row has 28, 30,
or 31 columns.

• An array of Month objects with each Month object having an array of
double of size 28, 30, or 31.

Discuss the pros and cons of each approach.

6. Suppose you want to maintain the highest and lowest temperatures for every
day of the year. What kind of data structure would you use? Describe the
alternatives and list their pros and cons.

7. If a car dealer’s service department wants a program to keep track of
customer appointments, which data structure should they choose, an array or
a list? If the number of appointments the service department accepts is fixed
on any given day, which data structure is appropriate? What are the criteria
you use to decide which data structure to use? Explain.

8. In Figure 10.8, the last statement

person[last] = null;

is significant. Show the state-of-memory diagram when the last statement is
not executed.

9. Write an application that computes the standard deviation of N real numbers.
The standard deviation s is computed according to

s � ����
The variable x� is the average of N input values x1 through xN. The program
first prompts the user for N and then declares an array of size N.

10. Using the payScaleTable two-dimensional array from Section 10.4, write the
code to find

• The average pay for every grade level

• The average pay for every step (i.e., average of every column)

11. Declare a two-dimensional array for the tuition table shown in Figure 10.13.

(x1 � x�)2 � (x2 � x�)2 � . . . � (xN � x�)2

����
N

614 Chapter 10 Arrays and Collections

wu23399_ch10.qxd 12/28/06 12:39 Page 614

12. Suppose you want to maintain information on the location where a product
is stored in a warehouse. Would you use a three-dimensional array such as
location[i][j][k], where i is the warehouse number, j is the aisle number, and
k is the bin number? Or would you define three classes Warehouse, Aisle,
and Bin? Describe the alternatives and list their pros and cons.

13. The search method of the AddressBook class returns only one Person object.
Modify the method so that it will return all Person objects that match the
search criteria. You can use an array to return multiple Person objects.

14. Write new search routines for the AddressBook class. The search method
given in the chapter finds a person with a given name. Add second and
third search methods that find all persons, given an age and a gender,
respectively.

15. Modify the add method of the AddressBook class. The method given in the
chapter does not check for any duplicate names. Modify the method so that
no Person object with a duplicate name is added to the address book.

16. Modify the AddressBook class to allow the programmer to access all Person
objects in the address book. Make this modification by adding two methods:
getFirstPerson and getNextPerson. The getFirstPerson method returns the
first Person object in the book. The getNextPerson method returns the next
Person object if there is one. If there is no next person in the book,
getNextPerson returns null. The getFirstPerson method must be called before
the getNextPerson method is called.

17. In addition to the List and Map interface, the third interface in the Java
Collection Framework is Set. A Set is an unordered collection of objects with
no duplicates. This interface models, as expected, the mathematical set. Two
classes that implement the Set interface in JCF are TreeSet and HashSet.
Here’s a simple example of using Set:

Set<String> = new HashSet <String>();
set.add("ape");
set.add("bee");
set.add("ape"); //duplicate, so it won't be added
set.add("cat");
set.remove("bee");
set.remove("dog"); //not in the set, nothing happens

System.out.println("Set = " + set);

The output from the code will be

Set = [ape, cat]

To access the individual elements of a set, call the iterator method in the
manner identical to the one we used for the List interface.

Rewrite the AddressBook class by using the HashSet instead of an
array to maintain a collection of Person object.

Exercises 615

wu23399_ch10.qxd 12/28/06 12:39 Page 615

18. Consider the following Thesaurus class:

class Thesaurus {
//Returns all synonyms of the word as a Set
//Returns null if there is no such word
public java.util.Set<String> get (String word){...}

//Returns all key words in this thesaurus as a Set
//returns an empty set if there are no keys (if you
//don't do anything, default behavior of the
//underlying JCF class will handle it)
public java.util.Set<String> keys(){...}

//Adds 'synonym' to the synonym set of 'word'
//Pay close attention to this method.
public void put (String word, String synonym){...}

}

The get method returns a set of all synonyms of a given word. The keys
method returns all key words in the thesaurus. The put method adds a
new synonym to the given word. Make sure to handle the cases when
the word already has a synonym list and when the word is added for the
first time. Using this Thesaurus class, we can write, for example, this
program:

class SampleMain {
public static void main(String[] args) {

Thesaurus t = new Thesaurus();
t.put("fast", "speedy");
t.put("fast", "swift");
t.put("slow", "sluggish");

Set<String> synonyms = t.get("fast");
System.out.println(synonyms);
System.out.println(t.keys());

}
}

When the sample program is executed, the output will be

Implement the Thesaurus class, using one of the Map classes. The key is the
word, and the value is the set of synonyms of this word.

616 Chapter 10 Arrays and Collections

wu23399_ch10.qxd 12/28/06 12:39 Page 616

Development Exercises

For the following exercises, use the incremental development methodology to
implement the program. For each exercise, identify the program tasks, create a
design document with class descriptions, and draw the program diagram. Map
out the development steps at the start. Present any design alternatives and
justify your selection. Be sure to perform adequate testing at the end of each
development step.

19. Write a complete address book maintenance application. The user of the
program has four options: Add a new person, delete a person, modify the
data of a person, and search for a person by giving the name. Use the
AddressBook class, either the original one from the chapter or the modified
one from the previous exercises. You have to decide how to allow the user
to enter the values for a new person, display person information, and so
forth.

20. Design a currency converter class whose instance will handle conversion of
all currencies. A single instance of the new currency converter class you
design here will handle all currencies. Instead of having specific conversion
methods such as toDollar, toYen, and so forth, the new currency converter
class supports one generic conversion method called exchange. The method
has three arguments: fromCurrency, toCurrency, and amount. The first two
arguments are String and give the names of currencies. The third argument is
float. To convert $250 to yen, we write

yen = converter.exchange("dollar", "yen", 250.0);

To set the exchange rate for a currency, we use the setRate method. This
method takes two arguments: The first argument is the currency name, and
the second argument is the rate. For example, if the exchange rate for yen is
140 yen to $1, then we write

converter.setRate("yen", 140.0);

Use an array to keep track of exchange rates.

21. Extend the MyJava Lo-Fat Burgers drive-through ordering system of
Exercise 24 on page 294 so the program can output sales figures. For each
item on the menu, the program keeps track of the sales. At closing time,
the program will output the sales figure in a format similar to the
following:

Item Sales Count Total
Tofu Burger 25 $ 87.25
Cajun Chicken 30 $ 137.70
...

Today's Total Sales: $ 2761.20

Exercises 617

wu23399_ch10.qxd 12/28/06 12:39 Page 617

22. Redo the watermelon projectile computing program of Exercise 30 on
page 362 to output the average distance covered between each time interval.
Use the expression

�(x2 � x�1)2 � (�y2 � y�1)2�

to compute the distance between two coordinate points (x1, y1) and (x2, y2).

23. Redo the social club program of Exercise 9 of Chapter 8. In the original
program, we limit the number of clubs to 5. Remove this restriction by using
an array.

24. Redo Exercise 23, but this time use one of the Java Collection Framework
classes.

618 Chapter 10 Arrays and Collections

wu23399_ch10.qxd 12/28/06 12:39 Page 618

Sorting and Searching

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Perform linear and binary search algorithms on
arrays.

• Determine whether a linear or binary search is
more effective for a given situation.

• Perform selection and bubble sort algorithms.

• Describe the heapsort algorithm and show
how its performance is superior to that of the
other two algorithms.

• Apply basic sorting algorithms to sort an
array of objects, using the Comparator
interface.

• Define the interface to specify common
behavior and provide different versions of
classes that implement the interface.

619

11

wu23399_ch11.qxd 12/28/06 12:41 Page 619

n this chapter, we cover searching and sorting. In Chapter 10, we presented a case
study of maintaining an address book and described a basic searching method to
locate a student, given his or her name. In this chapter, we will present a better search-
ing algorithm called binary search. To apply binary search, an array must be sorted.
Sorting is a technique to arrange elements in some order, and it is one of the funda-
mental operations we study in computer science. We will cover basic sorting algo-
rithms in this chapter and an efficient recursive sorting algorithm in Chapter 15. We
will use an array of integers to illustrate searching and sorting algorithms, but all the
techniques we present here are equally applicable to any array of objects as well as
primitive data types. In the sample development (Section 11.4), we will extend the
AddressBook class by adding the capability of sorting an array of Person objects.

11.1 Searching
Let’s start with the problem statement for searching:

Given a value X, return the index of X in the array, if such X exists.
Otherwise, return NOT_FOUND (�1). We assume there are no duplicate
entries in the array.

There are two possible outcomes in searching: Either we locate an X or we don’t.
We will call the first a successful search and the latter an unsuccessful search.
Figure 11.1 illustrates the successful and unsuccessful searches. As obvious as this
may sound, it is critical to differentiate the two because it is possible for one search-
ing algorithm to perform superbly for successful searches, but very poorly for
unsuccessful searches. When we analyze the performance of a searching algorithm,
we normally derive two separate performances, one for a successful search and
another for an unsuccessful search.

Linear Search
The search technique we used earlier in the book is called a linear search because
we search the array from the first position to the last position in a linear progression.

620 Chapter 11 Sorting and Searching

I n t r o d u c t i o n

I

successful and
unsuccessful
searches

linear search

0 1 2 3 4 5 6 7 8
number

23 17 5 90 12 44 38 84 77

Unsuccessful search:

Successful search:

search(45) NOT_FOUND (�1)

search(12) 4

Figure 11.1 Successful and unsuccessful searches.

wu23399_ch11.qxd 12/28/06 12:41 Page 620

The linear search is also called a sequential search. The linear search algorithm can
be expressed as

public int linearSearch (int[] number, int searchValue) {
int loc = 0;

while (loc < number.length &&
number[loc] != searchValue) {

loc++;
}

if (loc == number.length) { //Not found
return NOT_FOUND;

} else {
return loc; //Found, return the position

}
}

If the number of entries in the array is N, then there will be N comparisons for
an unsuccessful search (i.e., you search for a value not in the array). In the case of a
successful search, there will be a minimum of one comparison and a maximum of
N comparisons. On average, there will be approximately N�2 comparisons.

Is there a way to improve the linear search? If the array is sorted, then we can
improve the search routine by using the binary search technique.

Binary Search
If the values in the array are arranged in ascending or descending order, then we
call the array sorted. In the following explanation of the binary search, we assume
the array is sorted in ascending order. The crux of binary search is the winning
strategy you apply for the Hi-Lo game. When you try to guess a secret number,
say, between 1 and 100, your first guess will be 50. If your guess is HI, then
you know the secret number is between 1 and 49. If your guess is LO, then you
know the secret number is between 51 and 100. By guessing once, you eliminated
one-half of the possible range of values from further consideration. This is the core
idea of binary search.

Consider the following sorted array:

Let’s suppose we are searching for 77. We first search the middle position of the
array. Since this array has 9 elements, the index of the middle position is 4, so we
search number[4]. The value 77 is not in this position. Since 77 is larger than 38 and

0 1 2 3 4 5 6 7 8
number

5 12 17 23 38 44 77 84 90

11.1 Searching 621

More elements
to search

searchValue is
not yet found.

binary search

wu23399_ch11.qxd 12/28/06 12:41 Page 621

the array is sorted, we know that if 77 is in the array, it must be in the right half of
the array. So next we search the middle position of the right half of the array, which
is position 6. Figure 11.2 illustrates the effect of making one comparison in the
binary search.

The search value 77 was found after two comparisons. In contrast, the linear
search would take seven comparisons to locate 77. So there is a net reduction of five
comparisons. How good is the binary search in general? Let’s study the worst-case
situation. In the binary search, after we make one comparison, we can eliminate
one-half of the array from further consideration. So the number of comparisons in
the worst case is the number of times you can divide the array into halves. Suppose
the original size of an array is N and the value we are searching for is not in the
array. Then after one comparison, we have to search the remaining N�2 elements.
After two comparisons, we have to search N�4 elements, and so on. The following
table shows this relationship. The left column is the number of comparisons, and
the right column is the number of elements we still need to search after making K
comparisons.

Number of Comparisons Number of Elements

0 N

1 N�2 � N�21

2 N�4 = N�22

.

K N�2K

622 Chapter 11 Sorting and Searching

0 1 2 3 4 5 6 7 8

5 12 17 23 38 44 77 84 90

0 1 2 3 4 5 6 7 8

44 77 84 90

Search

Search

No need to consider
the left half anymore.

77 must be in this
half of the array.

number[i] � 38 38 � number[i]

Figure 11.2 Effect of one comparison in binary search.

wu23399_ch11.qxd 12/28/06 12:41 Page 622

The maximum number of comparisons K is derived by solving the equation

N � 2K

log2 N � K

This is a remarkable improvement. If the size of the original array is 2048, for exam-
ple, then the unsuccessful binary search takes at most log2 2048 � 11 comparisons,
while the unsuccessful linear search takes 2048 comparisons. The difference be-
tween the two algorithms gets larger and larger as the size of an array increases.

Now let’s write a binary search method. The key point in the method revolves
on how to stop the search. If the search value is in the array, we will eventually
locate it, so the stopping condition for the successful search is easy. What about the
case for an unsuccessful search? How can we detect that there are no more elements
in the array to search for? Should we use some kind of a counter? We certainly can
use a counter, but we can implement the method without using any counter. To com-
pute the middle location for the next comparison, we need two indices—low and
high. The low and high indices are initialized to 0 and N � 1, respectively. The
middle location is computed as

mid = (low + high) / 2; //the result is truncated

If number[mid] is less than the search value, then low is reset to mid+1. If
number[mid] is greater than the search value, then high is reset to mid�1, and the
search continues. Eventually, we will locate the search value or we will run out of
elements to compare. We know that there are no more elements to compare when
low becomes larger than high. Figure 11.3 shows how this works.

Here’s the binarySearch method:

public int binarySearch (int[] number, int searchValue) {
int low = 0,

high = number.length - 1,
mid = (low + high) / 2;

while (low <= high && number[mid] != searchValue) {

if (number[mid] < searchValue) {
low = mid + 1;

} else { //number[mid] > searchValue
high = mid - 1;

}

mid = (low + high) / 2;
}

if (low > high) {
mid = NOT_FOUND;

}

return mid;
}

11.1 Searching 623

wu23399_ch11.qxd 12/28/06 12:41 Page 623

624 Chapter 11 Sorting and Searching

0 1 2 3 4 5 6 7 8

5 12 17 23 38 44 77 84 90

low�0 high�8
mid�4

38 � 45

so set low � mid�1

1

0 1 2 3 4 5 6 7 8

44 77 84 90

low�5 high�8
mid�6

77 � 45
so set high � mid�1

2

0 1 2 3 4 5 6 7 8

44

high�5low�5

mid�5

44 � 45

so set low � mid�1

3

0 1 2 3 4 5 6 7 8

low�6 high�5

low � high
so no more elements to search

4

Suppose we search for 45:

Figure 11.3 How the unsuccessful search is terminated in the binary search routine.

1. Suppose an array contains 2048 elements. What are the least and the greatest
numbers of comparisons for a successful search using linear search?

2. Repeat question 1 for a binary search.

11.2 Sorting
In this section we will describe two basic sorting algorithms. A more advanced
sorting algorithm will be presented in Section 11.3. Let’s start with the problem
statement for sorting:

Given an array of N values, arrange the values into ascending order.

Selection Sort
Given a list of integers, how would you sort them? The most natural sorting algo-
rithm for a human looks something like this:

1. Find the smallest integer in the list.

2. Cross out the number from further consideration and copy it to a new
(sorted) list.

3. Repeat steps 1 and 2 until all numbers are crossed out in the list.

wu23399_ch11.qxd 12/28/06 12:41 Page 624

Figure 11.4 shows this human sorting algorithm with the first three numbers being
copied to the new list.

We can write a real computer program based on this sorting algorithm, but the
resulting program will not be a good one. There are two problems. First, we need an
extra array to keep the sorted list. This may not sound like much, but when you con-
sider an array of, say, 10,000 elements, using a second array is very wasteful. Sec-
ond, crossing out numbers is effective for humans only. We humans can see the
cross marks and will not consider the numbers once they are crossed out, but in
computer programs, we still have to write code to check every element to see
whether it is crossed out. We can “cross out” an element by replacing it with a neg-
ative number, say, �1, if the numbers are all positive. If not, then we have to use
other means to cross out an element. So crossing out the numbers does not reduce
the number of comparisons in the program.

Although we do not want to implement this human sorting algorithm as is, we
can derive an algorithm based on the idea of finding the smallest number in a given
list and moving it to the correct position in the list. This sorting algorithm is called
selection sort.

The selection sort is comprised of sorting passes. Figure 11.5 shows the effect
of the first pass on a sample array of N (� 9) elements. First we locate the smallest

11.2 Sorting 625

0 1 2 3 4 5 6 7 8

23 17 5 90 12 44 38 84 77

0 1 2 3 4 5 6 7 8

5 12 17Sorted list

Original list

Figure 11.4 Human sorting algorithm after three numbers are moved to the sorted list.

selection sort

sorting passes

0 1 2 3 4 5 6 7 8

5 17

Sorted Unsorted

23 90 12 44 38 84 77

0 1 2 3 4 5 6 7 8

23 17 5 90 12 44 38 84 77

Exchange

start min

Figure 11.5 Effect of executing the first pass in the selection sort.

wu23399_ch11.qxd 12/28/06 12:41 Page 625

element in the array and set the index min to point to this element. Then we
exchange number[start] and number[min]. After the first pass, the smallest element
is moved to the correct position. We increment the value of start by 1 and then
execute the second pass. We start the first pass with start � 0 and end the last pass
with start � N-2. Figure 11.6 shows the sequence of eight passes made to the
sample array.

Here’s the selectionSort method:

public void selectionSort(int[] number) {

int minIndex, length, temp;
length = number.length;

for (int startIndex = 0; startIndex <= length-2;
startIndex++){

//each iteration of the for loop is one pass

minIndex = startIndex;

//find the smallest in this pass at
//position minIndex
for (int i = startIndex+1; i <= length-1; i++) {

if (number[i] < number[minIndex]) minIndex = i;
}

626 Chapter 11 Sorting and Searching

0 1 2 3 4 5 6 7 8

23 17 5 90 12 44 38 84 771

0 1 2 3 4 5 6 7 8

5 17 23 90 12 44 38 84 772

0 1 2 3 4 5 6 7 8

5 12 23 90 17 44 38 84 773

0 1 2 3 4 5 6 7 8

5 12 17 90 23 44 38 84 774

Pass

Sorted

0 1 2 3 4 5 6 7 8

5 12 17 23 90 44 38 84 775

0 1 2 3 4 5 6 7 8

5 12 17 23 38 44 90 84 776

0 1 2 3 4 5 6 7 8

5 12 17 23 38 44 90 84 777

0 1 2 3 4 5 6 7 8

5 12 17 23 38 44 77 84 908

Pass

Figure 11.6 Eight passes to sort the sample array of nine elements.

wu23399_ch11.qxd 12/28/06 12:41 Page 626

//exchange number[startIndex] and number[minIndex]
temp = number[startIndex];
number[startIndex] = number[minIndex];
number[minIndex] = temp;

assert minStart(number, startIndex):
"Error: " + number[startIndex] +
" at position " + startIndex +
" is not the smallest.";

}

assert isSorted(number):
"Error: the final is not sorted";

}

The assertion at the end of one pass confirms that the smallest element in that pass
moved to the beginning position of the pass. The minStart method is therefore
written as follows:

private boolean minStart(int[] number, int startIndex) {

for (int i = startIndex+1; i < number.length; i++) {

if (number[startIndex] > number[i]) {
return false;

}
}
return true;

}

We put a second assertion at the end of the method to verify that no elements
are out of place after the sorting is complete. The isSorted method is written as
follows:

private boolean isSorted(int[] number) {

for (int i = 0; i < number.length-1; i++) {

if (number[i] > number[i+1]) {
return false;

}
}
return true;

}

Assertion is a very useful tool in a situation such as sorting. While developing
the sorting routines, we insert a number of assertion statements to increase our con-
fidence in the program’s correctness.

11.2 Sorting 627

wu23399_ch11.qxd 12/28/06 12:41 Page 627

Let’s analyze the selection sort algorithm. In analyzing different sorting algo-
rithms, we normally count two things: the number of comparisons and the number
of data movements (exchanges). We will show you how to count the number of
comparisons here. Counting the number of data movements is left as Exercise 4.
Keep in mind that the analysis we provide in this chapter is an informal one. A
detailed analysis is beyond the scope of this book, so we will give only a taste of
the formal analysis.

The selection sort has one comparison (the if statement inside the nested-for
loop), so we can easily count the total number of comparisons by counting the num-
ber of times the inner loop is executed. For each execution of the outer loop, the
inner loop is executed length � start times. The variable start ranges from 0 to
length-2. So the total number of comparisons is computed by finding the sum of the
right column in the following table:

Number of Comparisons
Start (Length � Start)

0 length

1 length – 1

2 length – 2

.

length – 2 2

628 Chapter 11 Sorting and Searching

Be sure to run programs with assertions enabled during the development,
but disable them during the actual use. Run the program with assertions
enabled with

java -ea <main class>

We use assertions to find coding error. But what will happen when the code
we write for assertions, such at the minStart method used in the selection
sort routine, is wrong? How can we assert that minStart is correct? We do not
want to write assertions for assertions! One possibility is to create a data set
that is correct and to run the minStart method against these data to test for
their validity. The use of assertions is merely an aid, not a fail-safe way to find
errors.

wu23399_ch11.qxd 12/28/06 12:41 Page 628

The variable length is the size of the array. If we replace length with N, the
size of the array, then the sum of the right column is

N � (N � 1) � (N � 2) � . . . � 2 � �
N

i�2
i � ��

N

i�1
i� � 1

� �
N(N

2
� 1)
� � 1 � �

N 2�

2
N �2
� � N2

The total number of comparisons is approximately the square of the size of an
array. This is a quadratic function, so the number of comparisons grows very
rapidly as the size of an array increases. Is there a better sorting algorithm? The
answer is yes.

Bubble Sort
The effect of one pass of the selection sort is the movement of the smallest element
to its correct position. Since an array gets sorted only by moving the elements to
their correct positions, the whole sorting routine will complete sooner if we increase
the number of data movements. In the selection sort, we make one exchange per
pass. If we could move more elements toward their correct positions in one pass, we
could complete the sorting sooner than the selection sort. The bubble sort is one
such algorithm that increases the number of data movements for the same number
of comparisons as the selection sort makes.

The key point of the bubble sort is to make pairwise comparisons and to ex-
change the positions of the pair if they are out of order. Figure 11.7 shows the effect
of pairwise comparisons in the first pass of the bubble sort. After the first pass, the
largest element, 90, has moved to its correct position in the array. This is the guar-
anteed effect of one pass. In addition, we notice that many other elements have
moved toward their correct positions, as bubbles move toward the water’s surface.

In the worst case, the bubble sort will make N � 1 passes, so the worst-case
performance is the same as that for the selection sort. However, in the average case,
we can expect a better performance from the bubble sort. The bubble sort exhibits
two properties:

• After one pass through the array, the largest element will be at the end of the
array.

• During one pass, if no pair of consecutive entries is out of order, then the
array is sorted.

Using these properties, we can express the bubbleSort method in pseudocode:

bottom = number.length - 2;
exchanged = true;

while (exchanged) { //continue if the exchange is made

//do one pass of sorting
exchanged = false; //reset the variable

11.2 Sorting 629

This while loop per-
forms at most N�1
passes for an array

with N elements.The
loop will terminate

when there are no ex-
changes in one pass.

wu23399_ch11.qxd 12/28/06 12:41 Page 629

630 Chapter 11 Sorting and Searching

0 1 2 3 4 5 6 7 8

23 17 5 90 12 44 38 84 77

0 1 2 3 4 5 6 7 8

17 23 5 90 12 44 38 84 77

0 1 2 3 4 5 6 7 8

17 5 23 90 12 44 38 84 77

Exchange

Exchange

0 1 2 3 4 5 6 7 8

17 5 23 12 90 44 38 84 77

Exchange

0 1 2 3 4 5 6 7 8

17 5 23 12 44 90 38 84 77

Exchange

0 1 2 3 4 5 6 7 8

17 5 23 12 44 38 90 84 77

Exchange

0 1 2 3 4 5 6 7 8

17 5 23 12 44 38 84 90 77

Exchange

0 1 2 3 4 5 6 7 8

17 5 23 12 44 38 84 77 90

Exchange

Notice how the value 90
migrates toward its correct
position. In addition, other

values also move toward
their correct positions.

Effect: The largest element
moves to its correct position.

Use an assertion to verify
this condition.

Figure 11.7 Effect of executing the first pass in the bubble sort.

wu23399_ch11.qxd 12/28/06 12:41 Page 630

for (int i = 0; i <= bottom; i++) { //pairwise comparison
if (number[i] > number[i+1]) {

//the pair is out of order
exchange them;

exchanged = true; //an exchange is made
}

}
//one pass is done, decrement the bottom index by 1
bottom--;

}

Translating the pseudocode into an actual method, we have

public void bubbleSort(int[] number) {

int temp, bottom;
boolean exchanged = true;

bottom = number.length - 2;

while (exchanged) {

exchanged = false;

for (int i = 0; i <= bottom; i++) {
if (number[i] > number[i+1]) {

temp = number[i]; //exchange
number[i] = number[i+1];
number[i+1] = temp;

exchanged = true; //exchange is made
}

}

assert maxBottom(number, bottom):
"Error: " + number[bottom] +
" at position " + bottom +
" is not the largest.";

bottom--;
}

assert isSorted(number):
"Error: the final is not sorted";

}

The maxBottom method verifies that the largest element among elements from
position 0 to bottom is at position bottom. The method is written as follows:

private boolean maxBottom(int[] number, int lastIndex) {

for (int i = 0; i < lastIndex; i++) {

11.2 Sorting 631

One pass of
bubble sort

Assert the element at posi-
tion bottom is the largest

among elements from
position 0 to bottom.

wu23399_ch11.qxd 12/28/06 12:41 Page 631

if (number[lastIndex] < number[i]) {
return false;

}
}
return true;

}

On average, we expect the bubble sort to finish sorting sooner than the selec-
tion sort, because there will be more data movements for the same number of
comparisons, and there is a test to exit the method when the array gets sorted. The
worst case of the bubble sort happens when the original array is in descending
order. Notice that if the original array is already sorted, the bubble sort will perform
only one pass whereas the selection sort will perform N � 1 passes.

632 Chapter 11 Sorting and Searching

1. Show the result of the second pass of bubble sort applied to the array at the
bottom of Figure 11.7.

2. For an array with N elements, what is the least number of comparisons the
bubble sort will execute?

11.3 Heapsort
Selection and bubble sorts are two fundamental sorting algorithms that take
approximately N2 comparisons to sort an array of N elements. One interesting
sorting algorithm that improves this performance to approximately 1.5N log2 N
is heapsort. We will describe the heapsort algorithm and analyze its performance in
this section.

The heapsort algorithm uses a special data structure called a heap. A heap
consists of nodes, which contain data values, and edges, which link the nodes.
Figure 11.8 shows a sample heap. We use integers as data values for the examples
in this section. The topmost node is called the root node of a heap. Nodes in a heap

heapsort

heap

root node

90

84 44

77 12 5 38

17 23

7

3 4 5 6

1 2

0

8

Index

Root

Left child
of 44

Right child
of 44

Figure 11.8 A sample heap that includes nine nodes.

wu23399_ch11.qxd 12/28/06 12:41 Page 632

are indexed 0, 1, 2, and so forth in the top-to-bottom, left-to-right order, starting
from the root. A node in a heap has zero, one, or two children. The children of a
node are distinguished as the node’s left and right children. If a node has only one
child, then it is the left child of the node.

A heap must satisfy these two constraints:

1. Structural constraint. Nodes in a heap with N nodes must occupy the
positions numbered 0, 1, . . . , N � 1. Figure 11.9 shows examples of
nonheaps that violate the structural constraint.

2. Value relationship constraint. A value stored in a node must be larger than
the maximum of the values stored in its left and right children. Figure 11.10
shows examples of nonheaps that violate the value relationship constraint.

11.3 Heapsort 633

left and right
children

heap
constraints

Heaps

Nonheaps

Figure 11.9 Sample heaps and nonheaps that violate the structural constraint.

45

22

16

123

45

25

45

9

34

2211

45

12

45

12

24

1613

90

35

45

58

16

123

45

55

45

22

33

2334

45

25

45

22

55

123

45

25

Heaps

Nonheaps

Figure 11.10 Sample heaps and nonheaps that violate the value relationship constraint.Violations are
indicated by blue ellipses.

wu23399_ch11.qxd 12/28/06 12:41 Page 633

How can we use the heap structure to sort N elements? Heapsort is carried out
in two phases:

1. Construction phase. Construct a heap given N elements.

2. Extraction phase. Pull out the value in the root successively, creating a new
heap with one less element after each extraction step.

We will begin the description of heapsort from the extraction phase. Consider the
heap shown in Figure 11.8. Since every node in the heap satisfies the value rela-
tionship constraint, we can conclude that the value in the root node is the largest
among the values stored in the heap. Now, after we remove the value 90 from the
heap, we must create a new heap that has one less element. We can build such a heap
by first moving the last element (value 23 in the figure) to the root position. With the
value 23 in the root position, we have met the structural constraint for the heap with
eight elements. However, the value relationship constraint is not met. The violation
occurs because 23 is smaller than the larger of its two children. By swapping 84 and
23, the violation is eliminated. Since the value 23 is now at a new location, we must
check again if the violation occurs at this position. It does, because 77 is larger than
23, so we swap again. We repeat the process until either there are no more children
to consider or the value moved into a new position meets the value relationship
constraint. We will call this process a rebuild step. One rebuild step is illustrated in
Figure 11.11.

Using a heap with N elements, we can sort the given N elements by perform-
ing the rebuild steps N � 1 times. Figure 11.12 illustrates the rebuild steps for the
sample heap. Notice how the array for the sorted list is filled from the end. All
we have to do now is to figure out how to build a heap from a given unsorted list of
N elements. Let’s study the construction phase of the algorithm.

We will illustrate the construction phase with the following unsorted nine
elements:

23, 17, 5, 90, 12, 44, 38, 84, 77

If we assign the given numbers to a heap structure in ascending index order, we
have the heap structure shown in Figure 11.13. This heap structure is not truly a
heap because it violates the value relationship constraint. The construction phase
will eliminate any violations of the value relationship constraint. The key concept
for the construction phase is the rebuild step we used in the extraction phase. We
will build a complete heap in a bottom-up fashion. We start out with a small heap
and gradually build bigger and bigger heaps until the heap contains all N elements.
Figure 11.14 shows the sequence of rebuild steps. The triangles indicate where the
rebuild steps are applied. In the extraction step, the rebuild step is always applied to
the root node. In the construction step, each rebuild step is applied successively, be-
ginning with the node at index (N � 2)�2 and ending with the node at index 0 (i.e.,
the root node).

Now let’s consider how we can implement this algorithm in Java. We must
first decide how to represent a heap. Among the possible alternatives, the data
structure we learned in this book that can be used here very effectively is an array.

634 Chapter 11 Sorting and Searching

heapsort
phases

rebuild step

wu23399_ch11.qxd 12/28/06 12:41 Page 634

11.3 Heapsort 635

0 1 2 3 4 5 6 7 8

90

Move

Move

77
7

3 4 5

0

6

8

17

77

17

1 2

84

12 5

44

90

23

38

7

3 4 5

0

6

84
1 2

77

12 5

44

38

7

3 4 5

0

6

23
1 2

84

12 5

44

38

23 � max{84, 44} ? NO, so swap

7

3 4 5

0

6

77

17

23

17

23

17

84
1 2

23

12 5

44

38

23 � max{77, 12} ? NO, so swap

7

3 4 5

0

6

84
1 2

77

12 5

44

38

23 � max{17} ? YES, so stop

A new heap with
one fewer element.

Figure 11.11 One rebuild step after the value 90 is pulled out from the heap. The net result of a single
rebuild step is a new heap that contains one fewer element.

wu23399_ch11.qxd 12/28/06 12:41 Page 635

0 1 2 3 4 5 6 7 8

90

77
7

3 4 5

0

6

8

17 23

1 2

84

12 5

44

38

0 1 2 3 4 5 6 7 8

9084

23
7

3 4 5

0

6

17

1 2

77

12 5

44

38

0 1 2 3 4 5 6 7 8

908477

17

3 4 5

0

6

1 2

23

12 5

44

38

0 1 2 3 4 5 6 7 8

90847744

17

3 4 5

0

1 2

23

12 5

38

1

0 1 2 3 4 5 6 7 8

9084774438

17

3 4

0

1 2

23

12

5

5

0 1 2 3 4 5 6 7 8

908477443823

12

3

0

1 2

17 5

6

0 1 2 3 4 5 6 7 8

90847744382317

0

1 2

12 5

7

0 1 2 3 4 5 6 7 8

9084774438231712

0

1

5

8

0 1 2 3 4 5 6 7 8

90847744382317125

09

2

3

4

No rebuild is
necessary here.

90

84

23

17

77

44

12

5

38

Figure 11.12 Eight rebuild steps to sort a heap with nine elements.

636

wu23399_ch11.qxd 12/28/06 12:41 Page 636

Figure 11.15 shows the correspondence between the heap and the array representa-
tion. An important aspect in deciding which data structure to use is the ease of
locating a given node’s left and right children. With an array implementation, we
can locate any node’s left and right children easily. A node with index I has its left
child at index 2I � 1 and its right child at index 2I � 2.

Since the heapsort algorithm is more involved than the insertion or bubble sort
algorithm, we will put all the necessary code in a single class called Heap to provide
a complete picture. To simplify our implementation so we can focus on the algo-
rithm, we will allow only integers. You can modify the class to allow any objects to
be sorted; see Exercise 9 at the end of this chapter. The following code illustrates
how to use the Heap class:

int[] number = { 90, 44, 84, 12, 77, 23, 38, 5, 17 };
int[] sortedList;

Heap heap = new Heap();

heap.setData(number); //assign the original list

sortedList = heap.sort();//sort the list

for (int i = 0; i < sortedList.length; i++) { //print out
System.out.print(" " + sortedList[i]); //the sorted

} //list

The Heap class will include two arrays as its data members: one to implement
a heap and another to store the sorted list.

/**
* This class implements the heapsort algorithm. This class
* can sort only integers.
*/
class Heap {

11.3 Heapsort 637

23

17 5

90 12 44 38

84 77

7

3 4 5 6

1 2

0

8

Figure 11.13 A heap structure with given numbers assigned in ascending index order.

wu23399_ch11.qxd 12/28/06 12:41 Page 637

638 Chapter 11 Sorting and Searching

90
7

3 4 5

0

6

8

1

First rebuild at position 3.

84 77

23
1 2

17

12 44

5

38

90
7

3 4 5

0

6

8

3

Third rebuild at position 1.

84 77

23
1 2

17

12 5

44

38

77
7

3 4 5

0

6

8

17 23

90
1 2

84

12 5

44

38

84
7

3 4 5

0

6

8

4

Fourth rebuild at position 0.

17 77

23
1 2

90

12 5

44

38

90
7

3 4 5

0

6

8

2

Second rebuild at position 2.
84 77

23
1 2

17

12 44

5

38

Figure 11.14 Sequence of rebuild steps applied in the construction phase. Rebuild steps are carried out at
index positions 3, 2, 1, and 0.

wu23399_ch11.qxd 12/28/06 12:41 Page 638

/**
* Implements the heap
*/
private int[] heap;

/**
* Stores the sorted list
*/
private int[] sortedList;

// methods come here
...

}

Now let’s look at the methods. The setData method initializes the two data
members as follows:

public void setData(int[] data) {

heap = new int[data.length];
sortedList = new int[data.length];

for (int i = 0; i < data.length; i++) {
heap[i] = data[i];

}
}

Notice that we copy the contents of the data array to the heap array. If we simply
assign the parameter to the data member heap as

heap = data;

then all we are doing is setting two names referring to the same object. Since we do
not want to change the original data array, we make a separate copy.

11.3 Heapsort 639

90

Heap Array implementation

84 44

77 12 5 38

17 23

7

3 4 5 6

1 2

0

8

0 1 2 3 4 5 6 7 8

90 84 44 77 12 5 38 17 23

Figure 11.15 A sample heap and the corresponding array implementation.

wu23399_ch11.qxd 12/28/06 12:41 Page 639

The sort method calls two private methods that implement the two phases of
the heapsort algorithm:

public int[] sort() {

construct(); //perform the construction phase

extract(); //perform the extraction phase

return sortedList;
}

Here’s the construct method:

private void construct() {

int current, maxChildIndex;
boolean done;

for (int i = (heap.length-2) / 2; i >= 0; i--) {

current = i;
done = false;

while (!done) {//perform one rebuild step
//with the node at index i

if (2*current+1 > heap.length-1) {

//current node has no children, so stop
done = true;

} else {
//current node has at least one child,
//get the index of larger child
maxChildIndex

= maxChild(current, heap.length-1);

if (heap[current] < heap[maxChildIndex]) {

//a child is larger, so swap and continue
swap(current, maxChildIndex);
current = maxChildIndex;

} else { //the value relationship constraint
//is satisfied, so stop

done = true;
}

}
}

assert isValidHeap(heap, i, heap.length-1):
"Error: Construction phase is not working " +
"correctly";

}

640 Chapter 11 Sorting and Searching

wu23399_ch11.qxd 12/28/06 12:41 Page 640

testPrint(heap.length); //TEMP
}

The isValidHeap method is used to assert that elements from position start to posi-
tion end form a valid heap structure. Here’s the method:

private boolean isValidHeap(int[] heap,
int start, int end) {

for (int i = start; i < end/ 2; i++) {

if (heap[i] < Math.max(heap[2*i+1], heap[2*i+2])) {
return false;

}
}

return true;
}

And here’s the extract method:

private void extract() {

int current, maxChildIndex;
boolean done;

for (int size = heap.length-1; size >= 0; size--) {

//remove the root node data
sortedList[size] = heap[0];

//move the last node to the root
heap[0] = heap[size];

//rebuild the heap with one fewer element
current = 0;
done = false;

while (!done) {

if (2*current+1 > size) {
//current node has no children, so stop
done = true;

} else {
//current node has at least one child,
//get the index of larger child
maxChildIndex = maxChild(current, size);

if (heap[current] < heap[maxChildIndex]) {

//a child is larger, so swap and continue
swap(current, maxChildIndex);
current = maxChildIndex;

11.3 Heapsort 641

wu23399_ch11.qxd 12/28/06 12:41 Page 641

} else { //value relationship constraint
//is satisfied, so stop

done = true;
}

}
}

assert isValidHeap(heap, i, heap.length-1):
"Error: Construction phase is not working " +
"correctly";

testPrint(size); //TEMP

}
}

A number of methods are shared by both methods. The maxChild method
returns the index of a node’s left or right child, whichever is larger. This method
is called only if a node has at least one child. The first parameter is the index of a
node, and the second parameter is the index of the last node in a heap. The second
parameter is necessary to determine whether a node has a right child. The method
is defined as follows:

private int maxChild(int location, int end) {

int result, leftChildIndex, rightChildIndex;

rightChildIndex = 2*location + 2;
leftChildIndex = 2*location + 1;

//Precondition:
// Node at 'location' has at least one child
assert leftChildIndex <= end:

"Error: node at position " + location +
"has no children.";

if (rightChildIndex <= end &&
heap[leftChildIndex] < heap[rightChildIndex]) {

result = rightChildIndex;
} else {

result = leftChildIndex;
}

return result;
}

The other two methods shared by the construct and extract methods are swap
and testPrint. The swap method interchanges the contents of two array elements,
and the testPrint method outputs the heap array for verification and debugging pur-
poses. You can comment out the calls to testPrint from the construct and extract

642 Chapter 11 Sorting and Searching

wu23399_ch11.qxd 12/28/06 12:41 Page 642

methods after you verify that the algorithm is implemented correctly. Here are the
two methods:

private void swap (int loc1, int loc2) {

int temp;

temp = heap[loc1];
heap[loc1] = heap[loc2];
heap[loc2] = temp;

}

private void testPrint(int limit) {

for (int i = 0; i < limit; i++) {
System.out.print(" " + heap[i]);

}

System.out.println(" ");
}

There are several improvements we can make to the simple Heap class we
provided here. These improvements are left as Exercise 9.

Performance
How good is the heapsort? We mentioned in Section 11.2 that the performances of
both selection and bubble sort algorithms are approximately N2 comparisons for
sorting N elements. The heapsort algorithm is substantially more complex in
design and implementation than the other two basic sorting algorithms. Is the extra
complexity worth our effort? The answer is yes. The performance of the heapsort
algorithm is approximately 1.5N log2 N comparisons for sorting N elements.
This is a remarkable improvement. Consider the difference between the two per-
formances for large N. For example, to sort 100,000 elements, the selection or
bubble sort requires 10,000,000,000 comparisons, while the heapsort requires only
1.5 �100,000 log2 100,000 � 2,491,695 comparisons. If a single comparison takes
1 microsecond (�s) (one millionth second), then the selection or bubble sort takes
about 2.8 hours while the heapsort takes only about 2.492 seconds. (Note: The
sorting operation itself may complete in a few seconds, but printing out the sorted
100,000 elements would take an enormous amount of time.)

Let’s study how the performance of 1.5N log2 N comparisons is derived. What
we need to count is the number of comparisons made during the rebuild steps in
both the construction and extraction phases. During the extraction phase, the rebuild
process is carried for N � 1 times. If we let K be the maximum number of compar-
isons required in one rebuild step, then the total number of comparisons will be
(N � 1)K. In one rebuild step, we start comparing the value in the root node with
the larger of its two children. If the value relationship constraint is not violated, the
rebuild step terminates immediately. If there is a violation, we make a swap and
continue. This compare-and-swap operation is carried out until either the value re-
lationship constraint is met or there are no more nodes to compare. This means that

11.3 Heapsort 643

wu23399_ch11.qxd 12/28/06 12:41 Page 643

the maximum number of comparisons K is derived by finding out how many times
the value relationship constraint violation can occur before the nodes to compare
are exhausted.

Consider the heap shown in Figure 11.16. We define the level of a node in a heap
to be the number of nodes in the path from the root to this node. For example, the level
of node 44 in the sample heap is 3. The depth of a heap is defined to be the largest
level of the nodes in the heap. The depth of the sample heap is therefore 4. Since the
compare-and-swap operation starting from the root can never continue comparing
beyond the largest level of the nodes, the depth of a heap is the value we seek for K.
Thus, the value for K is derived by finding the depth of a heap with N elements.

At level 1, there is one node. At level 2, there are two nodes. Since a node at
level i can have at most 2 children, the maximum number of nodes at level i � 1 is
double the number of nodes at level i. Assuming the maximum number of nodes at
all levels, the number of elements at level i is 2i � 1, so the maximum total number of
nodes in a heap of depth K is

�
K

i�1
2i�1 � 2K � 1

Because a heap must satisfy the structural constraint, we know the relationships

2K�1 � 1 � N 	 2K � 1

2K�1 � N � 1 	 2K

will hold. By applying log2 to all terms, we have

K � 1 � log2 (N � 1) 	 K

so

K � log2 (N � 1)

Finally, the total number of comparisons for the extraction phase is

(N � 1)K � N · log2(N � 1) � N log2 N

644 Chapter 11 Sorting and Searching

90

84 44

77 12 5 38

17 23

Level #

4

3

2

1

Figure 11.16 A sample heap with depth � 4, which is defined to be the largest level of all nodes in a heap.

level

depth

wu23399_ch11.qxd 12/28/06 12:41 Page 644

The construction phase will perform approximately N�2 rebuild steps. Each
rebuild step will take no more than K comparisons, so the total number of compar-
isons for the construction phase is

�
N
2

� log2 N

The total number of comparisons for both phases is therefore

1.5N log2 N

11.4 Sample Development 645

1. The following structure violates the value relationship constraints. Use the
construction phase routine of the heapsort to eliminate the violations.

2. Identify all violations on structural and value relationship constraints in the
following structure.

15

20 12

11 10

10

20 18

40 15 12 22

Sorting an AddressBook

Let’s put the our basic knowledge of sorting algorithms into practice. In Chapter 10 we
presented the AddressBook class that maintains a collection of Person objects. We will
extend the AddressBook class by incorporating a sorting routine.The new AddressBook
class will include a method that sorts the Person objects in alphabetical order of their
names or in ascending order of their ages.

Instead of going through the development steps, we will discuss three different
implementations to illustrate various techniques of Java programming. The three classes
are named AddressBookVer1, AddressBookVer2, and AddressBookVer3. We will

Sample Development11.4 Sample Development

wu23399_ch11.qxd 12/28/06 12:41 Page 645

11.4 Sample Development—continued

define an interface and make these three classes implement the defined interface. We
have already dealt with interfaces, for example, the List and Map interfaces in Chapter 10.
As we learned in that chapter, the interface defines a behavior, and if a class implements
the interface, we can be certain that the instances of the class will support this behavior.
Making classes implement the same interface is therefore a way to enforce consistency
among the implementation classes. Because all three classes AddressBookVer1,
AddressBookVer2, and AddressBook3 implement the same interface, they will exhibit
the same behavior, and we can therefore use them interchangeably in our programs.

The interface is named AddressBook, and we will include the public methods that
must be supported by all versions. Collectively these public methods define the behavior
common to all implementing classes. All public methods in the interface must not have
any method body, only the method prototype followed by a semicolon. Here’s the
AddressBook interface:

646 Chapter 11 Sorting and Searching

/*
Chapter 11 Sample Program: AddressBook Interface

File: AddressBook.java
*/
interface AddressBook {

public void add(Person newPerson);

public boolean delete(String searchName);

public Person search(String searchName);

public Person[] sort(int attribute);

}

The driver program to test the working of AddressBook is defined as follows:

/*
Chapter 11 Sample Program: Test program to verify the

the AddressBook and Person classes

File: TestAddressBookSorting.java
*/

wu23399_ch11.qxd 12/28/06 12:41 Page 646

import javax.swing.*;

class TestAddressBookSorting {

public static void main(String[] args) {

TestAddressBookSorting tester = new TestAddressBookSorting();
tester.start();

}

private void start() {
String[] name = {"ape", "cat", "bee", "bat", "eel",

"dog", "gnu", "yak", "fox", "cow",
"hen", "tic", "man"};

Person p;

AddressBook ab;

Scanner scanner = new Scanner(System.in);

System.out.print("Version #: ");
int version = scanner.nextInt();

switch (version) {
case 1: ab = new AddressBookVer1(); break;
case 2: ab = new AddressBookVer2(); break;
case 3: ab = new AddressBookVer3(); break;
default: ab = new AddressBookVer1(); break;

}

for (int i = 0; i < name.length; i++) {
p = new Person(name[i], random(10, 50),

random(0,1)==0?'M':'F');

//note: random(0,1) == 0 ? 'M':'F'
// means if (random(0,1) == 0) then 'M' else 'F'

ab.add(p);
}

Person[] sortedlist = ab.sort(Person.AGE);

for (int i = 0; i < sortedlist.length; i++) {
System.out.println(sortedlist[i].toString());

}

System.out.println(" ");

sortedlist = ab.sort(Person.NAME);

for (int i = 0; i < sortedlist.length; i++) {
System.out.println(sortedlist[i].toString());

}
}

11.4 Sample Development 647

start

wu23399_ch11.qxd 12/28/06 12:41 Page 647

11.4 Sample Development—continued

private int random(int low, int high) {

return (int) Math.floor(Math.random() * (high - low + 1))
+ low;

}
}

648 Chapter 11 Sorting and Searching

random

Bad Version

Version 1

In describing the basic sorting algorithms, we limit the data values to integers.This makes
the comparison test easy.We write something like this:

if (number[i] < number[i+1]) {
//do something...

} else {
//do something else...

}

But how do we compare Person objects? We cannot say

Person p1 = new Person("Jack", 18, 'M');
Person p2 = new Person("Jill", 19, 'F');

if (p1 < p2) {
...

}

because the comparison operators such as �, �, and others except the equal operator
are meaningful only for comparing primitive data values. To be able to compare Person
objects, we need to modify the class. Let’s suppose that we want to compare two
Person objects based on either their names or their ages. First we add the following
two constants to the Person class of Chapter 10:

class Person {
...
public static final int NAME = 0;
public static final int AGE = 1;
...

}

Next we add a variable to the Person class to set which attribute to use in comparing two
objects:

private static int compareAttribute = NAME;

Notice that the variable is a class variable because this information is not specific to any
individual Person objects, but applies to the whole class. We initialize it to NAME so the

Cannot compare Person objects like this, because
it does not make sense. Comparison operators
other than equal (==) do not apply for objects.

wu23399_ch11.qxd 12/28/06 12:41 Page 648

Person objects will be compared on the name attribute as a default. We define a class
method to let the programmer set the comparison attribute.The class method is defined as

public static void setCompareAttribute(int attribute) {

compareAttribute = attribute;
}

Although it is not a syntax error to initialize a class variable inside a constructor, it is
a logical error to do so. You cannot define a constructor that includes an initialization of
the compareAttribute variable, as in

public Person() {

...
compareAttribute = NAME;

}

This definition is valid because the class variables can be accessed from the instance meth-
ods, but it is wrong to do so here. This constructor will set the class variable com-
pareAttribute that is shared by all instances of the Person class every time a new Person
object is created. This is not what we want. We need to initialize it exactly once when the
class is loaded into the memory. One way to do this is to initialize at the point the class vari-
able is declared as shown,or to use the static block we introduced in Chapter 7.Here’s how:

class Person {
...

static {
compareAttribute = NAME;

}
...

}

The rule to remember is never to initialize the class variables in the constructor.

11.4 Sample Development 649

static block

Use the static
block to initialize

class variables.

Do not initialize class variables in the constructor. Initialize the class variables in the
static block.

Now we are ready to add a method compareTo that will compare the designated
Person objects’ names or ages and return the comparison result. The method is used
like this:

//Persons p1 and p2 are defined and created already

//First set the comparison attribute to NAME
Person.setCompareAttribute(Person.NAME);

wu23399_ch11.qxd 12/28/06 12:41 Page 649

11.4 Sample Development—continued

int comparisonResult = p1.compareTo(p2);

if (comparisonResult < 0) {
//p1's name is lexicographically less than p2's name

} else if (comparisonResult == 0) {
//p1's name is equal to p2's name

} else { //comparisonResult > 0
//p1's name is lexicographically larger than p2's name

}

To compare two Person objects on their ages, we write

//Persons p1 and p2 are defined and created already

//First set the comparison attribute to AGE
Person.setCompareAttribute(Person.AGE);

int comparisonResult = p1.compareTo(p2);

if (comparisonResult < 0) {
//p1 is younger than p2

} else if (comparisonResult == 0) {
//p1's age is the same as p2's age

} else { //comparisonResult > 0
//p1 is older than p2

}

Here’s the compareTo method:

public int compareTo(Person person) {

int comparisonResult;

if (compareAttribute == AGE) {
int p2age = person.getAge();

if (this.age < p2age) {
comparisonResult = LESS;

} else if (this.age == p2age) {
comparisonResult = EQUAL;

} else {
assert this.age > p2age;
comparisonResult = MORE;

}

650 Chapter 11 Sorting and Searching

wu23399_ch11.qxd 12/28/06 12:41 Page 650

} else { //compare names with String's compareTo
String p2name = person.getName();
comparisonResult = this.name.compareTo(p2name);

}

return comparisonResult;
}

The constants LESS, EQUAL, and MORE are defined in the Person class as

private static int LESS = -1;
private static int EQUAL = 0;
private static int MORE = 1;

The compareTo method of the String class behaves just as our compareTo method
does. Indeed, our compareTo method is modeled after the String class’s compareTo
method. The wrapper classes Integer, Float, Double, and others also define the analo-
gous compareTo method. Having consistent naming and behavior for comparing
two objects of the same class allows the implementation of a more general code. See
Exercise 9 at the end of the chapter.

Here’s the complete Person class:

11.4 Sample Development 651

/*
Chapter 11 Sample Program: Person class

File: Person.java
*/

class Person {

public static final int NAME = 0;
public static final int AGE = 1;

private static final int LESS = -1;
private static final int EQUAL = 0;
private static final int MORE = 1;

private static int compareAttribute;

private String name;
private int age;
private char gender;

// Static initializer
static {

compareAttribute = NAME;
}

public Person() {
this("Not Given", 0, 'U');

}

Data members

Constructors

wu23399_ch11.qxd 12/28/06 12:41 Page 651

11.4 Sample Development—continued

public Person(String name, int age, char gender) {
this.age = age;
this.name = name;
this.gender = gender;

}

public static void setCompareAttribute(int attribute) {
compareAttribute = attribute;

}

public int compareTo(Person person, int attribute) {
int comparisonResult;

if (attribute == AGE) {
int p2age = person.getAge();

if (this.age < p2age) {
comparisonResult = LESS;

} else if (this.age == p2age) {
comparisonResult = EQUAL;

} else {
assert this.age > p2age;
comparisonResult = MORE;

}

} else { //compare the name using the String class's
//compareTo method

String p2name = person.getName();
comparisonResult = this.name.compareTo(p2name);

}

return comparisonResult;
}

public int compareTo(Person person) {
return compareTo(person, compareAttribute);

}

public int getAge() {
return age;

}

public char getGender() {
return gender;

}

public String getName() {
return name;

}

652 Chapter 11 Sorting and Searching

setCompareAttribute

compareTo

Accessors

wu23399_ch11.qxd 12/28/06 12:41 Page 652

public void setAge(int age) {
this.age = age;

}

public void setGender(char gender) {
this.gender = gender;

}

public void setName(String name) {
this.name = name;

}

public String toString() {
return this.name + "\t\t" +

this.age + "\t\t" +
this.gender;

}
}

11.4 Sample Development 653

Mutators

toString

Now we are ready to add a sorting routine to the AddressBook class. The sort
method accepts one integer parameter that specifies the attribute to compare in sorting
the Person objects. The method returns an array of Person objects sorted on the desig-
nated attribute. We use the bubble sort algorithm for the method. Using the heapsort
algorithm is left as Exercise 12. Here’s the sort method.

public Person[] sort(int attribute) {

Person[] sortedList = new Person[count];
Person p1, p2, temp;

//copy references to sortedList; see Figure 11.17
for (int i = 0; i < count; i++) {

sortedList[i] = entry[i];
}

//Set the comparison attribute
Person.setCompareAttribute(attribute);

//begin the bubble sort on sortedList
int bottom, comparisonResult;
boolean exchanged = true;

bottom = sortedList.length - 2;

while (exchanged) {

exchanged = false;

for (int i = 0; i <= bottom; i++) {
p1 = sortedList[i];

wu23399_ch11.qxd 12/28/06 12:41 Page 653

11.4 Sample Development—continued

p2 = sortedList[i+1];

comparisonResult = p1.compareTo(p2, attribute);

if (comparisonResult > 0) { //p1 is 'larger'
sortedList[i] = p2; //than p2,so
sortedList[i+1] = p1; //exchange

exchanged = true; //exchange is made
}

}
bottom--;

}
return sortedList;

}

The sort method first creates a temporary array called sortedList and copies
the references from the entry array into this sortedList. We do this so we can sort the
objects on a specified attribute without affecting the order maintained in the entry array.
Figure 11.17 illustrates how this sortedList array is used in sorting the Person objects on
the age attribute.

Here’s the AddressBookVer1 class:

654 Chapter 11 Sorting and Searching

/*
Chapter 11 Sample Program: Address Book Version 1

File: AddressBookVer1.java
*/

class AddressBookVer1 implements AddressBook {

private static final int DEFAULT_SIZE = 25;
private static final int NOT_FOUND = -1;

private Person[] entry;
private int count;

public AddressBookVer1(){
this(DEFAULT_SIZE);

}

public AddressBookVer1(int size){
count = 0;

if (size <= 0) { //invalid data value, use default

Data members

Constructors

wu23399_ch11.qxd 12/28/06 12:41 Page 654

throw new IllegalArgumentException("Size must be positive");
}

entry = new Person[size];

// System.out.println("array of "+ size + " is created."); //TEMP
}

public void add(Person newPerson) {

if (count == entry.length) { //no more space left,
enlarge(); //create a new larger array

}

11.4 Sample Development 655

Figure 11.17 The diagram illustrates how the separate array is used in sorting. Notice that the original
array is unaffected by the sorting.

15

0 1 2 3

11 10 13

:Person :Person :Person :Person

Before sorting
on age.

entry

entry

sortedList

sortedList

0 1 2 3

... 19

The values are the age of
Person objects.

15

0 1 2 3

11 10 13

:Person :Person :Person :Person

After sorting

0 1 2 3

... 19

The sort method returns
this array.

add

wu23399_ch11.qxd 12/28/06 12:41 Page 655

11.4 Sample Development—continued

//at this point, entry refers to a new larger array
entry[count] = newPerson;
count++;

}

public boolean delete(String searchName) {

boolean status;
int loc;

loc = findIndex(searchName);

if (loc == NOT_FOUND) {
status = false;

} else { //found, pack the hole

entry[loc] = entry[count-1];

status = true;
count--; //decrement count,

//since we now have one fewer element
}

return status;
}

public Person search(String searchName) {

Person foundPerson;
int loc = 0;

while (loc < count &&
!searchName.equals(entry[loc].getName())) {

loc++;
}

if (loc == count) {

foundPerson = null;
} else {

foundPerson = entry[loc];
}

return foundPerson;
}

public Person[] sort(int attribute) {

Person[] sortedList = new Person[count];
Person p1, p2, temp;

656 Chapter 11 Sorting and Searching

delete

search

sort

wu23399_ch11.qxd 12/28/06 12:41 Page 656

//copy references to sortedList
for (int i = 0; i < count; i++) {

sortedList[i] = entry[i];
}

//set the comparison attribute
entry[0].setCompareAttribute(attribute);

//begin the bubble sort on sortedList
int bottom, comparisonResult;
boolean exchanged = true;

bottom = sortedList.length - 2;

while (exchanged) {

exchanged = false;

for (int i = 0; i <= bottom; i++) {
p1 = sortedList[i];
p2 = sortedList[i+1];

// comparisonResult = p1.compareTo(p2, attribute);

comparisonResult = p1.compareTo(p2);

if (comparisonResult > 0) { //p1 is 'larger'
//than p2, so

sortedList[i] = p2; //exchange
sortedList[i+1] = p1;

exchanged = true; //exchange is made
}

}
bottom--;

}
return sortedList;

}

private void enlarge() {
//create a new array whose size is 150% of
//the current array
int newLength = (int) (1.5 * entry.length);
Person[] temp = new Person[newLength];

//now copy the data to the new array
for (int i = 0; i < entry.length; i++) {

temp[i] = entry[i];
}

//finally set the variable entry to point to the new array
entry = temp;

11.4 Sample Development 657

enlarge

wu23399_ch11.qxd 12/28/06 12:41 Page 657

11.4 Sample Development—continued

658 Chapter 11 Sorting and Searching

// System.out.println("Inside the method enlarge”); //TEMP
// System.out.println("Size of a new array: " + entry.length); //TEMP
}

private int findIndex(String searchName) {
int loc = 0;

while (loc < count &&
!searchName.equals(entry[loc].getName())) {

loc++;
}

if (loc == count) {

loc = NOT_FOUND;

}

return loc;
}

}

findIndex

Version 2

In the second implementation of the AddressBook interface, we will use the sorting rou-
tine provided in the java.util.Arrays class, which includes a number of useful methods
for handling arrays.To use the sort method of the Arrays class, we must pass a compara-
tor object as its second argument. A comparator object is an instance of a class that
implements the Comparator interface. In the first version, we relied on the comparison
routines embedded in the Person class. We are thus limited to what’s provided by the
Person class, namely, sorting by name or sorting by age. We cannot, for example, sort on
gender and then within the same gender sort on age. By providing an implementation
class of the Comparator interface, we can sort Person objects (or any other types of
objects) in any manner we want.

To implement the Comparator interface, we must implement its compare
method. The function of the compare method is similar to that of the compareTo
method in the Person class. Any class that implements the Comparator inter-
face must specify the type of the objects it will compare. For this example, the class
compares Person objects, so the class will implement Comparator<Person>. The
parameters for the compare method must match the specified type, which in this

wu23399_ch11.qxd 12/28/06 12:41 Page 658

case is Person. Here’s the comparator class that compares two Person objects based
on their age:

class AgeComparator implements Comparator <Person> {

private final int LESS = -1;
private final int EQUAL = 0;
private final int MORE = 1;

public int compare(Person p1, Person p2) {
int comparisonResult;

int p1age = p1.getAge();
int p2age = p2.getAge();

if (p1age < p2age) {
comparisonResult = LESS;

} else if (p1age == p2age) {
comparisonResult = EQUAL;

} else {
assert p1age > p2age;
comparisonResult = MORE;

}

return comparisonResult;
}

}

The NameComparator is similarly defined. The AgeComparator and Name-
Comparator classes are helper classes specific to the AddressBookVer2 class, and as
such, it is appropriate to define them as the inner classes of AddressBookVer2. An inner
class is a class whose definition is given within the definition of another class, as in

class Outer {

...

class Inner {
...

} //end of Inner

} //end of Outer

We can prefix the inner class definition with the visibility modifier public or private. The
public modifier will make the inner class accessible to the client classes outside of the
package while the private modifier will make the inner class inaccessible to all other
classes. Just as the ordinary class definition, a class definition without a visibility modifier
is accessible to all other classes within the same package (classes in the same directory
are in the same package).

11.4 Sample Development 659

inner class

wu23399_ch11.qxd 12/28/06 12:41 Page 659

11.4 Sample Development—continued

As for the actual sorting task, we will use the sort method of the Arrays class
instead of writing our own sorting algorithm.The sort method of the AddressBookVer2
class is now defined as follows:

public Person[] sort(int attribute) {

if (!(attribute == Person.NAME ||
attribute == Person.AGE)) {

throw new IllegalArgumentException();
}

Person[] sortedList = new Person[count];

//copy references to sortedList
for (int i = 0; i < count; i++) {

sortedList[i] = entry[i];
}

Arrays.sort(sortedList, getComparator(attribute));

return sortedList;
}

And the private getComparator method is defined as follows:

private Comparator<String> getComparator(int attribute) {
Comparator<String> comp = null;

if (attribute == Person.AGE) {
comp = new AgeComparator();

} else {
assert attribute == Person.NAME:

"Attribute not recognized for sorting";

comp = new NameComparator();
}
return comp;

}

The first argument to the sort method of the Arrays class is an array of objects we
want to sort, and the second argument is the comparator to use in comparing array
elements. For example, if we want to sort the Person objects by gender first and in de-
scending order of age within the same gender, we can define the comparator as

class GenAgeComparator implements Comparator<Person> {

private final int LESS = -1;
private final int EQUAL = 0;
private final int MORE = 1;

660 Chapter 11 Sorting and Searching

Sorts the list by
using the given

comparator

wu23399_ch11.qxd 12/28/06 12:42 Page 660

public int compare(Person p1, Person p2) {
int comparisonResult;

int p1age = p1.getAge();
int p2age = p2.getAge();

char p1gender = p1.getGender();
char p2gender = p2.getGender();

if (p1gender < p2gender) {
comparisonResult = LESS;

} else if (p1gender == p2gender) {
if (p2age < p1age) {

comparisonResult = LESS;
} else if (p2age == p1age) {

comparisonResult = EQUAL;
} else {

assert p2age > p1age;
comparisonResult = MORE;

}

} else {
assert p1gender > p2gender;
comparisonResult = MORE;

}

return comparisonResult;
}

}

and we can call the sort method as

Arrays.sort(sortedList, new GenAgeComparator());

Here’s the AddressBook2 class (only the modified portions are shown):

11.4 Sample Development 661

Notice that we are switching
the positions of p1 and p2
because we are sorting in

descending order.

/*
Chapter 11 Sample Program: Address Book Version 2
File: AddressBookVer2.java

*/
import java.util.*;

class AddressBookVer2 implements AddressBook {

public AddressBookVer2() {
this(DEFAULT_SIZE);

}

wu23399_ch11.qxd 12/28/06 12:42 Page 661

11.4 Sample Development—continued

public AddressBookVer2(int size) {
...

}

...

public Person[] sort(int attribute) {

if (!(attribute == Person.NAME || attribute == Person.AGE)) {
throw new IllegalArgumentException();

}

Person[] sortedList = new Person[count];

//copy references to sortedList
for (int i = 0; i < count; i++) {

sortedList[i] = entry[i];
}

Arrays.sort(sortedList, getComparator(attribute));

return sortedList;

}

...

private Comparator<String> getComparator(int attribute) {
Comparator<String> comp = null;

if (attribute == Person.AGE) {
comp = new AgeComparator();

} else {
assert attribute == Person.NAME:

"Attribute not recognized for sorting";

comp = new NameComparator();
}
return comp;

}

// Inner Classes

//Inner class for comparing age
class AgeComparator implements Comparator<Person> {

private final int LESS = -1;
private final int EQUAL = 0;
private final int MORE = 1;

662 Chapter 11 Sorting and Searching

wu23399_ch11.qxd 12/28/06 12:42 Page 662

public int compare(Person p1, Person p2) {

int comparisonResult;

int p1age = p1.getAge();
int p2age = p2.getAge();

if (p1age < p2age) {
comparisonResult = LESS;

} else if (p1age == p2age) {
comparisonResult = EQUAL;

} else {
assert p1age > p2age;
comparisonResult = MORE;

}

return comparisonResult;
}

}

//Inner class for comparing name
class NameComparator implements Comparator<String> {

public int compare(Person p1, Person p2) {

String p1name = p1.getName();
String p2name = p2.getName();

return p1name.compareTo(p2name);
}

}
}

11.4 Sample Development 663

While the main purpose of the AddressBookVer1 class is pedagogy, the
AddressBookVer2 class, with its use of the efficient Arrays class sort method based on a
high-performance sorting technique called merge sort and the generality provided by the
Comparator interface, is closer to what we would really use in practice. The last version,
AddressBookVer3, would improve further by using the map from the Java Collection
Framework.This eliminates the code to maintain the array in our class.

Version 3

The third implementation of the AddressBook interface eliminates the use of an array
altogether. Instead of maintaining the array of Person objects ourselves, we will rely on
the service provided by the Map interface from the java.util package.

The key for the map is the person’s name, and the value is the Person object. The
add, delete, and search methods now all just make calls to the map’s methods for data

wu23399_ch11.qxd 12/28/06 12:42 Page 663

11.4 Sample Development—continued

management. The sort method retrieves a collection of values in the map, converts this
collection to an array, and then passes this array to the sort method of the Arrays class.
Here’s how we define the sort method:

public Person[] sort(int attribute) {

if (!(attribute == Person.NAME ||
attribute == Person.AGE)) {

throw new IllegalArgumentException();
}

Person[] sortedList = new Person[entry.size()];
entry.values().toArray(sortedList);

Arrays.sort(sortedList, getComparator(attribute));

return sortedList;
}

Here’s the AddressBookVer3 class:

664 Chapter 11 Sorting and Searching

/*
Chapter 11 Sample Program: Address Book Version 3

File: AddressBookVer3.java
*/
import java.util.*;

class AddressBookVer3 implements AddressBook {

private static final int DEFAULT_SIZE = 25;

private Map<String, Person> entry;

public AddressBookVer3() {
this(DEFAULT_SIZE);

}

public AddressBookVer3(int size) {
entry = new HashMap<String, Person> (size);

}

public void add(Person newPerson) {
entry.put(newPerson.getName(), newPerson);

}

public boolean delete(String searchName) {

boolean status;
Person p = entry.remove(searchName);

Data members

Constructors

add

delete

wu23399_ch11.qxd 12/28/06 12:42 Page 664

if (p == null) {
status = false;

} else {
status = true;

}

return status;
}

public Person search(String searchName) {

return entry.get(searchName);
}

public Person[] sort(int attribute) {

if (!(attribute == Person.NAME || attribute == Person.AGE)) {
throw new IllegalArgumentException();

}

Person[] sortedList = new Person[entry.size()];
entry.values().toArray(sortedList);

Arrays.sort(sortedList, getComparator(attribute));

return sortedList;
}

...
}

Summary 665

search

sort

• Searching and sorting are two of the most basic nonnumeric applications of
computer programs.

• Linear search looks for a value in a linear sequence.

• Binary search looks for a value by successively comparing the element in
the middle of a sorted list.

• Selection sort is a basic sorting routine that runs in time proportion to N2,
where N is the size of the list to sort.

• Bubble sort is another N2 performance algorithm, but it runs faster than
the selection sort on average.

• Heapsort has a N log2N performance. It uses a special heap data structure
to sort the elements.

S u m m a r y

wu23399_ch11.qxd 12/28/06 12:42 Page 665

• Using a class that implements the Comparator interface is convenient and
flexible to dictate the manner in which objects of a class are compared.

• The Comparator interface has one method, called compare.

• The standard classes and interfaces described or used in this chapter are

Comparator Arrays

666 Chapter 11 Sorting and Searching

K e y C o n c e p t s

linear search

binary search

selection sort

bubble sort

heapsort

N2 sorting algorithm

N log2 N sorting algorithm

comparator

E x e r c i s e s

1. Consider the following array of sorted integers:

Using the binary search algorithm, search for 23. Show the sequence of array
elements that are compared, and for each comparison, indicate the values for
low and high.

2. We assumed all elements in an array are distinct; that is, there are no
duplicate values in the array. What will be an effect on the linear search
algorithm if an array contains duplicate values?

3. Will the sorting algorithms presented in this chapter work if the unsorted
array contains any duplicate values?

4. In this chapter we analyzed sorting algorithms by counting the number of
comparisons. Another possible method for analyzing the algorithms is to
count the number of data exchanges. How many data exchanges do the
selection and bubble sort make in the worst case? Regardless of the original
list, the selection sort will make the same number of data exchanges.
However, the number of data exchanges the bubble sort makes depends on
the arrangement of elements in the original list.

5. Another simple sorting algorithm is called an insertion sort. Suppose we have
a sorted list of N elements and we need to insert a new element X into this list
to create a sorted list of N � 1 elements. We can insert X at the correct position
in the list by comparing it with elements list[N � 1], list[N � 2], list[N � 3],
and so forth. Every time we compare X and list[i], we shift list[i] one position
to list[i � 1] if X is smaller than list[i]. When we find list[i] that is smaller
than X, we put X at position i � 1 and stop. We can apply this logic to sort an

0 1 2 3 4 5 6 7 8 9 10 11

10 15 25 30 33 34 46 55 78 84 96 99

wu23399_ch11.qxd 12/28/06 12:42 Page 666

unordered list of N elements. We start with a sorted list of one element and
insert the second element to create a sorted list of two elements. Then we
add the third element to create a sorted list of three elements. Figure 11.18
illustrates the steps in the insertion sort. Write a method that implements the
insertion sort algorithm. You may simplify the method by sorting only integers.

6. Analyze the insertion sort algorithm of Exercise 5 by counting the number of
comparisons and data exchanges. Provide the analysis for the worst case.

7. Write a test program to compare the performances of selection sort, bubble
sort, and heapsort algorithms experimentally. Use the random method from
the Math class to generate 5000 integers, and sort the generated integers by
using the three sorting algorithms. For each execution, record the time it
took to sort the numbers. You can use the java.util.Date class to record the
execution time in milliseconds, for example,

Date startTime, endTime;

startTime = new Date();

Exercises 667

0 1 2 3 4 5 6 7 8

23 17

Insert 17

Sorted Unsorted

5 90 12 44 38 84 771

0 1 2 3 4 5 6 7 8

17 23

Insert 5

5 90 12 44 38 84 772

0 1 2 3 4 5 6 7 8

5 17

Insert 90

and so on ...

23 90 12 44 38 84 773

Figure 11.18 Steps in an insertion sort.

wu23399_ch11.qxd 12/28/06 12:42 Page 667

//sort the integers

endTime = new Date();

//record the elapsed time
double elapsedTime

= endTime.getTime() - startTime.getTime();

8. Consider the following property about the bubble sort:

If the last exchange made in some pass occurs at the Jth and
(J � 1)st positions, then all elements from the (J � 1)st to the
Nth positions are in their correct location.

Rewrite the bubble sort algorithm, using this property.

9. The Heap class given in Section 11.3 sorts only the integers. Improve the
class by making it possible to sort any objects that recognize the compareTo
method, which is described in Section 11.4, so the new Heap class will be
able to sort Person, Integer, Double, and String objects among others. Since
the elements in the internal array can be any object, declare an array of
Object objects. All Java classes are automatically a subclass of Object,
unless they are declared explicitly as a subclass of another class. The
declaration of heap will be like this

private Object[] heap;

and the setData method will be like this:

public void setData(Object[] data) {
heap = new Object[data.length];
sortedList = new Object[data.length];

for (int i = 0; i < data.length; i++) {
heap[i] = data[i];

}
}

10. In the Heap class, we used two separate arrays: one for the heap and another
for the sorted list. It turns out we can do everything with just one array.
Notice that the heap will decrease in size by one element after every rebuild
step. The unused space at the end of the heap array can be used to store the
sorted list. Modify the Heap class so it will use only one array.

11. Modify the Heap class by defining a separate method called rebuild, which
will be used by both the construct and extract methods.

12. In Section 11.4, we implemented the sorting routine for the AddressBook
class with the bubble sort algorithm. Modify the sorting routine by using the
Heap class of Exercise 9.

13. Instead of maintaining an unsorted list and returning the sorted list when the
sort method is called, modify the AddressBook class so that it maintains the
sorted list of Person in alphabetical order. Modify the search routine by using
the binary search algorithm.

668 Chapter 11 Sorting and Searching

wu23399_ch11.qxd 12/28/06 12:42 Page 668

File Input and
Output

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Include a JFileChooser object in your program
to let the user specify a file.

• Write bytes to a file and read them back from
the file, using FileOutputStream and
FileInputStream.

• Write values of primitive data types to a file
and read them back from the file, using
DataOutput Stream and DataInputStream.

• Write text data to a file and read them back
from the file, using PrintWriter and
BufferedReader.

• Read a text file using Scanner.

• Write objects to a file and read them back from
the file, using ObjectOutputStream and
ObjectInputStream.

669

12

wu23399_ch12.qxd 12/28/06 12:44 Page 669

hat is the most important action you should never forget to take while develop-
ing programs or writing documents? Saving the data, of course! It’s 3 A.M., and
you’re in the home stretch, applying the finishing touches to the term paper due
at 9 A.M. Just as you are ready to select the Print command for the final copy, it
happens. The software freezes and it won’t respond to your commands anymore.
You forgot to turn on the Autosave feature, and you have not saved the data for the
last hour. There’s nothing you can do but reboot the computer.

Data not saved will be lost, and if we ever want to work on the data again,
we must save the data to a file. We call the action of saving, or writing, data to a file
file output and the action of reading data from a file file input. A program we develop
must support some form of file input and output capabilities for it to have practical
uses. Suppose we develop a program that keeps track of bicycles owned by the
dorm students. The program will allow the user to add, delete, and modify the bicy-
cle information. If the program does not support the file input and output features,
every time the program is started, the user must reenter the data.

In this chapter, we will introduce the classes from the java.io and javax.swing
packages that are used for file input and output operations. Also, we will show how
the two helper classes from Chapters 8 and 9—Dorm and FileManager—that pro-
vided the file input and output support are implemented.

12.1 File and JFileChooser Objects
In this section we introduce two key objects for reading data from or writing data to
a file. We use the term file access to refer to both read and write operations. If we
need to be precise, we write read access or write access. (We use the terms save and
write interchangeably to refer to file output, but we never say save access.) Suppose
we want to read the contents of a file sample.data. Before we begin the actual oper-
ation of reading data from this file, we must first create a File object (from the java.io
package) and associate it to the file. We do so by calling a File constructor:

File inFile = new File("sample.data");

The argument to the constructor designates the name of the file to access. The sys-
tem assumes the file is located in the current directory. For the following examples,
we assume the directory structure shown in Figure 12.1, with Ch12 being the current
directory. When you run a program whose source file is located in directory X, then
the current directory is X. Please refer to Java compiler manuals for other options
for designating the current directory.

It is also possible to open a file that is stored in a directory other than the
current directory by providing a path name and a filename. Assuming there’s a file
xyz.data in the JavaPrograms directory, we can open it by executing

File inFile = new File("C:\\JavaPrograms", "xyz.data");

670 Chapter 12 File Input and Output

I n t r o d u c t i o n

W

file output
and input

File

current
directory

wu23399_ch12.qxd 12/28/06 12:44 Page 670

This style of designating the path name is for the Windows platform. The actual
path name we want to specify is

C:\JavaPrograms

but the backslash character is an escape character. So to specify the backslash char-
acter itself, we must use double backslashes. For the UNIX platform, we use the
forward slash for a delimiter, for example,

"/JavaPrograms"

For the Mac platform, we also use a forward slash; for example, if the name of a
hard disk is MacHD, then we write

"/MacHD/JavaPrograms"

To maintain the consistency across the platforms, the forward slash character is
allowed for the Windows platform also, such as in

"C:/JavaPrograms/Ch12"

The path name could be absolute or relative to the current directory. The
absolute path name is the full path name beginning with the disk drive name, for
example,

"C:/JavaPrograms/Ch12"

The relative path name is relative to the current directory. For example, if the cur-
rent directory is Ch12, then the relative path name

"../Ch12"

12.1 File and JFileChooser Objects 671

JavaPrograms

Ch1

Ch2

•••

•••

•••
Ch12

C: drive

Current directory

Figure 12.1 Directory structure used for the examples in this section.We assume the Windows environment.

wu23399_ch12.qxd 12/28/06 12:44 Page 671

is equivalent to the full path name

"C:/JavaPrograms/Ch12"

where the two dots (. .) in the string mean “one directory above.”
We can check if a File object is associated correctly to an existing file by call-

ing its exists method:

if (inFile.exists()) {
// inFile is associated correctly to an existing file

} else {
// inFile is not associated to any existing file

}

When a valid association is established, we say the file is opened; a file must
be opened before we can do any input and output to the file.

672 Chapter 12 File Input and Output

A file must be opened before we can execute any file access operations.

A File object can also be associated to a directory. For example, suppose we
are interested in listing the content of directory Ch12. We can first create a File object
and associate it to the directory. After the association is made, we can list the con-
tents of the directory by calling the object’s list method:

File directory = new File("C:/JavaPrograms/Ch12");
String filename[] = directory.list();

for (int i = 0; i < filename.length; i++) {
System.out.println(filename[i]);

}

We check whether a File object is associated to a file or a directory by calling
its boolean method isFile. The following code will print out I am a directory:

File file = new File("C:/JavaPrograms/Ch12");

if (file.isFile()) {
System.out.println("I am a file");

} else {
System.out.println("I am a directory");

}

wu23399_ch12.qxd 12/28/06 12:44 Page 672

We can use a javax.swing.JFileChooser object to let the user select a file.
The following statement displays an open file dialog, such as the one shown in
Figure 12.2 (the actual listing depends on the machine on which the program is
executed):

JFileChooser chooser = new JFileChooser();
...
chooser.showOpenDialog(null);

The null argument to the showOpenDialog indicates that there’s no parent frame
window, and the dialog is displayed at the center of the screen. We pass a frame
window object if we want to position the file dialog at the center of the frame.

When we create an instance of JFileChooser by passing no arguments, as in
this example, it will list the content of the user’s home directory. For the Windows
platform, the user’s home directory by default is the My Documents folder. We can
set the file chooser to list the contents of a desired directory when it first appears on
the screen. We can do this in two ways. The first is to pass the path name of the di-
rectory as a String argument to the constructor. For example, if we want to start the
listing from the C:/JavaPrograms/Ch12 directory, then we write

JFileChooser chooser
= new JFileChooser("C:/JavaPrograms/Ch12");

. . .
chooser.showOpenDialog(null);

12.1 File and JFileChooser Objects 673

Figure 12.2 A sample JFileChooser object displayed with the showOpenDialog method.The dialog title
and the okay button are labeled Open.

JFileChooser

wu23399_ch12.qxd 12/28/06 12:44 Page 673

The second way is to use the setCurrentDirectory method as follows:

File startDir = new File("C:/JavaPrograms/Ch12");

chooser.setCurrentDirectory(startDir);
...
chooser.showOpenDialog(null);

Notice that we have to pass a File object, not a String, to the setCurrentDirectory
method.

Instead of designating a fixed directory as in this example, we may wish to
begin the listing from the current directory. Since the current directory is different
when the program is executed from a different directory, we need a general approach.
We can achieve the generality by writing

String current = System.getProperty("user.dir");

JFileChooser chooser
= new JFileChooser(current);

...

or equivalently

String current = System.getProperty("user.dir");

JFileChooser chooser
= new JFileChooser();

chooser.setCurrentDirectory(new File(current));
...

The content of current is the path name to the current directory.
To check whether the user has clicked on the Open or Cancel button, we test

the return value from the showOpenDialog method.

int status = chooser.showOpenDialog(null);

if (status == JFileChooser.APPROVE_OPTION) {
System.out.println("Open is clicked");

} else { //== JFileChooser.CANCEL_OPTION
System.out.println("Cancel is clicked");

}

Once we determine the Open button is clicked, we can retrieve the selected file as

File selectedFile;

selectedFile = chooser.getSelectedFile();

and the current directory of the selected file as

File currentDirectory;
currentDirectory = chooser.getCurrentDirectory();

674 Chapter 12 File Input and Output

wu23399_ch12.qxd 12/28/06 12:44 Page 674

To find out the name and the full path name of a selected file, we can use the
getName and getAbsolutePath methods of the File class.

File file = chooser.getSelectedFile();

System.out.println("Selected File: " +
file.getName());

System.out.println("Full path: " +
file.getAbsolutePath());

To display a JFileChooser with the Save button, we write

chooser.showSaveDialog(null);

which results in a dialog shown in Figure 12.3 (the actual listing depends on the
machine on which the program is executed).

The following Ch12TestJFileChooser class summarizes the methods of JFile-
Chooser and File classes. Note this sample program does not perform actual file
input or output.

12.1 File and JFileChooser Objects 675

Figure 12.3 A sample JFileChooser object displayed with the showCloseDialog method.The dialog title
and the okay button are labeled Save.

/*
Chapter 12 Sample Program: Illustrate the use of the

JFileChooser and File classes.

File: Ch12TestJFileChooser.java
*/

wu23399_ch12.qxd 12/28/06 12:44 Page 675

import java.io.*;
import javax.swing.*;

class Ch12TestJFileChooser {
public static void main (String[] args) {

JFileChooser chooser;
File file, directory;
int status;

chooser = new JFileChooser();

status = chooser.showOpenDialog(null);

if (status == JFileChooser.APPROVE_OPTION) {
file = chooser.getSelectedFile();
directory = chooser.getCurrentDirectory();

System.out.println("Directory: " +
directory.getName());

System.out.println("File selected to open: " +
file.getName());

System.out.println("Full path name: " +
file.getAbsolutePath());

} else {
System.out.println("Open File dialog canceled");

}

System.out.println("\n\n");

status = chooser.showSaveDialog(null);

if (status == JFileChooser.APPROVE_OPTION) {
file = chooser.getSelectedFile();
directory = chooser.getCurrentDirectory();

System.out.println("Directory: " +
directory.getName());

System.out.println("File selected for saving data: " +
file.getName());

System.out.println("Full path name: " +
file.getAbsolutePath());

} else {
System.out.println("Save File dialog canceled");

}
}

}

676 Chapter 12 File Input and Output

wu23399_ch12.qxd 12/28/06 12:44 Page 676

Figure 12.4 shows a sample output of running the program once.
There is actually no distinction between the Open and Save dialogs created,

respectively, by showOpenDialog and showCloseDialog other than the difference in
the button label and the dialog title. In fact, they are really a shorthand for calling
the showDialog method. Using the showDialog method, we can specify the button
label and the dialog title. For example, this code will produce a JFileChooser dialog
with the text Compile as its title and label for the okay button:

JFileChooser chooser = new JFileChooser();
chooser.showDialog(null, "Compile");

We can use a file filter to remove unwanted files from the list. Let’s say we
want to apply a filter so only the directories and the Java source files (those with the
.java extension) are listed in the file chooser. To do so, we must define a subclass of
the javax.swing.filechooser.FileFilter class and provide the accept and getDescription
methods. The prototypes of these methods are

public boolean accept(File file)
public String getDescription()

The accept method returns true if the parameter file is a file to be included in the list.
The getDescription method returns a text that will be displayed as one of the entries
for the “Files of Type:” drop-down list. Here’s how the filter subclass is defined:

12.1 File and JFileChooser Objects 677

Figure 12.4 A sample output from running the Ch12TestJFileChooser program once.

file filter

/*
Chapter 12 Sample Program: Illustrate how to filter only

Java source files
for listing in JFileChooser

File: JavaFilter.java
*/

import java.io.File;
import javax.swing.filechooser.*;

Notice that we are stating one class in the package
explicitly, instead of using the more common form of

import java.io.*;
to avoid naming conflict.The java.io package has
the interface named FileFilter.

wu23399_ch12.qxd 12/28/06 12:44 Page 677

class JavaFilter extends FileFilter {

private static final String JAVA = "java";
private static final char DOT = '.';

//accepts only directories and
//files with .java extension only
public boolean accept(File f) {

if (f.isDirectory()) {
return true;

}

if (extension(f).equalsIgnoreCase(JAVA)) {
return true;

} else {
return false;

}
}

//description of the filtered files
public String getDescription() {

return "Java source files (.java)";
}

//extracts the extension from the filename
private String extension(File f) {

String filename = f.getName();
int loc = filename.lastIndexOf(DOT);

if (loc > 0 && loc < filename.length() - 1) {
//make sure the dot is not
//at the first or the last character position
return filename.substring(loc+1);

} else {
return "";

}
}

}

678 Chapter 12 File Input and Output

Data members

accept

getDescription

extension

With the filter class Java Filter in place, we can set a file chooser to list only
directories and Java source files by writing

JFileChooser chooser = new JFileChooser();

chooser.setFileFilter(new JavaFilter(());

int status = chooser.showOpenDialog(null);

wu23399_ch12.qxd 12/28/06 12:44 Page 678

12.2 Low-Level File I/O 679

1. This question is specific to the Windows platform. Suppose you want to open a
file prog1.java inside the directory C:\JavaProjects\Ch11\Step4. What is the
actual String value you pass in the constructor for the File class?

2. What is wrong with the following statement?

JFileChooser chooser

= new JFileChooser("Run");

chooser.showDialog(null);

3. Which method of the JFileChooser class do you use to get the filename of the
selected file? What is returned from the method if the Cancel button is clicked?

12.2 Low-Level File I/O
Once a file is opened by properly associating a File object to it, the actual file
access can commence. In this section, we will introduce basic objects for file
operations. To actually read data from or write data to a file, we must create one of
the Java stream objects and attach it to the file. A stream is simply a sequence of
data items, usually 8 bits per item. Java has two types of streams: an input stream
and an output stream. An input stream has a source from which the data items
come, and an output stream has a destination to which the data items go. To read
data items from a file, we attach one of the Java input stream objects to the file.
Similarly, to write data items to a file, we attach one of the Java output stream
objects to the file.

Java comes with a large number of stream objects for file access operations.
We will cover only those that are straightforward and easy to learn for beginners.
We will study two of them in this section—FileOutputStream and FileInputStream.
These two objects provide low-level file access operations. In Section 12.3 we will
study other stream objects.

Let’s first study how to write data values to a file by using FileOutputStream.
Using a FileOutputStream object, we can output only a sequence of bytes, that is,
values of data type byte. In this example, we will output an array of bytes to a file
named sample1.data. First we create a File object:

File outFile = new File("sample1.data");

Then we associate a new FileOutputStream object to outFile:

FileOutputStream outStream
= new FileOutputStream(outFile);

Now we are ready for output. Consider the following byte array:

byte[] byteArray = {10, 20, 30, 40, 50, 60, 70, 80};

stream

source

destination

FileOutput-
Stream

wu23399_ch12.qxd 12/28/06 12:44 Page 679

We write the whole byte array at once to the file by executing

outStream.write(byteArray);

Notice that we are not dealing with the File object directly, but with outStream. It is
also possible to write array elements individually, for example,

//output the first and fifth bytes
outStream.write(byteArray[0]);
outStream.write(byteArray[4]);

After the values are written to the file, we must close the stream:

outStream.close();

If the stream object is not closed, then some data may get lost due to data caching.
Because of the physical characteristics of secondary memory such as hard disks, the
actual process of saving data to a file is a very time-consuming operation, whether
you are saving 1 or 100 bytes. So instead of saving bytes individually, we save them
in a block of, say, 500 bytes to reduce the overall time it takes to save the whole
data. The operation of saving data as a block is called data caching. To carry out
data caching, a part of memory is reserved as a data buffer or cache, which is used
as a temporary holding place. A typical size for a data buffer is anywhere from 1 KB
to 2 KB. Data are first written to a buffer, and when the buffer becomes full, the data
in the buffer are actually written to a file. If there are any remaining data in the
buffer and the file is not closed, then those data will be lost. Therefore, to avoid
losing any data, it is important to close the file at the end of the operations.

680 Chapter 12 File Input and Output

data caching

data buffer

To ensure that all data are saved to a file, close the file at the end of file access
operations.

Many of the file operations, such as write and close, throw I/O exceptions, so
we need to handle them. For the short sample programs, we use the propagation ap-
proach. Here’s the complete program:

/*
Chapter 12 Sample Program:

A test program to save data to a file using FileOutputStream

File: Ch12TestFileOutputStream.java
*/
import java.io.*;

class Ch12TestFileOutputStream {
public static void main (String[] args) throws IOException {

Needs this clause because the file
methods throw I/O exceptions.

wu23399_ch12.qxd 12/28/06 12:44 Page 680

//set up file and stream
File outFile = new File("sample1.data");
FileOutputStream outStream = new FileOutputStream(outFile);

//data to output
byte[] byteArray = {10, 20, 30, 40, 50, 60, 70, 80};

//write data to the stream
outStream.write(byteArray);

//output done, so close the stream
outStream.close();

}
}

12.2 Low-Level File I/O 681

It may seem odd at first to have both File and FileStream objects to input data
from a file. Why not have just a File to handle everything? File represents a
physical file that is a source of data. Stream objects represent the mechanism
we associate to a file to perform input and output routines. Stream objects can
also be associated to a nonfile data source such as a serial port. So separating
the tasks following the STO principle resulted in more than one class to input
data from a file.

Now it’s true that we can make a shortcut statement such as

fileOutputStream outStream
= new FileOutputStream("input.txt");

where we avoid the explicit creation of a File object. But this shortcut does not
eliminate the fact that the Stream object is associated to a file.

To read the data into a program, we reverse the steps in the output routine.
We use the read method of FileInputStream to read in an array of bytes. First we
create a FileInputStream object:

File inFile = new File("sample1.data");
FileInputStream inStream = new FileInputStream(inFile);

Then we read the data into an array of bytes:

inStream.read(byteArray);

Before we call the read method, we must declare and create byteArray:

int filesize = (int) inFile.length();
byte[] byteArray = new byte[filesize];

FileInput-
Stream

wu23399_ch12.qxd 12/28/06 12:44 Page 681

We use the length method of the File class to determine the size of the file, which in
this case is the number of bytes in the file. We create an array of bytes whose size is
the size of the file.

The following program uses FileInputStream to read in the byte array from the
file sample1.data.

682 Chapter 12 File Input and Output

/*
Chapter 12 Sample Program:

A test program to read data from a file using FileInputStream

File: Ch12TestFileInputStream.java
*/
import java.io.*;

class Ch12TestFileInputStream {
public static void main (String[] args) throws IOException {

//set up file and stream
File inFile = new File("sample1.data");
FileInputStream inStream = new FileInputStream(inFile);

//set up an array to read data in
int fileSize = (int) inFile.length();
byte[] byteArray = new byte[fileSize];

//read data in and display them
inStream.read(byteArray);
for (int i = 0; i < fileSize; i++) {

System.out.println(byteArray[i]);
}

//input done, so close the stream
inStream.close();

}
}

It is possible to output data other than bytes if we can convert (i.e., typecast)
them into bytes. For example, we can output character data by typecasting them to
bytes.

File outFile = new File("sample1.data");
FileOutputStream outStream = new FileOutputStream(outFile);

//data to output
byte[] byteArray = {(byte) 'J',

(byte) 'a',
(byte) 'v',
(byte) 'a' };

Typecast characters
to bytes.

wu23399_ch12.qxd 12/28/06 12:44 Page 682

//write data to the stream
outStream.write(byteArray);

//output done, so close the stream
outStream.close();

To read the data back, we use the read method again. If we need to display the bytes
in the original character values, we need to typecast byte to char. Without the type-
casting, numerical values would be displayed. The following code illustrates the
typecasting of byte to char for display.

File inFile = new File("sample1.data");
FileInputStream inStream = new FileInputStream(inFile);

//set up an array to read data in
int fileSize = inFile.length();
byte[] byteArray = new byte[fileSize];

//read data in and display them
inStream.read(byteArray);

for (int i = 0; i < fileSize; i++) {

System.out.println((char) byteArray[i]);
}

//input done, so close the stream
inStream.close();

Typecasting char to byte or byte to char is simple because ASCII uses 8 bits. But
what if we want to perform file I/O on numerical values such as integers and real
numbers? It takes more than simple typecasting to output these numerical values
to FileOutputStream and read them back from FileInputStream. An integer takes
4 bytes, so we need to break a single integer into 4 bytes and perform file I/O
on this 4 bytes. Such a conversion would be too low-level and tedious. Java
provides stream objects that allow us to read from or write numerical values to
a file without doing any conversions ourselves. We will discuss two of them in
Section 12.3.

12.2 Low-Level File I/O 683

Typecast bytes
back to characters.

1. What is the method you call at the end of all file I/O operations?

2. What is wrong with the following statements? Assume that outStream is a
properly declared and created FileOutputStream object.

byte[] byteArray = {(byte) 'H', (byte) 'i'};
...
outStream.print(byteArray);
...
outStream.close();

wu23399_ch12.qxd 12/28/06 12:44 Page 683

12.3 High-Level File I/O
By using DataOutputStream, we can output Java primitive data type values. A
DataOutputStream object will take care of the details of converting the primitive
data type values to a sequence of bytes. Let’s look at the complete program
first. The following program writes out values of various Java primitive data types
to a file. The names of the output methods (those preceded with write) should be
self-explanatory.

684 Chapter 12 File Input and Output

/*
Chapter 12 Sample Program:

A test program to save data to a file using
DataOutputStream for high-level I/O.

File: Ch12TestDataOutputStream.java
*/
import java.io.*;

class Ch12TestDataOutputStream {
public static void main (String[] args) throws IOException {

//set up the streams
File outFile = new File("sample2.data");
FileOutputStream outFileStream = new FileOutputStream(outFile);
DataOutputStream outDataStream = new DataOutputStream

(outFileStream);

//write values of primitive data types to the stream
outDataStream.writeInt(987654321);
outDataStream.writeLong(11111111L);
outDataStream.writeFloat(22222222F);
outDataStream.writeDouble(3333333D);
outDataStream.writeChar('A');
outDataStream.writeBoolean(true);

//output done, so close the stream
outDataStream.close();

}
}

Notice the sequence of statements for creating a DataOutputStream object:

File outFile = new File("sample2.data");
FileOutputStream outFileStream= new FileOutputStream(outFile);
DataOutputStream outDataStream

= new DataOutputStream(outFileStream);

wu23399_ch12.qxd 12/28/06 12:44 Page 684

The argument to the DataOutputStream constructor is a FileOutputStream object.
A DataOutputStream object does not get connected to a file directly. The diagram
in Figure 12.5 illustrates the relationships established among the three objects. The
role of the DataOutputStream object is to provide high-level access to a file by
converting a primitive data value to a sequence of bytes, which are then written to
a file via a FileOutputStream object.

To read the data back from the file, we reverse the operation. We use three
objects: File, FileInputStream, and DataInputStream. The following program reads
the data saved by the program Ch12TestDataOutputStream.

12.3 High-Level File I/O 685

DataOutput-
Stream

DataInput-
Stream

File outFile = new File("sample2.data");
FileOutputStream outFileStream = new FileOutputStream(outFile);
DataOutputStream outDataStream = new DataOutputStream(outFileStream);

sample2.data

outDataStream

writeIntwriteFloat writeDouble

outFileStream

outFile

Primitive data type
values are written
to outDataStream.

Primitive data type
values are converted to
a sequence of bytes.

Bytes are written to
the file one at a time.

Figure 12.5 A diagram showing how the three objects outFile, outFileStream, and outDataStream
are related.

/*
Chapter 12 Sample Program:

A test program to load data from a file using
DataInputStream for high-level I/O.

File: Ch12TestDataInputStream.java
*/
import java.io.*;

class Ch12TestDataInputStream {
public static void main (String[] args) throws IOException {

//set up file and stream
File inFile = new File("sample2.data");
FileInputStream inFileStream = new FileInputStream(inFile);
DataInputStream inDataStream = new DataInputStream(inFileStream);

wu23399_ch12.qxd 12/28/06 12:44 Page 685

//read values back from the stream and display them
System.out.println(inDataStream.readInt());
System.out.println(inDataStream.readLong());
System.out.println(inDataStream.readFloat());
System.out.println(inDataStream.readDouble());
System.out.println(inDataStream.readChar());
System.out.println(inDataStream.readBoolean());

//input done, so close the stream
inDataStream.close();

}
}

686 Chapter 12 File Input and Output

Figure 12.6 shows the relationship among the three objects. Notice that we
must read the data back in the precise order. In other words, if we write data in the
order of integer, float, and character, then we must read the data back in that order,
as illustrated in Figure 12.7. If we don’t read the data back in the correct order, the
results will be unpredictable.

Both FileOutputStream and DataOutputStream objects produce a binary file
in which the contents are stored in the format (called binary format) in which they
are stored in the main memory. Instead of storing data in binary format, we can
store them in ASCII format. With the ASCII format, all data are converted to string
data. A file whose contents are stored in ASCII format is called a text file. One major

File inFile = new File("sample2.data");
FileInputStream inFileStream = new FileInputStream(inFile);
DataInputStream inDataStream = new DataInputStream(inFileStream);

sample2.data

inDataStream

readIntreadFloat readDouble

inFileStream

inFile

Primitive data type
values are read
from inDataStream.

A sequence of bytes is
converted to the primitive
data type value.

Bytes are read from
the file.

Primitive data type
values are read from
inDataStream.

Figure 12.6 A diagram showing how the three objects inFile, inFileStream, and inDataStream are related.

binary file

text file

wu23399_ch12.qxd 12/28/06 12:44 Page 686

benefit of a text file is that we can easily read and modify the contents of a text file
by using any text editor or word processor.

PrintWriter is an object we use to generate a text file. Unlike DataOutput-
Stream, where we have a separate write method for each individual data type, Print-
Writer supports only two output methods: print and println (for print line). An
argument to the methods can be any primitive data type. The methods convert the
parameter to string and output this string value. The constructor of PrintWriter, sim-
ilar to the one for DataOutputStream, requires an output stream as its argument. In
the following program, the parameter is again an instance of FileOutputStream.

12.3 High-Level File I/O 687

outStream.writeInteger(...);
outStream.writeLong(...);
outStream.writeChar(...);
outStream.writeBoolean(...);

inStream.readInteger(...);
inStream.readLong(...);
inStream.readChar(...);
inStream.readBoolean(...);

<integer>
<long>
<char>
<boolean>

aFile

Figure 12.7 The order of write and read operations must match to read the stored data back correctly.

/*
Chapter 12 Sample Program:

A test program to save data to a file using
PrintWriter for high-level I/O.

File: Ch12TestPrintWriter.java
*/
import java.io.*;

class Ch12TestPrintWriter {
public static void main (String[] args) throws IOException {

//set up file and stream
File outFile = new File("sample3.data");
FileOutputStream outFileStream = new FileOutputStream(outFile);
PrintWriter outStream = new PrintWriter(outFileStream);

wu23399_ch12.qxd 12/28/06 12:44 Page 687

//write values of primitive data types to the stream
outStream.println(987654321);
outStream.println(11111111L);
outStream.println(22222222F);
outStream.println(33333333D);
outStream.println('A');
outStream.println(true);

//output done, so close the stream
outStream.close();

}
}

688 Chapter 12 File Input and Output

We use print and println with PrintWriter.
The print and println methods convert
primitive data types to strings before
writing to a file.

To read the data from a text file, we use the FileReader and BufferedReader
objects. The relationship between FileReader and BufferedReader is similar to the
one between FileInputStream and DataInputStream. To read data back from a text file,
first we need to associate a BufferedReader object to a file. The following sequence
of statements associates a BufferedReader object to a file sample3.data:

File inFile = new File("sample3.data");
FileReader fileReader = new FileReader(inFile);
BufferedReader bufReader

= new BufferedReader(fileReader);

Then we read data, using the readLine method of BufferedReader,

String str = bufReader.readLine();

and convert the String to a primitive data type as necessary.
Here’s the program to read back from sample3.data, which was created by the

program Ch12TestPrintWriter:

/*
Chapter 12 Sample Program:

A test program to load data from a file using the readLine
method of BufferedReader for high-level String input.

File: Ch12TestBufferedReader.java
*/
import java.io.*;

class Ch12TestBufferedReader {
public static void main (String[] args) throws IOException {

//set up file and stream
File inFile = new File("sample3.data");

wu23399_ch12.qxd 12/28/06 12:44 Page 688

FileReader fileReader = new FileReader(inFile);
BufferedReader bufReader = new BufferedReader(fileReader);
String str;

//get integer
str = bufReader.readLine();
int i = Integer.parseInt(str);

//get long
str = bufReader.readLine();
long l = Long.parseLong(str);

//get float
str = bufReader.readLine();
float f = Float.parseFloat(str);

//get double
str = bufReader.readLine();
double d = Double.parseDouble(str);

//get char
str = bufReader.readLine();
char c = str.charAt(0);

//get boolean
str = bufReader.readLine();
Boolean boolObj = new Boolean(str);
boolean b = boolObj.booleanValue();

System.out.println(i);
System.out.println(l);
System.out.println(f);
System.out.println(d);
System.out.println(c);
System.out.println(b);

//input done, so close the stream
bufReader.close();

}
}

12.3 High-Level File I/O 689

Data are saved in ASCII format, so
the conversion to the primitive
data format is required.

Note: Here we only output, so
there’s no real need to perform
data conversion. But in general
we need to convert ASCII data to
primitive data types to process
them in the program.

Beginning with Java 5.0 (a. k. a. Java 2 SDK 1.5), we can use the Scanner
class introduced in Chapter 3 to input data from a text file. Instead of associating a
new Scanner object to System.in, we can associate it to a File object. For example,

Scanner scanner = new Scanner(
new File("sample3.data"));

wu23399_ch12.qxd 12/28/06 12:44 Page 689

will associate scanner to the file sample3.data. Once this association is made, we
can use scanner methods such as nextInt, next, and others to input data from the
file.

The following sample code does the same as Ch12TestBufferedReader but
uses the Scanner class instead of BufferedReader. Notice that the conversion is not
necessary with the Scanner class by using appropriate input methods such as nextInt
and nextDouble.

690 Chapter 12 File Input and Output

/*
Chapter 12 Sample Program:

Illustrate the use of Scanner to input text file

File: Ch12TestScanner.java
*/

import java.util.*;
import java.io.*;

class Ch12TestScanner {

public static void main (String args[]) throws FileNotFoundException,
IOException {

//open the Scanner

Scanner scanner = new Scanner(new File("sample3.data"));

//get integer
int i = scanner.nextInt();

//get integer
long l = scanner.nextLong();

//get float
float f = scanner.nextFloat();

//get double
double d = scanner.nextDouble();

//get char
char c = scanner.next().charAt(0);

//get boolean
boolean b = scanner.nextBoolean();

System.out.println(i);
System.out.println(l);
System.out.println(f);
System.out.println(d);

wu23399_ch12.qxd 12/28/06 12:44 Page 690

System.out.println(c);
System.out.println(b);

//input done, so close the scanner
scanner.close();

}
}

12.3 High-Level File I/O 691

The FileManager Class
In the Chapter 9 sample development and in Section 12.1, we used the helper class
FileManager. A FileManager object provides file I/O operations for String data. To
refresh our memory, here are the public methods of the class:

Public Methods of FileManager

public String openFile(String filename)
throws FileNotFoundException, IOException

Opens the text file filename and returns the content as a String.

public String openFile() throws IOException
Opens the text file selected by the end user using the standard file open dialog
and returns the content as a String.

public String saveFile(String filename, String data)
throws IOException

Saves the string data to filename.

public String saveFile(String data) throws IOException
Saves the string data to a file selected by the end user using the standard file
save dialog.

The class uses the BufferedReader and PrintWriter classes for text (String) output
and input. Notice that all public methods throw an IOException, and only the
openFile method that accepts a filename as an argument throws FileNotFound-
Exception also. Here is the class listing:

/*
Chapter 9 and Chapter 12 Helper Class

File: FileManager.java

*/

import java.io.*;
import javax.swing.*;

class FileManager {

wu23399_ch12.qxd 12/28/06 12:44 Page 691

private static final String EMPTY_STRING = "";
private static String lineTerminator

= System.getProperty("line.separator");

public FileManager() {
}

public String openFile() throws FileNotFoundException,
IOException {

String filename, doc = EMPTY_STRING;

JFileChooser chooser = new JFileChooser(
System.getProperty("user.dir");

int reply = chooser.showOpenDialog(null);

if(reply == JFileChooser.APPROVE_OPTION) {

doc = openFile(chooser.getSelectedFile().getAbsolutePath());
}

return doc;
}

public String openFile(String filename)
throws FileNotFoundException, IOException {

String line;
StringBuffer document = new StringBuffer(EMPTY_STRING);

File inFile = new File(filename);
FileReader fileReader = new FileReader(inFile);
BufferedReader bufReader = new BufferedReader(fileReader);

while (true) {
line = bufReader.readLine();

if (line == null) break;

document.append(line + lineTerminator);
}

return document.toString();
}

public void saveFile(String data) throws IOException {
String filename, doc = EMPTY_STRING;

JFileChooser chooser = new JFileChooser(
System.getProperty("user.dir");

int reply = chooser.showSaveDialog(null);

if(reply == JFileChooser.APPROVE_OPTION) {

saveFile(chooser.getSelectedFile().getAbsolutePath(),
data);

}
}

692 Chapter 12 File Input and Output

openFile

saveFile

wu23399_ch12.qxd 12/28/06 12:44 Page 692

public void saveFile(String filename, String data)
throws IOException {

File outFile = new File(filename);
FileOutputStream outFileStream = new FileOutputStream(outFile);
PrintWriter outStream = new PrintWriter(outFileStream);

outStream.print(data);

outStream.close();
}

}

12.4 Object I/O 693

ObjectOut-
putStream

ObjectInput-
Stream

1. Which type of files can be opened and viewed by a text editor?

2. Which class is used to save data as a text file? Which class is used to read text
files?

3. Assume bufReader, a BufferedReader object, is properly declared and
created. What is wrong with the following?

double d = bufReader.readDouble();

12.4 Object I/O
We can store objects just as easily as we can store primitive data values. Older ver-
sions of Java and many other object-oriented programming languages won’t allow
programmers to store objects directly. In those programming languages, we must
write code to store individual data members of an object separately. For example, if
a Person object has data members name (String), age (int), and gender (char), then
we have to store the three values individually, using the file I/O techniques explained
earlier in the chapter. (Note: String is an object, but it can be treated much as any
other primitive data types because of its immutability.) Now, if the data members of
an object are all primitive data types (or a String), then storing the data members
individually is a chore but not that difficult. However, if a data member is a refer-
ence to another object or to an array of objects, then storing data can become very
tricky. Fortunately with Java (since version 1.1), we don’t have to worry about
them; we can store objects directly to a file.

In this section, we will describe various approaches for storing objects. To write
objects to a file, we use ObjectOutputStream; and to read objects from a file, we use
ObjectInputStream. Let’s see how we write Person objects to a file. First we need
to modify the definition of the Person class in order for ObjectOutputStream and

wu23399_ch12.qxd 12/28/06 12:44 Page 693

ObjectInputStream to perform object I/O. We modify the definition by adding the
phrase implements Serializable to it.

import java.io.*;
class Person implements Serializable {

//the rest is the same
}

Whenever we want to store an object to a file, we modify its class definition by
adding the phrase implements Serializable to it. Unlike other interfaces, such as
ActionListener, there are no methods for us to define in the implementation class.
All we have to do is to add the phrase.

694 Chapter 12 File Input and Output

Serializable is
defined in java.io.

If we want to perform an object I/O, then the class definition must include the
phrase implements Serializable.

To save objects to a file, we first create an ObjectOutputStream object:

File outFile
= new File("objects.dat");

FileOutputStream outFileStream
= new FileOutputStream(outFile);

ObjectOutputStream outObjectStream
= new ObjectOutputStream

(outFileStream);

To save a Person object, we write

Person person = new Person("Mr. Espresso", 20, 'M');

outObjectStream.writeObject(person);

The following sample program saves 10 Person objects to a file:

/*
Chapter 12 Sample Program: Illustrate the use of ObjectOutputStream

File: Ch12TestObjectOutputStream.java
*/

import java.io.*;

wu23399_ch12.qxd 12/28/06 12:44 Page 694

class Ch12TestObjectOutputStream {
public static void main (String[] args) throws IOException {

//set up the streams
File outFile = new File("objects.dat");
FileOutputStream outFileStream

= new FileOutputStream(outFile);
ObjectOutputStream outObjectStream

= new ObjectOutputStream(outFileStream);

//write serializable Person objects one at a time
Person person;
for (int i = 0; i < 10; i++) {

person = new Person("Mr. Espresso" + i, 20+i, 'M');

outObjectStream.writeObject(person);
}

//output done, so close the stream
outObjectStream.close();

}
}

12.4 Object I/O 695

It is possible to save different types of objects to a single file. Assuming the
Account and Bank classes are defined properly, we can save both types of objects to
a single file:

Account account1, account2;
Bank bank1, bank2;

account1 = new Account(); //create objects
account2 = new Account();
bank1 = new Bank();
bank2 = new Bank();

outObjectStream.writeObject(account1);
outObjectStream.writeObject(account2);
outObjectStream.writeObject(bank1);
outObjectStream.writeObject(bank2);

We can even mix objects and primitive data type values, for example,

outObjectStream.writeInt (15);
outObjectStream.writeObject(account1);
outObjectStream.writeChar ('X');

To read objects from a file, we use FileInputStream and ObjectInputStream.
We use the method readObject to read an object. Since we can store any types of

wu23399_ch12.qxd 12/28/06 12:44 Page 695

objects to a single file, we need to typecast the object read from the file. Here’s an
example of reading a Person object we saved in the file objects.data.

File inFile
= new File("objects.dat");

FileInputStream inFileStream
= new FileInputStream(inFile);

ObjectInputStream inObjectStream
= new ObjectInputStream(inFileStream);

Person person = (Person) inObjectStream.readObject();

Because there is a possibility of wrong typecasting, the readObject method
can throw a ClassNotFoundException in addition to an IOException. You can catch
or propagate either or both exceptions. If you propagate both exceptions, then the
declaration of a method that contains the call to readObject will look like this:

public void myMethod()
throws IOException, ClassNotFoundException {

...
}

The following sample program reads the Person objects from the objects.dat
file:

696 Chapter 12 File Input and Output

Need to typecast to the object
type we are reading

ClassNot-
Found-
Exception

/*
Chapter 12 Sample Program: Illustrate the use of ObjectInputStream

File: Ch12TestObjectInputStream.java
*/

import java.io.*;

class Ch12TestObjectInputStream {
public static void main (String[] args) throws ClassNotFoundException,

IOException {

//set up file and stream
File inFile = new File("objects.dat");

FileInputStream inFileStream
= new FileInputStream(inFile);

ObjectInputStream inObjectStream
= new ObjectInputStream(inFileStream);

wu23399_ch12.qxd 12/28/06 12:44 Page 696

//read the Person objects from a file
Person person;
for (int i = 0; i < 10; i++) {

person = (Person) inObjectStream.readObject();

System.out.println(person.getName() + " " +
person.getAge() + " " +
person.getGender());

}

//input done, so close the stream
inObjectStream.close();

}
}

12.4 Object I/O 697

If a file contains objects from different classes, we must read them in the cor-
rect order and apply the matching typecasting. For example, if the file contains two
Account and two Bank objects, then we must read them in the correct order:

account1 = (Account) inObjectStream.readObject();
account2 = (Account) inObjectStream.readObject();
bank1 = (Bank) inObjectStream.readObject();
bank2 = (Bank) inObjectStream.readObject();

Now, consider the following array of Person objects where N represents some
integer value:

Person[] people = new Person[N];

Assuming that all N Person objects are in the array, we can store them to file as

//save the size of an array first
outObjectStream.writeInt(people.length);

//save Person objects next
for (int i = 0; i < people.length; i++) {

outObjectStream.writeObject(people[i]);
}

We store the size of an array at the beginning of the file, so we know exactly how
many Person objects to read back:

int N = inObjectStream.readInt();

for (int i = 0; i < N; i++) {
people[i] = (Person) inObjectStream.readObject();

}

We can actually store the whole array with a single writeObject method,
instead of storing individual elements one at a time, that is, calling the writeObject

wu23399_ch12.qxd 12/28/06 12:44 Page 697

method for each element. The whole people array can be stored with a single
statement as

outObjectStream.writeObject(people);

and the whole array is read back with a single statement as

people = (Person[]) inObjectStream.readObject();

Notice how the typecasting is done. We are reading an array of Person objects, so
the typecasting is (Person[]). This approach will work with any data structure object
such as a list or map.

The Dorm class
In the Chapter 8 sample development, we used the helper class Dorm to manage a
list of Resident objects. A Dorm object is capable of saving a Resident list to a file
and reading the list from a file. The class uses object I/O discussed in this section
to perform these tasks. A list of Resident objects is maintained by using a
HashMap. Instead of saving Resident objects individually, the whole map is saved
with a single writeObject method and is read by a single readObject method. (The
map data structure was explained in Chapter 10.) Here’s the complete listing:

698 Chapter 12 File Input and Output

/*
Chapter 8 Sample Development Helper Class

File: Dorm.java
*/

import java.io.*;
import java.util.*;

public class Dorm {

private Map<String,Resident> residentTable;

public Dorm() {
residentTable = new HashMap<String,Resident>();

}

public Dorm(String filename)
throws FileNotFoundException,

IOException {

openFile(filename);
}

public void add(Resident resident)
throws IllegalArgumentException{

if (residentTable.containsKey(resident.getName())) {
throw new IllegalArgumentException(

"Resident with the same name already exists");

Constructors

add

wu23399_ch12.qxd 12/28/06 12:44 Page 698

} else {
residentTable.put(resident.getName(), resident);

}
}

public void delete(String name) {

residentTable.remove(name);
}

public Resident getResident(String name) {

return residentTable.get(name);
}

public String getResidentList() {
StringBuffer result = new StringBuffer("");

String tab = "\t";
String lineSeparator = System.getProperty("line.separator");

for (Resident res: residentTable.values()) {
result.append(res.getName() + tab +

res.getRoom() + tab +
res.getPassword() + tab +
lineSeparator);

}

return result.toString();
}

public void openFile(String filename)
throws FileNotFoundException,

IOException {

File inFile = new File(filename);
FileInputStream inFileStream =

new FileInputStream(inFile);
ObjectInputStream inObjectStream =

new ObjectInputStream(inFileStream);

try {
residentTable = (Map<String,Resident>)

inObjectStream.readObject();
} catch (ClassNotFoundException e) {

throw new IOException(
"Unrecognized data in the designated file");

}

inObjectStream.close();
}

public void saveFile(String filename)
throws IOException {

12.4 Object I/O 699

delete

getResident

getResidentList

openFile

saveFile

wu23399_ch12.qxd 12/28/06 12:44 Page 699

File outFile = new File(filename);
FileOutputStream outFileStream =

new FileOutputStream(outFile);
ObjectOutputStream outObjectStream =

new ObjectOutputStream(outFileStream);

outObjectStream.writeObject(residentTable);

outObjectStream.close();
}

}

700 Chapter 12 File Input and Output

1. When do you have to include the clause implements Serializable to a class
definition?

2. You cannot save the whole array at once—you must save the array elements
individually, true or false?

Saving an AddressBook Object

As an illustration of object I/O, we will write a class that handles the storage of an
AddressBook object. The class will provide methods to write an AddressBook object
to a file and to read the object back from the file.

Problem Statement

Write a class that manages file I/O of an AddressBook object.

Overall Plan

Before we begin to design the class, we must modify the definition of the class that
implements the AddressBook interface by adding the phrase implements Serializable,
such as

import java.io.*;
class AddressBookVer1 implements AddressBook,

Serializable {
//same as before

}

In the following discussion, we will use the implementation class AddressBookVers1.
This modification allows us to store instances of the AddressBookVer1 class. We will use

Sample Development12.5 Sample Development

wu23399_ch12.qxd 12/28/06 12:44 Page 700

the expression “an AddressBook object” to refer to an instance of any class that imple-
ments the AddressBook interface.

Since the class handles the file I/O operations, we will call the class AddressBook-
Storage. Following the STO (single-task object) principle, this class will be responsible
solely for file I/O of an AddressBook object. The class will not perform, for instance, any
operations that deal with a user interface.

What kinds of core operations should this class support? Since the class handles the
file I/O, the class should support two public methods to write and read an AddressBook
object. Let’s call the methods write and read. The argument will be an AddressBook ob-
ject we want to write or read. If filer is an AddressBookStorage object, then the calls
should be something like

filer.write(addressBook);

and

addressBook = filer.read();

For an AddressBookStorage to actually store an AddressBook object, it must
know the file to which an address book is written or from which it is read. How should we
let the programmer specify this file? One possibility is to let the programmer pass the file-
name to a constructor, such as

AddressBookStorage filer
= new AddressBookStorage("book.data");

Another possibility is to define a method to set the file, say, setFile, which is called as

filer.setFile("book.data");

Instead of choosing one over the other, we will support both. If we don’t provide the
setFile method, filer can input and output to a single file only. By using the setFile
method, the programmer can change the file if she or he needs to. As for the constructor,
we do not want to define a constructor with no argument because we do not want the
programmer to create an AddressBookStorage object without specifying a filename.Yes,
he or she can call the setFile method later, but as the AddressBookStorage class
designer, we cannot ensure the programmer will call the setFile method. If the program-
mer doesn’t call the method, then the subsequent calls to the write or read method
will fail. Some may consider assigning a default filename in a no-argument constructor.
But what will be the default filename? No matter which filename we choose, there’s a
possibility that a file with this filename already exists, which will cause the file to be
erased.To make our class reliable, we will not provide a no-argument constructor.

We will implement the class in the following order:

1. Implement the constructor and the setFile method.

2. Implement the write method.

3. Implement the read method.

4. Finalize the class.

12.5 Sample Development 701

develop-
ment steps

wu23399_ch12.qxd 12/28/06 12:44 Page 701

12.5 Sample Development—continued

This order of development follows a natural sequence. We begin with the constructor as
usual. Since the constructor and the setFile method carry out similar operations, we will
implement them together. We will identify necessary data members in this step. The sec-
ond step is to implement the file output routine, because without being able to write an
AddressBook object, we won’t be able to test the file input routine. For the third step, we
will implement the file input routine.

Step 1 Development: Constructor and setFile

In step 1, we will identify the data members and define a constructor to initialize them.We
will also implement the setFile method, which should be very similar to the constructor.

We need File, FileInputStream, FileOutputStream, ObjectInputStream, and
ObjectOutputStream objects to do object I/O. Should we define a data member for
each type of object? This is certainly a possibility, but we should not use any unnecessary
data members. We need ObjectInputStream and ObjectOutputStream objects only at
the time the actual read and write operations take place. We can create these objects in
the read and write methods, only when they are needed. Had we used data members for
all those objects, we would need to create and assign objects every time the setFile
method was called. But calling the setFile method does not necessarily mean the
actual file I/O will take place. Consider the case where the user changes the filename
before actually saving an address book to a file. This will result in calling the setFile
method twice before doing the actual file I/O.To avoid this type of unnecessary repetition,
we will use one data member only, a String variable filename to keep the filename. The
setFile method simply assigns the parameter to this variable. The constructor can do
the same by calling this setFile method.

At this point, we have only one data member:

//---------------------------
// Data Members
//---------------------------

private String filename; //name of the file to store
//an AddressBook object

The setFile method assigns the parameter to the data member.The class is defined
as follows:

702 Chapter 12 File Input and Output

step 1
design

step 1 code

/*
Chapter 12 Sample Program: Address Book Storage

File: AddressBookStorage.java
*/
class AddressBookStorage {

wu23399_ch12.qxd 12/28/06 12:44 Page 702

private String filename;

public AddressBookStorage (String filename) {
setFile(filename);

}

public void setFile(String filename) {
this.filename = filename;
System.out.println("Inside setFile. Filename is " + filename);

//TEMP
}

}

12.5 Sample Development 703

step 2
design

To test this class, we have included a temporary output statement inside the setFile
method.We will write a test program to verify that we can create an AddressBookStorage
object and use the setFile method correctly:

step 1 test

/*
Chapter 12 Sample Program: Driver class to test

the skeleton AddressBookStorage

File: TestAddressBookStorage.java (Step 1)
*/

class TestAddressBookStorage {

public static void main (String[] args) {

AddressBookStorage fileManager;

fileManager = new AddressBookStorage("one.data");
fileManager.setFile("two.data");
fileManager.setFile("three.data");

}
}

Step 2 Development: Implement the write Method

In the second development step, we will implement the write method. From the data
member filename, we will create an ObjectOutputStream object and write the para-
meter AddressBook object to it. A sequence of method calls to create an ObjectOutput-
Stream object can throw an IOException, so we must either propagate it or handle it.

wu23399_ch12.qxd 12/28/06 12:44 Page 703

12.5 Sample Development—continued

Following the STO principle, the method will propagate the thrown exception. The
responsibility of an AddressBookStorage object is to take care of file I/O for others.
When there’s an exception, the object will inform the caller about the exception and let
the caller decide what to do about it.

Here’s the step 2 code with the write method:

704 Chapter 12 File Input and Output

/*
Chapter 12 Sample Program: The class that provides the

file I/O for AddressBook

File: AddressBookStorage.java
*/

import java.io.*;

class AddressBookStorage {

...

public void write(AddressBook book) throws IOException {
//first create an ObjectOutputStream
File outFile = new File(filename);
FileOutputStream outFileStream =

new FileOutputStream(outFile);
ObjectOutputStream outObjectStream =

new ObjectOutputStream(outFileStream);

//save the data to it
outObjectStream.writeObject(book);

//and close it
outObjectStream.close();

}
}

step 2 code

We will write a test program to verify that the data are saved to a file. Since we do
not have a method to read the file contents yet, we can only verify at this point that the
file is created and that this file has something in it. To do so, we run the following step 2
test program first. Then we use whatever tool is available (e.g., Windows Explorer, DOS
command dir, UNIX command ls, etc.) and check that the specified file exists and that the
file size is greater than zero.

step 2 test

wu23399_ch12.qxd 12/28/06 12:44 Page 704

The step 2 test program is as follows (TestAddressBookWrite is now an instan-
tiable main class):

12.5 Sample Development 705

/*
Chapter 12 Sample Program: Test the write method

File: TestAddressBookWrite.java
*/

import java.io.*;

class TestAddressBookWrite {

AddressBook myBook;
AddressBookStorage fileManager;

public static void main(String[] args) throws IOException {
TestAddressBookWrite tester = new TestAddressBookWrite(15);

tester.write("book.data");
}

public TestAddressBookWrite(int N) {
myBook = new AddressBookVer1(N);

for (int i = 0; i < N; i++) {
Person person = new Person("Ms. X" + i, 10, 'F');
myBook.add(person);

}
}

public void write(String filename) {
fileManager = new AddressBookStorage(filename);

try {
fileManager.write(myBook);

}
catch (IOException e) {

System.out.println("Error: IOException is thrown.");
}

}
}

We run the program several times with different sizes for the address book and
verify that the resulting files have different sizes. Notice that we can verify only that the
file is created to store an AddressBook object. We cannot verify that the object is saved
properly until we are able to read the data back, which we will do in the next step.

wu23399_ch12.qxd 12/28/06 12:44 Page 705

12.5 Sample Development—continued

Step 3 Development: Implement the read Method

In the third development step, we will implement the read method. The method reads
the AddressBook object saved in the file and returns this object to the caller. As with the
write method, if there’s an exception, this method will propagate it back to the caller and
let the caller decide what to do to the thrown exception.

Here’s the step 3 code with the read method:

706 Chapter 12 File Input and Output

step 3
design

step 3 code

/*
Chapter 12 Sample Program: The class that provides the

file I/O for AddressBook

File: AddressBookStorage.java
*/

import java.io.*;

class AddressBookStorage {

...

public AddressBook read() throws IOException {
AddressBook book;

//first create an ObjectInputStream
File inFile = new File(filename);
FileInputStream inFileStream =

new FileInputStream(inFile);
ObjectInputStream inObjectStream =

new ObjectInputStream(inFileStream);

try {
//read the data from it
book = (AddressBook) inObjectStream.readObject();

}
catch (ClassNotFoundException e) {

book = null;
System.out.println("Error: AddressBook class not found");

}

//and close it
inObjectStream.close();

//and return the object
return book;

}

...
}

wu23399_ch12.qxd 12/28/06 12:44 Page 706

12.5 Sample Development 707

We will write a test program to verify that the data can be read back correctly from
a file. To test the read operation, the file to read the data from must already exist. Instead
of copying the data file created in step 2 to the step 3 folder, we will make this test pro-
gram to save the data first by using the TestAddressBookWrite class. The step 3 test
program is as follows:

step 3 test

/*
Chapter 12 Sample Program: Test the read (and write) method

File: TestAddressBookRead.java
*/

import java.io.*;

class TestAddressBookRead {
AddressBook myBook;
AddressBookStorage fileManager;

public static void main(String[] args) throws IOException {
TestAddressBookWrite writer = new TestAddressBookWrite(15);
TestAddressBookRead reader = new TestAddressBookRead();

writer.write("book.data");
reader.read("book.data");

reader.search("Ms. X5");
}

public void search(String name) {
Person person;

person = myBook.search(name);

if (person != null) {
System.out.print(person.getName() + " ");
System.out.print(person.getAge() + " ");
System.out.println(person.getGender() + "\n");

}

else {
System.out.println("Error: object not found");

}
}

public void read(String filename) {
fileManager = new AddressBookStorage(filename);

try {
myBook = fileManager.read();

}

wu23399_ch12.qxd 12/28/06 12:44 Page 707

12.5 Sample Development—continued

catch (IOException e) {
System.out.println("Error: IOException is thrown.");

}
}

}

708 Chapter 12 File Input and Output

We run the program several times, changing the method body of printout to access
different Person objects in the address book as necessary, and we verify that we can
read the Person object in the file correctly. If you did Exercise 16 on page 615, then use
the getFirstPerson and getNextPerson methods to access all Person objects in the
address book.

Step 4 Development: Finalize

We finalize the program in the last step.We perform a critical review for finding any incon-
sistency or error in the methods, incomplete methods, places to add more comments,
and so forth.And,as always,we will carry out the final test.As the result of the critical review
and final testing, we may identify and wish to implement any additional features.

program
review

final test

• A File object represents a file or a directory.

• An instance of the JFileChooser class is a file dialog that lets the user select a
file to read data from or save data to.

• Various input and output stream classes are defined in the java.io package.

• Low-level file input and output read and write data 1 byte at a time.

• FileInputStream and FileOutputStream classes are used for low-level file I/O.

• High-level file input and output read and write data of primitive data type.

• DataInputStream and DataOutputStream classes are used for high-level
file I/O.

• With text I/O, data are read and saved as strings.

• PrinterWriter and BufferedReader classes are used for text I/O.

• The Scanner class can be used to input data from a text file.

• With object I/O, data are read and saved as objects.

• ObjectInputStream and ObjectOutputStream are used for object I/O.

• To be able to save objects to a file, the class they belong to must implement
the Serializable interface.

S u m m a r y

wu23399_ch12.qxd 12/28/06 12:44 Page 708

• The standard classes described or used in this chapter are

File FileReader

JFileChooser BufferedReader

FileOutputStream Scanner

FileInputStream Serializable

DataOutputStream ObjectOutputStream

DataInputStream ObjectInputStream

PrintWriter

Exercises 709

K e y C o n c e p t s

file

directory

file dialog

streams

binary files

text files

low-level I/O (bytes)

high-level I/O (primitive data types)

text I/O (strings)

object I/O (objects)

Serializable interface

E x e r c i s e s

1. What will happen if you forget to close a file?
2. What is the difference between binary files and text files?
3. Using the try–catch block, write code that opens a file default.dat when an

attempt to open a user-designated file raises an exception.
4. Using a File object, write code to display files in a user-specified directory.
5. Write code to store and read the contents of the payScaleTable two-

dimensional array from Section 10.5 in the following two file formats:

• A file of double values

• A file of two-dimensional array

6. Write an application that reads a text file and converts its content to an Eggy-
Peggy text (see Exercise 20 of Chapter 8). Save the converted text to another
text file. Use JFileChooser to let the user specify the input and output files.
Create the input file by using a text editor.

7. Write an application that randomly generates N integers and stores them in a
binary file integers.dat. The value for N is input by the user. Open the file
with a text editor and see what the contents of a binary file look like.

8. Write an application that reads the data from the file integers.dat generated
in Exercise 7. After the data are read, display the smallest, the largest, and
the average.

9. Repeat Exercise 7, but this time, store the numbers in a text file integers.txt.
Open this file with a text editor and verify that you can read the contents.

wu23399_ch12.qxd 12/28/06 12:44 Page 709

10. Repeat Exercise 8 with the text file integers.txt generated in Exercise 9.
11. Extend the AddressBookStorage class by adding import and export

capabilities. Add a method exportFile that stores the contents of AddressBook
to a text file. Add a second method importFile that reads the text file back
and constructs an AddressBook. This type of import/export feature is a
convenient means to move data from one application to another.

12. Extend the encryption application of Exercise 25 of Chapter 9 so that the
original text is read from a user-specified text file and the encrypted text is
stored to another user-specified text file.

13. Extend the watermelon projectile computation program of Exercise 30 on
page 362 so the output is saved to a file. Which file format would you use for
the program, a binary file or a text file? Or would you consider using an array
to keep the (x, y) coordinates and save this array by using an object I/O?

14. Write a program that inputs a document from a text file and saves the
modified version to another text file. Modify the original document by
replacing all occurrences of the word designated by the user with the text
<BLACKED OUT>. Use JFileChooser to select the input and output text file
and Scanner to input the word to replace from the user. For the text
replacement operation, consider using the pattern matching techniques
discussed in Chapter 9.

Development Exercises
For Exercises 15 through 19, use the incremental development methodology to
implement the program. For each exercise, identify the program tasks, create a
design document with class descriptions, and draw the program diagram. Map out
the development steps at the start. Present any design alternatives and justify your
selection. Be sure to perform adequate testing at the end of each development step.

15. Write a currency converter application. Allow the user to specify the from
and to currencies and the amount to exchange. Use the interface of your
choice to input these three values. When the application starts, read the
exchange rates from a text file rate.txt. Use a text editor to create this text
file. By using a text file, you can easily update the exchange rates. The
format for the text file is

<name of currency> <units per dollar>

For example, the following shows how much $1 is worth in five foreign
currencies:

French franc 5.95
Indonesian rupiah 12900.0
Japanese yen 123.91
Mexican peso 9.18
Papua New Guinea kina 2.381

You can get the exchange rates from various websites, one of which is
http://www.oanda.com.

710 Chapter 12 File Input and Output

wu23399_ch12.qxd 12/28/06 12:44 Page 710

http://www.oanda.com

16. Extend any application you have written before by adding a quote-of-the-
day dialog. When the user starts the application, a quote of the day is
displayed. Save the quotes in a text file. Use a random number generator
to select the quote to display. Notice the quotes can be about any information
(many commercial applications start with a dialog that shows tips on using
the software).

17. In Exercise 23 of Chapter 5 you wrote a drive-through ordering system
for MyJava Lo-Carb Gourmet Sandwich (the company has since changed its
name to reflect the current trend in the food industry). You are hired again as
a freelance computer consultant to make extensions to the program.

Instead of having a fixed number of menu categories and a fixed
number of menu items per category, you will input this information from a
text file. The data in the input file have the following format:

#menu category

menu item $price
menu item $price
…

#menu category

menu item $price

Each menu category is preceded by the pound symbol (#). A list of menu items
that belong to this menu category follows it. Each menu item includes its name
and price. The price is preceded by the dollar sign. Here’s a sample input file:

#Entree

Tofu Burger $3.99
Chili Burger $2.99
Chef Salad $6.99

#Drink

Oolong Tea $0.79
Latte $3.29
House Wine $4.99
Chai Latte $2.50

#Side

Freedom Fries $0.99

#Appetizer

Onion Bloom $4.05
Calamari $3.50

You may assume that that input file contains at least one menu category and
each menu category has at least one menu item. Also, you may assume that
all input lines conform to the given format; that is, there will be no invalid

Exercises 711

wu23399_ch12.qxd 12/28/06 12:44 Page 711

input lines. Finally, there will be at most 20 menu categories and 25 menu
items per menu category.

After the input file data are read into a program, the operation
mode begins, where you continually process the customer orders. For
each item on the menu, keep track of the sales. At the closing time, the store
manager keys in a special code to shut down the program. Before stopping
the program, output the sales figure in a format similar to the following:

Item Sales Count Total
Tofu Burger 25 $ 87.25
Cajun Chicken 30 $ 137.70

...

Today's Total Sales: $ 2761.20

Place enough space between columns so the output is easy to read. You
are not required to align the decimal points of the dollar figures. Output
the sales figure to the standard output. Save the sales figure to a text file.

18. Write an application that removes extra spaces from a text file. In the days of
the typewriter, it was common practice to leave two spaces after periods. We
shouldn’t be doing that anymore with the computer, but many people still do.
Read an original text file and output an edited version to another text file. The
edited version should replace two or more consecutive spaces with one space.

19. Write a mail merge application. You use two files for this program. The first
is a text file that contains a template letter in the following style:

Dear <<N>>,

Because you are <<A>> years old and <<G>>, we have a
free gift for you. You have absolutely nothing to buy;
just pay the shipping and handling charge of $9.99. To
claim your gift, call us immediately.

Thank you,
Office of Claims Department

The tags <<N>>, <<A>>, and <<G>> are placeholders for the person’s
name, age, and gender. The second file contains the name, age, and gender
information of people to whom you want to send a letter. Use whatever
format you wish for the second file. Read two files and print out the letter
with the placeholders replaced by the actual values from the second file.
Run the program multiple times, each time using a different template file.
For this program, output the personalized letter to a customized frame.
Add menus to this frame so the user can save personalized letters to files
(one personalized letter to a file).

712 Chapter 12 File Input and Output

wu23399_ch12.qxd 12/28/06 12:44 Page 712

Inheritance and
Polymorphism

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Write programs that are easily extensible and
modifiable by applying polymorphism in
program design.

• Define reusable classes based on inheritance
and abstract classes and abstract methods.

• Differentiate the abstract classes and Java
interface.

• Define methods, using the protected modifier.

• Parse strings, using a StringTokenizer object.

713

13

wu23399_ch13.qxd 12/28/06 13:50 Page 713

n this chapter, we will describe two important and powerful features in object-
oriented programming—inheritance and polymorphism. The inheritance feature of
object-oriented programming was introduced in Chapter 1. We will provide a more
detailed explanation and examples of inheritance in this chapter.

The second major topic we cover in this chapter is polymorphism, another
indispensable feature in object-oriented programming, which allows programmers
to send the same message to objects from different classes. Consider the statement

account.computeMonthlyFee();

where account could be either a SavingsAccount or a CheckingAccount object. If
account is a SavingsAccount object, then the method computeMonthlyFee defined
for the SavingsAccount class is executed. Likewise, if account is a CheckingAccount
object, then the method computeMonthlyFee defined for the CheckingAccount
class is executed. Sending the same message therefore could result in executing
different methods. The message computeMonthlyFee is called a polymorphic mes-
sage because depending on the receiver object, different methods are executed.
Polymorphism helps us write code that is easy to modify and extend. We will
explain polymorphism in this chapter.

13.1 A Simple Example
Before we get into details, we start with a simple example of inheritance and poly-
morphism to give a taste of what’s coming. Let’s begin with a class that models a bank
account. We will purposely keep the class very simplistic (e.g., we’re not including
any constructor) to focus on inheritance mechanism. Here’s the definition:

class Pet {
private String name;

public String getName() {
return name;

}

public void setName(String petName) {
name = petName;

}

public String speak() {
return "I'm your cuddly little pet.";

}
}

And here’s a sample code that uses the class:

Pet myPet = new Pet();
System.out.println(myPet.speak());

714 Chapter 13 Inheritance and Polymorphism

I n t r o d u c t i o n

I
polymorphism

polymorphic
message

wu23399_ch13.qxd 12/28/06 13:50 Page 714

There are many different types of pets, so we really can’t expect one class to
be capable of modeling them all. We all know how different dogs, cats, and reptiles
are, for example. Let’s define the individual Cat and Dog classes to model them a lit-
tle more precisely than the generic Pet class. Now, instead of defining the two new
classes independently, we will define them based on the Pet class. Although they are
different, they share common traits of being a pet, so it makes sense to derive the
two classes from the Pet class. This is inheritance. We’ll make the Dog and Cat
classes inherit the data members and methods of the Pet class.

Let’s see how we might define the Cat class by using inheritance:

class Cat extends Pet {

public String speak() {
return "Don't give me orders.\n" +

"I speak only when I want to.";
}

}

We call the Cat class the subclass or derived class and the Pet class the superclass or
base class. We use the reserved word extends to define a subclass. Data members
and methods of a superclass are inherited by its subclasses. So, for example, the
following code is valid:

Cat myCat = new Cat();
myCat.setName("Cha Cha");

System.out.println("Hi, my name is " + myCat.getName());

In the Cat class, we see that the body of the speak method is different. We say
the Cat class overrides the speak method. For example, the code

Cat myCat = new Cat();
myCat.setName("Puff Puff");

System.out.println(myCat.getName() + " says: ");
System.out.println(myCat.speak());

will result in

Puff Puff says:
Don't give me orders. I speak only when I want to.

We can also define additional methods and data members to a subclass. The
following Dog class defines an additional method named fetch:

class Dog extends Pet {

public String fetch() {
return "Yes, master. Fetch I will.";

}
}

13.1 A Simple Example 715

This indicates Cat is
a subclass of Pet

subclass
superclass

overrides

wu23399_ch13.qxd 12/28/06 13:50 Page 715

In addition to using all the inherited methods, we can call the fetch method if it
is a dog:

Dog myDog = new Dog();
myDog.setName("Fifi");

System.out.println(myCat.getName() + " says: ");
System.out.println(myDog.speak());
System.out.println(myDog.fetch());

Fifi says:
I'my your cuddly little pet.
Yes, master. Fetch I will.

Now, consider the following code:

Pet petOne = new Dog();
Pet petTwo = new Cat();

Will it work? The answer is yes. When a variable (such as petOne) is declared to be
of class S (such as Pet), the variable can reference an instance of S or any of its sub-
classes (such as Dog and Cat). The inverse is not valid, for example:

Dog myDog = new Pet(); INVALID

The fact that the same variable can be referring to an instance of a different
class results in polymorphism. The following two output statements will produce
different results, depending on whether p is a Dog or a Cat:

Pet p;

p = new Dog();
System.out.println(p.speak());

p = new Cat();
System.out.println(p.speak());

The speak method is called a polymorphic method.
If a variable is declared of type S and is referring to an instance of a subclass

of S, then we must typecast the variable to the subclass when calling noninherited
methods of the subclass. For example, the fetch method is defined in the Dog class
only. So code such as

Pet p;

p = new Dog();
System.out.println(p.fetch()); INVALID

716 Chapter 13 Inheritance and Polymorphism

polymorphic
method

wu23399_ch13.qxd 12/28/06 13:50 Page 716

is invalid. We must typecast p to Dog, as in

Pet p;

p = new Dog();
System.out.println(((Dog)p).fetch());

Whenever we need to call a method unique to a subclass, we must typecast the vari-
able to the subclass if the variable’s declared type is the superclass.

To use inheritance and polymorphism effectively in our programs, we need to
master many rules associated with them. We will present these rules in the remain-
der of the chapter.

13.2 Defining Classes with Inheritance 717

1. Define the Reptile class as a subclass of the Pet class. The speak method
returns an empty string.

2. Which one of the following statements is valid?

Pet p = new Cat();

Cat c = new Pet();

3. Is the following code valid?

Pet p = new Dog();
System.out.println(p.fetch());

13.2 Defining Classes with Inheritance
Suppose we want to maintain a class roster for a class whose enrolled students
include both undergraduate and graduate students. For each student, we record her
or his name, three test scores, and the final course grade. The final course grade,
either pass or no pass, is determined by the following formula:

What kind of objects should we use to model undergraduate and graduate
students? There are basically two broad ways to design the classes to model them.
The first way is to define two unrelated classes, one for undergraduate students
and another for graduate students. We call the two classes unrelated classes if they
are not connected in an inheritance relationship, that is, if neither one is an ancestor

Type of Student Grading Scheme

Undergraduate Pass if (test1 � test2 � test3)�3 �� 70

Graduate Pass if (test1 � test2 � test3)�3 �� 80

unrelated
classes

wu23399_ch13.qxd 12/28/06 13:50 Page 717

or descendant class of the other and they do not share a common ancestor.1 The
second way is to model undergraduate and graduate students by using classes that
are related in an inheritance hierarchy.

Defining two unrelated classes for entities that share common data or behav-
ior would make class definition ineffective because we would end up duplicating
code common to both classes. Although different, graduate and undergraduate
students do share many common data and behaviors, so we will design these two
classes by using inheritance.

We will actually define three classes. The first is the Student class to incor-
porate behavior and data common to both graduate and undergraduate students.
The second and third classes are the GraduateStudent class to incorporate
behavior specific to graduate students and the UndergraduateStudent class to
incorporate behavior specific to undergraduate students. The Student class is
defined as

718 Chapter 13 Inheritance and Polymorphism

1In Java, the class Object is automatically set to be the superclass of a class if the class definition does not
include the keyword extends. To be technically precise, we must say that two classes are unrelated if they do
not share a common ancestor besides Object.

/*
Chapter 13 Sample Program: Student

File: Student.java

*/

class Student {

protected final static int NUM_OF_TESTS = 3;

protected String name;
protected int[] test;
protected String courseGrade;

public Student() {
this("No Name");

}

public Student(String studentName) {
name = studentName;
test = new int[NUM_OF_TESTS];
courseGrade = "****";

}

public String getCourseGrade() {
return courseGrade;

}

Protected fields are visible
to the descendant objects.

wu23399_ch13.qxd 12/28/06 13:50 Page 718

public String getName() {
return name;

}

public int getTestScore(int testNumber) {
return test[testNumber-1];

}

public void setName(String newName) {
name = newName;

}

public void setTestScore(int testNumber, int testScore) {
test[testNumber-1] = testScore;

}
}

13.2 Defining Classes with Inheritance 719

Notice that the modifier for the instance variables is protected, making them
visible and accessible to the instances of the class and the descendant classes. If you
declare a data member of a class private, then this data member is accessible only
to the instances of the class. If you declare a data member public, this data member
is accessible to everybody. We declare them protected so they become accessible
only to the instances of the class and the descendant classes. We will explore further
the protected modifier later in the chapter.

We define the classes UndergraduateStudent and GraduateStudent as sub-
classes of the Student class. In Java, we say a subclass extends its superclass. The
difference between the classes GraduateStudent and UndergraduateStudent lies in
the way their final course grades are computed. The two subclasses are defined as
follows:

class GraduateStudent extends Student {

public void computeCourseGrade() {

int total = 0;
for (int i = 0; i < NUM_OF_TESTS; i++) {

total += test[i];
}

if (total/NUM_OF_TESTS >= 80) {
courseGrade = "Pass";

} else {
courseGrade = "No Pass";

}
}

}

extends

wu23399_ch13.qxd 12/28/06 13:50 Page 719

class UndergraduateStudent extends Student {

public void computeCourseGrade() {

int total = 0;
for (int i = 0; i < NUM_OF_TESTS; i++) {

total += test[i];
}

if (total/NUM_OF_TESTS >= 70) {
courseGrade = "Pass";

} else {
courseGrade = "No Pass";

}
}

}

Figure 13.1 shows the class diagram relating the three classes. Notice the use
of the pound symbol (#) for the protected modifier. Notice also that we do not show
inherited data members and methods in the subclasses. By seeing an inheritance
arrow connecting a subclass to its superclass, we know that data members and meth-
ods indicated on the superclass are applicable to the subclasses also. We attach
methods and data members to the subclasses only if they are defined in the sub-
classes or if they are overridden in the subclasses (we will discuss overriding in
detail later in the chapter). In Figure 13.1, both subclasses have the method com-
puteCourseGrade attached to them because the method is defined in the subclasses.

720 Chapter 13 Inheritance and Polymorphism

� Student() : void
� Student(String) : void
� getCourseGrade() : String
� getName() : String
� getTestScore(int) : int
� setName(String) : void
� setTestScore(int, int) : void

� NUM_OF_TESTS
name
test
courseGrade

Student

� getCourseGrade() : String

UndergraduateStudent

� getCourseGrade() : String

GraduateStudent

The # symbol indicates
the protected members.

Figure 13.1 A superclass Student and its subclasses GraduateStudent and UndergraduateStudent.

wu23399_ch13.qxd 12/28/06 13:50 Page 720

13.3 Using Classes Effectively with Polymorphism 721

1. Which is the subclass and which is the superclass in this declaration?

class X extends Y { ... }

2. Which visibility modifier allows the data members of a superclass to be
accessible to the instances of subclasses?

13.3 Using Classes Effectively with Polymorphism
Now let’s see how the Student class and its subclasses can be used effectively in
the class roster program. Since both undergraduate and graduate students are en-
rolled in a class, should we declare the two arrays shown below to maintain the
class roster?

GraduateStudent gradRoster[20];
UndergraduateStudent undergradRoster[20];

We mentioned in Chapter 10 that an array must contain elements of the same data
type. For example, we cannot store integers and real numbers in the same array. To
follow this rule, it seems necessary for us to declare two separate arrays, one for
graduate students and another for undergraduate students. This rule, however, does
not apply when the array elements are objects. We only need to declare a single
array, for example,

Student roster[40];

Elements of the roster array can be instances of either the Student class or any of its
descendant GraduateStudent or UndergraduateStudent classes. Figure 13.2 illus-
trates the array with both types of students as array elements.

0 1 2 3 4
roster

•••

3837 3936

:Graduate
Student

:Graduate
Student

:Undergraduate
Student

:Undergraduate
Student

Figure 13.2 The roster array with elements referring to instances of GraduateStudent or
UndergraduateStudent classes.

wu23399_ch13.qxd 12/28/06 13:50 Page 721

Before showing how this array is used in the program, we will explain
the concept of polymorphism. In its simplest form, polymorphism allows a single
variable to refer to objects from different classes. Consider, for example, the
declaration

Student student;

With this declaration, we can say not only

student = new Student();

but also

student = new GraduateStudent();

or

student = new UndergraduateStudent();

In other words, the single variable student is not limited to referring to an
object from the Student class but can refer to any object from the descendant classes
of Student. In a similar manner we can say something like

roster[0] = new GraduateStudent();
roster[1] = new UndergraduateStudent();
roster[2] = new UndergraduateStudent();
roster[3] = new GraduateStudent();
...

However, you cannot make a variable of class X refer to an object from the
superclass or sibling classes of X. Sibling classes are those that share the com-
mon ancestor class. For example, the following assignment statements are both
invalid.

GraduateStudent grad1, grad2;

grad1 = new Student();
grad2 = new UndergraduateStudent();

Now, to compute the course grade using the roster array, we execute

for (int i = 0; i < numberOfStudents; i++) {
roster[i].computeCourseGrade();

}

If roster[i] refers to a GraduateStudent, then the computeCourseGrade method of
the GraduateStudent class is executed; and if it refers to an UndergraduateStudent,

722 Chapter 13 Inheritance and Polymorphism

NOT VALID

sibling classes

wu23399_ch13.qxd 12/28/06 13:50 Page 722

then the computeCourseGrade method of UndergraduateStudent is executed.
We call the message computeCourseGrade polymorphic because the message refers
to methods from different classes depending on the object referenced by roster[i].
Polymorphism allows us to maintain the class roster with one array instead of main-
taining a separate array for each type of student, and this simplifies the processing
tremendously.

Polymorphism makes possible smooth and easy extension and modification
of a program. Suppose, for example, we have to add a third type of student, say,
audit student, to the class roster program. If we have to define a separate array
for each type of student, this extension forces us to define a new class and a third
array for audit students. But with polymorphism, we only have to define a new
subclass of Student. And as long as this new subclass includes the correct com-
puteCourseGrade method, the for loop to compute the course grade for students
remains the same. Without polymorphism, not only do we have to add the new
code, but also we have to rewrite existing code to accommodate the change.
With polymorphism, on the other hand, we don’t have to touch the existing code.
Modifying existing code is a tedious and error-prone activity. A slight change to
existing code could cause a program to stop working correctly. To be certain that a
change in one portion of existing code won’t affect other portions of existing code
adversely, we must understand the existing code completely. And understanding
code, especially one that is long and/or written by somebody else, is a very time-
consuming task.

An element of the roster array is a reference to an instance of either the
GraduateStudent or the UndergraduateStudent class. Most of the time, we do not
have to know which is which. There are times, however, when we need to know the
class of a referenced object. For example, we may want to find out the number of
undergraduate students who passed the course. To determine the class of an object,
we use the instanceof operator. We use this operator as follows:

Student x = new UndergraduateStudent();

if (x instanceof UndergraduateStudent) {
System.out.println("Mr. X is an undergraduate student");

} else {
System.out.println("Mr. X is a graduate student");

}

This will print out Mr. X is an undergraduate student. The following code counts
the number of undergraduate students in the roster array.

int undergradCount = 0;
for (int i = 0; i < numberOfStudents; i++) {

if (roster[i] instanceof UndergraduateStudent) {
undergradCount++;

}
}

13.3 Using Classes Effectively with Polymorphism 723

benefits of
polymorphism

wu23399_ch13.qxd 12/28/06 13:50 Page 723

724 Chapter 13 Inheritance and Polymorphism

1. Suppose Truck and Motorcycle are subclasses of Vehicle. Which of these
declarations are invalid?

Truck t = new Vehicle();
Vehicle v = new Truck();
Motorcycle m1 = new Vehicle();
Motorcycle m2 = new Truck();

2. What is the purpose of the instanceof operator?

13.4 Inheritance and Member Accessibility
We will describe the rules of inheritance in this section and Sections 13.5 and 13.6. In
this section, we will explain which members (variables and methods) of a superclass
are inherited by a subclass and how these members are accessed. In addition to declar-
ing members private and public, we can declare them protected. The protected modi-
fier is meaningful only if used with inheritance. Consider the following declarations:

class Super {

public int public_Super_Field;
protected int protected_Super_Field;
private int private_Super_Field;

public Super() {
public_Super_Field = 10;
protected_Super_Field = 20;
private_Super_Field = 30;

}
...

}

class Sub extends Super {
public int public_Sub_Field;
protected int protected_Sub_Field;
private int private_Sub_Field;

public Sub() {
public_Sub_Field = 100;
protected_Sub_Field = 200;
private_Sub_Field = 300;

}
...

}

We use instance variables for illustration, but the rules we describe here are equally
applicable to other types of members (class variables, class methods, and instance
methods). We use the graphical representation shown in Figure 13.3 for the three
modifiers.

super is a reserved word, so
don’t use it.

wu23399_ch13.qxd 12/28/06 13:50 Page 724

You already know the difference between the public and private modifiers. A
public member is accessible to any method, but a private member is accessible only
to the methods that belong to the same class. Let’s illustrate this point. Consider a
class that is unrelated to the classes Super and Sub:

class Client {
public void test() {

Super mySuper = new Super();
Sub mySub = new Sub();

int i = mySuper.public_Super_Field;

int j = mySub.public_Super_Field; //inherited
//by mySub

int k = mySub.public_Sub_Field;
}

}

Public members of a class, whether they are inherited or not, are accessible
from any object or class. Private members of a class, on the other hand, are never
accessible from any outside object or class. The following statements, if placed in
the test method of the Client class, are therefore all invalid:

int l = mySuper.private_Super_Field;

int m = mySub.private_Sub_Field;

int n = mySub.private_Super_Field;

13.4 Inheritance and Member Accessibility 725

:Super

:Sub

Instances

:Super

Class hierarchy

Super

Sub

Public

Protected

Private

This shows the inherited
components of the
superclass are part of the
subclass instance.

Figure 13.3 A graphical representation of superclasses and subclasses with public, private, and protected
members. (Note: This representation is for illustration purposes only and is not a formal UML diagram.)

VALID

NOT VALID

wu23399_ch13.qxd 12/28/06 13:50 Page 725

A protected member is accessible only to the methods that belong to the same
class or to the descendant classes. It is inaccessible to the methods of an unrelated
class. The following statements, if placed in the test method of the Client class, are
all invalid:

int o = mySuper.protected_Super_Field;

int p = mySub.protected_Sub_Field;

int q = mySub.protected_Super_Field;

Figure 13.4 summarizes the accessibility of class members from a method of
an unrelated class.

Now let’s study the accessibility of class members from the methods of a Sub
object. A method in the Sub object can access both the protected and public mem-
bers of Super, but not the private members of Super. Figure 13.5 summarizes the
accessibility of members from a method of a Sub object.

Figure 13.5 shows the case where a method of a Sub object is accessing
members of itself. Everything except the private members of the Super class is
accessible from a method of the Sub class.

What about accessing the members of an object from another object that
belongs to the same class? If a member X, whether inherited or defined in a class, is
accessible from an instance of the class, then X is also accessible from all instances
of the same class. Figure 13.6 illustrates that an instance can access members of
other instances of the same class.

726 Chapter 13 Inheritance and Polymorphism

:Super

:Sub

:Super

Accessibility from
the Client method

– Accessible

– Inaccessible

:Client

Only public members, those defined
for the class and those inherited, are
visible from outside. All else is
hidden from outside.

Figure 13.4 The difference between public, private, and protected modifiers. Only public members are
visible from outside.

NOT VALID

wu23399_ch13.qxd 12/28/06 13:50 Page 726

Consider the following two classes:

class Super {
...
public void superToSuper(Super anotherSuper){

int i = anotherSuper.public_Super_Field;
int j = anotherSuper.protected_Super_Field;
int l = anotherSuper.private_Super_Field;

}
...

}

class Sub extends Super {

...
public void subToSub(Sub anotherSub){

int i = anotherSub.public_Sub_Field;
int j = anotherSub.protected_Sub_Field;
int k = anotherSub.private_Sub_Field;

13.4 Inheritance and Member Accessibility 727

:Super

:SubAccessibility from a method
of the Sub class

– Accessible

– Inaccessible

From a method of Sub,
everything is visible except
the private members of its
superclass.

Figure 13.5 The difference between public, private, and protected modifiers. Everything except the
private members of the Super class is visible from a method of the Sub class.

one:SomeClass two:SomeClass
If a data member is accessible
from anInstance, that data
member is also accessible
from anotherInstance.

This could be private,
protected, or public.

Figure 13.6 Data members accessible from an instance are also accessible from other instances of the
same class.

VALID

VALID

wu23399_ch13.qxd 12/28/06 13:50 Page 727

int l = anotherSub.public_Super_Field; //inherited
int m = anotherSub.protected_Super_Field; //members

int n = anotherSub.private_Super_Field;
}
...

}

All the statements in the two methods, except the last one in subToSub, are
valid because members accessible to an object are also accessible from other objects
of the same class. Now, consider the following two classes:

class Super {
...
public void superToSub(Sub sub){

int i = sub.public_Sub_Field;

int j = sub.protected_Sub_Field;
int k = sub.private_Sub_Field;

}
...

}

class Sub extends Super {

...
public void subToSuper(Super mySuper){

int i = mySuper.public_Super_Field;

int j = mySuper.protected_Super_Field;
int k = mySuper.private_Super_Field;

}
...

}

The two methods show that only the public members of an object are accessi-
ble from another object if the two objects belong to different classes. Whether one
class is a subclass of the other class is irrelevant here.

728 Chapter 13 Inheritance and Polymorphism

VALID

NOT VALID

NOT VALID

VALID

NOT VALID

VALID

In addition to the private, protected, and public modifiers, Java supports the
fourth visibility modifier, called package visibility. If no explicit modifier (public,
private, and protected) is included in the declaration, then the component is
package-visible, which means the component is accessible from any method of a
class that belongs to the same package as the component’s class. Package visibil-
ity is not as critical as the other three visibility modifiers, and therefore, we do not
discuss it in the text.

wu23399_ch13.qxd 12/28/06 13:50 Page 728

13.5 Inheritance and Constructors 729

1. If X is a private member of the Super class, is X accessible from a subclass of
Super?

2. If X is a protected member of the Super class, is X of one instance accessible
from another instance of Super? What about from the instances of a subclass
of Super?

13.5 Inheritance and Constructors
In this section, we explain how the constructors of a class are affected by inheri-
tance. Unlike other members of a superclass, constructors of a superclass are not in-
herited by its subclasses. This means that you must define a constructor for a class
or use the default constructor added by the compiler. As we mentioned in Chapter 4,
a default constructor is added to a class if you do not declare any constructor for the
class. A class definition such as

class Person {

public void sayHello() {

System.out.println("Well, hello.");
}

}

is equivalent to

class Person {

public Person() {

super();

}

public void sayHello() {

System.out.println("Well, hello.");
}

}

The statement

super();

calls the superclass’s constructor. Every class has a superclass. If the class declara-
tion does not explicitly designate the superclass with the extends clause, then the
class’s superclass is the Object class.

Automatically added to the
class by the compiler

This statement calls the
superclass’s constructor.

wu23399_ch13.qxd 12/28/06 13:50 Page 729

If you declare a constructor, then no default constructor is added to the class.
For example, if you define a class as

class MyClass {

public MyClass(int x) {

...
}

}

then a statement such as

MyClass test = new MyClass();

is invalid because MyClass has no matching constructor.
If the constructor you define does not contain an explicit call to a superclass

constructor, then the compiler adds the statement

super();

as the first statement of the constructor. For example, if you define a constructor as

class MyClass {

private int myInt;

public MyClass() {

myInt = 10;
}

}

then the compiler will rewrite the constructor to

public MyClass() {

super();
myInt = 10;

}

Let’s look at another example. Consider the following class definitions:

class Vehicle {

private String vin;

public Vehicle(String vehicleIdNumber) {

vin = vehicleIdNumber;
}

730 Chapter 13 Inheritance and Polymorphism

wu23399_ch13.qxd 12/28/06 13:50 Page 730

Bad Versio
n

public String getVIN() {

return vin;
}

}

Since the class has a constructor, no default constructor is added to the class. This
means a statement such as

Vehicle myCar = new Vehicle();

causes a compilation error because the class does not have a matching constructor.
This is actually what we want because we do not want to create an instance
of Vehicle without a vehicle identification number. Now let’s consider a subclass
definition for trucks. A Truck object has one additional instance variable called
cargoWeightLimit that refers to a maximum weight of cargo the truck can carry. We
assume the truck’s weight limit for cargo can vary (say, depending on how much the
owner pays in fees). Here’s our first attempt:

class Truck extends Vehicle {

private int cargoWeightLimit;

public void setWeightLimit(int newLimit) {

cargoWeightLimit = newLimit;
}

public int getWeightLimit() {

return cargoWeightLimit;
}

}

If we compile this definition, we will get a compiler error. Since no constructor
is defined for the class, the compiler adds a default constructor

public void Truck() {

super();
}

This constructor calls the superclass’s constructor with no arguments, but there’s no
matching constructor in the superclass. Thus, the compilation error results. Here’s a
correct definition:

class Truck extends Vehicle {

private int cargoWeightLimit;

public Truck(int weightLimit, String vin) {

super(vin);
cargoWeightLimit = weightLimit;

}
public void setWeightLimit(int newLimit) {

13.5 Inheritance and Constructors 731

You need to make this call.
Otherwise, the compiler will

add super(), which will result
in an error because there is no

matching constructor in
Vehicle.

wu23399_ch13.qxd 12/28/06 13:50 Page 731

cargoWeightLimit = newLimit;
}

public int getWeightLimit() {

return cargoWeightLimit;
}

}

Now let’s apply this knowledge to the design of the UndergraduateStudent
and GraduateStudent classes. If we want a constructor that accepts the name, then
we need to define such a constructor in both classes because the constructor defined
for the Student class is not inherited by these classes. Notice that we can create
instances of these classes by

student1 = new UndergraduateStudent();
student2 = new GraduateStudent();

because the default constructor is added by the compiler, not because the one de-
fined in the Student class is inherited by the subclasses. Remember that constructors
of a superclass are not inherited by its subclasses.

Here are a rule and a guideline to remember for a subclass constructor:

732 Chapter 13 Inheritance and Polymorphism

1. How do you call the superclass’s constructor from its subclass?

2. What statement will be added to a constructor of a subclass if it is not
included in the constructor explicitly by the programmer?

3. Modify the definition of GraduateStudent and UndergraduateStudent in
Section 13.1 so we can create their instances in this way:

student1 = new UndergraduateStudent();
student2 = new UndergraduateStudent("Mr. Espresso");
student3 = new GraduateStudent();
student4 = new GraduateStudent("Ms. Latte");

If a class has a superclass that is not the Object class, then a constructor of the class
should make an explicit call to a constructor of the superclass.

Always provide a constructor for every class you define. Don’t rely on default
constructors.

wu23399_ch13.qxd 12/28/06 13:50 Page 732

13.6 Abstract Superclasses and Abstract Methods
When we define a superclass, we often do not need to create any instances of the
superclass. In Section 13.5, we defined the Student superclass and its two subclasses
GraduateStudent and UndergraduateStudent. We gave examples of creating in-
stances of GraduateStudent and UndergraduateStudent, but not of creating instances
of Student. Does it make sense to create an instance of the Student class? Depending
on whether we need to create instances of Student, we must define the class differ-
ently. We will describe different ways of defining a superclass in this section.

Even though we can create an instance of Student if we want to (because of
the way the class is currently defined), is there a need to create an instance of
Student? If a student can be only a graduate or an undergraduate student, then there
is no need to create an instance of Student. In fact, because of the way the class is
defined, had we created an instance of Student and stored it in the roster array, the
program would crash. Why? Because the Student class does not have a compute-
CourseGrade method.

In the following discussion, we will consider two cases. In the first case, we
assume that a student must be either a graduate or an undergraduate student. In the
second case, we assume that a student does not have to be a graduate or an under-
graduate student (e.g., the student could be a nonmatriculated auditing student).

Case 1: Student Must Be Undergraduate or Graduate
For the case where a student must be a graduate or an undergraduate student, we
only need instances of GraduateStudent and UndergraduateStudent. So we must
define the Student class in such a way that no instances of it can be created. One
way is to define Student as an abstract class. An abstract class is a class defined with
the modifier abstract, and no instances can be created from an abstract class. Let’s
see how the abstract Student class is defined.

abstract class Student {

protected final static int NUM_OF_TESTS = 3;

protected String name;
protected int[] test;
protected String courseGrade;

public Student() {

this("No name");
}

public Student(String studentName) {

name = studentName;
test = new int[NUM_OF_TESTS];
courseGrade = "****";

}

abstract public void computeCourseGrade();

13.6 Abstract Superclasses and Abstract Methods 733

The keyword abstract
here denotes an
abstract class.

The keyword abstract
here denotes an
abstract method.

Abstract method has
no method body, just
a semicolon.

abstract class

wu23399_ch13.qxd 12/28/06 13:50 Page 733

public String getCourseGrade() {
return courseGrade;

}

public String getName() {
return name;

}

public int getTestScore(int testNumber) {
return test[testNumber-1];

}

public void setName(String newName) {
name = newName;

}

public void setTestScore(int testNumber,int testScore){
test[testNumber-1] = testScore;

}
}

An abstract method is a method with the keyword abstract, and it ends with a semi-
colon instead of a method body. A class is abstract if the class contains an abstract
method or does not provide an implementation of an inherited abstract method. We
say a method is implemented if it has a method body. If a subclass has no abstract
methods and no unimplemented inherited abstract methods (and does not include
the keyword abstract in its class definition), then the subclass is no longer abstract,
and thus its instances can be created.

An abstract class must include the keyword abstract in its definition. Notice
that the abstract class Student has an incomplete definition because the class
includes the abstract method computeCourseGrade that does not have a method
body. The intent is to let its subclasses provide the implementation of the compute-
CourseGrade method. If a subclass does not provide an implementation of the
inherited abstract method, the subclass is also an abstract class, and therefore, no
instances of the subclass can be created. Since an abstract class can only make sense
when it is a superclass, we frequently use the term abstract superclass.

734 Chapter 13 Inheritance and Polymorphism

abstract
method

implementing
a method

abstract
superclass

Is the Math class an abstract class? It is true that we cannot create an instance of
the Math class, but it is not an abstract class. If a class is abstract, then you cannot
create an instance of the class, but not being able to create an instance does not
necessarily imply that the class is abstract.The intent of an abstract class is to define
code common to all its subclasses and leave some portions, that is, abstract meth-
ods, to be completed by the individual subclasses. We classify the Math class as a
noninstantiable class, a class for which we cannot create an instance.Notice that an
abstract class is a noninstantiable class by definition, but the reverse is not always
true. There are noninstantiable classes, for example, the Math class, that are not
abstract. If you want define a noninstantiable class, then simply declare a private
constructor with no arguments and declare no other constructors for the class.

wu23399_ch13.qxd 12/28/06 13:50 Page 734

In a program diagram, we represent an abstract class by using the keyword
abstract. The Student abstract superclass is drawn as

Case 2: Student Does Not Have to Be Undergraduate or Graduate
For the second case, where a student does not have to be a graduate or an under-
graduate student, we can design classes in two different ways. The first approach is
to make the Student class instantiable. The second approach is to leave the Student
class abstract and add a third subclass, say, OtherStudent, to handle a student who
is neither a graduate nor an undergraduate student. Let’s call students who are nei-
ther graduate nor undergraduate students nonregular students. Let’s assume further
that the nonregular student will receive a pass grade if her or his average test score
is greater than or equal to 50. With the first approach, we define the Student class as

class Student {

protected final static int NUM_OF_TESTS = 3;
protected String name;
protected int[] test;
protected String courseGrade;

public Student() {

this("No name");
}

public Student(String studentName) {

name = studentName;
test = new int[NUM_OF_TESTS];
courseGrade = "****";

}

public void computeCourseGrade() {

int total = 0;
for (int i = 0; i < NUM_OF_TESTS; i++) {

total += test[i];
}

if (total/NUM_OF_TESTS >= 50) {
courseGrade = "Pass";

} else {

Student
 {abstract}

13.6 Abstract Superclasses and Abstract Methods 735

Not an abstract
class anymore

Not an abstract
method anymore

wu23399_ch13.qxd 12/28/06 13:50 Page 735

courseGrade = "No Pass";
}

}

public String getCourseGrade() {
return courseGrade;

}

public String getName() {
return name;

}

public int getTestScore(int testNumber) {
return test[testNumber-1];

}

public void setName(String newName) {
name = newName;

}

public void setTestScore(int testNumber,int testScore){
test[testNumber-1] = testScore;

}
}

The class is no longer abstract, and we can create an instance of Student to repre-
sent a nonregular student.

With the second approach, we leave the Student class abstract. To represent
nonregular students, we define a third subclass called OtherStudent as follows:

class OtherStudent extends Student {

public void computeCourseGrade() {

int total = 0;
for (int i = 0; i < NUM_OF_TESTS; i++) {

total += test[i];
}

if (total/NUM_OF_TESTS >= 50) {
courseGrade = "Pass";

} else {
courseGrade = "No Pass";

}
}

}

Figure 13.7 is a program diagram that includes the third subclass.
Which approach is better? There’s no easy answer. It all depends on a given

situation. To determine which approach is better for a given situation, we can ask
ourselves which approach allows easier modification and extension. Consider, for

736 Chapter 13 Inheritance and Polymorphism

wu23399_ch13.qxd 12/28/06 13:50 Page 736

example, which approach will facilitate easier modification if we have to add a new
type of student, say, scholarship students. Or consider the case where the rule for
assigning a course grade for the undergraduate and graduate students is modified;
say, they become the same.

Finally, not all methods can be declared abstract.

13.6 Abstract Superclasses and Abstract Methods 737

Student
 {abstract}

OtherStudent GraduateStudent Undergraduate
Student

Figure 13.7 A program diagram of the abstract superclass Student and its three subclasses.

The following types of methods cannot be declared as abstract:

• Private methods

• Static methods

1. Can you create an instance of an abstract class?

2. Must an abstract class include an abstract method?

3. What is wrong with the following declaration?

class Vehicle {
abstract public getVIN();
...

}

wu23399_ch13.qxd 12/28/06 13:50 Page 737

13.7 Inheritance versus Interface
Java interface and inheritance are language features used to support object-oriented
modeling. They are similar because they are both used to model an IS-A relation-
ship. Consider, for example, the following class definitions:

class AddressBookVer1 implements AddressBook {
...

}

class SavingsAccount extends Account {
...

}

We say “AddressBookVer1 is an AddressBook” and “SavingsAccount is an Account.”
Because of this similarity, beginning programmers often have some difficulty in
differentiating the two clearly. Although they are similar, their intended uses are
quite different.

We use the Java interface to share common behavior (defined by its abstract
methods) among the instances of unrelated classes. And one class can implement
multiple interfaces. For example, we can define a single Person class that imple-
ments multiple interfaces such as Driver, Commuter, and Biker.

We use inheritance, on the other hand, to share common code (including both
data members and methods) among the instances of related classes. And a single sub-
class can extend at most one superclass. For example, the GraduateStudent and
UndergraduateStudent classes are subclasses of the Student class, the Truck and
Motorcycle classes are subclasses of the Vehicle class, and so forth. The superclasses
include data members and/or methods that are shared by the subclasses. The IS-A
relationship that exists between a subclass and its superclass is a specialization, as
Truck is a specialized Vehicle. Such a specialization relationship does not exist with
the Java interface.

738 Chapter 13 Inheritance and Polymorphism

Use the Java interface to share common behavior. Use the inheritance to share
common code.

If an entity A is a specialized form of another entity B, then model them by
using inheritance. Declare A as a subclass of B.

wu23399_ch13.qxd 12/28/06 13:50 Page 738

We must be careful not to mix up the use of service class and inheritance.
Beginners often make this mistake. Suppose you want to define a class that maintains
a list of music CDs. Which of the following two definitions is a better design?

class CDManager extends java.util.ArrayList {
...

}

class CDManager {

private List list;
..

}

The first version uses inheritance and defines a subclass of ArrayList. The sec-
ond version defines a data member of type ArrayList. The first version is a misuse of
inheritance. When we define a subclass A of superclass B, we must ask ourselves,
Is A a B? Can we say CDManager is an ArrayList? No. The CDManager is not a
specialized version of the ArrayList. The CDManager class simply needs to reuse
the service provided by the ArrayList class. Thus, the second version is the proper
design. We call this type of code reuse code reuse by composition.

Beyond the conceptual problem, defining the CDManager class as a subclass
of ArrayList has practical weaknesses. Because it is a subclass, the client of the
CDManager class can call any methods defined in the superclass ArrayList. But does
it make sense for the client to call the method such as ensureCapacity? Another
weakness is the difficulty in changing the implementation of the CDManager class.
Suppose we need to modify the data structure class from ArrayList to HashMap for
better performance. With the inheritance approach, any client that uses the inherited
methods of ArrayList needs to be rewritten. With the composition approach, the
client that uses only the methods defined for the CDManager class will continue to
work without change. The change made from the ArrayList class to the HashMap
class is encapsulated in the CDManager class and does not affect the clients.

13.8 Sample Development 739

code reuse by
composition

Sample Development 13.8 Sample Development

Computing Course Grades

Let’s develop a program that illustrates the use of Student and its subclasses Graduate-
Student and UndergraduateStudent. The program will input student data from a user-
designated text file, compute the course grades, and display the results. We assume the
input text file is created by using a text editor or another application.For example,a teacher
may have kept his student grades in a notebook. Instead of manually computing the
grades with a pencil and calculator, he enters data into a text file and uses this program to
compute the course grades. Another possible scenario is that the teacher uses some kind
of application software that allows him to maintain student records.Suppose this applica-
tion does not allow the teacher to use different formulas for computing the course grades
of undergraduate and graduate students.In such a case,the teacher can export data to a text

wu23399_ch13.qxd 12/28/06 13:50 Page 739

13.8 Sample Development—continued

file and use our program to compute the course grades for undergraduate and graduate
students using the different formulas. Using text files to transfer data from one applica-
tion to another application is a very common technique in software applications.

To focus on the use of inheritance and polymorphism, we will adopt the basic input
and output routines. It is left as exercises to implement them differently.Exercise 4 asks you
to save the data to an object file and Exercise 5 asks you to use the Scanner class for input.

Problem Statement

Write an application that reads in a text file organized in the manner shown
below and displays the final course grades. The course grades are computed dif-
ferently for the undergraduate and graduate students based on the formulas
listed on page 717.The input text file format is as follows:

• A single line is used for information on one student.

• Each line uses the format

<Type> <Name> <Test 1> <Test 2> <Test 3>

where <Type> designates either a graduate or an undergraduate student,
<Name> designates the student’s first and last name, and <Test i> designates
the ith test score.

• End of input is designated by the word END. The case of the letters is insignificant.

Figure 13.8 shows a sample input text file.

Overall Plan

We will implement a class that will

1. Read an input text file.

2. Compute the course grades.

3. Print out the result.

740 Chapter 13 Inheritance and Polymorphism

Figure 13.8 A sample text file containing student names and test scores. U at the beginning of a line
designates an undergraduate student, and G designates a graduate student.

U John Doe 87 78 90
G Jill Jones 90 95 87
G Jack Smith 67 77 68
U Mary Hines 80 85 80
U Mick Taylor 76 69 79
END

<Type> <Test 1><Name> <Test 2> <Test 3>

wu23399_ch13.qxd 12/28/06 13:50 Page 740

To read a text file, we will use the standard file I/O objects File, FileReader,
and BufferedReader.To compute the course grades, we will use the Student, Under-
graduate, and Graduate classes defined earlier in the chapter. The formulas for cal-
culating the course grades are defined in their respective computeCourseGrades
methods. Since the input file is a text file, we must create either a Graduate or an
Undergraduate object for each line of input, so we will be able to call its compute-
CourseGrades method. To store the created student objects (instances of either
Graduate or Undergraduate), we will use an array of Student to gain more practice
on using arrays.

To focus on the inheritance and polymorphism topics, we will use two helper
classes. The first is the OutputBox class which we use to display the course grades and
save the result back to a text file.We use its print and println methods for output and its
saveToFile method to save the data to a text file. The saveToFile method saves the
complete text in an OutputBox to a designated file. If the file already exists, then the orig-
inal contents of the file will be replaced by the text currently shown in the OutputBox.
Often, we need the capability to save the text in different format. For example, assuming
the student information includes the student ID number, the teacher may want to save
only the last four digits of the ID numbers and the final course grades so the results can
be posted. If we wish to save the text in a different format, then we have to implement our
own method with such capability.

The second helper class is the MainWindow class. We will name our main class
ComputeGrades, and as another example of inheritance, we make it a subclass of
MainWindow. The MainWindow is itself a subclass of JFrame and has the functionality
of positioning itself at the center of the screen (among other features). We cover the
details of subclassing the JFrame class in Chapter 14.

Here’s our working design document:

13.8 Sample Development 741

Design Document:ComputeGrades

Class Purpose
ComputeGrades The top-level control object manages other objects

in the program.The class is a subclass of the helper
class MainWindow.This class is the instantiable main
class.

OutputBox An OutputBox object is used to display the input data
and computed course grades.

Student, Under- These are application logic objects for students.The
graduateStudent, Student class is an abstract superclass.
GraduateStudent

File, FileReader, These are objects necessary for reading data from a
BufferedReader text file.

program
classes

wu23399_ch13.qxd 12/28/06 13:50 Page 741

13.8 Sample Development—continued

Figure 13.9 is the program diagram.
Now let’s think about the methods of ComputeGrades. What kinds of public

methods should the class support? Since a ComputeGrades object is a top-level con-
troller object, we need a single public method to initiate the operations. Let’s define a
method called processData that will carry out the three main tasks.The main method of
ComputeGrades will call this method.

public static void main(String[] args) {
ComputeGrades gradeComputer = new ComputeGrades();
gradeComputer.processData();

}

The processData method will look something like this:

this.setVisible(true); //make this main window
outputBox.setVisible(true);//and an outputBox visible

boolean success = readData();

if (success) {
computeGrade();
printResult();

} else {
print error message "File Input Error";

}

The readData method returns true if the input data are read in correctly from
a text file and the array of Student objects is properly created. Our working design

742 Chapter 13 Inheritance and Polymorphism

Figure 13.9 An object diagram of the ComputeGrades program.

MainWindow

ComputeGradesUnderGraduate Graduate

OutputBox

System classes
are not shown.

wu23399_ch13.qxd 12/28/06 13:50 Page 742

document for the ComputeGrades class is as follows:

13.8 Sample Development 743

Design Document: The ComputeGrades Class

Method Visibility Purpose
<constructor> public Creates and initializes the objects used by a

ComputeGrades object.

processData public Displays itself and carries out three main tasks.

readData private Opens and reads data from a text file and creates an
array of Student objects from the input data. If the
operation is successful, returns true.

computeGrade private Scans through the array of Student objects and
computes the course grades.

printResult private Prints out the student information along with the
computed grades to an OutputBox.

We will develop the program in five incremental steps:

1. Start with the program skeleton. Define the skeleton ComputeGrades classes.

2. Implement the printResult method. Define any other methods necessary to
implement printResult.

3. Implement the computeGrade method. Define any other methods necessary to
implement computeGrade.

4. Implement the readData method. Define any other methods necessary to
implement readData.

5. Finalize and look for improvements.

We defer the implementation of the hardest method, readData, until the last. Some pro-
grammers prefer to deal with the hardest aspect of the program first, and there’s no strict
rule for ordering the implementation steps. You should order the steps in a way with
which you are most comfortable. However, this does not mean you can implement
the methods at random. You must always plan the implementation steps carefully so
the steps follow a logical sequence. For this program, we start with the output routine
so we can use the final output routine for testing other methods, instead of defining a
temporary output routine for testing purposes.

Step 1 Development: Program Skeleton

Let’s begin with the data members and the constructors for the ComputeGrades class.
We will start with the following data members:

private OutputBox outputBox; //for output

private Student[] roster; //for maintaining
//student info

step 1
design

wu23399_ch13.qxd 12/28/06 13:50 Page 743

13.8 Sample Development—continued

It is a straightforward operation to create the first four objects, but we need to think
a little about the roster array. How big should the array be? There are several possibilities:

1. Create an array of an arbitrary size, say, 25.

2. Let the programmer pass the size in the constructor.

3. Do not create it in the constructor. Modify the input text file to include the size of
an array in the first line.

Option 3 is not attractive because it will require a change in the problem specification.
Moreover, requiring the size information in the input file will put a lot of burden on the
user who must go over the text file and count the number of lines the file contains. Such
a burdensome task should be left to a computer. So we will implement options 1 and 2. If
the data cannot fit into an array of a predesignated size, then we will use the technique
discussed in Chapter 9 to expand the array.

We declare a constant

private static final int DEFAULT_SIZE = 25;

and declare the two constructors as

public ComputeGrades() {

this(DEFAULT_SIZE);

}

public ComputeGrades(int arraySize) {

super(); //an explicit call to the superclass constructor

outputBox = new OutputBox(this);
roster = new Student[arraySize];

}

Notice that we can’t create inFile, fileReader, and bufReader until we know the actual
file to open.We will create these objects in one of the methods we define later.

For the skeleton program, we include temporary output statements in the private
methods to verify that they are called correctly in the right order. Here’s the skeleton:

744 Chapter 13 Inheritance and Polymorphism

/*
Chapter 13 Sample Development: Compute Grades for Undergraduate

and Graduate Students
File: ComputeGrades.java

*/

step 1 code

wu23399_ch13.qxd 12/28/06 13:50 Page 744

//---------------------- STEP 1 ----------------------//
class ComputeGrades extends MainWindow {

private static final int DEFAULT_SIZE = 25;

private OutputBox outputBox;

private Student[] roster;

public ComputeGrades() {
this (DEFAULT_SIZE);

}

public ComputeGrades(int arraySize) {
super(); // an explicit call to the superclass constructor

outputBox = new OutputBox(this);

roster = new Student[arraySize];
}

//------------------------------
// Main
//------------------------------

public static void main(String[] args) {
ComputeGrades gradeComputer = new ComputeGrades();
gradeComputer.processData();

}

public void processData() {
this.setVisible(true);
outputBox.setVisible(true);

boolean success = readData();

if (success) {
computeGrade();
printResult();

} else {
outputBox.println("File Input Error");

}
}

private void computeGrade() {

outputBox.println("Inside computeGrade"); //TEMP
}

private void printResult() {

outputBox.println("Inside printResult"); //TEMP
}

13.8 Sample Development 745

wu23399_ch13.qxd 12/28/06 13:50 Page 745

13.8 Sample Development—continued

private boolean readData() {

outputBox.pristln("Inside readData"); //TEMP
return true;

}
}

746 Chapter 13 Inheritance and Polymorphism

We execute the skeleton main class ComputeGrades for verification. When it is
executed, we will see the top-level frame window (ComputeGrades) and an OutputBox
appearing on the screen and the following messages in the OutputBox:

Inside readData
Inside computeGrade
Inside printResult

Step 2 Development: Implement the printResult Method

In the second development step, we add a routine that places the result in an outputBox.
To implement and test this method, we need to create the roster array. We will include
temporary code inside the readData method to build a test roster array. We can use for
loops as in

for (int i = 0; i < 15; i++) {
roster[i] = new UndergraduateStudent();
roster[i].setName("Undergrad # " + i);

roster[i].setTestScore(1, 70 + i);
roster[i].setTestScore(2, 75 + i);
roster[i].setTestScore(3, 80 + i);

}

for (int i = 15; i < DEFAULT_SIZE; i++) {
roster[i] = new GraduateStudent();
roster[i].setName("Grad # " + i);

roster[i].setTestScore(1, 80 + i);
roster[i].setTestScore(2, 85 + i);
roster[i].setTestScore(3, 90 + i);

}

to create a temporary roster for testing purposes.

step 1 test

step 2
design

The first half of the
array is undergraduate
students.

The second half of the
array is graduate
students.

wu23399_ch13.qxd 12/28/06 13:50 Page 746

Now, let’s design the printResult method. When this method is called, we have
the roster array built. The method scans through the array and retrieves the student
data, using the getName, getCourseGrade, and getTestScore methods. Expressed in
pseudocode, we have the following:

for each element i in the roster array {

output the name of roster[i];

output the test scores of roster[i];

output the course grade of roster[i];

skip to the next line;
}

How should we terminate the loop? We should realize first that the roster array
may or may not be full. For example, its default size is 25, but the actual number of ele-
ments may be less than 25, so using the value of roster.length will not work. Since roster
is an array of objects, one possible way to express the loop is as follows:

while (roster[i] != null) {

//output roster[i] information
}

One problem with this while loop is that we must have at least one empty slot in the
array for the loop to terminate correctly. We can improve it by using the length value as

while (i < roster.length && roster[i] != null) {
...

}

Another possibility is to keep the count, which we set in the readData method.
This count will be a data member of type int. Let’s call this count variable studentCount.
Then the processing loop becomes

for (int i = 0; i < studentCount; i++) {

//output roster[i] information
}

We will adopt this approach because having this count information is useful for other pur-
poses.For example, if we want to compute the percentage of students passing the course,
we can use studentCount to compute it. If we don’t have this variable, then every time we
need to compute the percentage, we have to find out the number of students in
the roster array.

Finally, to print out student information so the data will align properly, we will
output the control character \t (for tab). For a simple output like this, sending tabs to

13.8 Sample Development 747

wu23399_ch13.qxd 12/28/06 13:50 Page 747

13.8 Sample Development—continued

output will work fine. For a more elaborate output, we can use the formatting technique
discussed in Chapter 6.

Here’s the step 2 code. Notice we add the declaration for a new data member
studentCount, and this data member is initialized to 0 in the constructor.

748 Chapter 13 Inheritance and Polymorphism

step 2 code

/*
Chapter 13 Sample Development: Compute Grades for Undergraduate

and Graduate Students

File: ComputeGrades.java

*/

//--------------------- STEP 2 -------------------------//
class ComputeGrades extends MainWindow {

...
private int studentCount;

...
public ComputeGrades(int arraySize) {

...
studentCount = 0;

}
...

private void printResult() {

for (int i = 0; i < studentCount; i++) {

//print one student
outputBox.print (roster[i].getName());

for (int testNum = 1; testNum <= Student.NUM_OF_TESTS;
testNum++) {

outputBox.print("\t" + roster[i].getTestScore (testNum));
}

outputBox.println("\t" + roster[i].getCourseGrade());
}

}

private boolean readData() {
outputBox.println("Inside readData"); //TEMP

wu23399_ch13.qxd 12/28/06 13:50 Page 748

//TEMP
// Create a temporary roster array to
// test the printResult method.
//
for (int i = 0; i < 15; i++) {

roster[i] = new UndergraduateStudent();
roster[i].setName("Undergrad # " + i);

roster[i].setTestScore(1, 70 + i);
roster[i].setTestScore(2, 80 + i);
roster[i].setTestScore(3, 90 + i);

}
for (int i = 15; i < DEFAULT_SIZE; i++) {

roster[i] = new GraduateStudent();
roster[i].setName("Grad # " + i);

roster[i].setTestScore(1, 80 + i);
roster[i].setTestScore(2, 85 + i);
roster[i].setTestScore(3, 90 + i);

}

studentCount = DEFAULT_SIZE;

return true;
}

}

13.8 Sample Development 749

We verify two items in this step. First, the temporary readData method includes
creating student objects and calling their methods. Correct execution will verify that
we are including the correct student classes and using their methods properly. Second,
the printResult method should display the output as intended. Since we have not
implemented the computeGrade method, we will see four asterisks for the course
grades. We have to run the program several times and adjust the display format. Also,
it is important to try different values for names and test scores before moving to the
next step.

Step 3 Development: Implement the computeGrade Method

The functionality of computing the course grades is embedded inside the student
classes, specifically, inside the respective computeCourseGrade methods of the
GraduateStudent and UndergraduateStudent classes. Therefore, all we need to do in
the computeGrade method is to scan through the roster array and call the element’s
computeCourseGrade method. This simplicity is a direct result of polymorphism.

step 2 test

step 3
design

wu23399_ch13.qxd 12/28/06 13:50 Page 749

13.8 Sample Development—continued

Here’s the listing. The only addition is the computeGrade method.

750 Chapter 13 Inheritance and Polymorphism

/*
Chapter 13 Sample Development: Compute Grades for Undergraduate

and Graduate Students

File: ComputeGrades.java

*/

//----------------------- STEP 3 -----------------------//
class ComputeGrades extends MainWindow {

...

private void computeGrade() {

for (int i = 0; i < studentCount; i++) {
roster[i].computeCourseGrade();

}
}
...

}

step 3 code

We repeat the same testing routines of step 2. Instead of seeing four asterisks for
the course grades, we should be seeing correct values. To make the verification easy,
we can set the fixed test scores for all students. Make sure you assign test scores that
will result in students both passing and not passing. Don’t forget to try out end cases
such as zero for all three test scores. What about negative test scores? Will the Student
classes handle them correctly? If we identify serious problems with the Student
classes at this point, we may have to suspend our development until we correct the
Student class.

Step 4 Development: Implement the readData Method

We will now design the core function of the class, the readData method. We can ex-
press the overall logic of the method in pseudocode as

get the filename from the user;

if (the filename is provided)
read in data and build the roster array;

step 3 test

step 4
design

wu23399_ch13.qxd 12/28/06 13:50 Page 750

else
output an error message;

We will use a JFileChooser object from the standard javax.swing package to let
the user specify the file. If the user cancels this dialog, then null is returned. In this case,
we print out an error message and stop. If the user specifies a file, then we pass this infor-
mation to a private method buildRoster, which will read data from the designated file
and build the roster array.

The buildRoster method will read one line of data from the designated file at a
time, and for each line of data, it creates an appropriate student object (an instance of
GraduateStudent if the type is G and an instance of UndergraduateStudent if the
type is U). The counter studentCount is incremented by 1 after each line is processed.
When the line contains the terminator END, the method completes its execution. If the
data in a line do not conform to the designated format, then the line is ignored. The
method, expressed in pseudocode, is as follows:

try {
set bufReader for input;

while (!done) {
line = get next line;

if (line is END) {
done = true;

} else {
student = createStudent(line);

if (student != null) {
roster[studentCount] = student;

//add to roster
studentCount++;

}
}

}
}
catch (IOException e) {

output an error message;
}

We use the try–catch block because the creation of the BufferedReader object
bufReader from a given filename could result in an exception. We can use the Scanner
class instead of the FileReader and BufferedReader classes.The createStudent method
accepts a String argument, which is one line of the input file, and returns an instance of
either GraduateStudent or UndergraduateStudent depending on the type specified in
the line. If there’s an error in the input line, then createStudent returns null. Instead of
terminating the whole program, we will simply ignore the lines that do not conform to
the specified format.

13.8 Sample Development 751

createStudent will return
null if line does not
conform to the designated
format.

wu23399_ch13.qxd 12/28/06 13:50 Page 751

13.8 Sample Development—continued

In a very simplified form, the createStudent method looks like this:

type = first element of inputLine;

if (type.equals(UNDER_GRAD) || type.equals(GRAD)) {
student = newStudentWithData(inputLine);

} else { //invalid type is encountered
student = null;

}
return student;

The top statement requires us to extract the first item in the input line (String). How
should we do it? The newStudentWithData method, which creates an instance of
GraduateStudent or UndergraduateStudent and assigns data to it, also requires
an operation to extract individual elements of data from a single line. We can write our
own string processing routine to parse a given line and extract data on type, name,
and test scores, but there’s a better solution. We can use a standard class called
StringTokenizer from the java.util package. We will take a quick detour to explain
this class. Instead of using the StringTokenizer class, we could use the pattern-matching
techniques with the Pattern and Matcher classes. The StringTokenizer class, how-
ever, is suitable for a case such as this, where we want to extract tokens from a given
string.

A StringTokenizer object is used to extract tokens from a given string. A token is a
string of characters separated by delimiter characters, or simply delimiters. Any character
can be designated as a delimiter, but space is the most commonly used delimiter. By
default, a StringTokenizer object uses a white space (blank, tab, new line, or return) as its
delimiter. Here’s an example.The following code

String inputString
= "I drink 100 cups of coffee every morning.";

StringTokenizer parser = new StringTokenizer(inputString);

while (parser.hasMoreTokens()) {
System.out.println(parser.nextToken());

}

will print out

I
drink
100
cups
of

752 Chapter 13 Inheritance and Polymorphism

newStudentWithData will
return null if inputLine
contains invalid data.

String-
Tokenizer

wu23399_ch13.qxd 12/28/06 13:50 Page 752

coffee
every
morning.

The hasMoreTokens method returns true if there are more tokens remaining in
parser, and the nextToken method returns the next token in parser. The nextToken
method throws a NoSuchElementException if there is no token to return.Please refer
to a java.util reference manual for more information on StringTokenizer.

13.8 Sample Development 753

It’s great if you already know about StringTokenizer, but if you don’t, you’re out
of luck. You would end up programming the functionality of StringTokenizer
yourself, redoing something that has been done already. That’s always a chal-
lenge for everybody, not just for beginners.Whenever you encounter a situtation
that seems to call for a common programming task, first look up the Java API
reference manuals. You also can ask your classmates, teaching assistant, or
instructor for guidance.They may know something.You should also make a habit
of browsing the Java API reference manuals so you will have general knowledge
about the standard classes. The key is always to look for the existing classes
to reuse.

Now let’s get back to the design. Using a StringTokenizer object, we can express
the createStudent method as

StringTokenizer parser = new StringTokenizer(line);
String type;

try {
type = parser.nextToken();

if (type.equals(UNDER_GRAD) || type.equals(GRAD)) {
student = newStudentWithData(type, parser);

} else { //invalid type is encountered
student = null;

}

} catch (NoSuchElementException e) { //no token
student = null;

}
return student;

A private newStudentWithData method accepts a String that specifies the
type of student and a StringTokenizer object. The method creates an instance of

wu23399_ch13.qxd 12/28/06 13:50 Page 753

13.8 Sample Development—continued

UndergraduateStudent or GraduateStudent and assigns data to the object by calling
the StringTokenizer object’s nextToken method repeatedly:

//type and parser are the parameters
try {

if (type.equals(UNDER_GRAD)) {
student = new UndergraduateStudent();

} else {
student = new GraduateStudent();

}

set the student name //use parser.nextToken() to
//extract data from a line

set the student test scores

} catch (Exception e) { //thrown by parser.nextToken() or
student = null; //Integer.parseInt(...)

}

return student;

Our design document for the ComputeGrades class now includes three more private
methods:

754 Chapter 13 Inheritance and Polymorphism

Design Document: The ComputeGrades Class

Method Visibility Purpose
.

buildRoster private Reads one line of data from the designated file
at a time; and for each line of data, creates an
appropriate student object. If the data in a line do
not conform to the designated format, then the line
is ignored.

createStudent private Creates a student object by calling
newStudentWithData if the type in the input
line is U or G. If successful, returns the created
student; otherwise, returns null.

newStudentWithData private Creates an instance of UndergraduateStudent
or GraduateStudent and assigns data to the
object by calling the StringTokenizer object’s
nextToken method repeatedly.

wu23399_ch13.qxd 12/28/06 13:50 Page 754

13.8 Sample Development 755

Here’s the complete step 4 code:step 4 code

/*
Chapter 13 Sample Development: Compute Grades for Undergraduate

and Graduate Students

File: ComputeGrades.java

*/

import java.io.*;
import java.util.*;
import javax.swing.*;

//------------------------ STEP 4 ---------------------------//
class ComputeGrades extends MainWindow {

private static final int DEFAULT_SIZE = 25;

private static final String UNDER_GRAD = "U";
private static final String GRAD = "G";
private static final String END_OF_FILE_STR = "END";

private OutputBox outputBox;
private Student[] roster;
private int studentCount;

public ComputeGrades() {
this (DEFAULT_SIZE);

}

public ComputeGrades(int arraySize) {
super(); // an explicit call to the superclass constructor

outputBox = new OutputBox(this);

roster = new Student[arraySize];

studentCount = 0;
}

//-----------------------------------
// Main
//-----------------------------------

public static void main(String[] args) {
ComputeGrades gradeComputer = new ComputeGrades();
gradeComputer.processData();

}

public void processData() {
setVisible(true);
outputBox.setVisible(true);

wu23399_ch13.qxd 12/28/06 13:50 Page 755

13.8 Sample Development—continued

boolean success = readData();

if (success) {
computeGrade();
printResult();

} else {
outputBox.println("File Input Error");

}
}

private boolean buildRoster(String filename) {
String inputLine;
Student student;

File inFile;
FileReader fileReader;
BufferedReader bufReader;

boolean status = true;
boolean done = false;

try {
inFile = new File(filename);
fileReader = new FileReader(inFile);
bufReader = new BufferedReader(fileReader);

while (!done) {

inputLine = bufReader.readLine(); //read one line

if (inputLine.equalsIgnoreCase(END_OF_FILE_STR)) {
done = true;

}
else {

student = createStudent(inputLine);

if (student != null) {
roster[studentCount] = student;
studentCount++;

}
}

} // while

bufReader.close();
}
catch (IOException e) {

status = false;
}

756 Chapter 13 Inheritance and Polymorphism

wu23399_ch13.qxd 12/28/06 13:50 Page 756

return status;
}

private void computeGrade() {
for (int i = 0; i < studentCount; i++) {

roster[i].computeCourseGrade();
}

}

private Student createStudent(String line) {
Student student;
StringTokenizer parser = new StringTokenizer(line);
String type;

try {
type = parser.nextToken();

if (type.equals(UNDER_GRAD) || type.equals(GRAD)) {

student = newStudentWithData(type, parser);

} else {

student = null;
}

} catch (NoSuchElementException e) { //no token
student = null;

}

return student;
}

private Student newStudentWithData(String type,
StringTokenizer parser) {

Student student;

try {
if (type.equals(UNDER_GRAD)) {

student = new UndergraduateStudent();

} else {

student = new GraduateStudent();
}

//set the student name
String firstName = parser.nextToken();
String lastName = parser.nextToken();

student.setName(firstName + " " + lastName);

//set the student test scores
for (int testNum = 1; testNum <= Student.NUM_OF_TESTS;

testNum++) {

13.8 Sample Development 757

wu23399_ch13.qxd 12/28/06 13:50 Page 757

13.8 Sample Development—continued

student.setTestScore(testNum, Integer.parseInt(
parser.nextToken()));

}

} catch (Exception e) { //either parser.nextToken() or
//Integer.parseInt(...) thrown exception

student = null;
}

return student;
}

private void printResult() {

for (int i = 0; i < studentCount; i++) (

//print one student
outputBox.print (roster[i].getName());

for (int testNum = 1; testNum <= Student.NUM_OF_TESTS;
testNum++) {

outputBox.print("\t" + roster[i].getTestScore (testNum));
}

outputBox.println("\t" + roster[i].getCourseGrade());
}

}

private boolean readData() {
//get file to open
JFileChooser fileChooser = new JFileChooser(".");

//start the listing from the current directory

int returnVal = fileChooser.showOpenDialog(this);

boolean result = false;

if(returnVal == JFileChooser.APPROVE_OPTION) {
String filename

= fileChooser.getSelectedFile().getAbsolutePath();

if (filename != null) {

result = buildRoster(filename);
}

}

return result;
}

}

758 Chapter 13 Inheritance and Polymorphism

wu23399_ch13.qxd 12/28/06 13:50 Page 758

Summary 759

Step 4 Test Data

Test File Purpose

File with 5 to 20 entries of Test the normal case.
student information with all
lines in correct format

File with 5 to 20 entries of Test that readData and supporting methods
student information with handle the error case properly.
some lines in incorrect format

File with no entries Test that buildRoster method handles the error
case properly.

File with more than 25 entries Test that readData and supporting methods
handle the case where the number of entries is
larger than the default size for the roster array.

Step 5 Development: Finalize and Improve

As always, we will finalize the program by correcting any remaining errors, inconsistency,
or unfinished methods. We also look for improvement in the last step. One improvement
we can always look for relates to the length of the methods. Although there are no hard
rules for the length, a method should not be any longer than a single page. The
buildRoster and newStudentWithData methods are close to the maximum. If we notice
the method is getting longer in the coding stage, we may want to rethink our design. For
example, if the buildRoster method becomes too big, then we can define a new method
that takes care of a portion of the method, such as moving the if–then–else statement in
the method to a new method.

One problem that remains (which would have been identified in step 4 testing) is
the missing method for expanding the roster array when the input file includes more
student entries than the set default size of 25. We leave this method as Exercise 3. We also
leave some of the possible improvements as exercises.

step 4 test

program
review

We run through a more complete testing routine in this step. We need to run the
program for various types of input files. Some of the possible file contents are as follows:

• Inheritance and polymorphism are powerful language features to develop
extensible and modifiable code.

• Inheritance mechanism is used to share common code among the related
classes.

• Inheritance is different from the Java interface, which is used to share
common behavior among unrelated classes.

S u m m a r y

wu23399_ch13.qxd 12/28/06 13:50 Page 759

760 Chapter 13 Inheritance and Polymorphism

K e y C o n c e p t s

superclass and subclass

inheritance

inheritance and constructors

inheritance and visibility modifiers

abstract superclass

abstract methods

polymorphism

inheritance versus interface

E x e r c i s e s

1. Consider the following class definitions. Identify invalid statements.

class Car {
public String make;
protected int weight;
private String color;

...
}

class ElectricCar extends Car {
private int rechargeHour;

public ElectricCar() {
...

}

//copy constructor
public ElectricCar (ElectricCar car) {

this.make = car.make;
this.weight = car.weight;
this.color = new String(car.color);
this.rechargeHour= car.rechargeHour;

}

...
}

• The third visibility modifier is the protected modifier.

• If no instances are created from a superclass, then define the superclass as an
abstract class.

• Polymorphic messages tell us that the method executed in response to the
message will vary according to the class to which the object belongs.

• The first statement in a constructor of a subclass must be a call to a
constructor of the superclass. If the required statement is not made explicitly,
then the statement to call the default constructor of the superclass is inserted
automatically by the Java compiler.

• The standard class described or used in this chapter is StringTokenizer.

wu23399_ch13.qxd 12/28/06 13:50 Page 760

class TestMain {
public static void main (String[] args) {

Car myCar;
ElectricCar myElecCar;

myCar = new Car();
myCar.make = "Chevy";
myCar.weight = 1000;
myCar.color = "Red";

myElecCar = new ElectricCar();
myCar.make = "Chevy";
myCar.weight = 500;
myCar.color = "Silver";

}
}

2. Consider the following class definitions. Identify which calls to the
constructor are invalid.

class Car {
public String make;
protected int weight;
private String color;

private Car (String make, int weight, String color) {
this.make = make;
this.weight = weight;
this.color = color;

}

public Car () {
this("unknown", -1, "white");

}

class ElectricCar extends Car {
private int rechargeHour;

public ElectricCar() {
this(10);

}

private ElectricCar(int charge) {
super();
rechargeHour = charge;

}
}

class TestMain {
public static void main (String[] args) {

Car myCar1, myCar2;
ElectricCar myElec1, myElec2;

Exercises 761

wu23399_ch13.qxd 12/28/06 13:50 Page 761

myCar1 = new Car();
myCar2 = new Car("Ford", 1200, "Green");

myElec1 = new ElectricCar();
myElec2 = new ElectricCar(15);

}
}

3. In the ComputeGrades sample program, we set the default size of the roster
array to 25. Modify the program so the size of the array will be increased if
the input file contains more than 25 students. You need to add a method that
expands the array, say by 50 percent. The technique to expand an array was
discussed in Chapter 10.

4. Extend the ComputeGrades sample program by storing the roster array
using ObjectOutputStream. Give an option to the user to read the data
from a text file (this is how the original ComputeGrades works) or an object
file. Similarly, give an option to the user to save the data to a textfile or an
object file.

5. Modify the ComputeGrades sample program to input the data from a text file
using the Scanner class instead of the FileReader and BufferedReader classes.
Use the tab character (\t) as the delimiter.

6. How would you modify the ComputeGrades sample program if the formula
for computing the course grade were different for freshman, sophomore,
junior, and senior undergraduate students? Would you design four
subclasses of UndergraduateStudent? Or would you modify the body of
the computeCourseGrade method of UndergraduateStudent? Discuss the
pros and cons of each approach.

7. In the Chapter 5 sample development, we defined the DrawableShape class
that includes a method to draw one of the three possible shapes—rectangle,
rounded rectangle, or ellipse. Modify the DrawableShape class as a super
class of the three subclasses Rectangle, RoundedRectangle, and Ellipse.
The actual drawing of a shape is done by the drawShape method defined
in each of the three subclasses. Using the DrawingBoard helper class
from Chapter 5 and the four classes defined in this exercise, write a
screensaver program that draws 10 rectangles, 15 rounded rectangles,
and 20 ellipses of various sizes. All shapes will move smoothly across
the screen.

Development Exercises
For the following exercises, use the incremental development methodology to
implement the program. For each exercise, identify the program tasks, create
a design document with class descriptions, and draw the program diagram.
Map out the development steps at the start. Present any design alternatives and
justify your selection. Be sure to perform adequate testing at the end of each
development step.

762 Chapter 13 Inheritance and Polymorphism

wu23399_ch13.qxd 12/28/06 13:50 Page 762

8. Write a personal finance manager program that maintains information on
your bank accounts. Incorporate these rules:

• For the savings accounts, you can make a maximum of three
withdrawals in a month without incurring a fee. The bank charges
$1.00 for every withdrawal after the third.

• For the checking accounts, the bank charges $0.50 for every check you
write for the first 20 checks (i.e., withdrawals) in a month. After that,
there will be no charge.

You should be able to open and save account information to a file. You
should be able to list all transactions of a given account or of all accounts.
Include appropriate menus to select the options supported by the program.
Consider using the Date class to record the date of transactions. The Date
class is from the java.util package. Please refer to a java.util reference
manual for information on this class.

9. Extend the address book sample development from Chapter 10. Instead of
managing a single type of Person, incorporate additional types of persons
such as PersonalFriend and BusinessAssociate. Define these classes as a
subclass of Person. Design carefully to decide whether the Person class
will be an abstract class.

10. Consider an asset-tracking program that will track four types of assets:
electronic appliances, automobiles, furniture, and compact disks. What
classes would you design for the program? Would you define four unrelated
classes or one superclass and four subclasses? If you design a superclass,
will it be an abstract superclass?

11. Implement the asset-tracking program of Exercise 10. Allow the user to add,
modify, and delete electronic appliances, automobiles, furniture, and
compact disks. Allow the user to list the assets by category and search for an
asset by its serial number.

12. Extend the asset-tracking program of Exercise 11 by adding an object I/O
capability.

13. Write an application that reads daily temperatures for 12 months and allows
the user to get statistics. Support at least three options: monthly average of a
given month, yearly average, and lowest and highest temperatures of a given
month. Use a text file to store temperatures. A line in the text file contains
daily temperatures for one month. The first line in the text file contains
temperatures for January; the second line, those for February; and so forth.
Use StringTokenizer to parse a line into temperatures of type float. For a data
structure, consider using either an array of Month or a two-dimensional
array of float. Month is a class you define yourself.

Exercises 763

wu23399_ch13.qxd 12/28/06 13:50 Page 763

wu23399_ch13.qxd 12/28/06 13:50 Page 764

GUI and
Event-Driven
Programming

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Define a subclass of the JFrame class using
inheritance.

• Write event-driven programs using Java’s
delegation-based event model.

• Arrange GUI objects on a window using layout
managers and nested panels.

• Write GUI application programs using JButton,
JLabel, ImageIcon, JTextField, JTextArea,

JCheckBox, JRadioButton, JComboBox,
JList, and JSlider objects from the
javax.swing package.

• Write GUI application programs with menus
using menu objects from the javax.swing
package.

• Write GUI application programs that process
mouse events.

765

14

wu23399_ch14.qxd 12/28/06 13:53 Page 765

766 Chapter 14 GUI and Event-Driven Programming

I n t r o d u c t i o n

he sample programs we have written so far used standard classes such as
Scanner, PrintStream (System.out is an instance of PrintStream), and others for
handling user interface. These standard classes are convenient and adequate for a
basic program that does not require any elaborate user interface. For example,
when we need to input a single integer value, calling the nextInt method of
Scanner once to read that input is appropriate and effective. However, when we
need to input, say, 10 values for a Student object (e.g., name, age, address, phone
number, GPA), then using the Scanner class can be problematic because there is
no simple and elegant way to allow the user to reenter any one of the values after
all 10 input values are entered. So, instead of using the standard console input,
it is a much better user interface to employ a single customized window that
allows the user to enter all 10 values. We will learn how to build such a cus-
tomized user interface in this chapter. As a part of building of a customized user
interface, we will also learn how to detect mouse movements and clicking of
mouse buttons.

T

When we write a program for our own use, then we may choose to use the
standard console input to enter 10 values. When we write a program for others,
however, an effective user interface becomes of paramount importance. Next to
the program correctness, the user interface of a program is often the most
important criterion for the users to select one program over another, so it is criti-
cal for the success of the program to include the user interface that is logical, easy
to use, and visually appealing.

The type of user interface we cover in this chapter is called a graphical user
interface (GUI). In contrast, the user interface that uses System.in and System.out
exclusively is the called the non-GUI, or console user interface. In Java, GUI-based
programs are implemented by using the classes from the standard javax.swing and
java.awt packages. We will refer to them collectively as GUI classes. When we
need to differentiate them, we will refer to the classes from javax.swing as Swing
classes and those from java.awt as AWT classes. Some of the GUI objects from the
javax.swing package are shown in Figure 14.1.

Before Java 2 SDK 1.2, we had only AWT classes to build GUI-based pro-
grams. Many of the AWT classes are now superseded by their counterpart Swing
classes (e.g., AWT Button class is superseded by Swing JButton class). AWT
classes are still available, but it is generally preferable to use Swing classes. There
are two main advantages in using the Swing classes over the AWT classes.

graphical user
interface

Swing and
AWT classes

wu23399_ch14.qxd 12/28/06 13:53 Page 766

First, the Swing classes provide greater compatibility across different oper-
ating systems. The Swing classes are implemented fully in Java, and they behave
the same on different operating systems. The AWT classes, on the other hand, are
implemented by using the native GUI objects. For example, an AWT Button is
implemented by using the Windows button object for the Windows operating sys-
tem, the Macintosh button object for the Mac operating system, and so forth.
Because the behaviors of underlying platform-specific GUI objects are not neces-
sarily identical, an application that uses AWT classes may not behave the same on
the different operating systems. To characterize the difference in implementation,
the Swing classes are called lightweight classes and the AWT classes heavyweight
classes.

Second, the Swing classes support many new functionalities not supported by
the AWT counterparts. For example, we can easily display an image inside a button
in addition to a text by using a Swing JButton, but only text can be displayed inside
a button with an AWT Button.

We discuss the Swing classes exclusively. We use the AWT classes only when
there are no counterpart Swing classes. One thing we must be careful of in using
them is not to mix the counterparts in the same program because of their differences
in implementation. For example, we should not mix Swing buttons and AWT but-
tons or Swing menus and AWT menus. If an AWT class has no counterpart Swing
class, for example, the AWT Graphics class, then using it with other Swing classes
poses no problem.

Chapter 14 GUI and Event-Driven Programming 767

JFrame

ImageIcon

JMenu

JLabel

JButton

JTextField

Figure 14.1 Various GUI objects from the javax.swing package.

The Swing classes are called lightweight classes and the AWT classes heavy-
weight classes. As a general rule, because they are implemented differently, it is
best not to mix the counterparts (e.g., Swing JButton and AWT Button) in the
same program.

wu23399_ch14.qxd 12/28/06 13:53 Page 767

To build an effective graphical user interface using objects from the javax.swing
and java.awt packages, we must learn a new style of program control called event-
driven programming. An event occurs when the user interacts with a GUI object.
For example, when you move the cursor, click on a button, or select a menu choice,
an event occurs. In event-driven programs, we program objects to respond to these
events by defining event-handling methods. In this chapter we will learn the
fundamentals of event-driven programming. Almost all modern GUI-based ap-
plication software is event-driven, so it is very important to learn this programming
style well.

Since the main objective for this chapter is to teach the fundamentals of GUI
and event-driven programming and not to provide an exhaustive coverage of the
Swing classes, we will cover only the most common GUI objects.

14.1 Simple GUI I/O with JOptionPane
One of the easiest ways to provide a simple GUI-based input and output is by using
the JOptionPane class. For example, when we execute the statement

JOptionPane.showMessageDialog(null, "I Love Java");

the dialog shown in Figure 14.2 appears on the center of the screen.
In a GUI environment, there are basically two types of windows: a general-

purpose frame and a special-purpose dialog. In Java, we use a JFrame object for
a frame window and a JDialog object for a dialog. The first argument to the
showMessageDialog method is a frame object that controls this dialog, and the
second argument is the text to display. In the example statement, we pass null, a
reserved word, meaning there is no frame object. If we pass null as the first argu-
ment, the dialog appears on the center of the screen. If we pass a frame object, then

768 Chapter 14 GUI and Event-Driven Programming

Many AWT classes are superseded by the Swing counterpart classes, but they are
still available in the newer versions of Java SDK. Why? For example, if the Swing
JButton class is a better version of the AWT Button class, then why don’t we get rid
of the Button class? The first reason is the backward compatibility, which means
programs written for older Java SDKs will continue to run under newer SDKs. Had a
newer Java SDK dropped the superceded AWT classes, then old programs that use
those AWT classes would not run under the newer version of Java. The second
reason is the availability of compatible Java interpreters.When you write a program
using Swing classes, then the users of your program must have a compatible Java
interpreter installed on their machines. If your users employ a Java interpreter that
recognizes only AWT classes, then you have no option but to write the program
using only the AWT classes. For instance, the micro edition of Java for the Pocket PC
PDA does not recognize Swing classes. So if you want to write programs for the
Pocket PC PDA, then you must use only the AWT classes.

event-driven
programming

wu23399_ch14.qxd 12/28/06 13:53 Page 768

14.1 Simple GUI I/O with JOptionPane 769

Figure 14.2 A simple “message” dialog created by the showMessageDialog method by using the
JOptionPane class.

/*
Chapter 14 Sample Program: Shows a Message Dialog

File: Ch14ShowMessageDialog.java
*/

import javax.swing.*;

class Ch14ShowMessageDialog {

public static void main(String[] args) {

JFrame jFrame;

jFrame = new JFrame();
jFrame.setSize(400,300);
jFrame.setVisible(true);

JOptionPane.showMessageDialog(jFrame, "How are you?");

JOptionPane.showMessageDialog(null, "Good Bye");
}

}

Ch14ShowMessageDialog

Notice that we are not creating an instance of the JDialog class directly by our-
selves. However, when we call the showMessageDialog method, the JOptionPane
class is actually creating an instance of JDialog internally. Notice that showMes-
sageDialog is a class method, and therefore we are not creating a JOptionPane object.
If we need a more complex dialog, then we create an instance of JDialog. But for a
simple display of text, calling the showMessageDialog class method of JOptionPane
would suffice.

the dialog is positioned at the center of the frame. Run the Ch14ShowMessageDia-
log class and confirm this behavior.

wu23399_ch14.qxd 12/28/06 13:53 Page 769

If we want to display multiple lines of text, we can use a special character
sequence \n to separate the lines, as in

JOptionPane.showMessageDialog(null, "one\ntwo\nthree");

which will result in a dialog shown in Figure 14.3.
We can also use the JOptionPane class for input by using its showInputDialog

method. For example, when we execute

JOptionPane.showInputDialog(null, "Enter text:");

the dialog shown in Figure 14.4 appears on the screen. To assign the name input to
an input string, we write

String input;

input = JOptionPane.showInputDialog(null, "Enter text:");

Unlike the Scanner class that supports different input methods for specific
data types, that is, nextInt and nextDouble, the JOptionPane supports only a string

770 Chapter 14 GUI and Event-Driven Programming

Figure 14.3 A dialog with multiple lines of text.

Figure 14.4 An input dialog that appears as a result of calling the showInputDialog class method of the
JOptionPane class with “What is your name?” as the method’s second argument.

wu23399_ch14.qxd 12/28/06 13:54 Page 770

14.2 Customizing Frame Windows 771

Ta
b

le

Table 14.1 Common wrapper classes and their conversion methods.

Class Method Example

Integer parseInt Integer.parseInt("25") → 25
Integer.parseInt("25.3") → error

Long parseLong Long.parseLong("25") → 25L
Long.parseLong("25.3") → error

Float parseFloat Float.parseFloat("25.3") → 25.3F
Float.parseFloat("ab3") → error

Double parseDouble Double.parseDouble("25") → 25.0
Double.parseDouble("ab3") → error

1. Display the message I Love Java by using JOptionPane.

2. Using JOptionPane input dialog, write a statement to input the person’s first
name.

3. Using JOptionPane input dialog, write a statement to input the person’s age
(integer).

14.2 Customizing Frame Windows
To create a customized user interface, we often define a subclass of the JFrame class.
The helper class MainWindow we used in the Sample Development section of
Chapter 13, for example, is a subclass of the JFrame class. The JFrame class contains
the most rudimentary functionalities to support features found in any frame win-
dow, such as minimizing the window, moving the window, and resizing the window.

input. To input a numerical value, we need to perform the string conversion our-
selves. To input an integer value, say, age, we can write the code as follows:

String str
= JOptionPane.showInputDialog(null, "Enter age:");

int age = Integer.parseInt(str);

If the user enters a string that cannot be converted to an int, for example, 12.34 or
abc123, a NumberFormatException error will result. We use corresponding wrapper
classes to convert the string input to other numerical data values.

Table 14.1 lists common wrapper classes and their corresponding conversion
methods.

wu23399_ch14.qxd 12/28/06 13:54 Page 771

In writing practical programs, we normally do not create an instance of the JFrame
class because a JFrame object is not capable of doing anything meaningful. For
example, if we want to use a frame window for a word processor, we need a frame
window capable of allowing the user to enter, cut, and paste text; change font;
print text; and so forth. To design such a frame window, we would define a subclass
of the JFrame class and add methods and data members to implement the needed
functionalities.

Before we show sample subclasses of JFrame, let’s first look at the following
program which displays a default JFrame object on the screen:

772 Chapter 14 GUI and Event-Driven Programming

/*
Chapter 14 Sample Program: Displays a default JFrame window

File: Ch14DefaultJFrame.java

*/

import javax.swing.*;

class Ch14DefaultJFrame {

public static void main(String[] args) {

JFrame defaultJFrame;

defaultJFrame = new JFrame();

defaultJFrame.setVisible(true);
}

}

When this program is executed, a default JFrame object, shown in Figure 14.5,
appears on the screen. Since no methods (other than setVisible) to set the properties
of the JFrame object (such as its title, location, and size) are called, a very small
default JFrame object appears at the top left corner of the screen.

You may not notice this
frame window on the screen
at first because it is so small.
Look carefully at the top left
corner of the screen.

Figure 14.5 A default JFrame window appears at the top left corner of the screen.

wu23399_ch14.qxd 12/28/06 13:54 Page 772

Now let’s define a subclass of the JFrame class and add some default charac-
teristics. To define a subclass of another class, we declare the subclass with the
reserved word extends. So, to define a class named Ch14JFrameSubclass1 as a sub-
class of JFrame, we declare the subclass as

class Ch14JFrameSubclass1 extends JFrame {

...
}

For the Ch14JFrameSubclass1 class, we will add the following default charac-
teristics:

• The title is set to My First Subclass.

• The program terminates when the Close box is clicked.1

• The size of the frame is set to 300 pixels wide and 200 pixels high.

• The frame is positioned at screen coordinate (150, 250).

The effect of these properties is illustrated in Figure 14.6.
All these properties are set inside the default constructor. To set the frame’s

title, we pass the title to the setTitle method. To set the frame’s size, we pass its width
and height to the setSize method. To position the frame’s top left corner to the coordi-
nate (x, y), we pass the values x and y to the setLocation method. Finally, to terminate

14.2 Customizing Frame Windows 773

extends

1If we don’t add this functionality, the window will close, but the program does not terminate. In a normal
environment, we can still terminate the program by closing the command window, the one with the black
background on the Windows platform.

300

200

150

250

� x

� y

(0,0)

(150,250)

Not drawn to scale

Figure 14.6 How an instance of Ch14JFrameSubclass1 will appear on the screen.

wu23399_ch14.qxd 12/28/06 13:54 Page 773

the program when the frame is closed, we call the setDefaultCloseOperation with the
class constant EXIT_ON_CLOSE as an argument. The Ch14JFrameSubclass1 class is de-
clared as follows:

774 Chapter 14 GUI and Event-Driven Programming

/*
Chapter 14 Sample Program: A simple subclass of JFrame

File: Ch14JFrameSubclass1.java
*/

import javax.swing.*;

class Ch14JFrameSubclass1 extends JFrame {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

public Ch14JFrameSubclass1 () {

//set the frame default properties
setTitle ("My First Subclass");
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}
}

Notice the methods such as setTitle, setSize, and others are all defined in the JFrame
and its ancestor classes (ancestors are the superclasses in the inheritance hierarchy).
Every method of a superclass is inherited by its subclass. Because the subclass-
superclass relationships are formed into an inheritance hierarchy, a subclass inherits
all methods defined in its ancestor classes. And we can call an inherited method
from the method of a subclass in the manner identical to calling a method defined
in the subclass, that is, without using dot notation or by using dot notation with the
reserved word this.

Calls the inherited
methods.

Inherited methods are called from the method of a subclass without using dot
notation or by using dot notation with the reserved word this.

wu23399_ch14.qxd 12/28/06 13:54 Page 774

Here’s the main class to test the Ch14JFrameSubclass1 class:

14.2 Customizing Frame Windows 775

/*
Chapter 14 Sample Program: Displays a default Ch14JFrameSubclass window

File: Ch14TestJFrameSubclass.java
*/

class Ch14TestJFrameSubclass {

public static void main(String[] args) {

Ch14JFrameSubclass1 myFrame;

myFrame = new Ch14JFrameSubclass1();

myFrame.setVisible(true);
}

}

When it is executed, an instance of Ch14JFrameSubclass1 appears on the screen, as
illustrated in Figure 14.6. Notice this main class is identical to Ch14DefaultJFrame
except for the creation of a Ch14JFrameSubclass1 instance instead of a JFrame in-
stance. Also notice that there’s no need to import the javax.swing package because
the main class does not make any direct reference to the classes in this package.

Since we did not set the background color for Ch14JFrameSubclass1, the default
white was used as the frame’s background color. (Note: If you use Java2 SDK 1.4 or
earlier, the default background color is gray.) Let’s define another subclass named
Ch14JFrameSubclass2 that has a blue background color instead. We will define this
class as an instantiable main class so we don’t have to define a separate main class.
To make the background appear in blue, we need to access the content pane of a
frame. A frame’s content pane designates the area of the frame that excludes the title
and menu bars and the border. It is the area we can use to display the content (text,
image, etc.). We access the content pane of a frame by calling the frame’s
getContentPane method. And to change the background color to blue, we call the
content pane’s setBackground method. We carry out these operations in the private
changeBkColor method of Ch14JFrameSubclass2. Here’s the class definition:

content pane

/*
Chapter 14 Sample Program: A simple subclass of JFrame

that changes the background
color to white.

wu23399_ch14.qxd 12/28/06 13:54 Page 775

Running the program will result in the frame shown in Figure 14.7
appearing on the screen. Notice that we declare the variable contentPane in the
changeBkColor method as Container. We do not have a class named ContentPane.
By declaring the variable contentPane as Container, we can make it refer to any
instance of the Container class or the descendant classes of Container. This makes
our code more general because we are not tying the variable contentPane to any one
specific class. By default, the getContentPane method of JFrame in fact returns the
descendant class of Container called JPanel. We will describe the JPanel class in
Section 14.5.

776 Chapter 14 GUI and Event-Driven Programming

File: Ch14JFrameSubclass2.java
*/

import javax.swing.*;
import java.awt.*;

class Ch14JFrameSubclass2 extends JFrame {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

public static void main(String[] args) {
Ch14JFrameSubclass2 frame = new Ch14JFrameSubclass2();
frame.setVisible(true);

}

public Ch14JFrameSubclass2() {

//set the frame default properties
setTitle ("Blue Background JFrame Subclass");
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

changeBkColor();
}

private void changeBkColor() {
Container contentPane = getContentPane();
contentPane.setBackground(Color.BLUE);

}
}

wu23399_ch14.qxd 12/28/06 13:54 Page 776

14.3 GUI Programming Basics
In this section, we will develop a sample frame window that illustrates the funda-
mentals of GUI programming. The sample frame window has two buttons labeled
CANCEL and OK. When you click the CANCEL button, the window’s title is changed
to You clicked CANCEL. Likewise, when you click the OK button, the window’s title
is changed to You clicked OK. Figure 14.8 shows the window when it is first opened
and after the CANCEL button is clicked.

There are two key aspects involved in GUI programming. One is the place-
ment of GUI objects on the content pane of a frame, and the other is the handling of
events generated by these GUI objects. We will develop the sample program in two
steps. First we will define a JFrame subclass called Ch14JButtonFrame to show how
the two buttons labeled OK and CANCEL are placed on the frame. Then we will im-
plement another subclass called Ch14JButtonEvents to show how the button events
are processed to change the frame’s title.

Button Placement
The type of button we use here is called a pushbutton. Since we discuss the push-
buttons only in this chapter, we will simply call them buttons. To use a button in a

14.3 GUI Programming Basics 777

Figure 14.7 An instance of Ch14JFrameSubclass2 that has blue background.

pushbutton

Window title changes
when the CANCEL button
is clicked.

Figure 14.8 A sample window when it is first opened and after the CANCEL button is clicked.

wu23399_ch14.qxd 12/28/06 13:54 Page 777

program, we create an instance of the javax.swing.JButton class. We will create two
buttons and place them on the frame’s content pane in the constructor. Let’s name
the two buttons cancelButton and okButton. We declare and create these buttons in
the following manner:

import javax.swing.*;

...
JButton cancelButton, okButton;

cancelButton = new JButton("CANCEL");
okButton = new JButton("OK");

The text we pass to the constructor is the label of a button. After the buttons are cre-
ated, we must place them on frame’s content pane.

There are two general approaches to placing buttons (and other types of GUI
objects) on a frame’s content pane, one that uses a layout manager and another that
does not. The layout manager for a container is an object that controls the placement
of the GUI objects. For example, the simplest layout manager called FlowLayout
places GUI objects in the top-to-bottom, left-to-right order. If we do not use any lay-
out manager, then we place GUI objects by explicitly specifying their position and
size on the content pane. We call this approach absolute positioning. In this section,
we will use FlowLayout. We will discuss other common layout managers and
absolute positioning in Section 14.4.

To use the flow layout, we set the layout manager of a frame’s content pane by
passing an instance of FlowLayout to the setLayout method:

contentPane.setLayout(new FlowLayout());

After the layout manager is set, we add the two buttons to the content pane, so they
become visible when the frame is displayed on the screen:

contentPane.add(okButton);
contentPane.add(cancelButton);

Because the default size of a button depends on the number of characters in
the button’s label, the sizes of the two buttons will be different. We can override the
default by calling the setSize method. For example, we can set their width to 80 pix-
els and height to 30 pixels by writing

okButton.setSize(80, 30);
cancelButton.setSize(80, 30);

We are now ready for the complete listing of the Ch14JButtonFrame class:

778 Chapter 14 GUI and Event-Driven Programming

layout
manager

absolute
positioning

/*
Chapter 14 Sample Program: Displays a frame with two buttons

File: Ch14JButtonFrame.java
*/

wu23399_ch14.qxd 12/28/06 13:54 Page 778

When we run the program, we see two buttons appear on the frame. We can click
the buttons, but nothing happens, of course, because the code to handle the button
clicks is not yet added to the class. We’ll add the required code next.

14.3 GUI Programming Basics 779

import javax.swing.*;
import java.awt.*;

class Ch14JButtonFrame extends JFrame {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

private static final int BUTTON_WIDTH = 80;
private static final int BUTTON_HEIGHT = 30;

private JButton cancelButton;
private JButton okButton;

public static void main(String[] args) {
Ch14JButtonFrame frame = new Ch14JButtonFrame();
frame.setVisible(true);

}

public Ch14JButtonFrame() {

Container contentPane = getContentPane();

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setResizable(false);
setTitle ("Program Ch14JButtonFrame");
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

//set the layout manager
contentPane.setLayout(new FlowLayout());

//create and place two buttons on the frame's content pane
okButton = new JButton("OK");
okButton.setSize(BUTTON_WIDTH, BUTTON_HEIGHT);
contentPane.add(okButton);

cancelButton = new JButton("CANCEL");
cancelButton.setSize(BUTTON_WIDTH, BUTTON_HEIGHT);
contentPane.add(cancelButton);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}
}

wu23399_ch14.qxd 12/28/06 13:54 Page 779

Handling Button Events
Now let’s study how we process the button clicks. An action such as clicking a but-
ton is called an event, and the mechanism to process the events event handling. The
event-handling model of Java is based on the concept known as the delegation based
event model. With this model, event handling is implemented by two types of
objects: event source objects and event listener objects.

A GUI object, such as a button, where the event occurs is called an event, or
simply, the event source. We say an event source generates events. So, for example,
when the user clicks on a button, the corresponding JButton object will generate an
action event. When an event is generated, the system notifies the relevant event lis-
tener objects. An event listener object, or simply an event listener, is an object that
includes a method that gets executed in response to generated events. It is possible
for a single object to be both an event source and an event listener.

Among the many different types of events, the most common one is called an
action event. For example, when a button is clicked or a menu item is selected, an
event source will generate an action event. For the generated events to be processed,
we must associate, or register, event listeners to the event sources. If the event
sources have no registered listeners, then generated events are simply ignored (this
is what happened in the Ch14JButtonFrame program). For each type of event, we
have a corresponding listener. For example, we have action listeners for action
events, window listeners for window events, mouse listeners for mouse events, and
so forth. Event types other than action events are discussed later in this chapter. If
we wish to process the action events generated by a button, then we must associate
an action listener to the button.

An object that can be registered as an action listener must be an instance of a
class that is declared specifically for the purpose. We call such class an action lis-
tener class. For this sample program, let’s name the action listener class Button-
Handler. We will describe how to define the ButtonHandler class shortly. But first
we will show the step to register an instance of ButtonHandler as the action listener
of the two action event sources—okButton and cancelButton—of the sample frame
window.

An action listener is associated to an action event source by calling the event
source’s addActionListener method with this action listener as its argument. For ex-
ample, to register an instance of ButtonHandler as an action listener of okButton
and cancelButton, we can execute the following code:

ButtonHandler handler = new ButtonHandler();

okButton.addActionListener(handler);
cancelButton.addActionListener(handler);

Notice that we are associating a single ButtonHandler object as an action
listener of both buttons, because, although we can, it is not necessary to associate
two separate listeners, one for the OK button and another for the CANCEL button. A
single listener can be associated to multiple event sources. Likewise, although not
frequently used, multiple listeners can be associated to a single event source.

780 Chapter 14 GUI and Event-Driven Programming

event

delegation-
based event
model

event source

event listener

action event

wu23399_ch14.qxd 12/28/06 13:54 Page 780

When an event source generates an event, the system checks for matching
registered listeners (e.g., for action events the system looks for registered action
listeners, for window events the system looks for registered window listeners, and
so forth). If there is no matching listener, the event is ignored. If there is a matching
listener, the system notifies the listener by calling the listener’s corresponding
method. In case of action events, this method is actionPerformed. To ensure that the
programmer includes the necessary actionPerformed method in the action listener
class, the class must implement the ActionListener interface. The ButtonHandler
class, for example, must be defined in the following way:

import java.awt.event.*;

class ButtonHandler implements ActionListener {
...

}

Remember that, unlike a class, a Java interface includes only constants and
abstract methods. The java.awt.event.ActionListener, for instance, is defined as

interface ActionListener {

public void actionPerformed(ActionEvent evt);
}

The ButtonHandler class is defined as follows:

class ButtonHandler implements ActionListener {

//data members and constructors come here

public void actionPerformed(ActionEvent evt) {

//event-handling statements come here
}

}

An argument to the actionPerformed method is an ActionEvent object that repre-
sents an action event, and the ActionEvent class includes methods to access the
properties of a generated event.

We want to change the title of a frame to You clicked OK or You clicked CANCEL
depending on which button is clicked. This is done inside the actionPerformed

14.3 GUI Programming Basics 781

A single listener can be associated to multiple event sources, and multiple listeners
can be associated to a single event source.

ActionListener is defined
in this package.

There’s no method
body, only the

method header.

wu23399_ch14.qxd 12/28/06 13:54 Page 781

method. The general idea of the method is as follows:

public void actionPerformed(ActionEvent evt) {

String buttonText
= get the text of the event source;

JFrame frame
= the frame that contains this event source;

frame.setTitle("You clicked " + buttonText);
}

The first statement retrieves the text of the event source (the text of the okButton is
the string OK and the text of the cancelButton is the string CANCEL). We can do this
in two ways. The first way is to use the getActionCommand method of the action
event object evt. Using this method, we can retrieve the text of the clicked button as

String buttonText = evt.getActionCommand();

The second way is to use the getSource method of the action event object evt.
Using this method, we can retrieve the text of the clicked button as

JButton clickedButton = (JButton) evt.getSource();
String buttonText = clickedButton.getText();

Notice the typecasting of an object returned by the getSource method to JButton.
The object returned by the getSource method can be an instance of any class, so we
need to typecast the returned object to a proper class in order to use the desired
method.

Now, to find the frame that contains the event source, we proceed in two steps.
First, we get the root pane to which this event source belongs. Second, we get the
frame that contains this root pane. Here’s the necessary sequence of statements to
access the frame that contains the event source:

JRootPane rootPane = clickedButton.getRootPane();
Frame frame = (JFrame) rootPane.getParent();

A frame window contains nested layers of panes (the content pane in which we
place GUI objects is one of them). The topmost pane is called the root pane (an
instance of JRootPane). We can access the root pane of a frame by calling the GUI
object’s getRootPane method. From the root pane, we can access the frame object
by calling the root pane’s getParent method. Because a root pane can be contained
by different types of containers (frames, dialogs, etc.), we need to typecast the re-
turned object to JFrame in this example.

782 Chapter 14 GUI and Event-Driven Programming

Notice the typecast to an
appropriate class is necessary.

Typecasting is necessary
here, too.

wu23399_ch14.qxd 12/28/06 13:54 Page 782

Here’s the complete ButtonHandler class:

14.3 GUI Programming Basics 783

/*
Chapter 14 Sample Program: Event listener for button click events

File: ButtonHandler.java
*/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class ButtonHandler implements ActionListener {

public ButtonHandler() {

}

public void actionPerformed(ActionEvent event) {

JButton clickedButton = (JButton) event.getSource();

JRootPane rootPane = clickedButton.getRootPane();
Frame frame = (JFrame) rootPane.getParent();

String buttonText = clickedButton.getText();

frame.setTitle("You clicked " + buttonText);
}

}

And here’s the complete Ch14JButtonEvents class (notice that this class is
essentially the same as the Ch14JButtonFrame class except for the portion that deals
with the registration of a ButtonHandler to two event sources):

/*
Chapter 14 Sample Program: Displays a frame with two buttons

and associates an instance of
ButtonHandler to the two buttons

File: Ch14JButtonEvents.java
*/

import javax.swing.*;
import java.awt.*;

class Ch14JButtonEvents extends JFrame {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;

wu23399_ch14.qxd 12/28/06 13:54 Page 783

Making a Frame the Event Listener
Instead of creating a separate event listener class such as ButtonHandler, it is actu-
ally more common to let a frame be the event listener of the GUI objects it contains.
We stated earlier that any class can implement the ActionListener interface. We can

784 Chapter 14 GUI and Event-Driven Programming

private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

private static final int BUTTON_WIDTH = 80;
private static final int BUTTON_HEIGHT = 30;

private JButton cancelButton;
private JButton okButton;

public static void main(String[] args) {
Ch14JButtonEvents frame = new Ch14JButtonEvents();
frame.setVisible(true);

}

public Ch14JButtonEvents() {

Container contentPane = getContentPane();

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setResizable (false);
setTitle ("Program Ch14JButtonFrame");
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

//set the layout manager
contentPane.setLayout(new FlowLayout());

//create and place two buttons on the frame's content pane
okButton = new JButton("OK");
okButton.setSize(BUTTON_WIDTH, BUTTON_HEIGHT);
contentPane.add(okButton);

cancelButton = new JButton("CANCEL");
cancelButton.setSize(BUTTON_WIDTH, BUTTON_HEIGHT);
contentPane.add(cancelButton);

//registering a ButtonHandler as an action listener of the
//two buttons
ButtonHandler handler = new ButtonHandler();
cancelButton.addActionListener(handler);
okButton.addActionListener(handler);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}
}

wu23399_ch14.qxd 12/28/06 13:54 Page 784

declare a subclass of JFrame that implements the ActionListener interface. As an
illustration of this technique, let’s define a subclass of JFrame called Ch14JButton-
FrameHandler. This class combines the functionalities of the Ch14JButtonEvents
and ButtonHandler classes.

Here’s the class:

14.3 GUI Programming Basics 785

/*
Chapter 14 Sample Program: Displays a frame with two buttons

and handles the button events

File: Ch14JButtonFrameHandler.java
*/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class Ch14JButtonFrameHandler extends JFrame implements ActionListener {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

private static final int BUTTON_WIDTH = 80;
private static final int BUTTON_HEIGHT = 30;

private JButton cancelButton;
private JButton okButton;

public static void main(String[] args) {
Ch14JButtonFrameHandler frame = new Ch14JButtonFrameHandler();
frame.setVisible(true);

}

public Ch14JButtonFrameHandler() {

Container contentPane = getContentPane();

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setResizable(false);
setTitle ("Program Ch14JButtonFrameHandler");
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

//set the layout manager
contentPane.setLayout(new FlowLayout());

//create and place two buttons on the frame's content pane
okButton = new JButton("OK");

wu23399_ch14.qxd 12/28/06 13:54 Page 785

Notice how we call the addActionListener method of cancelButton and okButton.
This frame object is the action event listener, so we pass it as an argument to the
method as

cancelButton.addActionListener(this);
okButton.addActionListener(this);

Likewise, because the actionPerformed method now belongs to this frame class
itself, we can call other methods of the frame class from the actionPerformed
method without dot notation. So the statement to change the title is simply

setTitle("You clicked " + buttonText);

786 Chapter 14 GUI and Event-Driven Programming

okButton.setSize(BUTTON_WIDTH, BUTTON_HEIGHT);
contentPane.add(okButton);

cancelButton = new JButton("CANCEL");
cancelButton.setSize(BUTTON_WIDTH, BUTTON_HEIGHT);
contentPane.add(cancelButton);

//register this frame as an action listener of the two buttons
cancelButton.addActionListener(this);
okButton.addActionListener(this);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}

public void actionPerformed(ActionEvent event) {
JButton clickedButton = (JButton) event.getSource();

String buttonText = clickedButton.getText();

setTitle("You clicked " + buttonText);
}

}

Calls the setTitle method
of this frame object.

1. What is the purpose of a layout manager?

2. Which object generates events? Which object processes events?

3. A class that implements the ActionListener interface must implement which
method?

4. What does the getActionCommand method of the ActionEvent class return?

wu23399_ch14.qxd 12/28/06 13:54 Page 786

14.4 Text-Related GUI Components
In this section we will introduce three Swing GUI classes—JLabel, JTextField, and
JTextArea—that deal with text. The first two deal with a single line of text. A
TextField object allows the user to enter a single line of text, while a JLabel object is
for displaying uneditable text. A JTextArea object allows the user to enter multiple
lines of text. It can also be used for displaying multiple lines of uneditable text.

Like a JButton object, an instance of JTextField generates an action event. A
TextField object generates an action event when the user presses the Enter key while
the object is active (it is active when you see the vertical blinking line in it). JLabel,
on the other hand, does not generate any event. A JTextArea object also generates
events, specifically the types of events called text events and document events. Han-
dling of these events is more involved than handling action events, so to keep the
discussion manageable, we won’t be processing the JTextArea events.

We will describe the JTextField class first. We set a JTextField object’s size
and position and register its action listener in the same way as we did for the
JButton class. To illustrate its use, we will modify the Ch14JButtonFrameHandler
by adding a single JTextField object. We will call the new class Ch14TextFrame1.
The effect of clicking the buttons CANCEL and OK is the same as before. If the user
presses the Enter key while the JTextField object is active, then we will change the
title to whatever text is entered in this JTextField object. In the data declaration
part, we add

JTextField inputLine;

and in the constructor we create a JTextField object and register the frame as its ac-
tion listener:

public Ch14TextFrame1 {
...
inputLine = new JTextField();
inputLine.setColumns(22);
add(inputLine);

inputLine.addActionListener(this);
...

}

Notice the use of setColumns method instead of setSize in the earlier examples. We
do not use the setSize method to set the size of a text field. The number we pass to
the setColumns method does not necessarily mean the number of characters visible
on the text field because the default font may be a variable-pitch font. If we set the
font to a fixed-pitch font as in

...
inputLine.setColumns(20);
inputLine.setFont(new Font("Courier", Font.PLAIN, 14));

14.4 Text-Related GUI Components 787

wu23399_ch14.qxd 12/28/06 13:54 Page 787

then 20 characters will be visible. Also, notice that the setColumns method affects
the number of characters visible by setting the size of the text field. It does not af-
fect the number of characters we can enter in the text field. There is no fixed bound
on the number of characters we can enter. When we enter more than the visible
number of characters, then the text will scroll to the left.

Now we need to modify the actionPerformed method to handle both the but-
ton click events and the Enter key events. We have three event sources (two buttons
and one text field), so the first thing we must do in the actionPerformed method is
to determine the source. We will use the instanceof operator to determine the class
to which the event source belongs. Here’s the general idea:

if (event.getSource() instanceof JButton) {
//event source is either cancelButton
//or okButton
...

} else { //event source must be inputLine
...

}

We use the getText method of JTextField to retrieve the text that the user has
entered. The complete method is written as

public void actionPerformed(ActionEvent event) {

if (event.getSource() instanceof JButton) {
JButton clickedButton = (JButton) event.getSource();

String buttonText = clickedButton.getText();

setTitle("You clicked " + buttonText);

} else { //the event source is inputLine
setTitle("You entered '" +

inputLine.getText() + "'");
}

}

Notice that we can—but did not—write the else part as

JTextField textField = (JTextField) event.getSource();
setTitle("You entered '" + textField.getText() + "'");

because we know that the event source is inputLine in the else part. So we wrote it
more succinctly as

setTitle("You entered '" + inputLine.getText() + "'");

Another approach to event handling is to associate a ButtonHandler (defined
in Section 14.3) to the two button event sources and a TextHandler (need to add this
new class) to the text field event source. This approach is left as an exercise.

788 Chapter 14 GUI and Event-Driven Programming

instanceof

wu23399_ch14.qxd 12/28/06 13:54 Page 788

Here’s the complete Ch14TextFrame1 class:

14.4 Text-Related GUI Components 789

/*
Chapter 14 Sample Program: Displays a frame with two buttons

and one text field

File: Ch14TextFrame1.java
*/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class Ch14TextFrame1 extends JFrame implements ActionListener {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

private static final int BUTTON_WIDTH = 80;
private static final int BUTTON_HEIGHT = 30;

private JButton cancelButton;
private JButton okButton;

private JTextField inputLine;

public static void main(String[] args) {
Ch14TextFrame1 frame = new Ch14TextFrame1();
frame.setVisible(true);

}

public Ch14TextFrame1() {
Container contentPane;

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setResizable(false);
setTitle ("Program Ch14SecondJFrame");
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());

inputLine = new JTextField();
inputLine.setColumns(22);
contentPane.add(inputLine);

inputLine.addActionListener(this);

Adding the inputLine
text field.

wu23399_ch14.qxd 12/28/06 13:54 Page 789

Now, let’s add a JLabel object to the frame. In the Ch14TextFrame1 class, we
have one text field without any indication of what this text field is for. A JLabel
object is useful in displaying a label that explains the purpose of the text field. Let’s
modify the Ch14TextFrame1 class by placing the label Please enter your name
above the inputLine text field. We will call the modified class Ch14TextFrame2. We
add the data member declaration

private JLabel prompt;

and create the object and position it in the constructor as

public Ch14TextFrame2 {
...
prompt = new JLabel();
prompt.setText("Please enter your name");

790 Chapter 14 GUI and Event-Driven Programming

//create and place two buttons on the frame
okButton = new JButton ("OK");
okButton.setSize(BUTTON_WIDTH, BUTTON_HEIGHT);
contentPane.add(okButton);

cancelButton = new JButton ("CANCEL");
cancelButton.setSize(BUTTON_WIDTH, BUTTON_HEIGHT);
contentPane.add(cancelButton);

//register this frame as an action listener of the two buttons
cancelButton.addActionListener(this);
okButton.addActionListener(this);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}

public void actionPerformed(ActionEvent event) {

if (event.getSource() instanceof JButton) {
JButton clickedButton = (JButton) event.getSource();

String buttonText = clickedButton.getText();

setTitle("You clicked " + buttonText);

} else { //the event source is inputLine
setTitle("You entered '" + inputLine.getText() + "'");

}
}

}

wu23399_ch14.qxd 12/28/06 13:54 Page 790

prompt.setSize(150, 25);
contentPane.add(prompt);
...

}

We can also set the text at the time of object creation as

prompt = new JLabel("Please enter your name");

The JLabel class is not limited to the display of text. We can also use it to dis-
playan image. To display an image, we pass an ImageIcon object when we create a
JLabel object instead of a string. To create this ImageIcon object, we must specify
the filename of an image. Notice that the program we are running, Ch14TextFrame2,
and the image file are placed in the same directory. We can place the image file any-
where we want, but the way we write the code here requires the image file to be
placed in the same directory. We keep it this way to keep the code simple. We add
the data member declaration

private JLabel image;

and then create it in the constructor as

public Ch14TextFrame2 {
...
image = new JLabel(new ImageIcon("cat.gif"));
image.setSize(50, 50);
contentPane.add(image);
...

}

Figure 14.9 shows the frame that appears on the screen when the program is ex-
ecuted. As the sample code shows, it is a simple matter to replace the image. All we
have to do is to put the image we want in the right directory and refer to this image
file correctly when creating a new ImageIcon object. When we use a different image,
we have to be careful, however, to adjust the width and height values in the setBounds
method so the values will be large enough to display the complete image.

14.4 Text-Related GUI Components 791

ImageIcon

Figure 14.9 The Ch14TextFrame2 window with one text JLabel, one image JLabel, one JTextField, and
two JButton objects.

wu23399_ch14.qxd 12/28/06 13:54 Page 791

Here’s the Ch14TextFrame2 class (only the portion that is different from
Ch14TextFrame1 is listed here):

792 Chapter 14 GUI and Event-Driven Programming

/*
Chapter 14 Sample Program: Displays a frame with two buttons,

one text field and one label

File: Ch14TextFrame2.java
*/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class Ch14TextFrame2 extends JFrame implements ActionListener {

...

private JLabel prompt;
private JLabel image;

public static void main(String[] args) {
Ch14TextFrame2 frame = new Ch14TextFrame2();
frame.setVisible(true);

}

public Ch14TextFrame2() {
...

image = new JLabel(new ImageIcon("cat.gif"));
image.setSize(50, 50);
contentPane.add(image);

prompt = new JLabel();
prompt.setText("Please enter your name");
prompt.setSize(150, 25);
contentPane.add(prompt);

...
}

...
}

Now let’s create the third example by using a JTextArea object. We will call
the sample class Ch14TextFrame3. In this sample program, we will add two buttons
labeled ADD and CLEAR, one text field, and one text area to a frame. When a text is

wu23399_ch14.qxd 12/28/06 13:54 Page 792

entered in the text field and the Enter (Return) key is pressed or the ADD button is
clicked, the entered text is added to the list shown in the text area. Figure 14.10
shows the state of this frame after six words are entered.

We declare a JTextArea object textArea in the data member section as

private JTextArea textArea;

and add the statements to create it inside the constructor as

textArea = new JTextArea();
textArea.setColumns(22);
textArea.setRows(8);
textArea.setBorder(

BorderFactory.createLineBorder(Color.RED));
textArea.setEditable(false);
contentPane.add(textArea);

By default, unlike the single-line JTextField, the rectangle that indicates the
boundary of a JTextArea object is not displayed on the frame. We need to create
the border for a JTextArea object explicitly. The easiest way to do so is to call
one of the class methods of the BorderFactory class. In the example, we called the
createLineBorder method with a Color object as its argument. We passed Color.RED
so the red rectangle is displayed, as shown in Figure 14.10. The createLineBorder
method returns a properly created Border object, and we pass this Border object to
the setBorder method of the text area object. There are other interesting borders
you might want to try. Table 14.2 lists other border types and the methods to cre-
ate them. The API documentation of the BorderFactory class records more options
and variations.

In the sample frame, we do not want the user to edit the text displayed in the
text area, so we disable editing by the statement

textArea.setEditable(false);

14.4 Text-Related GUI Components 793

JTextArea

Figure 14.10 The state of a Ch14TextFrame3 window after six words are entered.

wu23399_ch14.qxd 12/28/06 13:54 Page 793

To add a text to the text area, we use the append method. Notice that we can-
not use the setText method of JTextArea here because it will replace the old content
with the new text. What we want here is to add new text to the current content. Also,
since we need to add new text on a separate line, we need to output the new-line
control character \n. Here’s the basic idea for adding new text to the text area object
textArea:

String enteredText = inputLine.getText();

textArea.append(enteredText + "\n");

Because the actual sequence of characters to separate lines is dependent on the
operating systems, if we want to maintain consistent behavior across all operating
systems, it is best to not use a fixed character such as \n. Instead, we should call the
getProperty method of the System class, passing the string line.separator as an
argument, to get the actual sequence of characters used by the operating system on
which the program is being executed. We can define a class constant as

private static final String NEWLINE
= System.getProperty("line.separator");

and use it in the program as

textArea.append(enteredText + NEWLINE);

794 Chapter 14 GUI and Event-Driven Programming

Ta
b

le
Table 14.2 Border-creating methods of the javax.swing.BorderFactory class.

The listed methods are all class methods.

Some Class Methods of javax.swing.BorderFactory

public static Border createEtchedBorder
(java.awt.Color lineColor, java.awt.Color shadowColor)

Creates an etched border with lineColor as line color and shadowColor as
shadow color.

public static Border createLoweredBevelBorder()
Creates a border with a lowered beveled edge with a bright shade of the GUI
object’s current background color for line and dark shading for shadow. This border
is effective when you change the background color of the GUI object.

public static Border createRaisedBevelBorder()
Creates a border with a raised beveled edge with a bright shade of the GUI object’s
current background color for line and dark shading for shadow. This border is effec-
tive when you change the background color of the GUI object.

public static Border createTitledBorder(String title)
Creates a default (etched) border with title displayed at the left corner of the
border.

wu23399_ch14.qxd 12/28/06 13:54 Page 794

Here’s the Ch14TextFrame3 class:

14.4 Text-Related GUI Components 795

/*
Chapter 14 Sample Program: Displays a frame with two buttons,

one text field, and one text area

File: Ch14TextFrame3.java
*/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class Ch14TextFrame3 extends JFrame implements ActionListener {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 250;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

private static final int BUTTON_WIDTH = 80;
private static final int BUTTON_HEIGHT = 30;

private static final String EMPTY_STRING = "";
private static final String NEWLINE

= System.getProperty("line.separator");

private JButton clearButton;
private JButton addButton;
private JTextField inputLine;
private JTextArea textArea;

public static void main(String[] args) {
Ch14TextFrame3 frame = new Ch14TextFrame3();
frame.setVisible(true);

}

public Ch14TextFrame3() {
Container contentPane;

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setResizable(false);
setTitle ("Program Ch14TextFrame3");
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

contentPane = getContentPane();
contentPane.setLayout(new FlowLayout ());

textArea = new JTextArea();
textArea.setColumns(22);
textArea.setRows(8);
textArea.setBorder(BorderFactory.createLineBorder(Color.RED));

wu23399_ch14.qxd 12/28/06 13:54 Page 795

796 Chapter 14 GUI and Event-Driven Programming

textArea.setEditable(false);
contentPane.add(textArea);

inputLine = new JTextField();
inputLine.setColumns(22);
contentPane.add(inputLine);

inputLine.addActionListener(this);

//create and place two buttons on the frame
addButton = new JButton ("ADD");
addButton.setSize(BUTTON_WIDTH, BUTTON_HEIGHT);
contentPane.add(addButton);

clearButton = new JButton ("CLEAR");
clearButton.setSize(BUTTON_WIDTH, BUTTON_HEIGHT);
contentPane.add(clearButton);

//register this frame as an action listener of the two buttons
clearButton.addActionListener(this);
addButton.addActionListener(this);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}

public void actionPerformed(ActionEvent event) {

if (event.getSource() instanceof JButton) {
JButton clickedButton = (JButton) event.getSource();

if (clickedButton == addButton) {
addText(inputLine.getText());

} else {
clearText();

}

} else { //the event source is inputLine
addText(inputLine.getText());

}
}

private void addText(String newline) {
textArea.append(newline + NEWLINE);
inputLine.setText("");

}

private void clearText() {
textArea.setText(EMPTY_STRING);
inputLine.setText(EMPTY_STRING);

}
}

wu23399_ch14.qxd 12/28/06 13:54 Page 796

Using a JScrollPane to Add Scroll Bars Automatically
When we run the Ch14TextFrame3 class and add more rows (lines) of text than
the number of rows set by calling the setRows method, what happens? The height
of the text area gets taller. Likewise, the text area expands horizontally when
we enter a line longer than the specified width. This is not a desired behavior. The
easiest way to handle the situation is to wrap the text area with an instance of
javax.swing.JScrollPane that adds the vertical and horizontal scroll bars when
necessary.

In the original Ch14TextFrame3 class, this is what we did to create and set the
JTextArea object:

textArea = new JTextArea();
textArea.setColumns(22);
textArea.setRows(8);
textArea.setBorder(

BorderFactory.createLineBorder(Color.RED));
textArea.setEditable(false);
contentPane.add(textArea);

To add scroll bars that will appear automatically when needed, we replace the code
with the following:

textArea = new JTextArea();
textArea.setColumns(22);
textArea.setRows(8);
textArea.setEditable(false);
JScrollPane scrollText= new JScrollPane(textArea);
scrollText.setSize(200, 135);
scrollText.setBorder(

BorderFactory.createLineBorder(Color.RED));
contentPane.add(scrollText);

Notice that the properties, such as the border and bounds, of the JScrollPane object
are set, no longer the properties of the JTextArea. Figure 14.11 shows a sample
Ch14TextFrame3 object when the JScrollPane class is used.

14.4 Text-Related GUI Components 797

JScrollPane

The scroll pane
“wraps around”

the text area.

Figure 14.11 A sample Ch14TextFrame3 window when the JScrollPane GUI object is used.

wu23399_ch14.qxd 12/28/06 13:54 Page 797

14.5 Layout Managers
We showed only a very simplistic use of FlowLayout manager in Section 14.3. In this
section, we will explain the use of layout managers in greater detail by discussing
three commonly used layout managers. In addition, we will describe absolute posi-
tioning at the end of the section.

798 Chapter 14 GUI and Event-Driven Programming

1. What is the purpose of the instanceof operator?

2. What user action will result in a JTextField object generating an action event?

3. Does a JLabel object generate an event?

4. What is the difference between textArea.setText (“Hello”) and
textArea.append (“Hello”)?

A benefit of using a layout manager is the automatic adjustment of GUI objects
when their container (frame, dialog, applet, etc.) is resized. For example, if we place
a JButton at the center of the container by using some layout manager, then this
JButton will still be positioned at the center when the size of the container is
changed. This automatic adjustment is important also when we consider running
our program on different platforms, because by using a layout manager effectively
we will get a more consistent look to our frames and dialogs across different plat-
forms. With absolute positioning, a frame that looks nice on one platform may not
appear as nice on another platform.

The most basic layout is java.awt.FlowLayout. In using this layout, GUI com-
ponents are placed in left-to-right order. When the component does not fit on the same
line, left-to-right placement continues on the next line. As a default, components on
each line are centered. When the frame containing the component is resized, the
placement of components is adjusted accordingly. Figure 14.12 shows the placement
of five buttons by using FlowLayout.

Before we add any components, first we assign the desired layout manager to
the container, in this case the content pane of a frame, in the frame’s constructor.

Container contentPane = getContentPane();
...
contentPane.setLayout(new FlowLayout());

A container has a default layout manager assigned to it, but it is always safer to ex-
plicitly assign the desired layout manager ourselves. After the layout manager is set,
we create five buttons and add them to the content pane.

JButton button1, button2, button3, button4, button5;
...

FlowLayout

wu23399_ch14.qxd 12/28/06 13:54 Page 798

button1 = new JButton("button1");
//do the same for other buttons

contentPane.add(button1);
contentPane.add(button2);
//and so forth

Notice the default is center alignment. We can change it to left or right align-
ment as

contentPane.setLayout(new FlowLayout(FlowLayout.LEFT));

or

contentPane.setLayout(new FlowLayout(FlowLayout.RIGHT));

Here’s the complete sample code:

14.5 Layout Managers 799

Center alignment is used
as a default. It can be
set to a different align-
ment at the time a FlowLayout
is created.

When the frame first appears on the screen.

After the frame's width is widened and shortened.

Figure 14.12 Placement of five buttons by using FlowLayout when the frame is first opened and after the
frame is resized.

/*
Chapter 14 Sample Program: Illustrates the use of FlowLayout

File: Ch14FlowLayoutSample.java
*/

wu23399_ch14.qxd 12/28/06 13:54 Page 799

800 Chapter 14 GUI and Event-Driven Programming

import javax.swing.*;
import java.awt.*;

class Ch14FlowLayoutSample extends JFrame {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

//----------------------------------
// Main method
//----------------------------------

public static void main(String[] args) {
Ch14FlowLayoutSample frame = new Ch14FlowLayoutSample();
frame.setVisible(true);

}

public Ch14FlowLayoutSample() {
Container contentPane;
JButton button1, button2, button3, button4, button5;

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setTitle ("Program Ch14FlowLayoutSample");
setLocation(FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

contentPane = getContentPane();
contentPane.setBackground(Color.WHITE);
contentPane.setLayout(new FlowLayout());

//create and place four buttons on the content pane
button1 = new JButton("button 1");
button2 = new JButton("button 2");
button3 = new JButton("button 3");
button4 = new JButton("button 4");
button5 = new JButton("button 5");

contentPane.add(button1);
contentPane.add(button2);
contentPane.add(button3);
contentPane.add(button4);
contentPane.add(button5);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}
}

wu23399_ch14.qxd 12/28/06 13:54 Page 800

The second layout manager is java.awt.BorderLayout. This layout manager di-
vides the container into five regions: center, north, south, east, and west. Figure 14.13
shows five buttons placed in these five regions. The right frame in the figure is the state
after it is resized. The north and south regions expand or shrink in height only, the east
and west regions expand or shrink in width only, and the center region expands or
shrinks on both height and width. Not all regions have to be occupied. Figure 14.14
shows the frame with only the center and east regions occupied with buttons.

We set the BorderLayout analogously as

contentPane.setLayout(new BorderLayout());

and then we place the GUI components, in this case, buttons, with the second argu-
ment specifying the region.

contentPane.add(button1, BorderLayout.NORTH);
contentPane.add(button2, BorderLayout.SOUTH);
contentPane.add(button3, BorderLayout.EAST);
contentPane.add(button4, BorderLayout.WEST);
contentPane.add(button5, BorderLayout.CENTER);

The BorderLayout used in Figures 14.13 and 14.14 has no gaps between the
regions, which is the default. We can specify the amount of vertical and horizontal
gaps between the regions in pixels. For example, to leave 10-pixel-wide gaps and
20-pixel-high gaps between the regions, we create a BorderLayout object by pass-
ing these values as arguments to the constructor.

contentPane.setLayout(new BorderLayout(10, 20));

14.5 Layout Managers 801

north

centerwest east

south

When the frame first
appears on the screen.

After the frame is resized.

Figure 14.13 Placement of five buttons by using BorderLayout when the frame is first opened and after the
frame is resized.

BorderLayout

wu23399_ch14.qxd 12/28/06 13:54 Page 801

Here’s the complete sample program:

802 Chapter 14 GUI and Event-Driven Programming

/*
Chapter 14 Sample Program: Illustrates the use of BorderLayout

File: Ch14BorderLayoutSample.java
*/

import javax.swing.*;
import java.awt.*;

class Ch14BorderLayoutSample extends JFrame {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

//---------------------------------
// Main method
//---------------------------------

public static void main(String[] args) {
Ch14BorderLayoutSample frame = new Ch14BorderLayoutSample();
frame.setVisible(true);

}

public Ch14BorderLayoutSample() {
Container contentPane;
JButton button1, button2, button3, button4, button5;

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setTitle ("Program Ch14BorderLayoutSample");
setLocation(FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

Figure 14.14 Placement of two buttons by using BorderLayout. Buttons are placed on the center and
east regions.

wu23399_ch14.qxd 12/28/06 13:54 Page 802

The third layout manager is java.awt.GridLayout. This layout manager places
GUI components on equal-size N � M grids. Figure 14.15 shows five buttons placed
on 2 � 3 grids. Components are placed in top-to-bottom, left-to-right order. The
frame on the right in Figure 14.15 is the state after it is resized. Notice the number of
rows and columns remains the same, but the width and height of each region are
changed.

To create a GridLayout object, we pass two arguments: number of rows and
number of columns.

contentPane.setLayout(new GridLayout(2, 3));

We then place GUI components in the manner analogous to the one used for
FlowLayout. If the value provided for the number of rows is nonzero, then the value
we specify for the number of columns is actually irrelevant. The layout will create
the designated number of rows and adjust the number of columns so that all com-
ponents will fit in the designated number of rows. For example, placing the five but-
tons with any one of the following three statements will result in the same layout,
namely, two rows of grids:

contentPane.setLayout(new GridLayout(2, 0));
contentPane.setLayout(new GridLayout(2, 1));
contentPane.setLayout(new GridLayout(2, 5));

14.5 Layout Managers 803

contentPane = getContentPane();
contentPane.setBackground(Color.WHITE);
contentPane.setLayout(new BorderLayout());

//contentPane.setLayout(new BorderLayout(/*hgap*/10, /*vgap*/10));

//create and place four buttons on the content pane
button1 = new JButton("button 1");
button2 = new JButton("button 2");
button3 = new JButton("button 3");
button4 = new JButton("button 4");
button5 = new JButton("button 5");

contentPane.add(button1, BorderLayout.NORTH);
contentPane.add(button2, BorderLayout.SOUTH);
contentPane.add(button3, BorderLayout.EAST);
contentPane.add(button4, BorderLayout.WEST);
contentPane.add(button5, BorderLayout.CENTER);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}
}

GridLayout

wu23399_ch14.qxd 12/28/06 13:54 Page 803

Here’s the complete program listing for Ch14GridLayoutSample:

804 Chapter 14 GUI and Event-Driven Programming

When the frame first
appears on the screen.

After the frame is resized.

Figure 14.15 Placement of five buttons by using GridLayout of two rows and three columns when the
frame is first opened and after the frame is resized.

/*
Chapter 14 Sample Program: Illustrates the use of GridLayout

File: Ch14GridLayoutSample.java
*/

import javax.swing.*;
import java.awt.*;

class Ch14GridLayoutSample extends JFrame {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

//---------------------------------
// Main method
//---------------------------------

public static void main(String[] args) {
Ch14GridLayoutSample frame = new Ch14GridLayoutSample();
frame.setVisible(true);

}

wu23399_ch14.qxd 12/28/06 13:54 Page 804

It is possible not to use any layout manager. If we do not use one, then we
place GUI objects on the frame’s content pane by explicitly specifying their posi-
tion and size. We call this approach absolute positioning. Although layout managers
are very useful in practical applications, knowing various layout managers is not
indispensable for learning object-oriented and event-driven programming. So using
absolute positioning is acceptable while learning object-oriented and event-driven
programming. Keep in mind, however, that to build practical GUI-based Java pro-
grams, we must learn how to use layout managers effectively.

To use absolute positioning, we set the layout manager of a frame’s content
pane to none by passing null to the setLayout method:

contentPane.setLayout(null);

After the layout manager is set to null, we place two buttons at the position and in
the size we want by calling the button’s setBounds method as in

okButton.setBounds(75, 125, 80, 30);

14.5 Layout Managers 805

public Ch14GridLayoutSample() {
Container contentPane;
JButton button1, button2, button3, button4, button5;

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setTitle ("Program Ch14GridLayoutSample");
setLocation(FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

contentPane = getContentPane();
contentPane.setBackground(Color.WHITE);
contentPane.setLayout(new GridLayout(2,3));

//create and place four buttons on the content pane
button1 = new JButton("button 1");
button2 = new JButton("button 2");
button3 = new JButton("button 3");
button4 = new JButton("button 4");
button5 = new JButton("button 5");

contentPane.add(button1);
contentPane.add(button2);
contentPane.add(button3);
contentPane.add(button4);
contentPane.add(button5);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}
}

absolute
positioning

wu23399_ch14.qxd 12/28/06 13:54 Page 805

where the first two arguments specify the position of the button and the last two
arguments specify the width and height of the button. Finally, to make a button ap-
pear on the frame, we need to add it to the content pane by calling the add method.
For example, to add okButton, we call

contentPane.add(okButton);

Figure 14.16 illustrates the process.
Here’s the program listing for Ch14AbsolutePositioning:

806 Chapter 14 GUI and Event-Driven Programming

30

80

70

125

(70,125)

Container contentPane = getContentPane();
JButton okButton = new JButton("OK");

contentPane.setLayout(null);
okButton.setBounds(70, 125, 80, 30);

contentPane.add(okButton);

Figure 14.16 This diagram illustrates the process of creating a button and placing it on a frame.

/*
Chapter 14 Sample Program: Shows how the absolute position works

File: Ch14AbsolutePositioning.java
*/

import javax.swing.*;
import java.awt.*;

class Ch14AbsolutePositioning extends JFrame {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 220;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

wu23399_ch14.qxd 12/28/06 13:54 Page 806

14.5 Layout Managers 807

private static final int BUTTON_WIDTH = 80;
private static final int BUTTON_HEIGHT = 30;

private JButton cancelButton;
private JButton okButton;

//---------------------------------
// Main method
//---------------------------------

public static void main(String[] args) {
Ch14AbsolutePositioning frame = new Ch14AbsolutePositioning();
frame.setVisible(true);

}

public Ch14AbsolutePositioning() {

Container contentPane = getContentPane();

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setResizable(false);
setTitle ("Program Ch14AbsolutePositioning");
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

//set the content pane properties
contentPane.setLayout(null);
contentPane.setBackground(Color.WHITE);

//create and place two buttons on the frame's content pane
okButton = new JButton("OK");
okButton.setBounds(70, 125, BUTTON_WIDTH, BUTTON_HEIGHT);
contentPane.add(okButton);

cancelButton = new JButton("CANCEL");
cancelButton.setBounds(160, 125, BUTTON_WIDTH, BUTTON_HEIGHT);
contentPane.add(cancelButton);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}
}

1. How does the flow layout place the components?

2. Which layout manager divides the container into grids of equal size?

3. Write a statement to create a border layout with 20-pixel gaps in both
horizontal and vertical directions.

wu23399_ch14.qxd 12/28/06 13:54 Page 807

14.6 Effective Use of Nested Panels
In this section, we will discuss how to nest panels effectively to get a desired layout
of GUI components. It is possible, but very difficult, to place all GUI components
on a single JPanel or other types of containers. A better approach is to use multiple
panels, placing panels inside other panels. To illustrate this technique, we will
create two sample frames that contain nested panels. The first sample, shown in
Figure 14.17, provides the user interface for playing Tic Tac Toe. And the second
sample, shown in Figure 14.18, provides the user interface for playing HiLo. Note
that we only illustrate the visual layout using nested panels. The sample frames do
not include any code for actually playing the games.

The frame shown in Figure 14.17 has four panels. The topmost JPanel, the
content pane of the frame, has a border layout. The content pane’s center region is

808 Chapter 14 GUI and Event-Driven Programming

Figure 14.17 A sample frame that contains nested panels. Four JPanel objects are used in this frame.

Figure 14.18 Another sample frame that contains nested panels. Five JPanel objects are used in this frame.

wu23399_ch14.qxd 12/28/06 13:54 Page 808

occupied by an instance of Ch14TicTacToePanel named gamePanel. Ch14TicTac-
ToePanel is itself a nested panel. We will design and implement this panel at the end
of this section. The content pane’s east region is occupied by an instance of another
JPanel named controlPanel. A border layout is used for this panel. The north region
of controlPanel is occupied by another JPanel named scorePanel, and the south re-
gion is occupied by a JButton. The layout for scorePanel is set to a grid layout with
four grids, each occupied by a JLabel object. The nesting relationship is shown in
Figure 14.19.

When we nest panels, it is often very useful to mark their borders. In this sam-
ple frame, we use a titled border for scorePanel and a lowered bevel border for
gamePanel. A titled border draws a rectangle around the panel and displays a desig-
nated title. We create a titled border by calling the class method createTitledBorder
of the BorderFactory class and assign to a panel by calling the setBorder method.
Here’s the statement:

scorePanel.setBorder(
BorderFactory.createTitledBorder("Scores:"));

A lowered bevel border gives an illusion of the panel being recessed into the
frame. Here’s the statement to create and set the lowered bevel border to gamePanel:

gamePanel.setBorder (
BorderFactory.createLoweredBevelBorder());

14.6 Effective Use of Nested Panels 809

gamePanel controlPanel

scorePanel NORTH

contentPane

SOUTH

EASTCENTER

Figure 14.19 This diagram shows how the panels of the frame in Figure 14.17 are nested. There are
four JPanel objects. We associate a border layout to both contentPane and controlPanel and a grid layout
to scorePanel. The gamePanel is a specialized JPanel (it’s a subclass of JPanel) that uses a grid layout.

wu23399_ch14.qxd 12/28/06 13:54 Page 809

810 Chapter 14 GUI and Event-Driven Programming

/*
Chapter 14 Sample Program: Illustrates the use of

nested panels

File: Ch14NestedPanels1.java
*/

import javax.swing.*;
import java.awt.*;

class Ch14NestedPanels1 extends JFrame {

private static final int FRAME_WIDTH = 500;
private static final int FRAME_HEIGHT = 350;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

public static void main(String[] args) {
Ch14NestedPanels1 frame = new Ch14NestedPanels1();
frame.setVisible(true);

}

public Ch14NestedPanels1() {
Container contentPane;
Ch14TicTacToePanel gamePanel;
JPanel controlPanel;
JPanel scorePanel;

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setTitle ("Program Ch14NestedPanels1");
setLocation(FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

contentPane = getContentPane();
contentPane.setLayout(new BorderLayout(10, 0));

gamePanel = new Ch14TicTacToePanel();
gamePanel.setBorder(BorderFactory.createLoweredBevelBorder());
controlPanel = new JPanel();
controlPanel.setLayout(new BorderLayout());

contentPane.add(gamePanel, BorderLayout.CENTER);
contentPane.add(controlPanel, BorderLayout.EAST);

scorePanel = new JPanel();
scorePanel.setBorder(BorderFactory.createTitledBorder("Scores:"));

Additional types of borders, such as line border, matte border, and raised bevel bor-
der, are available. For more information, please consult the documentation for the
BorderFactory class.

Here’s the complete listing of the program:

wu23399_ch14.qxd 12/28/06 13:54 Page 810

Remember that this class illustrates only the visual aspect of the program.
There is no code for handling events or actually playing the game.

Now let’s move on to the second sample frame. For this frame, we will use
nested panels shown in Figure 14.20. Notice the panel that has a BorderLayout. This
panel seems extra, but without it, the buttons will appear away from the bottom,
closer to the response label. We feel it is more appealing visually when the buttons
are placed at the bottom.

14.6 Effective Use of Nested Panels 811

scorePanel.setLayout(new GridLayout(2, 2));
scorePanel.add(new JLabel("Player 1:"));
scorePanel.add(new JLabel(" 0"));
scorePanel.add(new JLabel("Player 2:"));
scorePanel.add(new JLabel(" 0"));

controlPanel.add(scorePanel,BorderLayout.NORTH);
controlPanel.add(new JButton("New Game"), BorderLayout.SOUTH);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}
}

GridLayout

HiLoDisplay

60 is Hi

FlowLayout

FlowLayout

BorderLayout

FlowLayoutEnter Cancel

We use BorderLayout
here so the buttons
appear at the bottom
of the panel.

Figure 14.20 The nested panels and associated layout managers for HiLoDisplay.

wu23399_ch14.qxd 12/28/06 13:54 Page 811

Here’s the Ch14NestedPanels2 class:

812 Chapter 14 GUI and Event-Driven Programming

/*
Chapter 14 Sample Program: Illustration of Nested Panels

File: Ch14NestedPanels2.java
*/

import javax.swing.*;
import java.awt.*;

class Ch14NestedPanels2 extends JFrame {

private static final int FRAME_WIDTH = 250;
private static final int FRAME_HEIGHT = 270;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

private final String ENTER = "Enter";
private final String CANCEL = "Cancel";
private final String BLANK = "";

private JTextField guessEntry;
private JLabel hint;

public static void main(String[] args) {
Ch14NestedPanels2 frame = new Ch14NestedPanels2();
frame.setVisible(true);

}

public Ch14NestedPanels2() {
JPanel guessPanel, hintPanel,

controlPanel, buttonPanel;

JButton enterBtn, cancelBtn;

Container contentPane;

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setTitle ("Program Ch14NestedPanels2");
setLocation(FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

contentPane = getContentPane();

contentPane.setLayout(new GridLayout(3, 1));

guessPanel = new JPanel();
guessPanel.setBorder(BorderFactory.createTitledBorder(

"Your Guess"));
guessPanel.add(guessEntry = new JTextField(10));

wu23399_ch14.qxd 12/28/06 13:54 Page 812

Tic Tac Toe Panel
As promised, let’s design and implement a panel specialized in displaying the Tic
Tac Toe board of N � N � N2 cells (default is 3 � 3 � 9 cells). Figure 14.17 shows
this Tic Tac Toe panel placed on a frame. The panel handles the mouse click events,
so every time the player clicks on the cell, the circle or cross is displayed. However,
this code for handling mouse click events is only for demonstration. There’s no
logic of actually playing the game of Tic Tac Toe. For instance, when we click on
the cell that already has a cross or circle, a new mark replaces the current one. In the
real game, this should not happen. The demonstration code simply alternates be-
tween the cross and circle. When we click the panel for the first time, the circle is
placed, then the cross, then the circle, and so forth.

How shall we implement this panel? There are two approaches. The first ap-
proach is to compute the origin point—the top left corner—of each cell based on
the dimension of the panel and the number of cells in the panel. When we know the
origin point of a cell, then we can draw a circle or cross by using the drawLine and
drawOval methods. Figure 14.21 illustrates how this is done. When a cell is
clicked, we get the x and y coordinates of the mouse click location and determine
in which cell the mouse click event has occurred. Once we know the cell, we use
its origin point to draw a circle or cross at the correct position and size. This
approach requires a fair amount of coding to determine the cell and the correct
position to draw lines and circles. We can avoid all these computations by using the
second approach.

The second approach, the one which we will adopt here, uses the nested pan-
els. We will define two classes—Ch14TicTacToePanel and Ch14TicTacToeCell—both
subclasses of JPanel. An instance of Ch14TicTacToePanel will contain N2 instances
of Ch14TicTacToeCell, each instance representing a single cell in the Tic Tac Toe
board. A Ch14TicTacToeCell object contains one component, namely, an instance of
JLabel. Instead of a text, we assign an image icon to this JLabel object. We have
three image files: the first one for the circle, the second for the cross, and the last one

14.6 Effective Use of Nested Panels 813

hintPanel = new JPanel();
hintPanel.setBorder(BorderFactory.createTitledBorder("Hint"));
hintPanel.add(hint = new JLabel("Let's Play HiLo"));

controlPanel = new JPanel(new BorderLayout());
buttonPanel = new JPanel();
buttonPanel.add(enterBtn = new JButton(ENTER));
buttonPanel.add(cancelBtn = new JButton(CANCEL));
controlPanel.add(buttonPanel, BorderLayout.SOUTH);

contentPane.add(guessPanel);
contentPane.add(hintPanel);
contentPane.add(controlPanel);

}
}

wu23399_ch14.qxd 12/28/06 13:54 Page 813

for a blank cell. These files are named circle.gif, cross.gif, and blank.gif, respec-
tively. All three images have a transparent background so the background color
of the Ch14TicTacToeCell will be visible. Notice that these image files must be put
in the same folder as the class files Ch14TicTacToePanel.class and Ch14TicTac-
ToeCell.class. Initially, all cells are assigned the blank.gif image. And we set a line
border for each cell so the boundary lines are visible. Without such boundary lines,
we wouldn’t be able to tell how many cells the board had and where each cell began
and ended. When a cell is clicked, Ch14TicTacToePanel will set it to a cross or a circle
by calling the cell’s setContent method.

The class includes one data member called location, a Point object, to record
the cell’s position on the Tic Tac Toe board. This information is not used in this sam-
ple. We need to process the location information when we develop the complete Tic
Tac Toe playing program.

Here’s the complete listing of the Ch14TicTacToeCell class:

814 Chapter 14 GUI and Event-Driven Programming

(2W�3,0)

(0,2H�3)

(W�3,0)

W�3

H

(0,0)

(0,H�3) (2W�3,H�3)

(W�3,2H�3)

W

H�3

How the origin point for each cell
is computed.

How a circle (an oval if W != H) is
drawn in a cell.

Cw�2

Cw � W�3

Ch�2 Ch � H�3

(Cx,Cy) [for example (Cx,Cy) � (2W�3, 2H�3)]

g.drawOval(Cx � Cw�4, Cy � Ch�4, Cw�2, Ch�2);

Figure 14.21 The approach not adopted here. This approach is left as Exercise 14. The panel is divided
into equal-size cells. A circle or cross can be drawn by using the drawOval or drawLine method at the
position slightly offset from the origin point of the cell.

/*
Chapter 14 Sample Program: Tic Tac Toe

File: Ch14TicTacToeCell.java
*/

import java.awt.*;
import javax.swing.*;

public class Ch14TicTacToeCell extends JPanel {

public static enum Image {BLANK,CIRCLE,CROSS}

wu23399_ch14.qxd 12/28/06 13:54 Page 814

The main tasks for the Ch14TicTacToePanel to handle are the layout of N2

Ch14TicTacToeCell objects and the mouse click events. Since the board is divided
into equal-size cells, the grid layout is the perfect layout manager to use here. By
using the grid layout manager, the images will stay at the center of the cells even
when the panel is resized.

14.6 Effective Use of Nested Panels 815

private static final String CROSS_IMAGE_FILE = "cross.gif";
private static final String CIRCLE_IMAGE_FILE = "circle.gif";
private static final String BLANK_IMAGE_FILE = "blank.gif";

private JLabel content;
private Point location;

public Ch14TicTacToeCell() {
this(null);

}

public Ch14TicTacToeCell(Point pt) {

ImageIcon initImage = new ImageIcon("blank.gif");

setLayout(new BorderLayout());
setBackground(Color.white);
setBorder(BorderFactory.createLineBorder(Color.BLACK));

content = new JLabel(initImage);
add(content);

location = pt;
}

public Point getPosition() {
return location;

}

public void setContent(Image image) {

switch (image) {

case CIRCLE: content.setIcon(new ImageIcon(CIRCLE_IMAGE_FILE));
break;

case CROSS: content.setIcon(new ImageIcon(CROSS_IMAGE_FILE));
break;

default: //do nothing
break;

}
}

}

wu23399_ch14.qxd 12/28/06 13:54 Page 815

Each cell is the source of mouse events, and the container of these cells, that
is, an instance of Ch14TicTacToePanel, is designated as the listener of the mouse
events. Again, the event-handling code for this class is temporary. We will set an
image of a circle or a cross to the clicked cell. There’s no logic here to actually play
the game, for example, to determine the winner. The code for the actual game-
playing logic is available from www.drcaffeine.com. Here’s the complete listing of
the Ch14TicTacToePanel class:

816 Chapter 14 GUI and Event-Driven Programming

/*
Chapter 14 Sample Program: Tic Tac Toe Board

File: Ch14TicTacToePanel.java
*/

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

public class Ch14TicTacToePanel extends JPanel implements MouseListener {

private boolean circle;

public Ch14TicTacToePanel() {
this(3);

}

public Ch14TicTacToePanel(int size) {

Ch14TicTacToeCell cell;

setLayout(new GridLayout(size, size));

for (int row = 0; row < size; row++) {
for (int col = 0; col < size; col++) {

cell = new Ch14TicTacToeCell();

cell.addMouseListener(this);
add(cell);

}
}

circle = true;
}

public void mouseClicked(MouseEvent event) {

Ch14TicTacToeCell cell = (Ch14TicTacToeCell) event.getSource();

if (circle) {
cell.setContent(Ch14TicTacToeCell.Image.CIRCLE);

} else {
cell.setContent(Ch14TicTacToeCell.Image.CROSS);

}

wu23399_ch14.qxd 12/28/06 13:54 Page 816

http://www.drcaffeine.com

14.7 Other GUI Components
We will introduce other useful Swing components in this section. Please keep in
mind that we limit the discussion to the most basic use of these components. They
are actually far more capable than what we present here. However, the materials
presented in this section should be enough to let you use them in most common sit-
uations and should serve as a good starting point from which you can explore more
advanced uses of these components on your own.

JCheckBox
The JButton class represents a type of button called a pushbutton. Two other com-
mon types of buttons are called check-box and radio buttons. We will explain the
check-box buttons in this subsection and the radio buttons in the next subsection.

The JCheckBox class is used to represent check-box buttons. Figure 14.22
shows a frame with four check-box buttons and one pushbutton. Check-box buttons
are useful in presenting a collection of binary (yes/no, true/false) options. The frame
shown in Figure 14.22 gives the user the option to select the programming lan-
guages he or she can program with by clicking on the appropriate check-box button.

We deal with the JCheckBox class in a manner very similar to that for the
JButton class. To create a check-box button with a text Java, we write

JCheckBox cbBtn = new JCheckBox("Java");

14.7 Other GUI Components 817

circle = !circle;
}

public void mouseEntered (MouseEvent event) { }
public void mouseExited (MouseEvent event) { }
public void mousePressed (MouseEvent event) { }
public void mouseReleased(MouseEvent event) { }

}

The state when the frame first appeared
on the screen.

The state after the two check-box buttons
are clicked.

Figure 14.22 A frame with four check-box buttons and one pushbutton.

wu23399_ch14.qxd 12/28/06 13:54 Page 817

To check if a check-box button is selected (i.e., has a check mark) or deselected, we
call its isSelected method. For example,

if (cbBtn.isSelected()) {
System.out.println("You can program in"

+ cbBtn.getText());

} else {
System.out.println("You cannot program in "

+ cbBtn.getText ());
}

Just as with a pushbutton, we can retrieve the text associated to a check-box button
by calling its getText method. We can use the corresponding setText method to
change the button text.

The following Ch14JCheckBoxSample1 class displays the frame shown in
Figure 14.22. When the OK pushbutton is clicked, we respond by opening a mes-
sage dialog with a list of selected programming languages. In the program, notice
the use of an array of string btnText in creating an array of JCheckBox buttons. We
can easily list any number of names by simply including all names when btnText is
initialized, for example,

String[] btnText = {"Java", "C++", "Smalltalk", "Ada",
"COBOL", "Algol", "Pascal", "BASIC"};

There’s no need to modify the program code. The ease of achieving this generality
is a direct benefit of using panels and layout managers instead of absolute position-
ing. (You still can do it, but it would be a lot more tedious work to code the same
capability with absolute positioning.)

Here’s the class:

818 Chapter 14 GUI and Event-Driven Programming

/*
Chapter 14 Sample Program: Illustrates the use of JCheckBox

File: Ch14JCheckBoxSample1.java
*/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class Ch14JCheckBoxSample1 extends JFrame implements ActionListener {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

wu23399_ch14.qxd 12/28/06 13:54 Page 818

14.7 Other GUI Components 819

private JCheckBox[] checkBox;

public static void main(String[] args) {
Ch14JCheckBoxSample1 frame = new Ch14JCheckBoxSample1();
frame.setVisible(true);

}

public Ch14JCheckBoxSample1() {
Container contentPane;
JPanel checkPanel, okPanel;

JButton okButton;
String[] btnText = {"Java", "C++", "Smalltalk", "Ada"};

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setTitle ("Program Ch14JCheckBoxSample1");
setLocation(FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

contentPane = getContentPane();
contentPane.setBackground(Color.WHITE);
contentPane.setLayout(new BorderLayout());

//create and place four check boxes
checkPanel = new JPanel(new GridLayout(0,1));
checkPanel.setBorder(BorderFactory.createTitledBorder(

"Can Program In"));
checkBox = new JCheckBox[btnText.length];

for (int i = 0; i < checkBox.length; i++) {
checkBox[i] = new JCheckBox(btnText[i]);
checkPanel.add(checkBox[i]);

}

//create and place the OK button
okPanel = new JPanel(new FlowLayout());
okButton = new JButton("OK");
okButton.addActionListener(this);
okPanel.add(okButton);

contentPane.add(checkPanel, BorderLayout.CENTER);
contentPane.add(okPanel, BorderLayout.SOUTH);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}

public void actionPerformed(ActionEvent event) {

StringBuffer skill = new StringBuffer("You can program in\n");
for (int i = 0; i < checkBox.length; i++) {

wu23399_ch14.qxd 12/28/06 13:54 Page 819

Although we did not process them in the Ch14JCheckBoxSample1 program, a
JCheckBox object generates action events just as any other buttons do. So we can as-
sociate an action listener to JCheckBox objects, but it is not that common to process
action events generated by JCheckBox objects. In addition, a JCheckBox object gen-
erates another type of event called item events. An item event is generated when the
state (selected or deselected) of a check-box button changes. We can register an in-
stance of a class that implements the ItemListener interface as an item listener of a
JCheckBox object. When an item event is generated, its itemStateChanged method
is called. Inside the method, we can check the state of change by calling the get-
StateChange method. Here’s a sample itemStateChanged method:

public void itemStateChanged(ItemEvent event) {

if (event.getStateChange() == ItemEvent.SELECTED) {
System.out.println("You checked the box");

} else {
System.out.println("You unchecked the box");

}
}

Here’s the Ch14JCheckBoxSample2 class that adds the item event handling
to the Ch14JCheckBoxSample1 class:

820 Chapter 14 GUI and Event-Driven Programming

if (checkBox[i].isSelected()) {
skill.append(checkBox[i].getText() + "\n ");

}
}

JOptionPane.showMessageDialog(this, skill.toString());
}

}

item events

/*
Chapter 14 Sample Program: Illustrates the use of JCheckBox

File: Ch14JCheckBoxSample2.java
*/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class Ch14JCheckBoxSample2 extends JFrame
implements ActionListener,

ItemListener {

wu23399_ch14.qxd 12/28/06 13:54 Page 820

14.7 Other GUI Components 821

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

private JCheckBox[] checkBox;

public static void main(String[] args) {
Ch14JCheckBoxSample2 frame = new Ch14JCheckBoxSample2();
frame.setVisible(true);

}

public Ch14JCheckBoxSample2() {
Container contentPane;
JPanel checkPanel, okPanel;

JButton okButton;
String[] btnText = {"Java", "C++", "Smalltalk", "Ada"};

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setTitle ("Program Ch14JCheckBoxSample2");
setLocation(FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

contentPane = getContentPane();
contentPane.setBackground(Color.WHITE);
contentPane.setLayout(new BorderLayout());

//create and place four check boxes
checkPanel = new JPanel(new GridLayout(0,1));
checkPanel.setBorder(BorderFactory.createTitledBorder(

"Can Program In"));

checkBox = new JCheckBox[btnText.length];

for (int i = 0; i < checkBox.length; i++) {
checkBox[i] = new JCheckBox(btnText[i]);
checkPanel.add(checkBox[i]);

checkBox[i].addItemListener(this);
}

//create and place the OK button
okPanel = new JPanel(new FlowLayout());
okButton = new JButton("OK");
okButton.addActionListener(this);
okPanel.add(okButton);

contentPane.add(checkPanel, BorderLayout.CENTER);
contentPane.add(okPanel, BorderLayout.SOUTH);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}

wu23399_ch14.qxd 12/28/06 13:54 Page 821

JRadioButton
The JRadioButton class is used to represent a type of button called a radio button.
Similar to a check-box button, you can select or deselect a radio button. But unlike
with a check-box button, you can only select one of the radio buttons that belong to
the same group. Figure 14.23 shows a frame with four radio buttons and one push-
button. We can select exactly one of the four radio buttons at a time because they be-
long to the same group. When we select a new one, then the currently selected radio
button will get deselected. Radio buttons are useful in allowing the user to select
one from a list of possible choices. The sample frame in Figure 14.23 allows the
user to select the favorite programming language.

We can use the JRadioButton class in almost an identical manner as that for
the JCheckBox class. Like JCheckBox, JRadioButton generates both action events
and item events. The key difference is the requirement to add JRadioButton objects
to a button group, in addition to adding them to a container. Notice that the addition
of radio buttons to a group is a logical operation (only one radio button in a group
can be selected at a time), and the addition of radio buttons to a container is a visual

822 Chapter 14 GUI and Event-Driven Programming

public void actionPerformed(ActionEvent event) {

StringBuffer skill = new StringBuffer("You can program in\n");

for (int i = 0; i < checkBox.length; i++) {

if (checkBox[i].isSelected()) {
skill.append(checkBox[i].getText() + "\n ");

}
}

JOptionPane.showMessageDialog(this, skill.toString());
}

public void itemStateChanged(ItemEvent event) {

JCheckBox source = (JCheckBox) event.getSource();

String state;

if (event.getStateChange() == ItemEvent.SELECTED) {
state = "is selected";

} else {
state = "is deselected";

}

JOptionPane.showMessageDialog(this, "JCheckBox '" +
source.getText() +
"' " + state);

}
}

wu23399_ch14.qxd 12/28/06 13:54 Page 822

layout operation. Here’s a portion that creates radio buttons and adds them to a
group (an instance of a ButtonGroup) and a container (an instance of a JPanel):

ButtonGroup languageGroup = new ButtonGroup();
JPanel radioPanel = new JPanel(...);

for (int i = 0; i < radioButton.length; i++) {
radioButton[i] = new JRadioButton(...);
...
languageGroup.add(radioButton[i]);
radioPanel.add(radioButton[i]);

}

(Three dots . . . represent a piece of actual code not directly relevant here.)
Here’s the Ch14JRadioButtonSample class:

14.7 Other GUI Components 823

The state when the frame first appeared
on the screen.

The state after the third radio button is clicked.
Previous selection gets deselected.

Figure 14.23 A frame with four radio buttons and one pushbutton.

/*
Chapter 14 Sample Program: Illustrates the use of JRadioButton

File: Ch14JRadioButtonSample.java
*/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class Ch14JRadioButtonSample extends JFrame
implements ActionListener,

ItemListener {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

wu23399_ch14.qxd 12/28/06 13:54 Page 823

824 Chapter 14 GUI and Event-Driven Programming

private JRadioButton[] radioButton;

public static void main(String[] args) {
Ch14JRadioButtonSample frame = new Ch14JRadioButtonSample();
frame.setVisible(true);

}

public Ch14JRadioButtonSample() {
Container contentPane;
JPanel radioPanel, okPanel;
ButtonGroup languageGroup;

JButton okButton;
String[] btnText = {"Java", "C++", "Smalltalk", "Ada"};

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setTitle ("Program Ch14JRadioButton");
setLocation(FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

contentPane = getContentPane();
contentPane.setBackground(Color.WHITE);
contentPane.setLayout(new BorderLayout());

//create and place four radio buttons
radioPanel = new JPanel(new GridLayout(0,1));
radioPanel.setBorder(BorderFactory.createTitledBorder(

"Pick your favorite"));

languageGroup = new ButtonGroup();
radioButton = new JRadioButton[btnText.length];

for (int i = 0; i < radioButton.length; i++) {
radioButton[i] = new JRadioButton(btnText[i]);
radioButton[i].addItemListener(this);
languageGroup.add(radioButton[i]);
radioPanel.add(radioButton[i]);

}

radioButton[0].setSelected(true); //selects the first choice

//create and place the OK button
okPanel = new JPanel(new FlowLayout());
okButton = new JButton("OK");
okButton.addActionListener(this);
okPanel.add(okButton);

contentPane.add(radioPanel, BorderLayout.CENTER);
contentPane.add(okPanel, BorderLayout.SOUTH);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}

wu23399_ch14.qxd 12/28/06 13:54 Page 824

Every time a radio button is selected, the itemStateChanged method is called
twice. The first time is for the deselection of the currently selected item, and the sec-
ond is for the selection of the new item. Also notice the statement

radioButton[0].setSelected(true);

in the constructor. If we don’t include this statement, then no item will be selected
when the frame is first opened. For radio buttons, it is more common to start with
one preselected when they first appear on the screen.

JComboBox
The JComboBox class presents a combo box. This class is similar to the JRadioButton
class in that it also allows the user to select one item from a list of possible choices. The

14.7 Other GUI Components 825

public void actionPerformed(ActionEvent event) {

String favorite = null;

int i = 0;
while (favorite == null) {

if (radioButton[i].isSelected()) {
favorite = radioButton[i].getText();

}

i++;
}

JOptionPane.showMessageDialog(this, "Your favorite language is "
+ favorite);

}

public void itemStateChanged(ItemEvent event) {

JRadioButton source = (JRadioButton) event.getSource();

String state;

if (event.getStateChange() == ItemEvent.SELECTED) {
state = "is selected";

} else {
state = "is deselected";

}

JOptionPane.showMessageDialog(this, "JRadioButton '" +
source.getText() +
"' " + state);

}
}

wu23399_ch14.qxd 12/28/06 13:54 Page 825

difference between the two lies in how the choices are presented to the user. Another
name for a combo box is a drop-down list, which is more descriptive of its interaction
style. Figure 14.24 shows a frame with one combo box and one pushbutton.

We can construct a new JComboBox by passing an array of String objects, for
example,

String[] comboBoxItem
= {"Java", "C++", "Smalltalk", "Ada"};

JComboBox comboBox = new JComboBox(comboBoxItem);

A JComboBox object generates both action events and item events. An action
event is generated every time a JComboBox is clicked (note it is not that common to
process action events of JComboBox). Every time an item different from the cur-
rently selected item is selected, an item event is generated and the itemState-
Changed method is called twice. The first time is for the deselection of the currently
selected item, and the second is for the selection of the new item. Notice that when
the same item is selected again, no item event is generated.

To find out the currently selected item, we call the getSelectedItem method of
JComboBox. Because the return type of this method is Object, we must typecast to
the correct type. For this example, items are String objects, so we write

String selection = (String) comboBox.getSelectedItem();

Also, we can call the getSelectedIndex method to retrieve the position of the se-
lected item. The first item in the list is at position 0.

Here’s the Ch14JComboBoxSample class:

826 Chapter 14 GUI and Event-Driven Programming

The state when the frame first appeared
on the screen.

The state after the items in the combo box
are revealed by clicking on the down arrow.

Figure 14.24 A frame with one combo box (drop-down list) and one pushbutton.

/*
Chapter 14 Sample Program: Illustrates the use of JComboBox

File: Ch14JComboBoxSample.java
*/

wu23399_ch14.qxd 12/28/06 13:54 Page 826

14.7 Other GUI Components 827

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class Ch14JComboBoxSample extends JFrame
implements ActionListener,

ItemListener {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

private JComboBox comboBox;

public static void main(String[] args) {
Ch14JComboBoxSample frame = new Ch14JComboBoxSample();
frame.setVisible(true);

}

public Ch14JComboBoxSample() {
Container contentPane;
JPanel comboPanel, okPanel;

JButton okButton;
String[] comboBoxItem = {"Java", "C++", "Smalltalk", "Ada"};

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setTitle ("Program Ch14JComboBoxSample");
setLocation(FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

contentPane = getContentPane();
contentPane.setBackground(Color.WHITE);
contentPane.setLayout(new BorderLayout());

//create and place a combo box
comboPanel = new JPanel(new FlowLayout());
comboPanel.setBorder(BorderFactory.createTitledBorder(

"Pick your favorite"));

comboBox = new JComboBox(comboBoxItem);
comboBox.addItemListener(this);
comboPanel.add(comboBox);

//create and place the OK button
okPanel = new JPanel(new FlowLayout());
okButton = new JButton("OK");
okButton.addActionListener(this);
okPanel.add(okButton);

contentPane.add(comboPanel, BorderLayout.CENTER);
contentPane.add(okPanel, BorderLayout.SOUTH);

wu23399_ch14.qxd 12/28/06 13:54 Page 827

JList
The JList class is useful when we need to display a list of items, for example, a list
of students, a list of files, and so forth. Figure 14.25 shows a frame with one JList
listing animals with three-letter names and one pushbutton.

We can construct a JList object in a manner identical to the way we construct
a JComboBox object, that is, by passing an array of String, such as

String[] names = {"Ape", "Bat", "Bee", "Cat",
"Dog", "Eel", "Fox", "Gnu",
"Hen", "Man", "Sow", "Yak"};

JList list = new JList (names);

With JList, we have an option of specifying one of the three selection modes:
single-selection, single-interval, and multiple-interval. The single-selection mode
allows the user to select only one item at a time. The single-interval mode allows the
user to select a single contiguous interval. And the multiple-interval mode allows

828 Chapter 14 GUI and Event-Driven Programming

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}

public void actionPerformed(ActionEvent event) {

String favorite;
int loc;

favorite = (String) comboBox.getSelectedItem();
loc = comboBox.getSelectedIndex();

JOptionPane.showMessageDialog(this, "Currently selected item '" +
favorite + "' is at index position " + loc);

}

public void itemStateChanged(ItemEvent event) {

String state;

if (event.getStateChange() == ItemEvent.SELECTED) {
state = "is selected ";

} else {
state = "is deselected ";

}

JOptionPane.showMessageDialog(this, "JComboBox Item '" +
event.getItem() +
"' " + state);

}
}

wu23399_ch14.qxd 12/28/06 13:54 Page 828

the user to select multiple contiguous intervals (each interval will include one or
more items). The multiple-interval mode is the default mode. The following three
statements show how to set the three selection modes:

list.setSelectionMode(
ListSelectionModel.SINGLE_SELECTION);

list.setSelectionMode(
ListSelectionModel.SINGLE_INTERVAL_SELECTION);

list.setSelectionMode(
ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);

Because multiple items can be selected, we use getSelectedValues and
getSelectedIndices to retrieve an array of selected items and an array of the indices
of the selected items, respectively. The following code will display the selected
items and their index positions:

Object[] name;
int[] loc;

name = list.getSelectedValues();
loc = list.getSelectedIndices();

for (int i = 0; i < name.length; i++) {
System.out.println((String)name[i] +

" at position " + loc[i]);
}

Notice the return type of getSelectedValues is an array of Object, so we typecast the
items in the name array to String before printing it on System.out. If we know the
selection mode is single selection, then we can use getSelectedValue and get-
SelectedIndex instead. Also notice in the code that we are not adding a JList object
directly to a panel. Instead, we wrap it in a JScrollPane and add this JScrollPane to a
panel because JList itself does not include scroll bars.

14.7 Other GUI Components 829

The state when the frame first appeared
on the screen.

The state after the item Gnu is selected.

Figure 14.25 A frame with one list and one pushbutton.

wu23399_ch14.qxd 12/28/06 13:54 Page 829

Here’s the Ch14JListSample class:

830 Chapter 14 GUI and Event-Driven Programming

/*
Chapter 14 Sample Program: Illustrates the use of JList

File: Ch14JListSample.java
*/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class Ch14JListSample extends JFrame
implements ActionListener {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 250;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

private JList list;

public static void main(String[] args) {
Ch14JListSample frame = new Ch14JListSample();
frame.setVisible(true);

}

public Ch14JListSample() {
Container contentPane;
JPanel listPanel, okPanel;

JButton okButton;
String[] names = {"Ape", "Bat", "Bee", "Cat",

"Dog", "Eel", "Fox", "Gnu",
"Hen", "Man", "Sow", "Yak"};

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setTitle ("Program Ch14JListSample2");
setLocation(FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

contentPane = getContentPane();
contentPane.setBackground(Color.WHITE);
contentPane.setLayout(new BorderLayout());

//create and place a JList
listPanel = new JPanel(new GridLayout(0,1));
listPanel.setBorder(BorderFactory.createTitledBorder(

"Three-letter Animal Names"));

list = new JList(names);
listPanel.add(new JScrollPane(list));

wu23399_ch14.qxd 12/28/06 13:54 Page 830

JSlider
The JSlider class represents a slider in which the user can move a nob to a desired
position. The position of the nob on a slider determines the selected value. Fig-
ure 14.26 shows a frame with three sliders. This is a classic example of sliders
where the user moves the three nobs to set the red, green, blue (RGB) value in
selecting a color. Values for the R, G, and B range from 0 to 255, inclusive. Some
of properties we can set for a JSlider object are the minimum and maximum range
of values, whether to display the tick marks, the spacing of major and minor tick
marks, whether to display the label for the major tick marks, and the placement
orientation (either vertical or horizontal).

The sliders in the sample program are created and initialized in the following
manner:

JSlider slider = new JSlider();

slider.setOrientation(JSlider.VERTICAL);
slider.setPaintLabels(true); //show tick mark labels
slider.setPaintTicks(true); //show tick marks

14.7 Other GUI Components 831

list.setSelectionMode(
ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);

//this is default, so the explicit call is not necessary

//create and place the OK button
okPanel = new JPanel(new FlowLayout());
okButton = new JButton("OK");
okButton.addActionListener(this);
okPanel.add(okButton);

contentPane.add(listPanel, BorderLayout.CENTER);
contentPane.add(okPanel, BorderLayout.SOUTH);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}

public void actionPerformed(ActionEvent event) {

Object[] name;
int[] loc;

name = list.getSelectedValues();
loc = list.getSelectedIndices();

System.out.println("Currently selected animal names are");
for (int i = 0; i < name.length; i++) {

System.out.println((String)name[i] + " at position " + loc[i]);
}

}
}

wu23399_ch14.qxd 12/28/06 13:54 Page 831

slider.setMinimum(MIN_COLOR);
slider.setMaximum(MAX_COLOR);
slider.setValue(MAX_COLOR); //initial position of a nob
slider.setMajorTickSpacing(50);
slider.setMinorTickSpacing(25);

When a nob is moved, a JSlider object generates a change event (this event occurs
when there’s a change in the event source, such as the nob is moved). To process
change events, we must register change event listeners to a JSlider event source
object. The class that implements the ChangeListener interface must define a
method called stateChanged, whose parameter is an instance of ChangeEvent. For
this program, whenever a change event is generated, we read the value from each
slider and set the background of a panel to a designated color. Here’s the body of
the stateChanged method:

int R, G, B;

R = redSlider.getValue();
G = greenSlider.getValue();
B = blueSlider.getValue();

colorPanel.setBackground(new Color (R, G, B));

832 Chapter 14 GUI and Event-Driven Programming

The state after three nobs are
moved.

The state when the frame first
appeared on the screen.

Figure 14.26 A frame with three vertical sliders for setting an RGB value.

wu23399_ch14.qxd 12/28/06 13:54 Page 832

Here’s the Ch14JSliderSample class:

14.7 Other GUI Components 833

/*
Chapter 14 Sample Program: Illustrates the use of JSlider

File: Ch14JSliderSample.java
*/

import javax.swing.event.*;
import javax.swing.*;
import java.awt.*;

class Ch14JSliderSample extends JFrame
implements ChangeListener {

private static final int FRAME_WIDTH = 450;
private static final int FRAME_HEIGHT = 250;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

private static final int MIN_COLOR = 0;
private static final int MAX_COLOR = 255;

private JSlider redSlider;
private JSlider greenSlider;
private JSlider blueSlider;

private JPanel colorPanel;

public static void main(String[] args) {
Ch14JSliderSample frame = new Ch14JSliderSample();
frame.setVisible(true);

}

public Ch14JSliderSample() {
Container contentPane;
JPanel sliderPanel;

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setTitle ("Program Ch14JListSample");
setLocation(FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

contentPane = getContentPane();
contentPane.setBackground(Color.WHITE);
contentPane.setLayout(new BorderLayout());

//create and place a JList
sliderPanel = new JPanel(new FlowLayout());

wu23399_ch14.qxd 12/28/06 13:54 Page 833

834 Chapter 14 GUI and Event-Driven Programming

sliderPanel.setBorder(BorderFactory.createTitledBorder(
"RGB Color Selection"));

redSlider = createSlider(MAX_COLOR);
greenSlider = createSlider(MAX_COLOR);
blueSlider = createSlider(MAX_COLOR);

sliderPanel.add(redSlider);
sliderPanel.add(greenSlider);
sliderPanel.add(blueSlider);

colorPanel = new JPanel();
colorPanel.setBackground(Color.white);
colorPanel.setBorder(BorderFactory.createLoweredBevelBorder());
contentPane.add(colorPanel, BorderLayout.CENTER);
contentPane.add(sliderPanel, BorderLayout.WEST);

//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);

}

public void stateChanged(ChangeEvent event) {

int R, G, B;

R = redSlider.getValue();
G = greenSlider.getValue();
B = blueSlider.getValue();

colorPanel.setBackground(new Color(R, G, B));
}

private JSlider createSlider(int value) {

JSlider slider = new JSlider();

slider.setOrientation(JSlider.VERTICAL);
slider.setPaintLabels(true);
slider.setPaintTicks(true);
slider.setMinimum(MIN_COLOR);
slider.setMaximum(MAX_COLOR);
slider.setValue(value);
slider.setMajorTickSpacing(50);
slider.setMinorTickSpacing(25);

slider.addChangeListener(this);

return slider;
}

}

wu23399_ch14.qxd 12/28/06 13:54 Page 834

14.8 Menus
Practical programs with a graphical user interface will almost always support
menus. In this section we will describe how to display menus and process menu
events by using JMenu, JMenuItem, and JMenuBar from the javax.swing package.
Let’s write a sample code to illustrate the display of menus and the processing of
menu item selections. We will create two menus, File and Edit, with the following
menu items:

If the menu item Quit is selected, then we terminate the program. When a menu item
other than Quit is selected, we print a message that identifies the selected menu
item, for example,

Menu item 'New' is selected

Figure 14.27 shows a Ch14JMenuFrame when it is first opened and after the menu
choice Save is selected.

One possible sequence of steps to create and add menus is this:

1. Create a JMenuBar object and attach it to a frame.

2. Create a JMenu object.

3. Create JMenuItem objects and add them to the JMenu object.

4. Attach the JMenu object to the JMenuBar object.

14.8 Menus 835

When the frame first
appears on the screen.

After the menu item
Save is selected.

Figure 14.27 Ch14JMenuFrame window when it is first opened and after the menu item Save is selected.

wu23399_ch14.qxd 12/28/06 13:54 Page 835

We will create two JMenu objects: fileMenu and editMenu. We create a file-
Menu object as

fileMenu = new JMenu("File");

The argument to the JMenu constructor is the name of the menu. After the menu is
created, we add a menu item to it. A menu item is the event source of menu selection,
so we need to register an action listener to every menu item we add to the menu. In
this sample code, we will let a Ch14JMenuFrame object be the action listener of all
menu items. To create and add a menu item New to fileMenu, we execute

item = new JMenuItem("New"); //New
item.addActionListener(this);
fileMenu.add(item);

We repeat this sequence for all other menu items. Menu items are placed from
the top in the order they are added to the menu. We can also include a horizontal line
as a separator between menu items by calling the menu’s addSeparator method.

fileMenu.addSeparator();

After the menus and their menu items are created, we attach them to a menu
bar. In the constructor, we create a JMenuBar object, attach it to the frame by calling
the frame’s setMenuBar method, and add these two JMenu objects to the menu bar.

JMenuBar menuBar = new JMenuBar();
setMenuBar(menuBar); //attach it to the frame
menuBar.add(fileMenu);
menuBar.add(editMenu);

To display which menu item was selected, we use a JLabel object response.
We add response to the frame by

response = new JLabel("Hello, this is your menu tester.");
response.setSize(250, 50);
contentPane.add(response);

When a menu item is selected, the registered action listener’s actionPerformed
method is called. The actionPerformed method of the Ch14JMenuFrame is defined as
follows: If an event source is a menu item, the getActionCommand method of
ActionEvent returns the menu’s text. We test if the returned text is Quit. If it is, we
terminate the program. Otherwise, we set the text of response to indicate which
menu item was selected. Here’s the method body of actionPerformed:

String menuName;

menuName = event.getActionCommand();

if (menuName.equals("Quit")) {
System.exit(0);

836 Chapter 14 GUI and Event-Driven Programming

wu23399_ch14.qxd 12/28/06 13:54 Page 836

} else {
response.setText("Menu item '" + menuName +

"' is selected");
}

Here’s the complete Ch14JMenuFrame program:

14.8 Menus 837

/*
Chapter 14 Sample Program: Displays a frame with two menus

File: Ch14JMenuFrame.java
*/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class Ch14JMenuFrame extends JFrame implements ActionListener {

private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 250;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

private JLabel response;
private JMenu fileMenu;
private JMenu editMenu;

//-------------------------------
// Main method
//-------------------------------

public static void main(String[] args) {
Ch14JMenuFrame frame = new Ch14JMenuFrame();
frame.setVisible(true);

}

public Ch14JMenuFrame(){
Container contentPane;

//set the frame properties
setTitle ("Ch14JMenuFrame");
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setResizable(false);
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());

//create two menus and their menu items
createFileMenu();
createEditMenu();

wu23399_ch14.qxd 12/28/06 13:54 Page 837

838 Chapter 14 GUI and Event-Driven Programming

//and add them to the menu bar
JMenuBar menuBar = new JMenuBar();
setJMenuBar(menuBar);
menuBar.add(fileMenu);
menuBar.add(editMenu);

//create and position response label
response = new JLabel("Hello, this is your menu tester.");
response.setSize(250, 50);
contentPane.add(response);

setDefaultCloseOperation(EXIT_ON_CLOSE);
}

public void actionPerformed(ActionEvent event) {
String menuName;

menuName = event.getActionCommand();

if (menuName.equals("Quit")) {
System.exit(0);

} else {
response.setText("Menu Item '" + menuName + "' is selected.");

}
}

private void createFileMenu() {
JMenuItem item;

fileMenu = new JMenu("File");

item = new JMenuItem("New"); //New
item.addActionListener(this);
fileMenu.add(item);

item = new JMenuItem("Open"); //Open...
item.addActionListener(this);
fileMenu.add(item);

item = new JMenuItem("Save"); //Save
item.addActionListener(this);
fileMenu.add(item);

item = new JMenuItem("Save As..."); //Save As...
item.addActionListener(this);
fileMenu.add(item);

fileMenu.addSeparator(); //add a horizontal separator line

item = new JMenuItem("Quit"); //Quit
item.addActionListener(this);
fileMenu.add(item);

}

wu23399_ch14.qxd 12/28/06 13:54 Page 838

14.9 Handling Mouse Events
In this section we describe the handling of mouse events. Mouse events include such
user interactions as moving the mouse, dragging the mouse (i.e., moving the mouse
while the mouse button is being pressed), and clicking the mouse buttons.

Let’s look at an example in which we display the x and y pixel coordinates of
a location where a mouse button is pressed. We will define a subclass of JFrame,

14.9 Handling Mouse Events 839

private void createEditMenu() {
JMenuItem item;

editMenu = new JMenu("Edit");

item = new JMenuItem("Cut"); //Cut
item.addActionListener(this);
editMenu.add(item);

item = new JMenuItem("Copy"); //Copy
item.addActionListener(this);
editMenu.add(item);

item = new JMenuItem("Paste"); //Paste
item.addActionListener(this);
editMenu.add(item);

}
}

If the size of text for the response label is too small, then we can make it bigger by
including the following statement in the constructor:

response.setFont(new Font("Helvetica", /*font name*/
Font.BOLD, /*font style*/
16)); /*font size*/

1. To which object do we register as an action listener— JMenu, JMenuItem, or
JMenuBar?

2. How do we get the text of a selected menu item in the actionPerformed
method?

3. How do we place a horizontal bar between two menu items?

wu23399_ch14.qxd 12/28/06 13:54 Page 839

named Ch14TrackMouseFrame, that handles the left mouse button click events, and
we will use System.out to print out the location of mouse clicks. Note: For a system
with a one-button mouse, we treat this button as the left mouse button.

A Ch14TrackMouseFrame object is an event source of mouse events. We will
let this object be a mouse event listener also. For a Ch14TrackMouseFrame object to
be a mouse event listener, its class must implement MouseListener. This inter-
face has five abstract methods: mouseClicked, mouseEntered, mouseExited, mouse-
Pressed, and mouseReleased. The argument to all five methods is an instance of
MouseEvent.

The class declaration for Ch14TrackMouseFrame will look like this:

class Ch14TrackMouseFrame extends Frame
implements MouseListener {

...
}

In the constructor we set the frame properties and register this frame as a mouse
event listener of itself. The constructor is defined as

public Ch14TrackMouseFrame {
//set the frame properties
...

//set the output for printing out
//the mouse click points
output = System.out;

//register itself as its mouse event listener
addMouseListener(this);

}

When the left mouse button is clicked, the mouseClicked method of its mouse
event listener is called. In this method, we want to find out the x and y coordinates
of the mouse click point and print out these values in output. To find the x and y co-
ordinate values, we use the getX and getY methods of MouseEvent. So the
mouseClicked method of Ch14TrackMouseFrame is defined as

public void mouseClicked(MouseEvent event) {
int x, y;

x = event.getX(); //return the x and y coordinates
y = event.getY(); //of a mouse click point

output.println("[" + x + "," + y + "]");
}

This method is called every time the left mouse button is clicked, that is,
the mouse button is pressed down and released. If we want to detect the mouse
button press and release separately, then we can provide a method body to the

840 Chapter 14 GUI and Event-Driven Programming

wu23399_ch14.qxd 12/28/06 13:54 Page 840

mousePressed and mouseReleased methods. For example, if we define these
methods as

public void mousePressed(MouseEvent event) {
output.println("Down");

}

and

public void mouseReleased(MouseEvent event) {
output.println("Up");

}

instead of empty method bodies, then we will see something like

Down
Up
[200,120]

when we click a mouse button.
Before we present the complete program, let’s extend the mouseClicked

method so that when the left mouse button is double-clicked, we will terminate the
program. We check the number of button clicks by calling the getClickCount
method of MouseEvent. Here’s the method that terminates the program when a
double-click occurs (a single mouse click will print out the location of a mouse
click, as before):

private static final int DOUBLE_CLICK = 2;

public void mouseClicked(MouseEvent event) {

if (event.getClickCount() == DOUBLE_CLICK) {
System.exit (0);

} else { //print out mouse click location
int x, y;

x = event.getX();
y = event.getY();

output.println("[" + x + "," + y + "]");
}

}

Because a double-click is a sequence of two single clicks, this method is
called twice when you double-click. The getClickCount method returns 1 for the
first call and returns 2 for the second call.

14.9 Handling Mouse Events 841

wu23399_ch14.qxd 12/28/06 13:54 Page 841

Here’s the complete program listing:

842 Chapter 14 GUI and Event-Driven Programming

/*
Chapter 14 Sample Program: Tracks the mouse movement

File: Ch14TrackMouseFrame.java
*/

import javax.swing.*;
import java.awt.event.*;
import java.io.*;

class Ch14TrackMouseFrame extends JFrame implements MouseListener {

private static final int FRAME_WIDTH = 450;
private static final int FRAME_HEIGHT = 300;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;
private static final int DOUBLE_CLICK = 2;

private PrintStream output;

//---------------------------------
// Main method
//---------------------------------

public static void main(String[] args) {
Ch14TrackMouseFrame frame = new Ch14TrackMouseFrame();
frame.setVisible(true);

}

public Ch14TrackMouseFrame() {
//set frame properties
setTitle ("TrackMouseFrame");
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setResizable(false);
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

setDefaultCloseOperation(EXIT_ON_CLOSE);

//create an output for printing out
//the mouse click points
output = System.out;

//register self as a mouse event listener
addMouseListener(this);

}

public void mouseClicked(MouseEvent event) {
if (event.getClickCount() == DOUBLE_CLICK) {

System.exit(0);

wu23399_ch14.qxd 12/28/06 13:54 Page 842

SketchPad
Let’s try another example. The basic idea of this program is to keep track of three
events:

1. The left mouse button is pressed down.

2. The right mouse button is pressed down.

3. The mouse is dragged.

Notice that we are processing mouse button presses, not clicks. (Note: For
the Mac platform, a mouse button press is treated as the left button press, and the
Command press is treated as the right button press. For a platform that supports
three mouse buttons, the middle mouse button is also treated as the left mouse
button.)

To implement this class, we will declare Ch14SketchPad to implement two in-
terfaces: MouseListener and MouseMotionListener. Since we want a Ch14SketchPad
frame to process mouse button clicks, we must implement the MouseListener inter-
face. In addition, we need to implement the MouseMotionListener interface to track
the mouse dragging. The MouseMotionListener interface includes two abstract
methods: mouseDragged and mouseMoved. The argument to both methods is an in-
stance of MouseEvent.

When a mouse button, either the left or right button, is pressed, the event lis-
tener’s mousePressed is called. Let’s study how we should implement this method.
If the right mouse button is pressed, then we have to erase the current drawing. If
the left mouse button is pressed, then it is the start of a new mouse drag, so we have
to remember the location where the left button is pressed. To determine which

14.9 Handling Mouse Events 843

} else {
int x, y;

x = event.getX(); //get the x and y coordinates of
y = event.getY(); //the mouse click point

output.println("[" + x + "," + y + "]");
}

}

public void mouseEntered (MouseEvent event) { }
public void mouseExited (MouseEvent event) { }
public void mousePressed (MouseEvent event) {

output.println("Down");
}

public void mouseReleased(MouseEvent event) {
output.println ("Up");

}
}

wu23399_ch14.qxd 12/28/06 13:54 Page 843

mouse button is pressed inside the mousePressed method, we call the isMetaDown
method of MouseEvent as

if (event.isMetaDown()) {
//the right button is pressed
...

}

The isMetaDown method returns true if the right button is pressed. We don’t have a
method such as isRightButtonPress in MouseEvent because not all platforms support
the right mouse button. The Mac platform, for example, has only one mouse button,
and for the Mac, the Command press is treated as the right mouse button press.

The code to erase the contents of the window is

if (event.isMetaDown()) {
//the right button is pressed
//so erase the contents
Graphics g = getGraphics();
Rectangle r = getBounds();
g.clearRect(0, 0, r.width, r.height);
g.dispose();

}

We erase the contents by drawing a filled rectangle as big as the window itself with
the rectangle filled in the background color. The getBounds method returns the size
of a window.

If it is not a right mouse button press, then it is a left button press, so we re-
member the first position to draw a line.

if (event.isMetaDown()) {
//the right button is pressed
...

} else {
//remember the starting point of a new mouse drag
last_x = x;
last_y = y;

}

The position (x, y) is computed at the beginning of the mousePressed method as

int x = event.getX();
int y = event.getY();

The getX and getY methods of the MouseEvent class return the x and y coordinates,
respectively, of the point where the mouse button is pressed.

Now, to process the mouse drag event, we need to define the mouseDragged
method. From the argument object MouseEvent, we get a new position (x, y) and
draw a line from the previous position to this new position, using the Graphics object
g as follows:

g.drawLine(last_x, last_y, x, y);

844 Chapter 14 GUI and Event-Driven Programming

last_x and last_y
are instance

variables.

wu23399_ch14.qxd 12/28/06 13:54 Page 844

After the drawing is done, we reset the variables.

last_x = x;
last_y = y;

Similar to the mousePressed method, the mouseDragged method is called
whether the mouse was dragged with the left or right button. So we need to include
the if test

if (!event.isMetaDown()) {
//it’s a left mouse button drag,
//so draw a line
...

}

inside the method so the drawing will occur only for the left mouse button drag.
Here’s a complete listing of the program:

14.9 Handling Mouse Events 845

/*
Chapter 14 Sample Program: My SketchPad

File: Ch14SketchPad.java
*/

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class Ch14SketchPad extends JFrame
implements MouseListener, MouseMotionListener {

private static final int FRAME_WIDTH = 450;
private static final int FRAME_HEIGHT = 300;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;

private int last_x;
private int last_y;

//---------------------------------
// Main method
//---------------------------------

public static void main(String[] args) {
Ch14SketchPad frame = new Ch14SketchPad();
frame.setVisible(true);

}

public Ch14SketchPad() {
//set frame properties
setTitle ("Chapter 14 SketchPad");

wu23399_ch14.qxd 12/28/06 13:54 Page 845

846 Chapter 14 GUI and Event-Driven Programming

setSize (FRAME_WIDTH, FRAME_HEIGHT);
setResizable(false);
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);

setDefaultCloseOperation(EXIT_ON_CLOSE);

last_x = last_y = 0;

addMouseListener(this); //adds itself as mouse and
addMouseMotionListener(this); //mouse motion listener

}

//---------------------------------
// Mouse Event Handling
//---------------------------------

public void mousePressed(MouseEvent event) {
int x = event.getX();
int y = event.getY();

if (event.isMetaDown()) {
//the right mouse button is pressed, so erase the contents
Graphics g = getGraphics();
Rectangle r = getBounds();
g.clearRect(0, 0, r.width, r.height);
g.dispose();

} else {
//the left mouse button is pressed,
//remember the starting point of a new mouse drag
last_x = x;
last_y = y;

}
}

public void mouseClicked (MouseEvent event) { }
public void mouseEntered (MouseEvent event) { }
public void mouseExited (MouseEvent event) { }
public void mouseReleased(MouseEvent event) { }

//---------------------------------
// Mouse Motion Event Handling
//---------------------------------

public void mouseDragged(MouseEvent event) {
int x = event.getX();
int y = event.getY();

if (!event.isMetaDown()) {
//don't process the right button drag
Graphics g = getGraphics();

g.drawLine(last_x, last_y, x, y);
g.dispose();

wu23399_ch14.qxd 12/28/06 13:54 Page 846

Summary 847

last_x = x;
last_y = y;

}
}

public void mouseMoved (MouseEvent event) { }
}

1. Which listener object listens to mouse movements? Which listener object
listens to mouse button presses and clicks?

2. What is the purpose of the isMetaDown method?

3. What is the difference between mouseClicked and mousePressed?

• The type of user interface covered in this chapter is called a graphical user
interface (GUI).

• GUI objects in the javax.swing package are collectively called Swing classes.

• To program the customized user interface effectively, we must learn a new
style of programming control called event-driven programming

• The GUI and related classes and interfaces introduced in this chapter are

ActionEvent

ActionListener

BorderFactory

BorderLayout

ButtonGroup

ChangeEvent

ChangeListener

Container

FlowLayout

GridLayout

ImageIcon

ItemEvent

ItemListener

JTextArea

JTextField

MouseEvent

S u m m a r y

JButton

JCheckBox

JComboBox

JFrame

JLabel

JList

JMenu

JMenuBar

JMenuItem

JOptionPane

JPanel

JRadioButton

JScrollPane

JSlider

MouseListener

MouseMotionListener

wu23399_ch14.qxd 12/28/06 13:54 Page 847

• The JOptionPane class is used for a simple GUI input and output.

• GUI objects such as buttons and text fields are placed on the content pane of
a frame window.

• The layout manager determines the placement of the GUI objects.

• The FlowLayout manager places components in left-to-right, top-to-bottom
order.

• The BorderLayout manager places components in one of the five regions:
north, south, east, west, and center.

• The GridLayout manager places components in one of the equal-size N � M
grids.

• GUI objects can be placed on the content pane without using any layout
manager. Such placement is called absolute positioning.

• Effective layout of GUI components is achieved by nesting panels and
applying different layout managers to the panels.

• JPanel is a container for GUI components. JPanel itself is a GUI component,
and therefore, we can nest JPanel objects.

• Event handling is divided into event sources and event listeners. Event
sources generate events, and event listeners include a method that gets
executed in response to the generated events.

• The most common event type is called an action event.

• ActionListener handles the action events.

• We use an instance of JButton to represent a pushbutton on a frame. JButton
objects generate action events.

• GUI objects dealing with text are JLabel, JTextfield, and JTextArea. The
JTextField objects generate action events.

• A JLabel object can include an image of type ImageIcon.

• The JCheckBox class is used for check-box buttons. An instance of the class
generates action and item events.

• ItemEvent is generated when the state (selected/deselected) of an item
changes.

• ItemEvent is handled by an instance of a class that implements the
ItemListener interface.

• The JRadioButton class is used for radio buttons. An instance of the class
generates action and item events.

• The JComboBox class is used for combo boxes, also known as drop-down
lists. An instance of the class generates action and item events.

• The JList class is used for displaying a list of items. (Note: A JList object
generates action and list events. To keep the examples brief and at the
introductory level, we did not give any sample code that deals with events
generated by a JList object.)

848 Chapter 14 GUI and Event-Driven Programming

wu23399_ch14.qxd 12/28/06 13:54 Page 848

• The JSlider class is used for sliders. An instance of the class generates
change events.

• ChangeEvent is handled by an instance of a class that implements the
ChangeListener interface.

• We can find out the class to which an object belongs by using the instanceof
operator.

• A frame has one JMenuBar object. A single JMenuBar can have many
JMenu objects with many JMenuItem objects associated to a single JMenu
object.

• JMenuItem objects generate action events.

• User actions such as moving or dragging the mouse and clicking the mouse
buttons will result in the generation of mouse events.

• MouseListener handles the button actions, and MouseMotionListener handles
the mouse movements.

Exercises 849

K e y C o n c e p t s

graphical user interface mouse listeners

Swing classes item events

content pane item listeners

absolute positioning change events

events change listeners

event-driven programming layout managers

event sources nested panels

event listeners radio and check-box buttons

instanceof operator combo boxes (drop-down lists)

buttons lists

menus sliders

mouse events

E x e r c i s e s

1. Define a subclass of JFrame and name it Ch14Q1Frame. Set the subclass
so its instances will be 400 pixels wide and 450 pixels high and will
have a blue background. The program terminates when the Close box
is clicked.

2. Define a JFrame subclass that has four vertically aligned buttons. The
labels for the four buttons are Senior, Junior, Sophomore, and Freshman.

wu23399_ch14.qxd 12/28/06 13:54 Page 849

This is one possible layout:

When a button is clicked, display a message that identifies which button is
clicked, using JOptionPane.

3. In the Ch14TextFrame1 class, event handling was done with this class.
Modify the class so the button events are handled by a ButtonHandler and
the text events are handled by a TextHandler. You can use the ButtonHandler
class defined in the chapter, but you need to define your own TextHandler
class.

4. Using the frame layout shown, write a program that displays N prime
numbers, where N is a value entered in the text field. A prime number is an
integer greater than 1 and divisible by only itself and 1.

5. Define an OutputBox class as a subclass of JFrame. The OutputBox class
provides the functionality of System.out (PrintStream) by supporting these
methods:

public void println(String line)
public void print(String text)

The OutputBox class contains one JTextArea object. Do not use absolute
positioning. Use the default layout and add a JScrollPane that wraps the
JTextArea object to the content pane.

Generate

JTextArea
or

JList

4

2
3
5
7

The text field to
enter the number

of primes to display

Prime numbers

Senior

Junior

Freshman

Sophomore

850 Chapter 14 GUI and Event-Driven Programming

wu23399_ch14.qxd 12/28/06 13:54 Page 850

6. Redo Exercise 19 on page 358, but this time use the OutputBox class created
in Exercise 5 for output.

7. A slugging percentage of a baseball player is computed by dividing the total
bases of all hits by the total times at bat (single � 1 base, double � 2 bases,
triple � 3 bases, and home run � 4 bases). Write an application that
computes the slugging percentage. Create a customized frame and use
JTextField objects to accept five input values: number of singles, number of
doubles, number of triples, number of home runs, and number of times at
bat. When the user clicks the Compute button, display the slugging
percentage, using JLabel.

8. Write a graphical user interface for the slot machine program in Exercise 31
on page 362. Use three JLabel objects for displaying bells, grapes, and
cherries. Add a button that simulates the motion of pulling down the handle.

9. Add images to the Exercise 8 solution. Create three gif files, one each for the
bell, grape, and cherry. Use JLabel objects with ImageIcon to display these
images on the frame.

10. Write a MyMenuFrame class with these menu choices.

When the user selects Quit, stop the program. When the user selects one of
the colors, change the background of the frame (i.e., change the background
color of the frame’s content pane) to the selected color. When the user
selects Erase, reset the background color to white.

11. Write a program that draws a selected geometric shape in random color and
at a random location. The menu choices for the program are

12. Write an application that draws a circle every time the mouse button is
clicked. The position where the mouse is clicked will become the center of
the circle. Set the radius of the circle to 100 pixels.

13. Extend Exercise 12 by adding the following menu to let the user select the
shape to draw every time the mouse button is clicked. The clicked point will

Circle
Rectangle
Square

Shape

File

Quit Erase Red
Green
Blue
Pink
Black

Edit Color

Exercises 851

wu23399_ch14.qxd 12/28/06 13:54 Page 851

be the center of the selected shape. Choose appropriate values for the
dimensions of the three shapes.

14. Rewrite the Ch14TicTacToePanel class by using the approach illustrated in
Figure 14.21.

Development Exercises

For Exercises 15 through 28, use the incremental development methodology
to implement the program. Design a visually appealing GUI with Swing
components and layout managers. For each exercise, identify the program tasks,
create a design document with class descriptions, and draw the program diagram.
Map out the development steps at the start. Present any design alternatives and
justify your selection. Be sure to perform adequate testing at the end of each
development step.

15. Write a TeachArithmeticFrame class that teaches children arithmetic. The
frame uses a JLabel for a problem and a JTextField for the user answer. When
the user presses the Enter key (while the JTextField object is active) or clicks
the OK button, display a message stating whether the user’s answer is
correct. When the Next button is clicked, display a new problem. The
numbers are limited to two digits.

Consider using a larger font for the JLabel and JTextField text. You can
change the color of text by calling the setForeground method, for example.

questionLbl.setForeground(Color.red);

Define a helper class that generates problems.

16. Extend the TeachArithmeticFrame class so that the numbers of correct and
incorrect answers are kept. Display these two numbers somewhere on the

OK Next

JTextFieldJLabel

JLabel Correct!

8 � 7 � 56

Circle
Rectangle
Square

Shape

852 Chapter 14 GUI and Event-Driven Programming

wu23399_ch14.qxd 12/28/06 13:54 Page 852

frame. Add the third button labeled Reset. When this button is clicked, the
counters for correct and incorrect answers are reset to zero.

17. Modify the mortgage table program of Exercise 30 in Chapter 6. Add this
menu

to the program. When the user selects the menu choice New Table, the
program opens another frame in which the user can enter three input values.
The input frame should look something like this:

If the user clicks on the Compute button and the three input values are
valid, generate a mortgage table. Use the OutputBox class from Exercise 5
to display the mortgage table. If the input values are invalid, then print out
an appropriate error message. Decide on the range of valid values for the
loan amount, interest rate, and loan period. When the user selects the
menu choice About . . . , describe the purpose of the program by using
another frame. You should create only one input frame, but may decide to
use more than one OutputBox frame so you can see multiple loan tables
at once.

18. Redo Exercise 17 with a new user interface. The left side of a frame is
used to enter the loan amount, interest rate, and loan period. The right
side of a frame displays the mortgage table for given input values. The
following layout is merely a suggestion. Feel free to use other GUI
components as you see fit. For example, consider using JComboBox for
entering interest rates and loan periods.

Loan Amount:

Interest Rate:

Loan Period:

ComputeCancel

File

New Table
Quit

About...

Help

Exercises 853

wu23399_ch14.qxd 12/28/06 13:54 Page 853

19. (Challenge) Write a class that implements a calculator with the layout
similar to this:

The user enters a number, using digit buttons only. Some of the issues you
need to consider include

• How to determine whether the user is entering a left operand or a right
operand.

• How to handle the entering of multiple decimal points. A typical
calculator accepts the first decimal point and ignores the rest. For
example, if you press 1 . 4 . 3 . , the number entered is 1.43.

• When the display is 0 and the user enters 0, the display will not
change. However, if the display is nonzero and the user enters 0, the 0
is appended to the number currently displayed.

Compute

JLabel Loan Amount:

JTextField

JTextArea

Interest Rate:

Loan Period:
Display mortage table here

854 Chapter 14 GUI and Event-Driven Programming

wu23399_ch14.qxd 12/28/06 13:54 Page 854

• How to handle the operator precedence. For example, what will be the
result if the user enters 4 � 3 � 2? Will it be 14 or 10? It is easier to
treat all operators as having equal precedence and process them from
left to right.

Study any real four-function calculator and try to implement a software
calculator that simulates the real calculator as faithfully as possible, but feel
free to make any reasonable changes.

20. Extend the calculator of Exercise 19 to allow the user to enter a number
by using the keyboard. The class needs to implement the KeyListener
interface and define the keyTyped method. You have to find information on
KeyListener and KeyEvent from a Java API reference manual.

21. Latte Gallery in Carmel, California, is a small gallery that specializes in
selling contemporary fine art, especially lithographs and photographs. All
items sold in the gallery are signed and numbered. Write an application that
keeps track of

• Customers and their art purchases.

• Artists and their works that have appeared in the gallery.

• Current inventory.

Allow the user to add, delete, or modify the customer, artist, and artwork
information. An inventory will include the purchase price of the artwork and
the selling price when sold. Give the user an option to list all customers or
one customer. The user will specify the customer to display by entering the
customer’s last name and phone number.

Define at least four data members for each type of information. For
customers, include the name, phone number, address, and artwork and artist
preferences. For artists, include the name, speciality, whether alive or deceased,
and price ranges of artwork. For artwork, include the title, date purchased, date
sold, and artist. Feel free to add more data members as you see fit.

Design appropriate GUI for entering and editing customers, artists, and
artwork.

22. Improve the Latte Gallery information manager application by adding the
following capabilities:

• List all customers who bought artwork by a given artist.

• List all artists who are still alive (so you can buy their artwork while
the price is still reasonable).

• List all artwork in the inventory that did not sell for over 3 months.
(This requires the use of the Date class from the java.util package.)

Adjust the GUI accordingly.

23. Improve the Latte Gallery information manager application by adding a
feature that allows the user to select a customer from the list of all customers
by clicking on the customer that he or she wants to see. The listing of all

Exercises 855

wu23399_ch14.qxd 12/28/06 13:54 Page 855

customers will include their names. When the user clicks on a name, the full
information of the selected customer will appear on the right side of the
frame.

24. Write a program that plays the game of Fermi. The program generates three
distinct random digits between 0 and 9. These digits are assigned to
positions 1, 2, and 3. The goal of the game is for the player to guess the
digits in three positions correctly in the least number of tries. For each guess,
the player provides three digits for positions 1, 2, and 3. The program replies
with a hint consisting of Fermi, Pico, or Nano. If the digit guessed for a given
position is correct, then the reply is Fermi. If the digit guessed for a given
position is in a different position, the reply is Pico. If the digit guessed for a
given position does not match any of the three digits, then the reply is Nano.
Here are sample replies for the three secret digits 6, 5, and 8 at positions 1,
2, and 3, respectively.

Guess Hint Explanation

1 2 5 Nano Nano Pico The value 5 matches but at the wrong position.
8 5 3 Pico Fermi Nano The value 5 matches at the correct position.

The value 8 matches but at the wrong position.
5 8 6 Pico Pico Pico All match at the wrong positions.

Notice that if the hints like the above are given, the player can tell which
number did not match. For example, given the hint for the second guess, we
can tell that 3 is not one of the secret numbers. To avoid this, provide hints in
a random order or in alphabetical order (e.g., it will be Fermi Nano Pico
instead of Pico Fermi Nano for the second reply). Implement the program
with an attractive and elegant GUI.

25. Extend the Fermi playing program by allowing the player to

• Select the number of secret digits.

• Select alphabets instead of digits.

• Include duplicate secret digits.

Adjust the GUI accordingly.

Customer List:

List of
customer names

JList Detailed information on a selected customer

Show Detail

856 Chapter 14 GUI and Event-Driven Programming

wu23399_ch14.qxd 12/28/06 13:54 Page 856

26. Write a personal scheduler application. Each entry in the scheduler is an
appointment, a to-do item, or a memo. Each entry has the date and the time
it is entered. An entry can be locked, and if it is locked, the user cannot
modify it. For an appointment entry, include the person and the place of
meeting. For a to-do entry, include a short description of a task and the due
date. For a memo, include a text. Implement the program with an attractive
and elegant GUI.

27. Write a rental point-tracking system for an up-and-coming Espresso’s
Dynamo Mopeds in Monterey, California. To compete against Ms. Latte’s
Mopeds R Us, Espresso’s Dynamo Mopeds decided to install an automated
point-tracking system. When a customer first rents a moped, his or her
information is entered into a database. For each rental, a customer receives
points, and when the total points reach 100, the customer can rent a moped
free for 3 hours or redeem a free movie rental coupon from Espresso’s
Majestic Movies. The points are earned in the following scheme:

Renter Type Points

College student 50cc Moppi 15
150cc Magnum 20

Adult 50cc Moppi 10
150cc Magnum 15

Senior 50cc Moppi 20
150cc Magnum 30

In addition to the basic operations of updating the point information for
every rental, include an operation to list all customers who earned over
100 points. Also, support an operation to edit the customer information.
Implement the program with an attractive and elegant GUI.

28. Update the rental point-tracking system to support a new rental system and
point-awarding rules for Espresso’s Dynamo Mopeds. Now the customers
can rent only on an hourly basis, and the points are awarded accordingly.
Upon rental, the customer will state the number of hours he or she will rent
in increments of 1 hour with a maximum of 10 hours. The rental fee is based
on the following formula:

Total Rental Total Rental
Renter Type ≤ 5 hours > 5 hours

College student 50cc Moppi $3.50 per hour $2.50 per hour
150cc Magnum $4.50 per hour $3.50 per hour

Adult 50cc Moppi $5.00 per hour $4.00 per hour
150cc Magnum $6.50 per hour $5.00 per hour

Senior 50cc Moppi $4.00 per hour $3.00 per hour
150cc Magnum $5.25 per hour $4.00 per hour

Exercises 857

wu23399_ch14.qxd 12/28/06 13:54 Page 857

wu23399_ch14.qxd 12/28/06 13:54 Page 858

Recursive
Algorithms

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Write recursive algorithms for mathematical
functions and nonnumerical operations.

• Decide when to use recursion and when not to.

• Describe the recursive quicksort algorithm and
explain how its performance is better than that
of selection and bubble sort algorithms.

859

15

wu23399_ch15.qxd 12/28/06 13:55 Page 859

860 Chapter 15 Recursive Algorithms

I n t r o d u c t i o n

e introduced recursion in Chapter 6 and showed how to write recursive meth-
ods to implement mathematical functions. We used mathematical functions in
Chapter 6 because it is easier to see how the recursion works with mathematical
functions. However, recursive methods are not limited to implementing mathemat-
ical functions, and we will present several nonnumerical recursive algorithms in
this chapter. We will also discuss some criteria for deciding when to use recursion
and when not to. All the recursive algorithms we provide in this chapter, other than
those we use for explanation, are algorithms that should be written recursively.

15.1 Basic Elements of Recursion
A recursive method is a method that contains a statement (or statements) that makes
a call to itself. In Chapter 6, we implemented three mathematical functions using
recursion. In this chapter, we will present recursive algorithms for nonnumerical
operations. But before we introduce new examples, let’s review one of the recursive
algorithms we presented in Chapter 6.

The factorial of N is the product of the first N positive integers, denoted math-
ematically as

N! = N * (N-1) * (N-2) * ... * 2 * 1

We can define the factorial of N recursively as

1 if N = 1

factorial(N) =

N * factorial(N-1) otherwise

We mentioned in Chapter 6 that any recursive method will include the fol-
lowing three basic elements:

1. A test to stop or continue the recursion.

2. An end case that terminates the recursion.

3. A recursive call(s) that continues the recursion.

These three elements are included in the following recursive factorial method.

public int factorial(int N)
{

if (N == 1) {

return 1;
}

W

recursive
method

Test to stop or continue.

End case: recursion stops.

wu23399_ch15.qxd 12/28/06 13:55 Page 860

else {

return N * factorial(N-1);
}

}

15.2 Directory Listing
Let’s try some recursive algorithms for nonnumerical applications. A first nonnu-
merical recursive algorithm will list the filename of all files in a given directory (or
folder) of a hard disk and its subdirectories. We will use a File object from the java.io
package to implement the method. Assuming a Windows platform, we create a File
object by passing the name of a file or a directory, as in

File file = new File("D:/Java/Projects");

Notice that we pass the full path name. If a File object represents a directory,
then the boolean method isDirectory returns true. To get an array of names of files
and subdirectories in a directory, we use the list method.

String[] fileList = file.list();

Let’s call the method directoryListing. The argument to the method will be a
File object that represents a directory. The basic idea can be expressed as follows:

public void directoryListing(File dir) {

//assumption: dir represents a directory

fileList = an array of names of files and
subdirectories in the directory dir;

for (each element in fileList) {

if (an element is a file) {
output the element's filename; //end case: it's

//a file.
} else { //recursive case: it's a directory

call directoryListing with element as
an argument;

}
}

}

The complete method is as follows:

public void directoryListing(File dir) {

//assumption: dir represents a directory

String[] fileList = dir.list(); //get the contents
String dirPath = dir.getAbsolutePath();

15.2 Directory Listing 861

Recursive case: recursion
continues with a recursive call.

wu23399_ch15.qxd 12/28/06 13:55 Page 861

862 Chapter 15 Recursive Algorithms

for (int i = 0; i < fileList.length; i++) {

File file = new File(dirPath + "/" + fileList[i]);

if (file.isFile()) { //it's a file

System.out.println(file.getName());
} else {

directoryListing(file); //it's a directory
} //so make a recursive call

}
}

Notice the argument we pass to create a new File object inside the for loop is

File file = new File(dirPath + File.separator
+ fileList[i]);

where dirPath is set as

String dirPath = dir.getAbsolutePath();

and File.separator is a class constant for the system-dependent character used as the
file separator.

The getAbsolutePath method returns the full path name for the directory, and
we need to prepend it to the name (fileList[i]) of a file or a subdirectory in this
directory in order to make the testing

if (file.isFile()) ...

work correctly.
To give you more practice in reading recursive methods, we will remove the

assumption that the argument File represents a directory and rewrite the method.
If the argument File object to directoryListing can be either a file or a directory,
then we need to check this first. If the argument object is a file, then we list its
filename and stop the recursion. If the argument object is a directory, then we get
the list of contents in the directory and make recursive calls. Here’s the second
version:

public void directoryListing(File file) {
//'file' may be a directory or a file

String[] fileList;
String pathname = file.getAbsolutePath();

if (file.isFile()) {
//it's a file so

System.out.println(file.getName()); //print it out

} else { //it's a directory, so make a recursive call

End case

Recursive case

Test

End case

Test

wu23399_ch15.qxd 12/28/06 13:55 Page 862

fileList = file.list();
for (int i = 0; i < fileList.length; i++) {
File nextFile = new File(pathname+ File.separator

+ fileList[i]);
directoryListing(nextFile); //recursive call

}
}

}

15.3 Anagram
Our second example of a nonnumerical recursive method is to derive all anagrams
of a given word. An anagram is a word or phrase formed by reordering the letters of
another word or phrase. If the word is CAT, for example, then its anagrams are

C A T
C T A
A T C
A C T
T C A
T A C

Figure 15.1 illustrates the basic idea of using recursion to list all anagrams of
a word.

15.3 Anagram 863

Word

Recursive case

anagram

Anagrams

H A L O

A L O H

Find all anagrams of a word H A L O

A LH O

L O H A

O H A L

Rotate left

Rotate left

Rotate left

Recursion

Apply recursion to find all the
anagrams of these three letters.

Recursion

Recursion

Recursion

Figure 15.1 How to generate all the anagrams of a word by using recursion.

wu23399_ch15.qxd 12/28/06 13:55 Page 863

Expressing the basic idea, we have something like this:

public void anagram(String word) {
int numOfChars = word.length();

if (numOfChars == 1) {
//End case: there's only one character left,
// so we can't make a recursive call

} else {
for (int i = 1; i <= numOfChars; i++) {

char firstLetter = word.charAt(0);

suffix = word.substring(1, numOfChars);

anagram(suffix); //make a recursive call with
the remaining

//letters in the word

//rotate left
word = suffix + firstLetter;

}
}

}

To derive the real method that executes correctly, we must finalize a number
of things. First, what will we do when the recursion stops? Hitting upon the end case
means that we have found one anagram, so we will print it out. Now, this is the
tricky part. When we call the method recursively, we are passing a word that has
the first letter chopped off. This means the words being passed to successive recur-
sive calls are getting shorter and shorter. But we need to access all letters in a word
to print it out. We can solve this problem by passing two parameters: the prefix
and the suffix of a word. In each successive call, the prefix becomes one letter more
and the suffix becomes one letter less. When the suffix becomes one letter only, then
the recursion stops. Using this idea, we see the method now looks like this:

public void anagram(String prefix, String suffix) {
int numOfChars = suffix.length();

if (numOfChars == 1) {
//End case: print out one anagram
System.out.println(prefix + suffix);

} else {
...

}
}

and this method is initially set with an empty prefix and the word being the suffix,
as in

anagram("", "HALO");

864 Chapter 15 Recursive Algorithms

This for loop is
illustrated in
Figure 15.1.

wu23399_ch15.qxd 12/28/06 13:55 Page 864

Now, by using the two parameters prefix and suffix, the for loop is written as

for (int i = 1; i <=numOfChars; i++) {

newSuffix = suffix.substring(1, numOfChars);
newPrefix = prefix + suffix.charAt(0);

anagram(newPrefix, newSuffix); //recursive case

//rotate left to create a rearranged suffix
suffix = newSuffix + suffix.charAt(0);

}

Putting everything together, we have the final anagram method:

public void anagram(String prefix, String suffix) {
String newPrefix, newSuffix;
int numOfChars = suffix.length();

if (numOfChars == 1) {
//End case: print out one anagram
System.out.println(prefix + suffix);

} else {
for (int i = 1; i <= numOfChars; i++) {

newSuffix = suffix.substring(1, numOfChars);
newPrefix = prefix + suffix.charAt(0);

anagram(newPrefix, newSuffix);
//recursive call

//rotate left to create a rearranged suffix
suffix = newSuffix + suffix.charAt(0);

}
}

}

Because the ending condition for recursion is tricky, let’s study carefully the
test to stop the recursion. We set the test to

if (numOfChars == 1) ...

Is there any assumption we must make about the parameters so that this method will
work correctly? We mentioned earlier that the initial call to the recursive method is
something like

anagram("", "HALO");

What would happen if we made the call initially like

String str = inputBox.getString();
anagram("", str);

and the user entered an empty string? This is left as Exercise 8.

15.3 Anagram 865

End case

Test

Recursive case

wu23399_ch15.qxd 12/28/06 13:55 Page 865

866 Chapter 15 Recursive Algorithms

1. Determine the output of these calls without actually running the method.

a. anagram("", "DOG");
b. anagram("", "CAFE");

15.4 Towers of Hanoi
The objective of a puzzle called the Towers of Hanoi is deceptively simple, but find-
ing a solution is another matter. The goal of the puzzle is to move N disks from
peg 1 to peg 3 by moving one disk at a time and never placing a larger disk on top
of a smaller disk. See Figure 15.2.

Peg 1

Start

Goal

Peg 2 Peg 3

Peg 1 Peg 2 Peg 3

Figure 15.2 Towers of Hanoi with N � 4 disks.

Peg 1 Peg 2 Peg 3

Peg 1 Peg 2 Peg 3

Peg 1 Peg 2 Peg 3

Recursion

Move N�1 disks
from peg 1 to peg 2

Recursion

Move N�1 disks
from peg 2 to peg 3

Peg 1 Peg 2 Peg 3

To move N disks
from peg 1 to peg 3

Move one disk
from peg 1 to peg 3

Figure 15.3 Recursive solution to the Towers of Hanoi puzzle.

wu23399_ch15.qxd 12/28/06 13:55 Page 866

The Towers of Hanoi puzzle can be solved very nicely by using recursion. The
Aha! moment to this puzzle occurs when you realize that you can solve the puzzle
if somehow you can move the top N � 1 disks to peg 2. After the top N � 1 disks
are moved to peg 2 temporarily, you move the largest disk from peg 1 to peg 3 and
finally move the N � 1 disks from peg 2 to peg 3. Figure 15.3 illustrates these three
steps. The first and the third steps are, of course, the same puzzle with one fewer
disk and the destination peg changed. So you apply the same logic recursively to the
first and third steps. When the number of disks becomes 1, then the recursion stops.
Applying this recursive thinking, we can write the method as

public void towersOfHanoi(int N, //number of disks
int from, //origin peg
int to, //destination peg
int spare) //"middle" peg

{
if (N == 1) {

moveOne(from, to);
} else {

towersOfHanoi(N-1, from, spare, to);

moveOne(from, to);

towersOfHanoi(N-1, spare, to, from);
}

}

The moveOne is the method that actually moves the disk. Here we will define
the method to print out the move, using System.out.

private void moveOne(int from, int to) {
System.out.println(from + " ---> " + to);

}

When we run this method with N � 4, we get the following output:

1 ---> 2
1 ---> 3
2 ---> 3
1 ---> 2
3 ---> 1
3 ---> 2
1 ---> 2
1 ---> 3
2 ---> 3
2 ---> 1
3 ---> 1
2 ---> 3
1 ---> 2
1 ---> 3
2 ---> 3

15.4 Towers of Hanoi 867

wu23399_ch15.qxd 12/28/06 13:55 Page 867

The output is very difficult to read. We can improve the output considerably
by padding a varying number of blank spaces to show the level of recursion. We can
change the output to

1 ---> 2
1 ---> 3
2 ---> 3

1 ---> 2
3 ---> 1
3 ---> 2
1 ---> 2

1 ---> 3
2 ---> 3
2 ---> 1
3 ---> 1

2 ---> 3
1 ---> 2
1 ---> 3
2 ---> 3

by rewriting the methods as follows:

public void towersOfHanoi(int N, //number of disks
int from, //origin peg
int to, //destination peg
int spare, //"middle" peg
int indent)//# of leading spaces

{
if (N == 1) {

moveOne(from, to, indent);
} else {

towersOfHanoi(N-1, from, spare, to, indent+2);

moveOne(from, to, indent+2);

towersOfHanoi(N-1, spare, to, from, indent+2);
}

}

private void moveOne(int from, int to, int indent) {
System.out.format("%" + (indent+8) + "s\n",

from + " ---> " + to);
}

15.5 Quicksort
We will present a sorting algorithm that uses recursion in this section. This sorting
algorithm is called quicksort, and we will compare the performance of quicksort
against that of the previous two sorting algorithms at the end of this section, to ver-
ify that quicksort deserves its name.

868 Chapter 15 Recursive Algorithms

These steps are for
moving 3 disks from
peg 1 to peg 2.

wu23399_ch15.qxd 12/28/06 13:55 Page 868

Figure 15.4 illustrates the core thinking of quicksort. To sort an array from
index low to high, we first select a pivot element p. We can select any element in the
array as a pivot, but for simplicity, we choose number[low] as the pivot. Using p as
the pivot, we scan through the array and move all elements smaller than p to the
lower half (left half in the figure) and all elements larger than p to the upper half.
Then we sort the lower and upper halves recursively, using quicksort. The variable
mid points to the position where the pivot is placed. So the lower half of the array is
from index low to mid-1, and the upper half of the array is from index mid+1 to high.
The recursion stops when the condition low >= high becomes true.

Here’s the quicksort algorithm:

public void quickSort(int[] number, int low, int high) {
if (low < high) {

int mid = partition(number, low, high);

quickSort(number, low, mid-1);
quickSort(number, mid+1, high);

}
}

The partition method splits the array elements number[low] to number[high]
into two halves, as shown in Figure 15.4. We use number[low] as the pivot element.
The method returns the position where the pivot element is placed. Figure 15.5
shows the result of partitioning the array by using the element 23 as a pivot.

We first set the pivot to number[low]. Then we start looking for a number
smaller than the pivot from position high, high-1, and so forth. Let’s say the number
is found at position J. Since this number is smaller than the pivot, we move it to posi-
tion low. Now we start looking for a number larger than the pivot from low+1, low+2,
and so forth. Let’s say the number is found at position I. We move it to position J. We
then repeat the process, this time looking for a number smaller than the pivot from
J-1, J-2, and so forth. Figure 15.6 shows the details of the partitioning process.

15.5 Quicksort 869

p

low

partition

high

Quicksort Quicksort

p

number[i] � p p � number[i]

Any element can be used as
a pivot. For simplicity, we use
number[low] as pivot p.

mid

•••

Figure 15.4 The core idea of the quicksort algorithm.

wu23399_ch15.qxd 12/28/06 13:55 Page 869

Here’s the partition method:

private int partition(int[] number, int start, int end) {
//set the pivot
int pivot = number[start];

do {
//look for a number smaller than pivot from the end
while (start < end && number[end] >= pivot) {

end--;
}

if (start < end) { //found a smaller number
number[start] = number[end];

//now find a number larger than pivot
//from the start
while (start < end && number[start] <= pivot) {

start++;
}

if (start < end) { //found a larger number
number[end] = number[start];

}
}

} while (start < end);

//done, move the pivot back to the array
number[start] = pivot;

return start;
}

870 Chapter 15 Recursive Algorithms

start

partition

mid

end

0 1 2 3 4 5 6 7 8

23 17 5 90 12 44 38 84 77

0 1 2 3 4 5 6 7 8

12 17 5 23 90 44 38 84 77

Figure 15.5 Result of partitioning using 23 as a pivot.

wu23399_ch15.qxd 12/28/06 13:55 Page 870

15.5 Quicksort 871

1 2 3 4 5 6 7

23 17 5 90 12 44 38 84 77

start

0 pivot

end

8

1 2 3 5 6 7

23 17 5 90 12 44 38 84 77 23

start

0 pivot84

end

while (number[end] > pivot){
 end--;
}

1 2 3 5 6 7

12 17 5 90 12 44 38 84 77 23

start

0 pivot84

end

while (number[start] < pivot){
 start++;
}

while (number[end] > pivot){
 end––;
}

pivot = number[start];

1 2 3 4 5 6 7

23 17 5 90 12 44 38 84 77 23

start

0 pivot

end

8

number[start] = number[end];

1 2 3 4 5 6 7

12 17 5 90 90 44 38 84 77 23

0 pivot8

1 2 3 4 5 6 7

12 17 5 90 90 44 38 84 77 23

0 pivot8

1 2 3 4 5 6 7

12 17 5 23 90 44 38 84 77Result

0 8

number[start] = pivot;

1 2 3 4 5 6 7

12 17 5 90 12 44 38 84 77 23

start

0 pivot

end

start, end

start, end

8

number[end] = number[start];

Figure 15.6 Details of one partitioning.

wu23399_ch15.qxd 12/28/06 13:55 Page 871

How good is quicksort? Does the algorithm execute a fewer number of
comparisons than the selection or bubble sort? The answer is no in the worst
case. Quicksort executes roughly the same number of comparisons as the selec-
tion sort and bubble sort in the worst case. When the original list is either already
sorted or in descending order, then after a partition process, either the lower half
or the upper half has N � 1 elements. The effect is the same as that of the previ-
ous two sorting algorithms; that is, either the smallest or the largest number
moves to its correct position. The worst situation can be improved somewhat if
we select the median of three numbers, say, number[low], number[high], and
number[(low+high)/2], as the pivot element. Even with this improvement, the
number of comparisons in the worst case is still approximately the square of the
size of the array.

Is the name quicksort a kind of false advertisement? Not really. On average,
we can expect a partition process to split the array into two subarrays of roughly
equal size. Figure 15.7 shows how the original array is partitioned into smaller sub-
arrays. When the size of all subarrays becomes 1, then the array becomes sorted. At
level i, there are 2i subarrays of size N�2i. So there will be N�2i partition processes
at level i. The total number of comparisons of all those partition processes at level i
is therefore 2i�N�2i � N. Since there are K levels, the total number of comparisons
for sorting the whole array is

K · N

but

N � 2K

log2 N � K

so

KN � N log2 N

The total number of comparisons is proportional to N log2 N, which is a great
improvement over N2. A more rigorous mathematical analysis will show that the
quicksort on average requires approximately 2N log2 N comparisons.

872 Chapter 15 Recursive Algorithms

Level no.

0

1

2

K

Number of
subarrays
at level i

1 � 20

2 � 21

4 � 24

N

Size of each
subarray
at level i

N � N�20

N�2 � N�21

N�4 � N�22

1 � N�2K•••

•••

•••

•••

Figure 15.7 A hierarchy of partitioning an array into smaller and smaller arrays in the quicksort.

wu23399_ch15.qxd 12/28/06 13:55 Page 872

15.6 When Not to Use Recursion
Recursion is a powerful tool to express complex algorithms succinctly. For example,
writing a nonrecursive algorithm for the Towers of Hanoi is unexpectedly difficult.
Likewise, a recursive quicksort algorithm is easier to understand than its nonrecur-
sive counterpart. For both problems, we prefer recursive algorithms because recur-
sion is the most natural way to express their solution. However, just being natural is
not the criterion for selecting a recursive solution over a nonrecursive one.

Consider a solution for computing the Nth Fibonacci number. A Fibonacci
number is defined recursively as

1 if N = 0 or N = 1

fibonacci(N) =

fibonacci(N-1)
+ fibonacci(N-2) otherwise

Because the function is defined recursively, it is natural to implement the function
by using a recursive method.

public int fibonacci(int N) {
if (N == 0 || N == 1) {

return 1; //end case

} else {//recursive case

return fibonacci(N-1) + fibonacci(N-2);
}

}

This recursive method is succinct, easy to understand, and elegant. But is this
the way to implement it? The answer is no, because the recursive method is grossly
inefficient and a nonrecursive version is just as easy to understand. The method is
inefficient because the same value is computed over and over. Figure 15.8 shows the
recursive calls for computing the fifth Fibonacci number. Notice that the same
value, for example, fibonacci(2), is computed repeatedly.

15.6 When Not to Use Recursion 873

1. Partition the following arrays, using the partition method.

a. 0 1 2 3 4 5 6 7 8
18 19 5 77 12 14 13 84 45

b. 0 1 2 3 4 5 6 7 8
98 19 15 86 12 44 13 24 45

wu23399_ch15.qxd 12/28/06 13:55 Page 873

The Nth Fibonacci number can be computed by using a nonrecursive
method.

public int fibonacci(int N) {

int fibN, fibN1, fibN2, cnt;

if (N == 0 || N == 1) {
return 1;

} else {

fibN1 = fibN2 = 1;
cnt = 2;

while (cnt <= N) {
fibN = fibN1 + fibN2; //get the next fib no.

fibN1 = fibN2;
fibN2 = fibN;

cnt ++;
}
return fibN;

}
}

The nonrecursive method is not as succinct as the recursive version, but at the
same time, it is not that difficult to understand. The nonrecursive version is much
more efficient, and it is the one that should be used. This nonrecursive version is
written in such a way that its structure parallels the structure of the recursive

874 Chapter 15 Recursive Algorithms

fibonacci(5)

fibonacci(4) � fibonacci(3)

fibonacci(2) � fibonacci(1)

fibonacci(1) � fibonacci(0)

fibonacci(1) � fibonacci(0)

fibonacci(1) � fibonacci(0)

fibonacci(3) � fibonacci(2)

fibonacci(2) � fibonacci(1)

Figure 15.8 Recursive calls to compute fibonacci(5).

F0
1

F1
1

F2
2� �

F1
1

F2
2

F3
3� �

F2
2

F3
3

F4
5� �

wu23399_ch15.qxd 12/28/06 13:55 Page 874

version, so we can compare the two easily. It is possible to rewrite the nonrecursive
version with a simple for loop as

public int fibonacci(int N) {

int fibN1, fibN2, fibN;

fibN = fibN1 = fibN2 = 1;

for (int i = 1; i < N; i++) {

fibN = fibN1 + fibN2;

fibN1 = fibN2;
fibN2 = fibN;

}

return fibN;
}

There is no clear-cut rule to determine whether a routine should be imple-
mented recursively or nonrecursively. In general, we should always search for a
nonrecursive solution first. We should use recursion only when a recursive solu-
tion is more natural and easier to understand and the resulting method is not too
inefficient. We repeat the guideline for using recursive methods we mentioned in
Chapter 6.

Summary 875

Use recursion if

1. A recursive solution is natural and easy to understand.

2. A recursive solution does not result in excessive duplicate computation.

3. The equivalent iterative solution is too complex.

• Recursion is a special type of repetition control.

• A recursive method is a method that calls itself.

• A recursive method consists of a test to stop the recursion, the end case that
gets executed at the end of recursion, and the recursive case that makes a
recursive call to continue the recursion.

• The use of recursion should be avoided if a suitable nonrecursive looping
statement can be developed.

S u m m a r y

wu23399_ch15.qxd 12/28/06 13:55 Page 875

876 Chapter 15 Recursive Algorithms

K e y C o n c e p t s

recursive methods

end cases

recursive cases

E x e r c i s e s

1. Write a recursive method to find the smallest element in an array.
Note: This is strictly an exercise. You should not write the real method
recursively.

2. Write a recursive method to compute the average of the elements in an array.
Note: This is strictly an exercise. You should not write the real method
recursively.

3. Write a recursive method to determine whether a given string is a
palindrome. A string is a palindrome if it reads the same both forward and
backward. Ignore the case of the letters and punctuation marks.

4. Write a recursive binary search method. Should this method be written
recursively or nonrecursively in practice?

5. Write a recursive method to reverse a given string. The method accepts a
string as an argument and returns the reverse of the argument. For example,
if the argument is Java, then the method returns avaJ. Show this method be
written recursively or nonrecursively in practice?

6. In Chapter 6, we gave the nonrecursive and recursive solutions for finding
the greatest common divisor of two given integers. Which version is the one
you should use in practice?

7. The partition method of quicksort selects the first element as its pivot.
Improve the method by using the median of the values in the first, the
middle, and the last elements of an array. If an array number to partition has
8 elements indexed from 0 to 7, then the first element is number[0], the
middle element is number[4], and the last element is number[7]. If these
elements are 55, 34, and 89, for example, then the median is 55.

8. What would happen if the anagram method were called initially by passing
an empty string as the second parameter as

anagram("", "");

Will the method work? Why or why not? If not, correct the problem. If yes,
then would it be logical to leave it as is or should the method be corrected to
make it more logical?

9. Another recursive sorting algorithm is called merge sort. The merge sort
divides the array into two halves, sorts the two halves recursively using
mergesort, and finally merges the two sorted halves into a sorted list. In a

wu23399_ch15.qxd 12/28/06 13:55 Page 876

diagram, the process of merge sort looks like this:

Write the mergesort method.

10. You can visualize the growth of a tree recursively. First you start with a
trunk of a set length:

From this trunk, two branches grow out:

Now if you consider the two branches as the trunks of their respective
subtrees, you have another growth, resulting in

Split

mergesort mergesort

Merge

23 17 5 90 12 44 38 84 77

5 12 17 23 38 44 77 84 90

23 17 5 90 12 44 38 84 77

5 17 23 90 12 38 44 77 84

Exercises 877

wu23399_ch15.qxd 12/28/06 13:56 Page 877

Continue this recursive growth, and you will end up with a tree that looks
something like this:

The length of the branch will get shorter and shorter. Once the length
becomes shorter than some preset value, the recursion stops. Also, as you
can see from the tree above, you should use some form of probability
whether the branch will continue to grow or not. Try first the fixed
probability of 0.9. Experiment with others, such as the probability of growth
as a function based on the length of the branch.

878 Chapter 15 Recursive Algorithms

wu23399_ch15.qxd 12/28/06 13:56 Page 878

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Describe continguous and noncontinguous
memory allocation schemes

• List the pros and cons of the two memory
allocation schemes

• Manipulate linked lists of primitive data

• Manipulate linked lists of objects

879

16Memory Allocation
Schemes and
Linked Data
Structures

wu23399_ch16.qxd 1/2/07 19:40 Page 879

hen our program manipulates a collection of data, such as a list of Person
objects or an array of integers, memory space must be allocated to store these data.
We will study two memory allocation schemes in this chapter. Understanding them
is helpful when we study different types of data structures in the following chapters.

In Java, whenever we execute the new operator, memory space is allocated.
Suppose we need to write a program that requires up to 500 integers. We can declare
and allocate an array of 500 integers as follows:

int[] num = new int[500];

This will allocate a single, contiguous block of memory that is large enough to
store 5000 integers. We characterize this memory allocation scheme as contiguous
memory allocation (CMA) because data are stored in contiguous memory addresses.
Figure 16.1 illustrates the allocation of a single memory block for 500 integers. In
the illustration, we depict computer memory as a linear sequence of memory cells.
Each memory cell is associated with an address and has the fixed size. We assume
here the common size of 1 byte for a single memory cell.

Another approach is to allocate a number of smaller memory blocks. For
example, instead of allocating a single memory block for 500 integers, we can allo-
cate 10 memory blocks, with each block having the capacity of 50 integers. We call

880 Chapter 16 Memory Allocation Schemes and Linked Data Structures

I n t r o d u c t i o n

W

contiguous
memory
allocation
(CMA)

memory cell

0000

0600
0601

0599

2599
2600

0602
0603

A single integer
occupies 4 cells.

����� ��� ������	�
�� � ��� ��	�������� ������ ���������� ��
 ������������� ��� ���� �� ���� �������

A single block of contiguous memory
cells is allocated to hold 500 integers.
An integer requires 4 bytes, so we need
the total of 2000 memory cells.

Figure 16.1 This diagram illustrates the contiguous memory allocation. A single memory block that is
capable of holding 5000 integers is allocated.We assume each cell holds 1 byte.This illustration shows that the
address of the first cell in block is 600.

wu23399_ch16.qxd 1/2/07 19:40 Page 880

this allocation scheme noncontiguous memory allocation (NMA) because memory
blocks are not allocated at contiguous memory addresses. Figure 16.2 illustrates
how 10 blocks, each holding 50 integers, might be allocated.

16.1 Contiguous Memory Allocation Scheme 881

noncontiguous
memory alloca-
tion (NMA)

0000

These memory blocks are
scattered over the whole
memory space..

.
.

Figure 16.2 This diagram illustrates the noncontiguous memory allocation. Instead of allocating a single
block for 500 integers, 10 blocks of 50-integer capacity are allocated.

The acronyms CMA and NMA are not standard terminology in computer science.
They are used in this chapter as a shorthand to refer to two memory allocation
schemes.

In this chapter we will study the two allocation schemes in detail and explore
their advantages and disadvantages. In addition, we will learn how to manipulate a
collection of data in Java by using a data management technique called a linked data
structure. We will see that a noncontiguous memory allocation scheme is essential
in implementing linked data structures.

16.1 Contiguous Memory Allocation Scheme
When a memory space is allocated for an array, the contiguous memory allocation
scheme is used. Let’s study how the use of CMA affects the data manipulation in
arrays. We will use an array of int as an illustration.

wu23399_ch16.qxd 1/2/07 19:40 Page 881

Consider the declaration and creation of an array of 10 integers:

int[] number = new int[10];

When the statement is executed, a contiguous memory block 40 bytes long is al-
located in memory (4 bytes per integer � 10 integers � 40 bytes). Figure 16.3
shows the contiguous memory allocation for the array and the correspondence be-
tween the actual address and the array index.

We access individual elements by using the indexed expression

<array name> [<index>]

where <array name> is the name of the array and <index> is the position of an element
in the array. The valid value for <index> ranges from 0 to array size �1. The index
value of 0 refers to the first element in the array. For example, the expression

number[5]

refers to the element at index position 5 in the array, which is the sixth element in
the array. In Figure 16.3 we see that number[5] is located at address 1020. Let’s see
how the address is computed, given the index position.

Address Computation
Given the index position of an element, say I, we can easily compute the address
where this element is stored. The address computation requires two components.

882 Chapter 16 Memory Allocation Schemes and Linked Data Structures

number

Memory
Address

Array
Index

1000

1004

1008

1012

1016

1020

1024

1028

1032

1036

0

1

2

3

4

5

6

7

8

9

1000

Because an array in Java is a
reference data type, the variable

will contain the address of the
memory block where the array

elements are actually stored.

The address of the first cell of the allocated memory
is called the base address. We arbitrarily chose the

base address of 1000 for this illustration. We have no
way of knowing the actual address when running a

Java program.

����� �� �������	
�� ������� �� ���	 ����
�� ������� �� ����	 ���� ������ ���� ��� ��
�� ������ ������
� ���� ������ ��
� ���� ����������
�� ������
	 �� ��� �	
��
Figure 16.3 This diagram illustrates the contiguous memory allocation for an array of int.

wu23399_ch16.qxd 1/2/07 19:40 Page 882

First is the base address, which is the address where the first element is stored in
the memory. Second is the offset, which is the total number of bytes allocated for the
elements at index positions 0 to I-1. To determine the offset, we need to know
the number of bytes used for each element. An int value, for example, uses 4 bytes
and a double value uses 8 bytes. We can compute the address of an element with the
following formula:

address of index I = base address + I * B

where I is the index value and B is the number of bytes per element. The value I * B
is the offset. Using this formula, we see that address of number[5] is 1020:

address of index 5 = 1000 + 5 * 4 = 1020

The key point to remember here that this simple and quick address computa-
tion is made possible by storing array elements in contiguous memory cells, with
each element requiring the same amount of memory.

16.1 Contiguous Memory Allocation Scheme 883

base address

offset

Array elements are stored in contiguous memory cells. This enables very efficient
address computation.

The price we pay for the simple and efficient access includes potentially very costly
update operations, such as adding an element to or removing it from an array. Let’s
study the main disadvantages of the CMA scheme.

Overflow
When we create an array, we must designate its size. For example, when we create
an array as

new int[20];

we are allocating a single memory block to store 20 int values. What will happen
when this amount of space is not enough? In other words, what will happen if there
is 21st integer we need to store? The condition is characterized as an overflow con-
dition. When there’s an overflow, we must allocate a new, larger block of memory
cells and copy the values from the old block to the new block. Here’s the code to
handle the overflow condition:

//Step 1:
// Allocate a new block of memory that is 200%
// of the overflowing block of memory
int[] temp = new int [num.length * 2];

overflow

wu23399_ch16.qxd 1/2/07 19:40 Page 883

//Step 2:
// Copy elements from the old block to the new block
for (int i = 0; i < num.length; i++) {

temp[i] = num[i];
}

//Step 3:
// Set num to point to this new block of memory
num = temp;

We presented this technique for handling overflow in Chapter 10. Figure 16.4
illustrates the handling of an overflow condition. In the sample code, we set the new
block of memory to be twice as large as the old block. This is an arbitrary decision.
We can handle the overflow by allocating a new block of memory that is just large
enough to store one additional element. However, it is not a good idea to do so,
because the chance of overflowing again is high. When we allocate a new block
of memory, we want to allocate an amount large enough to reduce the chance of
immediate recurrence of overflow condition.

Underutilization
Because we have to allocate a whole block of memory at once, we always run a risk
of underutilizing the allocated amount of memory. If we allocate space for an array
of 1000 int values, for example, but actually store only 20 int values in the array, then

884 Chapter 16 Memory Allocation Schemes and Linked Data Structures

STEP 1 STEP 2 STEP 3

1000

6000

...

...

...

1000

6000

...

...

...

1000

6000

...

...

...

����������	��number��
����
���� ����� �� ��� �� ������ �����
������ �
 �� 	����� ��� ����������� ��� �������	 ������ �� �		 ���������� ��		����� ��� ������ �����
����������������������������� ���� �
 	���� �
 ����������	 ����� �
 �������� �	�����
�����������������	��������� ������ �� ��� �� ������

number 1000

temp 6000

number 1000

temp 6000

number 6000

temp 6000

Figure 16.4 Handling overf low by allocating a new, larger block of memory.

wu23399_ch16.qxd 1/2/07 19:40 Page 884

we are wasting 98 percent of the allocated space. On the other hand, if the alloca-
tion amount is too small, we run the risk of overflow. If the amount of memory use
varies widely every time the program is executed, then allocating just the right
amount of memory to reduce the chances of underutilization and overflow may
prove to be difficult.

Costly Update Operations
Suppose we have an array that contains ages (int), and the ages are sorted in ascend-
ing order. We can then use the efficient binary search, explained in Chapter 11, to
locate a specific age in the array. Notice the ability to use the binary search here is
the direct benefit of the CMA scheme. To maintain the sorted order, we must add a
new element to the array at the right position. Similarly, when we remove an exist-
ing age from the array, a “hole” results in the array, and we must fill this hole by
shifting the elements in the array. The cost of adding an element to and removing an
element from an array is, therefore, proportional to the size of memory.

16.1 Contiguous Memory Allocation Scheme 885

Dynamic Versus Static Memory Allocation
Dynamic memory allocation means the amount of memory for storing data can be
specified at runtime, that is, while the program is being executed. In contrast, static
memory allocation means the amount of memory for storing data must be speci-
fied at compile time. With static memory allocation the amount of memory a pro-
gram uses is therefore known before the program is executed. And the amount of
memory allocated for the program cannot be changed during the runtime.

One advantage of dynamic allocation is the ability to customize the size of an
array to the user’s request.We can prompt the user to enter the size of an array she
wants and then allocate the space accordingly, for example:

int[] number;

int size = getInput(); //ask the user for the array size

number = new int[size]; //allocate the size the user wants

Older programming languages, such as Fortran, support only the static allo-
cation, while more modern programming languages, such as Java, support the
dynamic allocation also. Java uses dynamic memory allocation for the refer-
ence data types.The Java system reserves a portion of memory called heap memory
for dynamically allocated data.

dynamic
memory
allocation

static
memory
allocation

heap
memory

1. If the base address of an int array number is 2030, then what is the address
of number[6]?

2. Name the possible disadvantages of CMA.

wu23399_ch16.qxd 1/2/07 19:40 Page 885

16.2 Noncontiguous Memory Allocation Scheme
One of the disadvantages of the CMA scheme is a possible underutilization of allo-
cated space because the program may not always utilize all the allocated space. To
achieve more efficient usage of allocated space, the NMA scheme allocates a num-
ber of smaller blocks piecemeal. For example, instead of allocating a single
memory block of 500 integers, we can allocate 10 memory blocks, with each block
having the capacity for 50 integers. We allocate these 50-integer memory blocks not
all at once, but over the course of execution as the need arises. For example, if the
program processed 200 integers in one execution, then we would allocate only
4 blocks. If the program processed 70 integers in another execution, then we would
allocate 2 blocks.

If the memory blocks are not allocated at once but in piecemeal fashion, then
we cannot expect them to be allocated at contiguous memory addresses because, by
the time a request for a next block is made, it is very likely the space that immediately
follows the previously allocated block is already allocated and used for other pur-
poses. So the space for the next block must be found somewhere else in the memory.
This will result in allocated blocks being scattered over the memory, as illustrated in
Figure 16.2. Since the allocated memory blocks are not contiguous, the NMA
scheme “links” the blocks into a chain so we can access the data in these blocks.

Figure 16.5 shows the state where three blocks are allocated. A block can be
declared to store any type and number of data items. For example, we can declare
a block to hold 1000 integers, 20 characters, 500 doubles, and so forth. For this dis-
cussion, we do not care about the actual contents of the blocks, so we will simply

886 Chapter 16 Memory Allocation Schemes and Linked Data Structures

1000

3000

...

...

...

B

...

6000

A

C

Each block consists of data
and the link that points to
the next block in the chain.

Nonexistent memory
address is used to signal
the end of the chain.

We need a separate
variable to store the
address of the first block.

6000

1000

-1

start 3000

Figure 16.5 Three separate blocks of memory are allocated, with each block containing the address of the
next block in the chain. Following the links from start, we visit blocks in the order of A, B, and C.

wu23399_ch16.qxd 1/2/07 19:40 Page 886

label them with alphabets. We label the first block A, the second block B, and so
forth. To be able to access the blocks in a chain, we link them by appending each
block with the address of the next block that follows it. Because memory addresses
are positive values, we place a negative number, such as �1, to signal the end of the
chain. The addresses we place in the blocks are called links or pointers. The end-
of-chain marker is called a null link. Notice that the addresses of the blocks have no
relation whatsoever to the relative order of the blocks in the chain. In other words,
the address of a block does not have to be lower than those of the blocks that follow
it in the chain. For example, block A comes before block B in the chain, but the
address of block A is higher than the address of block B.

Adding to or removing a block from a chain is a matter of simply adjusting the
link values. To remove a block from a chain, all we have to do is to reset one link.
Figure 16.6 shows an example where we remove block B from the chain. All we do
is to change the link value in block A from 1000 to 6000. Block B becomes
“garbage” and eventually gets marked as usable by the garbage collection process.

Adding a new block to a chain is equally easy. We first locate the space large
enough for the block and allocate it. Then we adjust the link values. Figure 16.7
shows an example of adding a new block at the end of a chain.

In the illustrations up to now, we showed hypothetical addresses for allocated
blocks. In reality, a programmer (using a high-level programming language such as
Java) does not have a means to know the actual addresses where the blocks are
allocated. As such, it is more convenient for us to draw a conceptual picture of
linked blocks. Figure 16.8 redraws Figure 16.5 as a conceptual diagram that does
not include any memory addresses. For the remainder of this book, we will use only
the conceptual diagrams.

16.2 Noncontiguous Memory Allocation Scheme 887

links, pointers

null link

�������� ������	
��
	���������

This link
value is
now 6000.

1000

3000

...

...

...

...

6000

A

C

1000

3000

...

...

...

B

...

6000

A

C

6000

1000

-1

1000

3000

...

...

...

B

...

6000

A

C

6000

6000

-1 -1

1000

start 3000 start 3000 start 3000

Figure 16.6 This diagram illustrates the removal of a block from a chain. We remove a block from a chain by
resetting the link value of the previous block to point to the block that follows the block we’re removing.

wu23399_ch16.qxd 1/2/07 19:40 Page 887

888 Chapter 16 Memory Allocation Schemes and Linked Data Structures

1000

3000

...

...

...

B

6000

4000

A

C

D

This link
value is
now 4000.

1000

3000

...

...

...

B

...

6000

A

C

6000

1000

-1

6000

6000

-1

4000

�����

start 3000 start 3000

Figure 16.7 This diagram illustrates the addition of a new block to a chain. Here the new block is added as
the last block of the chain.

CBA

1000

3000

...

...

...

B

...

6000

A

C

6000

1000

-1

start 3000

start

Figure 16.8 Two types of diagrams for depicting a chain of memory blocks. Because we do not care about
the actual addresses of the blocks, we use arrows in the conceptual diagram.

wu23399_ch16.qxd 1/2/07 19:40 Page 888

Finer Control of Space Usage
With CMA, we often end up not fully utilizing the allocated memory space.
But with NMA, we allocate only the necessary amount of memory when it is
needed, so we have a finer control of space usage that will eliminate the kind
of space waste we see in CMA. Notice, however, that for each allocated block
in NMA, we use extra space for the links. For the most part, the extra space we
need for a link (most commonly, 4 bytes) is negligible compared to the total size
of a block.

Faster Update Operations
With CMA, when we insert an item, we may have to shift items so we can place the
added item in a correct position to maintain some order (e.g., descending order of
age values). Similarly, when we remove an item, we have to fill the vacated position
with another item. We described such update operations for CMA (an array) in
Chapter 10. With NMA, adding to and removing a block from a chain are just a
matter of updating the link field. We will see exactly how the update operations are
done in Section 16.3.

Slower Traversing of Elements
One of the main advantages of CMA is the fast access to an item by using the sim-
ple address computation with indexing. Such fast access is not possible with NMA.
We have to traverse the links starting from the first block. When the number of
blocks increases, the time to locate the desired item grows proportionally. The
access time of CMA, on the other hand, remains the same regardless of the size of
the allocated block.

16.2 Noncontiguous Memory Allocation Scheme 889

1. Redraw the following memory diagram as a conceptual diagram:

2. Name the key disadvantage of CMA.

1000

4000 ...

...

...

X

...

6000

Y

Z

-1

6000

1000

start 4000

wu23399_ch16.qxd 1/2/07 19:40 Page 889

16.3 Manipulating Linked Lists
When we create and manipulate arrays in our program, we are effectively using the
CMA. In this section, we will learn how to define a class that uses the NMA. Let’s
begin by introducing a couple of new terms when using the NMA in a program. It
is more common to refer to a chain of blocks as the linked list and the blocks in the
chain as the nodes. To keep our discussion simple, we will use a node that contains
only a single integer (more complex cases will be presented in Section 16.4 and the
later chapters). A single node in a linked list, therefore, has two components: a sin-
gle integer and a link. The single integer is the data we store in a node, and the link
points to a node that follows this node (or a null link if this node is the last node in
the list). These components in a node are often called the data field and the link field.

To realize this node structure, we define a class with two data members. We
will call the class Node and its two data members item and next:

class Node {

private int item;

private Node next;

...
}

Notice the data type for the data member next. It is declared as Node, which may
look peculiar at first, but it makes a perfect sense if you think about it a little. The
next field of a node points to the next node, so the value we store in the next data
member must be a reference to the next node, which is another instance of the Node
class. Thus, the data type of the data member next is declared as Node. We store a
null reference in the link field when there’s no next node. After adding the con-
structors, the accessors, and the mutators, we have the complete definition:

890 Chapter 16 Memory Allocation Schemes and Linked Data Structures

linked list

nodes

data field

link field

class Node {

private int item;

private Node next;

public Node() {
this(0, null);

}

public Node(int data, Node node) {
setItem(data);
setNext(node);

}

Node

wu23399_ch16.qxd 1/2/07 19:40 Page 890

public int getItem() {
return item;

}

public Node getNext() {
return next;

}

public void setItem(int data) {
item = data;

}

public void setNext(Node node) {
next = node;

}
}

16.3 Manipulating Linked Lists 891

Diagram for Linked Nodes
If we used the standard icon adopted in this textbook for drawing an object, then
we would have drawn an instance of the Node class as

However, a linked node structure is traditionally drawn as

We will use the traditional notation in this textbook when drawing linked
lists.

15

myNode

:Node

item

next

Node myNode = new Node(15, null);

15

myNode

wu23399_ch16.qxd 1/2/07 19:40 Page 891

Adding Nodes to a Linked List
Let’s go through a number of examples to illustrate how we might use Node objects
in building a linked list. In the first example, we will create a linked list of three
integers 45, 98, and 23. Here’s the code:

Node one, two, three;

one = new Node(45, null); //create the first node

two = new Node(98, null); //the second node, and

three = new Node(23, null); //the third node

one.setNext(two); //link them

two.setNext(three);

Executing this code will result in the following state:

We can achieve the same result without calling the setNext method. When
creating a new node, we can pass a reference to the next node as the second
argument. Here’s how:

Node one, two, three;

three = new Node(23, null);

two = new Node(98, three);

one = new Node(45, two);

Notice that we used three separate variables to refer to three individual nodes.
Such a technique, of course, will not work if we have to create a linked list of
N nodes, where N is some unknown large number. Say, for example, we need to
create a linked list of positive integers entered by the user. We repeatedly ask the
user for the next positive integer and stop the repetition when a zero or a negative
number is entered. We can create such a list by using only three variables. We will
go through several variations. Here’s the first one:

/* Variation 1: Creating a linked list of N nodes
using three variables 'start', 'tail',
and 'next'

*/

Scanner scanner = new Scanner(System.in);

Node start, tail, next;

239845

threetwoone

892 Chapter 16 Memory Allocation Schemes and Linked Data Structures

wu23399_ch16.qxd 1/2/07 19:40 Page 892

start = null;

int number = scanner.nextInt();

if (number > 0) {

start = new Node(number, null); //create the first node

tail = start;

//get more numbers
while (true) {

number = scanner.nextInt();

if (number <= 0) break;

next = new Node(number, null); //create a new node

tail.setNext(next); //link the node as the last node

tail = next; //set tail point to the new last node
}

}

This code handles the case of empty list properly. When the first number
entered is not a positive value, the variable start is set to null. If there is one or more
positive integers, then the variables start and tail point to the first node and the last
node, respectively. Figure 16.9 shows the sequence of creating a linked list of four
positive integers, and Figure 16.10 shows the three steps involved in adding a new
node to a list.

In the next variation, we will accomplish the same task by using only two
variables start and tail. Instead of using a separate variable next to refer to a new
node, we can directly link the new node to the current last node by updating the next
field of the tail node (i.e., the node which tail is pointing at). Here’s how:

/* Variation 2: Creating a linked list of N nodes
using only two variables 'start' and 'tail'

*/

Scanner scanner = new Scanner(System.in);

Node start, tail;

start = null;

int number = scanner.nextInt();

if (number > 0) {

start = new Node(number, null); //create the first node

tail = start;

//get more numbers
while (true) {

number = scanner.nextInt();

if (number <= 0) break;

16.3 Manipulating Linked Lists 893

wu23399_ch16.qxd 1/2/07 19:40 Page 893

tail.setNext(new Node(number, null));
//create a new node and link
//the current last node to it

tail = tail.getNext(); //move tail to the new last node
}

}

Notice that the while loop in the code requires that the variable tail point to a
node. To ensure this, we input the first value before the while loop. If the first input

894 Chapter 16 Memory Allocation Schemes and Linked Data Structures

Initial State

���

��

�� ���

�� � �� ��

start

tail next

start tail

start

start

start

E

D

C

B

A

tail next

tail next

Figure 16.9 A linked list of four positive integers is created by using three variables.

wu23399_ch16.qxd 1/2/07 19:40 Page 894

value is positive, then tail is set to point to the first node and the while loop is executed
to input the subsequent values. If the first input value is not positive, the whole routine
terminates and start remains equal to null, indicating correctly that the list is empty.

In the third variation, we eliminate this special handling of the first input value
by using a temporary dummy node. Here’s the code:

/* Variation 3: Creating a linked list of N nodes
using a temporary dummy first node

*/

Scanner scanner = new Scanner(System.in);

16.3 Manipulating Linked Lists 895

next = new Node(number, null);

tail.setNext(next);

tail = next;

�� � �� ��

�� � �� ��

�� ���

start

start

start

start

�� � �� ��

D

E

tail next

tail next

tail next

tail next

Figure 16.10 Steps for adding a node to a list.This shows the detailed steps of the transition from state D to
state E of Figure 16.9.

wu23399_ch16.qxd 1/2/07 19:40 Page 895

Node start, tail;

start = new Node(0, null); //create a dummy first node
tail = start;

//input numbers
while (true) {

int number = scanner.nextInt();

if (number <= 0) break;

tail.setNext(new Node(number, null));
//create a new node and link
//the current last node to it

tail = tail.getNext(); //move tail to the new last node
}

start = start.getNext(); //make start point to the real
//first node

For all three variations, when the list is empty, the value of start is null. The
value of tail, however, is undefined in the first two variations and is a reference to
the dummy node in the third variation. It is left as an exercise to set the value of tail
to null for all variations when the list is empty.

In the fourth, and final, variation, we will add new nodes to the front of a list,
whereas in the previous three variations we added new nodes to the end of a list. In
this variation, we do not have a pointer that points to the last node (notice that the
last node in the list is the first input value entered by the user). It is left as an exer-
cise to set a variable tail to point to the last node. Here’s the code that adds new
nodes to the front of a list:

/* Variation 4: Creating a linked list of N nodes
by adding new nodes to the front
of the list

*/

Scanner scanner = new Scanner(System.in);

Node start, temp;

start = null;

//input numbers
while (true) {

int number = scanner.nextInt();

if (number <= 0) break;

temp = start; //remember the current front

start = new Node(number, temp); //add the new front
//node and set its link
//point to the old front

}

896 Chapter 16 Memory Allocation Schemes and Linked Data Structures

wu23399_ch16.qxd 1/2/07 19:40 Page 896

We use the variable temp for clarity, but it can be eliminated by replacing the last
two statements inside the while loop with the following:

start = new Node(number, start);

Figure 16.11 shows a sample list created by the variation 4 code, and
Figure 16.12 shows the detailed steps of adding a new node to a list.

16.3 Manipulating Linked Lists 897

����������������	��
���������������������������

start

��

���

�� ���

�� �� � ��

A

B

C

D

E

Initial State

start

start

start

start

Figure 16.11 The variation 4 code for creating a linked list. Nodes are added to the front of a list.This shows
the result of adding 15, 8, 20, and 12.

wu23399_ch16.qxd 1/2/07 19:40 Page 897

Searching Nodes in Linked Lists
When we maintain a collection of data, one of the key operations we need is the
ability to search for desired information. For example, we might want to locate
the node with the largest value. An operation to locate a desired information is
called searching. There are two different ways to search for an item in a collection.
The first is a search by position, and the second is a search by value. Let’s assume
we already have a linked list with the variable start pointing at the first node. We
will present the search by value here and leave the search by position as an exercise.

898 Chapter 16 Memory Allocation Schemes and Linked Data Structures

prev = new Node(number, null);

prev.setNext(start);

start = prev;

�� �� � ��

�� �� � ��

startprev

prev

start

start

�� ���

�� �� � ��

D

E

prev

startprev

Figure 16.12 Steps for adding a node to a list by using variation 4. This shows the detailed steps of the
transition from state D to state E of Figure 16.11.

searching

wu23399_ch16.qxd 1/2/07 19:40 Page 898

Given a linked list start, the following code prints out Found if the searched num-
ber is in the list and Not Found otherwise. If start is an empty list, we will print out
Not Found.

Scanner scanner = new Scanner(System.in);

Node p;

int number = scanner.nextInt();

p = start; //'start' points to a linked list

while (p != null) {

if (p.getItem() == number) { //found the node
break;

}

p = p.getNext(); //move p to the next node
}

if (p != null) {

System.out.println("Found");

} else {

System.out.println("Not Found");
}

The while loop

while (p != null) {

...

p = p.getNext(); //move p to the next node
}

follows the standard pattern of traversing the nodes in a linked list. We use this
processing pattern frequently. For example, the following code counts the number
of nodes in a given linked list.

Node p;
int cnt = 0;

p = start; //we assume start points to a linked list

while (p != null) {

cnt++;

p = p.getNext(); //move p to the next node
}

System.out.println("Size of a list is " + cnt);

16.3 Manipulating Linked Lists 899

wu23399_ch16.qxd 1/2/07 19:40 Page 899

Bad Version

When the loop includes an if test that breaks out of the loop, we can include
the test in the while condition. In other words, instead of writing

while (p != null) {

if (p.getItem() == number) { //found the node
break;

}

p = p.getNext(); //move p to the next node
}

we can write

while (p != null && p.getItem() != number) {

p = p.getNext();
}

But we must be very careful because we cannot write it as

While (p.getItem() != number && p != null) {

p = p.getNext ()
}

Can you tell why not?

Removing Nodes from Linked Lists
Let’s study how we can remove a node from a linked list. Consider the following
linked list:

Suppose we want to remove the 20 node (i.e., the node whose content is 20) from
the linked list. We remove the designated node by detaching it from the linked list;
that is, we reset the next field of the 8 node to point to the 12 node as follows:

15 8 20 12

start

15

Remove this node

8 20 12

start

900 Chapter 16 Memory Allocation Schemes and Linked Data Structures

wu23399_ch16.qxd 1/2/07 19:40 Page 900

Since no links are now pointing to the 20 node any longer, the garbage collection
will eventually deallocate memory occupied by this node.

To remove a node, we need a pointer to the node that precedes the node to be
removed. For this example, we need a pointer to the 8 node to remove the 20 node.
We assume the node to be removed is identified by its value. Here’s the code to
remove the specified node:

Scanner scanner = new Scanner(System.in);

Node prev, del; //del points to the node to remove
//prev points to the previous node

int number = scanner.nextInt();

del = start; //we assume start points to a linked list
prev = null;

while (del != null && number != del.getItem()) {

prev = del; //move the two pointers forward
del = del.getNext();

}

if (del == null) {

System.out.println("Delete Node Not Found");

} else {

if (del == start) {

start = start.getNext(); //remove the first node

} else {

prev.setNext(del.getNext());
//sets the next field of prev to
//the next field of del

}
}

Figure 16.13 illustrates the two cases when removing a node. In case 1, we
remove the first node. We achieve this by updating the variable start to point
to the second node, which will become the first node in the new linked list. In
case 2, we remove a node other than the first node. We reset the next field of the
previous node to point to the node that follows the removed node. Notice that
in both cases, even though the removed node is detached from the linked list,
the variable del still points to it in the diagram. As long as there’s a variable that
is pointing to a node, it does not get deallocated. If del is declared as a local
variable (which is most likely the case), then it is erased when the execution of
the method is complete. So the removed node will eventually have no variables

16.3 Manipulating Linked Lists 901

wu23399_ch16.qxd 1/2/07 19:40 Page 901

pointing at it and get deallocated. Even if the del variable is not a local (it could
be a data member of some class, for example), in a subsequent removal operation,
it will get reset to point to another node. So either way, the removed node will get
deallocated eventually.

902 Chapter 16 Memory Allocation Schemes and Linked Data Structures

Case 1

Case 2

start = start.getNext();

prev.setNext(del.getNext());

�� � ����

�� � ����

�� � ����

�� � ����

start prev del

del start

start prev del

startdel

Figure 16.13 Two cases of deleting a node from a linked list. The first is the removal of the first node.
The second is the general case of removing a node other than the first node.

wu23399_ch16.qxd 1/2/07 19:40 Page 902

16.4 Linked Lists of Objects 903

1. Draw a diagram that shows the result of running the following code:

Node one = new Node(10, null);
Node two = new Node(20, one);

2. Given a linked list start, write a code that counts the number of nodes in the list.

3. Given a linked list start, write a code that sets the second pointer tail to point
to the last node in the list. You must scan the list from the first node to locate
the last node (the one with the null link field).

16.4 Linked Lists of Objects
As we can declare arrays of primitive data types and arrays of objects, we can define
both linked lists of primitive data types and objects. In Section 16.3, we presented a
linked list of primitive data type. To complete our study of the basic linked data
structure, we will describe a linked list of objects in this section. We will use the
simple Bicycle class introduced in Chapter 4 with a slight modification. Here’s the
definition of the Bicycle class we use in this section:

class Bicycle {

private String ownerName;

public Bicycle(String name) {
setOwnerName(name);

}

public String getOwnerName() {
return ownerName;

}

public void setOwnerName(String name) {
ownerName = name;

}
}

First we define the node structure. To avoid confusion, we will name this node
structure BNode. Here’s the definition:

BNode

class BNode {

private Bicycle item;

private BNode next;

wu23399_ch16.qxd 1/2/07 19:40 Page 903

public BNode() {
this(null, null);

}

public BNode(Bicycle data, BNode node) {
setItem(data);
setNext(node);

}

public Bicycle getItem() {
return item;

}

public BNode getNext() {
return next;

}

public void setItem(Bicycle data) {
item = data;

}

public void setNext(BNode node) {
next = node;

}
}

904 Chapter 16 Memory Allocation Schemes and Linked Data Structures

Notice the similarity between the BNode and Node classes. They are basically iden-
tical except for the difference in the data types of the item field. We will examine the
possibility of defining a generic node structure that will be able to store any type of
data item in Chapter 17.

The data type of the item field in the BNode structure is declared as Bicycle.
This means the value we store in the item field is a reference to a Bicycle object. The
following diagram illustrates a linked list of three BNode nodes with the item field
of each node pointing at a Bicycle object:

�������� �������� ��������

We use different colors
solely for the purpose
of distinguishing the

pointers in the item
and next fields.

start

wu23399_ch16.qxd 1/2/07 19:40 Page 904

Adding Nodes to Linked Lists of Objects
Let’s go through a number of examples, similar to those described in the previous
section, to illustrate how we manipulate BNode objects. In the first example, we will
create a linked list of N Bicycle objects. We repeatedly ask the user for the owner
name of a Bicycle object and stop the repetition when the string QUIT is entered.
Here’s one way to create a linked list of N Bicycle objects:

Scanner scanner = new Scanner(System.in);

BNode start, tail, next;

start = null;

String name = scanner.next();

if (!name.equalsIgnoreCase("QUIT")) {

start = new BNode(new Bicycle(name), null);
//create the first node

tail = start;

//get more names
while (true) {

name = scanner.next();

if (name.equalsIgnoreCase("QUIT")) break;

next = new BNode(new Bicycle(name), null);
//create a new node

tail.setNext(next); //link the node as the last node

tail = next; //set tail to point to the new last node
}

}

Searching Nodes in Linked Lists of Objects
Now let’s see how we can search for a specific Bicycle object. We search for a Bicycle
object by specifying its owner name. We will return the first Bicycle object that
matches the given owner name. If the names are distinct, then the object found is the
only Bicycle object that matches the search criteria. We assume here that we already
have a linked list with the variable start pointing at the first node. Given a linked list
start (i.e., a linked list whose first node is pointed by the variable start), the follow-
ing code prints out Found if the search name is located in the list and Not Found
otherwise. If start is an empty list, we will print out Not Found.

Scanner scanner = new Scanner(System.in);

BNode p;

String searchName = scanner.next();

p = start; //we assume start points to a linked list

16.4 Linked Lists of Objects 905

wu23399_ch16.qxd 1/2/07 19:40 Page 905

while (p != null) {

String name = p.getItem().getOwnerName();

if (name.equals(searchName)) { //found the node
break;

}

p = p.getNext(); //move p to the next node
}

if (p != null) {

System.out.println("Found");

} else {

System.out.println("Not Found");
}

Notice the general pattern of the search routine is basically identical to the one
we’ve seen for searching a linked list of integers. The key, and critical, difference is
in the way we retrieve the data item. In the code, the expression

p.getItem()

will return a Bicycle object (specifically, a reference to a Bicycle object). We are
interested in the owner’s name of this Bicycle object, so we write

String name = p.getItem().getOwnerName();

Then we compare it against the search name as

if (name.equals(searchName)) {

We can break the statement that retrieves the owner’s name of a Bicycle object
into two statements as

Bicycle bike = p.getItem();
String name = bike.getOwnerName();

A separate variable such as bike is useful when we need to access more than one
data member value or call other methods of an object. We do not have such a need
in this example, so we combine the two statements into one.

Removing Nodes from Linked Lists of Objects
The code to remove a BNode from a list is identical to the one seen in the previous
section. The only difference is in how we compare the item and the search value.
The content of the item field is a reference to a Bicycle object. We retrieve its owner
name and compare this to the search value as

del.getItem().getOwnerName().equals(searchName)

906 Chapter 16 Memory Allocation Schemes and Linked Data Structures

wu23399_ch16.qxd 1/2/07 19:40 Page 906

We will list the almost identical code to remove the searched node for complete-
ness:

Scanner scanner = new Scanner(System.in);

BNode prev, del; //del points to the node to remove
//prev points to the previous node

String searchName = scanner.next();

del = start; //we assume start points to a linked list
prev = null;

while (del != null) {

if (del.getItem().getOwnerName().equals(searchName)) {
break; //found the node

}

prev = del; //move the two pointers forward

del = del.getNext();
}

if (del == null) {

System.out.println("Delete Node Not Found");

} else {

if (del == start) {

start = start.getNext(); //remove the first node

} else {

prev.setNext(del.getNext());
//sets the next field of prev to
//the next field of del

}
}

16.4 Linked Lists of Objects 907

1. Draw a diagram that shows the result of running the following code:

BNode one = new BNode(new Bicycle("John"), null);
BNode two = new BNode(new Bicycle("Jack"), one);

2. Given a linked list start, write a code that prints out the owner name of all
Bicycle objects in the list.

wu23399_ch16.qxd 1/2/07 19:40 Page 907

Sample Development

908 Chapter 16 Memory Allocation Schemes and Linked Data Structures

Public
Interface

16.5 Sample Development

HumongousInteger

Let’s study how we can use the linked node structure in implementing a useful class.
If you look inside the java.math package, you will find a class named BigInteger. The
primitive data type int uses 4 bytes to store an integer value and is limited to the maxi-
mum value of 232 � 1. However, in many applications, such as cryptography, we need to
deal with integer values much larger than the int data type can hold. A BigInteger object
has no limits on the size of a value it can store. In this section, we will implement a very
simplified version of the BigInteger class by using a linked list.

Problem Statement

Design a class that implements a simplified version of java.math.BigInteger.
The class supports four basic arithmetic operations along with appropriate
constructors and utility methods. Use the linked node structure for imple-
mentation.

Overall Plan

To avoid the naming conflict with the java.math.BigInteger class, we will name our class
HumongousInteger. We have two major tasks to complete in the overall development
plan.The first task is to decide the public interface of the class, that is, its public methods,
including the constructor. We will model our design after the BigInteger class. The
second task is to decide the data representation, including details such as how many
digits we store in a node and how we are going to distinguish positive and negative
humongous integers.

We will define one method for each of the four basic arithmetic operations. We
define these methods in the style of the Fraction class from Chapter 7:

HumongousInteger hi1, hi2, hi3, hi4, hi5, hi6, hi7;
...
h3 = h1.add(h2); //add h2 to h1
h4 = h1.sub(h2); //subtract h2 from h1
h5 = h1.mult(h2); //multiply h2 to h1
h6 = h1.div(h2); //divide h1 by h2

We will implement these operations as nondestructive methods so both the receiver
object h1 and the argument object h2 remain the same. The result of an operation is
returned as a new HumongousInteger object.

For the constructors, we allow the client programmer to create a new instance of
HumongousInteger by passing either a string or a long as an argument. For example,
we can create an instance as

HumongousInteger hi
= new HumongousInteger("12345678901234567890");

wu23399_ch16.qxd 1/2/07 19:40 Page 908

or

HumongousInteger hi
= new HumongousInteger(1234567890);

The second constructor takes an integer value (data type long) as an argument.By setting
the data type to long, we can accept any integer data type (byte, short, int, and long).
Following the convention, we will include a zero-argument constructor, that initializes
the new created HumongousInteger object to 0, as the third constructor.

We will provide one comparison method named compareTo that returns a nega-
tive, zero, or positive value when the receiving object is less than, equal to, or greater
than the argument object, respectively. Finally, we will define the standard toString
method that returns the string representation of a HumongousInteger object. For this
implementation, we will not include any grouping character, such as the comma, that
separates a group of three digits. The toString method that includes a grouping charac-
ter is left as an exercise.

Here’s the draft class definition:

class HumongousInteger {
...
public HumongousInteger() { ... }
public HumongousInteger(long value) { ... }
public HumongousInteger(String value) { ... }

public HumongousInteger add(HumongousInteger hi) {...}
public HumongousInteger sub(HumongousInteger hi) {...}
public HumongousInteger mult(HumongousInteger hi) {...}
public HumongousInteger div(HumongousInteger hi) {...}

public int compareTo(HumongousInteger hi) {...}

public String toString() {...}
}

Our second task is to decide the data structure to represent a humongous integer.
Since each HumongousInteger object has a varying number of digits and there is no
fixed upper bound on the number of digits a HumongousInteger object can have, using
a linked list to store the digits is a logical choice. To determine the exact data structure,
let’s review the process involved in adding two numbers. Consider the following addition:

carry

We start adding the numbers from the least significant digits and carry 1 over to the
next significant digit when the sum of digits is larger than 10. To support this process of

1 1
2 3 4 0 3 9 8

+ 9 0 4 3
2 3 4 9 4 4 1

16.5 Sample Development 909

Data Repre-
sentation

wu23399_ch16.qxd 1/2/07 19:40 Page 909

16.5 Sample Development—continued

adding digits, we want the link fields to point in the direction from the least to the most
significant digits. If we put a single digit in a node, then the value 9043, for example, can
be represented as

It is common to draw the link field to the right of the item field, but it’s not a rule,
so we can draw the same information as follows:

And, of course, we can reverse the direction of the links and draw the linked list in a more
conventional way as

We will be using either the second or the third type of drawing, whichever is more appro-
priate to the discussion on hand.

Storing one digit per node, as shown in the illustrations here, is a viable option,
but it is not the only option. We can pack each node with more digits so the overall
length of a linked list is shortened. For example, to represent an integer with 100 digits,
we need 100 single-digit nodes, but only 20 five-digit nodes (i.e., each node stores
five digits).What would be an ideal number of digits to store in a single node? To facilitate

3 4 90

start

9 0 4 3

start

9 0 34

start

910 Chapter 16 Memory Allocation Schemes and Linked Data Structures

wu23399_ch16.qxd 1/2/07 19:40 Page 910

some experiments later to determine the effects of the size of the item field, let’s
implement the class in such a way that we can vary the number of digits we store in a
node with a simple modification of the source code. For the base implementation,
we will store 3 digits per node. Using 3-digit nodes, the number 2340398, for example,
is represented as

Notice that the carry from adding the values of two nodes is no more than 1 regardless of
the number of digits stored in a single node.

There is one more detail to consider. How shall we represent negative humongous
integers? We will adopt the signed representation by reserving a data member to store
the sign of a number. This data member will hold �1 for a negative number and �1 for
a positive number. A HumongousInteger object therefore needs (at least) two data
members: one is the sign field and the other is the pointer to the first node of a linked list.
Figure 16.14 shows how two humongous integers, one positive and the other negative,
can be represented using this structure.

2 340 398

start

16.5 Sample Development 911

Figure 16.14 The diagrams illustrate the internal data structure for HumongousInteger objects.
The top one represents 2340398 and the bottom one �453900875.

sign

head

�1

2 340 398

:HumongousInteger

sign

head

�1

453 900 875

:HumongousInteger

wu23399_ch16.qxd 1/2/07 19:40 Page 911

16.5 Sample Development—continued

Let’s first review the addition and subtraction of signed numbers. When adding two
integers, we must consider their signs.The four possible cases are

A + B
A + -B
-A + B
-A + -B

where A and B are positive values. Likewise, when we subtract an integer from another
integer, we must consider their signs. There are also four possible cases for subtraction:

A - B
A - -B
-A - B
-A - -B

Instead of trying to solve the eight cases individually, we will organize them into a smaller
number of cases via algebraic simplification as follows:

A + B → A + B
A + -B → A - B

-A + B → B - A
-A + -B → -(A + B)

A - B → A - B
A - -B → A + B

-A - B → -(A + B)
-A - -B → B - A

We can solve all eight different cases by solving only two cases. They are addition
and subtraction of two positive integers:

A + B

and

A - B

For the subtraction, we assume A is greater than or equal to B. If not, we solve

-(B - A)

Once we can add and subtract two positive integers, we can implement the full
addition and subtraction methods in a very straightforward manner.

912 Chapter 16 Memory Allocation Schemes and Linked Data Structures

wu23399_ch16.qxd 1/2/07 19:40 Page 912

We will develop the class in six steps:

1. Define the node data structure. Implement the constructor and the toString
method.

2. Implement the addition of two positive integers.

3. Implement the subtraction of two positive integers.

4. Implement the full addition and subtraction.

5. Implement the multiplication (left as an exercise).

6. Implement the division (left as an exercise).

Step 1: Implement the Constructors and the toString Method

We have three constructors to implement. The first two can be implemented simply by
calling the third constructor as follows:

public HumongousInteger() {
this("0");

}

public HumongousInteger(long number) {
this("" + number);

}

The third constructor accepts a String value and converts it to a linked list represen-
tation.To simply the implementation,we will only consider a valid input (see Exercise 13 on
page 938).We define the valid format as follows:

[<minus sign>]<digit>+

where the brackets [and] signal the optional component and the plus sign + specifies
one or more repetitions. The formula states an input string has one or more digits
optionally preceded by the negative sign. We do not consider an invalid case
such as

HumongousInteger num = new HumongousInteger("9x00912-2");

Notice that an argument string with leading zeros such as

"0000345"

is valid. The conversion process should ignore the leading zeros; so, for example, given
this String value, the result will be

345
head

16.5 Sample Development 913

Development
Steps

Step 1
Design

wu23399_ch16.qxd 1/2/07 19:40 Page 913

16.5 Sample Development—continued

not

How shall we convert a given String value to the corresponding linked list struc-
ture? The basic idea is to repeatedly extract N characters from the least significant digits
until there are no more characters to extract, where N is the number of digits to store in a
single node. Here we set N to 3. For each extraction, we create a new Node and store the
value in it. Figure 16.15 illustrates the extraction process.

Handling of leading zeroes is a little tricky. For example, if the argument string is

"000000876"

then we can stop the processing when we first hit three zeros. However, seeing three
zeros while processing the string does not always mean we encounter the leading zeros.
For example, consider the following string:

"5000000876"

Instead of trying to handle leading zeros in the extraction process, we will pre-
process the input string and eliminate leading zeros. After any leading zeros are removed
from the argument string, we apply the extraction process illustrated in Figure 16.15.This
preprocessing keeps the extraction process simple. Here’s the overall control flow for the
conversion:

1. Check the first character. If it is the minus sign, remove it and set the sign field
to �1. Otherwise, set the sign field to �1.

2. Eliminate any leading zeros.

3. Apply the extraction process.

Another potential pitfall we must watch out for is the handling of different String
values that represent the numerical value of zero. The following String values all repre-
sent zero:

"0"
"0000"
"-00"

We will have exactly one internal representation for zero, so the implementation of arith-
metic operations that involve zero as their operand is streamlined. Internally, zero will

0 000 345

head

914 Chapter 16 Memory Allocation Schemes and Linked Data Structures

wu23399_ch16.qxd 1/2/07 19:40 Page 914

always be represented as a positive value, that is, �0. For example, even if one passes "�0"
or "�000" to the constructor, internally the numerical value zero will always be repre-
sented as �0.

The toString method is basically the reverse of the constructors. We perform the
reverse of the extraction process of the constructor by scanning through the linked list
and appending the digits to the front of the string. Figure 16.16 illustrates this process.

16.5 Sample Development 915

Figure 16.15 This shows the process of converting a given string representation of a humongous
integer to an internal linked list representation. We continue extracting three characters from the least
significant digits.

sign

head

�1

:HumongousInteger

"2080398"

"2080"

"2"

" "
2 80 398

398

80 398

extract and convert
"2" to 2

extract and convert
"080" to 80

extract and convert
"398" to 398

sign

head

�1

:HumongousInteger

sign

head

�1

:HumongousInteger

sign

head

�1

:HumongousInteger

wu23399_ch16.qxd 1/2/07 19:40 Page 915

16.5 Sample Development—continued

916 Chapter 16 Memory Allocation Schemes and Linked Data Structures

Figure 16.16 This shows the process of converting a linked list representation of
HumongousInteger to a string.

"2080398"

"2"

Process the first node

Process the second node

Process the final node

final result

2 80 398

"080398"

"080" "398"

2 80 398Note: Because the 80 node is
not the last node, we convert
the value to "080", not "80".
Had we converted it to "80",
the final result would have
become "280398" which
is wrong.

ptr

ptr

"398"

2 80 398

ptr sign

head

�1

:HumongousInteger

sign

head

�1

:HumongousInteger

sign

head

�1

:HumongousInteger

"080398"

�

�

wu23399_ch16.qxd 1/2/07 19:40 Page 916

As shown in the figure, we have to be careful when the content of a node has less than
the maximum number of digits the node can hold. In the illustration, we convert the
numerical value of 80 to the string value "080" to maintain the correct magnitude of
the number.

Here’s the step 1 code. Notice how the Node class is defined as the inner class of
HumongousInteger. This class is used strictly by the HumongousInteger class so it is
most natural to define it as the inner class. We define two class constants MAX_DIGITS
and VALUE_RANGE, respectively, for the maximum number of digits we store in a node
and the range of possible values we can store in a node. Because the data member
value is declared as short, MAX_DIGITS can range from 1 to 4. The actual value we store
in the value data member ranges from 0 to VALUE_RANGE �1.

16.5 Sample Development 917

Step 1 Code

class HumongousInteger {

private static final char MINUS = '-';

private Node head;

private byte sign;

public HumongousInteger() {
this("0");

}

public HumongousInteger(long number) {
this("" + number);

}

public HumongousInteger(String number) {

//no error checking; assume the parameter has a valid format

number.trim();

sign = +1;

if (number.charAt(0) == MINUS) {

sign = -1;

number = number.substring(1); //remove the first character

}

number = trimLeadingZero(number);

if (number.equals("0")) {
sign = +1; //input pattern \-0+ or \+0+ gets convert to

//+0 internally
}

Constructors

HumongousInteger (Step 1)

wu23399_ch16.qxd 1/2/07 19:40 Page 917

16.5 Sample Development—continued

head = new Node(); //uses a dummy head node

Node tail = head;

String digits;

while (!number.equals("")) {

int loc = Math.max(number.length() - Node.MAX_DIGITS, 0);

digits = number.substring(loc); //chop off the last 3 digits
//chop off all if < 3 digits

number = number.substring(0,loc);
//if loc == 0, number becomes ""

Node block = new Node(digits);

tail.next = block;
tail = block;

}

head = head.next; //remove the dummy node
}

public String toString() {

StringBuffer strBuf = new StringBuffer("");

String format = "%0" + Node.MAX_DIGITS + "d";

Node p = head;

while (p.next != null) {

strBuf.insert(0, String.format(format, p.value));
//pad leading 0s if the digits are
//in the middle of the number

p = p.next;
}

strBuf.insert(0, p.value); //process the most significant node
//don't pad leading 0s for this node

if (sign < 0) {
strBuf.insert(0, "-");

}

return strBuf.toString();
}

private static String trimLeadingZero(String str) {

StringBuffer strBuf = new StringBuffer(str);

918 Chapter 16 Memory Allocation Schemes and Linked Data Structures

toString

trimLeadingZero

wu23399_ch16.qxd 1/2/07 19:41 Page 918

int length = strBuf.length();

for (int i = 0; i < length; i++) {

if (strBuf.charAt(0) == '0') {
strBuf.deleteCharAt(0);

}
}

if (strBuf.length() == 0) {
strBuf.append('0');

}

return strBuf.toString();
}

//-------------------------------
// Inner Class: Node
//-------------------------------

class Node {

/** Number of digits to store in a block */
private static final short MAX_DIGITS = 3;

private short value; //ranges from 0 to VALUE_RANGE – 1

private Node next;

private Node() {

this("0");
}

private Node(String str) {

this(Short.parseShort(str));
}

private Node(short val) {
value = val;
next = null;

}
}

}

16.5 Sample Development 919

Node

We need to test that all three constructors and the toString method work correctly.
Here’s one possible test sequence:

HumongousInteger[] hi = new HumongousInteger[7];

hi[0] = new HumongousInteger(123456789);
hi[1] = new HumongousInteger(-45);

Step 1 Test

wu23399_ch16.qxd 1/2/07 19:41 Page 919

16.5 Sample Development—continued

hi[2] = new HumongousInteger("123456789012344");
hi[3] = new HumongousInteger("-0004000000");
hi[4] = new HumongousInteger(-3458);
hi[5] = new HumongousInteger(-0000);
hi[6] = new HumongousInteger();

for (int i = 0; i < hi.length; i++) {

System.out.println(i + ": " + hi[i].toString());
}

Running this test should result in the following output:

0: 123456789
1: -45
2: 123456789012344
3: -4000000
4: -3458
5: 0
6: 0

Step 2: Implement the Basic Addition

In this step, we will implement the addition operation of two positive numbers. And in
the next step, we will implement the subtraction operation of two positive numbers.
We need these two operations in order to implement the full addition and subtraction
operations for signed numbers.

The basic idea for adding two positive humongous integers is simple.We have two
linked lists, each representing a single humongous integer. We need to create a new
linked list that represents the sum of the two linked lists. To compute the sum, we scan
through the two linked lists and add the corresponding pairs, starting with the least sig-
nificant nodes of the two linked lists. When the addition of two nodes results in a carry,
we include this carry in the next addition. When no more nodes remain in one of the
linked lists (e.g., if the first list contains five nodes and the second list contains nine nodes,
then no more nodes remain in the first list after the five pairwise additions), we move the
remaining nodes from the other list to the result list, adding the carry as necessary.

Here’s the step 2 code.

920 Chapter 16 Memory Allocation Schemes and Linked Data Structures

Step 2
Design

Step 2
Code

class HumongousInteger {

...

private HumongousInteger(Node head) {

HumongousInteger (Step 2)

Constructors

wu23399_ch16.qxd 1/2/07 19:41 Page 920

this.head = head;
this.sign = +1;

}

...

public HumongousInteger add(HumongousInteger num) {

return this.addPos(num); //TEMP -- add only two positive values
}

private HumongousInteger addPos(HumongousInteger num) {

Node p, q, r, t;

p = this.head;
q = num.head;

t = new Node(); //dummy head node
r = t;

short carry = 0;

while (p != null && q != null) {

short sum = (short) (carry + p.value + q.value);

r.next = new Node();
r = r.next;

r.value = (short) (sum % Node.MAX_VALUE);
carry = (short) (sum / Node.MAX_VALUE);

p = p.next;
q = q.next;

}

p = (p == null) ? q : p; //reset p to point to the remaining blocks

while (p != null) {

r.next = new Node();
r = r.next;

r.value = (short) ((p.value + carry) % Node.MAX_VALUE);
carry = (short) ((p.value + carry) / Node.MAX_VALUE);

p = p.next;
}

if (carry > 0) { //overflow, final carry
r.next = new Node((short) carry);

}

return new HumongousInteger(t.next); //remove the dummy head node
}

...

16.5 Sample Development 921

addPos

wu23399_ch16.qxd 1/2/07 19:41 Page 921

16.5 Sample Development—continued

class Node {

...

/** The range of values stored in a Block */
private static final short MAX_VALUE = 1000;

...
}

}

922 Chapter 16 Memory Allocation Schemes and Linked Data Structures

Node

The testing procedure for step 2 is more complex than that for step 1. When we add
two humongous integers,how can we check that the result is correct? We can certainly do
it manually, but that would be too tedious. What we can do is to compare the result with
the result of adding two BigInteger values. Here’s how:

HumongousInteger h1, h2, hsum;
BigInteger b1, b2, bsum;

h1 = new HumongousInteger("123450006789");
h2 = new HumongousInteger("987654321");
hsum = h1.add(h2);

b1 = new BigInteger("123450006789");
b2 = new BigInteger("987654321");
bsum = b1.add(b2);

if (bsum.compareTo(new BigInteger(hsum.toString())) == 0){
System.out.println("Okay");

} else {
System.out.println("Not Okay");

}

We can modify the code to repeatedly accept input values (String) when creating
HumongousInteger and BigInteger objects to test the operation by using different
values. If we wanted to test the operation numerous times, this interactive approach
would become cumbersome. A better approach is to use an array to store values and test
the addition of all pairs as follows:

Step 2 Test

String strArray[] = {"100005000",
"9182734738218170000000072817",
"8000",
"3283748300000",
"7",

wu23399_ch16.qxd 1/2/07 19:41 Page 922

16.5 Sample Development 923

"100005000",
"2147483646",
"2147480000",
"1000000000000000000000000000000000000",
};

HumongousInteger hi1;
HumongousInteger hi2;
HumongousInteger hi3;

BigInteger bi1;
BigInteger bi2;
BigInteger bi3;

int errorCnt = 0;

for (int i =0; i < strArray.length; i++) {

for (int j =0; j < strArray.length; j++) {

hi1 = new HumongousInteger(strArray[i]);
hi2 = new HumongousInteger(strArray[j]);

bi1 = new BigInteger(strArray[i]);
bi2 = new BigInteger(strArray[j]);

System.out.println("\n");
System.out.println("For number pairs: i= " + i + " j= " + j);
System.out.print ("hi1: " + hi1.toString() + " ");
System.out.println("hi2: " + hi2.toString() + " ");

//---------- A D D P O S I T I V E ----------------//
hi3 = hi1.add(hi2);
bi3 = bi1.add(bi2);

System.out.print("Result: " + hi3.toString() + " ");

if (bi3.compareTo(new BigInteger (hi3.toString())) != 0) {
errorCnt++;
System.out.println("Addition Failed");

}
}

}

System.out.println("\n\nTest Result: " + (errorCnt == 0 ?
"Success!" :
errorCnt + " errors"));

We can easily increase or decrease the number of values in the array. If there are no errors, the
message Success! is displayed. Otherwise, the message <N> errors is displayed where <N> is
replaced by the actual number of errors.

wu23399_ch16.qxd 1/2/07 19:41 Page 923

16.5 Sample Development—continued

Step 3: Implement the Basic Subtraction

We are now ready to implement the subtraction of two positive humongous integers.
To implement this operation, we must first be able to compare two humongous integers
so that we can always subtract the smaller number from the larger one. Suppose we
want to subtract a humongous integer R from L. If L is greater than or equal to R, then
we compute

L - R

If, however, L is smaller than R, then we compute

-(R - L)

For example, if we want to subtract 5 from 8 (8 � 5), we compute

8 - 5 ==> 3

If we want to subtract 8 from 5 (5 � 8), then we compute the result by subtracting the
smaller number from the larger one and negating the difference as

- (8 - 5) ==> -3

So, to implement the basic subtraction method, we must be able to compare two
humongous integers. We have already identified a method called compareTo that com-
pares two humongous integers. We will implement this method in this step so the basic
subtraction method can use it. (Notice that the compareTo method we implement here
is capable of comparing both positive and negative numbers.)

Suppose L and R are humongous integers. The compareTo method is called in the
following manner:

L.compareTo(R)

We need to return a negative value (int) if L is less than R, zero if L and R are equal, and a
positive value if L is greater than R. There are three cases to consider:

Case 1. The signs of L and R are different.

Case 2. The signs of L and R are the same, but the lengths of their respective linked lists
are different.

Case 3. The signs of L and R are the same and the lengths of their respective linked
lists are the same.

For case 1, we can easily determine the result by just checking their signs. For ex-
ample, if L is negative and R is positive, the result is negative. For case 2, we can count the
number of nodes in their linked lists. If both L and R are positive, the one with a longer list
is the larger of the two. Otherwise, the one with a shorter list is larger. For case 3, we can
scan the linked lists from the most to the least significant nodes and compare their values.

924 Chapter 16 Memory Allocation Schemes and Linked Data Structures

Step 3
Design

wu23399_ch16.qxd 1/2/07 19:41 Page 924

Unfortunately this scanning order is not trivial to implement because the direction of the
links is from the least to the most significant nodes. We can implement this approach
by temporarily reversing the links, but it is pretty complicated. This approach is left as an
exercise.

Let’s consider another approach that uses string comparison.Suppose, for example,
we want to compare two humongous integers 345000179 and 443456579. We can
convert them to strings and perform a string comparison. We know that

"345000179" < "443456579"

based on lexicographic ordering (that is, "0" < "1" < . . . < "8" < "9"). When using a string
comparison to compare numerical values, we have to watch out for the case when the
respective lengths of the two strings are different. For example, 6 < 50, but "6" > "50".
Here’s the basic idea of how the method can be written:

HumongousInteger L = ...;
HumongousInteger R = ...;

if (L is positive and R is negative) {
return +1; //L is larger

}

if (L is negative and R is positive) {
return -1; //R is larger

}

//L and R have the same sign
String Lstr = L.toString();
String Rstr = R.toString();

int result;

if (Lstr == Rstr) {
result = Lstr.compareTo(Rstr);

} else {
result = Lstr.length() < Rstr.length() ? -1 : +1;

}

return L.sign * result;

Notice that we multiply L.sign to result to get the final result. Consider, for example, L is
�41 and R is �50. The comparison should return a positive value because �41 is larger
than �50, but "�41".compareTo("�50") will return a negative value. By multiplying the
sign of L, we can get the final (correct) result.

Now we are ready to tackle the design of the basic subtraction. Assume we are
subtracting a smaller integer R from a larger integer L. We proceed from the least to most
significant digits and repeat the pairwise subtraction, that is, subtracting the content of
an R node from the corresponding L node. When we perform a pairwise subtraction,
we first check if there was a borrow in the previous pairwise subtraction. If there was,
then we subtract the borrowed amount from the content of the L node. Then we check

16.5 Sample Development 925

wu23399_ch16.qxd 1/2/07 19:41 Page 925

16.5 Sample Development—continued

if a borrow is necessary for this pairwise subtraction. If it is necessary, then we add the
borrowed amount to the content of the current L node and subtract the content of the
corresponding R node from it. We remember if there is a borrow, so this borrow is cor-
rectly reflected in the next pairwise subtraction.

Similar to the addition operation, when there are no more nodes left to process in
one of the lists, we copy the contents of the remaining nodes in the other list to the cor-
responding nodes in the result list, with an appropriate adjustment if there’s any borrow.

When we perform a pairwise subtraction, the result could be 0.This means the con-
tent of the corresponding node in the result list will be 0. After the complete subtraction
is done, it is possible that leading nodes contain only zeros. Consider for example, sub-
tracting 555444330 from 555444300. The result should be 30, not 000000030. We
must adjust the internal data structure so that leading zeros are eliminated. We will define
a method called removeLeadingZero for this purpose. Notice that we now have two
methods with the same name removeLeadingZero. The first method is a utility method
that removes leading zeros in a given string. The second method that we’re adding here
removes leading nodes of a linked list that contains the value of zero.The second method
is implemented by using the first method.

Here’s the step 3 code.

926 Chapter 16 Memory Allocation Schemes and Linked Data Structures

Step 3 Code

class HumongousInteger {

. . .

private HumongousInteger(Node head) {

this.head = head;
this.sign = +1;

}

public int compareTo(HumongousInteger num) {

HumongousInteger L = this;
HumongousInteger R = num;

if (L.isPositive() && R.isNegative()) {
return +1;

}

if (L.isNegative() && R.isPositive()) {
return -1;

}

HumongousInteger (Step 3)

Constructor

compareTo

wu23399_ch16.qxd 1/2/07 19:41 Page 926

//L and R have the same sign, so we compare them.
//We will use a trick here by converting L and R
//back to String and use String compareTo

String Lstr = L.toString();
String Rstr = R.toString();

int result;

int lengthL = Lstr.length();
int lengthR = Rstr.length();

//check the magnitude first
if (lengthL == lengthR) {

result = Lstr.compareTo(Rstr);

} else {

result = (lengthL < lengthR) ? -1 : +1;
}

//now check the sign of two HI
return L.sign * result; // Note: Because the String compareTo

//could return values other than +1, 0, or -1,
//so does this method as the consequence

}

public HumongousInteger sub(HumongousInteger num) {

return this.subPos(num);
//TEMP - subtraction of two positive HI

}

private HumongousInteger trimLeadingZero() {

String numStr = this.toString();

String result = trimLeadingZero(numStr);

if (result.equals("0")) {

return new HumongousInteger(0);

} else if (result.length() < numStr.length()) {

return new HumongousInteger(result);

} else {
return this;

}
}

. . .

16.5 Sample Development 927

sub

trimLeadingZero

wu23399_ch16.qxd 1/2/07 19:41 Page 927

16.5 Sample Development—continued

private boolean isPositive() {

return sign > 0;
}

private boolean isNegative() {

return sign < 0;
}

private HumongousInteger negate() {

sign = (byte) -sign; // -sign is int so typecast is necessary

return this;
}

private HumongousInteger subPos(HumongousInteger num) {

Node p, q, r, t;

boolean isNegative = false;

//always subtract smaller from the larger.
//if num is larger, then the result is negative
if (this.compareTo(num) >= 0) { // this – num

p = this.head;
q = num.head;

} else { //-(num - this)
p = num.head;
q = this.head; isNegative = true;

}

t = new Node(); //dummy head node
r = t;

short borrow = 0, minuend; //for L is a minuend

while (p != null && q != null) {

r.next = new Node();
r = r.next;

minuend = (short) (p.value - borrow);

if (minuend < q.value) { //need to borrow
r.value = (short) (Node.MAX_VALUE + minuend

- q.value);
borrow = 1;

928 Chapter 16 Memory Allocation Schemes and Linked Data Structures

isPositive

isNegative

negate

subPos

wu23399_ch16.qxd 1/2/07 19:41 Page 928

} else { //no borrow
r.value = (short) (minuend - q.value);
borrow = 0;

}

p = p.next;
q = q.next;

}

p = (p == null) ? q : p; //reset p to point to the remaining blocks

while (p != null) {

r.next = new Node();
r = r.next;

r.value = (short) (p.value - borrow);

if (r.value < 0) {

r.value += Node.MAX_VALUE;
borrow = 1;

} else {
borrow = 0;

}

p = p.next;
}

HumongousInteger result = new HumongousInteger(t.next);
//remove the dummy head node

result = result.trimLeadingZero();

if (isNegative) result.negate();

return result;
}

. . .
}

16.5 Sample Development 929

We perform the testing routine of step 3 with the addition operation replaced by
the subtraction operation. We replace the code

//---------- A D D P O S I T I V E ----------------//
hi3 = hi1.add(hi2);
bi3 = bi1.add(bi2);

Step 3 Test

wu23399_ch16.qxd 1/2/07 19:41 Page 929

16.5 Sample Development—continued

with

//-------- S U B T R A C T P O S I T I V E ------------//
hi3 = hi1.sub(hi2);
bi3 = bi1.subtract(bi2);

All the other parts of the step 2 test code remain the same.

Step 4: Implement the Full Addition and Subtraction

Once we have the methods for adding and subtracting two positive integers, we can
implement the full addition and subtraction operations by using the arithmetic rules
stated earlier:

A + B → A + B
A + -B → A - B

-A + B → B - A
-A + -B → -(A + B)

A - B → A - B
A - -B → A + B

-A - B → -(A + B)
-A - -B → B - A

Here A and B represent positive humongous integers. The right-hand side of the arrow
indicates either the addition or the subtraction of positive integers.Let’s consider the case

-A - B → -(A + B)

Assume two humongous integers L and R. The value of L could be A or -A, and the value
of R could be B or -B. We have this case when L is negative (-A) and R is positive (B). We
can implement this case as follows:

HumongousInteger temp, result;

temp = L.negate().addPos(R); //-L + R == -(-A) + B == A + B
result = temp.negate(); //-(A + B)

or more succintly as

HumongousInteger result = L.negate().addPos(R).negate();

The other eight cases can be implemented in a similar manner.

930 Chapter 16 Memory Allocation Schemes and Linked Data Structures

Step 4
Design

wu23399_ch16.qxd 1/2/07 19:41 Page 930

16.5 Sample Development 931

Step 4 Code

HumongousInteger (Step 4)

class HumongousInteger {

. . .

/**
* Copy constructor
*/
public HumongousInteger(HumongousInteger num) {

this.sign = num.sign;

this.head = new Node(); //dummy head node

Node p = head;

Node q = num.head;

while (q != null) {

p.next = new Node(q.value);
p = p.next;
q = q.next;

}

this.head = this.head.next; //remove the dummy head node
}

public HumongousInteger add(HumongousInteger num) {

/* We need to consider four cases, and for each
* of the four cases, we convert the operation
* in terms of addPos and subPos.
*
* We solve the four cases as follows
*
* A + B ---> A + B
* A + -B ---> A – B
* -A + B ---> B – A
* -A + -B ---> -(A + B)
*/
HumongousInteger L = new HumongousInteger(this);
HumongousInteger R = new HumongousInteger(num);

if (L.isPositive() && R.isPositive()) {

return L.addPos(R);
}

if (L.isPositive() && R.isNegative()) {

return L.subPos(R.negate());
}

Here’s the step 4 code.

Constructor

add

wu23399_ch16.qxd 1/2/07 19:41 Page 931

16.5 Sample Development—continued

if (L.isNegative() && R.isPositive()) {

return R.subPos(L.negate());
}

//both negative
return L.negate().addPos(R.negate()).negate();

}

. . .

public HumongousInteger sub(HumongousInteger num) {

/* We need to consider four cases, and for each
* of the four cases, we convert the operation
* in terms of addAbs and subAbs.
*
* We solve the four cases as follows:
*
* A - B ---> A - B
* A - -B ---> A + B
* -A - B ---> -(A + B)
* -A - -B ---> B – A
*/
HumongousInteger L = new HumongousInteger(this);
HumongousInteger R = new HumongousInteger(num);

if (L.isPositive() && R.isPositive()) {

return L.subPos(R);
}

if (L.isPositive() && R.isNegative()) {

return L.addPos(R.negate());
}

if (L.isNegative() && R.isPositive()) {

return L.negate().addPos(R).negate();
}

//both negative
return R.negate().subPos(L.negate());

}

. . .
}

932 Chapter 16 Memory Allocation Schemes and Linked Data Structures

sub

wu23399_ch16.qxd 1/2/07 19:41 Page 932

We now test both the full addition and subtraction operations using a mixture of
positive and negative humongous integers. Here’s the test code:

16.5 Sample Development 933

Step 4 Test

String strArray[] =
{"100005000",
"9182734738218170000000072817",
"8000",
"10",
"3283748300000",
"7",
"100005000",
"-4000",
"2147483646",
"-4500",
"2147480000",
"-2147483646",
"1000000000000000000000000000000000000",
};

HumongousInteger hi1;
HumongousInteger hi2;
HumongousInteger hi3;

BigInteger bi1;
BigInteger bi2;
BigInteger bi3;

int addErrorCnt = 0, subErrorCnt = 0;

for (int i =0; i < strArray.length; i++) {

for (int j =0; j < strArray.length; j++) {

hi1 = new HumongousInteger(strArray[i]);
hi2 = new HumongousInteger(strArray[j]);

bi1 = new BigInteger(strArray[i]);
bi2 = new BigInteger(strArray[j]);

System.out.println("\n");
System.out.println("For number pairs: i= " + i + " j= " + j);
System.out.print ("hi1: " + hi1.toString() + " ");
System.out.println("hi2: " + hi2.toString() + " ");

//----------- A D D --------------------//
hi3 = hi1.add(hi2);
bi3 = bi1.add(bi2);

System.out.print("Result: " + hi3.toString() + " ");

if (bi3.compareTo(new BigInteger (hi3.toString())) != 0
|| !bi3.toString().equals(hi3.toString())) {

wu23399_ch16.qxd 1/2/07 19:41 Page 933

16.5 Sample Development—continued

addErrorCnt++;
System.out.println("Addition Failed");

}

//----------- S U B T R A C T ---------//
hi3 = hi1.sub(hi2);
bi3 = bi1.subtract(bi2);

System.out.print("Result: " + hi3.toString() + " ");

if (bi3.compareTo(new BigInteger (hi3.toString())) != 0
|| !bi3.toString().equals(hi3.toString())) {

subErrorCnt++;
System.out.println("Subtraction Failed");

}
}

}

System.out.println("\n\nTest Result: " +
(addErrorCnt == 0 && subErrorCnt == 0 ?

"Success!" : "Error somewhere"));
}

934 Chapter 16 Memory Allocation Schemes and Linked Data Structures

Step 5: Implement the Multiplication Operation

There are two ways the multiplication operation can be implemented. A simplistic imple-
mentation computes the product of two humongous integers L and R by adding L to the
result R times. For example, to derive the product of 8 and 3, we compute

8 + 8 + 8

A better implementation, with a much better performance, computes the product by
carrying out the long multiplication algorithm we learned in elementary school. It is left
as exercises to implement both solutions.

Step 6: Implement the Division Operation

Similar to the multiplication operation, we have two possible implementations for the
division operation. To compute the result of L divided by R, a simplistic implementation
continually subtracts R from L until the remainder becomes smaller than R. We initialize
the result (quotient) to 0 and increment it by 1 for every subtraction. Remember that we
are implementing an integer division. A better implementation computes the result by
carring out the long division algorithm. Here again, it is left as exercises to implement
both solutions.

wu23399_ch16.qxd 1/2/07 19:41 Page 934

Exercises 935

• Each memory cell is associated with an address.

• Contiguous memory allocation (CMA) scheme allocates a single, contiguous
block of memory.

• Noncontiguous memory allocation (NMA) scheme allocates multiple blocks
of memory at noncontiguous memory locations.

• The key advantage of CMA is its fast search. Data in CMA can be located
very efficiently by the address computation. The search performance is
independent of the size of the block.

• Disadvantages of CMA are overflow, underutilization, and costly update
operations.

• Blocks in NMA are linked into a chain.

• NMA supports a finer control of space usage.

• Advantages of NMA are finer control of space usage and faster update
operations.

• A disadvantage of NMA is its slower search. The time to locate data in NMA
is proportional to the number of nodes in the chain.

• A linked list is a chain of nodes, with each node having a link that points to
the node that follows it.

• A node in a linked list contains two fields: data and link. The content of a
data field can be primitive data or an object (i.e., a reference to the object).

S u m m a r y

K e y C o n c e p t s

contiguous memory allocation memory cell

noncontiguous memory allocation memory address computation

linked list memory overflow

linked list traversal node

E x e r c i s e s

1. Compare the CMA and NMA schemes. List their advantages and
disadvantages.

2. If your program uses exactly 1000 integers every time it is executed, which
allocation scheme would you prefer? Do you use an array of 1000 integers
or a linked list with each node containing one integer?

3. If your program used the minimum of 10 and the maximum of 1000 integers
when it executed, which allocation scheme would you prefer? Do you use an
array of 1000 integers or a linked list with each node containing one integer?

wu23399_ch16.qxd 1/2/07 19:41 Page 935

4. In Section 16.3, we provided three variations of creating a linked list by
adding a new node at the end of the list. All three variations set the value
of the pointer start to null correctly when the list is empty. The value of
the other pointer tail, however, is undefined in the first two variations
and is a reference to the dummy node in the third variation. Modify
the code for all three variations, so the value of tail is null when the list
is empty.

5. In the code for creating a linked list by adding a new node to the front of
the list, we only keep the pointer start that points to the first node in the
list Modify the code by adding another pointer tail that points to the
last node.

6. The search routine we presented in Section 16.3 searches the desired node
by specifying the value. Write the search-by-position routine that locates the
node, given its position in the list. Set the pointer ptr to the desired node. The
position of the first node is 0, and the last node is N � 1, where N is the total
number of nodes in the list. If the position given is less than 0 or larger than
N � 1, set ptr to null.

7. Consider a linked list of Bicycle objects, as illustrated in Section 16.4. Write a
code that locates all Bicycle objects with the specified owner name. Assume
the variable start points to the first node in the list. For each bicycle found,
print out its position in the list. For example, if the search name is John and
there are three matching Bicycle objects at positions 0, 4, and 8, the output
will be

Bicycle with the owner John found at
position 0
position 4
position 8

8. Consider the following Person class:

class Person {

private String name;
private int age;

public Person(String name) {
setName(name);

}

public int getAge() {
return age;

}

public String getName() {
return name;

}
public void setAge(int age) {

this.age = age;
}

936 Chapter 16 Memory Allocation Schemes and Linked Data Structures

wu23399_ch16.qxd 1/2/07 19:41 Page 936

public void setName(String name) {
this.name = name;

}
}

Define a PNode class similar to the BNode class. The data field of PNode
points to a Person object, and the link field points to the next PNode in
the list.

9. Using the PNode defined in Exercise 8, write a code that builds a linked list
of Person objects. Prompt the user for a person’s name and age. Add this
person to the end of a list. Repeat the process until the input value DONE is
entered for the name. At the end of the routine, the variable start points to
the first node. If no input is given, set start to null.

10. Assume a linked list of Person objects created in Exercise 9. Given
the pointer start, write a code that prints out the name of the oldest
person. If the list is empty (start == null), then print out an appropriate
message.

11. The following code attempts to create a linked list of Bicycle objects. Identify
the problem.

Scanner scanner = new Scanner(System.in);

BNode start, tail, next;

Bicycle bike = new Bicycle("No Name");

start = null;

String name = scanner.next();

if (!name.equalsIgnoreCase("QUIT")) {

bike.setName(name);

start = new BNode(bike, null); //create the first node

tail = start;

//get more names
while (true) {

name = scanner.next();

if (!name.equalsIgnoreCase("QUIT")) break;

bike.setName(name);

next = new BNode(bike, null);

tail.setNext(next); //link the node as the last node

tail = next; //set tail to point to the new last node
}

}

Exercises 937

wu23399_ch16.qxd 1/2/07 19:41 Page 937

12. Write a code that reverses the links in a given linked list. Assume the Node
class.

13. The constructor of the HumongousInteger class that accepts a String
argument assumes the format of the string is valid. Extend the constructor so
that it will throw an IllegalArgumentException if the format of the argument
string is invalid.

14. The toString method we implemented for the HumongousInteger class does
not use any grouping character such as a comma. Define the second toString
method that accepts a grouping character and place it every three digits
(counting from the least significant digits). The method accepts the grouping
character as an argument to support different locales. In the United States, we
use commas to separate groups (say, 1,234,567), but some European nations
use a period, for example. The signature for the second toString method is

public String toString(String separator)

Notice that with this toString method implemented, we can rewrite the first
toString method simply as

public String toString() {
return toString("");

}

15. Incrementing a counter by 1 is a frequently used operation, and we
would like to support such operation for the HumonguousInteger class
also. We can certainly implement the increment operation by using the
add method as

HumongousInteger counter = new HumongousInteger("0");
HumongousInteger one = new HumongousInteger("1");

...

counter.add(one);

After

Before

� � ��

� � ��

start

start

938 Chapter 16 Memory Allocation Schemes and Linked Data Structures

wu23399_ch16.qxd 1/2/07 19:41 Page 938

but this would be too costly. Going through the full addition routine just to
increment a counter by 1 is not efficient. Implement a method called incr in
the HumonguousInteger class that increments a humonguous integer by 1.
The signature of the method will be as follows

public void incr()

To increment a humongous integer by 1 efficiently, add 1 to the least
significant node. If it does not generate a carry, then stop. If it does,
then move to the next node and add the carry. Repeat this process until
either no carry is generated or no more node is left. In the latter case,
create a new most significant node whose value is 1 (the value of the
final carry).

16. Analogous to the incr method of the HumongousInteger class, implement the
decr method that decrements a humongous integer by 1.

17. Implement a simplistic multiplication solution for the HumongousInteger
class. We can compute the product of two humongous integers L and R by
adding L to the result R times. For example, to derive the product of 8 and 3,
we compute

8 + 8 + 8

The pseudocode for computing the product of L and R is as follows:

//assume the absolute value of L is larger than or
//equal to the absolute value of R
counter = 0;

limit = Math.abs(R);
term = Math.abs(L);

product = 0;

while (counter < limit) {

product += term;

counter++;
}

if (product == 0 || sign of L == sign of R)
sign of product = +1; //positive

else
sign of product = -1; //negative

Notice that we’re assuming the absolute value of L is greater than or equal
to the absolute value of R to minimize the number of times the while loop
is executed. In the algorithm we increment the variable counter by 1 in the
while loop. Because the variable counter is a humongous integer, we

Exercises 939

wu23399_ch16.qxd 1/2/07 19:41 Page 939

cannot actually use the increment operation ++. Use the incr method of
Exercise 15.

Test the multiplication operation with the testing pattern used in Section 16.5.
But decrease the magnitude of the values we use, for example,

String strArray[] = {"1000005",
"8000",
"10",
"7",
"0",
"-4000",
"2147496",
"-4500",
"-000",
};

Since the simplistic multiplication algorithm results in a very long execution
time, we do not want to test it with large values.

18. The simplistic multiplication method for the HumonguousInteger class from
Exercise 17 is not efficient. A more complicated, but much faster approach is
to implement the long multiplication technique we learned in elementary
school. Implement the multiplication method by using the long
multiplication technique.

19. Implement a simplistic division solution for the HumongousInteger class.
Suppose we want to divide L by R. Suppose both L and R are positive. We
compute the result by repeatedly subtracting R from L until the remainder
becomes smaller than R. Remember that the division here is an integer
division. We initialize the quotient to 0 and increment it by 1 for every
subtraction.

If both L and R are negative, we change the signs of L and R and compute the
quotient (say, �8 � �2 → 8 � 2 → 4). If the signs of L and R are different, we
change the sign of one of them so both become positive. We compute the
quotient and get the final result by negating the quotient (say, �8 � 2 → 8 � 2 →
4 → �4). If the quotient is zero, then we set its sign to �1 so the value is
represented correctly as �0. Finally, since the division by zero is not
allowed, we will throw an ArithmethicException when the divisor R is zero.

Here’s the algorithm:

if (R == 0) {
throw new ArithmeticException();

}

quotient = 0;
remainder = positive L;
divisor = positive R;

while (remainder >= divisor) {

remainder = remainder - divisor;

940 Chapter 16 Memory Allocation Schemes and Linked Data Structures

wu23399_ch16.qxd 1/2/07 19:41 Page 940

quotient++;
}

if (quotient == 0 || sign of L == sign of R)
sign of quotient = +1; //positive

else
sign of quotient = -1; //negative

Test the division operation using the same testing pattern from Section 16.5.
The only structural difference this time is the use of the try–catch block to
catch the divide-by-zero exception:

try {
hi3 = hi1.div(hi2);
bi3 = bi1.divide(bi2);

System.out.print("Result: " + hi3.toString()
+ " ");

if (bi3.compareTo(new BigInteger (hi3.toString())) != 0
||

!bi3.toString().equals(hi3.toString())) {

errorCnt++;
System.out.println("Division Failed");

}

} catch (ArithmeticException e) {

System.out.println("Exception: " + e.getMessage());
}

20. The simplistic division method for the HumonguousInteger class from
Exercise 19 is not efficient. A more complicated, but much faster approach
is to implement the long division technique we learned in elementary school.
Implement the division method by using the long division technique. The
technique to reverse the direction of the links becomes handy to solve this
problem (see Exercise 12).

21. The linked nodes we introduced in this chapter contain only one link field. It
is possible to define a node that includes two links. For example, we can set
the first link to point to the previous node and the second link to point to the
next node.

Provide a class definition for such doubly linked list. Assume the type for the
data field is int. Call the class DNode.

4 1 9 3

start

Exercises 941

wu23399_ch16.qxd 1/2/07 19:41 Page 941

22. Using the DNode class defined in Exercise 21, write a code that builds a
doubly linked list. Repeatedly prompt the user for an integer, and add a new
node to the beginning of the list. Stop the routine when �1 is entered. The
sample doubly linked list of Exercise 21 results when the integers are entered
in the order of 3, 9, 1, and 4.

23. Write a code that deletes the node pointed by ptr from a doubly linked list by
adjusting the pointers of the adjacent nodes.

Notice the 9 node will be garbage collected eventually. Make sure the code
works correctly when ptr points to the first or the last node.

24. In Chapter 11, we presented the heapsort algorithm and described how a heap
structure is implemented by using an array. The DNode class defined in
Exercise 21 can be used to implement a heap also.

Rewrite the heapsort algorithm using the DNode implementation. Is there any
advantage of the DNode implementation over the array implementation?

Heap DNode Implementation

��

�� ��

����

�� �����

��

�� ��

top

�������

�� ��

After

Before

� � � �

� � � �

start ptr

start ptr

942 Chapter 16 Memory Allocation Schemes and Linked Data Structures

wu23399_ch16.qxd 1/2/07 19:41 Page 942

25. Another variation of the basic linked list is a circular linked list. Instead of
the link field of the last node being a null, it points to the first node in the list.
Here’s an example:

Using a circular list, implement a solution to the Josephus problem. The
problem is stated as follows: Arrange M students in a circle. Represent each
student by the numbers 1 through M and set ptr to the first student.

Starting from ptr, remove every Nth student from the list. If N � 3, for
example, then you remove students 3, 6, 9, 12, and so forth. Continue the
process until only one student is left. Display this student’s number and stop.
The values for M and N are input to the program. (The original Josephus
problem, named after a Jewish historian Josephus Flavius, placed 41 soldiers
in a circle and killed every third soldier. Soldiers chose death over surrender
to the Romans.)

2M

3M�1

1

ptr

3 4 90

start

Exercises 943

wu23399_ch16.qxd 1/2/07 19:41 Page 943

wu23399_ch16.qxd 1/2/07 19:41 Page 944

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Define generic classes

• Define classes by using generics, intheritance,
and interfaces

• Instantiate type-safe Java Collections
Framework classes

• Describe how the generics mechanism
supports type safety

• Define a simple linked list with a generic node

945

17Generics and
Type Safety

wu23399_ch17.qxd 1/2/07 19:47 Page 945

946 Chapter 17 Generics and Type Safety

I n t r o d u c t i o n

ne of the new features strongly requested by Java programmers is generics, which
is finally included in the language from Java 5.0. The biggest advantage of adding
generics to Java is the improvement in using Java Collections Framework classes
such as ArrayList. Prior to Java 5.0, these collections could include any type of ob-
jects. For example, if you have a list (either ArrayList or LinkedList), there are no re-
strictions on the types of objects you can add to the list. In other words, we can add
objects from Integer, String, Person, Vehicle, and other classes to a single list. In
practice, however, we rarely need such heterogeneous collections in which the
elements are of different types. What we need most in practice is a homogeneous
collection in which the elements are of the same type, such as a list of Vehicle
objects, a set of Person objects, and so forth. But prior to Java 5.0, we could not
declare such homogeneous collections. It is therefore up to the programmers to
ensure that only the valid objects are added to a collection. If the programmers
make a mistake and inadvertently write an erroneous code that adds objects of
invalid types to a collections, a runtime error most likely will result. Addition of the
generics mechanism allows the programmers to declare homogeneous collections,
and any attempt in the code to add invalid objects will be caught at compile time. De-
tecting errors at compile time is considered far superior to detecting errors at runtime.

We’ve already seen simple examples of the generics mechanism when defin-
ing a homogeneous collection in Chapter 10. In this chapter, we provide a more in-
depth coverage of generics, such as defining our own generic classes. We begin with
the basics and gradually introduce variations and details. We show how to define a
simple generic linked list class by adding the generics to the linked node structure
we learned in Chapter 16. We conclude the chapter with a discussion of advanced
topics and common errors.

17.1 Generic Classes
Let’s begin with a very simple case of defining a generic class. Suppose we wish to
design a class to model a Harry Potter locker that will adjust its dimensions so we
can put any single item in it. An item can be as mundane as a book or as exciting as
a Nimbus 2000 broomstick. When you request a locker, you specify the type of item
you put in it. Once the type is specified, you can only put an item of the designated
type. Here’s how we might define such a magical locker:

class Locker<T> {

private T content;

public Locker() {
store(null);

}

O

wu23399_ch17.qxd 1/2/07 19:47 Page 946

public T retrieve() {
return content;

}

public void store(T item) {
content = item;

}
}

Notice the use of the identifier T and its appearance next to the class name as
Locker<T>. The identifier T is called a type parameter and the class Locker a generic
class. Any valid Java identifier (except reserved words, of course) can be used for the
type parameter, but it is more common to use a single identifier such as T or E. When
we declare and create an instance of a generic class, we must replace the type parame-
ter with an actual class type (or an array type, with restriction). Here are examples:

Locker<String> lockerOne; //content is set to string
Locker<Integer> lockerTwo; //content is set to Integer

lockerOne = new Locker<String>(); //create lockers
lockerTwo = new Locker<Integer>();

(Note: We are using the standard classes String and Integer in these examples
instead of more interesting classes such as Book and Broomstick to keep our first
examples as small as possible. At the end of the chapter, Exercise 1 asks you to store
Book and Broomstick objects in a locker.) We have created two Locker objects. The
first locker is designated and restricted to store a String object, and the second locker
an Integer object. Because we need to “plug in” the actual type to create an instance,
we might characterize the generic class as a pluggable class. Another common
name used for a generic class is a parameterized class.

When we interact with a Locker object, we must do so in the manner consis-
tent with the declaration, for example,

lockerOne.store("Hello"); //store an appropriate
lockerTwo.store(new Integer(100)); //content

String str = lockerOne.retrieve(); //fetch content
Integer intObj = lockerTwo.retrieve();

It will result in a compile time error if we attempt to store or retrieve content whose
data type is inconsistent with the declaration, such as

lockerOne.store(new Double());

String str = lockerTwo.retrieve();

In the definition of the Locker generic class, we see there are four references
to the type parameter T. With the class declaration

class Locker<T>

17.1 Generic Classes 947

type parameter

generic class

INVALID

wu23399_ch17.qxd 1/2/07 19:47 Page 947

we are indicating that this generic class includes one type parameter in the class
definition. This type parameter T is a placeholder for an actual type that needs to be
specified when we are declaring or creating a Locker object. Every occurrence of the
type parameter T in the class definition refers to the actual type, such as String,
Integer, Book, Broomstick, and so forth. For example, the declaration

private T content;

states that the actual type of the data member content is the one specified at the
time of object declaration and creation. We know that T is not the name of an
actual class but is a type parameter, because it appears in the angle brackets next
to the class name. The same interpretation applies to the occurrences of T in the
two methods

public T retrieve() {
return content;

}

public void store(T item) {
content = item;

}

To help us understand the use of type parameters, we can compare the defini-
tion of a generic class against those that specify the actual types. In Figure 17.1, we
see two different definitions of a locker. The first definition is restricted to an Integer
object, and the second definition is restricted to a String object. To define a Locker
that can store an object of any type, we parameterize the type and derive the generic
Locker class, shown at the bottom of the figure. Notice how the structure of the three
class definitions is identical.

The declarations

Locker<String> lockerOne;
Locker<Integer> lockerTwo;

may seem to indicate there are two distinct classes based on the generic Locker<T>
class. This is not the case. There is no Locker<String> or Locker<Integer> class.
There is exactly one Locker class, and no derivative classes are ever created. Both
lockerOne and lockerTwo are instances of the Locker class. We can confirm this with
the following code:

Locker<String> lockerOne = new Locker<String>();
Locker<Integer> lockerTwo = new Locker<Integer>();

System.out.println("Class of lockerOne is " +
lockerOne.getClass().getName());

System.out.println("Class of lockerTwo is " +
lockerTwo.getClass().getName());

948 Chapter 17 Generics and Type Safety

wu23399_ch17.qxd 1/2/07 19:47 Page 948

The output will be

Class of lockerOne is Locker
Class of lockerTwo is Locker

Although both lockerOne and lockerTwo are instances of the same class, we
cannot use them interchangeably, because their actual types for the type parameter
T are different. For example, the assignment in the following code is invalid:

Locker<String> lockerOne = new Locker<String>();

17.1 Generic Classes 949

Figure 17.1 This illustrates the basic idea behind generic classes. Generics allow you to define type-
pluggable classes. Notice how the references to the actual types Integer and String in the top two
classes are replaced by the type parameter T in the generic class at the bottom.

Definition 1:
This Locker holds an Integer object only.

Definition 2:
This Locker holds a String object only.

This Locker holds an object of any type.

Without this identifier T in the angle brackets
here, the compiler will not know that the identifier
T in the class definition is a type parameter. If
<T> is missing from here, then the compiler will
assume the identifier T is referring to an actual
class inside the Locker class body.

The constructor does not include the angle
brackets.

class Locker {

private Integer content;

public Locker() {
 store(null);

}

public Integer retrieve() {
 return content;

}

public void store(Integer item){
 content = item;

}
}

class Locker <T> {

private T content;

public Locker() {
 store(null);

}

public T retrieve() {
 return content;

}

public void store(T item){
 content = item;

}
}

class Locker {

private String content;

public Locker() {
 store(null);

}

public String retrieve() {
 return content;

}

public void store(String item){
 content = item;

}
}

wu23399_ch17.qxd 1/2/07 19:47 Page 949

Locker<Integer> lockerTwo = new Locker<Integer>();

lockerOne = lockerTwo;

For the same reason, the following is also invalid:

Locker<String> lockerOne;

lockerOne = new Locker<Double>();

950 Chapter 17 Generics and Type Safety

INVALID

INVALID

1. Declare and create a Locker object whose actual type for the type parameter is
Double.

2. What is wrong with the following code?

Locker<String> locker = new Locker<Integer>();

Generic Classes with More Than One Type Parameter
The number of type parameters we can include in a generic class is not limited to 1.
If there are multiple type parameters for a generic class, we separate them by com-
mas in the angle brackets. Let’s look at an example. We will modify the Locker class
by allowing it to hold a pair of items of any type. Here’s how we might define such
a generic class:

class SecondLocker<T1, T2> {

private T1 content1;
private T2 content2;

Generics in Java are similar to C++ templates, but they are not identical.

Generics are new to Java 5.0. You must use JDK 1.5 in order to use generics
in your programs.

wu23399_ch17.qxd 1/2/07 19:47 Page 950

public SecondLocker() {
this(null, null);

}

public SecondLocker(T1 item1, T2 item2) {
storeFirstItem(item1);
storeSecondItem(item2);

}

public T1 retrieveFirstItem() {
return content1;

}

public void storeFirstItem(T1 item) {
content1 = item;

}

public T2 retrieveSecondItem() {
return content2;

}

public void storeSecondItem(T2 item) {
content2 = item;

}
}

We create and use the SecondLocker class as follows:

SecondLocker<String, Integer> myLocker =
new SecondLocker<String, Integer>("Hello",

new Integer(20));

String str = myLocker.retrieveFirstItem();
Integer intObj = myLocker.retrieveSecondItem();

Since there are no restrictions on T1 and T2, we can store two items of the same type,
such as

SecondLocker<String, String> myLocker =
new SecondLocker<String, String>("Hello", "Java");

If we want to restrict the two items to be of the same type, then we need only
one type parameter. Such a class can be defined as follows:

class ThirdLocker<T> {

private T content1;
private T content2;

public ThirdLocker() {
this(null, null);

}

17.1 Generic Classes 951

We add this two-argument
constructor for convenience.

wu23399_ch17.qxd 1/2/07 19:47 Page 951

public ThirdLocker(T item1, T item2) {
storeFirstItem(item1);
storeSecondItem(item2);

}

public T retrieveFirstItem() {
return content1;

}

public void storeFirstItem(T item) {
content1 = item;

}

public T retrieveSecondItem() {
return content2;

}

public void storeSecondItem(T item) {
content2 = item;

}
}

And here’s an example of how we might instantiate it:

ThirdLocker<String> myLocker1 = new ThirdLocker<String>();

ThirdLocker<String> myLocker2
= new ThirdLocker<String>("Hello", "Java");

952 Chapter 17 Generics and Type Safety

1. Create an instance of SecondLocker whose contents are both Integer objects.
Set their values to 20 and 40.

2. What is wrong with the following code?

SecondLocker<String, Integer> locker
= new SecondLocker<Integer, String>();

Type Safety
At this point, a keen observer might argue, “What’s the big deal with the generic
classes?” If storing any kind of object in a locker is a goal, then one might propose
defining the following class:

class NonGenLocker {

private Object content;

public NonGenLocker() {
store(null);

}

wu23399_ch17.qxd 1/2/07 19:47 Page 952

public Object retrieve() {
return content;

}

public void store(Object item) {
content = item;

}
}

Since every class in Java is a subclass of Object, by defining the class in this
way we can easily store String and Integer objects as

NonGenLocker one = new NonGenLocker();
NonGenLocker two = new NonGenLocker();

one.store(new String("Hello"));
two.store(new Integer(10));

The danger with this definition is a possible runtime error. Consider the following
example:

NonGenLocker locker = new NonGenLocker();

locker.store("Hello");

Integer intObj = (Integer) locker.retrieve();

This is obviously wrong because one cannot typecast a String object to an Integer
object. We call such a logical error in incompatible types a typing error. The sample
logical error cannot be detected until runtime, at which time one will get a
ClassCastException error. It is much safer and more reliable to detect logical errors
such as the typing error at compile time than at runtime. By using the generic class,
such code is detected at compile time:

Locker<String> lockerOne;

lockerOne = new Locker<Integer>();

We say the generics mechanism provides type safety because typing errors are
detected at compile time. Type safety is the greatest benefit that generics provide to
Java programmers.

17.1 Generic Classes 953

typing error

type safety

The greatest benefit that generics provide to the Java programmers is type safety.

wu23399_ch17.qxd 1/2/07 19:47 Page 953

Also notice that the typecasting is no longer necessary with the generic classes
because the specific type is known, so there is no ambiguity. Compare this code
fragment without generics

NonGenLocker locker = new NonGenLocker();

locker.store("Hello");

String str =(String) locker.retrieve();

to the one with generics:

Locker<String> locker = new Locker<String>();

locker.store("Hello");

String str = locker.retrieve();

954 Chapter 17 Generics and Type Safety

1. Which is considered superior, catching logical errors at compile time or at
runtime?

2. Why is typecasting not necessary with the generic classes?

Bounded Types
With the Locker class, we can store an instance of any class. Instead of allowing
one to store just any type of objects, it may make more sense to restrict the types
of objects we can store in a locker. It is possible to restrict the actual types that can
substitute for the parameterized types. Such restricted parameterized types are
called bounded types.

For example, if we want to limit an object we can store in a locker to strictly
a number, then we can define the class as follows:

class FourthLocker<T extends Number> {

private Object content;

public FourthLocker() {
this(null);

}

public FourthLocker(T item) {
store(item);

}

public T retrieve() {
return content;

}

public void store(T item) {
content = item;

}
}

bounded types

This class is essentially the
same as the Locker class
except for the bounded
type parameter and the
second constructor.

wu23399_ch17.qxd 1/2/07 19:47 Page 954

The Number class is a superclass of Double, Integer, and other classes that represent
a numerical value. So, with this generic class, declarations such as

FourthLocker<Double> doubleLocker;
FourthLocker<Integer> intLocker;
FourthLocker<Number> numLocker;

are valid, but the declaration

FourthLocker<String> strLocker;

is now invalid. As expected, instances can be created as

doubleLocker = new FourthLocker<Double>(new Double(2.0));
intLocker = new FourthLocker<Integer>(new Integer(12));

But the following is invalid because the Number class is an abstract class.

numLocker = new FourthLocker<Number>();

numLocker.store(new Number(20));

Although we cannot store an instance of Number (because we cannot create it), we
can store an instance of any (nonabstract) subclass of Number, such as

numLocker.store(new Double(3.5));

It is interesting to note that the following statement is invalid:

FourthLocker<Number> locker = new FourthLocker<Double>();

This is somewhat unexpected because Double is a subclass of Number. What we
need to remember here is that there is exactly one class named FourthLocker so
FourthLocker<Number> and FourthLocker<Double> are not distinct classes, and
therefore they cannot have a superclass/subclass relationship. We explore the rela-
tionships between inheritance and generic classes and also present common pitfalls
and restrictions in using generics later in the chapter.

17.1 Generic Classes 955

INVALID

INVALID

INVALID

1. Identify the invalid statements.

FourthLocker<Double> locker1
= new FourthLocker<Double>();

FourthLocker<Number> locker2 =
new FourthLocker<Number>();

locker1.store(new Integer(2));
locker2.store(new Number(3));

wu23399_ch17.qxd 1/2/07 19:47 Page 955

2. Identify the invalid statements.

FourthLocker<Number> locker1 =
new FourthLocker<Double>();

FourthLocker<Double> locker2 =
new FourthLocker<Integer>();

FourthLocker<Number> locker3 =
new FourthLocker<Number>();

956 Chapter 17 Generics and Type Safety

The ? symbol is
the wildcard
designation.

wildcard type

Wildcard Types
Let’s extend the FourthLocker class so we can compare the values stored in the lock-
ers. We call this new class FifthLocker, and we add a method called isSameValue
that returns true if the numerical value stored in the argument FifthLocker object
is the same as the value stored in the receiving FifthLocker object. To define such a
method, we need to use a wildcard type. Here’s how we can define the class with a
wildcard type:

class FifthLocker<T extends Number> {

private T content;

public FifthLocker() {
this(null);

}

public FifthLocker(T item) {
store(item);

}

public T retrieve() {
return content;

}

public void store(T item) {
content = item;

}

public boolean isSameValue(FifthLocker<?> item) {

return this.retrieve().doubleValue() ==
item.retrieve().doubleValue();

}
}

Here’s how we might use the FifthLocker class:

FifthLocker<Double> locker1 =
new FifthLocker<Double>(new Double(3.0));

FifthLocker<Integer> locker2 =
new FifthLocker<Integer>(new Integer(3));

wu23399_ch17.qxd 1/2/07 19:47 Page 956

System.out.println("Values in locker1 and locker2 " +
"are the same: " +
locker1.isSameValue(locker2));

The data type for the parameter to the isSameValue method is designated as
FifthLocker<?>. The question mark indicates a wildcard that matches any type.
Since the class declaration FifthLocker<T extends Number> limits the actual type for
the type parameter T to Number or any of its subclasses, FifthLocker<?> matches
FifthLocker<Double>, FifthLocker<Integer>, and so forth. Thus, we can pass any
valid FifthLocker object as an argument to the isSameValue method.

At first, the use of wildcard type may not be obvious. It may seem that the
following definition would work fine as well:

class FifthLocker2<T extends Number> {

public FifthLocker2() {
this(null);

}

public FifthLocker2(T item) {
store(item);

}

public T retrieve() {
return content;

}

public void store(T item) {
content = item;

}

public boolean isSameValue(FifthLocker2<T> item) {

return this.retrieve().doubleValue() ==
item.retrieve().doubleValue();

}
}

This definition is not what we want because with this definition the argument object
we can pass to the isSameValue method must be the same as the concrete type we
use in the substitution. For example, the statements

FifthLocker2<Double> locker1 =
new FifthLocker2<Double>(new Double(3.0));

FifthLocker2<Double> locker2 =
new FifthLocker2<Double>(new Double(3));

System.out.println("Are values in locker1 and " +
"locker2 the same: " +
locker1.isSameValue(locker2));

17.1 Generic Classes 957

Instead of a wildcard,
we indicate the same

type parameter T.

wu23399_ch17.qxd 1/2/07 19:47 Page 957

are valid because the actual type is Double for both locker1 and locker2. But the
statements

FifthLocker2<Double> locker1 =
new FifthLocker2<Double>(new Double(3.0));

FifthLocker2<Integer> locker2 =
new FifthLocker2<Integer>(new Integer(3));

System.out.println("Are values in locker1 and " +
"locker2 the same: " +
locker1.isSameValue(locker2));

are invalid (compile time error) because the actual types for T in locker1 and locker2
are different. The way FifthLocker2 is declared, to call the isSameValue method of
locker1, we must pass an object of type FifthLocker2<Double> as an argument.
Thus, passing a Locker<Integer> object, as in this example, is wrong.

As a side note, some of you may be wondering why we did not name the method
equals? It may seem more conventional to name the method equals than isSameValue.
We did not name the method equals because the equals method is defined in the
Object class. This will lead us to a very insidious error if we do not specify the type
for the parameter correctly. Had we defined the equals method correctly as

public boolean equals(FifthLocker<?> item) {
...

}

then everything would have been fine. However, if we declare it erroneously as

public boolean equals(FifthLocker<T> item) {
...

}

and write a code such as

FifthLocker<Double> locker1 =
new FifthLocker<Double>(new Double(3.0));

FifthLocker<Integer> locker2 =
new FifthLocker<Integer>(new Integer(3));

System.out.println("Are values in locker1 and " +
"locker2 the same: " +
locker1.equals(locker2));

then no compile time or runtime error is raised! Because FifthLocker is a subclass of
Object, the equals method of the Object class is actually called, and the result of
false is returned. Because the code runs but produces a wrong result, it would the
most difficult kind of error to detect.

958 Chapter 17 Generics and Type Safety

INVALID

wu23399_ch17.qxd 1/2/07 19:47 Page 958

Restrictions
Before we conclude the basics of defining a generic class, we list a couple of restric-
tions. First, we are not allowed to create an instance of a type parameter inside a
generic class. Here’s an illegal generic class:

class NoGoodLocker<T> {

private T content;

public NoGoodLocker() {

content = new T();
}

...
}

The reason is due to the way generics are implemented in Java 5.0. Basically,
the technique called erasure is used, and at the bytecode level, the type parameter
information is erased and replaced by the actual type. There is no class T in the byte-
code, so the system won’t be able to create it. It may seem that the statement

content = new T();

can be substituted with

content = new String();

or

content = new Integer();

17.1 Generic Classes 959

1. If we declare a generic class as

class GenClass<Y> {
public boolean check(GenClass<Y> param) {

return this == param;
}

}

why is the following code invalid?

GenClass<String> genOne = new GenClass<String>();
GenClass<Double> genTwo = new GenClass<Double>();

boolean result = genOne.check(genTwo);

2. The following class declaration is wrong. Why?

class MyClass<?> {...}

INVALID

wu23399_ch17.qxd 1/2/07 19:47 Page 959

or whatever the actual type that is plugged in for the type parameter T. Alas, this is
not how the generics are implemented in Java. There is exactly one generic class G,
not multiple classes of G<Integer>, G<String>, etc., for all different possible actual
types. Since there is exactly one generic class, it is not possible to insert different
versions of

content = new T();

with the type parameter T substituted by the actual type.

960 Chapter 17 Generics and Type Safety

Another restriction disallows the use of a type parameter with the static com-
ponents of a generic class. Consider the following invalid generic class definition:

class NoGoodGenClass {

private static T item;

public static T getItem() {

return item;
}

}

Type parameters cannot be used with the static data members and methods because
the type parameter is substituted by the actual type at the time an instance is created.
Without an instance, the system will not know what the type parameter T actually
stands for, and therefore, static data members and methods cannot be declared with
type parameters.

INVALID

INVALID

INVALID

An instance of a type parameter cannot be created inside a generic class.

Type parameters cannot be used with the static data members and methods of a
generic class.

wu23399_ch17.qxd 1/2/07 19:47 Page 960

17.2 Generics and Collections
One of the main reasons for adding generics to Java is to improve the usability and
reliability of Java Collections Framework (JCF) classes. We’ve seen simple exam-
ples of creating homogeneous lists in Chapter 10. Let’s review the benefits of gener-
ics with an ArrayList, a very commonly used JCF class. Prior to Java 5.0, here’s how
we use it. Suppose we want to maintain a list of Book objects in which the Book
class is defined as follows:

class Book {

private String author;

public Book(String name) {
setAuthor(name);

}

public String getAuthor() {
return author;

}

public void setAuthor(String author) {
this.author = author;

}
}

Here’s a sample code fragment that adds Book objects to a list:

import java.util.*;
...
List bookList = new ArrayList();

bookList.add(new Book("Jane Austin"));
bookList.add(new Book("Charles Dickens"));
bookList.add(new Book("Henry James"));

//and so forth ...

To display author information in booklist, we use an iterator.

Iterator itr = bookList.iterator();

while (itr.hasNext()) {

Book book = (Book) itr.next();

System.out.println(book.getAuthor());
}

Notice the required typecasting of an object retrieved from the iterator to the
Book type. Although we know booklist contains nothing but Book objects, typecast-
ing is necessary here because an instance of any class can be added to the bookList.

17.2 Generics and Collections 961

Typecast is required.

wu23399_ch17.qxd 1/2/07 19:47 Page 961

In other words, ArrayList and other JCF collection classes maintain a heterogeneous
collection of objects. So, whether written intentionally or not, the statement

bookList.add(new String("Java"));

would execute fine. Of course, the previous iterator loop will fail if bookList con-
tains an object other than a Book. What we want here is a way to specify a homoge-
neous collection of objects; that is, every object in a collection is drawn from the
same class. This improves the type safety.

All JCF collection classes are retrofitted with the generics mechanism in Java
5.0 to allow the specification of a homogeneous collection of objects. The class de-
claration for the ArrayList class in the java.util package is as follows:

public class ArrayList<E> extends ...

where the identifier E is the type parameter (E is used here instead of T to signify that
the type parameter is for the elements in the collection). By specifying the actual
type for E, we can create a homogeneous ArrayList that contains only Book objects:

import java.util.*;

ArrayList<Book> booklist = new ArrayList<Book>();

booklist.add(new Book("Jane Austin"));
booklist.add(new Book("Charles Dickens"));
booklist.add(new Book("Henry James"));
...

Unlike a nongeneric list, the elements of this booklist are limited to Book
objects, so the following would result in a compile time error:

booklist.add(new String("Java"));

An iterator prior to Java 5.0 is a heterogeneous collection also, so we were required
to typecast to a proper class when accessing elements. Since an iterator from
Java 5.0 is a generic collection, we need to specify the actual type when declaring
an iterator. Here’s how we access the elements of booklist via an iterator:

Iterator<Book> itr = booklist.iterator();

while (itr.hasNext()) {

Book book = itr.next();

System.out.println(book.getAuthor());
}

Typecasting is no longer necessary when an element is accessed from the iterator
because the iterator can contain only Book objects.

962 Chapter 17 Generics and Type Safety

This can be declared as
List<Book>.We’ll discuss
it more in Section 17.3.

INVALID

No typecasting is
necessary here.

wu23399_ch17.qxd 1/2/07 19:47 Page 962

Even simpler approach of scanning a list is done by using the for-each loop.
Using a for-each loop, we can access the elements in booklist very concisely as
follows:

for (Book book : booklist) {

System.out.println(book.getAuthor());
}

Nested Generic Class Declaration
Let’s study another example. This time, we will create an ArrayList of Locker ob-
jects. To create an ArrayList, we must plug in a real type for the type parameter E,
and to create a Locker object, we must plug in a real type for the type parameter T.
Here’s how we create such a list:

ArrayList<Locker<Book>> bookLockerList =
new ArrayList<Locker<Book>>();

Locker<Book>bookLocker = new Locker<Book>();
bookLocker.store(new Book("Jane"));
bookLockerList.add(bookLocker);
...

for (Locker<Book> locker : bookLockerList) {
System.out.println(locker.retrieve().getAuthor());

}

Notice the data type for the for-each loop variable is Locker<Book>, not Locker.

Defining a Simple Generic Linked List
In Chapter 16, we introduced the linked node structure and defined several different
node classes (e.g., Node and BNode). The only difference among the different node
classes is the data type of the item we put in a node. If that is the case, using the
generics will eliminate the need to create a customized node class for each type of
item. We can define such generic Node class as follows:

17.2 Generics and Collections 963

class Node<E> {

private E item;

private Node next;

public Node() {
this(null, null);

}

Node

wu23399_ch17.qxd 1/2/07 19:47 Page 963

Here’s one example of creating a linked list of three nodes with each node
having String as its data item:

Node<String> one, two, three;

three = new Node<String>("trois", null);
two = new Node<String>("deux", three);
one = new Node<String>("un", two);

Notice that the link field can only point to a node of the same actual type. For
example, the link field of Node<String> can only point to Node<String>. This guar-
antees that every node in a linked list will be of the same actual type. In other words,
the linked list will be homogeneous.

By defining the node class generic, we achieve the goal of allowing only a
homogeneous list. From the design standpoint, however, it is more natural and eas-
ier to use if we define a generic linked list class. The fact that we are using nodes
is really not the concern of the client programmer. We will be discussing the list
and different implementations further in Chapter 18. Here we limit our discussion
on how to define a homogeneous linked list class.

When we use the generic node class, we are required to specify the actual type
whenever we create a new instance of a node. This is tedious for the client pro-
grammer. When a programmer wants to use a homogeneous list, it would be more
convenient if she is only required to specify the actual type of the items in the list
just once. To allow this, we can define a generic linked list class. Let’s study how we
can define such a generic linked list class. We will keep this class very simplistic so

964 Chapter 17 Generics and Type Safety

public Node(E data, Node node) {
setItem(data);
setNext(node);

}

public E getItem() {
return item;

}

public Node<E> getNext() {
return next;

}

public void setItem(E data) {
item = data;

}

public void setNext(Node<E> node) {
next = node;

}
}

wu23399_ch17.qxd 1/2/07 19:47 Page 964

we can concentrate on generics. We will delve deeper into a more elaborate and full
implementation in Chapter 18.

The SimpleLinkedList class we define here consists of only four public meth-
ods. The first is the add method that adds a new item to the end of the list. The sec-
ond is the get method that returns the ith item in the list. The method will throw a
NoSuchElementException if the specified position is invalid. The first item in the list
is at position 0. The third is the setEmpty method that empties the list. And the
fourth is the isEmpty method that returns true if the list is empty. We keep two
pointers head and tail that points to the first and the last node in a list. If the list is
empty, they are both equal to null. The node class is defined as its inner class and
hidden from the client programmer. Here’s the definition:

17.2 Generics and Collections 965

import java.util.NoSuchElementException;

class SimpleLinkedList<E> {

private Node head;

private Node tail;

public SimpleLinkedList(){

setEmpty();
}

public void add(E item) {

Node node = new Node(item, null);

if (isEmpty()) {

head = tail = node;

} else {

tail.setNext(node);
tail = node;

}
}

public E get(int index) throws NoSuchElementException {

if (index < 0) {
throw new NoSuchElementException();

}

int loc = 0;

Node p = head;

SimpleLinkedList

wu23399_ch17.qxd 1/2/07 19:48 Page 965

966 Chapter 17 Generics and Type Safety

while (loc < index) {
p = p.getNext();

if (p == null) {
throw new NoSuchElementException();

}

loc++;
}

return p.getItem();
}

public boolean isEmpty() {

if (head == null && tail == null) {
return true;

} else {

return false;
}

}

public void setEmpty() {

head = tail = null;
}

class Node {

private E item;

private Node next;

public Node() {
this(null, null);

}

public Node(E data, Node node) {
setItem(data);
setNext(node);

}

public E getItem() {
return item;

}

public Node getNext() {
return next;

}

public void setItem(E data) {
item = data;

}

wu23399_ch17.qxd 1/2/07 19:48 Page 966

Notice the Node class is defined as the inner class of SimpleLinkedList. It still
refers to the type parameter E in its methods, but the class itself is not a generic class
anymore. After we create a SimpleLinkedList, for example, as

SimpleLinkedList<Bicyle> myList
= new SimpleLinkedList<Bicycle>();

we will only be able to pass a Bicycle object to the add method of myList, thus mak-
ing the list homogeneous. And we only have to specify the actual type of items once
when we create a list, not every time we create a node.

We close this section with examples of using the SimpleLinkedList class. Let’s
first generate 1000 random integers and put them in a list:

import java.util.Random;
...
Random generator = new Random();

SimpleLinkedList<Integer> list =
new SimpleLinkedList<Integer>();

for (int i = 0; i < 1000; i++) {
list.add(new Integer(generator.nextInt()));

}

Once we have a list, we can traverse the list by calling its get method. For exam-
ple, we can find out the number of negative integers in the list by the following
code:

int negCnt = 0;

for (int i = 0; i < 1000; i++) {

Integer num = list.get(i);

if (num.intValue() < 0) {
negCnt++;

}
}

System.out.println("Number of negative integers = "
+ negCnt);

17.2 Generics and Collections 967

public void setNext(Node node) {
next = node;

}
}

}

wu23399_ch17.qxd 1/2/07 19:48 Page 967

We purposely made the use of the Integer class explicit to illustrate the generics
feature clearly. If we use the autoboxing/unboxing feature of Java 5.0, then we
rewrite the two statements for adding and getting an item as

list.add(generator.nextInt());
...
int num = list.get(i);

We use the for loop to get the items in the list because we know the size of the
list. We still can iterate over the items without knowing the size of a list by catching
an exception thrown by the get method. Here’s how:

int i = 0, negCnt = 0;

while (true) {

try {
int num = list.get(i);

if (num < 0) {
negCnt++;

}

i++;

} catch (NoSuchElementException e) {

break; //jump out from the while loop
}

}

Calling the get method repeatedly with an increasing index value to traverse
is inefficient because each call of the get method will restart the search from the
head node. This is the reason why the full-blown collection classes from java.util
support an iterator as an efficient way of traversing items in a list. We will be dis-
cussing these issues in Chapter 18 when we cover lists in greater detail.

968 Chapter 17 Generics and Type Safety

1. The HashMap class is declared as

public class HashMap<K, V> ...

where K is the key and V is the value of a map entry. Declare and create a new
HashMap with Integer as the key and String as the value.

2. Identify the invalid statements.

ArrayList<Locker> list;

list = new ArrayList<Locker<Book>>();

wu23399_ch17.qxd 1/2/07 19:48 Page 968

17.3 Generics, Inheritance, and Java Interface
Generic classes can be organized into a class hierarchy just as any other nongeneric
classes can. A subclass of a generic superclass must also be generic, but we can
define a generic subclass of a nongeneric superclass. Similarly, we can define a class
that implements a generic interface. We study different cases in this section.

A Subclass of a Generic Superclass
When we define a subclass of a generic superclass, we must include the type para-
meter of the superclass in the subclass, because if we do not, then the compiler can-
not resolve the type parameter specified in the generic superclass. Since a subclass
of a generic superclass must include the type parameter, it must also be a generic
class. Let’s define a subclass of the Locker class. This subclass has an additional
data member that stores a unique integer value as its identification number. Here’s
how we define a subclass LockerSub. (The Locker class is repeated here for easy
reference.)

class Locker<T> {

private T content;

public Locker() {
store(null);

}

public T retrieve() {
return content;

}

public void store(T item) {
content = item;

}
}

public class LockerSub<T> extends Locker<T> {

private int id;

17.3 Generics, Inheritance, and Java Interface 969

for (Locker locker : list) {
System.out.println(

locker.retrieve().getAuthor());
}

3. Draw a diagram showing the linked list after the following code is executed:

Node<String> one, two, three;

three = new Node<String>("trois", null);
two = new Node<String>("deux", three);
one = new Node<String>("un", two);

wu23399_ch17.qxd 1/2/07 19:48 Page 969

private static int idCounter = 100;

public LockerSub() {
this(null);

}

public LockerSub(T item) {

super();

id = idCounter++;

store(item);
}

public int showID() {
return id;

}
}

Here’s a sample code that creates a number of LockerSub objects:

LockerSub<String> subLockOne;
LockerSub<Integer> subLockTwo;

subLockOne = new LockerSub<String>("Hello");
subLockTwo = new LockerSub<Integer>(); //null object will

//be stored

System.out.println(subLockOne.showID() + ": " +
subLockOne.retrieve());

System.out.println(subLockTwo.showID() + ": " +
subLockTwo.retrieve());

The output will be

100: Hello
101: null

Notice that the statement such as

Locker<String> lock = new LockerSub<String>("Hello");

is valid, following the same rule for nongeneric classes. A variable can be declared as
class C and point to an instance of a subclass of C. This is how polymorphism is applied
in writing a flexible code. Note, however, that you cannot call any method unique to
the subclass without typecasting. For an example, consider these statements:

Locker<String> lock = new LockerSub<String>("Java Rules");

System.out.println(lock.showID());

System.out.println(((LockerSub<String>) lock).showID());

970 Chapter 17 Generics and Type Safety

The compiler will insert this call
to the superclass constructor if
not explicitly stated as here.

VALID

INVALID

wu23399_ch17.qxd 1/2/07 19:48 Page 970

Our next example defines a subclass that includes a type parameter in addition
to the one inherited from the superclass. Let’s define the second subclass of the
Locker class named LockerSubTwo. This subclass includes two type parameters. The
first one is inherited from the Locker superclass, and the second one is the type pa-
rameter specific to this subclass for storing the renter object. Here’s the definition:

class LockerSubTwo<T, R> extends Locker<T> {

private R renter;

public LockerSubTwo() {
this(null, null);

}

public LockerSubTwo(T item, R renter) {

super();

store(item);
setRenter(renter);

}

public R getRenter() {
return renter;

}

public void setRenter(R renter) {
this.renter = renter;

}

And here’s a sample declaration for LockerSubTwo objects:

LockerSubTwo<String, Person> lockerOne;
LockerSubTwo<Integer, Company> lockerTwo;

A Generic Subclass of a Nongeneric Superclass
Actually we have been defining a subclass of a nongeneric superclass all along
because every class we define in Java is a subclass of the Object class, whether
implicitly or explicitly specified. Here’s a small example of defining a generic sub-
class of a nongeneric superclass (that is not Object):

class Box {

private static int idCounter = 100;

private int id;

public Box() {
id = idCounter++;

}

17.3 Generics, Inheritance, and Java Interface 971

wu23399_ch17.qxd 1/2/07 19:48 Page 971

public int showID() {
return id;

}
}

class MagicBox<T> extends Box {

private T content;

public MagicBox() {
super(); //assigns ID number
store(null);

}

public T retrieve() {
return content;

}

public void store(T item) {
content = item;

}
}

Generic Interfaces and Their Implementing Classes
In addition to defining generic classes, we can define the generic interface. Here’s an
example of a generic interface that specifies the behavior of storing and retrieving
objects:

interface MagicContainer<T> {

public T retrieve();

public void store(T item);
}

A class that implements a generic interface must repeat the type parameters indicated
in the generic interface. Here’s a sample class that implements MagicContainer:

class MagicTrunk<T> implements MagicContainer<T> {

private T content;

public MagicTrunk() {
store(null);

}

public T retrieve() {
return content;

}

public void store(T item) {
content = item;

}
}

972 Chapter 17 Generics and Type Safety

generic
interface

wu23399_ch17.qxd 1/2/07 19:48 Page 972

The type parameters in the class declaration may be bounded, as in

interface MagicContainer<T> {...}

class MagicTrunk<T extends Number>
implements MagicContainer<T> {...}

If the type parameter in the interface is bounded, then we must repeat the bounded
expression in the class declaration also (somewhat unexpected) as in

interface MagicContainer<T extends Number> {...}

class MagicTrunk<T extends Number>
implements MagicContainger<T> {...}

It is also possible to implement a class without the type parameter if we pro-
vide the actual type in the interface. For example, we can define a MagicTrunk that
stores with String objects only as follows:

class StringTrunk implements MagicContainer<String> {

private String content;

public StringTrunk() {
store(null);

}

public String retrieve() {
return content;

}

public void store(String item) {
content = item;

}
}

Notice that the type parameter T is completely removed from the class and replaced
by the actual type String.

We can declare the interface as the data type of a variable and make the vari-
able refer to an instance of a class that implements this interface. This is how we
normally declare and create an instance of a JCF class prior to Java 5.0:

List myList = new ArrayList();

The same rule applies with generic interfaces, so we can write, for example,

MagicContainer<String> myTrunk
= new MagicTrunk<String>();

List<String> myList = new ArrayList<String>();

17.3 Generics, Inheritance, and Java Interface 973

This has to be <T> not
<T extends Number>.

Actual type is
specified here.

wu23399_ch17.qxd 1/2/07 19:48 Page 973

instead of

MagicTrunk<String> myTrunk2 = new MagicTrunk<String>();

ArrayList<String> myList2 = new ArrayList<String>();

It is preferable to specify the interface for the data type of a variable so that it
can refer to an instance of any class that implements the interface.

17.4 Additional Topics and Pitfalls
In this section, we cover additional topics and some common pitfalls of using gener-
ics in Java.

Raw Types
Consider the following statements:

Locker locker = new Locker();
locker.store(new Integer(4));

Will these work? From our understanding of the generic class so far, we would most
reasonably say no. Actually, the statements do work. When we compile them, we
get the warning

unchecked or unsafe operations.
Note: Recompile with-Xlint:unchecked for details

but we still can execute them without error. If we don’t specify the actual type for the
type parameter when creating an instance of a generic class, a raw type is created.
With the raw type variable, the type restriction is removed. For example, if we write

Locker<String> strLocker = new Locker<String>();

the compiler will restrict us to storing a String object. A compile time error is gener-
ated when we try to store an object other than a String. This is the type safety pro-
vided by the use of generics. With the raw type of Locker, for example, there’s no
restriction, so the following statements are all valid (only the compile time warning
is generated):

Locker myLocker = new Locker();

myLocker.store("Hello");

myLocker.store(new Integer(10));

myLocker.store(new Book("Anne Bronte");

The Locker class is defined as

class Locker<T> {...}

974 Chapter 17 Generics and Type Safety

raw type

wu23399_ch17.qxd 1/2/07 19:48 Page 974

and when a raw type Locker is created, it essentially substitutes T with Object. This
means an instance of the Object class or any of its subclasses can be stored in a raw-
type Locker. Now, the FourthLocker is defined with a bounded type as

class FourthLocker<T extends Number> {...}

In this case, we can store an instance of the Number class or any of it subclasses in
a raw-type FourthLocker.

Because the type restriction is removed from the raw type, the following
assignment statements are valid (but very dangerous):

Locker rawLocker = new Locker();
Locker<String> strLocker = new Locker<String>();
Locker<Integer> intLocker = new Locker<Integer>();

rawLocker = intLocker; //valid, not even a warning

strLocker = rawLocker; //valid, only a compile time warning

This is dangerous from the type safety standpoint because we can write statements
such as these.

intLocker.store(new Integer(10));

rawLocker = intLocker;

strLocker = rawLocker; //only a compile time warning here

String str = strLocker.retrieve();

The last statement is invalid and logically wrong, of course; but through the two
hideous assignments, strLocker is set to refer to a Locker object that holds an
Integer. The compiler cannot catch this error. Not even a warning is generated.

As stated, the use of raw types removes the type safety. But this does not make
sense because the goal of generics is type safety. Why allow something that nulli-
fies the goal? The answer is backward compatibility.

17.4 Additional Topics and Pitfalls 975

INVALID

Raw types are allowed in Java 5.0 to maintain the backward compatibility.

Consider the following statement:

List myList = new ArrayList();

wu23399_ch17.qxd 1/2/07 19:48 Page 975

If the raw types were not allowed in Java 5.0, the statement would not compile.
Thus, without raw types Java programs that use JCF classes and are written prior
to Java 5.0 will not run with Java 5.0. Backward compatibility that allows older
Java programs to be executed with a newer version of Java is considered sacred in
the Java community. To maintain backward compatibility with the tons of legacy
Java code, raw types are permitted. However, whenever you develop a new pro-
gram with Java 5.0, avoid using raw types at all cost so that the intended type
safety is not lost.

976 Chapter 17 Generics and Type Safety

Do not use raw types even if they are permitted in Java 5.0.

Generics and Arrays
Generics can be used with arrays, but their use can be tricky. We describe how
generics and arrays are used together and identify some common pitfalls. The most
surprising (and annoying) is that you are not allowed to create an array whose ele-
ments are instances of a type-specified generic class. For example, the second
statement in the pair

Locker<String>[] lockers;

lockers = new Locker<String>[25];

will not compile. Java simply does not allow this for the reason of not being able to
ensure type safety if it had been allowed. Notice that the declaration

Locker<String>[] lockers;

itself is valid because we can create lockers as follows:

lockers = new Locker[25]; //raw type lockers

An array of type-specified generic class is disallowed, but an array of raw type
generic class or a wildcard generic class is allowed. The following creations are
both valid:

Locker[] rawLockers = new Locker[25];
Locker<?>[] wildLockers = new Locker<?>[25];

INVALID

wu23399_ch17.qxd 1/2/07 19:48 Page 976

These are type-unsafe operations, but the compiler will generate a compile
time warning. The easiest way to handle this situation is to forget about using arrays
with generics altogether. Use either an ArrayList or LinkedList instead.

Summary 977

Do not use arrays with generics. Use either an ArrayList or a LinkedList instead.

• Generics are a new feature from Java 5.0 that provides type safety.

• The definition of a generic class includes one or more type parameters
surrounded by angle brackets.

• A concrete type must be provided when one is declaring and creating an
instance of a generic class.

• Type parameters can be bounded, or restricted, to subclasses of a specified
class.

• A wildcard type can be used for the type parameter to designate “free-
ranging” type.

• The static data members and methods cannot include any reference to the
type parameter.

• From Java 5.0, Java Collections Framework (JCF) classes, such as
ArrayList and HashMap, include type parameters. They are now generic
classes.

• The new for-each loop allows a simple and clean way to access elements in
JCF collection classes or arrays.

• A subclass of a generic class can be defined. This subclass must also be a
generic class.

• A generic subclass of a nongeneric superclass can be defined.

• A class that implements a generic interface must be a generic class.

• A raw-type instance of the generic class is created when it is created without
specifying the actual type for the type parameter.

• An array of a type-specified generic class is not allowed. But an array of a
raw-type or wildcard generic class is allowed.

S u m m a r y

wu23399_ch17.qxd 1/2/07 19:48 Page 977

978 Chapter 17 Generics and Type Safety

K e y C o n c e p t s

generic class bounded type

generic interface wildcard type

type safety for-each loop

type parameter raw type

typing error

E x e r c i s e s

1. Here are the class definitions for Book and Broomstick:

class Book {

private String author;

public Book() {
this("Unknown");

}

public Book(String author) {
setAuthor(author);

}

public String getAuthor() {
return author;

}

public void setAuthor(String author) {
this.author = author;

}
}

class Broomstick {

private double value;

public Broomstick() {
this(0.0);

}

public Broomstick(double value) {
setValue(value);

}

public double getValue() {
return value;

}

public void setValue(double value) {
this.value = value;

}
}

wu23399_ch17.qxd 1/2/07 19:48 Page 978

Determine the output from the following code:

Locker<Book> lock1, lock2;
Locker<Broomstick> lock3;

lock1 = new Locker<Book>();
lock2 = new Locker<Book>();
lock3 = new Locker<Broomstick>();

lock1.store(new Book("Edgar Allan Poe");
lock3.store(new Broomstick());

System.out.println(lock1.retrieve());
System.out.println(lock2.retrieve().getAuthor());
System.out.println(lock3.retrieve().getValue());

2. Given the Book and Broomstick classes from Exercise 1, identify the invalid
statements in the following code fragmeent. For each statement, indicate
whether it causes a compile time warning, compile time error, or runtime error.

Locker<Book> lock1, lock2;
Locker<Broomstick> lock3, lock4;

lock1 = new Locker<Book>();
lock2 = new Locker();

lock1 = lock2;
lock2 = lock1;

lock3 = new Locker<Broomstick>();
lock4 = lock3;
lock3 = lock2;

System.out.println(lock3.retrieve().getAuthor());

3. Given the Locker and LockerSub classes, which of the following statements
are invalid?

Locker<Book> locker;
LockerSub<Book> lockerSub;

locker = new LockerSub<Book>();

locker = lockerSub;

lockerSub = locker;

4. Explain why it is not allowed to add the following two constructors.

class SecondLocker<T1, T2> {

...

public SecondLocker(T1 item) {
setFirstItem(item);

}

Exercises 979

wu23399_ch17.qxd 1/2/07 19:48 Page 979

public SecondLocker(T2 item) {
setSecondItem(item);

}

...
}

5. Which statements will result in a compile time warning or error in the
following code fragment?

Locker<Integer>[] lockers1;
Locker<Integer>[] lockers2;
Locker[] lockers3;

lockers1 = new Locker<Integer>[34];

lockers2 = new Locker[23];

lockers3 = new Locker<String>[20];

6. Declare and create an ArrayList of Locker<String> objects and add 100 lockers
to the list. Use simple string values such as data0, data1, . . . , data99.

7. Repeat Exercise 6, but this time, add 100 Locker<Book> objects. Use the
Book class defined in Exercise 1. For the author names, use author0,
author1, . . . , author99.

8. Using the SimpleLinkedList class from Section 17.2, write a program that plays
fortune telling. First, input N fortunes. Each fortune is a String. The value for N
is entered by the user. You may assume that input N is always positive. Next,
repeatedly prompt the user to display a fortune. If the reply is yes, display a
fortune randomly chosen from the list. If the reply is no, then stop the program.

9. Here’s a generic interface:

interface Storable<T> {
public T remove();

public void put(T stuff);
}

Define a class named Bin that implements the Storable interface.

10. Define a generic class named AddressBook whose type parameter T can be
subtituted by the Person class or any of its subclasses. The AddressBook
object maintains a homogeneous collection of T objects. Include the add
method, which adds a new T object to the collection, and the delete method,
which removes all T objects that match the given name. Assume the Person
class (and its subclasses) has the method getName that returns the name of a
person. Use an array to implement the AddressBook class.

11. Repeat Exercise 10, but this time use a linked list to implement the
AddressBook class.

980 Chapter 17 Generics and Type Safety

wu23399_ch17.qxd 1/2/07 19:48 Page 980

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Describe the key features of the List ADT.

• Implement the List ADT using an array and
linked list.

• Describe and implement the iterator pattern.

• Explain the key differences between the array
and linked implementations of the List ADT.

981

18List ADT

wu23399_ch18.qxd 1/2/07 20:37 Page 981

e introduced the concept of linked lists in Chapter 16 and provided the funda-
mentals of manipulating links. And, in Chapter 17, we introduced the generics
feature of Java 5.0 and used it in defining the SimpleLinkedList class that provides a
higher-level abtraction to the client programmers. Using a SimpleLinkedList, the
client programmers do not have to deal directly with the linked nodes. Instead, they
deal strictly with list objects. The fact that the linked nodes are used in implemen-
tation is hidden from the client programmers. This embodies the software engineering
principle of information hiding. In this chapter, we will expand this concept further
by introducing an abstract data type (ADT). ADTs are reusable software compo-
nents that support reliable and flexible software construction.

An abstract data type (ADT) is a mathematical specification of a set of data
and the corresponding set of operations performed on those data. The key point
is that an ADT does not specify how the set of data is actually represented in
memory or how the set of operations is implemented. Nice examples of ADTs
can be found in the Java Collections Framework. When we look in the java.util
package, for example, we see the Java interface List and two classes that imple-
ment the List interface. The List interface represents the List ADT, and the two
classes—ArrayList and LinkedList—implement the List ADT. The ArrayList
uses an array, and the LinkedList uses linked nodes to implement the List ADT,
respectively.

To study how the ADT is defined and implemented, we will create our own
List ADT and provide two implementations in this chapter which we model after the
java.util.List interface and its two implementations. Ours is a much simplified ver-
sion of those in the java.util package. In Chapters 19 and 20, we will study the Stack
and Queue ADTs, respectively.

18.1 The List ADT
A list is a linearly ordered collection of elements. Figure 18.1 shows a sample list,
named sampleList, with five elements and another list, named myList, with five
three-letter animal names (String objects). Mathematically, we can designate
sampleList as

sampleList = (Lo, L1, L2, L3, L4)

Elements in a list are said to be linearly ordered. This means L0 comes before L1

and L1 comes before L2, and so forth. For the sample list myList, the first ele-
ment is L0 and the last element is L4. Note that we are using the zero-based in-
dexing. Elements in a list do not have to be distinct; i.e., duplicate elements are

982 Chapter 18 List ADT

I n t r o d u c t i o n

W

abstract data
type (ADT)

list ADT

linear ordering

duplicate
elements

wu23399_ch18.qxd 1/2/07 20:37 Page 982

allowed. Two objects o1 and o2 are considered duplicates if o1.equals(o2) is true.
In the sample list myList, we see that L1 and L3 are duplicates. A list also allows
multiple null elements. We will discuss more about the impact of duplicate and null
elements in the implementation sections.

In the remainder of this section, we will describe the operations of the List
ADT.

The add operation adds a new element to a list. There are two versions: The
first one adds a new element at the end of the list. The second one adds a new
element at the designated position in the list.

For the second version, all elements in that and higher positions will be shifted
to a position one index higher; that is, an element at position i will be shifted to
position i � 1. If the given position is a negative value, or larger than the current
size of the list, then the index out-of-bound exception will be thrown. Figure 18.2
illustrates the second version of the add operation.

18.1 The List ADT 983

Figure 18.1 A generic list named sampleList with five elements and a list of three-letter animals, named
myList.

L0 L1 L2 L3 L4

0 1 2 3 4

This value indicates
the position of an
element in the list.

This line indicates that the list
elements are connected in a
linear sequence.

"ape" "dog" "bee" "dog" "eel"
0 1 2 3 4

Notice that the list
elements do not

have to be unique.

sampleList

myList

null elements

add

wu23399_ch18.qxd 1/2/07 20:37 Page 983

984 Chapter 18 List ADT

Figure 18.2 Sample version 2 add operations on myList.

Before

After

Before

After

"cat" "gnu" "ape" "dog" "bee"
0 1 2 3 4

"cat"
0

"ape"
1

"dog"
2

"bee"
3

add(1, “gnu”)

throws
<index-out-of-bounds-exception>add(5, "gnu")

myList

"cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

myList

myList

"cat"
0

"ape"
1

"dog"
2

"bee"
3

No structural
change to the list

contains

The clear operation removes all elements in the list, which results in an empty
list. Figure 18.3 illustrates the clear operation.

The contains operation returns true if a specified element is included in the
list. Otherwise, false is returned. Notice that there could be duplicate objects. The
search will stop immediately after the first match, and true is returned. Figure 18.4
illustrates the contains operation.

The get operation returns the element stored at the designated position. If the
given position is outside of a valid range—less than 0 or greater than or equal to the
size of the list—an index out-of-bound exception is thrown. The get operation is a
read-only operation. It does not remove the element, so the list remains the same
after the get operation. Figure 18.5 illustrates the get operation.

get

clear

wu23399_ch18.qxd 1/2/07 20:37 Page 984

18.1 The List ADT 985

Figure 18.3 The effect of the clear operation on the myList list.

Before

After

"cat"
0

"ape"
1

"dog"
2

"bee"
3

clear()

myList

myList

Figure 18.4 Sample contains operations on the myList list.

Before

After

Before

After
No structural
change to the list

No structural
change to the list

returns
falsecontains("gnu")

returns
truecontains("ape")

"cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

"cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

"cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

"cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

wu23399_ch18.qxd 1/2/07 20:37 Page 985

The indexOf operation returns the position of the specified object in the list. If
the specified object is not in the list, then NOT_FOUND (�1) is returned. If there are
duplicates, then the position of the first match is returned. Figure 18.6 illustrates the
indexOf operation.

The isEmpty operation returns true if the list is empty. Otherwise, false is
returned. Figure 18.7 illustrates the isEmpty operation.

There are two versions of the remove operation. In the first version, we spec-
ify the element to remove by passing its position; in the second version, we specify
the element to remove by passing the element itself. The first version returns the
element removed from the list. It throws an index out-of-bound exception if
the index i is outside the valid range of 0 and the size of the list minus 1, that is,
0 ≤ i ≤ size � 1.

986 Chapter 18 List ADT

Figure 18.5 Sample get operations on the myList list.

No structural
change to the list

No structural
change to the list

returns
“dog”get(2)

throws
<index-out-of-bounds-exception>get(4)

Before "cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

Before "cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

myList

After "cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

After "cat"
0

"ape"
1

"dog"
2

"bee"
3

isEmpty

remove

indexOf

wu23399_ch18.qxd 1/2/07 20:37 Page 986

The second version removes the element and returns true. If the designated
element is not found, then the list remains the same and false is returned. If any
duplicates exist, then the first element in the list is removed. In both versions, if an
element is successfully removed, then all elements in the position higher than the
position of the removed element will be shifted to a position one index lower; that
is, elements at position i will be shifted to position i � 1. Figure 18.8 illustrates both
types of removal operations.

The set operation replaces the element at the designated position with the
given element. If the operation is successful, then the operation returns the element
previously stored in the designated position. If the designated position is outside of
a valid range, then an index out-of-bound exception is thrown. Figure 18.9 illus-
trates the set operations.

The size operation returns the size of the list. Figure 18.10 illustrates the size
operation.

18.1 The List ADT 987

Figure 18.6 Sample indexOf operations on the myList list.

No structural
change to the list

No structural
change to the list

returns
NOT_FOUND (�1)indexOf("gnu")

returns
2indexOf("dog")

Before "cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

After "cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

Before "cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

After "cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

set

size

wu23399_ch18.qxd 1/2/07 20:37 Page 987

18.2 The List Interface
We will use a Java interface to define the List ADT. To avoid confusion with the
java.util classes, we will prefix the name of the interfaces and classes we define here
with NPS (NPS stands for the author’s affiliation, Naval Postgraduate School, in
Monterey, California). In the NPSList interface definition, we use the generics feature
introduced in Chapter 17. Formalizing what we have presented in Section 18.1, we
have the following definition, and Table 18.1 summarizes the methods:

988 Chapter 18 List ADT

Figure 18.7 Sample isEmpty operations on the myList list.

No structural
change to the list

No structural
change to the list

myList

myList

returns
falseisEmpty()

returns
trueisEmpty()

Before "cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

After

Before

After

"cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

NPSList

package edu.nps.util;

interface NPSList<E> {

public void add(E item);

public void add(int index, E item) throws IndexOutOfBoundsException;

wu23399_ch18.qxd 1/2/07 20:37 Page 988

18.2 The List Interface 989

Figure 18.8 Sample remove operations on the myList list.

remove(1)
returns

gnu

returns
trueremove(“gnu”)

Before "cat"
0

"gnu"
1

"ape"
2 3

"bee"
4

myList

After "cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

Before

After "cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

"dog"

"cat"
0

"gnu"
1

"ape"
2 3

"bee"
4

myList

"dog"

public void clear();

public boolean contains(E item);

public E get(int index) throws IndexOutOfBoundsException;

public int indexOf(E item);

public boolean isEmpty();

public E remove(int index)throws IndexOutOfBoundsException;

public boolean remove(E item);

public E set(int index, E item) throws IndexOutOfBoundsException;

public int size();
}

wu23399_ch18.qxd 1/2/07 20:37 Page 989

990 Chapter 18 List ADT

Figure 18.9 Sample set operations on the myList list.

Figure 18.10 A sample size operation on the myList list.

returns
apeset(1, "fox")

No structural
change to the list

throws
<index-out-of-bounds-exception>set(4, "fox")

Before "cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

After "cat"
0

"fox"
1

"dog"
2

"bee"
3

myList

Before "cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

After "cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

No structural
change to the list

returns
4size()

Before "cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

After "cat"
0

"ape"
1

"dog"
2

"bee"
3

myList

wu23399_ch18.qxd 1/2/07 20:37 Page 990

18.2 The List Interface 991

Ta
b

le
Table 18.1

Interface:NPSList

void add(E item)

Adds the item to the end of the list.

void add(int index, E item) throws IndexOutOfBoundsException

Adds the item at the specified index position. If the value for index is less
than 0 or larger than the size of the list, an IndexOutOfBoundsException
is thrown.

void clear()

Empties the list. After the clear method is called, the method isEmpty will
return true.

boolean contains(E item)

Returns true if the item is in the list. Otherwise, returns false. If the list is
empty, the result is false.

E get(int index) throws IndexOutOfBoundsException

Returns the item at the specified index position. Notice that the item is not
removed from the list.

int indexOf(E item)

Returns the index position of the specified item in the list.The value NOT_FOUND
(-1) is returned when the item is not in the list.

boolean isEmpty()

Returns true if the list is empty. Otherwise, returns false.

E remove(int index) throws IndexOutOfBoundsException

Removes the item at the index position from the list. If the specified index value is
less than 0 or greater than size()-1, an IndexOutOfBoundsException is
thrown.

boolean remove(E item)

Removes the item from the list and returns true. Returns false if the item is
not found.

void set(int index, E item) throws IndexOutOfBoundsException

Replaces the item at the index position with the passed item. If the index is less
than 0 or greater than size() -1, an IndexOutOfBoundsException is
thrown.

int size()

Returns the number of items in the list.

The public methods of the list interface. The identifier E is the parameterized
type that will be replaced by the actual type such as String and Person

wu23399_ch18.qxd 1/2/07 20:37 Page 991

We will define two classes—NPSArrayList and NPSLinkedList—in Sections 18.3
and 18.4. A typical way to declare and create an NPSList object is as follows:

NPSList<Person> personList = new NPSArrayList<Person>();
NPSList<String> stringList = new NPSLinkedList<String>();

The first is a (homogeneous) list of Person objects, and the second is a list of String
objects.

18.3 The Array Implementation of the List ADT
There are two basic approaches in implementing the List ADT—array and linked-
list implementions. In this section, we will implement the list interface by using
an array. The linked-list implementation is presented in Section 18.4. For all our
implementations, we will use the generics feature so the list members will be homo-
geneous. To illustrate the list operations with concrete examples, we will use String
objects as list members in the following discussion. Figure 18.11 illustrates the
array implementation of a list.

The NPSArrayList Class
We use an array to store the elements and an int variable to keep track of the num-
ber of elements currently in the list. These members are declared as

private E[] element;
private int count;

and initialized as

element = (E[]) new Object[DEFAULT_SIZE];
count = 0;

992 Chapter 18 List ADT

myList = ("cat", "ape", "bee", "eel")ADT List:

Array
Implementation:

0 1 2 3 4 n-1...

:String

"cat"

:String

"eel"

:String

"bee"

:String

"ape"

:NPSArrayList

element

count
4

myList

Figure 18.11 An array implementation of the list myList.

wu23399_ch18.qxd 1/2/07 20:37 Page 992

in a constructor. We assume the class constant DEFAULT_SIZE is assigned some arbi-
trary integer. Notice that we first create an array of Object and then typecast it to an
array of E, the type parameter. This is necessary because it is not allowed to create
an array of generic type.

Adding an element at the end of the list can be achieved very easily. We add a
new element at the count position and increment the count by 1. The only compli-
cation is the overflow condition. The expand method is used to handle the overflow
condition. We detect the overflow condition when the value for count is equal to the
length of the element array. Here’s the version 1 add method:

public void add(E item) {

if (count == element.length) {

expand();
}

element[count] = item;
count++;

}

Instead of implementing the first add method explicitly as shown, we can
implement it by simply calling the second add method as

public void add(E item) {

add(count, item);
}

because the value of count is also the index position of the next available slot in the
array, i.e., the end of the list, to add an item.

Now, let’s see how we can implement the second version of the add method.
To insert an element at position i, we must shift current elements at positions i to
count-1 one position to the right to positions i+1, . . . , count, respectively. If an
invalid value is given for the position, then an index out-of-bound exception is
thrown. Here’s the method:

public void add(int index, E item)
throws IndexOutOfBoundsException {

checkInsertPosition(index, size());

if (count == element.length) {
expand();

}

//shift one position to the right
for (int i = count; i > index; i--) {

element[i] = element[i-1];
}

element[index] = item;
count++;

}

18.3 The Array Implementation of the List ADT 993

add

See the full source code list-
ing at the end of this section
for the expand method.

wu23399_ch18.qxd 1/2/07 20:37 Page 993

The private method checkInsertPosition verifies the validity of index. If it is
outside the valid range, an IndexOutOfBoundsException is thrown. The method is
defined as follows:

private void checkInsertPosition(int index) {

if (index < 0) {

throw new IndexOutOfBoundsException(
"Negative index of " + index +
" is invalid");

} else if (index > size()) {

throw new IndexOutOfBoundsException(index +
" is larger than valid upper bound" +
size());

}
}

The size method returns the number of elements in the list (the method is
defined at the end of this section).

We will set element[i] to null, where i = 0, . . ., count-1, so the objects ref-
erenced by element[i] will be garbage-collected. We will then reset the count
variable to 0.

public void clear() {

for (int i = 0; i < count; i++) {
element[i] = null;

}

count = 0;
}

We implement this method by using the indexOf method. If the indexOf method
returns a value other than NOT_FOUND (-1), then the specified object is in the list, so
the contains method returns true. If the indexOf method returns NOT_FOUND, then
the contains method returns false.

public boolean contains(E item) {

boolean result = true;

int loc = indexOf(item);

if (loc == NOT_FOUND) {
result = false;

}

return result;
}

994 Chapter 18 List ADT

clear

contains

NOT_FOUND is a class
constant.

wu23399_ch18.qxd 1/2/07 20:37 Page 994

Because we are using an array, this method is straightforward. All we have to do is
to return an object at position index of the element array, after confirming that the
value for index is valid. Here’s the method:

public E get(int index) throws IndexOutOfBoundsException {

checkAccessPosition(index);

return element[index];
}

The private method checkAccessPosition ensures that the given index specifies
a valid position for accessing an element. If it is outside the valid range, an
IndexOutOfBoundsException is thrown. Here’s the method:

private void checkAccessPosition(int index) {

if (size() == 0) {

throw new IndexOutOfBoundsException(
"Index " + index + " is invalid. List is empty.");

} else if (index < 0) {

throw new IndexOutOfBoundsException(
"Negative index of " + index +
" is invalid");

} else if (index > size()-1) {

throw new IndexOutOfBoundsException(index +
" is larger than valid upper bound" +
(size()-1));

}
}

This method scans the list from the beginning and stops when the first match is
located. If the specified object is not in the list, then NOT_FOUND (-1) is returned.
For this method to work properly, the elements in the list must support the equals
method, which we will use to locate the matching element.

public int indexOf(E item) {

int loc = 0;

while (loc < count && !element[loc].equals(item)) {
loc++;

}

if (loc == count) {
loc = NOT_FOUND;

}

return loc;
}

18.3 The Array Implementation of the List ADT 995

get

indexOf

wu23399_ch18.qxd 1/2/07 20:37 Page 995

This method is also straightforward. We just check the value of the count variable.

public boolean isEmpty() {

return (count == 0);
}

After the element at position i is removed, we must shift current elements at posi-
tions i+1 to count one position to the left, to positions i, . . . , count-1, respectively.
And, we decrement the count variable by 1.

public E remove(int index)
throws IndexOutOfBoundsException {

checkAccessPosition(index);

E item = element[index];

//shift one position to the left
for (int i = index; i < count; i++) {

element[i] = element[i+1];
}

element[count] = null;
count--;

return item;
}

The second version of remove requires a routine to find the index of the item to be
removed. Once we get the index of an object to remove, we call the first remove
method to remove it. If there are any duplicates, then only the first match is
removed. If the passed item is not found, then nothing happens.

public boolean remove(E item) {

int loc = indexOf(item);

if (loc == NOT_FOUND) {

return false;

} else {

remove(loc);

return true;
}

}

The set method replaces an object at the specified index position with the passed
object. If the index is invalid, an index out-of-bound error is thrown. If the

996 Chapter 18 List ADT

isEmpty

remove

set

wu23399_ch18.qxd 1/2/07 20:37 Page 996

operation is successful, then the method returns the previous object in the index
position.

public E set(int index, E item)
throws IndexOutOfBoundsException {

checkAccessPosition(index);

E old = element[index];

element[index] = item;

return old;
}

This method is straightforward. We simply return the value of the count variable.

public int size() {

return count;
}

We are now ready to list the complete NPSArrayList class. In the source code
listing, we do not show any javadoc comments in order to keep the listing to a man-
ageable size. The actual source code includes the full javadoc comments.

18.3 The Array Implementation of the List ADT 997

size

package edu.nps.util;

public class NPSArrayList<E> implements NPSList<E> {

public static final int DEFAULT_SIZE = 25;

public static final int NOT_FOUND = -1;

private E[] element;

private int count;

public NPSArrayList() {
this(DEFAULT_SIZE);

}

public NPSArrayList(int size) {

if (size <= 0) {
throw new IllegalArgumentException(

"Initial capacity must be positive");
}

element = (E[]) new Object[size];
count = 0;

}

NPSArrayList

Constructors

wu23399_ch18.qxd 1/2/07 20:37 Page 997

998 Chapter 18 List ADT

public void add(E item) {

if (count == element.length) {
expand();

}

element[count] = item;
count++;

}

public void add(int index, E item) throws IndexOutOfBoundsException {

checkInsertPosition(index);

if (count == element.length) {
expand();

}

//shift one position to the right
for (int i = count; i > index; i--) {

element[i] = element[i-1];
}

element[index] = item;
count++;

}

public void clear() {

for(int i = 0; i < count; i++) {
element[i] = null;

}

count = 0;
}

public boolean contains(E item) {

boolean result = true;

int loc = indexOf(item);

if (loc == NOT_FOUND) {
result = false;

}

return result;
}

public E get(int index) throws IndexOutOfBoundsException {

checkAccessPosition(index);

return element[index];
}

add

add

clear

contains

get

wu23399_ch18.qxd 1/2/07 20:37 Page 998

18.3 The Array Implementation of the List ADT 999

public int indexOf(E item) {

int loc = 0;

while (loc < count && !element[loc].equals(item)) {
loc++;

}

if (loc == count) {
loc = NOT_FOUND;

}

return loc;
}

public boolean isEmpty() {

return (count == 0);
}

public E remove(int index) throws IndexOutOfBoundsException {

checkAccessPosition(index);

E item = element[index];

//shift one position to the left
for (int i = index; i < count; i++) {

element[i] = element[i+1];
}

element[count] = null;
count--;

return item;
}

public boolean remove(E item) {

int loc = indexOf(item);

if (loc == NOT_FOUND) {

return false;

} else {

remove(loc);

return true;
}

}

public E set(int index, E item) throws IndexOutOfBoundsException {

checkAccessPosition(index);

indexOf

isEmpty

remove

remove

set

wu23399_ch18.qxd 1/2/07 20:37 Page 999

1000 Chapter 18 List ADT

E old = element[index];

element[index] = item;

return old;
}

public int size() {

return count;
}

private void checkAccessPosition(int index) {

if (size() == 0) {

throw new IndexOutOfBoundsException(
"Index " + index + " is invalid. List is empty.");

} else if (index < 0) {

throw new IndexOutOfBoundsException("Negative index of" + index +
"is invalid");

} else if (index > size()-1) {

throw new IndexOutOfBoundsException(index +
"is larger than valid upper bound" +
(size()-1));

}
}

private void checkInsertPosition(int index) {

if (index < 0) {

throw new IndexOutOfBoundsException(
"Negative index of " + index + " is invalid");

} else if (index > size()) {

throw new IndexOutOfBoundsException(index +
" is larger than valid upper bound" + size());

}
}

private void expand() {

//create a new array whose size is 150% of
//the current array
int newLength = (int) (1.5 * element.length);
E[] temp = (E[]) new Object[newLength];

expand

size

checkAccessPosition

checkInsertPosition

wu23399_ch18.qxd 1/2/07 20:37 Page 1000

18.4 The Linked-List Implementation of the List ADT
With the array implementation, a whole block of memory is allocated at once. When
an overflow condition occurs, a new larger block of memory is allocated and the
contents of the original array are copied to the new array. The original array will
eventually get garbage-collected when the data member element is set to refer to the
new array. Instead of allocating a large block of memory, the linked implementation
allocates a small amount of memory that is just large enough for a single element.
In general, this finer granularity of memory allocation leads to a more efficient use
of memory. These points were discussed in detail in Chapter 16. In this section, we
will describe how the linked-list implementation works. Figure 18.12 illustrates
the linked implementation of a list.

18.4 The Linked-List Implementation of the List ADT 1001

//now copy the data to the new array
for (int i = 0; i < element.length; i++) {

temp[i] = element[i];
}

//finally set the variable entry to point to the new array
element = temp;

}
}

Figure 18.12 A linked-list implementation of the list myList.

ADT List:

Linked-List
Implementation:

myList = ("cat", "ape", "bee", "eel")

:NPSLinkedList

count

tail

head

:String

"cat"

:String

"ape"

:String

"bee"

:String

"eel"

myList

4

wu23399_ch18.qxd 1/2/07 20:37 Page 1001

The ListNode Class
Figure 18.13 compares the array implementation and the linked implementation.
With the array implementation, these references are grouped together, occupying
the contiguous memory location. Each reference is accessed by the index value
of the array position. As detailed in Chapter 16, with the linked-list implementa-
tion, they are individually allocated. Since they do not occupy any contiguous
memory locations, they must be linked to form a chain for us to be able access
them.

We define a class named ListNode to represent the pair of references. We
often use the term link or pointer for the second reference that points to another
list node. To distinguish the two different types of references, we use a blue
arrow for the first reference and a red arrow for the link. Each node will be rep-
resented by a single ListNode object. The ListNode class has two data members,
and the class is declared as follows (the generic parameter E is declared in the
NPSLinkedList class):

class ListNode {

private E item;

private ListNode next;

public ListNode(E item) {
this.item = item;
this.next = null;

}
}

1002 Chapter 18 List ADT

Figure 18.13 The structural difference between the array and linked-list implementations.

Linked-List
Implementation:

Array
Implementation:

0 1 2 3 4

�������

�����

�������

��	
�

�������

��

�

�������

�

��

�������

�����

�������

��	
�

�������

��

�

�������

�

��

wu23399_ch18.qxd 1/2/07 20:37 Page 1002

The NPSLinkedList Class
Similar to the NPSArrayList class, we need an int variable to keep track of the number
of elements currently in the list. In addition, we use two references: one points to the
first node, and the other points to the last node. The reference to the last node allows
us to add a new node at the end of the list quickly. Without it, we have to traverse the
links from the head to locate the last node. These data members are declared as

private ListNode head;
private ListNode tail;
private int count;

and initialized as

head = null;
tail = null;

count = 0;

in a constructor (the actual constructor calls the clear method, which resets the list
as an empty list by executing the above three statements).

Let’s start with the first version. There are two cases we need to consider when
adding an element at the end of the list. The first case involves adding an element to
an empty list. Figure 18.14 illustrates this case. Both head and tail are null when the
list is empty. When a node is added to an empty list, this node is both the first and
last node of the list, so both head and tail are set to point to this newly added node.
This is the end case.

18.4 The Linked-List Implementation of the List ADT 1003

Figure 18.14 Adding an element at the end of an empty list.

Before After

item

:NPSLinkedList

count

tail

head

Note: newNode is a local
variable and will be erased
when the method terminates.

myList

newNode

0

:NPSLinkedList

count

tail

head

myList

1

ListNode newNode = new ListNode(item);

head = newNode;

tail = newNode;

count++;

add

wu23399_ch18.qxd 1/2/07 20:37 Page 1003

In the general case, where the list has one or more nodes, a newly added node
is added at the end, so this new added node becomes the new tail node of the list.
The pointer from the tail node before the addition is set to point to the new tail node
after the addition. Figure 18.15 illustrates the general case.

Here’s the version 1 add method:

public void add(E item) {

//creates a new ListNode
ListNode newNode = new ListNode(item);

if (isEmpty()) {

head = tail = newNode;

1004 Chapter 18 List ADT

Figure 18.15 The general case of adding an element at the end of a list.

item

Before

After

1

2

1

2

:NPSLinkedList

count

tail

head

:NPSLinkedList

count

tail

head

myList

myList

newNode

k

k+1

ListNode newNode = new ListNode(item);

tail.next = newNode;

tail = newNode;

count++;

•••

•••

wu23399_ch18.qxd 1/2/07 20:37 Page 1004

} else {

tail.next = newNode;
tail = newNode;

}

count++;
}

As was the case with the NPSArrayList class, we implemented the method
explicitly to illustrate clearly the thinking process behind the operation, but we
can actually implement it succinctly by calling the second version as follows:

public void add(E item) {

add(count, item);
}

Now, let’s see how we can implement the second version of the add method.
Again, we have to handle the two cases separately. The end case occurs when the new
node is added as the first element, that is, index == 0. In this case we have to adjust the
head to point to the newly added node and the link field of this new node to point to the
node that was the first node before the addition. Figure 18.16 illustrates this case.

In the general case, we must locate the position to insert the new node as the
ith node. Unlike the array implementation, where we can locate an element at posi-
tion i by simply using an indexed expression, in the case of linked implementation
we must traverse the pointers in the linked fields. To insert a new node as the ith node
in the list (the first node being the 0 node), we need a pointer to the i-1st node. Once
we locate this node, the rest is a matter of adjusting two link fields. Figure 18.17
illustrates the general case.

Here’s the complete definition for the second version of the add method:

public void add(int index, E item)
throws IndexOutOfBoundsException {

checkInsertPosition(index);

ListNode ptr = head;

ListNode newNode = new ListNode(item);

if (index == 0) { //adding the new node as
// the first node

newNode.next = head;
head = newNode;

} else {
for (int i = 1; i < index; i++) {

ptr = ptr.next;
}

newNode.next = ptr.next;
ptr.next = newNode;

}

18.4 The Linked-List Implementation of the List ADT 1005

wu23399_ch18.qxd 1/2/07 20:37 Page 1005

//adjust tail if the new node added is
//the last node in the list
if (index == count) {

tail = newNode;
}

count++;
}

1006 Chapter 18 List ADT

Figure 18.16 The second version of add with index == 0, i.e., adding an element as the first node in a list.

Before

After

2

1

1

:NPSLinkedList

count

tail

head

newNode

:NPSLinkedList

count

tail

head

X

X

This is the 0th node. We mark its item X,
so the before and after diagrams can
be compared easily.

item

k

k+1

myList

myList

ListNode newNode = new ListNode(item);

newNode.next = head;

head = newNode;

count++;

2
•••

•••

wu23399_ch18.qxd 1/2/07 20:37 Page 1006

Notice the last if statement in the method. If the newly added node is the last
node after the insertion, then we must adjust the tail pointer. We know that the
newly added node is the last node if its index is equal to count. If the test is true,
then we set tail to point to the new node.

18.4 The Linked-List Implementation of the List ADT 1007

Figure 18.17 The general case of adding a new node as the ith node.

ListNode newNode = new ListNode(item);

newNode.next = ptr.next;

ptr.next = newNode;

count++;

1

2

This is the ith node before the
insertion of the new node.

ptr points to the (i-1)st node.

2 1

This is the new
ith node.

Before

After

newNode

item

:NPSLinkedList

count

tail

head

X

k

myList

ptr:NPSLinkedList

count

tail

head

k�1

myList

X

•••

••••••

•••

wu23399_ch18.qxd 1/2/07 20:37 Page 1007

The clear method empties the list; that is, it resets the list as an empty list. Its
implementation is straightforward. We reset head and tail to null and count to 0. By
setting head to null, all the nodes in the list will eventually get garbage-collected.
Here’s the method:

public void clear() {

head = tail = null;

count = 0;
}

The contains method is implemented by using the indexOf method. If the
indexOf method returns a value other than NOT_FOUND (-1), then the specified ob-
ject is in the list, so the contains method returns true. If the indexOf method returns
NOT_FOUND, then the contains method returns false.

public boolean contains(E item) {

boolean result = true;

int loc = indexOf(item);

if (loc == NOT_FOUND) {
result = false;

}

return result;
}

The get method for the linked implementation requires the traversing of link
fields to locate the desired node. After checking that the passed index value is valid,
the method traverses the pointers. The traversing is essentially the same as we did
for the second version of the add method. The only difference is that we are setting
the pointer ptr to point to the index node, not to the index-1st node, as was the case
with the add method. Here’s the method:

public E get(int index) throws IndexOutOfBoundsException {

checkAccessPosition(index);

E item = null;

ListNode ptr = head;

for (int i = 0; i < index; i++) {
ptr = ptr.next;

}

item = ptr.item;

return item;
}

1008 Chapter 18 List ADT

contains

get

clear

This loop traverses
the list by following
the link field for
index times.

wu23399_ch18.qxd 1/2/07 20:37 Page 1008

18.4 The Linked-List Implementation of the List ADT 1009

indexOf

INVALID

isEmpty

remove

The indexOf method traverses the pointers from head and stops when the first
match is located. The counter loc is incremented every time the next node is visited.
If the specified object is not in the list, then NOT_FOUND (-1) is returned.

public int indexOf(E item) {

int loc = 0;

ListNode ptr = head;

while (loc < count && !ptr.item.equals(item)) {
loc++;
ptr = ptr.next;

}

if (loc == count) {
loc = NOT_FOUND;

}

return loc;
}

Be careful that the order of operands in the while test is critical. We cannot write
it as

while (!ptr.item.equals(item) && loc < count) {

because doing so would result in a NullPointerException error in the case
where the searched item is not found (i.e., when loc becomes equal to count, ptr
is null).

The isEmpty method is simple. We just check the value of the count variable.

public boolean isEmpty() {

return (count == 0);
}

For the first version of remove, we must locate the i-1st node. Once this node is
located, all that is left to do is to adjust this node’s next field. Unlike in the array
implementation, no shifting is necessary. This is one advantage of the linked
implementation. On the other hand, with the array implementation, there’s no
search is involved, while the linked implemention requires the traversal of links
to locate the i-1st node. Figure 18.18 illustrates the operation for the general case.
There are end cases we need to watch out for: First, when the node we are
removing is the last node in the list, we must adjust the tail pointer to point to
the new last node after the removal. Second, when the node we are removing is
the first node, then we must adjust the head pointer. If this first node is the only
node in the list, then we must also adjust the tail pointer. If we are removing the

wu23399_ch18.qxd 1/2/07 20:37 Page 1009

only node in the list (both head and tail point to this node), the net result is that
both head and tail become null.

public E remove(int index)
throws IndexOutOfBoundsException {

checkAccessPosition(index);

ListNode deleteNode;

ListNode ptr = head;

if (index == 0) { //removing the first node

deleteNode = ptr;

head = head.next;

1010 Chapter 18 List ADT

Figure 18.18 The first version of the remove operation. Remove the ith node given the value i.

1

This is the ith node
we‘re deleting.

ptr points to the (i-1)st node.

1

Before

After

:NPSLinkedList

count

tail

head

X

k

myList

ptr:NPSLinkedList

count

tail

head

X

k

myList

ptr.next = ptr.next.next;

count--;

••••••

••••••

wu23399_ch18.qxd 1/2/07 20:37 Page 1010

if (head == null) { //the first node is
//the only node

tail = null;
}

} else {

for (int i = 1; i < index; i++) {
ptr = ptr.next;

}

deleteNode = ptr.next;

ptr.next = deleteNode.next;

if (ptr.next == null) { //very last node was removed
tail = ptr; //we have a new last node

}
}

count--;

return deleteNode.item;
}

The second version of remove requires a traversal to locate the node to be
removed. If there are duplicates, then the first match is removed. If the passed item
is not found, then nothing happens. To locate the desired node, we use two pointers:
ptr and trail. The ptr will point to the node to be removed, and the trail will point to
the node one before the ptr node. In other words, the following relationship holds
between the two:

trail.next == ptr

As with the first version, we must watch out for the end cases of removing the first
node, the last node, or the only node. Here’s the second remove method:

public boolean remove(E item) {

boolean result = false;

ListNode ptr = head;
ListNode trail = null;

while (ptr != null && !ptr.item.equals(item)) {

trail = ptr;
ptr = ptr.next;

}

if (ptr != null) { //found item

if (trail == null) { //removing the first node

head = head.next;

18.4 The Linked-List Implementation of the List ADT 1011

wu23399_ch18.qxd 1/2/07 20:37 Page 1011

if (head == null) { //the first node is
//the only node

tail = null;
}

} else {

trail.next = ptr.next;

if (trail.next == null) { //very last node was
tail = trail; //removed, so set tail to

//point to a new last node
}

}

count--;

result=true;
}

return result;
}

After checking that the passed index value is valid, the set method traverses the list
index times and sets the pointer ptr to the node to be modified. Once this node is
located, its data field is set to refer to the passed item.

public E set(int index, E item) {

checkAccessPosition(index);

ListNode ptr = head;

for (int i = 0; i < index; i++) {
ptr = ptr.next;

}

E old = ptr.item;

ptr.item = item;

return old;
}

This method is easy (for a change). We simply return the value of the count
variable.

public int size() {

return count;
}

1012 Chapter 18 List ADT

set

size

wu23399_ch18.qxd 1/2/07 20:37 Page 1012

We are now ready to list the complete NPSLinkedList class. In the source code
listing, we do not show any javadoc comments, to keep the listing to a manageable
size. The actual source code includes the full javadoc comments.

18.4 The Linked-List Implementation of the List ADT 1013

package edu.nps.util;

public class NPSLinkedList<E> implements NPSList<E> {

public static final int NOT_FOUND = -1;

private ListNode head;

private ListNode tail;

private int count;

public NPSLinkedList() {

clear();
}

public void add(E item) {

//creates a new ListNode
ListNode newNode = new ListNode(item);

if (count == 0) {

head = tail = newNode;

} else {

tail.next = newNode;
tail = newNode;

}

count++;
}

public void add(int index, E item) throws IndexOutOfBoundsException {

checkInsertPosition(index);

ListNode ptr = head;

ListNode newNode = new ListNode(item);

if (index == 0) { //adding the new node as the first node

newNode.next = head;
head = newNode;

} else {

NPSLinkedList

Constructor

add

add

wu23399_ch18.qxd 1/2/07 20:37 Page 1013

1014 Chapter 18 List ADT

for (int i = 1; i < index; i++) {
ptr = ptr.next;

}

newNode.next = ptr.next;
ptr.next = newNode;

}

//adjust tail if the new node added is
//the last node in the list
if (index == count) {

tail = newNode;
}

count++;
}

public void clear() {

head = tail = null;

count = 0;
}

public boolean contains(E item) {

boolean result = true;

int loc = indexOf(item);

if (loc == NOT_FOUND) {
result = false;

}

return result;
}

public E get(int index) throws IndexOutOfBoundsException {

checkAccessPosition(index);

E item = null;

ListNode ptr = head;

for (int i = 0; i < index; i++) {
ptr = ptr.next;

}

item = ptr.item;

return item;
}

public int indexOf(E item) {

int loc = 0;

clear

contains

get

indexOf

wu23399_ch18.qxd 1/2/07 20:37 Page 1014

18.4 The Linked-List Implementation of the List ADT 1015

ListNode ptr = head;

while (loc < count && !ptr.item.equals(item)) {

loc++;
ptr = ptr.next;

}

if (loc == count) {
loc = NOT_FOUND;

}

return loc;
}

public boolean isEmpty() {

return (count == 0);
}

public E remove(int index) throws IndexOutOfBoundsException {

checkAccessPosition(index);

ListNode deleteNode;

ListNode ptr = head;

if (index == 0) { //removing the first node

deleteNode = ptr;

head = head.next;

if (head == null) { //the first node is the only node
tail = null;

}

} else {

for (int i = 1; i < index; i++) {
ptr = ptr.next;

}

deleteNode = ptr.next;

ptr.next = deleteNode.next;

if (ptr.next == null) { //very last node was removed
tail = ptr; //we have a new last node

}
}

count--;

return deleteNode.item;
}

isEmpty

remove

wu23399_ch18.qxd 1/2/07 20:37 Page 1015

1016 Chapter 18 List ADT

public boolean remove(E item) {

boolean result = false;

ListNode ptr = head;
ListNode trail = null;

while (ptr != null && !ptr.item.equals(item)) {

trail = ptr;
ptr = ptr.next;

}

if (ptr != null) { //found item

if (trail == null) { //removing the first node

head = head.next;

if (head == null) { //the first node is the only node
tail = null;

}

} else {

trail.next = ptr.next;

if (trail.next == null) { //very last node was removed, so
tail = trail; //set tail to point to a new

last node
}

}

count--;

result = true;
}

return result;
}

public E set(int index, E item) {

checkAcessPosition(index);

ListNode ptr = head;

for (int i = 0; i < index; i++) {
ptr = ptr.next;

}

E old = ptr.item;

ptr.item = item;

return old;
}

remove

set

wu23399_ch18.qxd 1/2/07 20:37 Page 1016

18.4 The Linked-List Implementation of the List ADT 1017

public int size() {

return count;
}

private void checkAccessPosition(int index) {

if (size() == 0) {

throw new IndexOutOfBoundsException(
"Index " + index + " is invalid. List is empty.");

} else if (index < 0) {

throw new IndexOutOfBoundsException("Negative index of " + index +
" is invalid");

} else if (index > size()-1) {

throw new IndexOutOfBoundsException(index +
" is larger than valid upper bound" +
(size()-1));

}
}

private void checkInsertPosition(int index) {

if (index < 0) {

throw new IndexOutOfBoundsException(
"Negative index of " + index + " is invalid");

} else if (index > size()) {

throw new IndexOutOfBoundsException(index +
" is larger than valid upper bound" + size());

}
}

// Inner Class: ListNode

class ListNode {

private E item;

private ListNode next;

public ListNode(E item) {
this.item = item;
this.next = null;

}
}

}

size

checkAccessPosition

checkInsertPosition

ListNode

wu23399_ch18.qxd 1/2/07 20:37 Page 1017

1018 Chapter 18 List ADT

end cases

Figure 18.19 Sample linked lists with the head node.

An empty list

A list with four items

:NPSLinkedList

count

tail

head

:NPSLinkedList

count

tail

head

myList

myList

0

4
:String

"cat"

:String

"ape"

:String

"bee"

:String

"eel"

This is the head node. It
contains no information.

18.5 The Linked Implementation with the Head Node
In both versions of the add and remove methods of the linked implementation, we
have to include a test to determine the special case of removing the first node
because we need to treat the removal of the first node differently from the other
general cases. The special cases are also called end cases or boundary cases.
Consider the case of removal: If we are dealing with a large list, we do not expect
the removal of the first node to happen frequently in ordinary applications. Yet,
every time we remove a node we must test if it is the removal of the first node. It is
not efficient to check every time for something that rarely occurs. Can we do some-
thing about it? Is there a way to eliminate this testing?

The technique we can use to eliminate the testing of the end case is to insert
one extra “dummy” node at the head of a list. By including this head node, one set
of code can be used to handle both the end and general cases. Figure 18.19 shows
the lists with the head node.

wu23399_ch18.qxd 1/2/07 20:37 Page 1018

18.5 The Linked Implementation with the Head Node 1019

With the head node in a list, version 1 remove can be written as follows:

public E remove(int index)
throws IndexOutOfBoundsException {

checkAccessPosition(index);

ListNode deleteNode;

ListNode trail = head;

for (int i = 0; i <= index; i++) {
trail = trail.next;

}

deleteNode = trail.next;
trail.next = deleteNode.next;

if (deleteNode.next == null) { //very last node was
tail = trail; //removed so set tail

//to the new last node
}

count--;

return deleteNode.item;
}

Compare this remove to the corresponding method of the NPSLinkedList class. The
other remove method and the two versions of the add method can be improved in a
similar manner. Here is the NPSLinkedListWithHeader class (the methods that
remain the same as those in NPSLinkedList are not listed here).

NPSLinkedListWithHeader

package edu.nps.util;

public class NPSLinkedListWithHeader<E> implements NPSList<E> {

public static final int NOT_FOUND = -1;

private ListNode head;

private ListNode tail;

private int count;

public NPSLinkedListWithHeader() {

ListNode headNode = new ListNode(null);

head = headNode;
tail = headNode;

count = 0;
}

Note:
The methods that remain the same
as those in NPSLinkedList are not
listed here.

Constructor

wu23399_ch18.qxd 1/2/07 20:37 Page 1019

1020 Chapter 18 List ADT

public void add(E item) {

//creates a new ListNode
ListNode newNode = new ListNode(item);

tail.next = newNode;
tail = newNode;

count++;
}

public void add(int index, E item) throws IndexOutOfBoundsException {

checkInsertPosition(index);

ListNode ptr = head;

ListNode newNode = new ListNode(item);

for (int i = 0; i < index; i++) {
ptr = ptr.next;

}

newNode.next = ptr.next;
ptr.next = newNode;

//adjust tail if the new node added is
//the last node in the list
if (index == count) {

tail = newNode;
}

count++;
}

public void clear() {

head.next = null; //don't remove the dummy head node
tail = head;

count = 0;
}

public E get(int index) {

checkAccessPosition(index);

ListNode ptr = head.next;

for (int i = 0; i < index; i++) {
ptr = ptr.next;

}

return ptr.item;
}

add

add

clear

get

wu23399_ch18.qxd 1/2/07 20:37 Page 1020

public int indexOf(E item) {

int loc = 0;

ListNode ptr = head.next;

while (loc < count && !ptr.item.equals(item)) {
loc++;
ptr = ptr.next;

}

if (loc == count) {
loc = NOT_FOUND;

}

return loc;
}

public E remove(int index) throws IndexOutOfBoundsException {

checkAcessPosition(index);

ListNode deleteNode;

ListNode trail = head;

for (int i = 0; i <= index; i++) {
trail = trail.next;

}

deleteNode = trail.next;
trail.next = deleteNode.next;

if (deleteNode.next == null) { //very last node was
tail = trail; //removed so set tail

//to the new last node
}

count--;

return deleteNode.item;
}

public boolean remove(E item) {

boolean result = false;

ListNode ptr = head.next;
ListNode trail = head;

while (ptr != null && !ptr.item.equals(item)) {

trail = ptr;
ptr = ptr.next;

}

18.5 The Linked Implementation with the Head Node 1021

indexOf

remove

remove

wu23399_ch18.qxd 1/2/07 20:37 Page 1021

if (ptr != null) {
trail.next = ptr.next;

if (trail.next == null) { //very last node was removed
tail = trail; //we have a new last node

}

Count--;

result = true;
}

return result;
}

public E set(int index, E item) {

checkAccessPosition(index);

ListNode ptr = head.next;

for (int i = 0; i < index; i++) {
ptr = ptr.next;

}

E old = ptr.item;

ptr.item = item;

return old;
}

. . .
}

1022 Chapter 18 List ADT

set

18.6 The Iterator Design Pattern
One of the most common operations we perform on a data structure, including the
linear list, is a traversal. Traversing a data structure means visiting, or accessing,
every element in the data structure. For example, if a data structure contains Person
objects and we want to find out their average age, we have to visit every Person
object in the data structure to derive the sum of their ages and then divide the sum
by the total number of elements.

Traversing a complex data structure can be complicated because there could
be many different ways to visit elements. For a simpler data structure, such as the
linear list, however, traversal is straightforward. We visit the elements in sequence:
visit the first element, the second element, and so forth. Here’s a sample code for

traversal

wu23399_ch18.qxd 1/2/07 20:37 Page 1022

traversing Person objects in a list to compute their average:

NPSList<Person> personList;

//Assume personList is created and includes
//Person objects; for simplicity we assume
//the list includes at least one element

double ageSum, avgAge;

ageSum = 0;

for (int i = 0; i < personList.size(); i++) {

Person p = personList.get(i);

ageSum += p.getAge();
}

avgAge = ageSum / personList.size();

What would be the cost of such a traversal operation? It depends on the imple-
mentation. With the array implementation, the cost of accessing every element in the
list is N, but with the linked-list implementation, the cost is (N2 � N)�2. Let’s see why
there is such an order-of-magnitude difference. The cost of the get method in the
array implementation is the same regardless of the location of an element, because
any element in an array can be accessed by applying the same address computation
formula. How about the get method of the linked implementation? To access the ith
element, we must traverse the links i times, starting from the head node, so the cost
is i. Assuming that the cost of following a link and the cost of address computation
are the same, we can derive the total cost for scanning as follows: �

N

i�1

1� N for the

array implementation and �
N

i�1

i � (N2 � N)�2 for the linked implementation.

Since traversal is a frequently used operation, it is worth the effort to improve
its performance. We would like to improve the performance of the linked-list
implementation to the level of the array implementation, that is, from (N2 � N)�2 to
N. We can do so by applying the technique known as the iterator design pattern. An
iterator is a design pattern that supports a consistent way to access the elements
stored in a data structure. We define an iterator as an ADT that supports two opera-
tions—the first to prompt if there are more elements to visit and the second to
retrieve the next element to visit. Here’s the interface definition for the ADT:

18.6 The Iterator Design Pattern 1023

package edu.nps.util;

interface NPSIterator<E> {

public boolean hasNext();

public E next() throws NPSNoSuchElementException;
}

NPSIterator

iterator

wu23399_ch18.qxd 1/2/07 20:37 Page 1023

The hasNext method returns true if there are more elements in the iterator. The
next method returns the next object in the iterator if there is one. Otherwise, it
throws an NPSNoSuchElementException. This exception class is patterned after the
NoSuchElementException class in the java.util package. We avoid using classes and
interfaces from the java.util package in our edu.nps.util package to make it self-
contained. We do not want to require client programmers to import the java.util
package also when using the edu.nps.util package.

We add a method, named iterator, to the NPSList interface that returns an
iterator. With the iterator method, we can compute the average age of Person objects
in a list as follows:

NPSList<Person> personList;

//Assume personList is created and includes
//Person objects; for simplicity we assume
//the list includes at least one element

double ageSum, avgAge;

ageSum = 0;

NPSIterator itr = personList.iterator();

while (itr.hasNext()) {

Person p = itr.next();

ageSum += p.getAge();
}

avgAge = ageSum / personList.size();

Let’s first modify the NPSLinkedList class to include the iterator method.
Notice that NPSIterator is an interface, so the iterator method must return an
instance of a class that implements this interface. The best way to achieve this is
to define an inner class that implements the NPSIterator interface inside the
NPSLinkedList class. In this inner class, we keep a data member current that keeps
track of the node whose item value we return when the next method is called.
Every time the next method is called, we update the current pointer to the next node
in the list. When the next method is called and the current points to the last node
in the list, the updated current becomes null, and the next time the hasNext
method is called, it returns false.

Here’s how we define the modified class:

1024 Chapter 18 List ADT

NPSLinkedList (final version)

package edu.nps.util;

public class NPSLinkedList<E> implements NPSList<E> {

...

wu23399_ch18.qxd 1/2/07 20:37 Page 1024

Notice that the type parameter is not specified for the inner class MyIterator.
It is invalid to declare the inner class as

private class MyIterator<E> implements NPSIterator<E> {

Doing so would conflict with the type parameter of the outer class NPSLinkedList.
With this invalid declaration, E in the inner class and E in the outer class would be
viewed as referring to two different actual types. By not associating any type para-
meter to MyIterator, the generic type E in the inner and outer classes refers to the
same actual type.

18.6 The Iterator Design Pattern 1025

public NPSIterator iterator() {

return new MyIterator(head);
}

...

//-----Inner Class: MyIterator -------------//
private class MyIterator implements NPSIterator<E> {

private ListNode current;

public MyIterator(ListNode node) {

current = node;
}

public boolean hasNext() {

return current != null;
}

public E next() throws NPSNoSuchElementException {

if (current == null) {
throw new NPSNoSuchElementException("No more element");

}

Object item = current.item;

current = current.next;

return item;
}

}
}

INVALID

wu23399_ch18.qxd 1/2/07 20:37 Page 1025

The NPSNoSuchElementException class is a very simple class. Here’s the
definition:

1026 Chapter 18 List ADT

package edu.nps.util;

public class NPSNoSuchElementException extends RuntimeException {

public NPSNoSuchElementException() {

this("Requested element does not exist in the data structure");
}

public NPSNoSuchElementException(String message) {

super(message);
}

}

NPSNoSuchElementException

Now let’s look at how we can implement the iterator method for the
NPSArrayList class. We should realize that we are not gaining any performance im-
provement in doing this, because the cost of calling the get method N times, once
for each node in the list, to scan the elements in a list is O(N). But defining the
iterator method to the NPSArrayList class gives us a consistent and easy-to-use man-
ner of traversing elements in all types of diverse data structures.

We follow the same approach used in the iterator inner class of NPSLinkedList.
This time, however, instead of the current pointer, we maintain an int data member
current that keeps track of the index of the current node. We initialize current to 0.
The hasNext method returns true if the value of current is less than or equal to the
maximum possible index value, i.e., the size of the list minus 1. When the next
method is called and the value of current is not less than the size of the list, it throws
an exception. Otherwise, the method returns the current element and increments
current by 1 so it will point to the next element.

The modified NPSArrayList is defined as follows:

package edu.nps.util;

public class NPSArrayList<E> implements NPSList<E> {

...

public NPSIterator iterator() {

return new MyIterator(0);
}

NPSArrayList (final version)

wu23399_ch18.qxd 1/2/07 20:37 Page 1026

18.7 Sample Development 1027

////---------- Inner Class : MyIterator -------------////
private class MyIterator implements NPSIterator<E> {

private int current;

public MyIterator() {
current = 0;

}

public boolean hasNext() {

if (current < size()-1) {
return true;

} else {
return false;

}
}

public E next() throws NPSNoSuchElementException {

if (current >= size()) {
throw new NPSNoSuchElementException();

} else {
int idx = current; //these three statements can be written
current++; //succinctly in a single statement as
return element[idx]; //return element[current++]

}
}

}
}

Sample Development
Fortune Cookies

Let’s write a simple application that illustrates the use of a list. The program will display a
fortune cookie, a short text message, when requested by the user. Since each fortune
cookie is a string, we maintain a database of fortune cookies using a list ADT.

Problem Statement

Write a program that displays a fortune cookie (text message) every time the user
wishes it. Repeatedly prompt the user if he or she wishes to read another fortune
cookie. If the reply is yes, display it. If the reply is no, terminate the program.
Assume there is a text file named fortune.txt that contains text messages. Each
line of text represents a single fortune cookie.

18.7 Sample Development

wu23399_ch18.qxd 1/2/07 20:37 Page 1027

18.7 Sample Development—continued

Overall Design

Let’s begin by identifying the core objects and their tasks. First, we need an object to han-
dle the user interaction. This object can serve as the top-level controller of the program.
Second, we need an object to maintain a list of fortune cookies. This object will return a
random fortune cookie when requested. And third, we need an object to input fortune
cookies from the designated text file.

1028 Chapter 18 List ADT

Design Document: FortuneCookie

Class Purpose
FortuneCookieMain The top-level control object handles the user

interaction. This is the instantiable main class.

FortuneCookieFile This class handles the input of text messages for
fortune cookies from the designated text file
fortune.txt.

FortuneCookieManager This is the core class for this application. It maintains
the database of fortune cookies.

design
document

Among the several different possibilities, we will establish the class dependencies
as follows:

FortuneCookieMain FortuneCookieManager FortuneCookieFile

We will implement this program in the following three major steps:

1. Implement the FortuneCookieMain main class. Use a stub
FortuneCookieManager class.

2. Implement the FortuneCookieManager main class. Use a stub
FortuneCookieFile class.

3. Implement the FortuneCookieFile class and finalize the program.

We will present some design ideas for steps 1 and 3, but the actual implementa-
tions are left as exercises. These two steps are straightforward, and the related topics are
discussed in previous chapters. Our focus for this sample development is step 2.

develop-
ment steps

wu23399_ch18.qxd 1/2/07 20:37 Page 1028

Step 1 Development: Implement the FortuneCookieMain Class

This step is left as an exercise. You may choose a simplistic console-based user interface or
a GUI. In either case,you need to call a method of FortuneCookieManager to retrieve the
next fortune cookie. We can use a stub for this method. Here’s how we could define a
temporary FortuneCookieManager class.

class FortuneCookieManager {

public FortuneCookieManager() {

}

public String nextFortune() {

return "Here's your fortune"; //STUB - TEMP
}

}

The interaction from the main class to the manager class is limited to the creation
of a manager instance and the repeated calling of the nextFortune method.

Step 2 Development: Implement the FortuneCookieManager Class

We now replace the temporary FortuneCookieManager class with the real one. The man-
ager class will be assisted by the file class FortuneCookieFile in reading fortune cookies.
This file class will hide all the gory details of file input. The manager class simply needs to
call the method getList to get a list of strings. Each string in the list represents a single for-
tune cookie. We set NPSList as the return type of this method. We return null from the
method if there’s any problem reading a file. Here’s a sample code to retrieve a list:

NPSList list;
FortuneCookieFile inputFile;

inputFile = new FortuneCookieFile();

list = inputFile.getList();

The temporary FortuneCookieFile class can be defined as follows:

import edu.nps.util.*;

public class FortuneCookieFile {

public FortuneCookieFile() {

}

public NPSList<String> getList() {

NPSList<String> list = new NPSArrayList<String>();

list.add("You will lead a happy life");
list.add("Patience is virtue");
list.add("Your talent is unbounded and will be" +

" rewarded with happiness");

18.7 Sample Development 1029

Step 2
Design

wu23399_ch18.qxd 1/2/07 20:37 Page 1029

18.7 Sample Development—continued

list.add("You will live to a ripe old age.");
list.add("You will graduate with distinction");

return list;
}

}

Implementation of the FortuneCookieManager class is remarkably simple, thanks
to the use of a list. All the hard work is taken care of by the list. We just need one method
that returns a fortune cookie and a constructor. Here’s the design document:

1030 Chapter 18 List ADT

Design Document: The FortuneCookieManager Class

Method Visibility Purpose
<constructor> public Creates and initializes the data members.

Throws an IOException when the
fortune cookie list cannot be created. This
happens, for example, when the specified
file is not found or is corrupted.

nextFortune public Returns a randomly selected fortune cookie
from the list.

Here’s the full code listing:

import java.io.IOException;
import java.util.Random;
import edu.nps.util.NPSList;

public class FortuneCookieManager {

private NPSList<String> fortunes;

private Random random;

private int listSize;

public FortuneCookieManager() throws IOException {

FortuneCookieFile fortuneFile = new FortuneCookieFile();
fortunes = fortuneFile.getList();

if (fortunes == null) {
throw new IOException();

}

FortuneCookieManager

step 2 code

wu23399_ch18.qxd 1/2/07 20:37 Page 1030

We run the same main class from step 1 with the fully implemented FortuneCookie-
Manager class and confirm that the random fortune cookies are displayed before
proceeding to the final step.

Step 3 Development: Implement the FortuneCookieFile Class

In this final step,we implement the file class that handles the input of fortune cookies from
the designated text file. This step is left as an exercise. The name of the text file is set to
fortune.txt.To add flexibility to the program, we can pass the name of the text file to open
when we create an instance of FortuneCookieFile.We also leave this option as an exercise.

Key Concepts 1031

random = new Random();

listSize = fortunes.size();
}

public String nextFortune() {

return fortunes.get(random.nextInt(listSize));
}

}

step 2 test

• An abstract data type (ADT) is a mathematical specification of a set of data
and the corresponding set of operations performed on those data.

• A list is a linearly ordered collection of elements.

• An array and a linked list are two possible implementations of a List ADT.

• The linked-list implementation with a dummy head node eliminates the
testing for the boundary cases.

• The traversal of list members is a very common operation.

• The iterator pattern supports a very efficient traversal operation.

• The use of a list ADT simplifies the program development remarkably as
illustrated in the Fortune Cookies sample development.

S u m m a r y

K e y C o n c e p t s

abstract data type (ADT)

List ADT

array implementation

linked-list implementation

header node

iterator pattern

wu23399_ch18.qxd 1/2/07 20:37 Page 1031

1032 Chapter 18 List ADT

E x e r c i s e s

1. Both NPSArrayList and NPSLinkedList implement the NPSList interface
so they behave exactly the same. However, since their implementations
are different, the performances of their methods are different. Compare
the performances of their add and remove methods. Contrast the
amount of time required to locate the position to add or remove the item
and the amount of time required to update the structure (shifting the
items for the array implementation and chaining of links for the linked
implementation).

2. Suppose p1, p2, and p3 are unique instances of the Person class. What
would be an output from the following code?

Person p1, p2, p3;
p1 = ...;
p2 = ...;
p3 = ...;

NPSList list = new NPSArrayList();

list.add(p1);
list.add(p2);
list.add(p3);
list.add(p2);

System.out.prinlnt("Size of list: " + list.size());

3. Add a new method called removeRange

public void removeRange(int fromIndex, int toIndex)

that removes elements in the index positions from fromIndex, inclusive,
to toIndex, exclusive. Throw an IndexOutOfBoundsException if either
fromIndex or toIndex is less than 0 or greater than size(). Do nothing if
fromIndex is greater than or equal to toIndex.

4. Write a method returns a union of two given lists. Assume the two lists
contain String objects. There are no duplicates in each of the two input lists.
If the two input lists are, for example,

("one", "two", "three", "four", "five")

and

("one", "five", "zero", "four", "eight")

then their union is

("one", "two", "three", "four", "five", "zero", "eight")

The method prototype is as follows:

public NPSList<String> union(NPSList<String> list1,
NPSList<String> list2)

wu23399_ch18.qxd 1/2/07 20:37 Page 1032

5. Repeat Exercise 4, but this time the method returns the intersection of the
two given lists. If the two input lists are, for example,

("one", "two", "three", "four", "five")

and

("one", "five", "zero", "four", "eight")

then their intersection is

("one", "four", "five")

The method prototype is as follows:

public NPSList<String> intersect(NPSList<String> list1,
NPSList<String> list2)

6. Repeat Exercise 4, but this time the method returns the difference of the two
given lists. If the two input lists are, for example,

("one", "two", "three", "four", "five")

and

("one", "five", "zero", "four", "eight")

then their intersection is

("two", "three", "four")

The method prototype is as follows:

public NPSList<String> difference (NPSList<String> list1,
NPSList<String> list2)

7. Draw a state-of-memory diagram for the list after the following code is
executed:

NPSList<Integer> list = new NPSLinkedList<Integer>();

Integer intObj = new Integer(10);

list.add(intObj);
list.add(intObj);
list.add(intObj);

8. Write a subclass of NPSLinkedList that does not allow any duplicates in the
list. Call this subclass NPSNoDupLinkedList. Elements e1 and e2 are
duplicates if e1.equals(e2) is true. Implement the subclass by overriding the
two add methods. The modified add methods disallow the insertion of a
duplicate. The methods do nothing when a duplicate is passed to them.

9. Repeat Exercise 8, but this time write a subclass of NPSArrayList. Call this
subclass NPSNoDupArrayList.

10. Elements in the NPSList are unordered. Define a new interface NPSOrderedList
where elements are ordered in ascending order. Elements we add to an

Exercises 1033

wu23399_ch18.qxd 1/2/07 20:37 Page 1033

ordered list must be instances of a class that implements the Comparable
interface so they can be compared. The methods for the NPSOrderedList
interface are essentially the same as those for the NPSList interface, except for
the add method that specifies the index position of a newly added element.
With the NPSOrderedList interface, there is only one add method that adds an
element to the correct position, so the resulting list is ordered. Duplicates are
not allowed in the ordered list. Throw an IllegalArgumentException when one
attempts to add a duplicate. An element e1 is a duplicate if there is an e2 in the
list such that e1.compareTo(e2) == 0. Define only the interface in this exercise.
You will be asked to implement the interface in Exercises 11 and 12.

11. Implement the NPSOrderedList interface (see Exercise 10) by using an array.
Name this class NPSOrderedArrayList.

12. Implement the NPSOrderedList interface (see Exercise 10) by using a linked
list. Name this class NPSOrderedLinkedList.

13. The Iterator interface we presented in the chapter allows you to move in one
direction. Define a new interface called TwoWayIterator that allows you to
move both forward and backward. When you try to go beyond the first or
the last element, throw an NPSNoSuchElementException. You only need to
define the interface here. You will define classes that implement this interface
in the next two exercises. (Note: This TwoWayIterator interface is inspired by
the ListIterator interface in the java.util package.)

14. Add an inner class that implements the TwoWayIterator interface to the
NPSArrayList class.

15. Add an inner class that implements the TwoWayIterator interface to the
NPSLinkedList class.

16. Implement step 1 of the fortune cookie sample development.

17. Implement step 3 of the fortune cookie sample development.

18. Modify the base implementation of the FortuneCookieFile class done in
Exercise 17 so the modified class can input data from any text file. The file
name of the text file to open is passed as an argument to the constructor.

19. Extend the fortune cookie sample development program so that the
administrator can add and delete fortunes from the list. The administrator
enters a password when the program prompts whether to display the next
fortune. This will bring the program into an administrative mode. In this
mode, you can add new fortunes and delete existing fortunes. A new fortune is
added to the end of the list. You can delete existing fortunes in two ways. With
the first way, you specify the index position of the fortune in the list. With the
second way, the program will list all fortunes in the list one by one. For each
fortune listed, you can enter D to delete it, K to keep it, or X to stop the listing.

20. In Section 16.5, we implemented the HumongousInteger class using linked
nodes. We defined the inner Node class and manipulated links ourselves.
Reimplement the HumongousInteger class by using an NPSList instead. Is
there any clear benefit in using an NPSList?

1034 Chapter 18 List ADT

wu23399_ch18.qxd 1/2/07 20:37 Page 1034

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Describe the key features of the Stack ADT.

• Develop applications using stacks.

• Implement the Stack ADT by using an array.

• Implement the Stack ADT by using a linked list.

• Explain the key differences between the array
and linked implementations of the Stack ADT.

1035

19Stack ADT

wu23399_ch19.qxd 1/2/07 20:46 Page 1035

e continue our study of ADTs with the Stack ADT in this chapter. As we did
in Chapter 18, we start with the definition of the Stack ADT and present two
different implementations. We conclude the chapter with sample applications of
the Stack ADT.

The Stack ADT is modeled after a physical stack of items, such as a stack
of pancakes or a stack of plates. If you were asked to remove any plate from a stack
of plates, which one would you remove? The topmost one, of course. Similarly,
the most effortless place to add a new plate is at the top of the stack. Like its phys-
ical counterpart, the defining feature of the Stack ADT is its restrictive insertion
and removal operations. An item can only be added to the top of the stack, and
only the topmost item of the stack can be removed. Because of this restriction, the
Stack ADT is quite simple. And consequently, its implementations are relatively
straightforward, compared to the List ADT. As simple as it may be, the Stack ADT
is remarkably versatile and useful in many diverse types of applications.

19.1 The Stack ADT
A stack is a linearly ordered collection of elements where elements, or items, are
added to and removed from the collection at the one end called the top of stack.
This restriction will ensure that the last element added to a stack is the first to be
removed next. For this reason, a stack is characterized as a last-in, first-out (LIFO)
list. Figure 19.1 shows a sample generic stack named sampleStack with five ele-
ments and another stack named myStack with five three-letter animal names.

Items in a stack are said to be linearly ordered because the order in which the
items are added and removed follows the strict linear sequence. In other words, the item
at the ith position below the top of the stack moves to the (i � 1)st position when the
topmost item is removed. Similarly, the item at the ith position below the top of the
stack moves to the (i � 1)st position when a new item is added to the top of the stack.

1036 Chapter 19 Stack ADT

I n t r o d u c t i o n

W

stack

top of stack

LIFO

TOP E4

E3

E2

E1

E0

sampleStack

TOP "bee"

"dog"

"ape"

"gnu"

"cat"

myStack

This is the top of stack.
New element is added
here, and only the
top-of-stack element
can be removed.

Figure 19.1 A generic stack sampleStack with five elements and a stack myStack with three-letter animal
names.

wu23399_ch19.qxd 1/2/07 20:46 Page 1036

Because the addition and removal operations are restricted, the methods
defined for the Stack ADT are much simpler than those defined for the List ADT.
The add operation named push adds a new item to the top of the stack. The remove
operation named pop removes the topmost item. The get operation named peek
returns the topmost item, without actually removing it. There are two query opera-
tions named size and isEmpty. The size method returns the number of items in the
stack, and the isEmpty method returns true if the size of the stack is 0. The update
operation named clear empties the stack.

The push operation will add the designated element to the top of the stack. The
current elements in the stack are pushed down one position. The stack does not have
any size restriction. It will grow without bound. Of course, the computer memory is not
limitless, so there will be a hardware limitation on how big a stack can grow, but there
will be no size restriction at theADT level.Also, there is no restriction on the elements.
You can add duplicates, for instance. Figure 19.2 illustrates the push operation.

The pop operation is the reverse of the push operation. It will remove the
topmost element from the stack if there is any. If the stack is empty, then the opera-
tion will throw an exception. There are a number of possible Java exceptions that
the operation can throw, and we will discuss them in Section 19.2. For now, we’ll
just say that the operation will throw some kind of exception. Figure 19.3 illustrates
the pop operation on nonempty and empty stacks.

The peek operation is just like the pop operation except that the top element
is not removed from the stack. Figure 19.4 illustrates the peek operation on non-
empty and empty stacks.

The clear operation removes all elements in the stack. It causes no problem
to call the clear operation on an empty stack. This operation becomes handy, for
example, when you want to clear the stack before reusing it for processing the next
batch of input data. See Figures 19.5 and 19.6.

The size operation returns the number of elements in the stack. This operation
is not as commonly used on the stacks as the isEmpty operation, but we will include
it in the specification as it is not costly to implement this operation. Including this
operation maintains the consistent set of methods available on all types of collection
objects.

The isEmpty operation tests whether the stack is empty. If it is, then true is
returned. Otherwise, false is returned. See Figure 19.7.

19.1 The Stack ADT 1037

pop

peek

clear

push

AfterBefore

TOP "bat"

"dog"

"ape"

"cat"

myStack

TOP "dog"

"ape"

"cat"

myStack

push("bat")

Figure 19.2 A sample push operation on the myStack stack.

size

isEmpty

wu23399_ch19.qxd 1/2/07 20:46 Page 1037

1038 Chapter 19 Stack ADT

<exception>

returns

AfterBefore

"dog"

myStack

TOP TOP"dog"

"ape"

"cat"

myStack

"dog"

"ape"

"cat"

myStack

myStack

peek()

throws

peek()

No structural
change is made.

Figure 19.4 Sample peek operations on the myStack stack.

<exception>

returns

AfterBefore

"dog"

"ape"

"cat"

"bat"

TOP

TOP

"bat"

"dog"

"ape"

"cat"

myStack

myStack

myStack

myStack

pop()

throws

pop()

Figure 19.3 Sample pop operations on the myStack stack.

wu23399_ch19.qxd 1/2/07 20:46 Page 1038

19.1 The Stack ADT 1039

AfterBefore

TOP "dog"

"ape"

"cat"

myStack myStackclear()

Figure 19.5 A sample clear operation on the myStack stack.

Figure 19.6 A sample clear operation on the myStack stack.

returns

3

AfterBefore

TOP TOP"dog"

"ape"

"cat"

myStack

"dog"

"ape"

"cat"

myStack
size()

No structural
change is made.

true

returns

AfterBefore

false

myStack

TOP TOP"dog"

"ape"

"cat"

myStack

"dog"

"ape"

"cat"

myStack

myStack

isEmpty()

returns

isEmpty()

Figure 19.7 Sample isEmpty operations on the myStack stack.

wu23399_ch19.qxd 1/2/07 20:46 Page 1039

1040 Chapter 19 Stack ADT

1. Draw the stack after executing the following operations, starting with an empty
stack called myStack.

String bee = new String("bee");
String cat = new String("cat");

myStack.clear();
myStack.push(bee);
myStack.push(cat);
myStack.pop();

2. Repeat Question 1 with the following statements:

String bee = new String("bee");
String cat = new String("cat");
String dog = new String("dog");

petStack.push(bee);
petStack.push(cat);
petStack.push(dog);
petStack.peek();
petStack.pop();
petStack.pop();
petStack.push(dog);

19.2 The Stack Interface
As we did for the List ADT, we will use a Java interface to define the Stack ADT.
We will continue to prefix our interfaces and classes with NPS. (There are no con-
flicts because no interface named Stack and no classes named ArrayStack and
LinkedStack exist in the java.util packages; but for consistency, we will prefix all of
our interfaces and classes with NPS.) Formalizing what we have presented in
Section 19.1, we have the following definition:

package edu.nps.util;

public interface NPSStack<E> {

public void clear();

public boolean isEmpty();

public E peek() throws NPSStackEmptyException;

public E pop() throws NPSStackEmptyException;

public void push(E element);

public int size();
}

NPSStack

wu23399_ch19.qxd 1/2/07 20:46 Page 1040

Table 19.1 summarizes the methods of the NPSStack interface.
The peek and pop methods are defined to throw an NPSStackEmptyException.

We could have thrown an NPSNoSuchElementException because there is no such
(top-of-stack) element when you attempt to pop or peek an empty stack. However,
NPSNoSuchElementException is equally applicable, for example, when you search
for an element that is not in a data structure. It is preferable to use an exception that
identifies the error condition as precisely as possible, instead of using a generic
exception. Because the specific error condition that would result in an exception for
the pop and peek operations is an empty stack, we chose to throw an exception
specifically defined for this purpose. The NPSNoSuchElementException class is a
very simple class. Here’s the definition:

19.2 The Stack Interface 1041

Ta
b

le
TABLE 19.1 The NPSStack interface

Interface:NPSStack

void clear()

Removes all elements from the stack.

boolean isEmpty()

Determines whether the stack is empty. Returns true if it is empty;false otherwise.

E peek() throws NPSStackEmptyException

Returns the top-of-stack element without removing it from the stack. Throws an
exception when the stack is empty.

E pop() throws NPSStackEmptyException

Removes the top-of-stack element and returns it. Throws an exception when the
stack is empty.

void push(E element)

Adds an element to the stack. This element becomes the new top-of-stack element.

int size()

Returns the number of elements in the stack.

package edu.nps.util;

public class NPSStackEmptyException extends RuntimeException {

public NPSStackEmptyException() {

this("Stack is empty");
}

public NPSStackEmptyException(String message) {

super(message);
}

}

NPSNoSuchElementException

wu23399_ch19.qxd 1/25/07 14:00 Page 1041

1042 Chapter 19 Stack ADT

19.3 The Array Implementation
In this section, we will implement the NPSStack interface by using an array to store the
stack elements. Figure 19.8 illustrates the array implementation of the Stack ADT.

The NPSArrayStack Definition
The NPSArrayStack class implements the NPSStack interface, and its class declara-
tion is as follows:

package edu.nps.util;

public class NPSArrayStack<E> implements NPSStack<E> {

//class body comes here

}

We use an array element to store the stack elements and an int variable count to
keep track of the number of elements currently in the stack. Since the Java array uses
zero-based indexing, the value of count is also the index of the array where we add
the next element. We will also define a constant for the default size we use when cre-
ating the array in the zero-argument constructor. These data members are declared as

private static final int DEFAULT_SIZE = 25;
private E[] element;
private int count;

Array ImplementationADT Stack

TOP "bat"

"dog"

"ape"

"cat"

myStack

0

1

2

3

n-1

.
.
.

The array is drawn vertically
to capture the nature of

stack more clearly.

This value is also the index
of the array where we add
the next item.

:NPSArrayStack

count

element

4

myStack

:String

"bat"

:String

"dog"

:String

"ape"

:String

"cat"

Figure 19.8 An array implementation of the Stack ADT.

wu23399_ch19.qxd 1/2/07 20:46 Page 1042

We will define two constructors: one takes no argument and another takes one
argument that specifies the initial size of the array. They are defined as follows:

public NPSArrayStack() {
this(DEFAULT_SIZE);

}

public NPSArrayStack(int size) {
if (size <= 0) {

throw new IllegalArgumentException(
"Initial capacity must be positive");

}

element = (E[]) new Object[size];
count = 0;

}

Notice that we first create an array of Object and then typecast it to an array of E, the
type parameter. This is necessary because it is not allowed to create an array of
generic type in Java.

We will set element[i] to null, where i = 0, . . . , count-1, so the objects referenced
by element[i] will be garbage-collected. We will then reset the count variable to 0.

public void clear() {

for (int i = 0; i < count; i++) {
element[i] = null;

}

count = 0;
}

This operation is straightforward. If the value of count is 0, then the stack is empty.
Otherwise, the stack is not empty.

public boolean isEmpty() {

return (count == 0);
}

This is one of the two operations that can potentially throw an NPSStackEmpty-
Exception. We throw an NPSStackEmptyException when the stack is empty. Other-
wise, we return the top-of-stack element.

public E peek() throws NPSStackEmptyException {

if (isEmpty()) {

throw new NPSStackEmptyException();

} else {

return element[count-1];
}

}

19.3 The Array Implementation 1043

clear

isEmpty

peek

Be careful! The current top
of stack is at the (count-1)
index position.

wu23399_ch19.qxd 1/2/07 20:46 Page 1043

The pop operation removes the top-of-stack element. If the stack is not empty, we
adjust the count data member and remove the topmost element by setting the value
of the corresponding index position to null. Here’s the method:

public E pop() throws NPSStackEmptyException {

if (isEmpty()) {

throw new NPSStackEmptyException();

} else {

count--;

E item = element[count];
element[count] = null;

return item;
}

}

Adding a new item to the top of a stack and updating the count data member can be
expressed easily and concisely as

element[count] = item;
count++;

The complication will arise when the array is fully occupied. When the array is
full, we need to enlarge it to accommodate more items. We will define a private
method called expand to create a new array that is 1.5 times larger than the current
array. This is the same technique we used in the NPSArrayList class. Here’s the method:

private void expand() {

// create a new array whose size is 150% of
// the current array
int newLength = (int) (1.5 * element.length);
E[] temp = (E[]) new Object[newLength];

// now copy the data to the new array
for (int i = 0; i < element.length; i++) {

temp[i] = element[i];
}

element = temp;
}

The push method is defined as follows:

public void push(E item) {

if (count == element.length) {
expand();

}

element[count++] = item;
}

1044 Chapter 19 Stack ADT

pop

push

Can be combined into one
statement as

element[count++] = item;

wu23399_ch19.qxd 1/11/07 16:45 Page 1044

The last method is straightforward. We simply return the value of the count data
member.

public int size () {

return count;
}

Here’s the complete source code (for brevity, javadoc and most other com-
ments in the actual source file are removed here):

19.3 The Array Implementation 1045

size

NPSArrayStack

package edu.nps.util;

public class NPSArrayStack<E> implements NPSStack<E> {

private static final int DEFAULT_SIZE = 25;

private E[] element;

private int count;

public NPSArrayStack() {
this(DEFAULT_SIZE);

}

public NPSArrayStack(int size) {
if (size <= 0) {

throw new IllegalArgumentException(
"Initial capacity must be positive");

}

element = (E[]) new Object[size];
count = 0;

}

public void clear() {

for(int i = 0; i < count; i++) {
element[i] = null;

}

count = 0;
}

public boolean isEmpty() {

return count == 0;
}

public E peek() throws NPSStackEmptyException {

if (isEmpty()) {

Constructor

clear

isEmpty

peek

wu23399_ch19.qxd 1/2/07 20:46 Page 1045

throw new NPSStackEmptyException();

} else {

return element[count-1];
}

}

public E pop() throws NPSStackEmptyException {

if (isEmpty()) {

throw new NPSStackEmptyException();

} else {

count--;

E item = element[count];
element[count] = null;

return item;
}

}

public void push(E item) {

if (count == element.length) {
expand();

}

element[count++] = item;
}

public int size() {

return count;
}

private void expand() {

int newLength = (int) (1.5 * element.length);
E[] temp = (E[]) new Object[newLength];

for (int i = 0; i < element.length; i++) {
temp[i] = element[i];

}

element = temp;
}

}

1046 Chapter 19 Stack ADT

pop

push

size

expand

wu23399_ch19.qxd 1/2/07 20:46 Page 1046

19.4 The Linked-List Implementation 1047

1. Draw the array stack (like the right-hand side diagram in Figure 19.8) after
executing the following operations, starting with an empty stack called
myStack.

String bee = new String("bee");
String cat = new String("cat");

myStack.clear();
myStack.push(cat);
myStack.push(bee);

2. What is the purpose of the enlarge method?

3. What will happen if you replace the statement inside the else block of the pop
method with the following?

return element[count--];

19.4 The Linked-List Implementation
The linked-list implementation of the Stack ADT follows the same implementation
pattern for the List ADT in Chapter 18. Figure 19.9 illustrates the linked-list imple-
mentation of the Stack ADT.

Linked-List ImplementationADT Stack

TOP "bat"

"dog"

"ape"

"cat"

myStack

The links are drawn
pointing downward to

capture the nature of
stack more clearly.

:NPSLinkedStack

count

topOfStack

4

myStack

:String

"bat"

:String

"dog"

:String

"ape"

:String

"cat"

Figure 19.9 A linked-list implementation of the stack myStack.

wu23399_ch19.qxd 1/2/07 20:46 Page 1047

The StackNode Class
The linked node structure for the stack is exactly the same as the one for the list. The
StackNode class is defined as the inner class of the NPSLinkedStack class. Here’s the
class definition:

class StackNode {

private E item;

private StackNode next;

public StackNode(E item) {
this.item = item;
this.next = null;

}
}

The NPSLinkedStack Class
We keep two data members in the class. The first data member is a reference vari-
able topOfStack that points to the top-of-stack element. We adjust its value every
time we pop an item from or push an item onto the stack. The second data member
is an int variable count that keeps track of the number of elements currently in the
stack. Their declarations are as follows:

private StackNode topOfStack;

Private int count;

We define only a single constructor that takes no arguments and sets the
stack to its initial state, which is an empty stack. The constructor is defined as
follows:

public NPSLinkedStack() {
clear();

}

When we reset the topOfStack pointer to null, the topmost node will get garbage-
collected (because no pointers point to it any more). When this topmost node gets
garbage-collected, the node below no longer has a pointer pointing to it, which
causes this node to be garbage-collected also. This ripple effect will eventually
cause all nodes to be garbage-collected. Here’s the clear method:

public void clear() {
topOfStack = null;
count = 0;

}

1048 Chapter 19 Stack ADT

clear

wu23399_ch19.qxd 1/2/07 20:46 Page 1048

The isEmpty method is implemented easily by checking the value of the data mem-
ber count:

public boolean isEmpty() {
return count == 0;

}

If the stack is empty, we throw an NPSstackEmptyException. Otherwise, we return
the top-of-stack node (without actually removing it). Here’s the method:

public E peek() throws NPSStackEmptyException {

if (isEmpty()) {

throw new NPSStackEmptyException();

} else {

return topOfStack.item;
}

}

If the stack is empty, we throw an NPSStackEmptyException. Otherwise, we set
a temp pointer to the topmost item, update the topOfStack pointer, and return the
topmost item. Here’s the method:

public E pop() throws NPSStackEmptyException {

if (isEmpty()) {

throw new NPSStackEmptyException();

} else {

count--;
E temp = topOfStack.item;

topOfStack = topOfStack.link;

return temp;
}

}

Adding a new element to a link-based stack is simpler than adding to an array-based
stack because we do not have to worry about the overflow condition. All we need
to do is to allocate a new node, adjust the topOfStack pointer, and increment the
counter. The method is defined as follows:

public void push(E element) {

StackNode newTop = new StackNode(element);

newTop.link = topOfStack; //add the new node to top

topOfStack = newTop; //set new node as top-of-stack

count++;
}

19.4 The Linked-List Implementation 1049

isEmpty

peek

pop

push

wu23399_ch19.qxd 1/2/07 20:46 Page 1049

The size method simply return the value of the data member count:

public int size() {
return count;

}

We are now ready to list the complete NPSLinkedStack class. In the source
code listing, we do not show any javadoc comments, to keep the listing to a man-
ageable size. The actual source code includes the full javadoc comments.

1050 Chapter 19 Stack ADT

size

NPSLinkedStack

package edu.nps.util;

public class NPSLinkedStack<E> implements NPSStack<E> {

private StackNode topOfStack;

private int count;

public NPSLinkedStack() {
clear();

}

public void clear() {

topOfStack = null;

count = 0;
}

public boolean isEmpty() {

return (count == 0);
}

public E peek() throws NPSStackEmptyException {

if (isEmpty()) {

throw new NPSStackEmptyException();

} else {

return topOfStack.item;
}

}

public E pop() throws NPSStackEmptyException {

if (isEmpty()) {

throw new NPSStackEmptyException();

} else {

count--;
E temp = topOfStack.item;

Constructor

clear

isEmpty

peek

pop

wu23399_ch19.qxd 1/2/07 20:46 Page 1050

topOfStack = topOfStack.link;

return temp;
}

}

public void push(E element) {

StackNode newTop = new StackNode(element);

newTop.link = topOfStack;

topOfStack = newTop;

count++;
}

public int size() {

return count;
}

class StackNode {

private E item;

private StackNode link; //points to the element
//one position below this node

public StackNode(E item) {

this.item = item;
this.link = null;

}
}

}

19.4 The Linked-List Implementation 1051

push

size

StackNode

1. Draw the linked stack (like the right-hand side diagram in Figure 19.9) after
executing the following operations, starting with an empty stack called
myStack.

String bee = new String("bee");
String cat = new String("cat");

myStack.clear();
myStack.push(cat);
myStack.push(bee);

2. Instead of using count == 0 to check for an empty stack, can we use
topOfStack == null?

wu23399_ch19.qxd 1/2/07 20:46 Page 1051

19.5 Implementation Using NPSList
At the beginning of this chapter, we wrote that a stack can be characterized as
a special kind of a list called a LIFO list. A stack is a LIFO list because the last
item to be added to a stack is the first item to be removed from the stack next. We
can in fact implement the Stack ADT by using a list. Consider the following
NPSListStack class:

1052 Chapter 19 Stack ADT

NPSListStack

package edu.nps.util;

public class NPSListStack<E> implements NPSStack<E> {

private static final int FRONT = 0;

private NPSList<E> list;

public NPSListStack() {
list = new NPSLinkedList<E>();

}

public void clear() {
list.clear();

}

public boolean isEmpty() {
return list.isEmpty();

}

public E peek() throws NPSStackEmptyException {

if (isEmpty()) {

throw new NPSStackEmptyException();

} else {

return list.get(FRONT);
}

}

public E pop() throws NPSStackEmptyException {

if (isEmpty()) {

throw new NPSStackEmptyException();

} else {

return list.remove(FRONT);
}

}

public void push(E element) {
list.add(FRONT, element);

}

wu23399_ch19.qxd 1/2/07 20:46 Page 1052

public int size() {

return list.size();
}

}

19.6 Sample Application 1053

See how easily and succinctly the whole class can be implemented. Notice that
in this implementation, we treat the first item in the linked list as the top-of-stack item.
Do you know why? Instead of the NPSLinkedList class, we can use the NPSArrayList
class. But with the NPSArrayList class, we should treat the last item in the list as the
top-of-stack element to avoid the shifting of items when a new item is added.

Sample Application 19.6 Sample Application

Matching HTML Tags

The use of the Stack ADT is quite common in many different applications. In this section
we will illustrate a typical use of a stack.We will write a program that checks the correctness
of a given HTML document. An HTML, which stands for Hyper Text Markup Language, is a
markup language designed for creating a web page. HTML uses a set of predefined tags
to describe the structure of a document.The tags are used, for example, to specify the title,
different levels of headings, numbered lists, and tables in a document. XML, or eXtended
Markup Language, is another markup language that is used widely in today’s computing
world.

It is not necessary to understand HTML fully to appreciate the use of a stack in
checking the syntax of an HTML document.We only need to know how the HTML tags are
organized in a document.The following is a very small (and valid) HTML document:

<html>
<head>
<title>A sample HTML page</title>
</head>
<body>
<h1>Sample HTML</h1>
<p>See how the tags are matched in pairs?</p>
<h4>This is a table</h4>
<table border="2">

<tr>
<td>row 1 column 1</td>
<td>row 1 column 2</td>

</tr>
</table>
</body>
</html>

wu23399_ch19.qxd 1/2/07 20:46 Page 1053

19.6 Sample Application—continued

Figure 19.10 shows how this HTML document is displayed in a Web browser. The
Web browser interprets the tags in the given HTML document and renders the page
accordingly.

The key characteristic of HTML tags is that the tags come in pairs: the opening
and matching closing tags. There’s an exception to this rule, but we will ignore it for the
sake of simplicity in the following discussion (see Exercise 11). For example, the opening
tag for the title is

<title>

and its matching closing tag is

</title>

The closing tag includes the forward slash (/) before the tag name. The tag names are case-
insensitive, so it doesn’t matter, for example, if we specify the opening tag for the title as

<title>

or as

<TITLE>

The tags in the example HTML document are displayed in blue for easy viewing. The
text in black is the content that gets displayed in the Web browser. If we strip the content,

1054 Chapter 19 Stack ADT

Figure 19.10 A Web browser displaying the sample HTML document.

wu23399_ch19.qxd 1/2/07 20:46 Page 1054

this is what we get (tags are indented to show the structure clearly):

Notice how the matching tags are nested. We will never encounter a situation in which
the matching tags cross over. In other words, in a valid HTML document,we will never face
a situation like this:

We can characterize the formulation of tags in a valid HTML document as
follows:

1. All opening tags have matching closing tags.

2. When a closing tag is encountered in the document, its corresponding opening
tag was already encountered. That is, opening tags always come before the
closing tags.

3. Tags can be nested, but they never overlap.

<body>

<table>

</body>

</table>

Invalid
This type of cross
over will not happen
in a valid HTML file.

<html>

<head>

<title>

</title>

</head>

<body>

<h1>

</h1>

<p>

</p>

<h4>

</h4>

<table border=”2”>

<tr>

<td>

</td>

<td>

</td>

</tr>

</table>

</body>

</html>

19.6 Sample Application 1055

wu23399_ch19.qxd 1/2/07 20:46 Page 1055

19.6 Sample Application—continued

These characteristics call for a stack to check the validity of a given HTML document.
Here’s the pseudocode for the syntax checker:

NPSStack tagStack = new NPSArrayStack();

boolean hasError = false, done = false;

while (!done) {

if (no more tags in a file) {
done = true;
if (!tagStack.isEmpty()) {

hasError = true;
}

} else {
nextTag = get next tag from the file;

if (nextTag is an opening tag) {

tagStack.push(nextTag); //every opening tag gets
//stacked exactly once

} else { //it's a closing tag

topTag = tagStack.pop();

if (topTag does not match nextTag) {
done = true;
hasError = true;

}
}

}
}

if (hasError) {
//Invalid HTML

} else {
//Valid HTML

}

To concentrate on the stack processing, we assume the two helper classes—HTML
TagRetriever and HTMLTag. An HTMLTagRetriever object handles the retrieval of HTML
tags from the specified file. An HTMLTag object represents a single HTML tag.
Implementation of these classes is left as an exercise. Table 19.2 lists the methods of
HTMLTagRetriever, and Table 19.3 lists the method of HTMLTag.

Now we are ready to implement the pseudocode. Let’s define a class named HTML
TagChecker. The major portion of the logic expressed in the pseudocode is implemented
in the key method called isValid. This method returns true if the tags in the designated

1056 Chapter 19 Stack ADT

If all tags are
processed and yet

the stack is not
empty, then it means

there were opening
tags with no match-

ing closing tags.

If the next incoming tag is a
closing tag, its corresponding

opening tag must be the
current top-of-stack element

because of the properly
nested characteristic.

wu23399_ch19.qxd 1/2/07 20:46 Page 1056

file are syntactically correct. Otherwise, it returns false. The name of the file to process is
passed to the constructor of HTMLTagChecker. Here’s the class:

19.6 Sample Application 1057

import edu.nps.util.*;

import java.io.IOException;

public class HTMLTagChecker {

private NPSStack<HTMLTag> tagStack;

private HTMLTagRetriever tagRetriever;

public HTMLTagChecker(String filename) throws IOException {

tagStack = new NPSArrayStack<HTMLTag>();

tagRetriever = new HTMLTagRetriever(filename);
}

HTMLTagChecker

Ta
b

le

Table 19.2 The HTMLTagRetriever class

Class:HTMLTagRetriever

HTMLTagRetriever(String filename) throws IOException

Constructs a new HTMLTagRetriever object and associates it to the
file with the name filename. Throws an IOException if the said file
cannot be opened.

void reset()

Resets this object so the processing of the tags can be repeated from the
beginning.

void reset(String filename) throws IOException

Same as the reset method with no parameter. This method, however,
associates the object to the new file.Throws an IOException if said file
cannot be opened.

boolean hasMoreTags()

Returns true if there are more tags in the file. Otherwise, returns
false.

HTMLTag nextTag() throws NoSuchElementException

Returns the next HTMLTag object in the file. If there are no more tags,
then the NoSuchElementException exception is thrown.

wu23399_ch19.qxd 1/2/07 20:46 Page 1057

19.6 Sample Application—continued

public boolean isValid() {

HTMLTag nextTag = null,
topTag = null;

tagStack.clear();

boolean hasError = false,
done = false;

while (!done) {

if (!tagRetriever.hasMoreTags()) { //no more tags

done = true;

1058 Chapter 19 Stack ADT

Ta
b

le
Table 19.3 The HTMLTag class

Class:HTMLTag

HTMLTag(String text)

Creates a new HTMLTag object.The parameter text is the actual string,
such as <body> and <title>, for the tag.

boolean match(HTMLTag tag)

Compares the parameter tag with this HTMLTag object in a case-
insensitive manner.The tag object can represent either the opening
or the closing tag.The method will make the appropriate checking.
For example, if this HTMLTag object represents <HEAD> and the
argument tag object represents </HEAD>, then it is a match. Likewise,
if this HTMLTag object represents </HEAD> and the argument tag
object represents <HEAD>, then it is a match also. If there is a match,
the method returns true. Otherwise, it returns false.The opening
HTMLTag object can contain attribute values. For example, in the
tag <TABLE border="2"> the border attribute specifies the width
of the table border.This method correctly matches the opening tag
that includes attributes with its closing tag.

boolean isOpeningTag()

Returns true if this object represents an opening tag. Otherwise, returns
false.

boolean isClosingTag()

Returns true if this object represents a closing tag. Otherwise, returns
false.

wu23399_ch19.qxd 1/2/07 20:46 Page 1058

if (!tagStack.isEmpty()) { //there are some
//leftover opening tags

hasError = true; //with no matching closing tags

done = true;
}

} else {

nextTag = tagRetriever.nextTag();

if (nextTag.isOpeningTag()) {

tagStack.push(nextTag);

} else { //it's a closing tag

topTag = tagStack.pop();

if (!topTag.match(nextTag)) {

done = true;
hasError = true;

}
}

}
}

return hasError;
}

///------------ M A I N m e t h o d ---------------------//
public static void main(String[] arg) {

try {

HTMLTagChecker checker = new HTMLTagChecker("index.html");

if (checker.isValid()) {
System.out.println("Input HTML file is valid");

} else {
System.out.println("Input HTML file is NOT valid");

}

} catch (IOException e) {
System.out.println("Error opening the designated file");

}
}

}

19.6 Sample Application 1059

wu23399_ch19.qxd 1/2/07 20:46 Page 1059

1060 Chapter 19 Stack ADT

Solving a Maze with Backtracking

Many computer problems can be solved by the technique called backtracking. The name
characterizes how the solution to a problem is found. Consider a maze problem. We define
a maze to be a two-dimensional array of cells.Each cell has four sides with at most three sides
having a wall. You can move from one cell to an adjacent cell if there is no wall between the
two cells. Two special cells are indentified as the entry and exit cells. The problem is to find a
path that takes you from the entry cell to the exit cell of a given maze.Figure 19.11 shows a
sample 5-by-5 maze. For humans, finding a solution path for a such small maze is almost
immediate. But when the maze gets larger, say, 100 by100, finding a solution is not an easy
matter anymore.(We’re talking here about a human finding a solution for a maze drawn on
a sheet of paper,and not about finding solution for a real-life maze or labyrinth.)

What kind of a computer solution can we devise to find a solution path? We assume
here that a given maze includes at least one solution path. A maze is represented by a
Maze object that consists of N-by-M cells. A cell is represented by a MazeCell object. The
Maze and MazeCell classes are described in Tables 19.4 and 19.5, respectively. It is left as
an exercise to implement these two classes.

One brute-force solution is to visit cells randomly, starting from the entry cell. This is
akin to a human walking blindly around the maze. This simplistic approach can be
expressed in the following manner:

public void solveRandom(Maze maze) {

MazeCell current = maze.getEntryCell();
MazeCell exit = maze.getExitCell();

Sample Development19.7 Sample Application

backtracking

Figure 19.11 A sample maze with 5-by-5 cells.The entry cell is marked with S and the exit cell with E.
The dotted line shows the solution path from S to E. For this maze, there’s exactly one solution path.

0

0

1

2

3

4

S

E

(0,3)
(0,2)
(1,2)
(2,2)
(3,2)
(1,3)
(3,0)
(4,0)
(4,1)
(4,2)
(4,3)
(3,3)
(3,4)
(2,4)

Solution Path
S

E

Cell is identified by
the row and column

numbers. This cell,
for example, is (2,0).

4321

wu23399_ch19.qxd 1/2/07 20:46 Page 1060

while (current != exit) {

//move to a random adjacent cell
current = maze.getNextRandomCell(current);

}

System.out.println("Solution Path Found");
}

Since the method does not keep track of the cells visited, all it does is to output the mes-
sage Solution Path Found when the exit cell is reached. It does not (cannot) print out the
solution path.

A much more elegant solution would be backtracking. Here’s how it works. Mark
the entry cell visited. Visit an adjacent cell that is not yet visited. Mark this cell visited (so
we won’t visit this cell again). Repeat this visit-and-mark-visited routine until either the
exit cell is visited or there is no adjacent cell to visit from the current cell. If the exit cell is
visited, then we found the solution. If there are no more adjacent cells to visit from the

19.7 Sample Development 1061

Ta
b

le

Table 19.4 The Maze class

Class:Maze

Maze(int rowSize, int columnSize)

Creates a new rowSize-by-columnSize maze. In its initial state, all
cells are marked unvisited. One cell is designated as the entry cell and
another cell as the exit cell. The entry and exit cells border one of the
outer boundaries.

void clear()

Resets the maze to its initial state.

int getColumnCount()

Returns the number of columns of this maze.

int getRowCount()

Returns the number of rows of this maze.

MazeCell getEntryCell()

Returns the entry cell.

MazeCell getExitCell()

Returns the exit cell.

MazeCell getNextCell(MazeCell currentCell)

Returns a visitable cell adjacent to currentCell. Returns null if
there is no visitable adjacent cell.

MazeCell getNextRandomCell(MazeCell currentCell)

Randomly selects and returns a cell adjacent to currentCell.The
state of cell (visitable or not) is ignored by this method.

wu23399_ch19.qxd 1/11/07 16:45 Page 1061

19.7 Sample Application—continued

current node, we backtrack to the cell before the current cell and repeat the process again
from that cell. Figure 19.12 illustrates two backtracking steps.

The key aspect of implementing this backtracking algorithm is to remember the
cell to backtrack to.The ADT that goes hand in hand with backtracking is a stack.When we
visit a cell, we push it onto a stack. The current cell is at the top of stack, and the adjacent
cell we visit next from the current cell will be the new top of stack (and it will be the cur-
rent cell in the next iteration). When we backtrack from a cell, we simply pop a stack. The
new top of stack is the cell we’re backtracking to. Figure 19.13 shows the correspondence
between the path and the stack content.

We use the setVisited method of the MazeCell class to mark a visited cell. The
getNextCell method of the Maze class returns a next visitable cell (a cell that is not yet

1062 Chapter 19 Stack ADT

Ta
b

le
Table 19.5 The MazeCell class

Class:MazeCell

MazeCell(int rowNum, int columnNum)

Creates a new cell. Each cell is identified by its row number and
column number, the position it occupies in a maze. In its initial state, all
four walls are up.

int getColumnNumber()

Returns the column number of this cell.

int getRowNumber()

Returns the row number of this cell.

boolean isVisited()

Returns true if the cell is not visited yet (i.e., it is visitable) and false
if the cell is visited.

boolean isWallUp(int side)

Returns true if the wall of the specified side of this cell is up. Possible
values for the parameter are MazeCell.NORTH,MazeCell.SOUTH,
MazeCell.EAST, and MazeCell.WEST.

void putWallDown(int side)

Knocks down the wall of the specified side of this cell. Possible values
for the parameter are MazeCell.NORTH,MazeCell.SOUTH,
MazeCell.EAST, and MazeCell.WEST.

void setVisited(boolean state)

Sets the state of this cell.The value of true means the cell is visited
and false means not visited.

wu23399_ch19.qxd 1/2/07 20:46 Page 1062

visited) from a given cell. If there are no more visitable cells from a given cell, the method
returns null. Here’s the method that finds a solution path by backtracking:

public void solveBacktracking(Maze maze) {

MazeCell current = maze.getEntryCell();
MazeCell exit = maze.getExitCell();

NPSStack<MazeCell> stack
= new NPSArrayStack<MazeCell>();

stack.push(current);

while (current != exit) {

current = maze.getNextCell(current);

19.7 Sample Development 1063

Figure 19.12 This illustrates how the backtracking works.Visited cells are marked with a red circle.
Diagram A: There are no more adjacent cells to visit from the current cell (C), so we backtrack to cell (1,0).
Diagram B: Again, there are no more adjacent from the current cell, so we backtrack. Diagram C: From the
current cell, we can visit cell (0,1), so we visit it next (N).

0 1 2 3 4

0

1

2

3

4

A

S

C

0 1 2 3 4

0

1

2

3

4

B

S

C

0 1 2 3 4

0

1

2

3

4

C

S

C

N

backtrack

from (2,0)
to (1,0)

backtrack

from (1,0)
to (1,1)

Figure 19.13 The stack content shows the order of visiting cells in the path currently under
consideration.

0 1 2 3 4

0

1

2

3

4

S

C

(2,1)

(2,2)

(1,2)

(0,2)

(0,3)

stack

wu23399_ch19.qxd 1/2/07 20:46 Page 1063

19.7 Sample Application—continued

if (current != null) {

current.setVisited(true); //mark it visited
stack.push(current);

} else { //no more visitable cells from the
//top-of-stack cell, so backtrack

current = stack.pop();
}

}

System.out.println("Solution Path:");

while (stack.isEmpty()) { //print out the solution
System.out.println(stack.pop()); //path backward

}
}

Because we are using a stack, the solution path found is printed backward from the
exit cell to the entry cell. It is more natural to print out the path forward from the entry cell
to the exit cell. This is left as an exercise.

1064 Chapter 19 Stack ADT

• A stack is a linearly ordered last-in, first-out (LIFO) collection of
elements.

• An item can be added to only the top of a stack, and only the top item of a
stack can be removed.

• An array and a linked-list are two possible implementations of the Stack
ADT.

• The Stack ADT can be implemented easily by using a list (an instance of a
class that implements the List ADT).

• Base implementation of the Stack ADT does not support any traversal
operation.

• The use of the Stack ADT is illustrated in two sample applications: an
HTML syntax checker and a maze solver.

• Backtracking is a technique used in finding a solution for a search
problem. The Stack ADT is used in implementing the backtracking
algorithm.

S u m m a r y

wu23399_ch19.qxd 1/2/07 20:46 Page 1064

Exercises 1065

K e y C o n c e p t s

Stack ADT

array implementation of Stack ADT

E x e r c i s e s

1. Draw a state-of-memory diagram that shows the effect of the pop operation
on a NPSLinkedStack. Use the state where there are four items in the stack
before the pop operation.

2. Draw a state-of-memory diagram that shows the effect of the push operation
on a NPSLinkedStack. Use the state where there are three items in the stack
before the push operation.

3. Draw a state-of-memory diagram that shows the result of executing each of
the following two sets of code.

a.
NPSStack stack = new NPSLinkedStack();

Person p = new Person(...);

stack.push(p);
stack.push(p);

b.
NPSStack stack = new NPSLinkedStack();

Person p1 = new Person(...);
Person p2 = new Person(...);

stack.push(p1);
stack.push(p2);

4. Add a new method toArray to the NPSStack interface and implement the method
in both NPSArrayStack and NPSLinkedStack. The toArray method will return an
array with the bottommost element at position 0, element 1 above the bottom at
position 1, and so forth. For a mathematically pure Stack ADT, we do not define
such conversion operation. But in the actual use of stacks, we often need to
access every element in the stack. For example, in the maze sample application,
if the toArray method is available, we can easily print out the solution path in
the forward direction (from the entry cell to the exit cell) instead of the
backward direction that we printed in the solveBacktracking method.

5. Adding the toArray method is one way to provide access to all elements in a
stack. Another way is to include the iterator method to the NPSStack
interface that returns an iterator. Implement the iterator method in both
NPSArrayStack and NPSLinkedStack. The iterator will access the items in the
stack from top to bottom.

linked-list implementation of Stack ADT

backtracking

wu23399_ch19.qxd 1/2/07 20:46 Page 1065

6. Code a new implementation class for the Stack interface called NoDupStack
that does not allow a duplicate of the existing element to be pushed onto the
stack. We define an element e2 to be a duplicate of e1 if e1.equals(e2) is
true. Define a new exception class called NPSDuplicateException and throw
this exception from the push method when an attempt is made to push a
duplicate. Use an array for this implementation.

7. Repeat Exercise 6, but this time use the linked nodes instead of an array.

8. In the NPSLinkStack class, the data member list is an instance of
NPSLinkedList we use to maintain the stack elements. If a stack is a LIFO list
(i.e., a stack IS-A a list), shouldn’t we define it as a subclass of the
NPSLinkedList class? Why is it wrong to so?

9. When implementing the NPSListStack class, we treat the first item in a list as the
top-of-stack item. Modify the class so the last item in the linked list is treated
as the top-of-stack item. Which implementation is more efficient? Why?

10. Implement the NPSListStack class using the NPSArrayList class.

11. Implement the HTMLTagRetriever class. There are some HTML tags that do
not have the matching closing tags. For this exercise, assume such tags are

, <hr>, and tags. The nextTag method must ignore these tags.

12. Implement the HTMLTag class. Pay close attention to the match method.
Some opening tags, such as the <table> tag, can contain attributes in
addition to the tag name. For example, the <table> tag can be

<table>

or

<table border="2">

When you match the opening and closing tags, you have to ignore the
attributes in the opening tags.

13. In this chapter, we assumed that a given maze has at least one solution path.
Modify the solveBacktracking method so it will handle the case when a given
maze does not have any solution. Terminate the method after displaying the
message No Solution Path if there is no solution path.

14. The solveBacktracking method prints out the solution path backward. Modify
the method so the solution path is printed forward from the entry cell to the
exit cell. Assume the original definition of the NPSStack interface. Specifically,
you cannot use the toArray method (see Exercise 4). Hint: Use another stack.

15. Implement the Maze and MazeCell classes. Their public methods are
described in Tables 19.4 and 19.5, respectively. The most difficult aspect of
this exercise is the creation of a maze, which is carried out in the constructor
of the Maze class. Here’s one way to create a maze that has exactly one
solution path from the entry cell to the exit cell:

1. Start with all four walls up for every cell in the maze.
2. Knock down the walls to create paths.

1066 Chapter 19 Stack ADT

wu23399_ch19.qxd 1/2/07 20:46 Page 1066

3. Randomly select the entry and exit cells. Make sure these are selected from
the boundary cells (those that face the boundary of the maze).

The basic idea of the algorithm for step 2 goes like this: Start from a random
cell. Remember this cell in a list. Mark this cell as visited. (You will visit
every cell in the maze exactly once.) Set this cell as current. Find an adjacent
cell of the current cell that is not yet visited. Knock down the walls between
this cell and the current cell. Set this cell as the current cell and repeat the
process. If there are no more visitable cells from the current cell, remove a
random cell from the list and repeat the process. Stop the routine when all
cells in the maze are visited. Expressing this basic idea in a more “formal”
pseudocode, we have the following:

mark all cells as 'not visited';

currentCell = pick a random cell;

list.add(currentCell);

while (there are unvisited cells) {

currentCell = list.get(random location);

while (currentCell has a 'not visited' adjacent cell) {

if (currentCell has more than 1
'not visited' adjacent cell) {

list.add(currentCell); //put it back in the list
} //so other adjacent cells are

//considered later

previousCell = currentCell;
currentCell = getNextCell(previousCell);

mark currentCell as 'visited';

knock down the wall between
previousCell and currentCell;

list.add(currentCell);
}

}

To support some of the operations expressed in the pseudocode, you may
have to define additional methods in the MazeCell class.

16. Write a program that checks if the input arithmetic expression is
syntactically correct. Assume the arithmetic expressions include only integer
constants, four arithmetic operators, and parentheses. Nested parentheses are
allowed. Here are examples of valid arithmetic expressions:

4 + 5
48 * (2 + 7)
(23 / (3 - 4)) / 8
12

Exercises 1067

wu23399_ch19.qxd 1/2/07 20:46 Page 1067

And here are examples of invalid arithmetic expressions:

3 + - 8
9 * (4 + 2))
) 4 + 3 (

17. Forth is a unique and interesting programming language. It can be
characterized as a stack-oriented programming language where programs
are written in postfix notation. If we write arithmetic expressions using
postfix notation, we write them as

<leftOperand> <rightOperand> <operator>

For example, instead of writing

45 + 9

we write

45 9 +

in postfix notation. The ordinary way we write arithmetic expressions uses
the notation called infix. Here are some examples that compare the infix and
postfix expressions:

Infix Postfix

4 � 8 � 5 4 8 � 5 �
4 � (8 � 5) 4 8 5 � �
4 * 8 � 5 4 8 * 5 �
4 * (8 � 5) 4 8 5 � *

Notice that postfix expressions do not include parentheses because they are
not necessary. Write a program that evaluates a given postfix arithmetic
expression that consists of integer constants and four arithmetic operators �,
�, /, and *. You use a stack to remember the operands. Whenever you
encounter an operand in the input postfix expression, stack it. When you
encounter an operator in the input postfix expression, its left and right
operands are in the stack. Pop the stack twice to get the left and right
operands, compute the result, and push the result back to the stack. When
there are no more operators left in the expression, the top-of-stack element
in the stack is the result of the whole expression. You may assume the input
postfix expression is syntactically correct, so you do not have to do any
error checking.

1068 Chapter 19 Stack ADT

wu23399_ch19.qxd 1/2/07 20:46 Page 1068

O b j e c t i v e s

After you have read and studied this chapter, you should be able to

• Describe the key features of the Queue ADT.

• Implement the Queue ADT by using an array.

• Implement the Queue ADT by using a
linked list.

• Explain the key differences between the array
and linked implementations of the Queue ADT.

• Implement a special type of queue called a
priority queue.

1069

20Queue ADT

wu23399_ch20.qxd 1/2/07 20:56 Page 1069

ur study of the fundamental ADTs concludes with the Queue ADT in this chap-
ter. Just as the Stack ADT is natural and intuitive because stacks are ubiquitous in
our everyday, physical world, so is the Queue ADT. The Queue ADT is almost iden-
tical to the Stack ADT except for the one key difference, and often it is treated as an
inseparable sibling of the Stack ADT.

The Queue ADT models a line of objects, such as people or vehicles, waiting
to be serviced. Students waiting in line to pay for food at the cashier in the student
union cafeteria, moviegoers waiting in line to enter the 16-screen cineplex, and ve-
hicles waiting in line at the signal-controlled freeway on-ramp are all examples of
queues. The defining feature of a queue is that the object at the front of the queue is
the next to be serviced (imagine the ensuing chaos and havoc at Disney’s Space
Mountain if you randomly picked people in line for the next ride) and a new object
is added to the end, or tail, of the queue.

As in the previous chapters, we begin with the definition of the Queue ADT
and then provide two different implementations based on the array and the linked
list. We will conclude the chapter with a special variation of a queue called a prior-
ity queue.

20.1 The Queue ADT
A queue is a linearly ordered collection of elements in which elements, or
items, are added to a list at one end, called the tail, and removed from the other
end, called the front. This restriction will ensure that the first element added to
a list is the first to be removed next. For this reason, a queue is characterized as
a first-in, first-out (FIFO) list. Figure 20.1 shows a sample generic queue named
sampleQueue with five elements and another queue named myQueue with five
three-letter animal names.

The operations we support in the Queue ADT are almost identical to those in
the Stack ADT. The clear, isEmpty, peek, and size operations behave the same as
those of the Stack ADT. The clear operation empties a queue. The isEmpty operation
returns true if the queue contains no items. The peek operation returns the front
item, without actually removing it. The size operation rereturns the number of items
in the queue. The update operations for the queue are called add and remove. They
are also called enqueue and dequeue, respectively. The add operation adds an item
to the tail of a queue, and the remove operation removes the item at the front of a
queue. We will describe these operations in greater detail.

The add operation will add the designated element to the tail of the queue.
The queue does not have any size restriction, so it will grow without bound, just as
the stack does. There is no restriction on the elements, so you can add duplicates.
Figure 20.2 illustrates the add operation.

1070 Chapter 20 Queue ADT

I n t r o d u c t i o n

O

queue

tail

front

add

wu23399_ch20.qxd 1/2/07 20:56 Page 1070

The remove operation removes the front element from the queue if there is
any. If the queue is empty, then the operation will throw an exception. Figure 20.3
illustrates the remove operation on nonempty and empty stacks.

The peek operation is just like the remove operation except that the front
element is not removed from the queue. If the queue is empty, then the operation
will throw an exception.

The clear operation removes all elements in the queue. It causes no problem
to call the clear operation on an empty queue. This operation is useful when you
want to reuse a queue. Before you reuse the queue for another purpose, you need
to flush out any remaining items in the queue, and you can do it by calling the clear

20.1 The Queue ADT 1071

Figure 20.1 A generic stack sampleQueue with five elements and a stack myQueue with three-letter
animal names.

sampleQueue

E0 E1 E2 E4E3

front tail

myQueue

"ape" "dog" "bee" "eel""dog"

front tail

Figure 20.2 A sample add operation on the myQueue queue.

myQueue

"cat" "ape" "dog"

myQueue

"cat" "ape" "dog" "bat"

Before

After

add("bat")

remove

peek

clear

wu23399_ch20.qxd 1/2/07 20:56 Page 1071

1072 Chapter 20 Queue ADT

Figure 20.3 Sample remove operations on the myQueue queue.

<exception>
throws

myQueue

"ape" "dog" "bat"

myQueue

myQueue

"cat"

"cat"

"ape" "dog" "bat"Before

After

Before

After

returns
remove()

remove()

myQueue

1. Draw the queue after executing the following operations, starting with an
empty queue called myQueue.

String bee = new String("bee");
String cat = new String("cat");

operation, instead of removing items individually by calling the remove method
repeatedly.

The size operation returns the number of elements in the queue.
The isEmpty operation tests whether the queue is empty. If it is, then true is

returned. Otherwise, false is returned.

size

isEmpty

wu23399_ch20.qxd 1/2/07 20:56 Page 1072

myQueue.clear();
myQueue.add(bee);
myQueue.add(cat);
myQueue.remove();

2. Repeat Question 1 with the following statements:

String bee = new String("bee");
String cat = new String("cat");
String dog = new String("dog");

myQueue.add(bee);
myQueue.add(cat);
myQueue.add(dog);
myQueue.peek();
myQueue.remove();
myQueue.remove();
myQueue.add(dog);

20.2 The Queue Interface
As we did for the List and Stack ADTs, we will use a Java interface to define the
Queue ADT. We will continue to prefix our interfaces and classes with NPS. Here’s
the NSPQueue interface:

20.2 The Queue Interface 1073

NPSQueue

package edu.nps.util;

public interface NPSSQueue<E> {

public void add(E element);

public void clear();

public boolean isEmpty();

public E peek() throws NPSQueueEmptyException;

public E remove() throws NPSQueueEmptyException;

public int size();
}

wu23399_ch20.qxd 1/2/07 20:56 Page 1073

Table 20.1 summarizes the methods of the NPSQueue interface.
Analogous to the implementation of the Stack ADT, the peek and remove

methods are defined to throw an NPSQueueEmptyException. It is based on our de-
sign philosophy to use an exception that identifies the error condition as precisely as
possible, instead of using a generic exception. Here’s the definition:

1074 Chapter 20 Queue ADT

Ta
b

le
Table 20.1 The NPSQueue interface

Interface:NPSStack

void add(E element)
Adds an element to the queue. The element is added to the tail of the queue.

void clear()
Removes all elements from the queue.

boolean isEmpty()
Determines whether the queue is empty. Returnstrue if it is empty;false
otherwise.

E peek() throws NPSQueueEmptyException
Returns the front element without removing it from the queue. Throws an
exception when the queue is empty.

E remove() throws NPSQueueEmptyException
Removes the front element and returns it. Throws an exception when the queue
is empty.

int size()
Returns the number of elements in the queue.

NPSQueueEmptyException

package edu.nps.util;

public class NPSQueueEmptyException extends RuntimeException {

public NPSQueueEmptyException() {

this("Queue is empty");
}

public NPSQueueEmptyException(String message) {

super(message);
}

}

wu23399_ch20.qxd 1/2/07 20:56 Page 1074

20.3 The Array Implementation
In this section, we will implement the NPSQueue interface by using an array to
store the queue elements. Figure 20.4 illustrates the array implementation of the
Queue ADT.

The NPSArrayQueue Definition
The NPSArrayQueue class implements the NPSStack interface, and its class declara-
tion is as follows:

package edu.nps.util;

public class NPSArrayQueue<E> implements NPSQueue<E> {

//class body comes here
}

We use an array element to store the queue elements and an int variable count
to keep track of the number of elements currently in the queue. In addition, we use
two int variables front and tail to keep track of the index positions of the element
array to remove an item from and add an item to the queue. These data members are
declared as

private static final int DEFAULT_SIZE = 25;
private E[] element;

20.3 The Array Implementation 1075

Figure 20.4 An array implementation of the Queue ADT.

Array
Implementation

ADT Queue

0 1 2 3 4 n–1...

����������	
	

��	�

�

�
�
�

����

�

����

�

myQueue

myQueue

����� ���
� ����� �����

������

�����

������

���
�

������

�����

������

�����

wu23399_ch20.qxd 1/2/07 20:56 Page 1075

private int count; //number of items in the queue
private int front; //position of the item to remove
private int tail; //position to add the next item

We will define two constructors: one takes no argument and another takes
one argument that specifies the initial size of the array. They are defined as
follows:

public NPSArrayQueue() {
this(DEFAULT_SIZE);

}

public NPSArrayQueue(int size) {
if (size <= 0) {

throw new IllegalArgumentException(
"Initial capacity must be positive");

}

element = (E[]) new Object[size];
clear();

}

We create an array of Object and typecast it to an array of E, the type parameter,
because it is not allowed to create an array of generic type in Java.

We maintain the data member tail to keep track of the index position of the
element array to add an item. So we might think that the code

element[tail] = item;
tail++;

would suffice (provided, of course, that the overflow condition is handled by creat-
ing a new, larger array, as we did with the expand method in the NPSArrayList and
NPSArrayStack classes). But this clean and straightforward solution would not work
for the queue. Why?

The code does not work because we cannot increment the value of tail
beyond element.length-1. Doing so would result in an IndexOutOfBoundsExcep-
tion. Easy, just create a new, larger array when the current value of tail becomes
equal to element.length? It is not appropriate to do so because the condition does
not indicate the array is full. Consider the following scenario. Suppose the size of
the element array is N and you execute N adds followed by N removes. Since every
time we remove the front item we need to increment front so it points to the new
front item, the values of front and tail would be N � 1 and N, respectively. Do you
want to create a new, larger array at this point? No, the queue is actually empty.
Creating a larger array when the queue is empty is grossly inefficient. What shall
we do?

We should create a larger array only when the array is full, and we detect this
condition when the variable count is equal to element.length. The trick here to
avoid the value of counters becoming larger than element.length-1 is to view the

1076 Chapter 20 Queue ADT

add

wu23399_ch20.qxd 1/2/07 20:56 Page 1076

element array as a circular array. Figure 20.5 illustrates a circular array with four
items. We treat an array as if it is circular by using the modulo arithmetic when
incrementing the index counters

tail = (tail + 1) % N;

front = (front + 1) % N;

where N is the size (length) of the array. For example, when tail is equal to N � 1, in-
crementing it will result in tail having the value 0. By using this modulo arithmetic,
the counters move round and round in clockwise fashion.

The add method is defined as follows:

public void add(E item) {

//check if full
if (count == element.length) {

expand();
}

element[tail] = item;

tail = (tail + 1) % element.length;

count++;
}

The expand method for the NPSArrayQueue class is a lot more complex than
the corresponding method in the NPSArrayList and the NPSArrayStack classes
because the array is “circular” in NPSArrayQueue. It is no longer a simple matter
of copying elements at index position I in one array to the same index position I of

20.3 The Array Implementation 1077

Figure 20.5 This illustrates viewing an array as if it were circular. The index counters move in a clockwise
fashion. By using modulo arithmetic, the value of the index counters never gets beyond N � 1. After N � 1, the
counters are reset to 0.

0
1

2

3

4

5

6

7

N–1
N–2

N–3

front

tail

- Occupied cell

Increment operations:

tail = (tail + 1) % N;

front = (front + 1) % N;

wu23399_ch20.qxd 1/2/07 20:56 Page 1077

the expanded array. Consider the example shown in Figure 20.6. The length of the
original array is 4. The front item of the queue is stored at index position 2. When
the overflow occurs, the condition front == tail is true. We create a new array that is
1.5 times larger than the original array, so the length of the new array is 6. Then we
start copying the elements from the original array to the new larger array, starting
from the front item. Because both arrays are circular, we cannot simply write some-
thing like

for (int i = front; i < tail; i++) {
new_larger_array[i] = original_array[i];

}

Although conceptually this is what we want to do, the actual indices we need here
must be incremented cyclically. Here’s the correct procedure to copy items from a
circular array element to a new and larger circular array temp:

int e_idx = front;
int t_idx = front;

for (int i = 0; i < count; i++) { //count - # of items
// in queue

temp[t_idx] = element[e_idx];
t_idx = (t_idx + 1) % temp.length;
e_idx = (e_idx + 1) % element.length;

}

tail = t_idx;

1078 Chapter 20 Queue ADT

Figure 20.6 This illustrates how the expand method works for the circular array.The length of the original
array is 4, and the front of the queue is stored at index position 2. Notice how the items are copied to the
expanded array. The value of front remains the same, but the value of tail needs to be adjusted as shown.

front

tail

a

bc

d

0

1 2

3

a b
c

d
0

1

2

5

3

4

front

tail

Before After

original_array[2]

original_array[3]

original_array[0]

original_array[1]

new_larger_array[2]

new_larger_array[3]

new_larger_array[4]

new_larger_array[5]

Copy

INVALID

wu23399_ch20.qxd 1/2/07 20:56 Page 1078

This operation removes the front element from the queue. If the queue is not empty,
we adjust the count data member and remove the topmost element by setting the
value of the corresponding index position to null. Here’s the method:

public E remove() throws NPSQueueEmptyException {

E item;
if (isEmpty()) {

throw new NPSQueueEmptyException();

} else {

item = element[front];
element[front] = null;
front = (front + 1) % element.length;
count--;

}

return item;
}

We set element[i] to null, where i = 0, . . . , count-1, so the objects referenced by
element[i] will be garbage-collected. We then reset the three variables to 0 to reflect
the empty state.

public void clear() {

for (int i = 0; i < count; i++) {
element[i] = null;

}

front = tail = count = 0;
}

This operation is straightforward. If the value of count is 0, then the stack is empty.
Otherwise, the stack is not empty.

public boolean isEmpty() {

return (count == 0);
}

We throw an NPSQueueEmptyException when the queue is empty. Otherwise, we
return the front item.

public E peek() throws NPSQueueEmptyException {

if (isEmpty()) {

throw new NPSQueueEmptyException();

} else {

20.3 The Array Implementation 1079

remove

clear

isEmpty

peek

wu23399_ch20.qxd 1/2/07 20:56 Page 1079

return element[front];
}

}

The last method is straightforward. We simply return the value of the count data
member.

public int size () {

return count;
}

Here’s the complete source code (for brevity, javadoc and most other com-
ments in the actual source file are removed here):

1080 Chapter 20 Queue ADT

size

package edu.nps.util;

public class NPSArrayQueue<E> implements NPSQueue<E> {

private static final int DEFAULT_SIZE = 25;

private E[] element;

private int count;

private int front;

private int tail;

public NPSArrayQueue() {

this(DEFAULT_SIZE);
}

public NPSArrayQueue(int size) {

if (size <= 0) {
throw new IllegalArgumentException(

"Initial capacity must be positive");
}

element = (E[]) new Object[size];
count = 0;

}

public void add(E item) {

if (count == element.length) {
expand();

}

NPSArrayQueue

Constructor

add

wu23399_ch20.qxd 1/2/07 20:56 Page 1080

20.3 The Array Implementation 1081

tail = (tail + 1) % element.length;
count++;

}

public void clear() {

for (int i = 0; i < count; i++) {
element[i] = null;

}

front = tail = count = 0;
}

public boolean isEmpty() {

return count == 0;
}

public E peek() throws NPSQueueEmptyException {

if (isEmpty()) {

throw new NPSQueueEmptyException();

} else {

return element[front];
}

}

public E remove() throws NPSQueueEmptyException {

E item;

if (isEmpty()) {

throw new NPSQueueEmptyException();

} else {

item = element[front];
element[front] = null;
front = (front + 1) % element.length;
count--;

}

return item;
}

public int size() {

return count;
}

clear

isEmpty

peek

remove

size

wu23399_ch20.qxd 1/2/07 20:56 Page 1081

20.4 The Linked-List Implementation
Compared to the array implementation of the List and Stack ADTs, the array
implementation of the Queue ADT has an increased complexity of dealing with the
circular array. Fortunately, the linked-list implementation of the Queue ADT does
not incur any additional complexity. Its implementation is rather straightfoward.
Figure 20.7 illustrates the linked-list implementation of the Queue ADT.

The QueueNode Class
The linked node structure for the queue is exactly the same as the one for the list and
the stack. The QueueNode class is defined as the inner class of the NPSLinkedQueue

1082 Chapter 20 Queue ADT

private void expand() {

E[] temp = (E[]) new Object[(int)(1.5 * element.length)];

int e_idx = front;
int t_idx = front;

for (int i = 0; i < count; i++) {

temp[t_idx] = element[e_idx];

t_idx = (t_idx + 1) % temp.length;
e_idx = (e_idx + 1) % element.length;

}

tail = t_idx;

element = temp;
}

}

expand

1. Draw the array queue (like the diagram in Figure 20.4) after executing the
following operations, starting with an empty queue called myQueue.

String bee = new String("bee");
String cat = new String("cat");

myQueue.clear();
myQueue.add(cat);
myQueue.add(bee);

2. Can we use the test front == tail to detect the empty queue?

wu23399_ch20.qxd 1/2/07 20:56 Page 1082

class. It’s class definition is as follows:

class QueueNode {

private E item;

private QueueNode next;

public QueueNode(E item) {
this.item = item;
this.next = null;

}
}

The NPSLinkedQueue Class
We keep three data members in the class. As always, we have one data member to
keep track of the number of items currently in the queue. The other two data
members—front and tail—are reference variables that point to the front and tail
elements. Their declarations are

private QueueNode front;

private QueueNode tail;

private int count;

20.4 The Linked-List Implementation 1083

Linked-List
Implementation

ADT Queue

����������	
	

����

����

��	�

�

myQueue

myQueue

����� ���
� ����� �����

������

�����

������

���
�

������

�����

������

�����

Figure 20.7 A linked-list implementation of the stack myQueue.

wu23399_ch20.qxd 1/2/07 20:56 Page 1083

We define only a single constructor that takes no arguments and sets the stack
to its initial state, which is an empty queue. The constructor is defined as follows:

public NPSLinkedQueue() {
clear();

}

There are two cases to consider when adding a new item. In the first case, the
queue is empty. In this case, we set both front and tail to the new item. In the sec-
ond case, the queue is not empty. In this case, we append the new item as the last
node in the linked list and need to adjust the tail pointer only. In both cases, we
increment the counter variable count by 1. Here’s the method:

public void add(E item) {

QueueNode newNode = new QueueNode(item);

if (isEmpty()) {

front = tail = newNode;

} else {

tail.next = newNode;
tail = newNode;

}

count++;
}

We reset the two pointers front and tail to null and the counter count to 0. By setting
front and tail to null, all nodes in the linked list will get garbage-collected eventu-
ally. Here’s the clear method:

public void clear() {

front = tail = null;
count = 0;

}

We detect the queue is empty when the value of count is 0:

public boolean isEmpty() {
return count == 0;

}

If the queue is empty, we throw an NPSQueueEmptyException. Otherwise, we return
the front item (without actually removing it). Here’s the method:

public E peek() throws NPSQueueEmptyException {

if (isEmpty()) {

1084 Chapter 20 Queue ADT

add

clear

isEmpty

peek

wu23399_ch20.qxd 1/2/07 20:56 Page 1084

throw new NPSQueueEmptyException();

} else {

return front.item;
}

}

If the queue is empty, we throw an NPSQueueEmptyException. Otherwise, we set a
temp pointer to the topmost item, update the topOfStack pointer, and return the
topmost item. Here’s the method:

public E remove() throws NPSQueueEmptyException {

E item;

if (isEmpty()) {

throw new NPSQueueEmptyException();

} else {

item = front.item;

front = front.next;

count--;
}

return item;
}

The size method simply returns the value of the data member count:

public int size() {
return count;

}

Here’s the complete source code listing of the NPSLinkedQueue class (as
usual, javadoc comments are omitted for brevity):

20.4 The Linked-List Implementation 1085

remove

size

package edu.nps.util;

public class NPSLinkedQueue<E> implements NPSQueue<E> {

private QueueNode front;

private QueueNode tail;

private int count;

NPSLinkedQueue

wu23399_ch20.qxd 1/2/07 20:56 Page 1085

1086 Chapter 20 Queue ADT

public NPSLinkedQueue() {
clear();

}

public void add(E item) {

QueueNode newNode = new QueueNode(item);

if (isEmpty()) {

front = tail = newNode;

} else {

tail.next = newNode;
tail = newNode;

}

count++;
}

public void clear() {

front = tail = null;

count = 0;
}

public boolean isEmpty() {

return (count == 0);
}

public E peek() throws NPSQueueEmptyException {

if (isEmpty()) {

throw new NPSQueueEmptyException();

} else {

return front.item;
}

}

public E remove() throws NPSQueueEmptyException {

E item;

if (isEmpty()) {

throw new NPSQueueEmptyException();

remove

add

clear

isEmpty

peek

Constructor

wu23399_ch20.qxd 1/2/07 20:56 Page 1086

20.4 The Linked-List Implementation 1087

} else {

item = front.item;

front = front.next;

count--;
}

return item;
}

public int size() {

return count;
}

class QueueNode {

private E item;

private Queue next;

public QueueNode(E item) {

this.item = item;
this.next = null;

}
}

}

size

QueueNode

1. Draw the linked stack (like the right-hand side diagram in Figure 20.7) after
executing the following operations, starting with an empty stack called
myQueue.

String bee = new String("bee");
String cat = new String("cat");

myQueue.clear();
myQueue.push(cat);
myQueue.push(bee);

2. Instead of using count == 0 to check for an empty stack, can we use
front == null or tail == null?

wu23399_ch20.qxd 1/2/07 20:56 Page 1087

20.5 Implementation Using NPSList
Analogous to the NPSListStack class, we can define a class that implements the
NPSQueue interface easily by using an NPSList. Here’s the NPSListQueue class:

1088 Chapter 20 Queue ADT

NPSListQueue

package edu.nps.util;

public class NPSListQueue<E> implements NPSQueue<E> {

private static final int FRONT = 0;

private NPSList<E> list;

public NPSListQueue() {
list = new NPSLinkedList<E>();

}

public void add(E element) {
list.add(list.size(), element);

}

public void clear() {
list.clear();

}

public boolean isEmpty() {
return list.isEmpty();

}

public E peek() throws NPSQueueEmptyException {

if (isEmpty()) {

throw new NPSQueueEmptyException();

} else {

return list.get(FRONT);
}

}

public E remove() throws NPSQueueEmptyException {

if (isEmpty()) {

throw new NPSQueueEmptyException();

} else {

return list.remove(FRONT);
}

}

Constructor

add

clear

isEmpty

peek

remove

wu23399_ch20.qxd 1/2/07 20:56 Page 1088

The class is implemented cleanly and elegantly by using a list. Since a queue
is a FIFO list, we add a new item at the end of the list and remove only the first
(front) item of the list.

20.6 Priority Queue
With a queue, items are treated fairly and equally. An item that arrives first in line is
the first to be served next. In real life, queues do not always follow this egalitarian
rule. Travelers are routinely moved up to the front of the security line at the airport
when their flights are departing soon. Partygoers who know the right people never
wait in line to get into the hottest nightclub in town. In many situations, we have
legitimate reasons to prioritize items in the queue so the highest-priority item is
served next. See Exercise 9 for a computer-related example.

A priority queue is a queue in which items are prioritized so that the item with
the highest priority is placed at the front of the queue. Every time a new item is
added, the queue is rearranged so the highest-priority item will always be at the
front. In this section, we describe how such a priority queue can be implemented
very effectively by using the heap structure we introduced in Chapter 11.

We will call the class NPSPriorityQueue that realizes the priority queue. It is a
queue so we set the class to implement the NPSQueue interface:

public class NPSPriorityQueue<E extends Comparable>
implements NPSQueue<E>

We will use the heap structure to maintain the priority queue (see Section 11.3).
When we add an item, we place it as the last node of the heap and go through the
construction process so the highest-priority item will move to the root of the heap.
Remember that the construction process includes approximately N�2 rebuilding
processes (see Figure 11.14). The remove method will remove the root of the heap.
After the removal, we need to rebuild the heap with one fewer item. We do this by
moving (temporarily) the last node of the heap to the root position and going
through the rebuilding process once (see Figure 11.11).

To be able to move around items in the heap, we need to decide how to com-
pare the priorities of items. First, we dictate that the type parameter E implement the
Comparable interface; that is, E must include the method compareTo. Second, the
compareTo method must defined in the following manner:

e1.compareTo(e2) < 0 e1 has higher priority than e2

e1.compareTo(e2) == 0 e1 and e2 has the same priority

e1.compareTo(e2) > 0 e1 has lower priority than e2

20.6 Priority Queue 1089

public int size() {
return list.size();

}
}

size

priority queue

wu23399_ch20.qxd 1/2/07 20:56 Page 1089

Remember that we used an array to implement the heap structure in Chapter 11.
We will use the same technique here to implement the heap structure we need for the
NPSPriorityQueue class. Implementation of the NPSPriorityQueue class is basically a
combination of the code that appeared in the NPSArrayQueue class and the Heap
class (from Chapter 11) with some necessary modifications. As such, we will just go
ahead and list the complete class now, skipping the explanation of the methods that
are essentially identical to those we’ve seen already.

1090 Chapter 20 Queue ADT

NPSPriorityQueue

package edu.nps.util;

public class NPSPriorityQueue<E> implements NPSQueue<E> {

private static final int DEFAULT_SIZE = 25;

private static final int ROOT = 0;

private E[] heap;

private int count;

public NPSPriorityQueue() {

this(DEFAULT_SIZE);
}

public NPSPriorityQueue(int size) {

if (size <= 0) {
throw new IllegalArgumentException(

"Initial capacity must be positive");
}

heap = (E[])new Object[size];

clear();
}

public void add(E item) {

if (count == heap.length) {
expand();

}

heap[count] = item;

construct();

count++;
}

Constructors

add

wu23399_ch20.qxd 1/2/07 20:56 Page 1090

20.6 Priority Queue 1091

public void clear() {

for (int i = 0; i < count; i++) {
heap[i] = null;

}

count = 0;
}

public boolean isEmpty() {
return count == 0;

}

public E peek() throws NPSQueueEmptyException {

if (isEmpty()) {

throw new NPSQueueEmptyException();

} else {

return (E) heap[ROOT];
}

}

public E remove() throws NPSQueueEmptyException {

E item;

if (isEmpty()) {

throw new NPSQueueEmptyException();

} else {

item = heap[ROOT];

heap[ROOT] = heap[count-1];

count--;

rebuild(ROOT);
}

return item;
}

public int size() {

return count;
}

private void construct() {

for (int i = (count-2) / 2; i >= 0; i--) {

clear

isEmpty

peek

size

remove

construct

wu23399_ch20.qxd 1/2/07 20:56 Page 1091

1092 Chapter 20 Queue ADT

rebuild(i);
}

}

private void expand() {

E[] temp = (E[])new Object[(int) (heap.length * 1.5)];

for (int i = 0; i < heap.length; i++) {
temp[i] = heap[i];

}

heap = temp;
}

private int higherPriorityChild(int location, int end) {

int result, leftChildIndex, rightChildIndex;

rightChildIndex = 2*location + 2;
leftChildIndex = 2*location + 1;

if (rightChildIndex <= end &&
((Comparable<E>)heap[leftChildIndex]).

compareTo(heap[rightChildIndex]) < 0) {

result = leftChildIndex;

} else {

result = rightChildIndex;
}

return result;
}

private void rebuild(int root) {

int current = root;

boolean done = false;

while (!done) {

if (2*current+1 > count-1) {
//current node has no children, so stop
done = true;

} else {

//current node has at least one child,
//get the index of higher-priority child
int hiChildIndex = higherPriorityChild(current, count-1);

expand

higherPriorityChild

rebuild

wu23399_ch20.qxd 1/2/07 20:56 Page 1092

Here’s a short sample code that illustrates the use of NPSPriorityQueue. The pro-
gram adds 100 random integers (ranges from 0 to 999, inclusive) and removes them
one by one from the priority. The output list will display integers in ascending order.

import java.util.*;

import edu.nps.util.*;

class TestPriorityQueue {

public static void main(String[] args) {

NPSQueue<Integer> pq =
new NPSPriorityQueue<Integer>();

Random random = new Random();

for (int i = 0; i < 100; i++) {

pq.add(random.nextInt(1000));
}

for (int j = 0; j < 100; j++) {

System.out.println(pq.remove());
}

}
}

20.6 Priority Queue 1093

if ((Comparable<E>)heap[hiChildIndex]).
compareTo(heap[current]) < 0) {

swap(current, hiChildIndex);
current = hiChildIndex;

} else { //value relationship constraint
//is satisfied, so stop

done = true;
}

}
}

}

private void swap(int loc1, int loc2) {

E temp;

temp = heap[loc1];
heap[loc1] = heap[loc2];
heap[loc2] = temp;

}
}

swap

wu23399_ch20.qxd 1/2/07 20:56 Page 1093

1094 Chapter 20 Queue ADT

• A queue is a linearly ordered first-in, first-out (FIFO) collection of elements.

• An item can be added to only the end of a queue, and only the first item of a
queue can be removed.

• The last item is called the tail of a queue, and the first item is called the front.

• An array and a linked list are two possible implementations of the Queue ADT.

• The Queue ADT can be implemented easily by using a list (an instance of a
class that implements the List ADT).

• Base implementation of the Queue ADT does not support any traversal
operation.

• A priority queue is a special type of queue that moves the highest-priority
item to the front of the queue.

S u m m a r y

K e y C o n c e p t s

queue ADT

array implementation of Queue ADT

linked-list implementation of Queue ADT

priority queue

E x e r c i s e s

1. Draw a state-of-memory diagram that shows the result of executing each of
the following sets of code. Do not forget to show the values of front and tail.

a.

NPSQueue queue = new NPSArrayQueue(5);

queue.add("one");
queue.add("two");
queue.add("three");
queue.add("four");

queue.remove();
queue.remove();

b.

NPSQueue queue = new NPSLinkedQueue();

queue.add("one");
queue.add("two");
queue.add("three");
queue.add("four");

queue.remove();
queue.remove();

wu23399_ch20.qxd 1/2/07 20:56 Page 1094

2. Add a new method toArray to the NPSQueue interface and implement the
method in both NPSArrayQueue and NPSLinkedQueue. The toArray method
will return an array with the front element at position 0, the element after the
front at position 1, and so forth.

3. Add a new method iterator to the NPSQueue interface that returns an
iterator. Implement the iterator method in the NPSArrayQueue and
NPSLinkedQueue classes.

4. Although the use of the count data member makes the implementation of
the NPSArrayQueue class cleaner and slightly easier, its use is not a strict
requirement. You can implement the class without it. Rewrite the
NPSArrayQueue class with the count data member removed. You have to
find out the number of items in the queue from the values of front and tail
data members. Because the array is circular, you cannot simply use the
expression

tail - front

to determine the number of items in the queue. Also, you have to be very
careful in detecting the array is full. Hint: If the length of an array is N,
occupy at most N � 1 positions. Treat the array is full when N � 1 positions
are filled.

5. Redo Exercise 4 with the NPSLinkedQueue class. Without the count data
member, you must traverse the linked list to find out how many items are
in the queue.

6. Write a program that sorts input strings in lexicographic order by using the
NPSPriorityQueue class. Continually prompt for the next input word until the
end marker �1 is entered. Terminate the program after printing out the input
words in lexicographic order, one word per line. Notice that the String class
already implements the Comparable interface so no additional effort is
necessary for you to add String objects to an NPSPriorityQueue. The priority
queue treats a string that comes earlier in lexicographic order as having a
higher priority. For example, the word cat has a higher priority than dog.

7. Repeat Exercise 6, but this time output the words in reverse lexicographic
order. You are not allowed to change the implementation of the
NPSPriorityQueue class. Although the source code of NPSPriorityQueue is
available to you, treat it as if it is a part of some standard API.

8. Write a bank ATM simulation program. The purpose of this simulation is to
find out the average waiting time for customers using the ATMs. There are
three inputs to the program: M is the number of minutes to simulate, P is the
probability of a customer arriving at each minute, and N is the number of
ATMs. For example, if the input values for M, P, and N are 60, 0.5, and 4,
respectively, then we are simulating 4 ATMs during a 60-minute period with
50 percent chance that a customer arrives at each minute. When a customer
arrives, randomly assign a number between 1 minute and 5 minutes,
inclusive, as this customer’s transaction time, the time it takes for this

Exercises 1095

wu23399_ch20.qxd 1/2/07 20:56 Page 1095

customer to finish using the ATM. Each ATM has its own queue, and
an arriving customer will move to the shortest queue. An ATM is either
available (open) or not available (currently used by another customer).
When a customer completes his or her transaction, an ATM becomes
available immediately. And if there’s a customer waiting in the queue, the
ATM will service this customer immediately (and becomes unavailable).

Each minute is treated as a discrete event, so the top-level simulation
control can be expressed as a for loop:

for (int min = 0; min < M; min++) {

//process incoming customer
if (a new customer arrives) {

assign him/her to the shortest queue
}

//process ATMs
for (int i = 0; i < N; i++) {

if (ATM[i] is in use) {

decrement the transaction time of
its customer by 1;

if (the remaining time of the customer == 0) {
//this customer is done
set the status of ATM[i] to available

}
}

if (ATM[i] is available) {
//pick the next customer from
//the queue if there's one
if (ATM[i] has customer in its queue) {

remove the customer form the queue,
set his/her waiting time, and
assign him/her to ATM[i]

}
}

}
}

At the end of simulation, output the average waiting time along with the
input values. Run the program multiple times. Experiment with different
values for P and N to see the effect. For instance, you should expect to see
an increase in average waiting times if you keep the values for M and P the
same, but decrease the value for N, say, from 4 to 1.

Notice that when the outer for loop [for (int min = 0; min < M; min++)]
exits, it is possible that the queues may still contain customers. There are
two possible ways to handle the situation. The first way is to assume that all

1096 Chapter 20 Queue ADT

wu23399_ch20.qxd 1/2/07 20:56 Page 1096

those waiting customers will be served immediately (you can say that the
bank will open up as many ATMs as necessary to serve immediately). The
second way is to continue the simulation loop until all queues are empty.
For this exercise, you may choose either solution.

9. Write a job scheduling simulation program. In good old days, well before
the PC revolution, computer science students wrote programs by using
keypunch machines and ran them on the mainframe computers. A program
is recorded on a stack of punch cards, one statement per punch card. To run
their programs, students must submit the program (the stack of cards) to the
computer operator. A submitted program is called a job. Students taking a
computer course are assigned a certain number of units (kind of a virtual
money) and charged N units to run a program. The actual amount charged
is determined by the priority the students assign to their programs. For this
exercise, assume that the priorities range from 1 to 5, with 1 being the
highest.

Write a program that simulates the job scheduling. Inputs to the
program are M, which is the number of minutes to simulate, and N, which is
the number of jobs that the computer can run concurrently. Treat each
minute as a discrete event. Assume that a single job arrives at each minute.
When a job arrives, randomly assign its priority and the number of minutes
it needs to be executed. Choose any integer between 1 minute and 10 minutes,
inclusive, for the execution time. An arriving job is placed in a priority
queue. At every discrete event, if the number of jobs assigned to the
computer is below the maximum number of jobs the computer can handle,
remove jobs from the priority queue and assign them to the computer.

At the end of the simulation, output the average waiting time and the
maximum waiting time for each priority level. See Exercise 8 on how to
handle the situation in which the queue is not empty at the end of simulated
minutes.

Exercises 1097

wu23399_ch20.qxd 1/2/07 20:56 Page 1097

wu23399_ch20.qxd 1/2/07 20:56 Page 1098

One can master programming only by writing and running programs, not just by
reading the sample programs in the text. All sample programs (plus some more) are
provided in a source file format so you can actually compile and run them and see how
they work. This appendix is intended for those who need to install necessary tools on
their computer. Those who have an access to a computer lab with the necessary tools
already installed may still want to read this appendix for general information.

In this appendix, we will explain a number of different ways of running Java
programs. They can be divided broadly into three categories: minimalist, enhanced
editor, and full integrated development environment (IDE). For the beginning pro-
grammers, we recommend the enhanced editor approach. You can find additional
information, such as detailed step-by-step instructions, on using some of the tools
mentioned in this appendix from our website at www.drcaffeine.com.

1099

A p p e n d i x A
How to Run Java Programs

At the end of this appendix, we will describe how to use classes from
programmer-defined packages, such as the author-provided javabook package, in
running your programs.

The Minimalist Approach
In this approach we use the absolute minimum to compile and run Java programs.
We need to download a necessary compiler and other tools for compiling and
running Java programs from the Sun Microsystems website at http://java.sun.com.
A collection of tools for compiling and running Java programs is called a Java 2
SDK (Software Development Kit). Sun also uses the term JDK instead of SDK.
JDK stands for Java Development Kit. Sun Microsystems provides three versions
for SDK: enterprise edition (J2EE SDK), standard edition (J2SE SDK), and micro
edition (J2ME SDK). The one you need to download is the standard edition. We
describe the steps for the MS Windows platform here.

Please read Chapter 2 before this appendix.

wu23399_appA.qxd 1/8/07 16:02 Page 1099

http://www.drcaffeine.com
http://java.sun.com

1100 Appendix A How to Run Java Programs

1. Installation
Download the most recent version J2SE JDK 5.0 for MS Windows. At the time
of this writing (October, 2006), the most recent version is JDK 5.0 Update 9.
The website for downloading J2SE JDK 5.0 is

http://java.sun.com/javase/downloads/index.jsp.

Please be aware that website addresses change frequently. If the given address
does not work, you can search for the correct page starting from the Java home-
page at http://java.sun.com. Click the Download button next to the heading
JDK 5.0 Update 9. Click the Accept radio button to accept the license agree-
ment and then click the link “Windows Offline Installation, Multi-language.”
This will download the file titled jdk-1_5_0_09-windows-i586-p.exe. Once the
file is downloaded, double-click the file to begin the installation. You may
choose any directory for installation. In this example, we assume the tools are
installed in the directory

C:\jdk1.5.0

You may change it to any name and location you like. When the installation
completes successfully, you will see a number of subdirectories, such as bin
and lib, under the installation directory.

2. Create a Program
We are now ready to create a program. Using Notepad (or any other text edi-
tor, but don’t use a word processor that saves special markers with a docu-
ment), create the following program:

import javax.swing.*;
class MyFirstProgram {

public static void main(String[] arg) {
JOptionPane.showMessageDialog(null, "It works!");
System.exit(0);

}
}

Type in the program exactly as shown, making sure the uppercase and lower-
case letters are entered correctly. Note: A simple text editor, such as Notepad,
will display the code in black only.

3. Save the Program
Before we compile and run the program, let’s save the program. First create a
folder. (Note: We use the words folder and directory synonymously.) For this
example, we will create a folder named JavaPrograms under the C: drive.

C:\JavaPrograms

Save the program by selecting the menu choice File/Save of Notepad and
giving the name MyFirstProgram.java. Put this file in the C:\JavaPrograms
folder. The name of the class is MyFirstProgram, so we save it as MyFirstPro-
gram.java. If you name the program XYZ, then save it as XYZ.java. Note that it

wu23399_appA.qxd 1/8/07 16:02 Page 1100

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com

Appendix A How to Run Java Programs 1101

is case-sensitive. When you use Notepad, be careful that the file is not saved
as MyFirstProgram.java.txt. Make sure there’s no txt suffix appended to the
filename. To avoid the automatic appending of the txt suffix, don’t forget to
set the value for Save as type to All Files.

4. Open a Command Prompt Window
After the source file is created and saved properly, we are ready to compile
and run it. We use a command prompt window to enter the commands for
compiling and running Java programs. Open a command prompt window by
selecting the Start/Run... option

wu23399_appA.qxd 1/8/07 16:02 Page 1101

1102 Appendix A How to Run Java Programs

and entering the text cmd in the text field of the Run dialog box (if cmd does
not work, try command):

Click the OK button. A command prompt window appears on the screen:

From this point on, all commands are entered in this window.

5. Set the Environment
Before we can actually compile and run the program, we must set the environ-
ment. First change to the JavaPrograms directory where the source file is stored
by entering the command cd JavaPrograms (and pressing the Enter key):

C:\> cd \JavaPrograms
C:\JavaPrograms>

Note: The text we enter is shown in blue. The prompt displayed by the com-
puter is shown in black.
Note: It is beyond the scope of this appendix to explain DOS commands.
Please consult other sources if you need to learn DOS commands.

wu23399_appA.qxd 1/8/07 16:02 Page 1102

Appendix A How to Run Java Programs 1103

Enter the following two commands in sequence to set the environment:

C:\JavaPrograms>set path=C:\jdk1.5.0\bin
C:\JavaPrograms>set classpath=.
C:\JavaPrograms>

Enter the commands exactly as shown. Do not introduce any spaces between
the equals symbols (�), for example. The first command sets the PATH envi-
ronment variable so we can refer to the executable files in the bin subdirectory
of C:\jdk1.5.0. The second command tells the Java compiler and interpreter
where to find the source files. The period (.) indicates the current directory.
You need to enter the two commands only once.

6. Compile the Program
Finally we are ready to compile the program. To compile a Java source file,
use the javac command followed by the filename of the source file. Enter the
following command exactly, that is, in a case-sensitive manner:

C:\JavaPrograms>javac MyFirstProgram.java

After a moment of pause, when there’s no error in the program, the prompt to
enter the next command appears.An error message will appear if there’s an error.
If that happens, go back to Notepad and check the program. Make any necessary
changes and save it again. Then enter the javac command again. As explained in
Chapter 2, successful compilation will result in a creation of a bytecode file.

7. Run the Program
After the successful compilation of the program, we are finally ready to run
the program by executing its bytecode file. To run the program, we use the
java command followed by the name of the bytecode file (with no suffix).
Enter the following command and press the Enter key:

C:\JavaPrograms> java MyFirstProgram

The program starts and a message dialog appears on the screen:

Close this message dialog by clicking its OK button.
Congratulations! You have successfully executed your first Java program.

wu23399_appA.qxd 1/8/07 16:02 Page 1103

1104 Appendix A How to Run Java Programs

The Significance of the System.exit Statement
The last statement of the sample program was

System.exit(0);

which caused the program to terminate. If you adopt the minimalist approach of
using Notepad (or another simple text editor) and a command prompt window, you
must include the exit statement to terminate the sample MyFirstProgram program. If
you don’t, then the program will not terminate. The message dialog disappears from
the screen when you click its OK button, but the program is still active. When this
happens, you will not get another prompt in the command prompt window. And, of
course, without getting a command prompt, you can’t enter another command
anymore. Not all programs behave in this way. Specifically, a program that uses
console-based standard input and output does not require the exit statement, while a
program that uses GUI-based input and output (such as MyFirstProgram that uses
the GUI-based JOptionPane for output) requires the exit statement. When you are
using the minimalist approach, the easiest thing to do is to include the exit statement
for all programs.

The Enhanced Editor Approach
For a very simple program, the minimalist approach may be an acceptable alternative.
However, when the programs we develop become larger, the minimalist approach be-
comes cumbersome. Unlike with the minimalist approach in which we have to deal
with separate tools for editing (Notepad) and running (command prompt) programs,
with the enhanced editor approach, we interact with a single tool that will let us edit,
compile, and run Java programs. For the beginning programmers, we recommend the
enhanced editor approach.

There are a number of good software tools that fall under this category. Some
of the more well-known ones are

• TextPad (www.textpad.com)

• jEdit (www.jedit.org)

• JCreator (www.jcreator.com)

• BlueJ (www.bluej.org)

• jGrasp (www.eng.auburn.edu/grasp)

You can look for other enhanced editors by visiting Google and entering the search
text “Java editors.” Most of these tools are available free or for a nominal fee. The
enhanced Java editors are diverse in user interface style and the options they sup-
port, but they share two key features:

1. Support of color syntax highlighting. Different portions of the code are dis-
played in different colors (reserved words in blue, comments in green, string
constants in cyan, and so forth).

wu23399_appA.qxd 1/8/07 16:02 Page 1104

http://www.textpad.com
http://www.jedit.org
http://www.jcreator.com
http://www.bluej.org
http://www.eng.auburn.edu/grasp

Appendix A How to Run Java Programs 1105

2. Use of Java 2 SDK. The enhanced editors provide us with an environment
where we can enter, compile, and run Java programs, but the actual compila-
tion and execution of programs are done by Java 2 SDK tools (javac, java,
etc.). In other words, instead of dealing with Java 2 SDK tools directly by
entering commands in the command prompt window, we deal with them by
selecting corresponding menu choices of the enhanced editor.

Since we cannot describe the enhanced editors adequately in a limited space,
we refer you to their respective websites for instructions on how to use them. Also,
brief how-to documents on most of the enhanced editors listed here can be found at
our website (www.drcaffeine.com).

The IDE Approach
Tools in the IDE approach are geared toward serious programmers developing
large-scale programs. Borland JBuilder, Eclipse, Metrowerks CodeWarrior, and
NetBeans are some of the well-known full IDEs. In addition to many features, they
typically include a visual editor that lets programmers design the user interface of a
program visually by dragging and dropping GUI objects from the component
palettes. They are complicated, and it takes time to master and use the various fea-
tures supported by them properly. For this reason, this approach is not recommend
for beginning programmers.

Using Programmer-Defined Packages
When we are using classes from the system packages such as javax.swing, java.util,
and others, all we do is to include appropriate import statements in the program.
This is not enough when we are using classes from programmer-defined packages.
We must also set the environment correctly. How we set the environment is depen-
dent on the development tools we use. We will describe how to set the environment
to use programmer-defined packages with the minimalist approach. Please visit our
website (www.drcaffeine.com) for information on using programmer-defined pack-
ages with the enhanced editor approach.

We will use the author-provided javabook package as an example to illus-
trate the procedure. You can download this package and its documentation
from the textbook website. We assume you have downloaded and installed the
javabook classes under the C:\JavaPrograms\javabook directory. Notice that the
name of the package is javabook, and the directory that contains the classes in
this package is also named javabook. This is the requirement. The classes in the
package xyz must be placed in the directory named xyz. The directory xyz, how-
ever, can be placed anywhere you want. In this example, we put the javabook
directory under C:\JavaPrograms. When the installation is done correctly, you
should see the source and bytecode files of the javabook classes such as Main-
Window.java, MainWindow.class, OutputBox.java, OutputBox.class, and others in
the C:\JavaPrograms\javabook directory.

wu23399_appA.qxd 1/8/07 16:02 Page 1105

http://www.drcaffeine.com
http://www.drcaffeine.com

1106 Appendix A How to Run Java Programs

All you have to do is to change the setting for the class path as follows:

set classpath=.;c:\JavaPrograms

Notice that we specify the directory that contains the javabook directory. We do
specify the full path name to the javabook directory itself.

For this example, we assume that the classes from the author-provided javabook
package are placed in the directory.

C:\JavaPrograms\javabook

To use the javabook classes stored in the directory C:\Javaprograms\javabook,
set the class path by entering the command.

set classpath=.;c:\JavaPrograms

wu23399_appA.qxd 1/8/07 16:02 Page 1106

Appendix B Sample Programs 1107

1107

A p p e n d i x B
Sample Programs

CHAPTER 2

Class Name Page # Standard Classes

Ch2Sample1 31 JFrame

This program opens a simple JFrame window.

Ch2StringProcessing 59 String

Illustrates string processing with the substring, indexof, and length methods of the String
class.

<chapter #>

Name Page # Standard Classes

<class name> <page # <list of standard classes or interfaces used
where the or referred to in the class>
class is Note: Unless the String class is the major
listed> focus of a program, it will not be listed in

this column.Also,System will not be listed.

<A brief description of the class>

<class used in the sample development>

In this appendix, we provide a chapter-by-chapter list of all sample classes (pro-
grams). For each sample class, we provide a brief description, the page number
where the class is listed or discussed, and a list of system classes used by this
class. You can download the source files of all sample classes (programs) from the
McGraw-Hill book website at http://www.mhhe.com/wu.

Chapter-by-Chapter List
The single asterisk means only the fragment of the program is listed in the main text.
The double asterisks mean the program is not listed in the main text. Such programs are
provided as additional examples or variations on the programs listed in the main text.

wu23399_appB.qxd 1/10/07 11:51 Page 1107

http://www.mhhe.com/wu

1108 Appendix B Sample Programs

CHAPTER 3

Class Name Page # Standard Classes

Ch3Circle 100 String

Assigns a value to a radius and displays the circle’s area and circumference.

Ch3Circle2** N/A String
DecimalFormat

Same as Ch3Circle, but restricts the fractional values to three decimal places when displaying
the area and circumference. Formatting of the double values is done by using the
DecimalFormat class.

Ch3Circle3 102 String
DecimalFormat

Same as Ch3Circle2 but with additional formatting with control characters.

Ch3Circle4 108 Scanner

Same as Ch2Circle3 but inputs a value for the radius using the Scanner class.

Ch3PoleHeight 112 DecimalFormat
Math
Scanner

Computes the height of a given pole. Illustrates mathematical computation using the class
methods of the Math class.

Chapter 2 (Continued)

Class Name Page # Standard Classes

Ch2DateDisplay 62 Date
SimpleDateFormat

Creates and displays today’s date in two different styles: one in the format 10/15/06 9:25AM
and another in the format Sunday October 15, 2006.

Ch2Greetings* 64 String
Scanner

Accepts a name as a string input and replies with a greeting.

Ch2StringProcessing2** N/A Scanner

Same as Ch2StringProcessing but accepts input by using the Scanner class.

Ch2Monogram 70, 73 String
Scanner

A class in the Chapter 2 sample development program that accepts a full name as a string input
and displays the monogram of the input name.

wu23399_appB.qxd 1/10/07 11:51 Page 1108

Appendix B Sample Programs 1109

Chapter 3 (Continued)

Class Name Page # Standard Classes

Ch3SelectWinner 114 Scanner

This program selects a random number between M and M+N, where M and N are inputs to the
program.The program uses the Math.random method.

Ch3SelectWinner2** N/A Scanner

Same as Ch3SelectWinner but uses the Random class instead of the Math.random method.

Ch3TestCalendar 117 GregorianCalendar

Illustrates how to use the GregorianCalendar class for date manipulation.

Ch3IndependenceDay 118 GregorianCalendar
SimpleDateFormat

This program displays the day of the week of a designed date (in this example, we chose
Independence Day). The date is specified in the program by changing the arguments in the
GregorianCalendar constructor.

Ch3FindDayOfWeek 118 GregorianCalendar
SimpleDateFormat
Scanner

Same as Ch3IndependenceDay but this program accepts year, month, and day as input and dis-
plays the day of the week of the given date.

Ch3LoanCalculator 123, 125, DecimalFormat
127, 129 Math

Scanner

Computes and displays the monthly and total payments for a given loan amount, loan period,
and interest rate.

CHAPTER 4

Class Name Page # Standard Classes

BicycleRegistration 146

This is a sample main class that uses two Bicycle objects.

Bicycle 147

A sample programmer-defined class that models a bicycle.

SecondMain 157

This sample program shows the use of two programmer-defined classes Bicycle and Account.

Account 158

This is the second sample programmer-defined class. It models a bank account.

wu23399_appB.qxd 1/10/07 11:51 Page 1109

1110 Appendix B Sample Programs

Chapter 4 (Continued)

Class Name Page # Standard Classes

Student 162

This programmer-defined class models a student.

LibraryCard 163

This programmer-defined class models a library card.

Librarian 165

This main class shows the sample usage of the Student and LibraryCard classes.

AccountVer2 169

A version of the Account class that includes a constructor with two parameters.

AccountVer3 175

Another version of the Account class. This version illustrates the use of a class constant that
represents a fee charged for withdrawals.

DeductionWithFee 176 DecimalFormat

A sample main class that uses the AccountVer3 class.

Die 178 Math

A programmer-defined class that models a die.The class shows how a random number between
1 and 6 is generated by using the random method of the Math class.

RollDice 179

This is a main class that shows the sample usage of the Die class.

LotteryCard 180 Math

A programmer-defined class that models a lottery card. Each card is randomly assigned a
number between 10 and 15 and one of the three possible colors—red, green, or blue.

RoomWinner 181

This is a main class that shows the sample usage of the LotteryCard class.

AccountVer4 186

This is the fourth version of the Account class. This version shows the use of a private method.

DieVer2 187 Math

This version of the Die class illustrates the calling of a private method from the constructor.

Bicycle 189

This version of the Bicycle class includes the main method. This version is stored in a separate
subfolder to avoid the naming conflict with the original class.

wu23399_appB.qxd 1/10/07 11:51 Page 1110

Appendix B Sample Programs 1111

Chapter 4 (Continued)

Class Name Page # Standard Classes

LoanCalculator 195, 198, 201

The top-level controller class for the loan program. This class is defined as an instantiable main class.

Loan 196, 199, 202, 203 Math

An instance of this class maintains three pieces of loan information: amount,period,and interest rate.

CHAPTER 5

Class Name Page # Standard Classes

Ch5Circle 221

This class illustrates the use of if statements. An instance of this class can compute the area and
circumference of a circle, given the radius.

Ch5Sample1 223

A program to test the operations of the Ch5Circle class.

Ch5Account 230

This version of the Account class shows the use of selection control in the add and deduct methods.

Ch5AccountVer2 237

This is an improved version of the Ch5Account class. This version includes a boolean data
member active that records the state of an account—active or inactive.

Fraction* 241

A programmer-defined class that illustrates how objects are compared.

Ch5SampleGraphics 249 JFrame
Graphics

This class illustrates how a Graphics object is used by drawing a rectangle and filled rectangle
on a frame window.

Ch5SampleGraphics2** N/A JFrame
Graphics
Color

This class is the same as the Ch5SampleGraphics class, but draws the rectangles in blue and red.

Ch5RoomWinner 256 JFrame
Graphics
Color

This is the graphical version of RoomWinner from Chapter 4.

GraphicLotteryCard 257

This class adds the graphics drawing capability to LotteryCard from Chapter 4.

wu23399_appB.qxd 1/10/07 11:51 Page 1111

1112 Appendix B Sample Programs

CHAPTER 6

Class Name Page # Standard Classes

Ch6SleepStatistics 301 DecimalFormat
Scanner

This program computes the average sleeping time of dorm residents. This program uses
a while loop.

Ch6GCD* 304 Math

This class shows a number of different ways for finding the greatest common divisor of two
given integers.

Ch6DroppingWaterMelon 321 Math
Scanner

This program inputs the initial height and computes the position of a watermelon every second
until it touches the ground. This program illustrates the use of the for loop.

Ch6ComplexForLoops* 322 Math

This program illustrates the use of complex for loops.

Ch6CarpetPriceTable* 324

This program illustrates the use of nested for loops. The program outputs the price of a carpet
ranging in size from 5 by 11 to 25 by 20.

Ch6CarpetPriceTable- 330
withFormat

This class modifies the Ch6CarpetPriceTable class by formatting the output values. The format
is done by using Ch6Format.

Chapter 5 (Continued)

Class Name Page # Standard Classes

Ch5DrawShape 269, 272, 276, Point
281, 283 Dimension

Scanner

This is the instantiable main class of the sample development program.

DrawableShape 271, 278, 282 Point
Dimension
Color
Graphics

The class encapsulates the functionalities of a shape that can be drawn.

DrawingBoard N/A

This is a helper class given to you as support for implementing this application.

wu23399_appB.qxd 1/10/07 11:51 Page 1112

Appendix B Sample Programs 1113

CHAPTER 8

Class Name Page # Standard Classes

Ch8Sample1* 438 Scanner

This sample program illustrates the throwing of InputMismatchException when an input
is not an int.

Chapter 6 (Continued)

Class Name Page # Standard Classes

Ch6TimeGcd 335 Date
Scanner

This program illustrates the technique of timing the execution by using the Date class.

Ch6HiLo 346, 349, 352

A sample development program that plays the HiLo game.

CHAPTER 7

Class Name Page # Standard Classes

Fraction 402

This sample class models a fraction. The class definition includes almost all the fundamental object-
oriented concepts covered in Chapters 4 and 7. The class is placed in the package named myutil.

Ch7Fraction_Test1** N/A

A simple test class that adds two Fraction objects.

Ch7Fraction_Test2** N/A

Another main class to test the operations of the Fraction class.

LibraryBook 415

This class models a library card.

Step1Main 418 GregorianCalendar

The main class to test the step 1 LibraryBook class.

Step2Main 420 GregorianCalendar
Scanner

The step 2 main class to test the operations of the helper class BookTracker.

OverDueChecker 422 GregorianCalendar
Scanner

The main class of the sample development program.

wu23399_appB.qxd 1/10/07 11:51 Page 1113

1114 Appendix B Sample Programs

Chapter 8 (Continued)

Class Name Page # Standard Classes

AgeInputVer1 439 Scanner

This is the first version of a class that provides methods to input ages.This class includes no
exception handling routines; i.e., the system will handle any thrown exceptions.

Ch8AgeInputMain 440 GregorianCalendar
Scanner

A test program to illustrate the behavior of different versions of the age input class. The program
asks for the user’s age and replies with the year in which the user was born.

AgeInputVer2* 443 Scanner

The second version of the age input class with the try-catch exception handling. Its getAge
method will not return until a valid integer is entered. The method includes a while loop that
repeats until a valid integer is entered. The loop continues while there’s a number format
exception.

AgeInputVer3* 445 Scanner

The third version of the age input class that improves the second version by throwing an excep-
tion when the input is a negative integer.

AgeInputVer4 456 Scanner

In this fourth version of the age input class, a client programmer can set the lower and upper
bounds of the acceptable input age values. An exception is thrown if the input value is not an
integer (as in previous versions) or violates the specified bounds.

Ch8TestAgeInputVer4** N/A

This driver program tests the behavior of the AgeInputVer4 class.

AgeInputException 461

This is a programmer-defined exception class that includes the designated lower and upper
bounds and the input value that violates the specified bounds.

AgeInputVer5** N/A Scanner

The fifth version of the age input class is similar to the fourth version.The key difference is the
throwing of programmer-defined exception AgeInputException when the input value is
outside the range of specified bounds.

Ch8TestAgeInputVer5 462

This driver program tests the behavior of the AgeInputVer5 class

BankAccount 463

A sample class that specifies assertions in the deposit and withdraw methods.

Ch8TestAssertMain 464 Scanner

A driver program to test the behavior of the BankAccount class.

wu23399_appB.qxd 1/10/07 11:51 Page 1114

Appendix B Sample Programs 1115

CHAPTER 9

Class Name Page # Standard Classes

Ch9TestChar* 490

A simple illustration of conversion between char and int.

Ch9CountVowels 493 Scanner
String

Illustrates basic string processing. The program counts the number of vowels in a given string.

Ch9CountVowels2 494 Scanner
String

Same as Ch9CountVowels but uses the toUpperCase method to simply the testing.

Ch9CountWords 496 Scanner
String

The program counts the number of words in a given string. This program has a minor bug
of counting one more than the actual number of words if there is one or more spaces at
the end.

Chapter 8 (Continued)

Class Name Page # Standard Classes

Resident 475

An instance of this class represents a dorm resident. A Resident object has name, room number,
and password.

Door N/A

This helper class models the entrance door of a dorm.

Dorm N/A

This helper class models a dorm. A Dorm object maintains a list of Resident objects.

Ch8EntranceMonitor 476, 480

The main class of the program.

SampleCreateResidentFile 477

A simple (self-contained) program to create sample test data for the Ch8EntranceMonitor
program.

InputHandler 479

The user interface of the application that accepts the name, room number, and password.

wu23399_appB.qxd 1/10/07 11:51 Page 1115

1116 Appendix B Sample Programs

Chapter 9 (Continued)

Class Name Page # Standard Classes

Ch9CountJava 498 Scanner
String

This program inputs words (one word at a time) and counts the number of times the word java
occurs in input (case-insensitive comparison).The program terminates when the word STOP
(case-sensitive) is entered.

Ch9ExtractWords 500 Scanner
String

This programs extracts words from a given string and displays them one word per line.

Ch9PatternMatch1** N/A Scanner
String

A simple illustration of the matches method, a pattern-matching method of the String class.

Ch9MatchJavaIdentifier 504 Scanner
String

This program illustrates the basic pattern-matching technique by showing how to determine
whether a given input word is a valid Java identifier.

Ch9MatchPhoneNumber 505 Scanner
String

This program illustrates the basic pattern-matching technique by showing how to determine
whether a given input is a valid phone number.

Ch9MatchPhonePM** N/A Scanner
String
Matcher
Pattern

Performs the same task as Ch9MatchPhoneNumber but uses the Matcher and Pattern
classes.

Ch9MatchJavaIdentifierPM 510 Scanner
String
Matcher
Pattern

Performs the same task as Ch9MatchJavaIdentifier but uses the Matcher and Pattern
classes.

Ch9CountJavaPM 511 Scanner
String
Matcher
Pattern

Performs the same task as Ch9CountJava but uses the pattern-matching technique with the
Matcher and Pattern classes.

wu23399_appB.qxd 1/10/07 11:51 Page 1116

Appendix B Sample Programs 1117

CHAPTER 10

Class Name Page # Standard Classes

Ch10RainFall 548 Scanner

The first sample program that illustrates the use of one-dimensional array of numbers.
The program computes the annual average rainfall and the variation from the monthly
averages.

Chapter 9 (Continued)

Class Name Page # Standard Classes

Ch9LocateJavaPM 512

Similar to Ch9PMCountJava but instead of counting the number of occurrences, this program
displays the locations in the string where the word java is found.

Ch9ReplaceVowelWithX 516 Scanner
String
StringBuffer

This program illustrates the use of the StringBuffer class by showing how the vowels in a given
string are replaced by character X.

Ch9EvenLetterWords 518 Scanner
String
StringBuffer

Another sample program illustrating the use of the StringBuffer class. This program extracts words
with an even number of letters from a given string and creates a new string with these words.

FileManager N/A

This is a helper class for reading from and saving data to a text file.

WordList N/A

This is a helper class for maintaining a word list.

Ch9WordConcordanceMain 524, 529 Scanner
String
FileNotFoundException
IOException

The instantiable main class of the program.

Ch9WordConcordance 525, 530, 533 Matcher
Pattern

This class creates a word concordance for a given document. For each word in the document, the
number of times the word occurs in the document is kept.

wu23399_appB.qxd 1/10/07 11:51 Page 1117

1118 Appendix B Sample Programs

Chapter 10 (Continued)

Class Name Page # Standard Classes

Ch10RainFall2* 549 Scanner

The variation of Ch10RainFall that uses an array of String so the month name is used to prompt
the user when inputting monthly rainfall averages.The original Ch10RainFall uses month num-
ber (1, 2, etc.) instead of month names (January, February, etc.).

Ch10RainFallStat 552 Scanner

More examples of using arrays by showing how to compute various statistics from given
monthly rainfall averages.

Person** N/A

A simple class used by Ch10ProcessPersonArray to illustrate how an array of objects is processed.

Ch10ProcessPersonArray 561 Scanner

This class illustrates the processing of an array of Person objects.

Ch10TestArrayParameter* 570 Scanner

This class is a collection of methods to show how an array is passed to a method.

Ch10PayScaleTable 581

This sample program maintains a pay scale table by using a two-dimensional array of double.

Ch10FriendsList* 586 List
ArrayList

A simple program to show how a list of Person objects can be manipulated with an ArrayList.

BookTracker 591 List
LinkedList

The helper class for the Chapter 7 sample development program.This class maintains a list of
library books.

WordList 594 SortedMap
TreeMap

The helper class for the Chapter 9 sample development program. This class maintains a word list
to track the number of times each word in the list occurs in a given document.

Person** N/A

A logical class that represents a person. This class is the same as the Person class used in the
regular sample programs.

AddressBook 598, 603, 606, 609

This class implements functionalities of an address book for keeping track of persons. The class
supports insertion, deletion, and search operations. Assertion statements are used in this class.

TestAddressBook 599, 604, 607, 611

A test program to check the operations of AddressBook.

wu23399_appB.qxd 1/10/07 11:51 Page 1118

Appendix B Sample Programs 1119

CHAPTER 11

Class Name Page # Standard Classes

SearchRoutines* 621, 623

The class defines two search methods—linear and binary search.

Ch11TestLinearSearch** N/A

A driver program to test the linear search method defined in SearchRoutines.

Ch11TestBinarySearch** N/A System

A driver program to test the binary search method defined in SearchRoutines.

SortingRoutines* 626, 631

The class defines two sorting methods—selection and bubble sort.

Ch11TestSelectionSort** N/A

A driver program to test the selection sort method defined in SortingRoutines.

Ch11TestBubbleSort** N/A

A driver program to test the bubble sort method defined in SortingRoutines.

Heap* 640, 641, 642

This class implements the heapsort sorting method.

Ch11TestHeapSort** N/A

A driver program to test the sorting method defined in Heap.

Person 651

A logical class that represents a person. The class includes methods to compare its instances.

AddressBook (interface) 646

This interface defines the behavior of an address book that maintains a collection of Person
objects. An address book is capable of adding and removing objects and sorting objects by their
name or age.

AddressBookVer1 654

This class implement the AddressBook interface by using an array of Person objects. Bubble
sort is used to sort the objects.

AddressBookVer2 661 Arrays

This class implements the AddressBook interface by using an array of Person objects. For
sorting, it uses the generic sorting method included in the Arrays class.

AddressBookVer3 664 Map
HashMap
Arrays

This class implements the AddressBook interface by using an array of Person objects. The HashMap
class is used for managing Person objects and the Arrays class for sorting Person objects.

wu23399_appB.qxd 1/10/07 11:51 Page 1119

1120 Appendix B Sample Programs

Chapter 11 (Continued)

Class Name Page # Standard Classes

AgeComparator 662
(inner class)

The inner class of AddressBookVer2 and AddressBookVer3 that compares two Person objects
on their ages.

NameComparator 663
(inner class)

The inner class of AddressBookVer2 and AddressBookVer3 that compares two Person objects
on their names.

TestAddressBookSorting 647

A driver program to test the sorting routine of the address book.

CHAPTER 12

Class Name Page # Standard Classes

Ch12TestJFileChooser 676 JFileChooser
File

A simple program that shows how to use JFileChooser and File classes.

JavaFilter 677 FileFilter
File

A simple program to illustrate the use of file filter to list only Java source files in a JFileChooser.

Ch12TestFileOutputStream 680 IOException
File
FileOutputStream

A test program to save data to a file using FileOutputStream.

Ch12TestFileInputStream 682 IOException
File
FileInputStream

A test program to read data from a file using FileInputStream.

Ch12TestDataOutputStream 684 IOException
File
FileOutputStream
DataOutputStream

A test program to save data to a file using DataOutputStream.

wu23399_appB.qxd 1/10/07 11:51 Page 1120

Appendix B Sample Programs 1121

Chapter 12 (Continued)

Class Name Page # Standard Classes

Ch12TestDataInputStream 685 IOException
File
FileInputStream
DataInputStream

A test program to read data from a file using DataInputStream.

Ch12TestPrintWriter 687 IOException
File
FileOutputStream
PrintWriter

A test program to save data to a text file using PrintWriter.

Ch12TestBufferedReader 688 IOException
File
FileReader
BufferedReader

A test program to read text data from a text file using BufferedReader.

Ch12TestScanner 690 FileNotFoundException
IOException
File
Scanner

A test program to read text data from a text file using Scanner.

FileManager 691 FileNotFoundException,
(Ch 9 Helper class) IOException, File, FileReader,

BufferedReader,
FileOutputStream, PrintWriter,
JFileChooser

The helper class for Ch9WordConcordance program used for saving to and reading data
from a text file.

Ch12TestObjectOutputStream 695 IOException
File
FileOutputStream
ObjectOutputStream

A test program to save objects to a file using ObjectOutputStream.

Ch13TestObjectInputStream 696 ClassNotFoundException, File,
FileInputStream,
ObjectInputStream

A test program to read objects from a file using ObjectInputStream.

wu23399_appB.qxd 1/10/07 11:51 Page 1121

1122 Appendix B Sample Programs

Chapter 12 (Continued)

Class Name Page # Standard Classes

Dorm 698 FileNotFoundException,
(Ch 8 Helper Class) IOException,

IllegalArgumentException,
ClassNotFoundException, File,
FileInputStream,
ObjectInputStream,
FileOutputStream,
ObjectOutputStream,
StringBuffer

This helper class for Chapter 8 Sample Development maintains a list of Resident objects. In
addition, the class supports file input and output operations.

Ch12JavaViewer** N/A JFileChooser
File

This program displays the content of a Java source file.

Person** N/A Serializable

The same class from Chapter 11, but modified to implement the Serializable interface so its
instances can be saved to a file.

AddressBook (interface) 646

The same interface from Chapter 11.

AddressBookVer1** N/A

The same class from Chapter 11.

AddressBookStorage 703, 704, 706 IOException, File,
FileOutputStream,
ObjectOutputStream,
FileInputStream,
ObjectInputStream

This class provides file input and output services to save to and read AddressBook objects
from a file.

TestAddressBookWrite 705 IOException

This class tests the write operation.

TestAddressBookRead 707 IOException

This class tests the read and search operations.

TestAddressBookFinal** N/A IOException

This class tests the read and write operations.

wu23399_appB.qxd 1/10/07 11:51 Page 1122

Appendix B Sample Programs 1123

CHAPTER 13

Class Name Page # Standard Classes

Pet 714

This is a superclass of both Cat and Dog.

Cat 715

This class models a cat.The class is a subclass of Pet.

Dog 715

This class models a dog.The class is a subclass of Pet.

Ch13TestCatAndDog* 716

A sample program that illustrates the use of the Cat and Dog classes.

Student 718

This class models a student entity.

GraduateStudent 719

A subclass of Student to model a graduate student entity.

UndergraduateStudent 720

A subclass of Student to model an undergraduate student entity.

Student** N/A

A slightly different version of the Student class used in the sample development program. This
version is declared as an abstract class.

GraduateStudent** N/A

A slightly different version of the GraduateStudent subclass used in the sample development
program.

UndergraduateStudent** N/A

A slightly different version of the UndergraduateStudent subclass used in the sample
development program.

OutputWindow** N/A

This is a helper class that supports a dialog window for displaying text output.

MainWindow** N/A

This is a helper class that models a frame window. The frame window appears at the center of
the screen.

ComputeGrades 745, 748, File, FileReader, BufferedReader,
750, 755 StringTokenizer, JFileChooser

The main class of the grading program that determines the course grade for graduate and
undergraduate students using a different formula.To illustrate inheritance, this class is defined
as the subclass of MainWindow.

wu23399_appB.qxd 1/10/07 11:51 Page 1123

1124 Appendix B Sample Programs

CHAPTER 14

Class Name Page # Standard Classes

Ch14ShowMessageDialog 769 JOptionPane

A sample program that illustrates the use of JOptionPane for displaying a text in a dialog
window.

Ch14DefaultJFrame 772 JFrame

A test program to check the default properties of a JFrame object.

Ch14JFrameSubclass1 774 JFrame

A simple subclass of JFrame to illustrate the basics of inheritance.

Ch14TestJFrameSubclass 775

A test main class that creates an instance of Ch14JFrameSubclass1.

Ch14JFrameSubclass2 776 JFrame

Same as the Ch7JFrameSubclass1 but this class sets the background of a frame to white.

Ch14JButtonFrame 779 JFrame
JButton

A subclass of JFrame with two JButton objects. This class only does the layout; no events are
processed.

ButtonHandler 783 JRootPane
JButton
ActionListener

An instance of this class is registered as an action event listener for two buttons in the
Ch7JButtonEvents frame.

Ch14JButtonEvents 783 JFrame
JButton

This class is an extension of Ch7JButtonFrame by adding event-handling routines. The event
handler is an instance of ButtonHandler (see below).

Ch14JButtonFrameHandler 785 JFrame
JButton
ActionListener

This class places two JButton objects on its frame and handles the action events of the buttons.
This class combines the functionalities of Ch14ButtonEvents and ButtonHandler.

Ch14TextFrame1 789 JFrame
JButton
JTextField
ActionListener

This class places two buttons (JButton) and one text field (JTextField) and handles actions events
generated by these three GUI components.

wu23399_appB.qxd 1/10/07 11:51 Page 1124

Appendix B Sample Programs 1125

Chapter 14 (Continued)

Class Name Page # Standard Classes

Ch14TextFrame2 792 JFrame, JLabel, JButton,
JTextField, ImageIcon,
ActionListener

Similar to Ch14TextFrame1, but adds JLabel objects. How an image is added to a JLabel is
demonstrated in this class.

Ch14TextFrame3 795 JFrame, JButton, JTextField,
JTextArea, BorderFactory,
ActionListener.

This class places two buttons, one text field, and one text area. String data entered in the
text field are added to the strings in the text area when an action event is generated.

Ch14FlowLayoutSample 800 JFrame
FlowLayout
JButton

A sample frame to illustrate the placing of GUI objects with the FlowLayout manager.

Ch14BorderLayoutSample 802 JFrame
BorderLayout
JButton

A sample frame to illustrate the placing of GUI objects with the BorderLayout manager.

Ch14GridLayoutSample 804 JFrame
BorderLayout
JButton

A sample frame to illustrate the placing of GUI objects with the GridLayout manager.

Ch14AbsolutePositioning 806 JFrame
JButton

A sample frame to illustrate the placing of GUI objects with no layout manager, i.e., using absolute
positioning.

Ch14NestedPanels1 810 JFrame, JPanel, BorderFactory,
GridLayout, BorderLayout,
JButton

A sample frame to illustrate the placing of nested panels with each panel having a different layout
manager.

Ch14NestedPanels2 812 JFrame, JPanel, BorderFactory,
GridLayout, BorderLayout,
JButton, JTextField, JLabel

A redesigned GUI for the HiLo game using nested panels.

wu23399_appB.qxd 1/10/07 11:51 Page 1125

1126 Appendix B Sample Programs

Chapter 14 (Continued)

Class Name Page # Standard Classes

Ch14TicTacToeCell 814 JPanel, JLabel, ImageIcon,
BorderLayout, BorderFactory,
Point

An instance of this class represents a single cell in the Tic Tac Toe game board. A standard game
is 3 X 3 so there are 9 cells.

Ch14TicTacToePanel 816 JPanel
MouseListener

A panel for displaying the Tic Tac Toe game board.This sample class illustrates the use of nested
panels.

Ch14JCheckBoxSample1 818 JFrame, ActionListener,
ActionEvent, JPanel, JButton,
BorderLayout, GridLayout,
FlowLayout, BorderFactory,
JCheckBox

A sample frame to illustrate the use of JCheckBox.

Ch14JCheckBoxSample2 820 JFrame, ActionListener,
ActionEvent, ItemListener,
ItemAction, JPanel, JButton,
BorderLayout, GridLayout,
FlowLayout, BorderFactory,
JCheckBox

This is an extended version of Ch14JCheckBoxSample1 that process item events in addition
to action events.

Ch14JRadioButtonSample 823 JFrame, ActionListener,
ActionEvent, ItemListener,
ItemAction, JPanel, JButton,
BorderLayout, GridLayout,
FlowLayout, BorderFactory,
JRadioButton

A sample frame to illustrate the use of JRadioButton.

Ch14JComboBoxSample 827 JFrame, ActionListener,
ActionEvent, ItemListener,
ItemAction, JPanel,
JButton, BorderLayout,
GridLayout, BorderFactory,
JRadioButton

A sample frame to illustrate the use of JComboBox.

wu23399_appB.qxd 1/10/07 11:51 Page 1126

Appendix B Sample Programs 1127

Chapter 14 (Continued)

Class Name Page # Standard Classes

Ch14JListSample 830 JFrame, ActionListener,
ActionEvent, JPanel, JButton,
BorderLayout, GridLayout,
FlowLayout, BorderFactory,
JScrollPane, JList

A sample frame to illustrate the use of JList.

Ch14JSliderSample 833 JFrame, ChangeListener,
ChangeEvent, JPanel, JButton,
BorderLayout, BorderFactory,
JSlider

A sample frame to illustrate the use of JSlider.

Ch14JMenuFrame 837 JFrame, JMenuBar, JMenu,
JMenuItem, ActionListener

A frame class with menus that illustrates the menu action processing.

Ch14TrackMouseFrame 842 JFrame
MouseListener
System

This program tracks the mouse click events.When a mouse button is clicked, the location where
the mouse button is clicked is displayed.

Ch14SketchPad 845 JFrame
MouseListener
MouseMotionListener

This program provides a freehand drawing by tracing the mouse movements.

CHAPTER 15

Class Name Page # Standard Classes

Ch15Algorithms* 862, 865, 867, 869, 870, 873

This class includes a collection of recursive algorithms discussed in Chapter 15.

TestCh15Algorithms** N/A

A driver program for testing algorithms in Ch15Algorithms.

wu23399_appB.qxd 1/10/07 11:51 Page 1127

1128 Appendix B Sample Programs

CHAPTER 16

Name Page # Standard Classes

Node 890

This class provides the basic definition for a node in a linked list.

CreateListVariation1* 892

This program creates a linked list by using three variables start, tail, and next.

CreateListVariation2* 893

This variation creates a linked list by using only two variables start and tail.

CreateListVariation3* 895

This variation creates a linked list by using a temporary dummy first node.

CreateListVariation4* 896

This variation creates a linked list by adding new nodes to the front of the list.

SearchList* 899

This program illustrates how the search is carried out in a linked list of integers.

RemoveNodeFromList* 901

This program shows how a node is removed from a linked list of integers.

Bicycle 903

A simple class used in illustrating operations on a linked list of objects.

BNode 904

The data item of this node is a reference to a Bicycle object.

CreateBicycleList* 905

This program creates a linked list of Bicycle objects.

SearchBicycleList* 906

This program shows how the search is carried out in a linked list of Bicycle objects.

RemoveNodeFromBicycleList* 907

This program shows how a node is removed from a linked list of Bicycle objects.

HumongousInteger 917, 921, 926, 931

This class implements a very simplified version of java.math.BigInteger by using a
linked list.

TestStep1HumongousInteger* 920

A test program to check the step 1 HumongousInteger class.

wu23399_appB.qxd 1/10/07 11:51 Page 1128

Appendix B Sample Programs 1129

Chapter 16 (Continued)

Name Page # Standard Classes

TestStep2HumongousInteger* 923

A test program to check the step 2 HumongousInteger class.

TestStep3HumongousInteger* 930

A test program to check the step 3 HumongousInteger class.

TestStep4HumongousInteger* 933

A test program to check the step 4 HumongousInteger class.

CHAPTER 17

Name Page # Standard Classes

Locker 946

This is a very simple class that illustrates the basic use of the Java generics.

LockerDemo* 947

A sample program that shows how the generic Locker class is used.

SecondLocker 950

A sample generic class with two type parameters.

ThirdLockder 951

The third sample generic class that shows two data members are of the same generic type.

NonGenLocker 952

A sample class that does not use generics to illustrate the benefits of defining a generic class.

FourthLocker 954

The fourth generic Locker class that illustrates the use of bounded types.

FifthLocker 956

The fourth generic Locker class that illustrates the use of wildcard types.

Book 961

A simple class used in illustrating operations on a generic linked list.

wu23399_appB.qxd 1/10/07 11:51 Page 1129

1130 Appendix B Sample Programs

Chapter 17 (Continued)

Name Page # Standard Classes

BookListDemo* 961

A demo class for showing the use of generics and Java collection class ArrayList.

Node 963

A simple class to illustrate a generic node in a linked list.

SimpleLinkedList 965

This generic class shows how the Java generics can be used to maintain a homogeneous list
of objects.

UseSimpleLinkedList* 967

A simple program that illustrates the use of the SimpleLinkedList class.

LockerSub 969

This class illustrates how a subclass of a generic class is defined.

LockerSubTwo 971

Another example of defining a subclass of a generic class.

Box 971

A simple class used in an example to illustrate how a generic subclass can be defined from a
nongeneric superclass.

MagicBox 972

This class illustrates the definition of a generic subclass of a nongeneric superclass Box.

MagicContainer 972

This example illustrates a simple generic Java interface.

MagicTrunk 972

The first example of defining a class that implements a generic Java interface.

StringTrunk 973

The second example of defining a class that implements a generic Java interface.

CHAPTER 18

Name Page # Standard Classes

NPSList 988

A generic Java interface for defining the List ADT.

NPSArrayList 997, 1026

This class implements the NPSList interface by using an array.

wu23399_appB.qxd 1/10/07 11:51 Page 1130

Appendix B Sample Programs 1131

Chapter 18 (Continued)

Name Page # Standard Classes

NPSLinkedList 1013, 1024

This class implements the NPSList interface by using linked nodes.

NPSLinkedListWithHeader 1019

This is a variation of NPSLinkedList by using a dummy head node.

NPSIterator 1023

This Java interface specifies the iterator design pattern.

NPSNoSuchElementException 1026

A customized exception class for the NPS collection classes to indicate an exception when the
requested item does not exist in the collection.

FortuneCookieMain** N/A

The main class of a program that displays fortunes. Implementation of this class is left as an exercise.

FortuneCookieManager 1030

The core class of the program that maintains the database of fortune cookies.

FortuneCookieFile** N/A

This class handles the input of text messages for fortune cookies from the designated text file
fortune.txt. Implementation of this class is left as an exercise.

CHAPTER 19

Name Page # Standard Classes

NPSStack 1040

A generic Java interface for defining the Stack ADT.

NPSStackEmptyException 1041

A customized exception to signal a stack empty error.

NPSArrayStack 1045

This class implements the NPSStack interface by using an array.

NPSLinkedStack 1050

This class implements the NPSStack interface by using linked nodes.

NPSListStack 1052

This class implements the NPSStack interface by the NPSLinkedList class.

HTMLTag** N/A

This class models the HTML tag. Full implementation of the class is left as an exercise.

wu23399_appB.qxd 1/10/07 11:51 Page 1131

1132 Appendix B Sample Programs

Chapter 19 (Continued)

Name Page # Standard Classes

HTMLTagChecker 1057

This program checks whether a given HTML file has the matching opening and closing HTML tags.

HTMLTagRetriever** N/A

This class handles the retrieval of HTML tags from a specified HTML file. Full implementation of
the class is left as an exercise.

CHAPTER 20

Name Page # Standard Classes

NPSQueue 1073

A generic Java interface for defining the Queue ADT.

NPSQueueEmptyException 1074

A customized exception to signal a queue empty error.

NPSArrayQueue 1080

This class implements the NPSQueue interface by using an array.

NPSLinkedQueue 1085

This class implements the NPSQueue interface by using linked nodes.

NPSListQueue 1088

This class implements the NPSQueue interface by the NPSLinkedList class.

NPSPriorityQueue 1090

This class implements the priority queue.

TestNPSPriorityQueue 1093

A simple program that illustrates the use of the NPSPriorityQueue class.

wu23399_appB.qxd 1/10/07 11:51 Page 1132

Appendix C Standard Classes and Interfaces 1133

1133

A p p e n d i x C
Standard Classes and Interfaces

In this appendix, we provide a list of standard Java classes and interfaces used in the
textbook’s sample programs. Many of these classes and interfaces are discussed
fully in the book and used extensively in the sample programs, while some are men-
tioned briefly and used only in a few sample programs. For a subset of these classes
and interfaces, we provide a brief summary and a list of key methods.

Alphabetical List
Standard Java classes and interfaces mentioned in this book are listed alphabetically.
The interfaces are shown in italic font.

Alphabetical List

ActionEvent Double InputStreamReader

ActionListener Exception Integer

ArrayList File IOException

Arrays FileFilter ItemEvent

BorderFactory FileInputStream ItemListener

BorderLayout FileNotFoundException JButton

BufferedReader FileOutputStream JCheckBox

ChangeEvent FileReader JFileChooser

ChangeListener Float JFrame

ClassNotFoundException FlowLayout JLabel

Color Graphics JList

DataInputStream GregorianCalendar JMenu

DataOutputStream GridLayout JMenuBar

Date HashMap JMenuItem

DecimalFormat IllegalArgumentException JOptionPane

Dimension ImageIcon JPanel

wu23399_appC.qxd 1/8/07 18:28 Page 1133

1134 Appendix C Standard Classes and Interfaces

Logical List
The following list organizes the standard classes and interfaces from the alphabetical
list in logical groups.

Logical List

Drawing
Color Dimension Graphics

Point

Events
ActionEvent ActionListener ChangeEvent

ChangeListener ItemEvent ItemListener

MouseEvent MouseListener MouseMotionListener

Exceptions
ClassNotFoundException Exception FileNotFoundException

IllegalArgumentException IOException NumberFormatException

File Input and Output
BufferedReader DataInputStream DataOutputStream

File FileFilter FileInputStream

Alphabetical List (Continued)

JPasswordField Matcher PrintWriter

JRadioButton Math SerializableScanner

JRootPane MouseEvent SimpleDateFormat

JScrollPane MouseListener SortedMap

JSlider MouseMotionListener StringBuffer

JTextArea NumberFormatException String

JTextField ObjectInputStream StringTokenizer

LinkedList ObjectOutputStream System

List Pattern TreeMap

Long Point

Map PrintStream

wu23399_appC.qxd 1/8/07 18:28 Page 1134

Appendix C Standard Classes and Interfaces 1135

Logical List (Continued)

FileOutputStream FileReader InputStreamReader

ObjectInputStream ObjectOutputStream PrintStream

PrintWriter Serializable

GUI
BorderFactory BorderLayout FlowLayout

GridLayout ImageIcon JButton

JCheckBox JFileChooser JFrame

JLabel JList JMenu

JMenuBar JMenuItem JOptionPane

JPanel JPasswordField JRadioButton

JRootPane JScrollPane JSlider

JTextArea JTextField

Java Collection Framework
ArrayList HashMap LinkedList

List Map SortedMap

TreeMap

Utility
Arrays Date DecimalFormat

GregorianCalendar Matcher Math

Pattern ScannerSimpleDateFormat StringBuffer

String StringTokenizer System

Wrapper
Double Float Integer

Long

Class Hierarchy for Swing Components
Many of the methods we use for various Swing-based components are defined in
the common superclass. Instead of repeating the same information in individual
classes, we will list the methods in the class in which they are defined. Here is the
inheritance hierarchy for the Swing components mentioned in the book (classes

wu23399_appC.qxd 1/8/07 18:28 Page 1135

1136 Appendix C Standard Classes and Interfaces

summarized in the next section are shown in blue):

Summary of Selected Classes and Interfaces
In this section, we summarize a subset of standard classes and interfaces mentioned
in the book. The classes and interfaces are listed in alphabetical order. For each
class and interface we summarize, we include a brief description and some of its
methods. The summary is intended as a quick reference. It is not a substitute for the
API documentation. For a complete list of methods and full description, please con-
sult the API documentation.

javax.swing.BorderFactory

javax.swing.JSlider

javax.swing.JOptionPane

javax.swing.JPanel

javax.swing.JList

javax.swing.JLabel

javax.swing.text.JTextComponent

javax.swing.JPasswordField

javax.swing.JRadioButton

javax.swing.JCheckBox

javax.swing.JMenu

javax.swing.JTextField

javax.swing.JTextArea

javax.swing.ToggleButton

javax.swing.JMenuItem

javax.swing.JButton

java.awt.Component

java.lang.Object

javax.swing.JComponent java.awt.Frame

java.awt.Container java.awt.Window

javax.swing.JFrame

javax.swing.JMenuBar

javax.swing.AbstractButton

wu23399_appC.qxd 1/8/07 18:28 Page 1136

Appendix C Standard Classes and Interfaces 1137

Class: javax.swing.AbstractButton

Purpose: This is the base class of button and menu objects. Methods defined here are
applicable to all subclasses.

Hierarchy: java.lang.Object �— java.awt.Component �—
java.awt.Container �— javax.swing.JComponent �—
javax.swing.AbstractButton

Subclasses: JButton, JCheckBox, JRadioButton, JMenuItem, JMenu

Public Methods:

void ActionListener (ActionListener listener)

Adds listener as an action listener of this button.

String getText ()

Returns the text of this button.

void setText (string text)

Sets the text of this button.

Class:java.awt.event.ActionEvent

Purpose: An instance of this class represents an action event such as clicking a
pushbutton or pressing the Enter key while the text field has a focus.

Hierarchy: java.lang.Object �— java.util.EventObject �—
java.awt.AWTEvent �— java.awt.event.ActionEvent

Public Methods:

String getActionCommand()

Returns a string associated with the event source.

Object getSource()

Returns the source object that generated an action event.

wu23399_appC.qxd 1/8/07 18:28 Page 1137

1138 Appendix C Standard Classes and Interfaces

Interface: java.awt.event.ActionListener

Purpose: An instance of this class represents an action event such as clicking a pushbutton
or pressing the Enter key while the text field has a focus.

Hierarchy: java.util.EventListener �— java.awt.event.ActionListener

Public Methods:

void actionPerformed(ActionEvent event)

This method is called when the event source generates an action event. A class that implements
this interface must define the actionPerformed method.

Class: javax.swing.BorderFactory

Purpose: This factory class produces various types of borders for GUI components

Hierarchy: java.lang.Object �— javax.swing.BorderFactory

Public Methods:

static Border createBevelBorder (int type, Color highlight,
Color shadow)

Creates a beveled border object of a specified type and colors for highlighting and shadowing.
The value for type can be either BevelBorder.LOWERED or BevelBorder.RAISED.

static Border createEtchedBorder (int type, Color highlight,
Color shadow)

Creates an etched border object of a specified type and colors for highlighting and shadowing.
The value for type can be either EtchedBorder.LOWERED or EtchedBorder.RAISED.

static Border createLineBorder (Color color)

Creates a line border object in a specified color and default line thickness.

static Border createLineBorder (Color color, int thickness)

Creates a line border object in a specified color and line thickness.

wu23399_appC.qxd 1/8/07 18:28 Page 1138

Appendix C Standard Classes and Interfaces 1139

Class:java.util.Date

Purpose: This class represents a specific instance in time with millisecond precision.

Hierarchy: java.lang.Object �— java.util.Date

Constructors:

Date ()

Creates a new Date whose value is set to the time instance when it is created.

Public Methods:

boolean after (Date date)

Returns true if this date is after the argument date.

boolean before (Date date)

Returns true if this date is before the argument date.

long getTime ()

Returns the elapsed time in milliseconds since the epoch, which is designated as January
1, 1970, 00:00:00 GMT.

Class: java.text.DecimalFormat

Purpose: This class is used to format decimal numbers.

Hierarchy: java.lang.Object �— java.text.Format �—
java.text.NumberFormat �— java.text.DecimalFormat

Constructors:

DecimalFormat (String pattern)

Creates a new DecimalFormat initialized to a given pattern.

Public Methods:

String format (long number)

String format (double number)

Return the formatted string of a given number.

wu23399_appC.qxd 1/8/07 18:28 Page 1139

1140 Appendix C Standard Classes and Interfaces

Class: java.io.File

Purpose: An instance of this class represents a file or a directory.

Hierarchy: java.lang.Object �— java.io.File

Public Constants:

String pathSeparator

This system-dependent path separator symbol is represented as a string. A path
separator for Windows is the semicolon.This value can be retrieved by the statement
System.getProperty(“path.separator”) also.

String separator

This system-dependent file separator symbol is represented as a string. A file separator
for Windows is the backslash.This value can be retrieved by the statement System.
getProperty(“file.separator”) also.

Constructors:

File (String filename)

Creates a File object for a given filename.The filename can be a full path name or a name
relative to the current directory.

Public Methods:

String getAbsolutePath()

Returns the full path name of this file.

boolean isDirectory()

Returns true if this File object represents a directory.

boolean isFile()

Returns true if this File object represents a file.

String[] list()

Returns an array of file and subdirectory names of this File object representing a directory.

Class: java.util.Formatter

Purpose: This class is used to format the numerical and text output with justification and
alignment. See Section 6.8 for sample usage.

Hierarchy: java.lang.Object �— java.util.Formatter

wu23399_appC.qxd 1/8/07 18:28 Page 1140

Appendix C Standard Classes and Interfaces 1141

Class: java.util.Formatter (Continued)

Constructors:

Formatter (outputStream out)

Creates a Formatter for the specified output stream. Example:
Formatter formatter = new Formatter(System.out);

Public methods:

Formatter format (String format, Object... expressions)

Formats the given expressions using the formatting pattern format and outputs the result to
the associated output stream. Expressions can be numerical, sttring, GregorianCalendar, and
other types of data.The formatting pattern is explained in Section 6.8.

Note: From Java 5.0 (SDK 1.5) System.out (PrintStream object) and String both support a new
method named format that does the formatting.The format method of the String class is a
class method that returns the formatted string.

Class: java.awt.Graphics

Purpose: This class supports drawing functionality.

Hierarchy: java.lang.Object �— java.awt.Graphics

Public Methods:

void drawLine(int x1, int y1, int x2, int y2)

Draws a line between (x1, y1) and (x2, y2).

void drawOval(int x, int y, int width, int height)

Draws an oval.

void drawRect(int x, int y, int width, int height)

Draws a rectangle.

void drawRoundRect(int x, int y, int width, int height,
int arcWidth, int arcHeight)

Draws a rectangle with rounded corners

wu23399_appC.qxd 1/8/07 18:28 Page 1141

1142 Appendix C Standard Classes and Interfaces

Class: java.util.GregorianCalendar

Purpose: This class represents a specific instance in time using the Gregorian calendar.

Hierarchy: java.lang.Object �— java.util.Calendar �—
java.util.GregorianCalendar

Public Constants: A partial list of constants defined in the Calendar class.

int DAY_OF_MONTH

int DAY_OF_WEEK

int DAY_OF_WEEK_IN_MONTH

int DAY_OF_YEAR

int HOUR

int HOUR_OF_DAY

int MINUTE

int SECOND

See the Ch3TestCalendar class for the sample uses of these constants.

Class: java.awt.Graphics (Continued)

void drawString(String text, int x, int y)

Draws a given text at position (x, y).

void fillOval(int x, int y, int width, int height)

Draws a filled oval.

void fillRect(int x, int y, int width, int height)

Draws a filled rectangle.

void fillRoundRect(int x, int y, int width, int height,
int arcWidth, int arcHeight)

Draws a filled rectangle with rounded corners.

void setColor(Color color)

Sets the pen color to color.

void setFont(Font font)

Sets the font to font.

wu23399_appC.qxd 1/8/07 18:28 Page 1142

Appendix C Standard Classes and Interfaces 1143

Class: javax.swing.JComponent

Purpose: This is the base class of all Swing GUI components such as buttons, text
fields, menus, and others. Methods defined here are applicable to all
subclasses.

Hierarchy: java.lang.Object �— java.awt.Component �—
java.awt.Container �— javax.swing.JComponent

Class: java.util.GregorianCalendar (Continued)

Constructors:

GregorianCalendar ()

Creates a new GregorianCalendar set to the time and date of the system clock when this
object is created.

GregorianCalendar (int year, int month, int day)

Creates a new GregorianCalendar set to the argument year, month, and day. Notice the
month ranges from 0 to 11.

GregorianCalendar (int year, int month, int day,
int hour, int minute)

Creates a new GregorianCalendar set to the argument values.

GregorianCalendar (int year, int month, int day,
int hour, int minute, int second)

Creates a new GregorianCalendar set to the argument values.

Public Methods:

int get (int field)

Returns the specified field’s value. See the class constants for the possible fields.

Date getTime ()

Returns this object represented as a Date.

long getTime ()

Returns the elapsed time in milliseconds since the epoch, which is designated as January 1, 1970,
00:00:00 GMT.

wu23399_appC.qxd 1/8/07 18:28 Page 1143

1144 Appendix C Standard Classes and Interfaces

Class: javax.swing.JFrame

Purpose: This class is the extended version of java.awt.Frame that works as a
container for Swing GUI components.

Hierarchy: java.lang.Object �— java.awt.Component �—
java.awt.Container �— java.awt.Window �—
java.awt.Frame �— javax.swing.JFrame

Class: javax.swing.JComponent (Continued)

Public Methods:

JRootPane getRootPane ()

Returns the root pane that contains this component.

void setBackground (Color color)

Sets the background of this component to color.

void setBorder (Border border)

Sets the border of this component to border.

void setEnabled (boolean state)

Enables this component if state is true and disables it if state is false.

void setFont (Font font)

Sets the font used for this component to font.

void setForeground (Color color)

Sets the foreground of this component to color.This is how you change the text color of a
component.

void setVisible (boolean state)

Makes this component visible if state is true and invisible if state is false.

wu23399_appC.qxd 1/8/07 18:28 Page 1144

Appendix C Standard Classes and Interfaces 1145

Class: javax.swing.JFrame (Continued)

Constructors:

JFrame ()

Creates a new JFrame initialized to default properties.

JFrame (String title)

Creates a new JFrame with a specified title and default values for other properties.

Public Methods:

Container getContentPane ()

Returns the content pane of this frame.

void resizable (boolean state)

Enables the resizing of this frame if state is true and disables the resizing if state is false.

void setContentPane (Container pane)

Sets the content pane of this frame.You can pass an instance of JPanel as an argument.

void setJMenuBar (JMenuBar menubar)

Sets the menu bar of this frame.

void setBounds (int x, int y, int width, int height)

Sets the origin point of this frame to (x, y), width to width, and height to height.

void setLocation (int x, int y)

Sets the origin point of this frame to (x, y).

void setSize (int width, int height)

Sets the width to width and height to height.

void setTitle (String title)

Sets the title of this frame.

void setVisible (boolean state)

Makes this frame visible if state is true and invisible if state is false.

wu23399_appC.qxd 1/8/07 18:28 Page 1145

1146 Appendix C Standard Classes and Interfaces

Class: javax.swing.JLabel

Purpose: An instance of this class is used to display uneditable text or image (or both).

Hierarchy: java.lang.Object �— java.awt.Component �—
java.awt.Container �— javax.swing.JComponent �—
javax.swing.JLabel

Constructors:

JLabel ()

Creates a new JLabel initialized to an empty image and text.

JLabel (Icon icon)

Creates a new JLabel with the specified image. Note that Icon is an interface, and the
ImageIcon class implements this interface, so you can pass an ImageIcon object as an
argument.

JLabel (String text)

Creates a new JLabel with the specified text.

Public Methods:

Icon getIcon ()

Returns the icon of this label.

String getText ()

Returns the text of this label.

void setIcon (Icon icon)

Sets the icon of this label.

void setText (String text)

Sets the text of this label. The argument should be a single line of text. Any text after the
new-line character is ignored.

Class: javax.swing.JList

Purpose: This component represents a list box.

Hierarchy: java.lang.Object �— java.awt.Component �—
java.awt.Container �— javax.swing.JComponent �—
javax.swing.JList

wu23399_appC.qxd 1/8/07 18:28 Page 1146

Appendix C Standard Classes and Interfaces 1147

Class: javax.swing.JList (Continued)

Constructors:

JList (Object[] list)

Creates a new JList with its items set to the passed array elements.

Public Methods:

int getSelectedIndex ()

Returns the index of the first selected items. If no item is selected, then -1 is returned.

int[] getSelectedIndices ()

Returns an array of indices of all selected items.

void setSelectionMode (int mode)

Sets the selection mode of this list tomode.The three possible values for mode areList-
SelectionModel.SINGLE_SELECTION,ListSelectionModel.SINGLE_INTERVAL_
SELECTION, and ListSelectionModel.MULTIPLE_INTERVAL_SELECTION.The
default mode is ListSelectionModel.MULTIPLE_INTERVAL_SELECTION.

Class: javax.swing.JOptionPane

Purpose: This is a convenience class that supports a quick and easy way to deal with a
standard dialog box for displaying short messages or getting an input value.

Hierarchy: java.lang.Object �— java.awt.Component �—
java.awt.Container �— javax.swing.JComponent �—
javax.swing.JOptionPane

Public Constants: This is a partial list.

int YES_OPTION

int NO_OPTION

int CANCEL_OPTION

int OK_OPTION

int YES_NO_CANCEL_OPTION

Public Methods: Note the listed methods are all class methods.

static int showConfirmDialog (Component parent, Object message)

Displays a standard confirmation dialog and returns the value to indicate which button (Yes,
No, or Cancel) is clicked.

wu23399_appC.qxd 1/8/07 18:28 Page 1147

1148 Appendix C Standard Classes and Interfaces

Class: javax.swing.JSlider

Purpose: This component represents a slider.

Hierarchy: java.lang.Object �— java.awt.Component �—
java.awt.Container �— javax.swing.JComponent �—
javax.swing.JSlider

Constructors:

JSlider ()

Creates a new horizontal slider ranging from 0 to 100. The initial position of the slider knob is set
to 50.

JSlider (int min, int max)

Creates a new horizontal slider ranging from min to max.The initial position of the slider knob is
set to the average of min and max.

JSlider (int orientation, int min, int max, int value)

Creates a new slider ranging in values from min to max.The initial position of the slider knob is
set to value, and the orientation to orientation (JSlider.VERTICAL or
JSlider.HORIZONTAL).

Public Methods:

int getValue ()

Returns the current value of this slider.

Class: javax.swing.JOptionPane (Continued)

static int showConfirmDialog (Component parent, Object message,
String title, int optionType)

Displays a confirmation dialog with message as its prompt and title as the dialog title. The
value of optionType determines which buttons are shown in the dialog.

static String showInputDialog (Component parent, Object message)

Displays a standard input dialog and returns the entered value as a String.

static void showMessageDialog (Component parent, Object message)

Displays a standard message dialog with the text message.

wu23399_appC.qxd 1/8/07 18:28 Page 1148

Appendix C Standard Classes and Interfaces 1149

Class: javax.swing.JSlider (Continued)

void setMajorTickSpacing (int spacing)

Sets the major tick spacing to spacing.

void setMaximum (int max)

Sets the maximum to max.

void setMinimum (int min)

Sets the minimum to min.

void setMinorTickSpacing (int spacing)

Sets the minor tick spacing to spacing.

void setPaintLabels (boolean state)

Draws the labels if state is true.

void setPaintTicks (boolean state)

Draws the tick marks if state is true.

void setValue (int value)

Sets the current value of this slider to value.

Class:javax.swing.JTextComponent

Purpose: An instance of this class is used to display uneditable text or image (or both).

Hierarchy: java.lang.Object �— java.awt.Component �—
java.awt.Container �— javax.swing.JComponent �—
javax.swing.JTextComponent

Constructors: They use the constructors of the subclasses JTextArea and JTextField.

Public Methods:

String getSelectedText ()

Returns the selected text of this text component.

String getText ()

Returns the text of this text component.

wu23399_appC.qxd 1/8/07 18:28 Page 1149

1150 Appendix C Standard Classes and Interfaces

Class:java.lang.Math

Purpose: This class supports mathematical functions.

Hierarchy: java.lang.Object �— java.awt.Graphics

Public Constants:

double PI

The value of pi.

double E

The value of natural number e.

Public Methods: Please refer to Table 3.6 for a list of methods.

Class: javax.swing.JTextComponent (Continued)

void setEditable (boolean state)

Makes this text component editable if state is true and an editable if state is false.

void setText (String str)

Sets the text of this text component to a specified str.

Class: java.util.Scanner

Purpose: An object to input data from an input stream.

Hierarchy: java.lang.Object �— java.util.Scanner

Constructors:

Scanner (InputStream source)

Creates a new Scanner with input values coming from the source.
Example: Scanner scanner = new Scanner(System.in);

Public methods:

byte nextByte()

Returns the next input value as a byte.

wu23399_appC.qxd 1/8/07 18:28 Page 1150

Appendix C Standard Classes and Interfaces 1151

Class:java.util.Scanner (Continued)

double nextDouble()

Returns the next input value as a double.

float nextFloat()

Returns the next input value as a float.

int nextInt()

Returns the next input value as a int.

long nextLong()

Returns the next input value as a long.

short nextShort()

Returns the next input value as a short.

String next()

Returns the next input value as a String.

void useDelimeter(String marker)

Sets marker as a marker to separate the input values. Useful when reading a text that contains
spaces. Example:To set the tab as the separator, write
scanner.useDelimeter("\t");

Class: java.text.SimpleDateFormat

Purpose: This class is used to format dates.

Hierarchy: java.lang.Object �— java.text.Format �—
java.text.DateFormat �— java.text.SimpleDateFormat

Constructors:

SimpleDateFormat ()

Creates a new SimpleDateFormat initialized to a default format.

SimpleDateFormat (String format)

Creates a new SimpleDateFormat initialized to the specified format. See Table 2.1 for the
symbols you can use to specify the format.

wu23399_appC.qxd 1/8/07 18:28 Page 1151

1152 Appendix C Standard Classes and Interfaces

Class: java.text.SimpleDateFormat (Continued)

Public Methods:

String format (Date date)

Returns the formatted string of a given date.

Class: java.lang.String

Purpose: This class represents an immutable sequence of characters.

Hierarchy: java.lang.Object �— java.lang.String

Constructors:

String ()

Creates a new empty String.

String (String str)

Creates a new String from a given str.

Public Methods:

char chatAt (int index)

Returns a character at position index.The first character in a string is at position 0.

String concat(String str)

Returns a new string that is a concatenation of this string and the argument str. The
concatenation operator + is equivalent to this method.

boolean equals(String str)

Returns true if this string has the same sequence of characters as the argument str.
Comparison is done in a case-sensitive manner.

boolean equalsIgnoreCase(String str)

Is the same as equals but in a case-insensitive manner.

wu23399_appC.qxd 1/8/07 18:28 Page 1152

Appendix C Standard Classes and Interfaces 1153

Class: java.lang.String (Continued)

static String format(String format, Object... expressions)

Formats the given expressions following the formatting pattern format and returns the
formatted string.

int length()

Returns the number of characters in this string.

boolean matches(String regex)

Returns true if this string matches the given regular expression regex.

String substring(int start)

Returns a substring of this string from index position start to the last character of this string.

String substring(int start, int end)

Returns a substring of this string from index position start to end-1.

String toLowerCase()

Converts this string to all lowercase characters.

String toUpperCase()

Converts this string to all uppercase characters.

String trim()

Removes the leading and trailing whitespaces (e.g., blank spaces, tabs, new lines).

Class: java.lang.StringBuffer

Purpose: This class represents a mutable sequence of characters.

Hierarchy: java.lang.Object �— java.lang.StringBuffer

Constructors:

StringBuffer ()

Creates a new empty StringBuffer with the initial capacity of 16 characters.

wu23399_appC.qxd 1/8/07 18:28 Page 1153

1154 Appendix C Standard Classes and Interfaces

Class: java.lang.StringBuffer (Continued)

StringBuffer (String str)

Creates a new StringBuffer whose content is initialized to a given str.

Public Methods:

StringBuffer append (char ch)

StringBuffer append (String str)

Appends an argument to this string buffer.

char charAt(int index)

Returns a character at position index. The first character in a string is at position 0.

StringBuffer deleteCharAt(int index)

Removes the character at position index from this string buffer.

StringBuffer insert (int index, char ch)

StringBuffer insert (int index, String str)

Inserts an argument to this string buffer at position index.

int length()

Returns the number of characters in this string.

StringBuffer reverse()

Reverses this string buffer.

String substring(int start)

Returns a substring of this string buffer from index position start to the last character of this
string.

String substring(int start, int end)

Returns a substring of this string buffer from index position start to end-1.

wu23399_appC.qxd 1/12/07 13:14 Page 1154

Appendix D UML Diagrams 1155

1155

A p p e n d i x D
UML Diagrams

What is UML?
The unified modeling language (UML) provides graphical notation that can be
used to model computer systems developed using object-oriented software engi-
neering (OOSE). The focus of OOSE is identifying the problem elements that
produce or consume information and describing the relationships among these
elements. In OOSE, objects are defined to represent these elements during the
system analysis and design process. UML diagrams allow software engineers to
indicate the relationships among the objects used to define the system. Most of
these objects will need to be implemented using software in the final system.
UML is particularly useful when the plan is to implement the system in an object-
oriented language like Java.

Software engineers use several types of models during the analysis and design
phases of the software development process. Data models describe object attributes
and relationships with each other. Functional models show how data is transformed
as it flows through the system. Behavioral models depict the actions taken by the
system in response to events. Architectural diagrams show the relationships among
the hardware and software components needed to implement the complete system.
UML provides several types of diagrams to support the modeling needs of software
engineers. The author has made use of a subset of the UML class diagram notation
to describe class content throughout this text.

This appendix will describe the use of UML diagrams to model the attributes,
behavior, and architecture of a simple vending machine. This vending machine
accepts a single coin and dispenses a single product. The machine does not give
change. If a bad coin is inserted, or if the machine has no product to dispense, the coin
will be returned to the customer. A merchant owns the machine and adds products to
it. The merchant also removes the coins from the coin box.

Class Diagram
Class diagrams were introduced in the first two chapters of this text. Class diagrams
are one of the most important UML diagrams used by software engineers. Class
diagrams are used to create logical models of computer-based systems. A class dia-
gram shows class structure, contents, and the static relationships among the classes
used to model a system. These relationships are known as associations and are
drawn as lines connecting the related graph nodes. Each node in a class diagram is

wu23399_appD.qxd 1/8/07 16:04 Page 1155

1156 Appendix D UML Diagrams

labeled with its class name. The class node may also contain lists of data attributes
and method prototypes. The visibility of attributes or methods can be indicated by
prefixing their names with a � (public) or � (private).

An association line indicates that there is a linkage between two classes.
Some associations may be labeled with a string indicating the type of relationship
between the classes. Each end of the association is labeled with a number, *, or
range to describe the multiplicity of the link (e.g., 1..* designates a multiplicity that
ranges from 1 to many). Part whole relationships (known as aggregations in UML)
are indicated using an open diamond at one end of the link. Inheritance relation-
ships (known as generalizations in UML) are indicated using an open triangle to
point to the appropriate super class. Class instances are shown drawing an arrow-
head pointing to a class instance node.

Use Case Diagram
Use case diagrams are used to model system functional requirements. These dia-
grams show how users interact with the system. They are drawn to be independent
of the specific user interface design that will be used in the final system. Use cases
summarize several scenarios for a user task or goal. A scenario is an instance of an
instance of use case for a particular actor, at a specific time, with specific data.
Each scenario would be described using text description and shown graphically
with a sequence diagram. Use case diagrams assist software engineers to develop
test cases.

Users are called actors and are represented in use case diagrams by labeled
stick figures. Use case nodes are labeled with user goals or tasks. Actors are con-
nected to the appropriate nodes using lines. Links may be labeled with the string

Merchant

money
product

removeMoney ()
addProduct ()

Coin Box

money

requestProduct ()
rejectCoin ()

Dispenser

product

dispenseProduct ()
rejectRequest ()

Customer

money

insertCoin ()
receiveProduct ()

Bad
Coin

Apple
Juice

Product

supplier

owns

1 1

1

1

1

1 0..1

0..*1

11 buys

Coin * *

*

Figure 1 Class diagram.

wu23399_appD.qxd 1/8/07 16:04 Page 1156

Appendix D UML Diagrams 1157

«extends» to show explicitly optional actor interactions or handling of exceptional
uses. The string «uses» may be used to label links to existing use cases being used
as subsystems in the current use case. Each path through a use case diagram repre-
sents a separate use case.

Sequence Diagram
Sequence diagrams model system behavior for use cases by showing the necessary
class interactions. Sequence diagrams depict workflow from a use case graphically.
They show the temporal sequence of message exchanges among a collection of
objects as they communicate to achieve a specific task. In particular they show how
the user (actor) interacts with a system to get work done (i.e., what messages get
sent and when are they sent). The events modeled in sequence diagrams are exter-
nal events initiated by an actor.

The actors and objects are arranged horizontally across the top of the dia-
gram. The vertical dimension represents time. A vertical line called a lifeline is
attached to each actor or object. The lifeline becomes an activation box to show the
live activation period of the object or actor. A message is represented using an
arrow labeled with a message. The message label may contain an argument list and
a return type. Dashed arrows may be used to indicate object flow. If an object’s

Add
Product

Remove
Coins

Receive
Product

Merchant

Customer

«extends»

Request
Product

Rejected
Coin

Figure 2 Use case diagram.

wu23399_appD.qxd 1/8/07 16:04 Page 1157

1158 Appendix D UML Diagrams

life ends during the execution of the use case an X is placed at the bottom of its
lifeline.

Collaboration Diagram
Collaboration diagrams show the message passing structure of the system. The
focus is on the roles of the objects as they interact to realize a system function. They
can be used to represent portions of a design pattern and are useful for validating
class diagrams.

A collaboration diagram is a directed graph with the objects and actors as ver-
tices. Directional links are used to indicate communication between objects. These

requestProduct ()
insertCoin ()

rejectCoin ()
rejectRequest ()

Product

Customer
Coin Box Dispenser

Figure 3 Sequence diagram.

2. requestProduct

3. rejectRequest

1. sendCoin

4. returnCoin
Customer

:Coin Box :Dispenser

Figure 4 Return coin collaboration diagram.

wu23399_appD.qxd 1/8/07 16:04 Page 1158

Appendix D UML Diagrams 1159

links are labeled using appropriate messages. Each message is prefixed with a
sequence number to indicate the time ordering required to complete the system
function. As you can see in Figure 5, not every collaboration diagram can be drawn
horizontally or vertically.

State Diagram
State diagrams describe the behavior of a system, subsystem, or an individual object.
The system state is determined by the values assigned to object attributes. A system
is assumed to remain in its current state until some new event occurs. State dia-
grams show changes in system state or object attributes in response to external

2. requestProduct

3. deliverProduct

1. sendCoin

Customer

:Coin Box

:Dispenser

Figure 5 Product delivery collaboration diagram.

Wait for
Coin

insert
coin

good
coin

bad
coin

no
product

product
available

Check
Coin

Return
Coin

Check
Dispenser

Dispense
Product

Figure 6 State diagram.

wu23399_appD.qxd 1/8/07 16:04 Page 1159

1160 Appendix D UML Diagrams

events or triggers. They can display the sequence of states an object goes through in
response to potential triggers.

A state diagram is a directed graph whose nodes are labeled with state names.
The nodes in a state diagram are drawn as rectangles with rounded corners. The
links between the nodes are called transitions and are labeled with the name of the
triggering event. A small black circle is used to represent the start state. A small
black circle with a ring around it is used to represent the end state. Enclosing a
group of nodes in the state diagram with a rectangle having rounded corners can be
done to identify a substate.

Activity Diagram
Activity diagrams show the workflow that an object or system component performs.
They can show both data flow (information exchange) and control flow (operation
ordering). Activities are states representing the execution of a set of operations or
thread needed to realize a system function. The transitions to new activities are
triggered by the completion of the current activity. Activity diagrams are similar to

Insert
Coin

Accept
Coin

[good coin]

[bad coin]

[product]
available

[empty]

Customer Coin Box Dispenser

Receive
Product

Receive
Coin

Return
Coin

Dispense
Product

Signal
Empty

Figure 7 Activity diagram.

wu23399_appD.qxd 1/8/07 16:04 Page 1160

Appendix D UML Diagrams 1161

state diagrams except that transitions are triggered by internal events. Internal
events are not visible to the system user. Activity diagrams can be used to visualize
the interrelations and interactions between different use cases. Activity diagrams
are usually associated with several classes.

Object responsibilities can be shown in an activity diagram by drawing swim
lanes labeled with object names. Activity nodes are drawn using rectangles having
semicircles on each end. The start and end state symbols are the same as those used
in state diagrams. Links may be labeled with conditions that are the result of com-
pleting an activity. Decision points may be represented using unlabeled diamonds.
Activity diagrams can be used to show concurrent operations like fork, join, and
rendezvous.

Component Diagram
The component diagram shows the relationships (i.e. dependencies, communication,
location, and interfaces) among the software building blocks or components in a
system. The component diagram might be described as a physical analog of the sys-
tem class diagram. It is typically made up of several classes and shows the high
level code structure of the system.

Each system component is represented as a rectangle with tabs. A component
interface is represented using a small round circle connected to a component by a
line. An interface describes a group of operations used or created by a component.
Arrows can be used to show the direction of information flow. Dashed lines can be
used to indicate dependencies among components.

Coin Box

Dispenser

Figure 8 Component diagram.

Deployment Diagram
Deployment diagrams depict the physical resources for a system including nodes,
components, and connections. Deployment diagrams show the relationships
among both hardware and software components. They can also show the con-
figuration or deployment of run-time elements, software components, processes,
and objects. Often component diagrams are combined in a single system deploy-
ment diagram.

wu23399_appD.qxd 1/8/07 16:04 Page 1161

1162 Appendix D UML Diagrams

Nodes in a deployment diagram are typically capable of executing code
components and are represented by 3D drawings of boxes. Associations between
two nodes are drawn as lines to represent physical connections (e.g., Ethernet)
between the nodes.

Coin Box

Product Dispenser

Dispenser

Coin Unit

Coin Box

Figure 9 Deployment diagram.

wu23399_appD.qxd 1/8/07 16:04 Page 1162

A
Absolute positioning, 778, 805
Abstract classes, 733–735
Abstract data types (ADTs). See also List ADT;

Stack ADT
defined, 982

Abstract methods, 584, 733–737
Abstract superclasses, 733–737
Acceleration of gravity. See Gravitational constant,

computing
Accessibility

inheritance and member, 724–729
modifier, 150

Accessor methods, 152
Account class, 156–160, 167–171, 175,

183, 236–238
Account objects, 20–21, 23, 33, 149,

156–157, 169
Acrobat Reader, 489
Action events, 780
ActionEvent class, 836
ActionEvent object, 781
ActionListener class, 780
actionPerformed method, 781, 786, 788, 836
Actual parameter, 161
add method, 156, 158, 187, 367, 371–373, 375–376,

379–380, 385, 398, 806–807, 938, 967,
983–984, 993–994, 1003–1007, 1037,
1070–1071, 1076–1077, 1084.
See also push

defined, 602–603
implementation of, 600–605
tests within, 230

addActionListener method, 786

Addition
implementation of basic, 920–923
implementation of full, 930–934, 939

Addition operators, 92
Address computation, 882–883
AddressBook class, 596, 615

adding sorting routine to, 653
program for sorting, 645–665
sample development, 596–612

AddressBook objects, saving, 700–708
AddressBook program, 700–708, 763

sorting, 645–665
AddressBookStorage class, 710
AddressBookStorage objects, 701, 703–704
adjust method, 187
Adobe Acrobat Reader, 489
ADTs. See Abstract data types
Age on other planets, computing, 138–139
AgeComparator class, 659
AgeInputException class, 461–462
Aiken, Howard, 3
Algebraic simplification, 912
Algorithms

Anagram, 863–866
Directory listing, 861–863
Euclidean, 303, 337
heapsort, 634, 637
pseudocode representation of, 332
Quicksort, 868–872
recursive, 859–878
sorting, 624–625
Towers of Hanoi, 866–868

Alignment, of values, 327
Allocation. See Memory

1163

I n d e x

wu23399_ind.qxd 1/10/07 12:05 Page 1163

1164 Index

Alternatives. See Design alternatives
ALU. See Arithmetic-logic unit
American Standard Code for Information

Interchange. See ASCII
Anagrams, listing, 863–866
Analysis phase, 25
Analytical Engine, 2
Ancestors, 23, 722
AND operators, 231–232, 234

Java symbols for, 234
API. See Application programming interface;

Java API reference manuals
append method, 519, 794
Applets, 12
Application programming interface (API), 52
Applications, 12

Java, 30–52
Architecture, computer, 4–10
Areas, computing, 210
Arguments, 161

matching with parameters, 160–162
of a message, 19

Arithmetic, modulo, 303, 1077
Arithmetic exceptions, 233, 940
Arithmetic expressions, 90–95

complex, 92
data types of, 246
postfix, 1068

Arithmetic-logic unit (ALU), 8
Arithmetic operators, 90, 1068

addition, 90, 92
assignment, 94–95
integer divison, 90
modulo division, 90
multiplication, 90, 92
parentheses, 92–93
precedence, rules for, 91–92, 235
subtraction, 90
type cast, 93

Arithmetic promotion, 92
Array elements, 546, 1042

accessing, 577
assigning, 550
initializing, 550
packing, 563
removing, 608

Array implementation
of the list ADT, 992–1001
of the stack ADT, 1042–1047

Array overflow, 583–584
ArrayList class, 419, 584–585, 591, 739, 962–963,

977, 980, 982
Arrays, 543–618. See also Subarrays

arrays of, 580–581
basics of, 544–555
and bytes, 679
circular, 1077–1078
declaring, 545, 553–554
defined, 545
deletion operation for, 563–564
dimensions of, 583
generics and, 976–977
implementation of, 1042–1047,

1075–1082
multiple, 584
of objects, 555–565, 1043, 1076
one-dimensional, 576
partitioning, 869–872
passing to methods, 569–575
sorting, 621–622
specifying size of, 597
storing size of, 698
terminating condition for, 560
two-dimensional, 576–583

Arrays class, 658–660, 663–664
ASCII (American Standard Code for Information

Interchange) coding scheme, 488–490, 499,
536, 540–541, 686

expressing in integers, 490
Assembly code, 11
Assembly languages, 10–11
assert (reserved word), 464–465
assert statements, 485, 603
AssertionError class, 464
Assertions, 438, 463–468, 627

control-flow invariants, 466–467
differentiating from exceptions,

467–468
postcondition, 466
precondition, 466

Assets, tracking, 763
Assignment conversions, 94

wu23399_ind.qxd 1/10/07 12:05 Page 1164

Index 1165

Assignment operators, 94–95
evaluating, 95
shorthand, 94

Assignment statements, 85–90
invalid, 136
syntax for, 85
writing, 97

Associativity rules, 672
Asterisk (*) notation, 40, 45–46
Atanasoff, John, 2
ATM simulation, 1095–1097
AT&T Bell Labs, 12
@author tag, 396–397
Auto boxing/unboxing, 590–591, 968
Automatic Sequence-Controlled Calculator, 3
Average age, computing, 558
Avoidable tests, 308–309
AWT button class, 766–768

B
Babbage, Charles, 2–3
Backslash (\) symbols, 508–509, 671
Backtracking, solving mazes with, 1060–1064
Backward compatibility, 975–976
badMethod, 574
Bank ATM simulation, 1095–1097
Bank deposits and withdrawals, 464–466
BankAccount class, 464, 466
Barcode readers, 8
Base 2 numbers, 6

scientific notation in, 133–134
Base 10 numbers, scientific notation in, 133
Base address, 883
Base classes, 23, 715
10BaseT, 10
BASIC (programming language), 11
beginIdx, 499, 501, 537
Bell Labs, 11
Berry, Clifford, 2
Bicycle class, 146–157, 189, 381–382
Bicycle objects, 147, 149, 904–907,

936–937, 967
BicycleRegistration class, 148

compiling and running, 154–156
BigInteger class, 908
BigInteger objects, 922

Binary files, 686
Binary number system, 3, 4–7, 131–135
Binary operators, 91, 92
Binary searching, 620–624
Binary-to-decimal conversion, 6
binarySearch method, 623
Bits, 6–7, 488–491

sign, 132
Bits per second (bps), 10
Blocks of code, 43
Body Mass Index (BMI), computing, 138
Book class, 961
Book objects, 961–962
booklist, 961–962
BookTracker class, 411–415, 419–421, 435, 591
boolean data type, 89, 234, 236
Boolean expressions, 215–216, 223, 231–239, 296

evaluating, 287
modifying, 297
order of comparisons in, 497
relational operators in, 215–216
shortening, 494

Boolean flags, 235
Boolean operators, 231–232. See also Arithmetic

operators
precedence rules for, 235

Boolean variables, and loops, 313
BorderFactory class, 793
BorderLayout objects, 801–802, 811
Bottom-up development, 192
Boundary cases, 1018
Bounded types, 954
Bounding rectangle, 255
bps. See Bits per second
Braces ({ }), 217

not using, 226
Brackets. See Square brackets ([])
Branching statements, 216. See also

Selection statements
break statements, 246, 315
Bubble sort algorithm, 668
bubbleSort method, 629–632, 871

first pass in, 630
BufferedReader objects, 688, 690–691, 693,

741, 751
Buffers, data, 680

wu23399_ind.qxd 1/10/07 12:05 Page 1165

1166 Index

build method, 528, 530–532
stub, 530

buildRoster method, 751, 759
Button events, handling, 780–784
ButtonHandler class, 781, 783
ButtonHandler objects, 393, 788
Buttons. See also Pushbuttons

placing on a frame, 777–779
radio, 817, 822–823

byte data type, 83–88, 93, 246
byteArray, 681
Bytecode, 50

files in, 50
Bytes, 7, 488–490, 679

arrays of, 679

C
C (programming language), 12, 330, 554
C++ (programming language), 12, 330
Caching data, 680
Caesar cipher, 540
Calculator program, 854
Calendar, online story about, 119
Calendar class, 115–118
Call-by-value scheme, 194, 387, 392
Calling methods, 37–38

of the same class, 185–189
Calories needed, 138
Carpet price table, 330
case labels, for switch statements, 261–262
Casting conversions, 92

explicit, 92–93
implicit, 92–93

catch blocks, 441–443, 445–451. See also try-catch
blocks

multiple, 446, 448
Catching exceptions, 438–444
CDManager class, 739
CDs. See Compact disks
Cells, 8, 11
centerPoint variable, 270, 275
Central processing unit (CPU), 4, 8–9, 11
Change, calculating, 142–143
change method, 392–393
ChangeEvent, 832
ChangeListener interface, 832

char data type, 89, 246, 488
Character class, 536
Characters, 488–491
charAt method, 491–492
Check-box buttons, 817
checkAccessPosition method, 995
Children of a node. See Sibling classes
Circle class, 99–108, 221–224

testing the functionality of, 223
Circular arrays, 1077–1078
Class constants, 23, 111, 175–183

declaring public, 174
Class data values, 20
Class declarations, 46–47, 230

finalizing, 204–205
syntax for, 46

Class definitions, 17
Class diagrams, UML-based, 35
class documentation, using Javadoc comments

for, 395–400
Class instances, declaring private, 174
Class member declarations, 46–47
Class methods, 18, 109–110, 383–387

declaring private, 174
Class names, 76. See also Identifiers; Naming
class (reserved word), 46
Class variables, 23, 383–387
Classes, 16–18. See also Instantiable classes;

Packages; Predefined classes; Subclasses;
Superclasses

abstract, 733–735
Account, 156–160, 167–171, 175, 183, 236–238
ActionEvent, 836
ActionListener, 780
AddressBook, 596, 615, 653
AddressBookStorage, 710
AgeComparator, 659
AgeInputException, 461–462
ArrayList, 419, 584–585, 591, 739, 962–963,

977, 980, 982
Arrays, 658–660, 663–664
AssertionError, 464
AWT, 766–767
AWT button, 766–768
BankAccount, 146–157, 189, 464, 466
Bicycle, 146–157, 189, 381–382

wu23399_ind.qxd 1/10/07 12:05 Page 1166

Index 1167

BicycleRegistration, 148, 154–156
BigInteger, 908
Book, 961
BookTracker, 411–415, 419–421, 435, 591
BorderFactory, 793
ButtonHandler, 781, 783
Calendar, 115–118
CDManager, 739
changing to a main class, 189–190
Character, 536
Client, 725–726
Color, 252–253
ComputeGrades, 754
Container, 776
CurrencyConverter, 617
Date, 334, 427, 667
dealing with unknown, 265
DecimalFormat, 82, 100, 205, 327–328, 415
defined, 17, 23, 46, 52, 145–212, 365–436
defined with inheritance, 717–721
Dice, 179–180, 187–188
Dimension, 255–258
Door, 469, 472
Dorm, 469–472, 474, 477, 698–700
DrawableShape, 264, 266, 269–272, 275–280,

282–285, 762
DrawingBoard, 251, 264–269, 273–274
DrawShape, 266, 268–269, 276, 280–285
Error, 443
Exception, 443, 446, 461, 463
ExpandableArray, 584
file, 1029
FileManager, 521–522, 526–528
Format, 748, 750
Formatter, 327–331
FortuneCookieFile, 1029, 1031, 1034
FortuneCookieMain, 1029
FortuneCookieManager, 1029–1031
Fraction, 241–242, 366, 370, 378–379, 385,

394–397, 400–410, 431, 433, 452
generic, 945–980
GraduateStudent, 718–723, 732–741, 750–754
graphical representations of, 18
GraphicLotteryCard, 257–258
GregorianCalendar, 80, 82, 115–120, 427
grouped into packages, 43–44

HashMap, 592, 698, 739
Heap, 632–633, 644–645, 668, 1090
heavyweight, 767
helper, 584
HiLo, 344–347, 352–353, 358–359
HTMLTag, 1058–1059, 1066
HTMLTagChecker, 1056–1059
HTMLTagRetriever, 1057, 1066
IllegalArgumentException, 455, 598
InputHandler, 474, 478–479, 485
InputMismatchException, 439, 443, 453
InputStream, 63
instances of, 17
instantiable, 190–205, 608, 734
Integer, 968
IOException, 526
Java standard, 32, 52–66
java.awt.Color, 252–255, 268
java.awt.Dimension, 255–258
Java.awt.Graphics, 249–252
java.awt.Point, 255
JavaFilter, 677–678
JButton, 766–768, 782, 798, 817
JCheckBox, 817–822
JComboBox, 825–828, 853
JDialog, 769
JFileChooser, 679, 709–710
JFrame, 32, 44–47, 741, 771–772, 774, 776–777,

785, 839–840
JLabel, 38, 206, 787, 791
JList, 828–831
JOptionPane, 67, 82, 205, 296, 301, 434, 436,

673, 768
JPanel, 776
JRadioButton, 822–825
JSlider, 831–834
JTextArea, 787
JTextField, 536, 787–788
LibraryBook, 411–419, 421, 426–427
LibraryCard, 163
lightweight, 767
LinkedList, 584–585, 977, 982
ListNode, 1002
Loan, 191, 194–202, 333
LoanCalculator, 191–202
Locker, 969, 971

wu23399_ind.qxd 1/10/07 12:05 Page 1167

1168 Index

Classes—Cont.
main, 47, 189–190
MainWindow, 741
Matcher, 509–513, 523, 532
MatchJavaIdentifier, 505, 510
Math, 82, 109–113, 121, 141, 287, 343, 352, 356,

383–384, 734
Maze, 1060–1062
MazeCell, 1060, 1062, 1067
MobileRobot, 172–173
Monogram, 68, 82
MouseEvent, 840, 844
multiple, 156–160
MyIterator, 1025
MyMenuFrame, 851
myutil.Fraction, 400–410
NameComparator, 659
Node, 890–891, 904, 917, 963, 967, 1034
nongeneric, 970
NoSuchElementException, 753, 965, 1024,

1026, 1041
NPSArrayList, 992–1001, 1026–1027,

1032–1033, 1053
NPSArrayQueue, 1075–1082, 1090, 1095
NPSArrayStack, 1042–1045, 1065
NPSLinkedList, 1003–1017, 1024–1026,

1032–1033, 1050–1051, 1053
NPSLinkedListWithHeader, 1019–1022
NPSLinkedQueue, 1082–1087, 1095
NPSLinkedStack, 1048–1051, 1065
NPSListQueue, 1088–1089
NPSListStack, 1052–1053
NPSPriorityQueue, 1089–1093, 1095
Number, 955, 957
Object, 729, 953, 958, 971
online documentation for, 52
organizing into a package, 394–395
OutputBox, 746, 850, 853
OverdueChecker, 412–413, 421–426
parameterized, 947
Pattern, 506, 509–513, 523, 532
Person, 555, 566, 648–649, 651–652, 659,

936–937, 1032
pluggable, 947
Point, 255
predefined, 52, 264–265

PrintWriter, 691
program, 68, 266, 344, 741
programmer-defined, 32, 147, 166, 394
QueueNode, 1082–1083
Resident, 469–471, 474
Scanner, 63–64, 69, 103–108, 343, 412–413,

689–690, 770
Sibling, 722
SimpleDateFormat, 60–63, 118, 327–328, 415
SimpleLinkedList, 965, 967, 980
skeleton, 195
SketchPad, 843–847
StackNode, 1048
standard, 32, 52–66, 146
String, 55–60, 68, 233, 240, 330, 412, 491–494,

502, 509, 515, 537
StringBuffer, 516–520
StringBuilder, 516
StringProcessing, 59
StringTokenizer, 523
Student, 718–723, 732–741, 750–753
swing, 766–768
system, 32, 794
TeachArithmeticFrame, 852–853
Tester, 387
TestRandom, 352–353
TextHandler, 788
Thesaurus, 616
Throwable, 443–444, 446, 458–459
TicTacToeCell, 813–815
TicTacToePanel, 809, 813–817
TreeMap, 592–595
type-pluggable, 949
UndergraduateStudent, 718–723, 732–741,

750–754
unrelated, 717–718
using effectively with polymorphism, 721–724
Vector, 585
WordConcordance, 523–525, 529–533
WordList, 531, 534, 595
wrapper, 590

ClassNotFoundException, 696
clear method, 984, 994, 1008, 1037, 1039, 1043,

1048, 1070–1072, 1079, 1084
Client class, 725–726
Client programs/programmers, 172

wu23399_ind.qxd 1/10/07 12:05 Page 1168

Index 1169

Clock, creating, 292–293, 359–360
Clock speeds, 8–9
Closing tags, 1054–1055
CMA. See Contiguous memory allocation
COBOL (programming language), 11
Code

assembly, 11
blocks of, 43
by composition, 739
high-level, 11
modifying, 723
output from, 207–208
readable, 317
reviewing, 448
writing readable, 123, 226–227

Coding phase, 25
Color class, 252–255
Color objects, 252–253
Columns, aligning, 548
Command Prompt window, 31
Comments, 39–43, 76

header, 42
javadoc, 40–42, 397–402, 436, 1050
markers for, 40
single-line, 40
uses of, 43

Commercial programs, 41
Communication devices, 4, 10
Compact disks (CDs), 9–10
Comparator interface, 658, 663, 1034, 1089
compare method, 658
compareAttribute method, 649
compareTo method, 498–499, 649–651, 658, 909,

924, 1089
Comparing objects, 239–244, 499
Comparisons, 629

pairwise, 629
symbol for (==), 499

Compilation errors, 731
Compile-time errors, 587
Compilers, 12, 50–51

adding default constructors, 730–732
Complex arithmetic expressions, 92
Components, program, 39–52
Composition, code reuse by, 739
Compound interest, computing, 140

Compound statements, 218
syntax for, 218

Compute loan amount, 126, 202–204
code, 128–129
design, 126–129
test, 128–129

compute method, 160–161
Compute monograms, 71–74
computeCharge method, 412, 419, 427–428
computeCourseGrade method, 720, 722–723
ComputeGrades class, 754
ComputeGrades program, 739–759, 762
computePayment method, 192–194, 202–204
Computer architecture, 4–10

simplified view of, 4–5
Computer chips, 3
Computer manuals, 9–10
Computer programming. See Programming
Computers, 1–14

generations of, 3
history of, 2–4, 488
networked, 3–4
online slide show on, 4
personal, 3, 8
pioneers of, 2–4

Computing course grades program, 739–759
concatenation method, 98–99. See also

String concatenation
Console I/O, 63, 436
Console user interface, 766
Console window, 53
Constants, 22, 95–97

double literal, 96
length, 549
literal, 96–97, 245
named, 96, 245
symbolic, 96, 127

Constraints, on heaps, 633, 645
construct method, 640, 642
Construction phase, of heapsort,

634, 645
Constructors, 167–172

calling another constructor, 382
completing, 432–433
copy, 381
default, 170–171, 455, 730–732

wu23399_ind.qxd 1/10/07 12:05 Page 1169

1170 Index

Constructors—Cont.
defined, 171, 597, 729–732
explicit calls to, 732
implementation of, 913
inheritance and, 729–732
invalid, 598
multiple, 169, 381
overloaded, 169, 378–383, 432
and setFile, 701–703

Container class, 776
contains method, 984–985, 994, 1008
Content pane, 249–250, 775–776
contentPane objects, 809
Contiguous memory allocation (CMA)

scheme, 881–885
address computation, 882–883
costly update operations, 885
dynamic versus static memory allocation, 885
overflow, 883–884
underutilization, 884–885

continue (reserved word), 314
Control characters, 66

varying by platform, 531
Control flow, 214

one-entry one-exit, 317
Control-flow invariants, 466–467
Control statements, 214. See also Repetition control
Control string, formatting, 328–330
Control values, 328
Control variables, 319–320

declaring, 320
Controllers, 191
controlPanel objects, 809
Conventions, for naming, standard, 34, 46, 74, 76–77
Copy constructors, 381
Core 2 Extreme, 9
Count-controlled loops, 297
counter variable, 939
Course grades, program for computing, 739–759, 762
CPU. See Central processing unit
create method, 690
createBook method, 422
createStudent method, 751–753
Cryptography, public-key, 541
Curly braces. See Braces ({ })
CurrencyConverter class, 617

CurrencyConverter objects, 710
Current directory, 670–671
Cycles, 8

D
Dangling else problem, 218, 229–230
Data buffers, 680
Data caching, 680
Data fields, 890
Data members, 21
Data representation, 909
Data structures, linked, 879–943
Data types, 96–97, 246

arithmetic expressions of, 246
numerical, 81–144
primitive vs. reference, 88

Data values
arrays of, 545
graphical representations for, 23
saving, 686–687

DataInputStream objects, 688
DataOutputStream objects, 684–686
Date class, 60–63, 115, 334, 667
Date objects, 79–80, 118, 334, 427
Deallocation, 37

of memory, 565
Debugging, 25
Decimal number system, 5–6
Decimal-to-binary conversion, 6–7
DecimalFormat class, 82, 100, 205, 327–328, 415
DecimalFormat objects, 100, 129, 177
Declaration of Independence, online story about, 119
Declarations, 46–47

invalid, 89
Decrement operators, 227
Decryption, 540–541
deduct method, 156, 158–159, 187

tests within, 230
default case, 280
Default constructors, 170–171, 455

added by compiler, 730–732
Default delimiter, 104
default (reserved word), 245
Defensive programming, 248
Delegation-based event model, 780
delete method, 608–612

wu23399_ind.qxd 1/10/07 12:05 Page 1170

Index 1171

Deletion operation, for arrays, 563–564
Delimiters (delimiter characters), 752

resetting, 65
DeMorgan’s law, 233

truth table illustrating, 233
Denominator, 401–402
Dependency relationships, 32
Depth, of a heap, 644–645
Derived class, 23, 715
Descendants, 23
describeProgram method, 192–194, 204–205, 333
describeRules method, 345, 353
Design alternatives, 69–70, 600
Design phase, 25
Destinations, of outputs, 679
Development

bottom-up, 192
incremental, 82, 267
software, 15–28
steps in, 69, 121–122, 192, 267, 344, 413, 523,

597, 701, 743, 913, 1028
top-down, 191

Diagrams, program, 41
Dice class, 179–180, 187–188
Difference Engine, 2
Digital video cameras, 8
Dimension objects, 270
dimension variable, 275
Directories, current, 670–671
Directory listing, of algorithms, 861–863
directoryListing method, 861–863
Disk drives, 8–9
Display monograms, 71–74
displayOutput method, 201–202
Divide-by-zero error, 234
Division operators, 90

implementation of, 934
do-while loops, 318, 345
do-while statements, 311–315

controlling flow of, 312
correspondence to general format, 312
syntax for, 311
writing, 355

Documentation, program, 41
document.XML, 1053
Door class, 469, 472

Door objects, 472–473
Dorm class, 469–472, 474, 477, 698–700
Dorm objects, 469, 471, 480, 698
Dot notation, 44, 185, 187, 377, 384
Double ampersand (&&), 234, 503
double data type, 83–88, 90, 93, 96–97, 159

arrays of, 545–547, 571, 614
double literal constants, 96
Double minus operator (��), 227
Double plus operator (��), 227
Double slashes (//), 40
double values, 96–97, 161
Double vertical bar (||), 234
draw method, 252–253, 273, 275
DrawableShape class, 264, 266, 269–272, 275–280,

282–285, 762
DrawableShape objects, 268
Drawing graphics, 248–258

java.awt.Color, 252–255
java.awt.Dimension, 255–258
java.awt.Graphics, 249–252
java.awt.Point, 255

drawing methods, defined for Graphics class, 251–252
Drawing shapes program, 264–285
DrawingBoard class, 251, 264–269, 273–274
DrawingBoard objects, 268–269, 271
DrawingBoard window, 269
drawLine method, 813
drawOval method, 813
drawRect method, 250
DrawShape class, 266, 268–269, 276, 280–285
drawShape method, 275
Drive-through ordering system, 294, 711–712
Drop-down lists, 826
Duplicate code, avoiding, 188
Duplicate elements, 982
Duplicate tests, eliminating, 314
Dynamic memory allocation, 885

E
Echo printing, 64, 70, 123
Eckert, J. Presper, 3
Edit-compile-run cycle, 49–52
Eggy-Peggy (word game) program, 538, 540, 710
Elements. See also Array elements

slower traversing of, 889

wu23399_ind.qxd 1/10/07 12:05 Page 1171

1172 Index

Else blocks, 216–220
rules for writing, 220

else (reserved word), 219
Empty strings, 536
Encapsulation mechanism, 173
Encryption, 540–541, 710
End cases, 340, 610, 1018
end method, 512
endIdx, 499, 501, 537
Engineering, software, 25–26
Enhanced for loop, 565
ENIAC I (Electronic Numerical Integrator

And Calculator), 3
enlarge method, 601
EntranceMonitor program, 473–474
entry array, 654
entrySet method, 593
enum (reserved word), 259
Enumerated constants, 258–263
Equal symbol (��), 243
Equality testing, 240, 499, 513–514
equals method, 240, 241–242, 498, 513–514, 958, 995
equalsIgnoreCase method, 240, 498
Equivalence test, 513–514
Erasure technique, 959
Error class, 443
Error messages, 50–51, 247, 312
Errors. See also Exceptions

common in programming, 238
compilation, 51, 97
divide-by-zero, 234
execution, 51
identifying, 75–76
off-by-one, 307–308
overflow, 306

Escape character, 66, 671
Estimation, of execution time, 334–338
Euclidean algorithm, 303, 337
Event-driven programming, GUI objects

and, 765–857
Event listener objects, 780, 784–786
Event model, delegation-based, 780
Event sources, 780
Events

action, 780
handling, 780

Exception catcher methods, 450–452
Exception class, 443, 446, 461, 463
Exception propagator methods, 450–452
Exception-throwing methods, 450, 502–503
Exceptions

catching, 438–444
checked, 458
defined, 438
differentiating from assertions, 467–468
out-of-bound, 497
programmer-defined, 461–463
propagating, 450–458
runtime, 458
thrown, 445–450
unchecked, 458

Excess format, 134
Exchange rate, computing, 617
Execution errors, 51
Execution time, estimating, 334–338
expand method, 603, 993, 1077–1078
ExpandableArray class, 584
Explicit calls, to constructor of superclasses, 732
Explicit casting conversions, 92–93
Exponential notation, 97
Exponents, computing, 289
Expressions

arithmetic, 90–95
boolean, 231–239
indexed, 546
invalid, 136
regular, 502–509

eXtended Markup Language, 1053
extends clause, 729
extends (reserved word), 715, 719, 772
Extensions, possible, 285
extract method, 641–643
Extraction phase, of heapsort, 634, 644
ExtractWords program, 537

F
Factorials, computing, 339–341, 860–861
false (logical value), 89
false (reserved word), 38
Fermi (game), 435–436, 856
Fibonacci numbers, 140, 359, 873–874
Fields, 327

wu23399_ind.qxd 1/10/07 12:05 Page 1172

Index 1173

FIFO (first-in, first-out) lists, 1070, 1089
File access, 670
File classes, 1029
File constructor, 670
File filters, 677
File I/O, 669–712

high-level, 684–693
low-level, 679–683

File objects, 670–679, 741, 861–863
FileInputStream objects, 681–683, 688, 695
FileManager class, 521–522, 526–528
FileManager objects, 528, 691
FileNotFoundException, 527, 690–691
FileOutputStream objects, 679–681, 686–687
FileReader objects, 688, 741
Files

closing, 680
opening, 672

fill method, 252–253
finally blocks, 448–449
finally (reserved word), 448
find method, 511
findIndex method, 608–609
First generation computers, 3
First-in, first-out lists. See FIFO
Fixed-pitch fonts, 787
Fixed-size array declarations, 553
Flags, 235

boolean, 235
longMessageFormat, 235

float data type, 83–88, 90, 93, 96–97
Floating-point format, 131, 133
Floppy disks, 8–9
FlowLayout, 778, 798–799
Fonts, 787
for-each loops, 322, 565–569, 587

nesting, 583, 963
for loops, 322, 549, 550–551, 565–566, 746, 862,

864–865
for statements, 319–323. See also

Nested-for statements
controlling flow of, 319
correspondence to general format, 319
inner, 325
outer, 325

Force between two bodies, computing, 140–141

Formal parameters, 161
Format class, 748, 750
Format method, 329. See also javabook.Format
Formats. See ASCII; Binary number system
Formatter class, 327–331
Forth (programming language), 1068
FORTRAN (programming language), 11
Fortune cookies, sample development, 1027–1031
FortuneCookieFile class, 1029, 1031, 1034
FortuneCookieMain class, 1029
FortuneCookieManager class, 1029–1031
Forward slash (/), 671
Fourth generation computers, 3
Fraction class, 241–242, 366, 370, 378–379, 385,

394–397, 431, 433, 452
complete, 400–410

Fraction objects, 367–368, 370, 372–373, 375–376,
381, 384

Fractions
normalized, 134
unnormalized, 134

Frame windows, customizing, 768, 771–777
Frames

content pane of, 249–250
making the event listener, 784–786

French, 490
friends list, 587–589
front, 1070, 1078
Fully qualified names, 44
Functions. See Math class

G
gamePanel objects, 809
Games. See Eggy-Peggy; Fermi; HiLo (game)

program; playGame method
Garbage collection, 37, 565
gcd. See Greatest common divisor
General-purpose frames, 768
generateLoanTable method, 333
generateSecretNumber method, 345–352
Generic classes

and collections, 961–969
defined, 946–960
with multiple type parameters, 950–952
nested declaration, 963
organizing into a class hierarchy, 969

wu23399_ind.qxd 1/10/07 12:05 Page 1173

1174 Index

Generic classes—Cont.
restrictions, 959–960
and type safety, 945–980

Generic interfaces, implementation of classes for,
972–974

Generic lists, 982
linked, 963–968

Generic subclasses, of nongeneric superclasses,
971–972

Generic superclasses, subclasses of, 969–971
Generics in Java interface, 969–974

and arrays, 976–977
pitfalls of using, 974–977

Geometric functions. See Math class
German, 490
get methods, 152, 427, 587, 593, 616, 965, 967–968,

984, 986, 995, 1008
getAbsolutePath method, 675, 862
getActionCommand method, 782, 836
getAge method, 441, 443, 452–454,

461–462
getBookList method, 412
getBounds method, 844
getCenterPoint method, 270
getCharge method, 419
getComparator method, 660
getConcordance method, 531
getContentPane method, 775–776
getDimension method, 270
getFirstPerson method, 708
getInitialBalance method, 156, 158
getInput method, 192–194, 196, 479, 485
getKey method, 593
getList method, 419, 435, 1029
getLoanAmount method, 333
getLoanPeriod method, 197
getMaximumSpeed method, 19–20
getMessage method, 444
getMonthlyPayment method, 201–203
getName method, 479
getNextCell method, 1062
getNextGuess method, 348–351
getNextPerson method, 708
getObstacleDistance method, 19
getOwnerName, 151–152, 164
getPeriod method, 197

getProperty method, 794
getRootPane method, 782
getSelectedIndices method, 826, 829
getSelectedItem method, 826
getSelectedValues method, 829
getShape method, 281
getSource method, 782
getText method, 536
getTime method, 118, 335, 427
getTotalPayment method, 201–203
getValue method, 593
Gigahertz (GHz), 8
Google search engine, 521
Gosling, James, 12
GraduateStudent class, 718–723, 732–741, 750–754
Granularity, 338
Graphical representations, for data values, 23
Graphical user interface. See GUI objects
GraphicLotteryCard class, 257–258
Graphics, drawing, 248–258
Graphics class, 251–252

drawing methods defined for, 251–252
Graphics context, drawing a text in, 285
Graphics objects, 249
Gravitational constant, computing, 140–141,

320–322, 362, 618, 710
Greatest common divisor (gcd)

computing, 876
finding, 302–305
methods, 334–335, 367–368, 384

Gregorian calendar system, 119
GregorianCalendar class, 80, 82, 115–120, 427
GregorianCalendar objects, 115, 117–119, 139, 264,

422, 426
GridLayout objects, 803–804
GUI (graphical user interface) objects,

765–857
components of, 817–834

GUI programming, basics, 777–786

H
Hard disks, 8–9
HashMap class, 592, 698, 739
hasNext method, 587, 1024
Head node, linked implementation with, 1018–1022
Header comments, 42

wu23399_ind.qxd 1/10/07 12:05 Page 1174

Index 1175

Heap class, 632–633, 644–645, 668, 1090
constraints on, 633, 645
depth of, 644–645
modifying, 668
root of, 632

Heap memory, 885
Heap structure, 634, 637
Heaps, 632
Heapsort, 632–645

performance of, 643–645
rebuild step, 634–636

Heapsort algorithm, 634, 637
Heavyweight classes, 767
Helper classes, 591
Hertz, 8
Heterogeneous lists, 586
Hiding information, 172
Hierarchies, of inheritance, 23–24
High-level code, 11
High-level files, 684–693
High-level programming languages, 10–12, 14
HiLo class, 344–347, 352–353, 358–359
HiLo (game) program, 343–353
HiLoDisplay, 811
Homogeneous lists, 586
HTML (Hyper Text Markup Language) tags,

matching, 1053–1064
HTMLTag class, 1058–1059, 1066
HTMLTag objects, 1056
HTMLTagChecker class, 1056–1059
HTMLTagRetriever class, 1057, 1066
HTMLTagRetriever objects, 1056
HumongousInteger, sample development, 908–934
Hyper Text Markup Language. See HTML tags

I
I/O. See Input/output devices
IBM, 3
Identifiers, 33

invalid, 38–39, 76–77
IEEE (Institute of Electronics and Electrical

Engineers) Standard, 133
infinity under, 306

if statements, 214–224, 288, 1007. See also
Nested-if statements

controlling flow of, 216, 220–221

formatting styles for, 218–220
invalid, 224
rewriting, 288
syntax for, 223, 225

if tests, 226
if-then-else statements, 238, 759

syntax for, 215
if-then statements, syntax for, 215, 220
IllegalArgumentException class, 455, 598
ImageIcon objects, 791
Implementation classes, enforcing consistency

among, 646
implements Serializable (phrase), 471,

694, 700
Implicit casting conversions, 92–93
Import statements, 43–46, 76
Imprecise loop counters, 306
Increment operators, 227, 940
Incremental development, 67, 82, 267
Indentation, 227–229

styles of, 228–229
IndependenceDay program, 118, 119
index node, 1008
Indexed expressions, 546
indexOf method, 58, 71–72, 986–987, 994–995,

1008–1009
IndexOutOfBoundsException error, 587, 986,

994–996, 1032, 1076
Infinite loops, 305–310
Infix notation, 1068
Information hiding, 172
Inheritance, 23–24

and constructors, 729–732
defined classes with, 717–721
guidelines for using, 729–732, 738–739
hierarchies of, 23–24
in Java interface, 969–974
and member accessibility, 724–729
and polymorphism, 713–763

Initialization, 84–89
of class variables, 649

Initials, program for printing, 67–73
Input buffers, 105
Input files, 669–712
Input/output (I/O) devices, 4–5, 8. See also File I/O;

Object I/O

wu23399_ind.qxd 1/10/07 12:05 Page 1175

1176 Index

Input values
accepting, 122–124, 196–200
code, 198–200
getting numerical, 103–108

inputBooks method, 421
inputColor method, 280–281
inputFile method, 528
InputHandler class, 474, 478–479, 485
InputHandler object, 480, 482
inputLine text field, 790
InputMismatchException class, 439,

443, 453
Inputs, 82

souces of, 681
inputShapeType method, 280, 299
InputStream class, 63
Insertion sort, 666–667
Instance constants, 23
Instance data values, 20
Instance methods, 18, 385, 397

declaring private, 174
Instance variables, 23, 602

declaring private, 174
instanceof operator, 788
Instances, of classes, 17
Instantiable classes, 608, 734

loan calculator program with, 190–205
Institute of Electronics and Electrical Engineers.

See IEEE
int data type, 83–88, 93, 244, 246, 908
Integer class, 968
Integer division, 90
Integer division operators, 90
Integer indices, 592
Integer objects, 590
Integer.parseInt method, 422
Integers, 82–88

computing the greatest common divisor, 876
data types for, 83–88
initializing, 84–89
representation of, 131–133
sorting, 624–625, 666

Integrated circuits, 3
large-scale, 3

Integration testing, 25
Intel processors, 8–9

Interest rates, computing, 140–142
Interface objects. See GUI objects
Interfaces

guidelines for using, 585, 738–739
implementation of, 646
user-friendly, 311

Internet, 4
Java language for, 490

Interpreters, 51
intList, 590
intValue method, 590
IOException class, 526–527
IOException objects, 690–691, 696, 703
IS-A relationship, 738, 1066
isEmpty method, 986, 988, 996, 1009, 1037, 1039,

1043, 1049, 1070, 1072, 1079, 1084
isFile method, 672
isMetaDown method, 844
isMoving method, 236
isRadiusValid method, 223
isSameValue method, 957
isSelected method, 818
isSorted method, 617, 627
isUpperCase method, 536
isValid method, 1056
isValidHeap method, 641
item field, 911
itemStateChanged method, 820, 825
Iteration, 587

defined, 1023
Iterator design pattern, 1022–1027
Iterator interface, 1034
iterator method, 587, 1024, 1095

J
Japanese, 490
Java 2 SDK (Software Development Kit), versions,

465, 516, 590, 689, 693, 775, 946, 959, 968,
975–976

Java API reference manuals, 52, 62, 248, 593,
616, 753

Java applets. See Applets
Java applications, 12, 30–52, 76
Java classes, standard, 32, 52–66
Java Collection Framework (JCF), 584, 587, 593,

595, 597, 616, 618, 946, 962

wu23399_ind.qxd 1/10/07 12:05 Page 1176

Index 1177

Java compilers, 228–229
Java interface, generics and inheritance in, 969–974
Java interpreters, 51
Java language, 490. See also Math class; Programs

coding standards, 219
development tools, 49–52
exponential notation in, 97
introduction to, 12
naming conventions of, 34
programming basics, 29–80
translating pseudocode into, 332–334

Java Language Specification, 219
Java naming conventions, 34, 46, 74, 76–77
Java Native Interface (JNI), 469
Java packages. See also javabook package

java.awt, 248–258, 766
java.awt.Color class, 252–255, 268
java.awt.Dimension class, 255–258
java.awt.Graphics class, 249–252
java.awt.Point class, 255
java.lang, 536
java.math package, 908
java.sql, 80
java.text, 61
java.util, 60, 80, 115, 584, 658, 663, 667, 752,

968, 1024, 1040
java.util.regex, 509
javax.swing, 44, 673, 677, 751, 768, 778, 794

Java standard classes, 32, 52–66
Java stream objects. See Stream objects
Java Virtual Machines (JVM), 52
javabook package, 45–46, 748

importing, 45–46
javabook.Format, 298
javadoc comments, 40–42, 436, 1050

using for class documentation, 397–402
javadoc files, 399
javadoc tags, 396
JavaFilter class, 677–678
JavaPrograms directory, 670
JavaPrograms folder, 394–395
JButton class, 766–768, 782, 798, 817
JCF. See Java Collection Framework
JCheckBox class, 817–822
JCheckBox objects, 820
JComboBox class, 825–828, 853

JComboBox objects, 828
JDialog class, 769
JDialog objects, 535
JFileChooser class, 679, 709–710
JFileChooser objects, 670–679, 751

displaying, 673, 675
JFrame class, 32, 44–47, 741, 771–772, 774, 776

creating subclasses of, 777, 785, 839–840
JFrame objects, 32
JLabel class, 787, 791
JLabel objects, 790
JList class, 828–831
JMenu objects, 835–836
JMenuBar objects, 835
JMenuFrame window, 835
JMenuItem objects, 835
JNI. See Java Native Interface
Job scheduling simulation program, 1097
JOptionPane class, 82, 205, 296, 301, 434,

436, 673, 768
for input, 67

Josephus problem, 943
JPanel class, 776

subclasses of, 813
JPanel objects, 807–808
JRadioButton class, 822–825
JScrollPane class, 797, 829, 850

adding scroll bars automatically, 797
JSlider class, 831–834
JSlider objects, 831
JTextArea class, 787
JTextArea objects, 787, 792–793, 850
JTextField class, 536, 787–788
JTextField objects, 787
JVM. See Java Virtual Machines

K
Kanji characters, 490
Key-value pairs, 593
Keyboards, 5, 8
Keyless entry system program, 469–483
Korean, 490

L
Languages. See Programming languages
LANs. See Local area networks

wu23399_ind.qxd 1/10/07 12:05 Page 1177

1178 Index

Last-in, first-out lists. See LIFO
Layout managers, 798–806

and panels, 778
Leap Year, computing, 289
Lego Mindstorms robot, 173
Length constants, of an array, 549, 578
length method, of String objects, 57, 549
Level, of nodes, 644
Library Overdue Checker program, 410–428
LibraryBook class, 411–419, 421, 426–427
LibraryBook objects, 417
LibraryCard class, 163
LibraryCard objects, 163, 165–166
Life cycle, of software, 25–26
LIFO (last-in, first-out) lists, 1036, 1052, 1066
Lightweight classes, 767
Line separator, 794
Linear ordering, 982, 1036
Linear searching, 620–621
Link fields, 890, 941
Linked data structures, 879–943
Linked implementation, with the head node,

1018–1022
Linked-list implementation

of the list ADT, 1001–1017
of the queue ADT, 1082–1087
of the stack ADT, 1047–1051

Linked lists
adding nodes to, 892–898
creating, 936
defined, 890
manipulating, 890–903
removing nodes from, 900–902
searching for nodes in, 898–900

Linked lists of objects, 903–907
adding nodes to, 905
removing nodes from, 906–907
searching for nodes in, 905–906

Linked-node representation, 584
LinkedList class, 584–585, 977, 982
Links, 887, 1002

null, 887
List ADT, 981–1034

array implementation of, 992–1001
defined, 982–988
linked-list implementation of, 1001–1017

List interface, 584–585, 593, 988–992
public methods of, 991

Listeners, multiple, 781
ListNode class, 1002
ListNode object, 1002
Lists, 583–592
Literal constants, 96–97, 245
Loan amount, computing, 126–129, 141–142,

202–204
Loan class, 191, 194–202, 333
Loan objects, 196–197
Loan tables, 331–334
LoanCalculator class, 191–202

skeleton for, 195
LoanCalculator program, 120–131, 332–334,

359–362
with an instantiable class, 190–205

Local area networks (LANs), 4, 10
Local variables, 183–185
Locker class, 969, 971, 974–975
Locker objects, 963
Logical operators, 224, 231
long data type, 83–88, 93, 909
longMessageFormat flag, 235
Loop-and-a-half repetition

control, 315–318
checklist for, 317

Loop body, 296
Loop counters, imprecise, 306
Loop statements, 296

infinite, 305–310
nested, 333–334
posttest, 311
pretest, 311
terminating, 314, 497, 747

Loops
improving user interface with, 298–300
programming with, 301–302

Lovelace, Ada, 2
Low-level file I/O, 679–683

M
Mac platform, 671
Machine code, 11
Machine languages, 10–11
Magnetic strip readers, 8

wu23399_ind.qxd 1/10/07 12:05 Page 1178

Index 1179

Mail merge, 712
Main classes, 47

changing any class to, 189–190
main method, 32, 190
Maintenance, 25
MainWindow class, 741
Map interface, 593–594, 663
Maps, 592–595
MARK I, 3
Markers

*/, 40, 396
/**, 396
//, 40
for comments, 40
matching, 40

Markup languages, 1053
Matcher class, 509–513, 523, 532
Matcher objects, 510, 533
matches method, 502–507, 509–510
Matching, pattern, 502–509
Matching cases, 246–248
Matching HTML tags

nested, 1055
sample application, 1053–1064

MatchJavaIdentifier class, 505, 510
Math class, 82, 109–113, 121, 141, 287, 343, 352,

356, 383–384, 734
methods for common mathematical functions,

109–110
Mauchly, John W., 3
maxBottom method, 631
maxChild method, 642
Maze class, 1060–1062
Maze objects, 1060
MazeCell class, 1060, 1062, 1067
MazeCell objects, 1060
Mazes, solving with backtracking, 1060–1064
Megahertz (MHz), 8
Member accessibility, inheritance and, 724–729
Memory

allocation of, 85, 389, 546, 569, 879–943
heap, 885
nonvolatile, 8
volatile, 8

Memory cell, 880
Memory locations, 10–11

Memory usage, 87
varying with precision, 84

Menus, 835–839
Merge sort, 663, 876–877
Messages, 18–20

errors in, 52
printing, 288
sending, 18–20, 33, 37–39
syntax for, 37

Method body, 47, 734
Method composition, 56
Method declarations, 47–48

syntax for, 47
method names, 47
Method prototype, 584
Method signature, 380
Methods, 18–20

abstract, 734
calling, 37–38, 193–194
overloaded, 378–383, 432–433
passing arrays to, 569–575
passing objects to, 162–167
recursive, 338–342
returning an object from, 366–370, 536
of the same class, calling, 185–189
shortening, 759
writing, 536

Metric conversion, 82
Microcomputers, 3
MIDI devices, 8
min methods, 384, 627–628
Minicomputers, 3
Minimalist approach, to running Java programs, 12
minStart method, 617
Minus (–) symbol, 174. See also

Subtraction operators
MobileRobot class, 172–173
Modems, 10
modifiers, 47–48

accessibility, 150
protected, 719, 724–729
visibility, 172–175, 721

Modulator-demodulator, 10
Modulo arithmetic, 303, 1077

division, 90
Monitors, 5, 8

wu23399_ind.qxd 1/10/07 12:05 Page 1179

1180 Index

Monogram class, 68
program diagram for, 68, 82

Month objects, 614
Mortgages, computing. See LoanCalculator program
Motion type, selecting, 283–285
motionStatus, 236
Motorola PowerPC, 10
Mouse, 5, 8

movement of, 82
Mouse events, handling, 839–847
mouseClicked method, 843–845
mouseDragged method, 843–845
MouseEvent class, 840, 844
MouseMotionListener interface, 843
Multimedia information, viewing, 4
Multiple classes, defined and using, 156–160
Multiple constructors, 169, 381
Multiple listeners, 781
Multiple methods, 380
Multiple shapes, drawing, 285
Multiple stop conditions, 314
Multiplication operators, 92

implementation of, 934
Musical instrument digital interface.

See MIDI devices
MusicCD objects, 376
Mutator methods, 152
My Documents folder, 673
My First Subclass, 773
MyFirstJava program, 30–39
MyIterator class, 1025
myList, 967, 982–990, 992, 1001
MyMenuFrame class, 851
myQueue, 1070–1072, 1083
myStack, 1036–1040, 1047
myutil package, 394–395, 434
myutil.Fraction class, 400–410
MyWindow objects, 32–35, 38

N
NameComparator class, 659
Named constants, 96, 245
Naming

fully qualified, 44
standard conventions for, 34, 46, 74, 76–77

NCAA championship, 111

Nested-for statements, 324–326
rewriting as nested do-while statements, 356
rewriting as nested while statements, 356

Nested-if statements, 225–231
controlling flow of, 225

Nested loop statements, 333–334, 355
Nested panels, effective use of, 807–817
Nestings

minimizing, 228
showing structure clearly, 227–229

Network interface cards (NICs), 10
Networks, 4
Neumann, John von, 3
new-line control character, 101
new method, 492
new operator, 35, 242–243, 514, 545
next method, 587, 690, 890
nextDouble method, 106, 690
nextFortune method, 1029
nextInt method, 103, 690
NICs. See Network interface cards
NMA. See Noncontiguous memory allocation
Node classes, 890–891, 904, 917, 963, 967, 1034
Nodes. See also Head node

adding to a linked list, 892–898
adding to linked lists of objects, 905
creating new, 914
defined, 890
dummy, 895
left and right children of, 633
level of, 644
removing from linked lists, 900–902, 906–907
root, 632
searching for in linked lists, 898–900, 905–906

Noncontiguous memory allocation (NMA), 881,
886–889

faster update operations, 889
finer control of space usage, 889
slower traversing of elements, 889

Nongeneric classes, 970
Nongeneric superclasses, generic subclass of,

971–972
Noninteger indices, 592
Nonvolatile memory, 8
Normal case, 610
Normalized fractions, 134

wu23399_ind.qxd 1/10/07 12:05 Page 1180

Index 1181

NoSuchElementException class, 753, 965, 1024,
1026, 1041

NOT operators, 231–232
Notation. See Asterisk notation; Dot notation;

Exponential notation; Infix notation; Scientific
notation; Shorthand notation

NPS, defined, 988
NPSArrayList class, 1026–1027, 1032–1033,

1044–1046, 1053
NPSArrayQueue class, 1075–1082, 1090
NPSArrayStack class, 1042–1045, 1065

defined, 1042
NPSIterator interface, 1023–1024
NPSLinkedList class, 1003–1017, 1024–1026,

1032–1033, 1050–1051, 1053
NPSLinkedListWithHeader class, 1019–1022
NPSLinkedQueue class, 1082–1087, 1095
NPSLinkedStack class, 1048–1051, 1065
NPSList interface, 1024, 1029, 1032, 1033–1034

implementation of, 1052–1053
NPSListQueue class, 1088–1089
NPSListStack class, 1052–1053
NPSPriorityQueue class, 1089–1093, 1095
NPSQueue interface, 1073–1075

implementation of, 1088–1089, 1095
NPSStack interface, 1040–1042, 1065,

1074–1075
Null link, 887
Null references, 563–564, 608, 1003, 1029, 1063
null (reserved word), 164
null strings, 536, 896, 983
NullPointerException error, 1009
Number class, 955, 957
Number systems, 6–7
NumberFormatException error, 771
Numbers. See also Standard deviation, computing

arrays of, 566
computing factorials of, 339–341
computing greatest common divisor of, 876
converting to Roman numerals, 288
Fibonacci, 140, 359
perfect, 357
random, 113–115
variables for, 86

Numerator, 401
Numeric promotion, 93

Numerical data declaration, 87
Numerical data types, 81–144
Numerical input values, getting, 103–108
Numerical representation, 131–135
Numerical values, displaying, 97–103

O
Object class, 729, 953, 958, 971
Object creation, 34–37

syntax for, 35
Object declaration, 33–34, 36, 87

syntax for, 33
Object diagrams, 122

notation for, 35–36
Object I/O, 693–700
Object names, 77. See also Identifiers; Naming
Object-oriented programming (OOP),

12, 15–28, 52
basic concepts of, 16
power of, 334

ObjectInputStream objects, 694–695
ObjectOutputStream objects, 693–694, 703
Objects, 16–18, 31

arrays of, 555–565, 1043, 1076
comparing, 239–244
defined, 16
erasing from memory, 564
graphical representations of, 17
linked lists of, 903–907
passing to a method, 162–167, 536
referenced, 723
returning from a method, 366–370
saving, 696
storing, 693–694
variables for, 86

Off-by-one errors (OBOEs), 307–308, 606
Offset, 883
Oldest person, finding, 558
One-dimensional arrays, 576
One-entry one-exit control flow, 317
OOP. See Object-oriented programming
openFile method, 526–528
Opening tags, 1054–1055
Operands, 91
Operation phase, 25
Operator overloading, 99

wu23399_ind.qxd 1/10/07 12:05 Page 1181

1182 Index

Operators. See also Arithmetic operators; Boolean
operators; Relational operators

AND, 231–232, 234
addition, 92
arithmetic, 90
assignment, 94–95
binary, 91, 93
Boolean, 231–232
decrement, 227
division, 90
increment, 227
integer division, 90
logical, 224, 231
multiplication, 92
NOT, 231–232
OR, 231–232, 234
precedence rules for boolean, 235
string concatenation, 58
type cast, 93

OR operators, 231–232, 234
Java symbols for, 234

Ordering system, drive-through, 294, 711–712
Out-of-bound exceptions, 497
outDataStream, 685
outFile objects, 685
outFileStream, 685
Output devices, 4–5, 8
Output statements, 248. See also Temporary output

statements
Output values, 201–202

design, 124–126
test, 126

OutputBox class, 746, 850, 853
Outputs, 82, 207–208

file, 669–712
formatting, 326–331
making readable, 868

outStream objects, 683
OverdueChecker class, 412–413, 421–426
OverdueChecker objects, 421
Overflow, 883–884

handling with enlarge method, 583
Overflow errors, 306
Overloaded constructors, 169, 378–383, 432
Overloaded methods, 378–383, 432–433
Overloading, operator, 99

P
Package visibility, 728
Packages. See also Java packages;

javabook package
classes grouped into, 43–44
organizing classes into, 394–395

Pairwise comparisons, 629
Palindromes, finding, 537–538, 876
Panels. See Nested panels
@param tag, 397
Parameterized classes, 947
Parameters, 47–48, 161

matching with arguments, 160–162
Parentheses, 92, 93
partition method, 869–872
Pascal (programming language), 12
Pass-by-value scheme, 387–388, 392
Passes, sorting, 625
Passing arrays, to methods, 569–575
Pattern class, 506, 509–513, 523, 532
Pattern matching, and regular expression, 502–509
Pattern objects, 510, 533
payScaleTable array, 576–583
PDA, Pocket PC, 768
PDF format documents, 489
peek operation, 1037–1038, 1043, 1049, 1070–1071,

1074, 1079–1080, 1084–1085
Pentium 4, 8, 10

Extreme Edition, 9
Perfect numbers, 357
Person class, 555, 566, 648–649, 651–652, 659,

936–937, 1032. See also AddressBook;
AddressBook class

Person objects, 556–557, 559, 564, 586–589,
596–598, 614, 645, 648–650, 653–654, 659,
660, 663, 693, 696–698, 937, 992, 1022–1023

adding to an array, 600, 604
comparing, 645–665
creating, 557
reading, 708
removing, 608, 610
returning, 605
saving, 694
traversing, 1023

Pixel (picture element), 30
playGame method, 345–351

wu23399_ind.qxd 1/10/07 12:05 Page 1182

Index 1183

Pluggable classes, 947
Plus (+) symbol, 174. See also Addition operators

for concatenation of values, 98–99
Pocket PC PDA, 768
Pointers, 887, 1002, 1008, 1011

self-referencing, 371
Polymorphic messages, 714
polymorphic method, 716
Polymorphism

applying, 970
benefits of, 723
defined, 714, 721–722
inheritance and, 713–763
using classes effectively with, 721–724

pop operation, 1037, 1044, 1049, 1065
Population growth, computing, 141
Position values, 5–6
Positioning. See Absolute positioning
Postcondition assertions, 466
Postfix arithmetic expressions, 1068
Posttest loop, 311
pow method, 121
Precedence rules, 91–92, 234–235
Precision

higher, 83
of real numbers, 306

Precondition assertions, 466
Predefined classes, 52, 264–265
Pretest loop, 311
Prices, printing out table of, 324–326,

358–359
Prime Number Theorem, 357
Prime numbers, 357
Priming read, 299
Primitive data types, 88–89, 239–240, 513,

515, 519, 589–592
print method, 54, 97, 687, 741
Printers, 5, 8
printf method, 330
Printing, echo, 64, 70, 123
Printing initials program, 67–73
printLine method, fine-tuning, 126
println method, 66, 97–98, 687, 741
printout, 708
printResult method, 743, 746–749
printStackTrace method, 444, 461

PrintWriter classes, 691
PrintWriter objects, 687
Priority queues, 1089–1093

defined, 1089
Private class constants, 174
private methods, 150, 345, 349
private (reserved word) modifier, 150, 172–175,

659, 719, 725–728, 737
Problem statements, 67, 265, 343, 411, 521, 596,

700, 740, 908, 1027
processData method, 742
processInputData method, 482
Program classes, 68, 266, 344, 741
Program components, 39–52
Program diagrams, 36, 41
Program documentation, 41. See also Comments;

Object diagrams; Programmers;
User manuals

Program implementation, 121
sequence for, 121

Program readability, 69, 218–220
computing, 141

Program review, 285, 612, 708, 759
Program skeletons, 192–198, 267–269, 344–347,

474–478, 524–526, 743–746
with constructors, 597–600
designs for, 192

Program tasks, 68, 120, 191, 265, 411, 522, 741
Program templates, 48–49
Program verification, 196
Programmer-defined classes, 32, 147, 166, 394
Programmer-defined exceptions, 461–463
Programmers

client, 172
work logs of, 488

Programming, 24. See also Event-driven
programming; Object-oriented programming

common errors in, 238
computation, 82
defensive, 248
good style in, 123, 226–227
incremental development, 82
inputs, 82
object-oriented, 15–28
outputs, 82
tasks comprising, 82

wu23399_ind.qxd 1/10/07 12:05 Page 1183

1184 Index

Programming languages, 1–14. See also individual
programming languages

classes of, 11–12
markup, 1053
stack-oriented, 1068

Programs
AddressBook, 700–708, 763
bank ATM simulation, 1095–1097
building word concordance, 521–534
calculator, 854–855
client, 172
commercial, 41
ComputeGrades, 739–759, 762
drawing shapes, 264–285
Eggy-Peggy (word game),

538, 540, 709
EntranceMonitor, 473–474
ExtractWords, 537
HiLo (game), 343–353
job scheduling simulation, 1097
keyless entry system, 469–483
Library Overdue Checker, 410–428
LoanCalculator, 120–131, 190–205, 332–334,

359–362
MyFirstJava program, 30–39
printing initials, 67–73
RoomWinner, 256–258
sorting AddressBook, 645–665
terminating, 31

Project files, 50
Promotion, 93
Propagation, of exceptions, 450–458
protected (reserved word) modifier,

719, 724–729
Pseudocode representation, 332–334
Pseudorandom number generator, 113
Public class constants, 174, 182–183
Public interface, 908
Public-key cryptography, 541
public methods, 150

of list interface, 991
public (reserved word) modifier, 172–175, 259, 659,

719, 725–728
Punch cards, 2
Punctuation, 495, 537. See also individual marks of

punctuation

push method, 1037, 1044, 1049, 1065
Pushbuttons, 777, 817, 823

Q
Quadratic equations, solving, 139
Queue ADT, 1069–1097

array implementation of, 1075–1082
linked-list implementation of, 1082–1087

Queue interface, 1073–1074
QueueEmptyException, 1074, 1085
QueueNode class, 1082–1083
Queues, defined, 1070–1073
Quicksort algorithms, 868–872
Quote-of-the-day dialog, 711

R
Radio buttons, 817, 822–823
Radix, 6
Random access memory (RAM), 4, 7
random method, 343, 351
Random motion type, 283
Random numbers, generating, 113–115
Rank types, 263
Raw types, 974–976
Read access, 670
read method, 681, 706–708
Read-only traversals, 589
readData method, 742–759
readDate method, 421
readDouble method, 421, 571
readIntegers method, 572
readLine method, 688
readObject method, 695–696, 698
readString method, 421
Real numbers

data types for, 83–88
in loop counters, 306–307
representation of, 132–133

Rebuild steps, 634–636
sequences of, 635

Rectangle, bounding, 255
Recursion, 860–861

defined, 338–339
guidelines for using, 342, 873–875
necessary components in, 340, 860

wu23399_ind.qxd 1/10/07 12:05 Page 1184

Index 1185

sequence of calls for, 341
terminating, 340

Recursive algorithms, 859–878
Recursive methods, 338–342
Reference data type, 88, 513
Referenced objects, 723
Registers, 8, 11
Regular expression

defined, 503
pattern matching and, 502–509

Relational operators
in boolean expressions, 215–216
reversing, 231–232

Relays, mechanical, 3
remove method, 588, 986–987, 989, 996, 1009–1012,

1071–1072, 1074, 1079, 1085
removeLeadingZero method, 926
removeRange method, 1032
Rentals

computing charges for, 291–292
tracking, 857

Repetition control, 298
checklist for, 312
loop-and-a-half, 315–318

Repetition statements, 214, 295–363
defined, 296
pitfalls in writing, 305–310
terminating, 497

replaceAll method, 507–509, 515
Reserved words, 38, 76. See also individual

reserved words
reset method, 532
Resident class, 469–471, 474
Resident objects, 471, 486, 698
Restrictions, on generic classes, 959–960
return (reserved word) statements, 152, 449

syntax for, 152
@return tag, 397
Return types, 47–48
Reversing relational operators, 231–232
RGB color scheme, 252–253, 831–832
Robot objects, 19–20
roll method, 178
Roman numerals, converting numbers to, 288
RoomWinner program, 256–258
Root node, 632

Root pane, 782
roster arrays, 722–723, 744, 746–747, 751, 759.

See also buildRoster method
RSA cryptography system, 541
Runtime exceptions, 452, 458

S
Sales, computing, 139, 211, 289, 294, 358, 617
saveFile method, 526–528
Saving AddressBook objects, 700–708
Scanner class, 63–64, 69, 103–108, 343, 412–413,

689–690, 770
Scanner objects, 544
Scanning, 587, 612
Scientific notation, 133–134
scorePanel objects, 809
Screensaver

creating, 290
simulating, 265

Scroll bars, adding automatically, 797
Search engines, Google, 521
search method, 898

implementation of, 605–608
Searches, 620–624
searchMinimum method, 570
Second generation computers, 3
Secondary storage devices, 8
Selection statements, 213–290
selectionSort method, 626–628, 632, 871
Self-referencing pointers, 371
Semicolons (;), 217
Sentinel-controlled loops, 300
Sequential control flow, 214
Sequential execution, 214
Sequential searching, 621
Serializable interface, 471. See also implements

Serializable (phrase)
Service providers, 191–192
Set interface, 593, 616
set method, 987, 996–997, 1012
setBackground method, 253, 268, 775
setBounds method, 805
setCenterPoint method, 270
setColumns method, 787
setContent method, 814
setCurrentDirectory method, 674

wu23399_ind.qxd 1/10/07 12:05 Page 1185

1186 Index

setData method, 639
setDenominator method, 452
setEmpty method, 965
setExchangeRate method. See Exchange rate,

computing
setFile method, 701–703
setInitialBalance method, 156, 158
setLayout method, 778
setNext method, 892
setOwnerName method, 150, 153, 164–165
setSize method, 778
setupArray method, 608, 612
setVisible method, 38, 78, 268, 772
setVisited method, 1062
Shapes

drawing, 269–273
selecting, 274–283

Shipping cost, computing, 143
Short-circuit evaluation, 234
short data type, 83–88, 93, 246
Shorthand assignment operator, 94
Shorthand notation, 492–493
showCloseDialog method, 675
showConfirmDialog method, 296
showDialog method, 677
showMessageDialog method, 56, 205, 769
showOpenDialog method, 673–674
Sibling classes, 722
Sign bits, 132
Signature, method, 380
Silicon chips, 3
SimpleDateFormat class, 60–63, 118,

327–328, 415
formatting symbols for, 62–63

SimpleDateFormat objects, 61–62
SimpleLinkedList class, 965, 967, 980
simplify method, 367–368, 370, 400, 402
Simula (programming language), 12
Single ampersand (&), 234
Single-line comments, 40
Single statements, syntax for, 218
Single-task object (STO) principle, 596, 600,

681, 704
Single vertical bar (|), 234
size method, 587, 987, 990, 997, 1012, 1037, 1039,

1045, 1050, 1070, 1072, 1085

Skeleton classes, 195. See also Program skeletons
SketchPad class, 843–847
sleep method, 250
Slot machine simulation, 352, 362–363
Smalltalk (programming language), 12
Smooth motion type, 283
Software development, introduction to, 15–28
Software engineering, and software life cycle,

25–26
Software maintenance, 25
solveBacktracking method, 1066
sort method, 640, 653–654, 658–665
sortedList array, 654
SortedMap interface, 592, 594
Sorting, 620, 624–627
Sorting AddressBook program, 645–665
Sorting passes, 625
Source code. See Programs
Source files, 49

compiling, 50–51
Sources

of inputs, 681
of outputs, 679

Space usage, finer control of, 889
Special-purpose dialogs, 768
Square brackets ([]), 545, 571
Stack ADT, 1035–1068

array implementation of, 1042–1047
defined, 1036
implementation of, 1047–1053
mathematically pure, 1065

Stack interface, 1040–1041
Stack-oriented programming languages, 1068
StackEmptyException, 1043, 1049
StackNode class, 1048
Standard classes, 32, 52–66
Standard conventions, for naming, 34, 46,

74, 76–77
Standard deviation, computing, 614
Standard input, 63–66
Standard output, 53–55
start method, 193, 272–273, 512, 524, 526–527,

886, 893, 896
State-of-memory diagrams, 35–36, 76, 86, 372–373,

431–432, 536, 614, 1033, 1094
stateChanged method, 832

wu23399_ind.qxd 1/10/07 12:05 Page 1186

Index 1187

Statements. See also Assignment statements; Import
statements; Output statements; Problem
statements

for, 319–323
branching, 216
break, 246
compound, 218
control, 214
do-while, 311–315
if, 214–224
if-then, 220
if-then-else, 238
import, 43–46, 76
loop, 296
nested-for, 324–326
nested-if, 225–231
repetition, 295–363
selection, 213–290
sequential execution of, 214
single, 218
switch, 244–248
while, 296–305
writing assignment, 97

static blocks, 649
Static data members, 960
Static initializer, 386–387
Static memory allocation, 885
static (reserved word) modifier, 177, 259, 384, 737
Stationary motion type, 283
STO. See Single-task object principle
Stop conditions, multiple, 314
STOP (word), 497, 504, 518
Storage devices, 4, 8–10
Stored-program scheme, 3
Stream objects, 681
String argument, 262, 673, 752
String class, 55–60, 68, 240, 330, 412, 491–494,

502, 509, 515, 537
defined, 55, 491

String comparison, 925
String concatenation, 58, 519
String objects, 56–57, 162, 239–243, 262, 506,

513–515, 521, 536, 569, 826, 913–914,
948, 992, 1032

comparing, 239–240, 499
methods for, 549

String processing, 82
StringBuffer class, 516–520
StringBuffer objects, 516–520, 535

limits on, 517–518
StringBuilder class, 516
Strings, 491–502

comparing, 498–499, 513–515
manipulating contents of, 491–492, 516
printing in reverse, 501, 536

StringTokenizer class, 523
StringTokenizer objects, 752–753, 763
Structural constraints, 633, 645
Stub methods, 194, 419

stub build method, 530
Student class, 718–723, 732–741, 750–753
Student object, 161, 165–166
Subarrays, 581
Subclasses, 23, 715, 725–728

extending their superclasses, 719–720
of generic superclasses, 969–971
of nongeneric superclasses, 971–972

Subexpressions, 91
type casting, 93

substring method, 55–58, 71–72, 499, 515
Subtraction

implementation of basic, 924–930
implementation of full, 930–934

Subtraction operators, 90, 288
Successful searches, 620
Sun Microsystems, 12
Superclasses, 23, 715, 721–722, 725–729

abstract, 733–737
defined, 732
explicit calls to constructor of, 732
extending, 719
generic, 969–971
nongeneric, 971–972

swap method, 390–391, 642
Swing classes, 766–768
switch statements, 244–248, 288, 315, 446

case labels for, 261–262
controlling flow of, 247, 287
making readable, 248
mapping, 245
syntax for, 245

Symbolic constants, 96, 127

wu23399_ind.qxd 1/10/07 12:05 Page 1187

1188 Index

Syntax rules, violations of, 51
System class, 32, 794
System.in, 64, 82, 105, 120, 138, 689
System.out, 53–54, 64, 82, 120, 123, 129, 138, 205,

330, 343, 451, 530, 829

T
tab control character, 101
Tables, 324–326. See also Two-dimensional arrays

formatting, 576–577
Tags. See HTML tags
tail, 893–894, 1070, 1078
Tasks. See Program tasks
TeachArithmeticFrame class, 852–853
Temperature conversion, computing, 138
Temporary output statements, 194, 218, 744
10BaseT, 10
Test output statements, 198
TestAddressBookWrite, 705, 707
TestCalendar program, 116–117
TestDataOutputStream, 685
testDelete method, 612
Tester class, 387
Testing phase, 25

duplicate tests, 314
never skipping, 131
posttest loop, 311
pretest loop, 311
priming read in, 299

testPrint method, 642
TestPrintWriter, 688
TestRandom class, 352–353
Tests, avoidable, 308–309
testSearch method, 608
Text, drawing on the Graphics context, 285
Text editors, 693
Text files, 686–687, 709, 712, 739–740
Text-related GUI components, 787–798
TextHandler class, 788
Then blocks, 216–220

rules for writing, 220
Thesaurus class, 616
Third generation computers, 3
this (reserved word), 370–378, 774

calling a constructor with, 177
Throw statements, 446

Throwable class, 443–444, 446, 458–459
Throwing exceptions, 445–450
Thrown exceptions, 438, 452
throws (clause), 459–460, 463
throwsException (clause), 452
Tic Tac Toe program, 808, 811
TicTacToeCell class, 813–815
TicTacToePanel class, 809, 813–817
toArray method, 1065, 1095
Tokens, 752–753
Top-down development, 191
Top of stack pointer, 1036, 1044,

1048–1049
toString method, 60, 164–165, 415, 419, 909,

913–920, 938
toUpperCase method, 494–495
Tower of Hanoi puzzle, 866–868, 873
Transistors, 3
Traversals, 587, 1022–1023

of elements, slower, 889
read-only, 589

TreeMap class, 592–595, 594
TreeMap objects, 594
Triangular arrays, 581
Trigonometric functions. See Math class
trim method, 537
true (logical value), 89
true (reserved word), 38
Truth table, illustrating DeMorgan’s law, 233
try-catch blocks, 441–442, 528, 709, 751, 941
try-catch control statements, 441–442, 446–448,

459–460, 463
try statements, 250
Turtle objects, 78–80, 144, 211–212
Two-dimensional arrays, 576–583
Twos-complement format, 131–133
TwoWayIterator interface, 1034
Type cast operators, 93
Type mismatch, 106
Type parameters, 947

generic classes with multiple, 950–952
Type-pluggable classes, 949
Type safety, 260

benefits of, 952–954
generic classes and, 945–980

type variable, 275

wu23399_ind.qxd 1/10/07 12:05 Page 1188

Index 1189

Typecasting, 92–93, 698, 954, 961–962
syntax for, 93

Typing errors, 953

U
UML (Unified Modeling Language), 16

program diagrams in, 35
UndergraduateStudent class, 718–723,

732–741, 750–754
Underutilization, 884–885
Unicode Worldwide Character Standard, 490,

498–499
lexicographical order of, 499

Unified Modeling Language. See UML
Unit testing, 25
UNIX platform, 671
Unknown classes, dealing with, 265
Unnormalized fractions, 134
Unrelated classes, 717–718
Unsuccessful searches, 620
Update operations

costly, 885
faster, 889

U.S. Navy, 3
useDelimiter method, 66
User interface, improving with a loop, 298–300
User manuals, 41

V
Vacuum tubes, 3
Value relationship constraints, 633, 645
valueOf method, 80, 262
Variable declarations, syntax for, 83
Variable-pitch fonts, 787
Variable-size array declarations, 554
Variables, 21–22, 82–89

assigning value to multiple, 95
boolean, 231–239
class, 23
control, 319–320
incrementing, 227
initializing, 84–89
instance, 23
for numbers, 86
for objects, 86
properties of, 83

Vector class, 585
Vignere cipher, 540–541
Visibility modifier, 172–175, 721
Volatile memory, 8

W
Wages, computing, 289
WANs. See Wide area networks
Watermelons. See Gravitational constant
Web browsers, 4
Web programming languages, 12
Weight, recommended, computing, 210, 289
while loops, 345, 350, 747, 894, 897
while statements, 296–305

advantage over do-while statements, 313,
495–496

controlling flow of, 297
rewriting as do-while statements, 315
syntax for, 296
writing, 355

Wide area networks (WANs), 4
Windows, DrawingBoard, 269
Windows platform, 671
Wireless networking (WiFi), 10
Word concordances, 521

building, 521–534
Word guessing game, 538–539
WordConcordance class, 523–525, 529–533
WordList class, 521–522, 531, 534, 595
WordList objects, 521–522, 531–532
Wrapper classes, 590
Write access, 670
write method, 704–706
writeObject method, 697–698
Writing computer programs. See Programming
Writing repetition statements, pitfalls in, 305–310

X
Xerox PARC, 12

Y
Youngest person, finding, 558

Z
Zero, duplicate representations for, 132–134
Zero-based indexing, 546, 554, 1042

wu23399_ind.qxd 1/10/07 12:05 Page 1189

	Title Page
	Copyright Page
	Dedication
	Preface
	Key Differences from the Standard Edition
	Book Organization
	Hallmark Features of the Text

	Contents
	0 Introduction to Computers and Programming Languages
	0.1 A History of Computers
	0.2 Computer Architecture
	0.3 Programming Languages
	0.4 Java

	1 Introduction to Object-Oriented Programming and: Software Development
	1.1 Classes and Objects
	1.2 Messages and Methods
	1.3 Class and Instance Data Values
	1.4 Inheritance
	1.5 Software Engineering and Software Life Cycle

	2 Getting Started with Java
	2.1 The First Java Program
	2.2 Program Components
	2.3 Edit-Compile-Run Cycle
	2.4 Sample Java Standard Classes
	2.5 Sample Development

	3 Numerical Data
	3.1 Variables
	3.2 Arithmetic Expressions
	3.3 Constants
	3.4 Displaying Numerical Values
	3.5 Getting Numerical Input
	3.6 The Math Class
	3.7 Random Number Generation
	3.8 The GregorianCalendar Class
	3.9 Sample Development
	3.10 Numerical Representation (Optional)

	4 Defining Your Own Classes—Part 1
	4.1 First Example: Defining and Using a Class
	4.2 Second Example: Defining and Using Multiple Classes
	4.3 Matching Arguments and Parameters
	4.4 Passing Objects to a Method
	4.5 Constructors
	4.6 Information Hiding and Visibility Modifiers
	4.7 Class Constants
	4.8 Local Variables
	4.9 Calling Methods of the Same Class
	4.10 Changing Any Class to a Main Class
	4.11 Sample Development

	5 Selection Statements
	5.1 The if Statement
	5.2 Nested if Statements
	5.3 Boolean Expressions and Variables
	5.4 Comparing Objects
	5.5 The switch Statement
	5.6 Drawing Graphics
	5.7 Enumerated Constants
	5.8 Sample Development

	6 Repetition Statements
	6.1 The while Statement
	6.2 Pitfalls in Writing Repetition Statements
	6.3 The do–while Statement
	6.4 Loop-and-a-Half Repetition Control
	6.5 The for Statement
	6.6 Nested for Statements
	6.7 Formatting Output
	6.8 Loan Tables
	6.9 Estimating the Execution Time
	6.10 Recursive Methods (Optional)
	6.11 Sample Development

	7 Defining Your Own Classes—Part 2
	7.1 Returning an Object from a Method
	7.2 The Reserved Word this
	7.3 Overloaded Methods and Constructors
	7.4 Class Variables and Methods
	7.5 Call-by-Value Parameter Passing
	7.6 Organizing Classes into a Package
	7.7 Using Javadoc Comments for Class Documentation
	7.8 The Complete Fraction Class
	7.9 Sample Development

	8 Exceptions and Assertions
	8.1 Catching Exceptions
	8.2 Throwing Exceptions and Multiple catch Blocks
	8.3 Propagating Exceptions
	8.4 Types of Exceptions
	8.5 Programmer-Defined Exceptions
	8.6 Assertions
	8.7 Sample Development

	9 Characters and Strings
	9.1 Characters
	9.2 Strings
	9.3 Pattern Matching and Regular Expression
	9.4 The Pattern and Matcher Classes
	9.5 Comparing Strings
	9.6 StringBuffer and StringBuilder
	9.7 Sample Development

	10 Arrays and Collections
	10.1 Array Basics
	10.2 Arrays of Objects
	10.3 The For-Each Loop
	10.4 Passing Arrays to Methods
	10.5 Two-Dimensional Arrays
	10.6 Lists and Maps
	10.7 Sample Development

	11 Sorting and Searching
	11.1 Searching
	11.2 Sorting
	11.3 Heapsort
	11.4 Sample Development

	12 File Input and Output
	12.1 File and JFileChooser Objects
	12.2 Low-Level File I/O
	12.3 High-Level File I/O
	12.4 Object I/O
	12.5 Sample Development

	13 Inheritance and Polymorphism
	13.1 A Simple Example
	13.2 Defining Classes with Inheritance
	13.3 Using Classes Effectively with Polymorphism
	13.4 Inheritance and Member Accessibility
	13.5 Inheritance and Constructors
	13.6 Abstract Superclasses and Abstract Methods
	13.7 Inheritance versus Interface
	13.8 Sample Development

	14 GUI and Event-Driven Programming
	14.1 Simple GUI I/O with JOptionPane
	14.2 Customizing Frame Windows
	14.3 GUI Programming Basics
	14.4 Text-Related GUI Components
	14.5 Layout Managers
	14.6 Effective Use of Nested Panels
	14.7 Other GUI Components
	14.8 Menus
	14.9 Handling Mouse Events

	15 Recursive Algorithms
	15.1 Basic Elements of Recursion
	15.2 Directory Listing
	15.3 Anagram
	15.4 Towers of Hanoi
	15.5 Quicksort
	15.6 When Not to Use Recursion

	16 Memory Allocation Schemes and Linked Data Structures
	16.1 Contiguous Memory Allocation Scheme
	16.2 Noncontiguous Memory Allocation Scheme
	16.3 Manipulating Linked Lists
	16.4 Linked Lists of Objects
	16.5 Sample Development

	17 Generics and Type Safety
	17.1 Generic Classes
	17.2 Generics and Collections
	17.3 Generics, Inheritance, and Java Interface
	17.4 Additional Topics and Pitfalls

	18 List ADT
	18.1 The List ADT
	18.2 The List Interface
	18.3 The Array Implementation of the List ADT
	18.4 The Linked-List Implementation of the List ADT
	18.5 The Linked Implementation with the Head Node
	18.6 The Iterator Design Pattern
	18.7 Sample Development

	19 Stack ADT
	19.1 The Stack ADT
	19.2 The Stack Interface
	19.3 The Array Implementation
	19.4 The Linked-List Implementation
	19.5 Implementation Using NPSList
	19.6 Sample Applications: Matching HTML Tags
	19.7 Sample Applications: Solving a Maze with Backtracking

	20 Queue ADT
	20.1 The Queue ADT
	20.2 The Queue Interface
	20.3 The Array Implementation
	20.4 The Linked-List Implementation
	20.5 Implementation Using NPSList
	20.6 Priority Queue

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Index

