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Preface

This Instructor’s Manual contains the solutions to all the end-of-chapter problems (but not the
appendices) from Classical Dynamics of Particles and Systems, Fifth Edition, by Stephen T.
Thornton and Jerry B. Marion. It is intended for use only by instructors using Classical Dynamics
as a textbook, and it is not available to students in any form. A Student Solutions Manual
containing solutions to about 25% of the end-of-chapter problems is available for sale to
students. The problem numbers of those solutions in the Student Solutions Manual are listed on
the next page.

As a result of surveys received from users, I continue to add more worked out examples in
the text and add additional problems. There are now 509 problems, a significant number over
the 4th edition.

The instructor will find a large array of problems ranging in difficulty from the simple
“plug and chug” to the type worthy of the Ph.D. qualifying examinations in classical mechanics.
A few of the problems are quite challenging. Many of them require numerical methods. Having
this solutions manual should provide a greater appreciation of what the authors intended to
accomplish by the statement of the problem in those cases where the problem statement is not
completely clear. Please inform me when either the problem statement or solutions can be
improved. Specific help is encouraged. The instructor will also be able to pick and choose
different levels of difficulty when assigning homework problems. And since students may
occasionally need hints to work some problems, this manual will allow the instructor to take a
quick peek to see how the students can be helped.

It is absolutely forbidden for the students to have access to this manual. Please do not
give students solutions from this manual. Posting these solutions on the Internet will result in
widespread distribution of the solutions and will ultimately result in the decrease of the
usefulness of the text.

The author would like to acknowledge the assistance of Tran ngoc Khanh (5th edition),
Warren Griffith (4th edition), and Brian Giambattista (3rd edition), who checked the solutions of
previous versions, went over user comments, and worked out solutions for new problems.
Without their help, this manual would not be possible. The author would appreciate receiving
reports of suggested improvements and suspected errors. Comments can be sent by email to
stt@virginia.edu, the more detailed the better.

Stephen T. Thornton
Charlottesville, Virginia


mailto:stt@virginia.edu
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CHAPTER

Matrices, Vectors,
and Vector Calculus

Axes x; and x} lie in the x,x, plane.

The transformation equations are:

So the transformation matrix is:

X{ = x; cos 45° — x, cos 45°
-
X3 =%,

x5 = x5 cos 45° + x, cos 45°

1 1
X{ :Exl —Exs

[
Xy =X,

(1, 1)
NN
0 1 0
1y L
AR
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1 '2-
a)
A
D
E
Y
o) B gz
o) B
A C
Xy
From this diagram, we have
OE cos & = 0A
OE cos =0B 1)
OE cos y =0D
Taking the square of each equation in (1) and adding, we find
OE’ [cos2 a +cos® f+ cos® 7/} =0A" +OB’ +0D’ ()
But
OA" +OB =0C" 3)
and
OC" +0OD" =OF (4)
Therefore,
OA’ +OB’ +0D’ =OE" (5)
Thus,
cos” a +cos” f+cos’ y =1 (6)
b)
NG
D
1 E
a5
o) _e_ — B B gz

First, we have the following trigonometric relation:

OE +OE° -20EOE cos@=EE (7)
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But,

—) —_ _ 2 —_ _ 2 _ —_ 2

EE =[OB —OB} +[OA —OA} +{OD —OD}

., - 2 ., - 2
= [OE cos ' — OE cos ﬂ} + {OE cos &' — OE cos a}
) R 2
+{OE cos y' —OE cos 7/} 8)

or,

EE =OE’ [cos2 a' +cos® B + cos® 7'} +OE |:COSZ a+ cos® f+ cos® 7/]

~20E ﬁ[eos @ cos a' +cos fcos '+ cos y cos }/']

- OE"™ + OE? - 20EOE [cos a cos a' + cos fcos '+ cos y cos }/’] )

Comparing (9) with (7), we find

|cos 0= cos a cos a' +cos Bcos ' +cos y cos 7/’| (10)

Denote the original axes by x,, x,, x,, and the corresponding unit vectors by e, ,e,, e, . Denote
the new axes by x{, x}, x} and the corresponding unit vectors by e;, e}, e}. The effect of the
rotation is e, —> e}, e, > e], e, —> e}. Therefore, the transformation matrix is written as:

cos(e{, el) cos(e{, ez) cos(e{, e3) 010
A= cos(e;,el) cos(eg,eZ) cos(eg,e3) =10 0 1
cos(e}, ;) cos(ej, e,) cos(e;, e;)| [1 0 O
1-4.
a) Let C=AB where A, B, and C are matrices. Then,
Cij = ZAik Bkj 1)
k

(Ct)ij = Cji = ZAjk By :Z By Ajk
k k



Identifying B, =(B') and A, =(A") ,

ki
(©), -8, (4),
or,
C'=(AB) =B'A'
b) To show that (AB)" =B"A™,
(AB)B'A™ =1=(B'A™)AB
That is,
(AB)B'A™" = AIA" = AA™ =1

(B'A™)(AB)=B'IB=B"B=1I

1-5. Take A to be a two-dimensional matrix:
j’ll 2'12

A’:
|| An Ay

= 111/122 - 112/121

Then,
|/1|2 = 1121/152 - 2111/122112/121 + /1122/151 + (/1121151 + /1122/1222) - (/1121/151 + /1122/152)
= 152 (/1121 + 1122) + /151 </1121 + /1122) - (/11212“221 + 221 A A Ay + /1122/152)
= (2% + 23) (25 + 22) = (A oy + Apds)”
—( 1n Tt 12)( »n T 21) ( 1ntn 4 22)
But since A is an orthogonal transformation matrix, Z Ay = O -
i
Thus,
1121 + 1122 = /151 + 2*%2 =1
Ay + Apdy =0
Therefore, (2) becomes

=1

1-6. The lengths of line segments in the x; and x; systems are

L= fof; L' = [in'z
j i

CHAPTER 1

)

©)

(4)

()

(6)

ey

)

®3)

(4)

1)
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If L=L", then

The transformation is

Then,

( 3
= 2. %kX Lzﬂ‘ikﬂ’th
Kl i
But this can be true only if
Z ﬂ’ikﬂ’iﬁ' = é‘k/,
which is the desired result.
1-7.
X3
(0,0,1) 0,1,1)
L01) (1,11

2

X
(0,0,0) (0,1,0)

(1,0,0) (1,1,0)

Xy
There are 4 diagonals:
D,, from (0,0,0) to (1,1,1),s0 (1,1,1) - (0,0,0) = (1,1,1) = D,;
D,, from (1,0,0) to (0,1,1), s0 (0,1,1) - (1,0,0) = (-1,1,1) = D,;
D,, from (0,0,1) to (1,1,0), so (1,1,0) - (0,0,1) = (1,1,-1) = D,; and
D, , from (0,1,0) to (1,0,1), so (1,0,1) - (0,1,0) = (1,-1,1) = D,..
The magnitudes of the diagonal vectors are

|D1|=|D2|=|D3|=|D4|:\/§

The angle between any two of these diagonal vectors is, for example,

DD, _ ., (L1L1):(-111)

D\[|P,| 3

)

®3)

(4)

()
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so that
0=cos™ (l) =70.5°
3
Similarly,
b-b, DD, D,D, D, D, D,D, :+l
[D/[|Ds[ P|[Dy] - [D,][Ds| D[P D[Py 3

1-8. Let Obe the angle between A and r. Then, A -r= A? can be written as

Arcos 6= A?
or,
rcos@=A (1)
This implies
QPO=7 @)

Therefore, the end point of r must be on a plane perpendicular to A and passing through P.

1-9. A=i+2j-k B=-2i+3j+k

a) | A-B=3i-j-2k|

12

|A—B|=[(3)" +(-1) +(-2) |
|A-B|=14

b)

component of B along A
The length of the component of B along A is B cos 6.
A-B=ABcos 6
AB_-2+6-1_3 6
Yo Vo o 2

The direction is, of course, along A. A unit vector in the A direction is

Bcos 0=

%(i+2j—k)
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So the component of B along A is

1
Z(i+2j-k
S(i+2j-k)
c) cosezA'Bz 3 =\/§;t9=cos’1£
AB 614 247 27
0=71°
i j k
d AxB=|1 2 —1=i> =it et ?
) e s 12 172 s
2 3 1
|A xB=5i+j+7k|
e) A-B=3i-j-2k  A+B=-i+5j
i j k
(A-B)x(A+B)=|3 -1 -2
1 5 0

((A-B)x (A +B)=10i+2j+14k

1-10. r=2bsinwti+bcoswtj

v=1=2bwcos wti-bwsin wtj

a)
a=v=-2bw’ sin wti-bw’ cos wtj=-wr

speed =|v|=[ 4b’0” cos’ wt + b*e” sin® a)i,‘]l/2

= ba)[4 cos® ot +sin® cot]l/z

12

speed = bco[3 cos” wt+ 1]

b) Att=7/20,sinwt=1, coswt=0

So, at this time, v=—-bw j, a= 2bw” i

So,
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1-11.

i

a) Since (AxB), =) &, AB,, wehave
jk

(AxB)-C=)> &, ABC,

ik

=C,(A,B; - A;B,) - C,(AB; — A;B, )+ C;(A,B, — A,B,) (1)

A, A|=-C, C, C,|=|B, B, B,|=A-(BxC)
B 3 Bl B2 B3 Cl CZ C3

—_
N

G G G A Ay Ay A A A
B

iy
N

We can also write

Cl CZ CS Bl BZ BS
(AxB)-C=-|B, B, B,|=|C, C, C,|=B-(CxA) @)
A A, Al |A A A,

We notice from this result that an even number of permutations leaves the determinant
unchanged.

b) Consider vectors A and B in the plane defined by e, e, . Since the figure defined by A, B,
Cis a parallelepiped, A xB=e, x area of the base, but e, -C = altitude of the parallelepiped.
Then,

C-(AxB)=(C-e;)x area of the base
= altitude x area of the base

= volume of the parallelepiped

1-12.

The distance i from the origin O to the plane defined by A, B, C is
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,_la-(b=a)x(c-b)
(b-a)x(c-D)

_|a-(b><c—a><c+a><b)|

|b><c—a><c+a><b|

la-bxc| )

=|a><b+b><c+c><a|

The area of the triangle ABC is:

1 1 1
A:E|(b—a)x(c—b)|:E|(a—c)><(b—a)|:i|(c—b)x(a—c)| ()

1-13. Using the Eq. (1.82) in the text, we have
AxB=Ax(AxX)=(X-A)A—(A-A)X=gA-A’X

from which
w_(BXA)+A
A2
1-14.
1 2 <1112 1 O 1 21
a) AB=|0 3 11(/0 -1 2|=I1 -2 9
20 141 1 3 5 3 3
Expand by the first row.
-2 9 1 9 1 2
|AB|=1 +2 +1
3 3 5 3 5 3
|AB|:—104
1 2 1|2 1 9 7
b) AC=/0 3 11|/l4 3|=/13 9
20 111 0 5 2

9 7
AC=|13 9
5 2
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1 2 -1||8 5
c) ABC:A(BC): 0 3 112 -3
20 19 4
-5 -5
ABC=| 3 -5
25 14
d) AB-B'A'=?
(1 2 1]
AB=|1 -2 9 (from part a)
15 3 3]
(2 0 1][1 0 2 1 1 5
BA'=|1 -1 1/|2 3 0|=|-2 -2 3
10 2 3]|-1 11 1 9 3
0 3 4
AB-B'A'=|3 0 6
4 -6 0
1-15. If A is an orthogonal matrix, then
A'A=1
1 0 o0l[1 0 0] [1 0]
0 a all0O a —-al|=(0 1
0O —a all0 a a 0 01
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1-16.

rcos 0

r-a = constant
ra cos @ = constant

It is given that a is constant, so we know that

r cos 6 = constant
But r cos € is the magnitude of the component of r along a.

The set of vectors that satisfy r-a = constant all have the same component along a; however, the

component perpendicular to a is arbitrary.

Thus the surface represented by r-a = constant
is a plane perpendicular to a.

1-17.

Consider the triangle a, b, c which is formed by the vectors A, B, C. Since

C=A-B
IC =(A-B)-(A-B) (1)
=A*-2A-B+B?
or,
|C|* = A + B* ~2AB cos 8 ()

which is the cosine law of plane trigonometry.

1-18. Consider the triangle a, b, c which is formed by the vectors A, B, C.
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C=A-B
so that
CxB=(A-B)xB
but the left-hand side and the right-hand side of (2) are written as:
CxB=BCsincae,
and
(A-B)xB=AxB-BxB=AxB=ABsinye,
where e, is the unit vector perpendicular to the triangle abc. Therefore,
BC sin a = ABsin y
or,

C A

siny sina

Similarly,

C A B

siny sina sinf

which is the sine law of plane trigonometry.

1-19.

a) We begin by noting that
la~b|* = a® +b* —2ab cos (a - j)
We can also write that

la—bf =(a,-b,)" +(a,~b,)’

=(acosa—bcosﬂ)2+(asina—bsinﬂ)2

=g’ (sin2 a + cos’ a) +b? (s.in2 [+ cos’ ﬂ) - Zab(cos o cos f+sin a sinﬁ)

=a*+b* - Zab(cos a cos f+sin « sinﬁ)

CHAPTER 1

M)

)

®3)

(4)

()

(6)

()
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Thus, comparing (1) and (2), we conclude that

cos(a — fB) = cos a cos B+ sin a sin B

b) Using (3), we can find sin(a - f):

sin(a—f)=1-cos’(a- f)

= \/1—C052 a cos® B—sin® a sin® f—2cos a sin a cos £ sin B

= \/1— cos’ a(l— sin’ ,8) —sin® a(l— cos’ ﬂ) —2cos a sin a cos Bsin S

= \/sinz a cos® f—2sin a sin ffcos a cos S+ cos’ asin® f

. . 2
= \/(sm a cos f—cos a sin ,8)

so that

|sin (a—ﬂ) =sin a cos ff—cos a sin ﬁ|

1-20.

a) Consider the following two cases:
When i #j 0; =0 but &, #0.
When i=j 5; #0 but &, =0.

Therefore,

Z Eiik 51‘]‘ =0
ij

b) We proceed in the following way:
Whenj=k ¢; =¢;=0.

Terms such as ¢;;, &,, =0. Then,

Zgijk Eipk =€z Era T €13 €13 T 01 Ep + &3 Erz T Eizp Epzp Tt €z €43
i

Now, suppose i=/=1, then,

Z: Ei3 Eip & E1pp =1+1=2
ik

13

®)

(4)

(5)

ey
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fori=r(=2, 225213 Eyiz + Exy Exy =1+1=2.Fori=(=3, 225312 Eyp +E3py E3 =2.Buti=1,

ik ik
(=2 gives ZzO.Likewisefori:Z, (=1;i=1,0=3,i=3,0=1,i=2,0=3;i=3, {=2.
ik
Therefore,
Z Siik Eujp = 26, )
7k
c) Z Eix Eijk = €123 €103 T E312 E3nn F €301 &3 t €130 E13p F €013 €z T+ €31 €03y
ik
=1-1+1-1+(-1)-(-1) +(-1)- (1) + (-1)- (-1) + (1) - (1)
or,
Z Eie g =6 3)
ik
1-21. (AxB), = Z &y ABy (1)
ik
(AxB)-C=> > &, ABC, ()
Tk
By an even permutation, we find
ABC=) ¢, ABC, (3)
ijk

1-22. To evaluate Z &y & We consider the following cases:
k
a) i=j: Zeijk Epi = D, Eiie € =0 foralli, £,m
k k
b) i=¢: Zgijk Epi =Zg,.jk Em =1forj=mand k#1i,j
k k
=0 forj=m
c) i=m: Zgijk Ernk 22‘91‘]‘1( eq =0forj#/
k k
=-1forj=¢and k#i,j
d) j=1¢: Zgijk Emik :Zgijk Eime =0 form#i
k k

=—1form=iandk#i,j



MATRICES, VECTORS, AND VECTOR CALCULUS

€) j=m: ) &y =D g £y =0 forizl
k k

=1fori=/¢andk#i,j
f) (=m: zgijk E i :Zgijk &4 =0foralli,jk
k k

g) i#/(orm:Thisimpliesthati=kori=jorm=k.

Then, Zgijk & =0 forall 7,j,¢,m
k

h) j#lorm: Zgijk & =0 forall i,j,¢,m
k

Now, consider J, 6, —J,, J;, and examine it under the same conditions. If this quantity

il ~jm

behaves in the same way as the sum above, we have verified the equation

Z Eik Eomk = Oy
X

a) i=j:9,0,-9,0,=0foralli, {,m
b) i=(:06,0,-0,06;=1ifj=m,izjm
=0ifj=m

c) i=m:8,6,-5,6,=-1ifj=(,i=]

ji
—0ifj=l
d j=(:0,06,-05,0,=-1ifi=m, i/
=0ifi#m
e) j=m:6,0,,-0,0,,=1ifi=(, m=/(
=0ifi=/
f) £=m:5,.[5j£—5il6j,=0foralli,j,£

9) i#(,m: 0,0, -9, 5].€=0foralli,j,£,m

il ~jm

h) j#(m:9,06,-9,09,=0foralli,jl,m

il ¥ jm

Therefore,

o

m

Sy

Zgijk Emk = Oy
k

1)

im

0.

it

Using this result we can prove that

Ax(BxC)=(A-C)B—(A-B)C

15

1)
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First BxC 25 B.C, . Then,

ijk ~j

Therefore,

CHAPTER 1
[AX(BXC)]/ :Zgémn BXC zg(’mn A zgn]k j
= kZ: Epmn gnjk Am i~k T kZl Eomn € jkn AmB]C
Jkmn jkmn
Lz Elmn ]knJ A
jkm
Z (§]l§km 5k[5jm )AmB]Ck
jkm
( A )
=>" A,B,C,-> A,B,C, =B, (Z 4,6, | =C, LZ A8,
=(A-C)B, -(A-B)C,
|Ax(BxC)=(A-C)B—(A B)C| )

1-23. Write
A X B

CxD

Then,

Z ]fm
Z gkrs
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[(AxB)x(CxD)] Zg”"L ][mABJLng,SC,DSJ

- Z 1]k ]/m gkrs A BmCrDs

jktmrs

]/m kz gz]k rskJ A BmCrDs

]/mrs

¥ 5(0,0,-0.0,)AB.CD,

jlmrs

= %.(AB,CD, - AB,DC,)

m>="i—j m—i"j
jlm

)
Lz iom D;AB,, J LZ itm CjAéBmJ D,

jlm jlm
=(ABD)C, - (ABC)D,

Therefore,

[(AxB)x(CxD)|=(ABD)C—(ABC)D

1-24. Expanding the triple vector product, we have

ex(Axe)=A(e-e)—e(A-e) 1)
But,
Ae-e)=A (2)
Thus,
A=e(A-e)+ex(Axe) €)

e(A - e) is the component of A in the e direction, while e x (A x e) is the component of A
perpendicular to e.
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1-25.

The unit vectors in spherical coordinates are expressed in terms of rectangular coordinates by
e,= (cos 6 cos ¢, cos Bsin ¢, —sin 0)
e,= (—sin @, cos @, 0)
e = (sin 6 cos ¢, sin @'sin ¢, cos 49)
Thus,
e, = (—¢cos 0 sin ¢— Osin O cos ¢, ¢ cos O cos ¢— O sin O sin ¢, — & cos 9)
=—0e, + ¢ cos Oe,
Similarly,
e, = (—¢ oS ¢, — ¢sin ¢, O)
=—¢cosfe,—psinfe,
é =¢sin Oe,+ Ge,
Now, let any position vector be x. Then,
X =re,
X=ré, +ré, = r(¢ sin Ge,, + 9e9) +ré,
=rgsinOe, +rle,+re,
X = (r¢ sin 0+ r0p cos O+ ré sin 9)e¢ +rgsinde, + (?9+ ré)eg +r0e, + e, +7e,
= (21’¢'§ sin @+ 210 cos 0+ rd sin 67)e¢j + (i" —r¢* sin® 0— r@z)er
+(2i’9+ r0—r¢” sin 0 cos H) e,

or,

1

()

(3)
(4)

(6)

(7)



MATRICES, VECTORS, AND VECTOR CALCULUS

1d

X=a= [1’ — 16 —r§’ sin’ 49]e,, + [;E( 29) — ¢ sin 6 cos H}eg

1
rsin @ dt

d (rzé} sin® 0)}%

1-26. When a particle moves along the curve

we have

so that

i=—kfsin 0

r=k(1+cos 9)

¥= —k[@z cos 0+ O'sin 6’]

Now, the velocity vector in polar coordinates is [see Eq. (1.97)]

v=re, +rle,

v? = |v|2 =2 +r2@*

=k*@* sin® O+ k* (1+ 2 cos 0+ cos? 0) &

= kzé’z[Z +2 cos 9]

and o’ is, by hypothesis, constant. Therefore,

. 02
0= \f 2k? (1 + cos 0)

Using (1), we find

2kr

(%

Differentiating (5) and using the expression for 7, we obtain

0=

. v*sin®

v* sin 0

art 4k> (1 + cos 49)2

The acceleration vector is [see Eq. (1.98)]

so that

a= ('r'— ré?z)er +(ré+ 2?9)%

19

(8)

1)

)

®3)

(4)

()

(6)

)

(8)
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a'erz'r'—rt?2

=—k(é’2 cos O+ O'sin 9)—k(1+cos 6’)92

. &% sin? @ .
=—k| & cost9+L+(1+cos«9)¢92
2(1+cost9)
, 1—cos?
- k| 20080+ 2950 4
2(1+cos€)
3 '2
:—Eke <1+COS 49)
or,
3 ¢?
a-e =———
4 k
In a similar way, we find
30> sinéd
a-e,=———
4 k 14+cos@

From (10) and (11), we have

|a|=\/(a-e,)2 Jr(.a\-eg)2

or,

3 ¢? 2
=3
4 k\1+cos@

1-27. Since

rx(vxr)=(r-r)v—(r-v)r

we have
d d
E[rx(vxr)]:E[(r-r)v—(r'v)r]
=(r-r)a+2(r-v)v—(r-v)v—(v-v)r—(r-a)r
:7’2a+(r-v)v—r(v2 -l—r-a)
Thus,

d 2 2
E[rx(vxr)]zr a+(r-v)v—r(r-a+v )

CHAPTER 1

©)

(10)

(11)

(12)

(13)

ey

)
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1-28. grad(ln|r|) = Zaix(lnm)ei (1)
where
= [>x ?)
Therefore,
0 1 x;
a—x:l(ll'l|l'|) H lez
-5 ©)
[
so that
grad (In|) = #(Z x,.e,) (4)
or,
grad(In|r|) = rLZ ()

1-29. Let * =9 describe the surface S, and x+y+z”> =1 describe the surface S, . The angle ¢
between S, and S, at the point (2,-2,1) is the angle between the normals to these surfaces at the
point. The normal to S, is

grad(S,) = grad (> —9) =grad(x* +y” +2° —9)

= (2xe, +2ye, +2ze,)

x=2,y=2,z=1 (1)
=4e, —4e, +2e,
In S,, the normal is:

grad(S,) =grad(x+y+2* —1)

= (el +e,+ zze:s) x=2,y=-2,2=1 )
=e +e,+2e,

Therefore,
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grad(S,)-grad(S,)
|grad(51)||grad(52)|

(4e1 —4e, + 2e3)-(e1 +e,+ 2e3)

cos 0=

_ 3
66 ¥
or,
4
g b 4
cos 676 )
from which
f=cos™’ g =74.2° ®)
S ogy) oy 04
1-30. grad(gy) = ;ei ox, Zi:ei ¢ ox; " ox; v
e g0y 00
_Zl:el ¢ ox, +Zi:ez' ox, 4
Thus,
grad(gy) = pgrad y + y grad ¢
1-31.
a)
, ar a ( \\1/2 n
dr' = n _—
gradr ;e’ ox; Ze, ox; hzj:xd
n [ 2\3_1
= Zel 2xi EL;XJJ
(<)
=>exn LZX]ZJ
i j
= Zei x;n rn2) (1)
Therefore,

grad r" =nr"? r @
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b)
3 a 3 a v
gradf(r):;:ei g—i?zgei%%
o () o)
:Z a_le;xj or
( 2\_1/2 0
=>e xiLZx]J fa(:)
_ve N
B r dr (3)
Therefore,
grad (1) == L @
c)
2 O Inr 0? 2\1/2
\Y (lnr):z e _28x2 lnLZx]J
i -1/2
1 in(foJ
zzi 2 j
- axi ( 2\1/2
2]
ol (<)
:Zﬁ_x, xiLZj:ij ]
(wo) <o)
ST 2] 2R
2\(.2\2 1
zzi:(—Zx].)(r) +3[r—2}
2 3 1
AT ®)
or,
VZ(lni’):rlz (6)
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1-32. Note that the integrand is a perfect differential:

zar-f+zbf-f:a%(r-mb%(f-f) (1)
Clearly,
I(Zar -f+2bt-¥) dt = ar® + bi* + const. (2)

1-33. Since

dlr| tr—-r t 17
e @

we have

I 17 dlr
j{;—r—z} dt:ja{;}dt ?)

from which

j[f—r—thzhc 3)

where C is the integration constant (a vector).

1-34. First, we note that
d

E(AxA)zAxA+AxA 1)
But the first term on the right-hand side vanishes. Thus,
I(AxA)dtzI%(AxA)dt )
so that
[(AxA)dt=AxA+C ©

where C is a constant vector.
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1-35.

el N
"

We compute the volume of the intersection of the two cylinders by dividing the intersection
volume into two parts. Part of the common volume is that of one of the cylinders, for example,
the one along the y axis, between y = -2 and y = a:

V, =2(za’)a=27a" (1)
The rest of the common volume is formed by 8 equal parts from the other cylinder (the one

along the x-axis). One of these parts extends fromx =0tox=a,y=0to y=+va’ -x* ,z=ato
z=+a’ —x* . The complementary volume is then

V,=8 J.;dx Iomdy Iumdz

=8.|.:dx Ja? — %2 [\/az —x* —a}

3 3 i
xTa . 4x
=8|a’x———-—sin" =
3 2 a],

= % a’ —2za’ 2)

Then, from (1) and (2):

©)
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1-36.

The form of the integral suggests the use of the divergence theorem.
jSA-da=va-Adv (1)

Since V-A =1, we only need to evaluate the total volume. Our cylinder has radius c and height
d, and so the answer is

j.vdv = 7c’d )

1-37.

X
To do the integral directly, note that A = R3e, , on the surface, and that da = dae, .
LA-da=R3 jsda=R3x4;zR2=4ﬂR5 1)
To use the divergence theorem, we need to calculate V-A . This is best done in spherical
coordinates, where A =r’e,. Using Appendix F, we see that

10
V-A= r—za(rzAr) =572 )

Therefore,
[ V-Ado=["sinodo[ "dp[ ‘r*(5r°)dr = 4aR® 3)

Alternatively, one may simply set dv=47r* dr in this case.
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1-38.

P+yr=1
By Stoke’s theorem, we have

J(VxA)-da=[ A-ds 1)

The curve C that encloses our surface S is the unit circle that lies in the xy plane. Since the

element of area on the surface da is chosen to be outward from the origin, the curve is directed
counterclockwise, as required by the right-hand rule. Now change to polar coordinates, so that
we have ds=d6fe, and A =sin 0i+cos 8k on the curve. Since ef-i=—-sin ¢ and ef-k=0, we

have

[ A-ds :joz”(—sin2 6)d0=-x )

1-39.

a) Let’s denote A = (1,0,0); B = (0,2,0); C = (0,0,3). Then AB=(-1,2,0); AC=(-1,0,3); and
ABx AC=(6,3,2). Any vector perpendicular to plane (ABC) must be parallel to ABx AC, so
the unit vector perpendicular to plane (ABC) is n=(6/7,3/7,2/7)

b) Let’sdenote D =(1,1,1) and H = (x,,z) be the point on plane (ABC) closest to H. Then
DH= (x-1,y-1,z-1) is parallel to n given in a); this means

x_lzé:Z and x—1:§:3
y-1 3 z-1 2

Further, AH=(x—1,y,z) is perpendicular to n so one has 6(x—1)+3y+2z=0.

Solving these 3 equations one finds

H=(x,,2) = (19/49,34/49,39/49) and |DH|= ;

1-40.
a) At the top of the hill, z is maximum;

0=%=2y—6x—18 and 0=%=2x—8y+28
ox oy
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so x =-2;y =3, and the hill’s height is max[z]= 72 m. Actually, this is the max value of z,
because the given equation of z implies that, for each given value of x (or y), z describes an
upside down parabola in term of y ( or x) variable.

b) Atpoint A: x =y =1, z=13. At this point, two of the tangent vectors to the surface of the
hill are
t, = (1,0,% )=(1,0,-8) and t,= (0,1,%
0% wy

)=(0,1,22)

Evidently t, xt, =(8,-22,1) is perpendicular to the hill surface, and the angle # between this
and Oz axis is

- (0,0,1)-(8,-22,1) 1

J& 1227412 2343

c) Suppose that in the o direction ( with respect to W-E axis), at point A = (1,1,13) the hill is
steepest. Evidently, dy = (tan o )dx and

dz = 2xdy + 2ydx — 6xdx — 8ydy —18dx + 28dy = 22(tan o — 1)dx

0s 0

so @=87.55 degrees.

then

Jax®’ +dy*  dx/cosa -1

dz  2(tana-1)dx 2242 cos (o + 45)

tan f=

The hill is steepest when [tan 4 is minimum, and this happens when «a = —45 degrees with
respect to W-E axis. (note that & = 135 does not give a physical answer).

1-41.
A-B=2a(a-1)
then A-B=0 ifonlya=1ora=0.



CHAPTER

Newtonian Mechanics—
Single Particle

2-1. The basic equation is

F=m}, D
a) F(x,t)=f(x;)g(t)=m3,: Not integrable ()
b) F(x,t)=f(x)g(t)=mi,
dax, .
i% = f(xi)g( )
fcgfl,) = %ﬁf) dt : Integrable 3)
c) F(x,x)=f(x;)g(x;)=m5,: Not integrable (4)

2-2. Using spherical coordinates, we can write the force applied to the particle as

F=Fe, +Fe,+Fe, (1)

But since the particle is constrained to move on the surface of a sphere, there must exist a
reaction force —F,e, that acts on the particle. Therefore, the total force acting on the particle is

E,. = Fe, + Fe, =mf (2)
The position vector of the particle is
r=Re, 3)
where R is the radius of the sphere and is constant. The acceleration of the particle is
a=i=Ré, (4)

29
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We must now express €, in terms of e,, e,, and e,. Because the unit vectors in rectangular

coordinates, e,, e,, e,, do not change with time, it is convenient to make the calculation in
terms of these quantities. Using Fig. F-3, Appendix F, we see that

e, =e, sindcos g+e, sin fsin g+ e, cos
e, =e, cos fcos ¢+e, cos dsin p—e, sin & (5)

e,=—e sing+e, cosy

Then
e, =e1(—¢sin @sin ¢+ 0 cos 0 cos ¢)+e2(9cos @sin ¢+ ¢ sin 0 cos ¢)—e3 @sin 0
(6)
=e, gsinf+e, O
Similarly,
égz—e79+e¢¢cos€ 7)
é¢=—er¢sin0—eg¢cose (8)
And, further,
é =—e, ((/52 sin® 0+ 92) + ea(é— #” sin 0 cos 0) + e¢(2[9¢3 cos 0+ ¢ sin 0) )
which is the only second time derivative needed.
The total force acting on the particle is
Ftotal =mr = MRer (10)
and the components are
F,= mR(é— #” sin 0 cos 6?)
(11)
F,= mR(Zég}ﬁ cos 0+ ¢sin 6’)
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2'3-

Vo

The equation of motion is

F=ma
The gravitational force is the only applied force; therefore,
F,=m¥=0 }
F, =mjj=-mg
Integrating these equations and using the initial conditions,

x(t=0)=1v, cos &
y(t=0)=v, sina ]
We find
x(t) =10, cos &
y(t)=v, sina - gt }
So the equations for x and y are

x(t)=0v,t cos
. 1 .,
y(t)=1,t sin a- gt
Suppose it takes a time ¢, to reach the point P. Then,
¢ cos B=1,t, cos a
. . 1,
Usin f=1v,t, sin a —EgtO

Eliminating ¢ between these equations,

20 si
lgtO (to—w+2ﬂcosatanﬁ]:0
2 8 8

from which

31

1)

()

3)

(4)

(5)

(6)

(7)
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2
t,= ﬁ(sin o —cos o tan ﬂ) (8)

8

2-4. One of the balls’ height can be described by y =y, +v,t — gt*/2 . The amount of time it
takes to rise and fall to its initial height is therefore given by 27, /¢ . If the time it takes to cycle
the ball through the juggler’s hands is 7=0.9 s, then there must be 3 balls in the air during that
time 7. A single ball must stay in the air for at least 37, so the condition is 2v,/¢ > 37, or

v, >2132m-s7".

2'5-
flightpath

/er

point of maximum
acceleration

a) From the force diagram we have N —mg = (mvz / R) e, . The acceleration that the pilot feels is

N/m=g+ (mvz / R) e,, which has a maximum magnitude at the bottom of the maneuver.
b) If the acceleration felt by the pilot must be less than 9¢, then we have

>i:(3-330m-s’1)

> ——=12.5km (1)
8¢ 8:98m-s

A circle smaller than this will result in pilot blackout.

2'6-

Let the origin of our coordinate system be at the tail end of the cattle (or the closest cow /bull).

a) The bales are moving initially at the speed of the plane when dropped. Describe one of
these bales by the parametric equations

X=X, +0,t (1)
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1
Y=y 58t @)
where y, =80 m, and we need to solve for x,. From (2), the time the bale hits the ground is

r=4/2y,/g - If we want the bale to land at x(7)=-30 m, then x, = x(7)—v,7. Substituting

v, =444 m-s” and the other values, this gives x, =-210 m . The rancher should drop the bales
210 m behind the cattle.

b) She could drop the bale earlier by any amount of time and not hit the cattle. If she were late
by the amount of time it takes the bale (or the plane) to travel by 30 m in the x-direction, then
she will strike cattle. This time is given by (30 m)/v, =0.68 s .

2-7. Air resistance is always anti-parallel to the velocity. The vector expression is:
Wzlcw,oAv2 [—X}z—l ¢, pAvV (1)
2 v 2
=ma, we obtain the parametric equations
X=-bx X’ +1° 2)

j=-byNi'+y - g ®)

Including gravity and setting F,

et

where b =c,pA/2m . Solving with a computer using the given values and p=1.3 kg-m~, we
find that if the rancher drops the bale 210 m behind the cattle (the answer from the previous
problem), then it takes = 4.44 s to land = 62.5 m behind the cattle. This means that the bale

should be dropped at = 178 m behind the cattle to land 30 m behind. This solution is what is

plotted in the figure. The time error she is allowed to make is the same as in the previous
problem since it only depends on how fast the plane is moving.

80 — L . \\IV T T T T T T ]

60 - T

€} .

20 = T

0 | | | | | | | | LN
—-200 -180 -160 -140 -120 -100 -80 -60 —40

x (m)

—— With air resistance
— — No air resistance
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2'8-

%\w\
.

'S
-

From problem 2-3 the equations for the coordinates are

x =,t cos & 1)
. 1 ,
Yy =0,t sma—Egt (2)

In order to calculate the time when a projective reaches the ground, we let y = 0 in (2):

v,t sin 0{—%gt‘2 =0 (3)
t= 2% sin o (4)
4
Substituting (4) into (1) we find the relation between the range and the angle as
2
x=—2sin 2« o)
8

) ) T, T ) .
The range is maximum when 2a = b ie., a= 1 For this value of o the coordinates become

.
2
. (6)
Yo 2
Wy
X 7 58

Eliminating t between these equations yields

2 2
xz—v—°x+v—°y=0 (7)
8 g
We can find the x-coordinate of the projectile when it is at the height h by putting y = 1 in (7):
2 2
P %k _ 0 (8)
8 8
This equation has two solutions:
2 2
x, Y vy —4gh
2¢ 2
L ©)
X, =20, % vy —4gh
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where x; corresponds to the point P and x, to Q in the diagram. Therefore,

d=1x,—x, =L Jo —4gh (10)
8

2-9.
a) Zero resisting force (F, =0):
The equation of motion for the vertical motion is:
F=ma=m%=—mg (1)
Integration of (1) yields
v=—-gt+7, (2)
where v, is the initial velocity of the projectile and t = 0 is the initial time.

The time t,, required for the projectile to reach its maximum height is obtained from (2). Since
t,, corresponds to the point of zero velocity,

v(tm):Ozvo—gtm, 3)

we obtain

by =2 @

b) Resisting force proportional to the velocity (F, = —kmv):

The equation of motion for this case is:

dv
F=m—=-mg—k 5
m o mg — kmv (5)
where —kmv is a downward force for t <t) and is an upward force for t >t . Integrating, we
obtain
8§ kvg+g
o(t)=—F+—"¢ 6
(== +—% (©)
For t=t,, v(t) =0, then from (6),
v, = % (ekt’" - 1) 7)
which can be rewritten as
kt, =In {1 + kﬂ} @)
8

Since, for small z (z < 1) the expansion
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1 1
In(l+z)=z-=2"+=2 9
n(l+z)=z--z z )

is valid, (8) can be expressed approximately as

2
P P LN (10)
" 2¢ 3| 2¢

which gives the correct result, as in (4) for the limit k — 0.

2-10. The differential equation we are asked to solve is Equation (2.22), which is ¥ = —kx .
Using the given values, the plots are shown in the figure. Of course, the reader will not be able
to distinguish between the results shown here and the analytical results. The reader will have to
take the word of the author that the graphs were obtained using numerical methods on a

computer. The results obtained were at most within 10~ of the analytical solution.

vvst
10 T T T T T
>
~
E sl i
IS}
| | | 1
0 5 10 15 20 25 30
£ (s)
xvst
100 T T T T
é 50 7
=
0 | | | | |
0 5 10 15 20 25 30

v (m/s)

100

2-11. The equation of motion is

d’x
m —
dar?

= —kmv® + mg @))

This equation can be solved exactly in the same way as in problem 2-12 and we find
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1 — kv?
x=— log {%} 2)

where the origin is taken to be the point at which v =1, so that the initial condition is

x(v = vo) =0. Thus, the distance from the point v =19, to the point v=7, is

s(voévl)zilog{g_kvo} (3)

2-12. The equation of motion for the upward motion is

2
m%: —mko® —mg @)
Using the relation

d’x dv _dvdx do

d'x_do_dodx _do 2
At dx dt Cdx @

we can rewrite (1) as

vdo

=—d 3
ko’ + g * ®
Integrating (3), we find
1 2
ilog(kv +g)=—x+C 4)

where the constant C can be computed by using the initial condition that v =v, when x = 0:

1
C= Elog (kvé + g) 5)
Therefore,
2
x= 1 log —kvg *8 (6)
2k ko™ +g

Now, the equation of downward motion is

2
m % = —mko® +mg )

This can be rewritten as

_vd g ®)
~kv" + ¢

Integrating (8) and using the initial condition that x = 0 at v = 0 (w take the highest point as the
origin for the downward motion), we find
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x:ilog g )

At the highest point the velocity of the particle must be zero. So we find the highest point by
substituting v = 0 in (6):

2
%, =L log K0+ 8 (10)
2k g
Then, substituting (10) into (9),
k 2
Lpgr8 1, 8 (11)
2k g 2k g—kv
Solving for v,
(12)
We can find the terminal velocity by putting x — o0 in(9). This gives
g
- |& 13
o =% (13)
Therefore,
p=—00 (14)
N
2-13. The equation of motion of the particle is
dv
—=-mk(0* +a 1
m 77 m (U a v) 1)
Integrating,
dv
———=—k | dt 2
'[ v(vz - az) '[ @
and using Eq. (E.3), Appendix E, we find
1 v
—1 =—kt+C 3
2a° r{aﬂvz} ®)
Therefore, we have
2
C_—cre 4)
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where A =24’k and where C' is a new constant. We can evaluate C’ by using the initial
condition, v=1v, att =0:
2
. v
C'= 2 ° 2
as +v,

()

Substituting (5) into (4) and rearranging, we have

v_{ a’Cle™ Tz dx

== | =22 6
1-Cle™™ dt ©)

Now, in order to integrate (6), we introduce u = e so that du = —Au dt. Then,
o a2 12
aC'e a C'u du
X = PEE— dt =— ; —_—
1-C'e A 1-C'u u

_ Nl du @)
A JN-Cu’+u

Using Eq. (E.8¢c), Appendix E, we find

x= % sin™! (1-2C"u)+C" @)
Again, the constant C” can be evaluated by settingx =0att=0;ie,x=0atu=1:
a
C"=—-—sin"(1-2C’ 9
% sin(1-20) ©)
Therefore, we have
_ a a1 y —At s -1 '
x—z[sm (—ZC e +1)—sm (-2C +1)]
Using (4) and (5), we can write
1| . J[-+a®] . [-02+a
X=—-l|sin" | ————|-sin" | ———— 10
Zak{1 _vz+a2} ' vy +a° {10)

From (6) we see that v — 0 as t — . Therefore,

B 2 2
0" +a r
limsin™ | ——— |=sin"' (1) == 11
oo _vz+a2} =5 {1
Also, for very large initial velocities,
2 2
vy +4a T
lim sin”' | ——— |=sin"' (-1) == 12
am {%+f} (-1)=-5 (12)

Therefore, using (11) and (12) in (10), we have
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x(t—>oo)=

T
_ 13
2ka (13)

and the particle can never move a distance greater than 7/2ka for any initial velocity.

2-14.

-
o

a) The equations for the projectile are

X =1, cos at

Y =1, sin oct‘—%gt‘2

Solving the first for t and substituting into the second gives
1 g’

=xtana—-—————

4 2 v} cos’ a

Using x =d cos fand y = d sin fgives

dZ 2
dsinﬁ:dcosﬂtana—gzc—oiﬂ
205 cos” a

d 2
0=d W—Cosﬂtanoﬁsinﬂ
20, cos” a

Since the root d = 0 is not of interest, we have

2(cos Btan a —sin ) v; cos” a

g cos’ f3

207 cos a (sin a cos ff—cos a sin ﬁ)

- g cos’ j

_ 205 cos asin (a - f)

a g cos” j @)
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b) Maximize d with respect to «

d d)=0 2—05[—sinasin(a—ﬂ)Jrcosacos(a—ﬁ)]cos(2a—,8)

ﬁ( )= ~gcos’ f
cos (2a—-p)=0

20— p=

NI oy

T
a=—+
4

c¢) Substitute (2) into (1)

ol D]

max g cos’ B|.

Using the identity

sin A—sin B=2 cos %(A‘F B) sin %(A— B)
we have

T
. 205 'smE—smﬂzﬁ 1—sin 8
g cos’ B 2 ¢ |1-sin’* B
%
™ g(1+sin )
2-15.

The equation of motion along the plane is

1)

mde _ mg sin - kmo*

Rewriting this equation in the form

do @

=dt
sin 8- 0°

| =
= |og
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We know that the velocity of the particle continues to increase with time (i.e., dv/dt >0), so that
( g/ k) sin &> v”. Therefore, we must use Eq. (E.5a), Appendix E, to perform the integration. We
find
L SRS T [ .
Ssing % sin ¢

k
The initial condition v(t = 0) = 0 implies C = 0. Therefore,

v:‘/%sinﬁtanh(«/gksinﬁt):% (4)

We can integrate this equation to obtain the displacement x as a function of time:

xX= ,/%sin@jtanh( gksinet) dt

Using Eq. (E.17a), Appendix E, we obtain
In cosh( gksin @ t)

gk sin @

The initial condition x(t = 0) = 0 implies C’" = 0. Therefore, the relation between d and ¢ is

8

x=,/=sin @
k

+C’ (5)

d= % In COSh( gksin @ t) 6)

From this equation, we can easily find

B cosh™ (edk )

- \/8k sin 6 @

2-16. The only force which is applied to the article is the component of the gravitational force
along the slope: mg sin a. So the acceleration is g sin a. Therefore the velocity and displacement
along the slope for upward motion are described by:

vzvo—(gsina)t (1)
x:voi‘—%(gsinoz)t2 (2)

where the initial conditions v(t =0)=1v, and x(t=0)=0 have been used.

At the highest position the velocity becomes zero, so the time required to reach the highest
position is, from (1),

ty= 3)

At that time, the displacement is
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1 0
Xo = E 2 (4)
gsina

For downward motion, the velocity and the displacement are described by

v:<gsina)t (5)

x=%(gsina)t2 (6)
where we take a new origin for x and t at the highest position so that the initial conditions are
o(t=0)=0and x(t =0) =0.

We find the time required to move from the highest position to the starting position by
substituting (4) into (6):

)

Adding (3) and (7), we find

20,

(8)

gsina

for the total time required to return to the initial position.

Y
35°

60 m ‘\

m Fence

2-17.

0.
The setup for this problem is as follows:

X =1v,t cos 6 (1)
) 1,
y:y0+votsm6’—agt (2)

where 6=35" and y, =0.7 m . The ball crosses the fence at a time 7= R/ (v, cos 0) , where

R =60 m. It must be at least i = 2 m high, so we also need h -y, =v,7sin 8- gz* /2. Solving for
v, , we obtain

02 = S
* 2cos Q[R sin 6’—(h—y0)cos 19]

®)

which gives v, =254 m-s™".
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2-18.

a) The differential equation here is the same as that used in Problem 2-7. It must be solved for
many different values of v, in order to find the minimum required to have the ball go over the

fence. This can be a computer-intensive and time-consuming task, although if done correctly is
easily tractable by a personal computer. This minimum v, is =35.2 m-s™, and the trajectory is
shown in Figure (a). (We take the density of airas p=13 kg-m™.)

15

10

y (m)

— With air resistance
— — No air resistance
""" fence height

fence range

b) The process here is the same as for part (a), but now we have v, fixed at the result just
obtained, and the elevation angle dmust be varied to give the ball a maximum height at the
fence. The angle that does this is = 0.71 rad = 40.7°, and the ball now clears the fence by 1.1 m.
This trajectory is shown in Figure (b).

20 T T T T T

x (m)

— Flight Path
""" fence height
fence range
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2-19. The projectile’s motion is described by

xX= <Z)O cos a)t
) M
y=(0, sin oc)t—Egt‘2

where v, is the initial velocity. The distance from the point of projection is

r=x’+y’ 2)
Since r must always increase with time, we must have 7 >0:

r.:xx+yy>0 3)
P

Using (1), we have
iy =S g D in a)t* +0;
yy= 5 gt > g(vo sin a)t + vyt 4)
Let us now find the value of t which yields xx+yy =0 (i.e.,, 7=0):

zévosmaiv_o 9sin” a—8 (5)

2 g 2

t

For small values of ¢, the second term in (5) is imaginary. That is, r = 0 is never attained and the
value of t resulting from the condition 7 =0 is unphysical.

Only for values of « greater than the value for which the radicand is zero does t become a
physical time at which 7 does in fact vanish. Therefore, the maximum value of « that insures
7 >0 for all values of t is obtained from

9sin’ o, —8=0 (6)
or,
L %
3
so that

®

2-20. If there were no retardation, the range of the projectile would be given by Eq. (2.54):
02
R=-"sin 26, (1)
g
The angle of elevation is therefore obtained from
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Rg
v

sin 26, =

(1000 m) x (9.8 m/sec’)

(140 m/sec)’
=0.50 )
so that
6, =15° 3)
Now, the real range R’, in the linear approximation, is given by Eq. (2.55):
R'=R {1 — M{—V}
38

> sin 20 4kv, sin 0
_ U sin {1_ vosm} @

8 38
Since we expect the real angle #to be not too different from the angle ¢, calculated above, we
can solve (4) for @by substituting 6§, for in the correction term in the parentheses. Thus,
R!
S ©)
) { 4kv, sin 6, }
vl 1l-—
38

Next, we need the value of k. From Fig. 2-3(c) we find the value of km by measuring the slope of
the curve in the vicinity of v = 140 m/sec. We find km =(110 N)/(500 m/s) = 0.22 kg/s . The

curve is that appropriate for a projectile of mass 1 kg, so the value of k is
k=0.022 sec™ (6)

Substituting the values of the various quantities into (5) we find #=17.1°. Since this angle is
somewhat greater than ¢, , we should iterate our solution by using this new value for 6, in (5).
We then find 6=17.4°. Further iteration does not substantially change the value, and so we
conclude that

sin 20 =

0=17.4°

If there were no retardation, a projectile fired at an angle of 17.4° with an initial velocity of
140 m/sec would have a range of

_ (140 m/sec)’ sin 34.8°
9.8 m/sec’

=1140 m
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2-21.

Assume a coordinate system in which the projectile moves in the x, —x, plane. Then,

X, =0,t cos a
. 1,

X, =0yt sin a—Egt

or,
r=X,e, +X,e,
. 1
= (vot cos Ot)e2 +| vt sin a — > gt e,
The linear momentum of the projectile is
p=mi= m[(vo cos oz)e2 + (UO sin a — gt)e3]

and the angular momentum is
L=rxp= [(vot cos oc)e2 +(vot sin o — gtz)eJ X m[(vo cos (Z)92 + (vo sin a — gt)eJ

Using the property of the unit vectors that e; xe; =e; ¢, , we find

L= %(mg v,t* cos a) e
This gives
L=—(mg vyt cos a)e,
Now, the force acting on the projectile is
F=-mge,

so that the torque is
N=rxF= [(vot cos a) e, + (vot sin o —%gtzj eS}(—mg) e,

= —(mg Uyt cos a) e

which is the same result as in (6).

47
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2-22,

Our force equation is

F=q(E+vxB) (1)

a) Note that when E = 0, the force is always perpendicular to the velocity. This is a centripetal
acceleration and may be analyzed by elementary means. In this case we have also v L B so that
|vxB|=vB.

2

ma mo_ quB )
’

centripetal =

Solving this for r

mo

Yy =—=

0
qo @,

)

withew, =qB/m.

b) Here we don’t make any assumptions about the relative orientations of v and B, i.e. the
velocity may have a component in the z direction upon entering the field region. Let
r=xi+yj+zk,with v=rt and a=¥. Let us calculate first the v x B term.

i j k
vxB=|t y z|=B(ji-1j) 4)
0 0 B
The Lorentz equation (1) becomes
F = mi = qByi+q(E, - Bx)j+qE.k )
Rewriting this as component equations:
. 4qB. .
= —_— = 6
X - Y=oy (6)
= —_—— = — _ 7
y - X+ - . Lx B J (7)
qE

- (8)
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The z-component equation of motion (8) is easily integrable, with the constants of integration
given by the initial conditions in the problem statement.

E
z(t) =z, +20t+{;—r’;t2 )

c) Weare asked to find expressions for x and y, which we will call v, and v, , respectively.

Differentiate (6) once with respect to time, and substitute (7) for o,

. . ( E)
b, = 0,0, =0 (2~ Ey (10)
or
E
b+ o', = o’ EV (11)

This is an inhomogeneous differential equation that has both a homogeneous solution (the
solution for the above equation with the right side set to zero) and a particular solution. The
most general solution is the sum of both, which in this case is

v, =C, cos (coct) +C, sin (coct) +% (12)
where C, and C, are constants of integration. This result may be substituted into (7) to get o,

vy =—-C,o, cos (a)ct) -C,m, sin (a)ct) (13)

v, =-C, sin (a)ct) +C, cos (a)ct) +K (14)

where K is yet another constant of integration. It is found upon substitution into (6), however,
that we must have K = 0. To compute the time averages, note that both sine and cosine have an
average of zero over one of their periods T =27/w, .

E
(#)== (#)=0 (15)
d) We get the parametric equations by simply integrating the velocity equations.
G g G E,
x=—sin(wt)-—=cos(ot)+—t+D 16
St sin (1) ~ 2 cos (w,1) + 11+ D, a6

c c

Coeions Coa
y=—"cos (o) + —=sin (ot)+D

c c

Yy 17)
where, indeed, D, and Dy are constants of integration. We may now evaluate all the C’s and
D’s using our initial conditions x(0) =~ A/, , (0)=E, /B, y(0)=0, (0)=A. This gives us
¢, =D,=D,=0, C,=A and gives the correct answer

E

x(t)z_a)—Acos(a)ct)JrEyt (18)

c
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y(t) = A sin (a)ct) (19)
o

c

These cases are shown in the figure as (i) A>E, /B, (ii) A<E, /B, and (iii) A=E, /B.

(i)
(i)
(i)
2-23. EF(t) = ma(t) = kte™™ (1)
with the initial conditions x(t) = v(t) = 0. We integrate to get the velocity. Showing this explicitly,
olt) Ckopt g
| ofd=— [ et at @)

Integrating this by parts and using our initial conditions, we obtain

w-H3-1-Yee
By similarly integrating v(t), and using the integral (2) we can obtain x(¢).
X(t)=%|:—§+%+%[t+§j e‘”} 4)
To make our graphs, substitute the given values of m =1kg, k=1N- s',and ¢=05s".
x(t)=te? (5)
o(t)=4-2(t+2)e" (6)

at)=-16+4t+4(t+4)e™ 7)
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2-24.
d = length of incline
s = distance skier travels
along level ground
mg
While on the plane:

> F,=N-mgcos@=mj=0  so N=mg cos®
ZFx:mgsinQ—Pf; F; = uN = umg cos 6
mg sin 6 — umg cos 6= mx
So the acceleration down the plane is:

a, = g(sin 0 — pcos H) = constant

51
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While on level ground: N'=mg; F, =—-umg
So ZFX =mX becomes —umg =mx
The acceleration while on level ground is
a, =—pug = constant

For motion with constant acceleration, we can get the velocity and position by simple
integration:

X=a
v=x=at+7, 1)
1
x—x0:00t+§at (2)

Solving (1) for t and substituting into (2) gives:

or
2a(x—x,)=0" -1}

Using this equation with the initial and final points being the top and bottom of the incline
respectively, we get:

2a,d =V} V, = speed at bottom of incline
Using the same equation for motion along the ground:
2a,5=-V; (©)
Thus
a,d =—a,s a, = g(sin 6 — ucos 6?) a, =—ug
So
gd(sin 60— pcos 67) = ugs
Solving for u gives

3 dsin @
ﬂ_dcosé’+s

Substituting 8= 17°, d = 100 m, s = 70 m gives

Substituting this value into (3):
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—2ugs=-V;

Vi =285

|VB =15.6 m/sec|

2-25.
a) At A, the forces on the ball are:

mg

The track counters the gravitational force and provides centripetal acceleration
N - mg =mv*/R
Get v by conservation of energy:

E T,

top

op = +U,, =0+ mgh

EA=TA+LIA=%mvz+0

E, =E,>v=,2gh

top

So
N =mg +m2gh/R

N = mg[1+2R—hj

b) At B the forces are:

45°~,
mg

N =mv*/R + mg cos 45°
= mUZ/R-i- mg/x/i

Get v by conservation of energy. From a), E,,, = mgh.

At B, E:%mv2 +mgh'

53
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So E,,, =T, + U, becomes:

Solving for v*

Substituting into (1):

c) Fromb) v; :Zg[h—R+R/«/§]

v= [Zg(h—RJrR/\/E)T/Z

d) This is a projectile motion problem

Put the origin at A.

The equations:

become
R v
=——+-Lt 2
Y=t )
v 1
=h'+—Et-— gt 3
y=h+Li-—g ©

Solve (3) for t when y = 0 (ball lands).
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gt? =2 vyt —2h' =0
V2 v, £ (202 + 8gh’
28
We discard the negative root since it gives a negative time. Substituting into (2):

R o, [\/EUB + /207 +8ghl
y=

22 2g

Using the previous expressions for v, and /' yields

172
x:(ﬁ—l)R+h+{h2—%Rz+\/§Rz}

e) U(x)=mgy(x), with y(0)="h, so U(x) has the shape of the track.

2-26. All of the kinetic energy of the block goes into compressing the spring, so that
mo’[2=kx*/2, or x =v\/m/k =2.3 m, where x is the maximum compression and the given
values have been substituted. When there is a rough floor, it exerts a force g mg in a direction
that opposes the block’s velocity. It therefore does an amount of work g, mgd in slowing the
block down after traveling across the floor a distance d. After 2 m of floor, the block has energy
mv’ /2 — pmgd , which now goes into compressing the spring and still overcoming the friction

on the floor, which is kx? / 2+ pmgx . Use of the quadratic formula gives

X =

2 2
_Hmg \/{ﬂmgj L mo’ 2umgd 1)

k k k k

Upon substitution of the given values, the result is = 1.12 m.

2-27.

To lift a small mass dm of rope onto the table, an amount of work dW =(dm)g(z, - z) must be
done on it, where z, =0.6 m is the height of the table. The total amount of work that needs to be
done is the integration over all the small segments of rope, giving

W= [ (udz)g(z, - 2) =% (1)

When we substitute p=m/L= (0.4 kg)/(4 m), we obtain W=0.187.
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2-28.

m
v

v v,
M
before after
collision collision

The problem, as stated, is completely one-dimensional. We may therefore use the elementary
result obtained from the use of our conservation theorems: energy (since the collision is elastic)
and momentum. We can factor the momentum conservation equation

M0, + M0, = M,0, + M,0, (1)
out of the energy conservation equation

1 1 1 1
Emlvlz + Emzvﬁ = Emﬂ); + Emzvi )

and get
U, + 0y =0V, +0, (©)

This is the “conservation” of relative velocities that motivates the definition of the coefficient of
restitution. In this problem, we initially have the superball of mass M coming up from the
ground with velocity v=,/2gh , while the marble of mass m is falling at the same velocity.

Conservation of momentum gives

Mo+ m(-v) = Mo, + mo, 4)
and our result for elastic collisions in one dimension gives
v+, =(-0)+7, ®)
solving for v, and v, and setting them equal to /2¢h,,,, , we obtain
3-aT
R ariie = h 6
marble ‘: 1+« :| ( )
1-3a |
hsuperball :|: 1+« i| h (7)

where o =m/M . Note that if o <1/3, the superball will bounce on the floor a second time after
the collision.



NEWTONIAN MECHANICS—SINGLE PARTICLE

2-29.
mg si% X
f=tan"' 0.08 = 4.6°
D> F,=N-mgcos 6
N =mg cos 6
D F. =mgsin6—F,
=mX
F; = uN = pumg cos 6
SO

mx =mg sin @ — umg cos 6
X= g(sin 60— pcos 0)

Integrate with respect to time

X = gt(sin 60— pcos 6?) + X,
Integrate again:

N Y
X=x,+ x0t+5gt (sm 6 — ucos 0)

Now we calculate the time required for the driver to stop for a given x, (initial speed) by

solving Eq. (1) for t with x=0.
t= —ﬁ(sin 0— ucos 49)71
g

Substituting this time into Eq. (2) gives us the distance traveled before coming to a stop.

(x' = xq) =%t +%gt’2 (sin @ u cos 6)

X2 a1 X, =
Ax:—go(smﬁ—ycosﬁ) +Eg—g(sm6’—,ucos0)

Ax = ﬁ( cos 6 —sin 9)_1

57
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We have 6=4.6°, 4=0.45, ¢=9.8 m/sec’.
For x, =25 mph=11.2 m/sec, Ax =17.4 meters.

If the driver had been going at 25 mph, he could only have skidded 17.4 meters.

| Therefore, he was speeding |

How fast was he going?

Ax > 30 meters gives x, >32.9 mph.

2-30. T=t +t, (1)
where T = total time = 4.021 sec.
t, = the time required for the balloon to reach the ground.

t, = the additional time required for the sound of the splash to reach the first
student.

We can get t, from the equation

1 .
Y=Yothot=5 85 Y= =0

When t=t,, y =-h; so (h = height of building)

1
—hz—agtf or t = .

B distance sound travels &

speed of sound

Substituting into (1):

T= %-Fﬁ or E+ %—T=o
Vg @ v \/8

This is a quadratic equation in the variable v/ . Using the quadratic formula, we get:
\f 2, 4T
{ 1+ 14287 T}
%4
v

Substituting V' =331 m/sec

¢=9.8 m/sec’
T =4.021 sec

and taking the positive root because it is the physically acceptable one, we get:
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Jh =8.426 m"?

h =71 meters

2-31. For x, #0, example 2.10 proceeds as is until the equations following Eq. (2.78).

Proceeding from there we have

aB=x,+#0
aA=z,
S0
(x—xo):i—ocos at+ﬁsin at
a a
(v=0) = ot
(z—zo):—&cos at+Lsin ot
a a
Note that
Zoo X
(x—x,)" +(z—2) :a—(’2+a—g

Thus the projection of the motion onto the x—z plane is a circle of radius —(xé + 2,
a

So the motion is unchanged except for a change in the

radius of the helix. The new radius is %(xé + 25)1/2 .
950

2-32.

The forces on the hanging mass are

mg
The equation of motion is (calling downward positive)

mg—T=ma or sz(g—a)

The forces on the other mass are

. 2)1/2 .

59
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2mg
,/2mg sin 0

The y equation of motion gives
N —2mg cos 0=mij=0
or
N =2mg cos 6
The x equation of motion gives (Ff =, N =2u,mg cos 0)
T —2mg sin 8 -2, mg cos 0= ma (2)
Substituting from (1) into (2)
mg —2mg sin 6 — 2, mg cos 0= 2ma
When 0=6,,a=0.So
g—2gsin @) —2u.8 cos 6, =0
1 .
5= sin 6, + y, cos 6,
=sin 6, + 4, (1 —sin® 6?0)1/2

Isolating the square root, squaring both sides and rearranging gives
1
(uﬂépmz%—gn%(z—y@=o

Using the quadratic formula gives

2-33. The differential equation to solve is

N | )
== g—quJ

where v, =,/2mg/c,pA is the terminal velocity. The initial conditions are y, =100 m, and
v, =0. The computer integrations for parts (a), (b), and (c) are shown in the figure.
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)
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t(s) t(s) t(s)
d) Taking p=13kg- m~ as the density of air, the terminal velocities are 32.2, 8.0, and 11.0 (all

m-s™) for the baseball, ping-pong ball, and raindrop, respectively. Both the ping-pong ball and
the raindrop essentially reach their terminal velocities by the time they hit the ground. If we
rewrite the mass as average density times volume, then we find that v, oc\/p,,.....R - The
differences in terminal velocities of the three objects can be explained in terms of their densities
and sizes.

e) Our differential equation shows that the effect of air resistance is an acceleration that is
inversely proportional to the square of the terminal velocity. Since the baseball has a higher
terminal velocity than the ping-pong ball, the magnitude of its deceleration is smaller for a
given speed. If a person throws the two objects with the same initial velocity, the baseball goes
farther because it has less drag.

f) We have shown in part (d) that the terminal velocity of a raindrop of radius 0.004 m will be
larger than for one with radius 0.002 m (9.0 m-s™) by a factor of J2 .

2-34.

Ar,

|

ymg

Take the y-axis to be positive downwards. The initial conditions are y =7 =0 att=0.
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a) F,=av

The equation of motion is

mij = m— =mg — ov
mdv _
mg —av

Integrating gives: 7 ln(mg - av) =t+C
a
Evaluate C using the condition v =0 at t = 0:

—Eln(mg) =C

(2

m m
So —;ln(mg—av)Jr;ln(mg)—

or —it—l [mg—av}zl {1—6[—0}
m mg mg

Take the exponential of both sides and solve for v:

e—ar/m =1 a_v
mg
a_v -1- e—at/m
mg
mg —at/m
v=—51-e
L (=)

dy :E(l—e’“‘/’") dt

(2

Integrate again:

y+C :%(Hﬂew/"’)
o o

y=0att=0,so:

c=1"8 [E} =m’g/a’

ala

=—g[ +t+ “’/’”}
o

Solve (3) for t and substitute into (4):

a_v — e—at/m

mg

CHAPTER 2
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y:@{_ﬂ_ﬂln 1_06_0}&{1_“_0}}:@[_z_ﬂln{l_a_vﬂ @
al a a | mg| «a mg al § «a mg

y= —E{v+%lr{l—a—vﬂ
a a mg

b) F =p°
The equation of motion becomes:
dv )
m i mg — fo
_mav g
mg — po
Integrate and apply the initial condition v =0 at t = 0:
J‘m dv _ ﬁ J' dt
mg_ o m
B
From integral tables j 1 tanh™ = ; so
a’-x* a a’

l’canh’lg:ﬁt‘JrC where a= ng
a a m \/ p

ltamh’10=0=0+C
a

so:
1 tanh™' £ = s t
a a m
Solving for v:
v=atanh apt (5)
m
ﬂ =g tanh apt
dt m

From integral tables Itanh udu=Incoshu

So y+C:Elncosha—ﬂt
p m
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Apply the conditionsaty =0and t =0

C:ﬂln(coshO):ﬂlnlzo
p B

So
y= ™ 1n cosh apt (6)
p m
Solving (5) for t:
t=" tanht 2
aff a

Substituting into (6):

y =2 In cosh [tamh1 2}
B a

Use the identity: tanh™ u = cosh™ where |u|<1.

1
N T

2
(In our case |1/ <1 as it should be because = = A ; and the condition that |u| <1 just says that
a \ mg

gravity is stronger than the retarding force, which it must be.) So
1

\ m ) -1/2
——1_&)2/ng :Eln(l—ﬂv /mg)

y= —%In(l—ﬁzﬁ/mg)

(
y= % In cosh Lcosh’1
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2.35.
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We are asked to solve Equations (2.41) and (2.42), for the values k = 0, 0.005, 0.01, 0.02, 0.04, and
0.08 (all in s™'), with initial speed v, =600 m-s™ and angle of elevation §=60°. The first figure
is produced by numerical solution of the differential equations, and agrees closely with Figure
2-8. Figure 2-9 can be most closely reproduced by finding the range for our values of k, and
plotting them vs. k. A smooth curve could be drawn, or more ranges could be calculated with
more values of k to fill in the plot, but we chose here to just connect the points with straight
lines.
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2-36.

{

Put the origin at the initial point. The equations for the x and y motion are then

<Y

NN

R

X=10, (cos 9)t
. 1
Yy =17, (sm H)t—Egt
Call 7 the time when the projectile lands on the valley floor. The y equation then gives
1
-h= inf)r-=gr’
v, (sin 0) 7 587

Using the quadratic formula, we may find
_Ysind \JUs sin® 0+ 2gh
8 8

(We take the positive since 7>0.) Substituting zinto the x equation gives the range R as a
function of 6.

2

R:v—ocos 6’[sin¢9+,/si1r12 0+x2] @)

8

where we have defined x* =2gh/v; . To maximize R for a given h and v,, we set dR/d0=0. The
equation we obtain is

0 0
cos” @—sin® @—sin @ \/sin” O+ x° \S/m& (2)
sin” 6+ x”

Although it can give x = x(6), the above equation cannot be solved to give 6= 0(x) in terms of
the elementary functions. The optimum @for a given x is plotted in the figure, along with its
respective range in units of v} /g . Note that x = 0, which among other things corresponds to

h =0, gives the familiar result = 45° and R=1; /g.
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2-38.

a)

b)

Integrate:

@
0 !
0 1
10 T
o0
o L
= 5
<
R~
0 !
0 1

v=alx tle/alx:—ac/x2

n+1

dv dx dv
— —=—u then
dx dt dx
do do [a}[ a
F=m—=mv—=m|—| -—
d dx X X
F(x)=-ma*/x’
v(x)=ax™"
F= m@ =m do dx mo do _ m(ax’”)(—nax’"’l)
dt dx dt dx
F(x)=—mna® x>V
dx n
(x)= o ax
x"dx = adt
n+1
=at+C C = 0 using given initial conditions

67
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x"'=(n+1) at

c¢) Substitute x(t) into F(x):

2-39.

a) F=—qae”

v=7, att=0, so

Solving for v gives

b) Solve fort whenv =0

c¢) From a) we have

x=[(n+ 1)at]1/(”+1)

1) (2041
F(t) = -mna® [{(n + 1)at}1/( 1)}

F(t)=—mna®[(n+ 1)at]_(

2n+1)/(n+1)

CHAPTER 2
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Using I In(ax+b)dx = ax+b In(ax+b)—x we obtain
a
[aﬁt +e P }ln{a’& +e f }
x+C=——| 1 m —t

B af/m

Evaluating C using x =0 at t = 0 gives

C b

of
So

x:—% e_ﬂvo +£_ m2 |:a_ﬁt+ e_ﬁvo}ln‘:a_ﬂt_’_ e_ﬂv0:|
af B afLm m

Substituting the time required to stop from b) gives the distance required to stop

2-40.

Write the velocity as v(t) = v(t)T(t). It follows that

a(t)zd—v=@T+vd—T=atT+anN 1)
dt dt dt
where N is the unit vector in the direction of dT/dt. That N is normal to T follows from
0=4d/dt(T-T). Note also a, is positive definite.

a) Wehave v=3’+3’ = Aa\/5— 4 cos at . Computing from the above equation,

. _@_ 2Aa® sin at )
" dt [5—4cosat

We can get a, from knowing a in addition to a,. Using a =32+ = Aa®, we get

2cosat—1|
— (2 — % = Ad? |
I =NE “ J5—4cos at G)

b) Graphing a, versus t shows that it has maxima at at=nx, where a, = Aa”.
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2-41.

a) As measured on the train:

b) Asmeasured on the ground:

AT :%mvz + mou

¢) The woman does an amount of work equal to the kinetic energy gain of the ball as
measured in her frame.

W == mo?

d) The train does work in order to keep moving at a constant speed u. (If the train did no
work, its speed after the woman threw the ball would be slightly less than 1, and the speed of
the ball relative to the ground would not be u + v.) The term mou is the work that must be
supplied by the train.

2-42.

From the figure, we have h(60)=(R+b/2) cos 8+ R&sin €, and the potential is U(6) = mgh(6).
Now compute:

d—uzmg[—é sin €+ Ré cos 9} (1)
ae 2

d’u
de’

=mg KR —g) cos 8— RO sin 6’} (2)
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The equilibrium point (where dU/d6=0) that we wish to look at is clearly #= 0. At that point,
we have d°U/d¢” = mg(R-b/2), which is stable for R >b/2 and unstable for R<b/2. We can

use the results of Problem 2-46 to obtain stability for the case R =0b/2, where we will find that

the first non-trivial result is in fourth order and is negative. We therefore have an equilibrium at
0= 0 which is stable for R >b/2 and unstable for R<b/2.

2-43. F=—kx+k<’/ o’

4

U(x):—JFdx:%kxz—%k%

To sketch U(x), we note that for small x, U(x) behaves like the parabola %kx2 . For large x, the

4
behavior is determined by 2 k x_2
a

A

XX, Xy

E =%mv2 +U(x)

For E =E;, the motion is unbounded; the particle may be anywhere.

For E=E, (at the maxima in U(x)) the particle is at a point of unstable equilibrium. It may
remain at rest where it is, but if perturbed slightly, it will move away from the equilibrium.

What is the value of E, ? We find the x values by setting Z—u =0.
x

0=kx—kx’ / a?
x =0, £ a are the equilibrium points
U(ta)=E, =lka2 —lk(ZZ =lk052
2 4 4

For E =E,, the particle is either bounded and oscillates between —x, and x,; or the particle

comes in from +oo to +x, and returns to *oo.
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For E, =0, the particle is either at the stable equilibrium point x = 0, or beyond x = *x, .

For E,, the particle comes in from *oo to £x; and returns.

. T‘\|V'T

my

m,
Vs Vs

From the figure, the forces acting on the masses give the equations of motion

2-44.

m iy =mg—T D)
m, X, =myg—2T cos & (2)
where x, is related to x; by the relation
(b-x,)
= —_g? 3
X, 1 (©)

and cos 0= d/ [(b - X ) / 2] . At equilibrium, ¥,=%,=0 and T =m,g. This gives as the equilibrium

values for the coordinates
4m,d
N ?
1 2
m,d

Xy =2l (5)
P Jam? -

We recognize that our expression x,, is identical to Equation (2.105), and has the same
requirement that m, /m; <2 for the equilibrium to exist. When the system is in motion, the
descriptive equations are obtained from the force laws:

m, (b—x,)

i, (¥2-8) (6)

ml(jél_g):

To examine stability, let us expand the coordinates about their equilibrium values and look at
their behavior for small displacements. Let & =x, —x;, and &, = x, — x,, . In the calculations,

take terms in & and &,, and their time derivatives, only up to first order. Equation (3) then
becomes &, = —(m, /m,)& . When written in terms of these new coordinates, the equation of
motion becomes

g(4m? —n2)"”

&= & )

~ dmym, (m, +m,)d
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which is the equation for simple harmonic motion. The equilibrium is therefore stable, when it

exists.

2-45. and 2-46. Expand the potential about the equilibrium point
S 1dul|
Ux)= ) —|—| x
( ) i;li![dxl:L

The leading term in the force is then

F(x)=_22__~|2 <
) dx | dx"D

au 1 {dwu}
0

ey

)

The force is restoring for a stable point, so we need F(x>0)<0 and F(x<0)>0. This is never

true when n is even (e.g., U =kx’), and is only true for n odd when (d(””)ll/dx(”“))o <0.

2-47. Weare given U(x)=U, (a/ x+x/ a) for x > 0. Equilibrium points are defined by

dU/dx =0, with stability determined by d*U/dx” at those points. Here we have

au a 1
]

xX° a
2
au :[%}>0
dx? |, a’

indicating that the equilibrium point is stable.

which vanishes at x = a. Now evaluate

1)

)

25 T T T
20 1
5 15+ _
~
=
S qoF _
51 _
1 1 1
O0 0.5 1 1.5

x/a
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2-48. In the equilibrium, the gravitational force and the eccentric force acting on each star
must be equal
Gm® _ mv’ mG __ xd 2zd”?

= =>0=,|— =
2 42 " Nod T T ImG

2-49. The distances from stars to the center of mass of the system are respectively

dm dm
rp=—-=— and r=—-"1—
m, +m, m, +m,
At equilibrium, like in previous problem, we have
Gmm, muo,’ Gm,’ 27, 272d¥?
— ==, = == =
d 2 d(m, +m,) v, G(m, +m,)

The result will be the same if we consider the equilibrium of forces acting on 2nd star.

2-50.

myo \  myo i o(f)= Ft

o J - \/ 0 242
1-— | J1-5 m2+——
\/ ) 2 0 2

= x(t)= _:[v(t)dt = %{ m,’> + % - moJ

b)

c¢) From a) we find

Now if i =10, then
m
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C
1043
99¢
10+/199

when v=c/2, we have t = =0.55 year

when v = 99% c, we have t = =6.67 years

2-51.

mo,

dv dv b
a — == |5 =—|—dt= ()=
) "t ? :Jvz -[m =) btv, +m

999m

Now let v(t) = v,/1000, one finds =
Yy

=138.7 hours.

btu, + m}

b) x(t)=£vdt=%ln[ -

We use the value of t found in question a) to find the corresponding distance

x(t) = %1n(1000) -6.9 km

2-52.
2
a) Fi-- 0 Ah(;_ )
a a
b)

When F =0, there is equilibrium; further when U has a local minimum (i.e. dF / dx<0Q)itis
stable, and when U has a local maximum (i.e. dF/dx >0) it is unstable.

75
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So one can see that in this problem x = 2 and x = —a are unstable equilibrium positions, and x = 0
is a stable equilibrium position.

4 f /4
c¢) Around the origin, F = —& =—kxoDw= 13 = U(Z)
a m ma

d) To escape to infinity from x = 0, the particle needs to get at least to the peak of the potential,

2 2u
mvmm = umax = uO = Z)min = °
2 m

e) From energy conservation, we have

mo*  Upx> mok,  dx 2U, x’
+t—= =>—=0=,[—|1-—
2 a 2 dt m a

We note that, in the ideal case, because the initial velocity is the escape velocity found in d),
ideally x is always smaller or equal to 4, then from the above expression,
( [t ] 1\
a| ex -
dx ma’ L [ PUY, )
o~ = n = x(t) = 7

m X
f= j
zuoo[ x] 8U, a-x ( 81,1) )
1-2 0
e Lexpt . +1J

X

8U

0
2
a

2-53.

F is a conservative force when there exists a non-singular potential function U(x) satisfying
F(x) = —grad(U(x)). So if F is conservative, its components satisfy the following relations

ok _%
oy oOx

and so on.

a) In this case all relations above are satisfied, so F is indeed a conservative force.

2
F =—Z—U=ayz+bx+c:>U=—ayzx—%—cx+fl(y,z) (1)
X

X

where f,(y,z) is a function of only y and z

F, =—Z—u=axz+bz:ll=—ayzx—byz+f2(x,z) 2)
Y
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where f,(x,z) is a function of only x and z

F :—aa—u:axy+by+c:U:—ayzx—byz+f3(y,z) 3)
z

z

then from (1), (2), (3) we find that

bx?
U =-axyz—byz —cx’ _T+C
where C is a arbitrary constant.
b) Using the same method we find that F in this case is a conservative force, and its potential
is
U=-zexp(-x)-ylnz+C

c¢) Using the same method we find that F in this case is a conservative force, and its potential
is (using the result of problem 1-31b):

U=-alnr

2-54.

a) Terminal velocity means final steady velocity (here we assume that the potato reaches this
velocity before the impact with the Earth) when the total force acting on the potato is zero.

mg =kmv and consequently v=g/k=1000m/s.

b)
dv F dx h vdv
d—=—=—(g+kv):—= =— I f
t m v g+ kv ) 5 &k
x +8m—E —6797m where v, is the initial velocity of the potato.

e k s ¢ +kv,

2-55. Let’sdenote v,, and v,, the initial horizontal and vertical velocity of the pumpkin.

Evidently, v,, =v,, in this problem.

V., —0
do, _ E. =-mko, = e —dt = do, =0 ¥
dt v kv k

X X

1)

where the suffix f always denote the final value. From the second equality of (1), we have

@)
Combining (1) and (2) we have

xp == (1-¢™) 3)
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Do the same thing with the y-component, and we have

do dy

Y

dv
mngy=—mg—mkvy:—v—z—dtzg_i_—kyv:0=yf=—

y

—ktf

do,
and —dt= Py = g+kv, =(g+kvy)e

From (4) and (5) with a little manipulation, we obtain

1o — gktf
g+kvy0

CHAPTER 2

(4)

()

(6)

(3) and (6) are 2 equations with 2 unknowns, ¢, and k. We can eliminate f,, and obtain an

equation of single variable k.

xf - h(l _ efktf(g+kv”y0)/(8vxo))

Putting x, =142 m and v,, =v,, = S _382 m/s we can numerically solve for k and obtain

V2
K=0.00246 s™".
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Oscillations

3'1 [
gram-cm
" foihntlinald
a) Vo _ L [k __1 10 dyne/em cjyne/cm _10 | sec’.em _10 sec”!
2z\m 2z 10 gram 27\ gram 2
or,
v,=1.6 Hz (1)
2
Ty =—=—- sec
v, 10
or,
®
1 2 1 4 2
b) E:EkA :EXN x 3" dyne-cm
so that

E=45x10" erg (3)

€¢) The maximum velocity is attained when the total energy of the oscillator is equal to the
kinetic energy. Therefore,

% mo?, =45x10* erg

max

2x45x%x10*
v :1/—
max 100

79
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or,

v =30 cm/sec| 4)

max

3'2-

a) The statement that at a certain time ¢ =¢, the maximum amplitude has decreased to one-
half the initial value means that

xen = Iqoe_ﬂill = % AO (1)
or,
1
e’ﬂtl = E (2)
so that
In2 0.69
p= = 3)
tl tl
Sincet, =10 sec,
5=6.9x10" sec”'| )

b) According to Eq. (3.38), the angular frequency is

o, =\, — (@)

where, from Problem 3-1, @, =10 sec™ . Therefore,

», = \/(10)2 ~(69%102)’

. (6)
= 10[1 -5 (6.9)" x 10-6} sec”'

so that

v, = 10 (1-2.40x107°) sec™” )
27
which can be written as

v, =v,(1-96) (8)

where
6=240x10" )

That is, v, is only slightly different from v .
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c) The decrement of the motion is defined to be ¢’ where 7, =1/v, . Then,

3-3. The initial kinetic energy (equal to the fotal energy) of the oscillator is % mv;, where

m =100 g and v, =1 cm/sec.

81

a) Maximum displacement is achieved when the total energy is equal to the potential energy.

Therefore,
1 1
Emvézzkxé
X, = Ev = E><1—icm
""\% 0T \10f 10
or,
1
X, =—— cm
10

b) The maximum potential energy is

max

u zlkxézlx104><1072
2 2

or,

U, =50 ergs|

max

3-4.

a) Time average:

The position and velocity for a simple harmonic oscillator are given by
x = A sin oyt

X =w, A cos ot

where o, =/k/m

The time average of the kinetic energy is

t+7

1771
Ty=— | —mx* dt
()= gmi

27 . . ——
where 7=— is the period of oscillation.
@

1)

)

1)
)

®3)
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By inserting (2) into (3), we obtain
1 t+7

(T)= 5 mA’w; I cos” w,t dt 4)
t
or,
mA’w,
T)="— )

In the same way, the time average of the potential energy is

t+7

171
Uy== | —kx*dt
<> TJ;ZX

t+7
:ikA2 j sin’ w,t dt
27

t

_kA?
4

(6)

and since w; = k/m , (6) reduces to

()= mA;a)é %
From (5) and (7) we see that
(1)={U) ®
The result stated in (8) is reasonable to expect from the conservation of the total energy.
E=T+U )

This equality is valid instantaneously, as well as in the average. On the other hand, when T and
U are expressed by (1) and (2), we notice that they are described by exactly the same function,
displaced by a time 7/2:

2

T mA*w;

cos® w,t

(10)

o mA’ et

sin® ot

Therefore, the time averages of T and U must be equal. Then, by taking time average of (9), we
find

()=(u)=

(11)

N |

b) Space average:

The space averages of the kinetic and potential energies are
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and

(13) is readily integrated to give

To integrate (12), we notice that from (1) and (2) we can write
%* =y A? cos® oyt = ) A’ (1 —sin’ a)ot)
— (A2 2?)

Then, substituting (15) into (12), we find

or,

From the comparison of (14) and (17), we see that

To see that this result is reasonable, we plot T = T(x) and U = U(x):

2
Tzlma)gA2 1_x_2
2 A

u-1 ma; x>
2

Ener:
mAza)é LS 24

U = U(x)—
E = const. = %mAza)g

E
< . : - X

< -

-A O A

And the area between T(x) and the x-axis is just twice that between U(x) and the x-axis.

83

(12)

(13)

(14)

(15)

(16)

17)

(18)

(19)
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3-5. Differentiating the equation of motion for a simple harmonic oscillator,

x = A sin oyt

we obtain
Ax = Aw, cos w,t At
But from (1)
. X
sin w,t = —
A
Therefore,

cos @yt =4/1— (x/A)2
and substitution into (2) yields

Ax

Wy NA? = x

At =

CHAPTER 3

)

)

®3)

(4)

©)

Then, the fraction of a complete period that a simple harmonic oscillator spends within a small

interval Ax at position x is given by

g B Ax _ Ax
T wrNA*-x* 2xNAT-X°
Attt

T T T T T i X
’As _Az ’Al A1 Az A3

(6)

This result implies that the harmonic oscillator spends most of its time near x = £A, which is
obviously true. On the other hand, we obtain a singularity for At/z at x = +A. This occurs

because at these points x = 0, and (2) is not valid.

3'6-
k

X X,

L

Suppose the coordinates of m, and m, are x, and x, and the length of the spring at
equilibrium is /. Then the equations of motion for m, and m, are

mx, = —k(xl — X, + 6)

m,x, = —k(x2 —x, + E)

@
)
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From (2), we have

X, = % (m,%, + kx, —k¢)

Substituting this expression into (1), we find
2

T [mlmzjc'z + (m1 + mz)kxz] =0

from which

m, +m
g, =t
mm,

Therefore, x, oscillates with the frequency

m, +m
o= [Tt
m,m,

85

®3)

(4)

()

(6)

We obtain the same result for x, . If we notice that the reduced mass of the system is defined as

we can rewrite (6) as

This means the system oscillates in the same way as a system consisting of a single mass .

Inserting the given values, we obtain = 66.7 gand w=2.74 rad-s".

3-7.

—_— — o e — — —

Let A be the cross-sectional area of the floating body, #, its height, h, the height of its
submerged part; and let pand p, denote the mass densities of the body and the fluid,
respectively.

The volume of displaced fluid is therefore V = Ah,. The mass of the body is M = pAh, .

)

(8)
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There are two forces acting on the body: that due to gravity (Mg), and that due to the fluid,
pushing the body up (-p,8V =-p,gh,A ).
The equilibrium situation occurs when the total force vanishes:

0=Mg~pgV

= pgAhy, — pygh, A 1)

which gives the relation between h, and h, :
hy=h, £ 2)

For a small displacement about the equilibrium position (1, — h, + x), (1) becomes

M = pAhyi = pgAh, — p,g (h, + x) A (3)
Upon substitution of (1) into (3), we have
PANX = —p,gxA 4)
or,
X+g 2o x=0 5)
ph,
Thus, the motion is oscillatory, with an angular frequency
T ©
ph, h, V

where use has been made of (2), and in the last step we have multiplied and divided by A. The
period of the oscillations is, therefore,

T=E=27r Y (7)
® gA

Substituting the given values, 7=0.18 s.

3-8.

The force responsible for the motion of the pendulum bob is the component of the gravitational
force on m that acts perpendicular to the straight portion of the suspension string. This
component is seen, from the figure (a) below, to be

F =ma=mo=-mg cos « (1)
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where «is the angle between the vertical and the tangent to the cycloidal path at the position of
m. The cosine of ais expressed in terms of the differentials shown in the figure (b) as

d]/
-7 2
cos o ( )

where

ds = \Jdx* + dy* (3)

4y 1N\(ds
Y.- dx <~—— §
mg
(a) (b)

The differentials, dx and dy, can be computed from the defining equations for x(¢) and y(¢)
above:

dx = a(l—cos ¢) d¢ ]
(4)

dy=—-asin ¢dg¢
Therefore,
ds* = dx* + dy*
e [(1 —cos §)’ +sin’ ¢J dg? = 2a* (1-cos §) d¢f
= 44 sin® 5 dg¢* (5)
so that
ds =2asin g d¢ (6)
Thus,
d_y _ —asin ¢d¢

4 24sin ? d¢

¢

=—C0S—=C0S & (7)

The velocity of the pendulum bob is
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= @ =2asin 4 @
dt 2 dt
=—4qa 4 [cos Q} (8)
dt 2
from which
. d ¢
v=-4q ? |:COS E:| (9)

Letting z = cosg be the new variable, and substituting (7) and (9) into (1), we have

—4maz = mgz (10)
or,
548 520 11)
4a
which is the standard equation for simple harmonic motion,
Z+wyz=0 (12)
If we identify
g
== 13
=8 (13)

where we have used the fact that /=4a.

Thus, the motion is exactly isochronous, independent of the amplitude of the oscillations. This
fact was discovered by Christian Huygene (1673).

3-9. The equation of motion for 0<t <t is

mjc'=—k(x—x0)+F=—kx+(P+kx0) (1)
while for t >¢,, the equation is
m¥ = —k(x - x,) = —kx + kx, ()
It is convenient to define
E=x-x,
which transforms (1) and (2) into
mé=—-ké+F; 0<t<t, @)

mé=—-k&; txt, (4)
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The homogeneous solutions for both (3) and (4) are of familiar form &(t)= Ae™’ + Be ™', where
o =,/k/m . A particular solution for (3) is £= F/k. Then the general solutions for (3) and (4) are

F , .
< =E+Ae”"t +Be™; 0<t<t, ©®)

E =Ce” +De™™; txt, (6)
To determine the constants, we use the initial conditions: x(t=0)=x, and x(t = 0) = 0. Thus,

£(t=0)=& (t=0)=0 ?)

The conditions give two equations for A and B:

0=£+A+B
(8)
0 =ia)(A—B)
Then
A-B=—L
2k
and, from (5), we have
.§=x—x0=£(1—cosa)t); 0<t<t, )

Since for any physical motion, x and X must be continuous, the values of & (t = to) and

£ (t=t,) are the initial conditions for & (t) which are needed to determine C and D:

S, (t = to) = %(1 —COs a)to) = Ce'® 4 De @b

(10)
E(t=ty)= % @ sin ot, =io[ Ce" —De " |
The equations in (10) can be rewritten as:
Ce'" + De™™" = %(1 —cos wt,)
(11)
Ce' —De ™" = _TZF sin wt,
Then, by adding and subtracting one from the other, we obtain
F . ,
C=——¢ ok (1 . ezwto)
2k
(12)

Dzieimf’ (1_e—iwt0)
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Substitution of (12) into (6) yields

& =L ][0 ~1)e (e ~1)e]

F |:eia)(t—t0) _eia)t +e—iw(t—t0) _e—iwt:|

2k
=£[cos a)(t —t )— cos a)t} (13)
k 0
Thus,
x—xozg[cosa)(t—to)—cosa)t];tzto (14)

3-10. The amplitude of a damped oscillator is expressed by
x(t)=Ae™ cos(w,t + ) (1)
Since the amplitude decreases to 1/e after n periods, we have
pnT = fn 27 _q )
0y

Substituting this relation into the equation connecting @, and o, (the frequency of undamped

oscillations), @ = a)g — %, we have

2
w 1
a)gza)12+|:27;n:| 20)12|:1+W:| (3)
Therefore,
-1/2
w, 1
— =1+ — 4
@, [ 47°n? } @
so that
i =1- 1 2
W, 8x'n
3-11. The total energy of a damped oscillator is
E(t) = 2 mi (1) + 2 k(1) 1)
2 2
where
x(t)=Ae™” cos(w,t-0) )

x(t)= Ae’ﬁt[—ﬂcos(a)lt—5)—(01 sin(a)lt—5)] 3)
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k
o =\ - f, o =\
Substituting (2) and (3) into (1), we have

E(1) =3¢ (s +k)cos (o4t~ 0) - mof sin oyt ~0) @

+ 2mpw, sin(a)lt - 5) Cos(wlt - 5)]

Rewriting (4), we find the expression for E(t):

E(t) :mTAzeZﬂf [ﬂz cos2(@,t —8)+ et — f* sin2(wt - 5)+ wé] 5)

Taking the derivative of (5), we find the expression for 4E :

dt

2
&8 (ot -4 ) cos2lnt -

—4p o - sin2(wyt-5), - 2/3602}

The above formulas for E and dE/dt reproduce the curves shown in Figure 3-7 of the text. To

(6)

tind the average rate of energy loss for a lightly damped oscillator, let us take < @, . This
means that the oscillator has time to complete some number of periods before its amplitude

decreases considerably, i.e. the term e*? does not change much in the time it takes to complete
one period. The cosine and sine terms will average to nearly zero compared to the constant term
in dE/dt , and we obtain in this limit

Ecll_f = -mpPay A’e” )

3-12.

The equation of motion is

—ml 6= mg sin 6 (1)
b= —% sin 6 )

If 6 is sufficiently small, we can approximate sin =6, and (2) becomes
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0=—=10 3
S ®)

which has the oscillatory solution
O(t) = 6, cos ot (4)

where @, =,/g/¢ and where 6, is the amplitude. If there is the retarding force 2m @ 0, the
equation of motion becomes

—mlO= mg sin 6+ Zrn@ ] 5)
or setting sin 8= @ and rewriting, we have
O+ 20,0+ 0=0 (6)
Comparing this equation with the standard equation for damped motion [Eq. (3.35)],
X+2Bt+wpx=0 (7)

we identify @, = f. This is just the case of critical damping, so the solution for 6(t) is [see
Eq. (3.43)]

O(t)=(A+Bt)e (8)

For the initial conditions 6(0)= 6, and &0) =0, we find

0(t)=6,(1+ ayt)e ™"

3-13. For the case of critical damping, = o, . Therefore, the equation of motion becomes

¥+2Bx+ fx=0 (1)
If we assume a solution of the form
x(t)=y(t)e” @
we have
x=ye '~ pye”
(©)

X=iie” —2pye"" + frye "
Substituting (3) into (1), we find
e = 2pBye”” + Frye " +2pye " =282 ye " + frye” =0 (4)
or,
y=0 (5)
Therefore,

y(t)=A+Bt (6)
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and

x(t)=(A+Bt)e™”

which is just Eq. (3.43).

3-14. For the case of overdamped oscillations, x(t) and x(t) are expressed by
x(t)=e” [Ale’”zf + Azefwzt]
X(t) e_'gt [_ﬂ(Alewzt + +Aze*wzt) +<Alwzew2t _ Azwze,wzt)]

where w, =/’ — w; . Hyperbolic functions are defined as

VeV ey_e*y

coshyze ze , sinhy=

or,
e’ =cosh y+sinh y
e’ =coshy—sinhy

Using (4) to rewrite (1) and (2), we have

x(t) =(cosh Bt —sinh ,Bt)[(Al + A, )cosh w,t + (A, — A,)sinh a)zt]

and

x(t)=(cosh Bt —sinh ﬁt)[(Ala)z — A,B)(cosh w,t + sinh w,t)

—(AB+ Azwz)(cosh o,t —sinh a)zt)]

3-15. We are asked to simply plot the following equations from Example 3.2:
x(t)=Ae™”" cos(a,t - 0)

o(t)=—Ae™”' | Bcos(amyt - 5)+ o, sin(w,t - 5) |

with the values A =1cm, @, =1rad-s”, f=0.1s", and 6= 7z rad. The position goes through
x = 0 a total of 15 times before dropping to 0.01 of its initial amplitude. An exploded (or

93

)

@)
)

®)

(4)

()

(6)

@)
)

zoomed) view of figure (b), shown here as figure (B), is the best for determining this number, as

is easily shown.
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3-16. If the damping resistance b is negative, the equation of motion is

F-2Bt+@x=0

CHAPTER 3

1)

where f=-b/2m >0 because b < 0. The general solution is just Eq. (3.40) with £ changed to -/

x(t)=e" [Al exp(w/ﬂ2 —-w; t) + A, exp(—w/,B2 ~w; tﬂ

)

From this equation, we see that the motion is not bounded, irrespective of the relative values of

2 2
pand w;.

The three cases distinguished in Section 3.5 now become:

a) If w; >, the motion consists of an oscillatory solution of frequency @, =@} - 5,

multiplied by an ever-increasing exponential:
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x(t)=e" [Alei“”t + Aze”"‘”t] 3)
b) If a)g = /5>, the solution is
x(t)=(A+Bt)e” (4)
which again is ever-increasing.
c) If o) <, the solution is:
x(t)=e"[Ae™ + A | (5)

where

0, = -} < (6)

This solution also increases continuously with time.

The tree cases describe motions in which the particle is either always moving away from its
initial position, as in cases b) or c), or it is oscillating around its initial position, but with an
amplitude that grows with the time, as in a).

Because b < 0, the medium in which the particle moves continually gives energy to the particle
and the motion grows without bound.

3-17. For a damped, driven oscillator, the equation of motion is
X =2p%+wpx = A cos ot (1)
and the average kinetic energy is expressed as

_mA® ®*

(T) @)
4 (a)g - (02)2 +40’
Let the frequency n octaves above o, be labeled @, and let the frequency 7 octaves below a,
be labeled w,; that is
o, =2" o,
®)
w, =2"" w,
The average kinetic energy for each case is
mAZ 2211 a)Z
<T>ﬂ’1: 2 n2n,2)\2 ; 2 22 )
4 (o) -2"wp) + (42" 0}
AZ 2—2n 2
(7)., =™, = ©)

(02 —27" ) + (@27 W2

Multiplying the numerator and denominator of (5) by 2*", we have
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mA? 2% @)

4 (-2 aR) +(@2Y

(1), =

Hence, we find

(T),, =(T),, (©)

and the proposition is proven.

3-18. Since we are near resonance and there is only light damping, we have o, = v, = o,
where @1is the driving frequency. This gives Q = @, /24 . To obtain the total energy, we use the
solution to the driven oscillator, neglecting the transients:

x(t)=D cos(wt - &) (1)
We then have
E= % mx> + % kx* = mD” [a)2 sin’(wt - &)+ w; cos’ (a)t - 5)] = % mayD? (2)
The energy lost over one period is
[ (2mps)- (3dt) = 22meopD? 3)

where T =27/ . Since w = w,, we have

E o Q
energy lost over one period 478 27

(4)

which proves the assertion.

3-19. The amplitude of a damped oscillator is [Eq. (3.59)]
D- 4 M)
\/(a)§ - a)z) +40’

At the resonance frequency, @ = wy =+/@; — ° , D becomes

DR ZL )

2\ —

Let us find the frequency, @ = @', at which the amplitude is % Dy:
1 D 1 A A
—_— R = —_— =
V2 V2 Zﬁ\/a)g -B \/(a)g —a)’2)2 +40"

©)

Solving this equation for ', we find
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5 V2
'’ =) -2 +2pw, [1——2}
1)

0
For a lightly damped oscillator, Bis small and the terms in A can be neglected. Therefore,
" = wf +2pw,

or,

which gives
Aw=(w, + B)—(w, - B) =28
We also can approximate w; for a lightly damped oscillator:

= [2 2
g =+JO) =20 =,

Therefore, Q for a lightly damped oscillator becomes

~% . %
Q= 28 Aw
3-20. From Eq. (3.66),
X = Ao sin(a)t—ﬁ)

\/(a)g - w2)2 +40*
Therfore, the absolute value of the velocity amplitude v is given by

Aw
\/(a)é — w2)2 +40’ B

The value of @ for v, a maximum, which is labeled @,, is obtained from

0y =

o,
ow

=0

0=,

and the value is o, = ®,.

97

(4)

)

(6)

)

(8)

©)

@)

)

®3)

Since the Q of the oscillator is equal to 6, we can use Egs. (3.63) and (3.64) to express fin terms

of w,:

2
2 - @0
7 =116

(4)

We need to find two frequencies, @, and @, , for which v, =v,_,, / V2, where v__ =1, (co = coo) .

We find
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v A Aw
max __ (5)

V2 2\/28: \/(a)g —w2)2 +40°

Substituting for fin terms of w, from (4), and by squaring and rearranging terms in (5), we

obtain
2 2
(0301 - 2 (o?, af) =0 ©
from which
/ 2 1
wé - a)lz,z =z % W) ,0 = ig @y, (7)
Solving for @,, @, we obtain
1)
o, , = {i 1—;} t w, (8)

w o,
a)lzl—§+a)0; w22—1—§+a)0 9)
so that
(10)
3-21. We want to plot Equation (3.43), and its derivative:
x(t)=(A+Bt)e” (1)
o(t)=[B—B(A+Bt)]e™” 2)
where A and B can be found in terms of the initial conditions
A=x, 3)

B=1v, + f3x, 4)
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The initial conditions used to produce figure (a) were (xo,vo) = (—2,4) , (1,4), (4,-1), (1,-4),

(-1,-4), and (-4,0), where we take all x to be in cm, allvin cm-s™,and f=1s". Figure (b)isa
magnified view of figure (a). The dashed line is the path that all paths go to asymptotically as
t — . This can be found by taking the limits.

lim o(f) = —fBte™” (5)
lim x(t) = Bte™”! (6)

so that in this limit, v = —fk, as required.

(a) !

(b)

v (cm/s)

x (cm)

3-22. For overdamped motion, the position is given by Equation (3.44)
x(t)=Ae M + A (1)
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The time derivative of the above equation is, of course, the velocity:

U(t) = _A1ﬂ1e_ﬂlt - Azﬂze_ﬂzt )

a) Att=0:
Xo=A+A, 3)
vy =—AB - Abs 4)

The initial conditions x, and v, can now be used to solve for the integration constants A, and
A,.

b) When A, =0, we have v, =-f,x, and v(t)=-p,x(t) quite easily. For A, #0, however, we
have v(t) —>-B A =-Bx ast — wsince B < f,.

3-23. Firstly, we note that all the 5= 7 solutions are just the negative of the 6= 0 solutions.
The 6 = 7/2 solutions don’t make it all the way up to the initial “amplitude,” A, due to the
retarding force. Higher fmeans more damping, as one might expect. When damping is high,
less oscillation is observable. In particular, * =0.9 would be much better for a kitchen door

than a smaller 4, e.g. the door closing (6= 0), or the closed door being bumped by someone who
then changes his/her mind and does not go through the door (6 = 7/2).
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B*=0.1,8=0 B*=05,6=0 B*=09,8=0
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\
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3-24. Asrequested, we use Equations (3.40), (3.57), and (3.60) with the given values to
evaluate the complementary and particular solutions to the driven oscillator. The amplitude of
the complementary function is constant as we vary o, but the amplitude of the particular
solution becomes larger as @ goes through the resonance near 0.96 rad-s™', and decreases as @
is increased further. The plot closest to resonance here has @/w, =1.1, which shows the least

distortion due to transients. These figures are shown in figure (a). In figure (b), the o/, =6

plot from figure (a) is reproduced along with a new plot with A, =20 m- s?.
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o/0,=1/9 o/o,=1/3

t(s)

Legend: — — xc
...... xp
1 I I ! 1 | | | x
0 10 20 30 0 10 20 30
t(s) t(s)
(a)
05 F T T T T T T
0
-0.5 N
A,=1
A | | | | | |
0 5 10 15 20 25 30
(b)

3-25. This problem is nearly identical to the previous problem, with the exception that now
Equation (3.43) is used instead of (3.40) as the complementary solution. The distortion due to
the transient increases as @ increases, mostly because the complementary solution has a fixed
amplitude whereas the amplitude due to the particular solution only decreases as @ increases.
The latter fact is because there is no resonance in this case.
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0 5 10 0 5 10 0 5 10

Legend: — — xc  ------ xp

3-26. The equations of motion of this system are

myx, =—kx, — b, (X, — %,)+ F cos ot

.o . . . (1)
m,X, =-b,x, - b, (xz - xl)
The electrical analog of this system can be constructed if we substitute in (1) the following
equivalent quantities:
m, > L;; k—>%; by >R, x—q
my,—>L,; F—>g,; b,—>R,
Then the equations of the equivalent electrical circuit are given by
. L 1
Lig, + R, (‘71 _‘h)‘*‘_ 7, = & cos wt
¢ @

L,g, + Ryq, + R, (’12 - ‘71) =0

Using the mathematical device of writing exp(iwt) instead of cos wt in (2), with the
understanding that in the results only the real part is to be considered, and differentiating with
respect to time, we have
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LT+ R (i, _1‘2)+%=iwgoew

LoI, + Ry (L) + R, (I, = 1,)=0

Then, the equivalent electrical circuit is as shown in the figure:

Ll
L) LN SR,
€, cos ot ) R, )
¢ L

L 2

The impedance of the system Z is
. o1
Z=iwL, —-i——+27Z,
oC

where Z, is given by

1 1
R, R,+ioL,

1

Zl

Then,

R,[R,(R, +R,)+@’L; +iwL,R, |
(R, +R,) + &L}

Z,=

and substituting (6) into (4), we obtain

R [Ry(R, +R))+@’L; | +i leLZ{le— L)
(4]
7 =

oC) ((R1 +R,) + a)szz)}

(R +R,) + 0L,

3-27. From Eq. (3.89),

1 = _
F(t) =5t > (a, cos nwt +b, sin not)
n=1
We write
1 0
F(t) =5 + ch Cos (na)t - ¢n)
n=1
which can also be written using trigonometric relations as

F(t) =%a0 +ch[cos not cos ¢, +sin not sin ¢, |

n=1

Comparing (3) with (2), we notice that if there exists a set of coefficients ¢, such that

CHAPTER 3

®3)

(4)

()

(6)

(7)

1)

(2)

)
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c,cos @, =a,

c,sing, =b, @
then (2) is equivalent to (1). In fact, from (4),
cc=a’+b’
©)

n

tan ¢, =—
a

n

with a, and b, as given by Egs. (3.91).

3-28. Since F(t) is an odd function, F(-t) = —F(t), according to Eq. (3.91) all the coefficients a,,
vanish identically, and the b, are given by

b, =%J‘F’£F(t') sin net' dt'

w 0o . -
=— —I _sin not’ dt'+jw51n nwt’dt’}
T Y 0

o|[ 1 ’ 1 z
=—|| ——cos nwt’ +| ———cos nwt' | {
7|l new - no

s
@

= i (cos 0—-cos n;r)

nr
i for n odd
—| nx 1)
0 for n even
Thus,
3 4
(2n+1) —
2n+D)7 |, 01,2, ... )
b(2n) = 0
Then, we have
F(t)zésina)t+isin3a)t+isin5a)t+... 3)
T 3 5
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E()
1
—T/® o
0] £
-1
0.849 +
o Terms 1 +2
0] £
-0.849
1.099 1
o Terms1+2+3
40 £
-1.099
0918 1
T Terms1+2+3+4
[
1-0.918

3-29. In order to Fourier analyze a function of arbitrary period, say 7=2P/® instead of
27/w , proportional change of scale is necessary. Analytically, such a change of scale can be

represented by the substitution
it Px
X=— or t=—
p z

for when t =0, then x = 0, and when t=7=2P/w, then x=27/w.

1)

Thus, when the substitution t = Px/7 is made in a function F(t) of period 2P/w’, we obtain the

function

F[&} _ (%) 2)

T

and this, as a function of x, has a period of 27/@ . Now, f(x) can, of course, be expanded
according to the standard formula, Eq. (3.91):

f(x)= % a,+ Y (a, cos nwx +b, sin nwx) (3)
n=1

where
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2z
a,= % jow f(x") cos newx' dx’

, 4)
b,=2 I o f(x')sin nox' dx'
Via 0
If, in the above expressions, we make the inverse substitutions
t
x="" and dx=Zat )
P P

the expansion becomes

f[%t} = F[%.%}:F(t) =%°+ i‘[an cos[na;”t_ +b, sin[nag[tﬂ (6)

and the coefficients in (4) become

2P ' 7
a, :2'[ o F(t’)cos{na)mL }dt’
pP-o P

. )
kil t’
b, =Qj. o F(t’)sin{nam }dt’
p-o P ]
For the case corresponding to this problem, the period of F(t) is ﬂ ,so that P =2z Then,
W
substituting into (7) and replacing the integral limits 0 and z by the limits —% and +% , we
obtain
2z ]
2z '
a,=— ”Z’HP(t')cos[nw }dt’
271' o 2
(8)

not'
2

dat’

| |

2z
o 7~ .
b, :EJ‘_C%”F(F) sm{

o

and substituting into (6), the expansion for F(t) is

F(t)= %0 + i {an cos {HTM} +b, sin [nthﬂ )

Substituting F(t) into (8) yields

2r
@ = . ,
a =—I @ sin wt' cos
2770

1

na)t'}dt,
2
(10)

2z
= not'
b zﬁj‘“’sinwt'sin[ @ }dt'
2770

n 2

Evaluation of the integrals gives
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b,=—;b,=0 forn+2
2
0 n even (11)
a,=a,=0 a,(nz2)= _
0=%h ( ) 24 1 odd
71'(1’1 - 4)
and the resulting Fourier expansion is
t 3wt 5wt 7wt
F(t)zlsin ot cosZE_ A 020 2 020 2 51O, (12)
2 3z S 2 2ix 2 457 2
3-30. The output of a full-wave rectifier is a periodic function F(t) of the form
—sin wt; —£<tSO
o
F(t)= @
sin wt; O<t< z
o
The coefficients in the Fourier representation are given by
oo 2 |
a, =— _[ ﬁ(—sm a)t’)cos not' dt' +I “sin wt' cos not’ dt'}
T, 0
i} )
b, = @ J.O,r (—sin a)t’)sin not' dt’ +J.;sin ot'sin not’ dt’}
T, 0
Performing the integrations, we obtain
4 : |
———; if neven (or 0)
a,=|" (1_ n )
C ®)
0; if n odd
b,=0 foralln ]
The expansion for F(t) is
F(t)=%—ic052a)t—%cos4a)t... (4)

T 3 4

The exact function and the sum of the first three terms of (4) are shown below.
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Sum of first
three terms ) y

- /2

109

3-31. We can rewrite the forcing function so that it consists of two forcing functions for t > z:

0 t<0

%z a(t/r) O<t<rt

a(t-
a(t/r)— (t-7) t>71
L T
During the interval 0 < t < 7, the differential equation which describes the motion is
.. . t
P2pt+oir =2
T
The particular solution is x, = Ct + D, and substituting this into (2), we find
2 2 at
2C + oyCt + wyD = —
T

from which

Therefore, we have

wyt’ oyt
which gives
_a ;o 2p6a
P oit wit

Thus, the general solution for 0 < t < 7 is

x(t)=e”'[Acos ot +Bsin ot [+ LZ f— Z,fu
wOT Q)OT

and then,

)

)

©)

(4)

(5)

(6)

7)
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x(t)=—pe” I:A cos w,t + B sin (l)lt:|+ w.e™” [—A sin @;t + B cos wlt:|+ L2 (8)
oy T

The initial conditions, x(0) = 0, x(0) =0, implies

Ao 2€a
@,
2 ©)
0,0,T | @,
Therefore, the response function is
—pt 2
x(t)= i {@ e ™ cos w,t + ¢ {%— }sin a)lt+t—2—’f} (10)
W, T| @) o, | o, ;
f—
For the forcing function _a(_r) in (1), we have a response similar to (10). Thus, we add these
T

two equations to obtain the total response function:

0 L oot omant-a) o £ 2|

oy t| o w, (11)

x [sin ot +—e” sin o, (t— r)] + r]

When 7— 0, we can approximate e’ as 1+ fr, and also sin o, 7= w7, cos w,;7=1. Then,

7—0 2
T | O, w4

-t 2
xX(t)—=5—> : {2—/3 e/ [cos ot —(1+ ﬁr)(cos ot +o,7sin a)ltﬂ + e_{% - }

x [sin ot —(1+ pr)(sin ot — ;7 cos a)lt)] + r]

:i{l—e"” cos wlt—e'ﬂt{zﬂ?l —£+ 25 }sin a)lt} (12)

2 2 0, 00,

If we use @} =, — 8, the coefficient of e sin @t becomes f/w, . Therefore,

{1—eﬂt cos ot —e " ﬁsin a)lt} (13)

a
2
W

t
x( )T%

This is just the response for a step function.

3-32.
a) Response to a Step Function:

From Eq. (3.100) H(t,) is defined as
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H(to)z{ (1)

a,, t>1,

With initial conditions x(f, =0) and x(t, =0), the general solution to Eq. (3.102) (equation of
motion of a damped linear oscillator) is given by Eq. (3.105):

~A(t—to)
x(t)= iz 1—e ) cos @, (t - to) _pe sin @, (t - to) for t > t,
@, @, (2)
x(t)=0 fort <t,

where o, =\ o] - 5 .
For the case of overdamping, w; < #°, and consequently w, =i,/#* —@; is a pure imaginary
number. Hence, cos o, (t - to) and sin o, (t - to) are no longer oscillatory functions; instead,

they are transformed into hyperbolic functions. Thus, if we write @, =/* —®; (where o, is
real),

cos a)l(t—to) =Cos ia)z(t—to) = cosh a)Z(t—tO)

sin @, (t—t,) =sin io, (t —t,) =isinh w, (t—t,) o
The response is given by [see Eq. (3.105)]
x(t) = i{l —e ™) cosh a, (t—t,) - g sinh o, (¢ - to)}for t>t,
;) o, (4)
x(t)=0 for t<t,
For simplicity, we choose t, =0, and the solution becomes
x(t)= %go){l —e”" cosh w,t — ﬂz)jt sinh a)2t} (5)
This response is shown in (a) below for the case f= J5 @, .
b) Response to an Impulse Function (in the limit 7— 0):
From Eq. (3.101) the impulse function I(f,,t,) is defined as
0 t<t,
I(ty,t))=| a ty<t<t (6)
0 t>t,

For t, —t, = 7— 0 in such a way that az is constant = b, the response function is given by
Eq. (3.110):
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x(t)= b m-u sinw, (t-t,) fort>t,

Again taking the “spike” to be at t = 0 for simplicity, we have
b

x(t)=—e " sinw, (t) fort>0
@y

For w, =iw, =i\ — @, (overdamped oscillator), the solution is

b .
x(t)=—e” sinh w,t; t>0
@,

This response is shown in (b) below for the case f= J5 @, .

(a) 1 T T T T T T T
o'
S
=
S 05F N
=,
=
0 I I I I I I I
0 1 2 3 4 5 6 7 10
ot
T T T T T T T
(b) !
g
s 051 _
=
0 I I I I I I I
0 1 2 3 4 5 6 7 10

3-33.

CHAPTER 3

)

(8)

©)

a) Inorder to find the maximum amplitude of the response function shown in Fig. 3-22, we

look for t, such that |x(t)| given by Eq. (3.105) is maximum; that is,

offe(e)

ot

=0

t=t

From Eq. (3.106) we have

2
[a)l + 'B—} sin ot
W,

1)

)



OSCILLATIONS 113

For f=02w,, o, =+ w; - =098w, . Evidently, t, = 7/w, makes (2) vanish. (This is the
absolute maximum, as can be seen from Fig. 3-22.)

Then, substituting into Eq. (3.105), the maximum amplitude is given by

_pr
|x(t)maX=x(t1)=§[1+e “’1} ?3)
or,
x(t) = 1.53% ()

b) In the same way we find the maximum amplitude of the response function shown in Fig.
3-24 by using x(t) given in Eq. (3.110); then,

o(|x(t
—(| ( )|) —be )| cos w, (t — to) —ﬁ sin @, (t - to) 5)
ot » @, -,
If (5) is to vanish, t, is given by
t—t, = 1 an {&} _ 1 tan (49)= 1.57 (6)
@, @, @,

Substituting (6) into Eq. (3.110), we obtain (for f=0.2w,)

b Pz '
|X(t) max = X(tl) = W e Sll’l(l.37) (7)
. 0
or,
x(t)=076 25 ®)
Wy

3-34. The response function of an undamped (£ = 0) linear oscillator for an impulse function

1(0,7), with 7= 2—”, can be obtained from Egs. (3.105) and (3.108) if we make the following
20
substitutions:

p£=0; W, =,

2 @

2

t,=0; t=r1

(For convenience we have assumed that the impulse forcing function is applied at t = 0.)

Hence, after substituting we have
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x(t)=0 t<0 i
a 2r
x(t)=—5[1-cos w,t | O<t<— ()
@ )
a 2
t=— t-27)- t]=0 t>r=2%
x(t) p: [ cos(wyt - 277) — cosw,t ] >7 o |

This response function is shown below. Since the oscillator is undamped, and since the impulse
lasts exactly one period of the oscillator, the oscillator is returned to its equilibrium condition at
the termination of the impulse.

o

a

@)
T 2n t
®, @,

3-35. The equation for a driven linear oscillator is
X+2Bx+wix = f(t)

where f(t) is the sinusoid shown in the diagram.

RegionI: x=0 1)
RegionII. ~ X+2p8x+ wix = asin ot (2)
Region ITI: ¥ +2px+awpx =0 (3)
The solution of (2) is
x=e" (A sin w,t + B cos a)lt) +Xp 4)
in which
Xp=Da sin(cot—&) 5)
where
D= - ©
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2w

2

S=tan! >
Wy — @

Thus,
x=e"(Asinw,t+Bcos w,t)+ D asin (ot -0)
The initial condition x(0) = 0 gives
B=aDsin
and %(0)=0
—pB+ @, A+ Dawcos 6=0

or,

A:(ﬂsin§—a)cosé')£
@,

The solution of (3) is

x(t)=e"'[ A’ sin ot + B cos ot |

We require that x(t) and x(t) for regions Il and IIIl match at t = 7/@ . The condition that

T /a .
Xp| —|=Xm | —| 81ves
[0 4]

e”7/”(Asin ¢+ B cos ¢)+ Dasin (7 — &) =e ™" (A’ sin ¢+ B' cos ¢)

o
where ¢=— 7 or,
w

D
A"+ B cot p= A+ B cot g+ "D o
sin ¢

The condition that x; [zj = Xpp (Z) gives
® ®

—Be "1 (Asin ¢+ B cos @)+ aDw cos (7 — &) + e " ( Aw, cos ¢— Bo, sin ¢)

=—fe e (A' sin ¢+ B’ cos ¢) +e P (A’a)1 cos ¢—B'w, sin ¢)

or,

A'(a)1 cos ¢— fsin ¢)—B'(a)1 sin ¢+ f cos ¢)

= A(—ﬂ sin ¢+ @, cos ¢) - B(ao1 sin ¢+ £ cos ¢$) —e"°aDw cos &

or,

A'—B{a’l sin ¢+ 3 cos ﬂ:A—B{wl sin ¢ + 3 cos ﬂ_eﬂﬁ/w[ wDa cos &

@®, cos ¢— fBsin ¢

®, cos¢p— Bsin ¢ ®, cos ¢— Bsin ¢

115
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(8)

©)

(10)

(11)

(12)

(13)
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Substituting into (13) from (12), we have

B (a)1 cos ¢— [ sin ¢) cos ¢+ (a)1 sin ¢+ [ cos ¢) sin ¢
(a)1 cos ¢— fsin ¢) sin ¢

(14)
B (a)1 cos ¢— fsin ¢) cos ¢+ (a)1 sin ¢+ S cos ¢) sin ¢ T sin & N @ Ccos O
- (a)l cos ¢— fsin ¢) sin ¢ sing @, cos¢@—fsin g
from which
B’ = aD sin & + - De?"/ [sin 5(@1 cos ¢— fBsin ¢) + w cos O sin ¢] (15)
@,
Using (12), we can find A":
D si pr/o
A’:A+Bcot¢+%—B’cot¢ (16)
sin ¢
Substituting for A, B, and B’ from (10), (9), and (15), we have
A'=aDsin & £+ efrle [ﬁ COS ¢+ sin ¢} - M(l + e’ cos ¢) (17)
@, @, o,

Thus, we obtained all constants giving us the response functions explicitly.

3-36. With the initial conditions, x(to) =x, and ¥(t,) =%, , the solution for a step function for
t>t, given by Eq. (3.103) yields

a X, px pa
A=rg-t; ay=R P o M
@y W 0O @Oy

Therefore, the response to H (to) for the initial conditions above can be expressed as

x(t)=e M) {xo cos o, (t—t,)+ {ﬁ + %} sin o, (t - to)}

w, @O
)
+i{1 —e M) cos w, (t - to) - ﬁe_ﬁ<t_t°) sin @, (t - to)} fort>t,
@ @y

The response to an impulse function I(f, ,tl) =H(t,), for the above initial conditions will then be
given by (2) for t; <t <t, and by a superposition of solutions for H (to) and for H(t,) taken
individually for ¢ >t, . We must be careful, however, because the solution for t >t must be
equal that given by (2) for t =+, . This can be insured by using as a solution for H(t,) Eq. (3.103)

with initial conditions x(0)=0, %(0) =0, and using #, instead of f, in the expression.

The solution for f >t is then
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x(t)=e M) {xo cos o (t—t,)+ {ﬁ + &} sin o, (f - to)} +x,(t) 3)
w, o
where
ae—ﬂ(f—fo)
(t)= g e’ cosw, (t—t,— 7)—cos o, (t—t, )+
° @
e’ B
+ sinwl(t—to—r)——sina)l(t—to) fort>t
@, @,
We now allow a — « as 7— 0 in such a way that az = b = constant; expanding (3) for this
particular case, we obtain
x(t)=e M) {xo cos o, (t—t,)+ {ﬁjt Pro i} sin o, (t - to)} t>t, (5)
w 0 0

which is analogous to Eq. (3.119) but for initial conditions given above.

3-37. Any function F(t)/m canbe expanded in terms of step functions, as shown in the figure
below where the curve is the sum of the various (positive and negative) step functions.

In general, we have

i+2Bk+aix= ) AU
., m

n ee]

=3 H, (1) 1)

where
a,(t) t>t,=nt
2)

0 t<t,=nr

Then, since (1) is a linear equation, the solution to a superposition of functions of the form given
by (2) is the superposition of the solutions for each of those functions.

According to Eq. (3.105), the solution for H, (t) for >t is

-B(t-t,)
x, ()= a”z {1 —e M) cos o, (t-t,)- pe” sin o, (t-t,) (3)
@y 2
then, for
F(t =
FO_ s om0 @
m

the solution is
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1 ¢ .y pi
x(t)=— D H,(t)|1-e""™" cos e, (t-t,) - sinw, (t-t,)
a)O n=—oo 601
= 2. mH, ()G, ()= 2] F,(t)G,(¢) (5)
where
7ﬂ(t7tn)
L 5 |:1—€_'B(t_t") cos a)l(t—tn)— pe sin a)l(t—t”)}; t>t,
G, (t)=| Mo 2 ©
0 t<t,
or, comparing with (3)
x, (t)/ma, , t>t,
G,(t)= @)
0 t<t,
Therefore, the Green’s function is the response to the unit step.
A0
m
t t:n+l t
AH,0D
i
L
3-38. The solution for x(t) according to Green’s method is
x(t)=[" E()G(t,t7)
_f J‘te’”' sin wt’ e ") sin o, (t —t')dt’ (1)
ma, ° 0
Using the trigonometric identity,
sin wt' sin @, (t—t')= %[cos [(@, + @)t — ot |- cos[ (w— e, )t' + a)ltﬂ ()

we have
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_Ee”

x(t) 2mw
1

t t

J.dt'e(ﬂ’y)t' cos [(a) + o)t - wlt} - J.dt’e(ﬁ’y)t/ cos [(a) — o))t + a)lt:l 3)
0 0

Making the change of variable, z= (o + @, )t'— ot for the first integral and y =(w -, )t' + ot
for the second integral, we find

(B—y)ont ~(B-r)ont
E e—ﬂt e Ot ot (B-r)z e ©@ ot (B-r)y
x(t) =" j dze ™™ cosz— I dye“ " cosy 4)
2me, | o+ w, ot -0 5,

After evaluating the integrals and rearranging terms, we obtain

M=
(87 ot ) (57 +(0-o) ]
x {e"”[Z(}/—ﬁ) cos cot‘-l—([ﬂ—y]2 + ! —a)z) sina)wt} )

+e [Z(ﬂ— y) cos a)lt+([,8—7/]2 o wf)Mﬂ

w

3-39.

sinot 0<t<z/w
F(t)=
0 mlo<t<2m/o

From Equations 3.89, 3.90, and 3.91, we have

F(t)= % a, + i(a” cos not +b, sin not)
n=1

a,= Ej “F(t') cos not' dt’
790

b, = %I;F(t’) sin not' dt'

n

(o
=—I sin wt' cos nawt' dt'
T 0
@ 7o 2
a, =—J. sin wt' dt' =—
VA w

¢ rlo
a, =—_f sin wt' cos wt' dt' =0
Y0
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, /o
an(nZZ)zgj”/wsina)t’cosna)t'dt'zg _cos(l—n)a)t _cos(1+n)a)t
Al T 2(1-n)w 2(1+n)o |
Upon evaluating and simplifying, the result is
2z n even
2
o | 7(1-77) n=012,...
0 n odd
b, =0 by inspection
(7o, 2 1
blz—j sin® ot dt' =—
70 2
. , . , L
bn(nZZ)zﬂj.”/wsina)t’sinna)t’dt’zﬂ sin(1-n) ot _sm(1+n)a) =0
7?0 | 2(1-n)w 21+ new |,
So
P(t)=l+15in2 ot + Zw: cos nat
T 2 1=2,4,6,... 77(1—”2)
or, letting n — 2n
P(t):l+lsina)t+ i cos 2nat
T 2 n=1,2,... ”(1_4”2)

The following plot shows how well the first four terms in the series approximate the function.

A

10T Sum of first

four terms

05t

SHEIN
|

3-40. The equation describing the car’s motion is

d*y

m—z= —k(y—asin ot)

where y is the vertical displacement of the car from its equilibrium position on a flat road, a is
the amplitude of sine-curve road, and

dmxg 100x9.8
dy 001

k = elastic coefficient =

=98000 N/m
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2
o= 7:)0 =174 rad/s with v, and A being the car’s speed and wavelength of sine-curve road.

The solution of the motion equation can be cast in the form
am,’ [k
y(t) =B cos (wyt + f)+———sinwt with @, =,/—=99rad/s
0y — @ m

We see that the oscillation with angular frequency @ has amplitude

2
aw,

2
Wy — @

A= >=-0.16 mm

The minus sign just implies that the spring is compressed.

3-41.

a) The general solution of the given differential equation is (see Equation (3.37))

x(t) = exp(~t)| A exp(tF — @] ) + A, expl-tB — o] ||

and

o(t)=x'(t)=-p exp(—ﬂt)[A1 exp(tw//f2 -, ) +A, exp(—t«//f2 -, )]
+exp(-pt)JB - w; [Al exp(i,‘\/ﬂ2 -, ) - A, exp(—t‘\/ﬂ2 - w; )}

att=0, x(t)=x,, o(t)=v, =

=5 %o 1)
zkx \/ﬁ COOJ (

b)
. )
i) Underdamped, g= ?0

In this case, instead of using above parameterization, it is more convenient to work with the

following parameterization
x(t) = Aexp(-pt) COS(t\/ . — 5) (2)

o(t)=—-Aexp(- ﬁt)[ﬁcos(t«/a)o )+\/a)§ sm(lk/a)o —5)} 3)

Using initial conditions of x(t) and v(t), we find

(Y
70+ﬂ
X,

2 2
o, =

AZL,B\/(_-F ] +o; - and tan (5)=

2
W, xo
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In the case f= 2 —-, and using (6) below we have

v 1 1
tand=—=—2-+—==—"%= = 6=-30°
e wo BB
2 x5 UO (NN , 2
= —+ +wy, =—
“Bo 2 x, TR
so finally
(1) [ B

x(t)= \/_ —=X, expk —,t ) cos > @ +30° (4)
ii) Critically damped, = ®,, using the same parameterization as in i) we have from (2) and
(3):

x(t)= Aexp (—ft) = x, exp (—o,t) ®)

and o(t) =x'(t) = —o,x,exp(-o,t = v, =—-m,X, (6)

iif) Overdamped, f= w,, returning to the original parameterization (1) we have (always
using relation (6)),

x(t) = exp(—ﬂt)[A1 exp(t\/ﬁ2 - w; ) +A, exp(—t\/ﬂ2 - w; )}

_ (\/521'/%)350 exp((\/g_z)wot)_i_%exp( (\/74-2)(00 ) (7)

Below we show sketches for equations (4), (5), (7)
Underdamped

Overdamped

3-42,
a)
m(x" + @,’x) ~ F, sin ot =0 (1)
The most general solution is
x(t) = a sin ot + b cos w,t + A sin ot

where the last term is a particular solution.
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To find A we put this particular solution (the last term) into (1) and find

F

A=—r-—0—
o Py

Att=0,x=0,sowe find b =0, and then we have

x(t)=asin oyt + Asinwt = v(t)=awm, cos ot + Aw cos wt

Atf=0,0=0 = A=—%
w

F, 1
x(t)=
me, (w, + 0)(w, —

)(wo sin wt — w sin wt)

b) In the limit @ - ®, one can see that

3
x(t)— D% 0; Do

The sketch of this function is shown below.

X

3-43.

a) Potential energy is the elastic energy:
U(r) = 2k(r—ay?,
2
where m is moving in a central force field. Then the effective potential is (see for example,
Chapter 2 and Equation (8.14)):

U, =U(r)+ r —lk(r—a)2+ r
AN 2mr® 2 2mr?

where | = mour =mar’ is the angular momentum of m and is a conserved quantity in this
problem. The solid line below is Ufﬁ[(r) ; at low values of 7, the dashed line represents
2

U(r)= %k(r —a)?, and the solid line is dominated by . At large values of 7,

2mr?

U, (r)zU(r) = %k(r —a)’.

123
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Potential energy

b) In equilibrium circular motion of radius 7,, we have

k(r, —a)

k(r,—a)=mawyr, = w,=
mr,

c) For given (and fixed) angular momentum [, V(r) is minimal at r,, because V'(1f)|r=r0 =0, s0

we make a Taylor expansion of V(r) about 7, ;

V) = Vi) r)V ()4 2PV () ) K]

where K =3maj , so the frequency of oscillation is
o= JK _ o, = |09
m mr,

3-44. This oscillation must be underdamped oscillation (otherwise no period is present).
From Equation (3.40) we have

x(t)= Aexp (—ft) cos (@t - 6)
so the initial amplitude (at t = 0) is A.

Now at t=4T=8—”
@,

x(4T)=Aexp (—ﬂS—ﬂ] cos (87— 9)
2
. . 87
The amplitude now is A exp [—,8—) , S0 we have
w

1
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Aexp [—ﬁgﬂ] .
A e
and because f=./w; —w; , we finally find

@, 87

a’_o V647" +1

3-45. Energy of a simple pendulum is 7492 where 6 is the amplitude.
For a slightly damped oscillation &(t) ~ Gexp(-/t) .

!
Initial energy of pendulum is %6’2 .

Energy of pendulum after one period, T =27 \/z ,is
8

! mgl
FEUTY =56 exp (-267)

So energy lost in one period is
nglaz (1-exp(-2T)) ~ nglgz 2T = mgle” BT

So energy lost after 7 days is

(7 days)

mglé” BT ~——2—= = mgl&” 3 (7 days)

This energy must be compensated by potential energy of the mass M as it falls h meters:

Mh
Mgh =mglé*B(7 d =———— =0.01s"
gh=mglep7 days) = fo =001

Knowing fwe can easily find the coefficient Q (see Equation (3.64))

23

8 _
_Wr woz_zﬂz_ [ _
Q=% _N R

28 2p

125
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CHAPTER

Nonlinear Oscillations
and Chaos

4'1-
I E (="ly+d
N 5 S S/ S
al
ly é (=1ly+d
(a) (b) (c)

The unextended length of each spring is ¢, as shown in (a). In order to attach the mass m, each

spring must be stretched a distance d, as indicated in (b). When the mass is moved a distance x,
as in (c), the force acting on the mass (neglecting gravity) is

F=-2k(s—(,)sin @ 1)

where
s=0+x° ()

and
X
sin = 3)
NAESS
Then,

~ ~ 5 Y2
S Ol P PRl PIRES (4)
2+ x* l o

127
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Expanding the radical in powers of x°//*> and retaining only the first two terms, we have

F(x) ;—ka_l—ﬂ{l—lx—zﬂ

i l 207
B 2
= —Dkx 1—{1—5}1@’(—2}
I (]2 0 7
2kd  k(/—-d
— _ . x— ( 63 ) x3 (5)
The potential is given by
U(x)= —IF(x) dx (6)
so that
kd k(¢—d)
U(x)=—x* ¢ 7

4-2. Using the general procedure explained in Section 4.3, the phase diagram is constructed
as follows:
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4-3. The potential U(x)= —(ﬂ/ 3x)3 has the form shown in (a) below. The corresponding phase
diagram is given in (b):

4-4. Differentiation of Rayleigh’s equation above yields
¥ —(a-3bi") %+ wpx =0 (1)

The substitution,

Y=Y — X (2)

implies that

ay

3b vy, ®)

ay

3b vy,

When these expressions are substituted in (1), we find
JZ \/7[ 3bay_} Y . Ay (4)
3b b Yo Y 3b y,

Multiplying by y, /3—b and rearranging, we arrive at van der Pol’s equation:
a

. a

i (vs =)y +afy =0 5)
0
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4'5-

a) A graph of the functions f,(x)=x>+x+1 and f,(x)=tan x in the region 0<x< /2 shows
that there is an intersection (i.e., a solution) for x, =37/8.

tanx/ i

|
X+ x +1

O X — Tl'/2
The procedure is to use this approximate solution as a starting point and to substitute x, =37/8
into f,(x) and then solve for x=tan™" [ fi (xl)} . If the result is within some specified amount,

say 10, of 37/8 , then this is our solution. If the result is not within this amount of the starting

value, then use the result as a new starting point and repeat the calculation. This procedure
leads to the following values:

x filx))=x7+x,+1 tan™'[ f, (x;) ] Difference
1.1781 3.5660 1.2974 0.11930
1.2974 3.9806 1.3247 0.02728
1.3247 4.0794 1.3304 0.00573
1.3304 4.1004 1.3316 0.00118
1.3316 4.1047 1.3318 0.00024
1.3318 4.1056 1.3319 0.00005

Thus, the solution is x = 1.3319.

Parts b) and c) are solved in exactly the same way with the results:
b) x=19151

c) x=09271

4-6. For the plane pendulum, the potential energy is
U= mgf[l —Cos 6’] 1)

If the total energy is larger than 2mg/ , all values of @ are allowed, and the pendulum revolves
continuously in a circular path. The potential energy as a function of & is shown in (a) below.

AU
2mgl

mg/

Yo

(a)

Since T = E — U(#), we can write
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Tzémv2 =%m€292 =E-mgt(1-cos 6) (2)

and, therefore, the phase paths are constructed by plotting

0= / ngz [E - mgf(l —cos 9)]1/2 (3)

versus 6. The phase diagram is shown in (b) below.

E =2mg/t

@
™
I
g

>
<

4-7. Let us start with the equation of motion for the simple pendulum:
0=—-w} sin @ (1)

where »” = ¢/ . Put this in terms of the horizontal component by setting iy = x//=sin 6.
Solving for € and taking time derivatives, we obtain

.2

5y y
e_(l_y2)3/2+\/1_y2 (2)

Since we are keeping terms to third order, we need to get a better handle on the ¥* term. Help
comes from the conservation of energy:

%mézé’z —mg/l cos @ =—mg/l cos 6, (3)

where 6, is the maximum angle the pendulum makes, and serves as a convenient parameter
that describes the total energy. When written in terms of v, the above equation becomes (with
the obvious definition for y,)

2

(e n

Substituting (4) into (2), and the result into (1) gives
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i+ ofy(3y1-y7 -2\1- 43 ) =0

CHAPTER 4

()

Using the binomial expansion of the square roots and keeping terms up to third order, we can

obtain for the x equation of motion

2
3
5e+w§x{1+’;—g}—gx3=o

4-8. For x >0, the equation of motion is
mx =—F;

If the initial conditions are x(0)=A, %(0) =0, the solution is

F,
t)=A-—>+t
x(t)=A-— -

For the phase path we need x = x(x), so we calculate

, 2F,
x(x)==+ 7(A x)

Thus, the phase path is a parabola with a vertex on the x-axis at x =

both axes as shown below.

(6)

ey

)

®3)

A and symmetrical about

Because of the symmetry, the period 7 is equal to 4 times the time required to move from x = A

to x = 0 (see diagram). Therefore, from (2) we have

2mA
FO

=4

4-9. The proposed force derives from a potential of the form
% kx? |x|<a
U(x)=

%(x+5)x—5ax2 |x|>a

which is plotted in (a) below.

(4)
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For small deviations from the equilibrium position (x = 0), the motion is just that of a harmonic
oscillator.

For energies E < E, the particle cannot reach regions with x < -4, but it can reach regions of
x>aif E>E,. For E, <E<E, the possibility exists that the particle can be trapped near x = a.

A phase diagram for the system is shown in (b) below.

(b)

4-10. The system of equations that we need to solve are

- ’ 1)
Y —0.05 y —sin x + 0.7 cos ot

The values of @ that give chaotic orbits are 0.6 and 0.7. Although we may appear to have chaos
for other values, construction of a Poincaré plot that samples at the forcing frequency show that
they all settle on a one period per drive cycle orbit. This occurs faster for some values of @ than
others. In particular, when = 0.8 the plot looks chaotic until it locks on to the point
(—2.50150,0.236439) . The phase plot for @ = 0.3 shown in the figure was produced by numerical
integration of the system of equations (1) with 100 points per drive cycle. The box encloses the
point on the trajectory of the system at the start of a drive cycle. In addition, we also show
Poincaré plot for the case @ = 0.6 in figure, integrated over 8000 drive cycles with 100 points per
cycle.
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-1.5 -1 -0.5 0 0.5 1 15

4-11. The three-cycle does indeed occur where indicated in the problem, and does turn
chaotic near the 80th iteration. This value is approximate, however, and depends on the
precision at which the calculations are performed. The behavior returns to a three-cycle near the
200th iteration, and stays that way until approximately the 270th iteration, although some may
see it continue past the 300th.
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4-12.
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x,=0.75
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00

These plots are created in the manner described in the text. They are created with the logistic

equation

0.2

X, =09-x, (1—xn)

0.4

0.6

0.8

1

135

1)

The first plot has the seed value x;, =0.4 as asked for in the text. Only one additional seed has
been done here (x; =0.75) as it is assumed that the reader could easily produce more of these
plots after this small amount of practice.
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4-13.

X%K =07
8848 x, =0.700000001

30 32 34 36 38 40 42 44 46 48 50

iteration
XXX =07
8848y, =0.7000000001

The plots are created by iteration on the initial values of (i) 0.7, (ii) 0.700000001, and (iii)
0.7000000001, using the equation

X, =25-x,(1-x]) (1)
A subset of the iterates from (i) and (ii) are plotted together, and clearly diverge by n = 39. The
plot of (i) and (iii) clearly diverge by n = 43.

4-14.

0 e g X X I I
20 22 24 26 28 30 32 34

iteration
""" x, =09
— x,=0.9000001
XXX fractional difference
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The given function with the given initial values are plotted in the figure. Here we use the
notation x, =0.9 and y, =0.9000001, with x,,, = f(x,) and y,,, = f (y”) where the function is

f(x):2.5-x<1—x2) 1
The fractional difference is defined as |x - y| / x, and clearly exceeds 30% when n = 30.

4-15. A good way to start finding the bifurcations of the function f(,x) = a sin 7zx is to plot its
bifurcation diagram.

0.8

0.6

02

One can expand regions of the diagram to give a rough estimate of the location of a bifurcation.
Its accuracy is limited by the fact that the map does not converge very rapidly near the
bifurcation point, or more precisely, the Lyapunov exponent approaches zero. One may
continue undaunted, however, with the help of a graphical fractal generating software
application, to estimate quite a few of the period doublings «, .Using Fractint for Windows, and

Equation (4.47) to compute the Feigenbaum constant, we can obtain the following:

n a o

1 0.71978

2 0.83324 4.475
3 0.85859 4.611
4 0.86409 4.699
5 0.86526 4.680
6 0.86551 4.630
7 0.865564 4.463
8 0.8655761

One can see that although we should obtain a better value of das n increases, numerical
precision and human error quickly degrade the quality of the calculation. This is a perfectly
acceptable answer to this question.

One may compute the «, to higher accuracy by other means, all of which are a great deal more

complicated. See, for example, Exploring Mathematics with Mathematica, which exploits the
vanishing Lyapunov exponent. Using their algorithm, one obtains the following:
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n a o

1 0.719962

2 0.833266 4.47089
3 0.858609 4.62871
4 0.864084 4.66198
5 0.865259 4.65633
6 0.865511 5.13450
7 0.865560

Note that these are shown here only as reference, and the student may not necessarily be
expected to perform to this degree of sophistication. The above values are only good to about
107°, but this time only limited by machine precision. Another alternative in computing the
Feigenbaum constant, which is not requested in the problem, is to use the so-called
“supercycles,” or super-stable points R, , which are defined by

i

The values R, obey the same scaling as the bifurcation points, and are much easier to compute

since these points converge faster than for other o (the Lyapunov exponent goes to —). See, for
example, Deterministic Chaos: An Introduction by Heinz Georg Schuster or Chaos and Fractals: New
Frontiers of Science by Peitgen, Jiirgens and Saupe. As a result, the estimates for 6 obtained in
this way are more accurate than those obtained by calculating the bifurcation points.

4-16. The function y = f(x) intersects the line y = x at x = x,, i.e. x, is defined as the point
where x, = f (xo). Now expand f(x) in a Taylor series, so that near x, we have

f(x):f(xo)+ﬂ(x_x0)=xo+ﬂ(x_xo) (1)

where

p=

df
Ir . 2)

Now define ¢, =x, —x,. If we have x, very close to x,, then & should be very small, and we

may use the Taylor expansion. The equation of iteration x,,, = f (xn) becomes
b = P, 3)
If the approximation (1) remains valid from the initial value, we have ¢,,, = "¢, .
a) The values x, —x, = ¢, form the geometric sequence ¢, fe,, f¢,, ...
b) Clearly, when | ﬂ| <1 we have stability since

limeg, =0

n—o0o

Similarly we have a divergent sequence when | > 1, although it will not really be exponentially

divergent since the approximation (1) becomes invalid after some number of iterations, and
normally the range of allowable x, is restricted to some subset of the real numbers.
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4-17.
X X X X
) # / ro/
06 /x/‘\% \/\% VAY, \//X\x/ \
¥ ¥
| A
X
v M
0

0 2 4 6 8 10 12 14 16 18 20

iteration
XXX =04
XXX =07

The first plot (with o = 0.4) converges rather rapidly to zero, but the second (with o =0.7) does
appear to be chaotic.

4-18.

04

02

The tent map always converges to zero for o < 0.5. Near a = 0.5 it takes longer to converge, and
that is the artifact seen in the figure. There exists a “hole” in the region 0.5 < ¢ < 0.7 (0.7 is
approximate), where the iterations are chaotic but oscillate between an upper and lower range
of values. For a> 0.7, there is only a single range of chaos, which becomes larger until it fills the
range (0,1) at = 1.

4-19. From the definition in Equation (4.52) the Lyapunov exponent is given by

12 |df
A=lim=YIn|L
m Zde

n—wo n i—0

1)

Xi

The tent map is defined as

flx)=

2ax for 0<x<1/2
2)

2a(1-x) for 1/2<x<1

This gives |df /dx|=2a, so we have
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A= nm[” _ 1] In(2a) =1In(20) 3)

n—o0 n

As indicated in the discussion below Equation (4.52), chaos occurs when A is positive: a >1/2
for the tent map.

4-20.

4-21.

-15 -1 -0.5 0 0.5 1 15

The shape of this plot (the attractor) is nearly identical to that obtained in the previous problem.
In Problem 4-20, however, we can clearly see the first few iterations (0,0), (1,0), (-0.4,0.3),
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whereas the next iteration (1.076,-0.12) is almost on the attractor. In this problem the initial
value is taken to be on the attractor already, so we do not see any transient points.

4-22. The following. system of differential equations were integrated numerically

X ~ v 1
[y}_{—o.ly—x3+Bcost} @

using different values of B in the range [9.8,13.4], and with a variety of initial conditions. The
integration range is over a large number of drive cycles, throwing away the first several before
starting to store the data in order to reduce the effects of the transient response. For the case

B = 9.8, we have a one period per three drive cycle orbit. The phase space plot (line) and
Poincaré section (boxes) for this case are overlaid and shown in figure (a). All integrations are
done here with 100 points per drive cycle. One can experiment with B and determine that the
system becomes chaotic somewhere between 9.8 and 9.9. The section for B = 10.0, created by
integrating over 8000 drive cycles, is shown in figure (b). If one further experiments with
different values of B, and one is also lucky enough to have the right initial conditions, (0,0) is
one that works, then a transition will be found for B in the range (11.6,11.7). As an example of
the different results one can get depending on the initial conditions, we show two plots in
figure (c). One is a phase plot, overlaid with its section, for B = 12.0 and the initial condition
(0,0). Examination of the time evolution reveals that it has one period per cycle. The second plot
is a Poincaré section for the same B but with the initial condition (10,0), clearly showing chaotic
motion. Note that the section looks quite similar to the one for B = 10.0. Another transition is in
the range (13.3,13.4), where the orbits become regular again, with one period per drive cycle,
regardless of initial conditions. The phase plot for B = 13.4 looks similar to the one with B = 12.0
and initial condition (0,0).

To summarize, we may enumerate the above transition points by B,, B, , and B;.

Circumventing the actual task of computing where these transition points are, we do know that
9.8<B; <99, 11.6<B, <11.7,and 13.3 < B, <13.4. We can then describe the behavior of the

system by region.
e B<B,: one period per three drive cycles
e B, <B<B,: chaotic
e B, <B<B,: mixed chaotic/one period per drive cycle (depending on initial conditions)
e B, <B:one period per drive cycle

We should remind ourselves, though, that the above list only applies for B in the range we have
examined here. We do not know the behavior when B < 9.8 and B > 13.4, without going beyond
the scope of this problem.
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(b)

(c)

(d)

CHAPTER 4
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4-23. The Chirikov map is defined by
pn+1:pn_KSinqn (1)
o1 =490 = Pnt (2)

The results one should get from doing this problem should be some subset of the results shown
in figures (a), (b), and (c) (for K = 0.8, 3.2, and 6.4, respectively). These were actually generated
using some not-so-random initial points so that a reasonably complete picture could be made.
What look to be phase paths in the figures are actually just different points that come from
iterating on a single initial condition. For example, in figure (a), an ellipse about the origin (just
pick one) comes from iterating on any one of the points on it. Above the ellipses is chaotic orbit,
then a five ellipse orbit (all five come from a single initial condition), etc. The case for K= 3.2 is
similar except that there is an orbit outside of which the system is always undergoing chaotic
motion. Finally, for K = 6.4 the entire space is filled with chaotic orbits, with the exception of
two small lobes. Inside of these lobes are regular orbits (the ones in the left are separate from the
ones in the right).

(a) LD e

[t

(b)
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4-24.
a) The Van de Pol equation is
? dx
F-l— a)ozx = /l(ﬂz - XZ)E
Now look for solution in the form
x(t)=b cos w,t + u(t) (1)
we have
ax_ —bw, sin o,t + du
dt dt
and
2 2
L;Tf = —bw,” cos w,t + ZT?
Putting these into the Van de Pol equation, we obtain
2
% + ou(t) = —y{bz cos® w,t +u’(t) + 2bu(t) cos w,t — az} {—bwo sin w,t + du(t)

From this one can see that u(t) is of order i (i.e. u ~O(u) ), which is assumed to be small here.
Keeping only terms up to order x, the above equation reads

d*u(t)

T + wu(t) = —y{—b3a)0 sin o,t cos” w,t + a*bw, sin a)ot}

2 2
=—ubw, (az —sz sin @yt — bz sin 3w,t

(where we have used the identity 4 sin w,t cos® @,t =sin w,t + sin 3w,t )

This equation has 2 frequencies (@, and 3w, ), and is complicated. However, if b=2a then the
term sinw,t disappears and the above equation becomes
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2 3
d;gt) + o u(t) = uw, bz sin 3w, t

We let b=2a, and the solution for this equation is

3 3
A0 Gin3a,t = L2
20, 4w,

u(t)=- sin 3w,t
So, finally putting this form of u(t) into (1), we obtain one of the exact solutions of Van de Pol
equation:
3
u(t) =2a cos w,t - 0 gin 3wt
4o,
b) See phase diagram below. Since 1= 0.05is very small, then actually the second term in the

expression of u(t) is negligible, and the phase diagram is very close to a circle of radius
b=2a=2.

=

4-25. We have used Mathematica to numerically solve and plot the phase diagram for the van
de Pol equation. Because 1 =0.07 is a very small value, the limit cycle is very close to a circle of

radius b =2a = 2.

a) In this case, see figure a), the phase diagram starts at the point (x = 1, x’ = 0) inside the limit
cycle, so the phase diagram spirals outward to ultimately approach the stable solution
presented by the limit cycle (see problem 4-24 for exact expression of stable solution).
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b) In this case, see figure b), the phase diagram starts at the point (x = 3, x’ = 0) outside the
limit cycle, so the phase diagram spirals inward to ultimately approaches the stable solution
presented by the limit cycle (see problem 4-24 for exact expression of stable solution).

4-26. We have used Mathematica to numerically solve and plot the phase diagram for the van
de Pol equation. Because 1= 0.5 is not a small value, the limit cycle is NOT close to a circle (see

problem 4-24 above).
a) In this case, see figure a), the phase diagram starts at the point (x = 1, x’ = 0) inside the limit

cycle, so the phase diagram spirals outward to ultimately approach the stable solution
presented by the limit cycle (see problem 4-24 for exact expression of stable solution).
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%
2
1
/2 |

b) In this case (see figure below), the phase diagram starts at the point (x = 3, x" = 0) outside
the limit cycle, so the phase diagram spirals inward to ultimately approaches the stable solution
presented by the limit cycle (see problem 4-24 for exact expression of stable solution).

i
2/\
X
1 2] 3
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CHAPTER

Gravitation

5'1 []
a) Two identical masses:

The lines of force (dashed lines) and the equipotential surfaces (solid lines) are as follows:

b) Two masses, +M and —M:

In this case the lines of force do not continue outward to infinity, as in a), but originate on the
“negative” mass and terminate on the positive mass. This situation is similar to that for two
electrical charges, +g and —g; the difference is that the electrical lines of force run from +4 to —.

149



150 CHAPTER 5

5-2. Inside the sphere the gravitational potential satisfies

V> ¢=41G p(r) 1
Since p(r) is spherically symmetric, ¢ is also spherically symmetric. Thus,
1 0| ,0¢
——| 1" — |=42G 2
r* or [r 81’} p(r) @

The field vector is independent of the radial distance. This fact implies

% = constant=C 3)
or
Therefore, (2) becomes
X _4xGp @
r
or,
C
= 5
P=0 = )

5-3. Inorder to remove a particle from the surface of the Earth and transport it infinitely far
away, the initial kinetic energy must equal the work required to move the particle from r =R,

to r = o against the attractive gravitational force:

©  M,m 1
JR[G 5 drzamvg 1)

where M, and R, are the mass and the radius of the Earth, respectively, and v, is the initial
velocity of the particle at r =R, .

Solving (1), we have the expression for v, :

v, = < )

Substituting G =6.67 x 10 m3/kg -s?, M, =5.98 x 10* kg, R, =6.38 x 10° m, we have

v, =11.2 km /sec| (©)

5-4. The potential energy corresponding to the force is

dx  mk®
U=—|Fdx=mk> | —==—— 1
I ¥ 2% @)
The central force is conservative and so the total energy is constant and equal to the potential
energy at the initial position, x = d:
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1 ., 1 k2 1 K
E=constant=—mx"——m—=-—m—
2 2 x 2 d

Rewriting this equation in integrable form,

0 0
dx d X
dt:—J.—z—E ﬁdx
d 2 1 1 d d —X
Clea

where the choice of the negative sign for the radical insures that x decreases as t increases.

Using Eq. (E.9), Appendix E, we find

0
t= a Nd* —x?
k d
or
2
=4
k
5-5. The equation of motion is
mx =-G M

Using conservation of energy, we find

lJ'cz—GMlez—GMi
2 X X

0

dx__ ZGMF_L}
dt X X,

151

)

®3)

(4)

1)

)

®)

where x_ is some fixed large distance. Therefore, the time for the particle to travel from x_ tox

1S

dx

XX,

B
~ JGM N\ 2(x, —x)

B

-
e \/ZGM

Making the change of variable, x — y*, and using Eq. (E.7), Appendix E, we obtain

X
‘XSO

If wesetx=0and x=x,/2 in (4), we can obtain the time for the particle to travel the total

distance and the first half of the distance.

(4)
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5] ®

1 |x, ¥ T
to- oo 5] 3] ©

Hence,

= U. I 7

or

=~ ®)

5-6.

r*drd(cos 0)do
b

Y

Since the problem has symmetry around the z-axis, the force at the point P has only a
z-component. The contribution to the force from a small volume element is

dg. =-G sﬁz r’dr d(cos 6) dg cos & (1)
. . . z—rcos b . . .
where p is the density. Using cos « =——————— and integrating over the entire sphere, we have
s
F x z—rcos 6
g. = —Gpjr drj d(cos H)I dgp—— e (2)
0 -1 0 (r +2z° —2rz cos 9)

Now, we can obtain the integral of cos & as follows:
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z—71cos 6

-]

d o0
b (r2 +z% —2rz cos 49) /2 (COS )

+1

- _é I(rZ +z% —2rz cos 9)1/2 d(cos 0)
e

Using Eq. (E.5), Appendix E, we find

a 1 12 +1
I:——{——( 2+22—2rzcos€) }
oz| rz 1
0|2 2
== | —|=— 3
oz {z} z? @)

Therefore, substituting (3) into (2) and performing the integral with respect to r and ¢, we have

=G—a’ p— 4)

But 4?7[ a’ pis equal to the mass of the sphere. Thus,

1
8= -GM ; (5)

Thus, as we expect, the force is the same as that due to a point mass M located at the center of
the sphere.

5'7-

The contribution to the potential at P from a small line element is

A = -G 2 dx (1)
S

where p, = % is the linear mass density. Integrating over the whole rod, we find the potential

02

1
——d 2
—1/2 /x2+R2 X 2)

M
@:—G7j
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Using Eq. (E.6), Appendix E, we have

" £2+R2

02 n e

CDZ—GMIH[X-F\/X'Z*FRZ} =—GMln 2 V4
l —1)2 l Y 02 )
——+,—+R

2 4

@:

)
C | N +4AR

GM h{\/zuuzz +z}

a—f\_— r2+(zo—z)2

B ~Wiy rdrd6dz

Since the system is symmetric about the z-axis, the x and y components of the force vanish and
we need to consider only the z-component of the force. The contribution to the force from a
small element of volume at the point (r,6,z) for a unit mass at (0,0, z, ) is

rdrd@dz
—————————COs

dg. =-G
T ma)

(z,-2) rdrdzedjz "
77 +(z0-2)' ]

(20 -2)

r* +(z - z)2

where pis the density of the cylinder and where we have used cos o = . We can

find the net gravitational force by integrating (1) over the entire volume of the cylinder. We find

a 27 l
=—Gp|rdr | dO|d
. p}[r r.([ '([ Z[r2+(zo—z)2}3/2

Zy—2Z

Changing the variable to x =z, —z, we have

e xdx
g, =27Z'Gp£1’d1’ ;[ m (2)

Using the standard integral,
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®)

we obtain

r _ r
\/rz +(zo - £)’ Jrt+z

Next, using Eq. (E.9), Appendix E, we obtain

g. = —27zG,0|:\/a2 +(zo —£)2 —Ja*+z +£} 5)

Now, let us find the force by first computing the potential. The contribution from a small
element of volume is

g. = —ZﬂGdei’ 4)
0

A = _GPM 6)

r?+(z - 2)°
Integrating over the entire volume, we have

do =—prdz Td@fdr (7)
0 0 0

Using Eq. (E.9), Appendix E, again, we find
l
dd = —ZﬂGpJ.dZ [ 2 +(zy—2)" —(z, - z)} (8)
0
Now, we use Egs. (E.11) and (E.8a), Appendix E, and obtain

(z0—¢) a’
2

@ =—27sz{— a* +(zy 1) +?ln [—2(20 —0)+2(z, - 1) +a2J

z a’ 1
+=0Ja* + z; ——ln[—220+2 z§+a2}—20€+—€2
2 2 2

Thus, the force is
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1-——2
1 ze a2 Jzo +a’
«/a +zg —=
a*+z; —zo+w/zo+a

or,

g, =—27er[«/a2 +(zo —0) —\Ja? +22 +4

and we obtain the same result as in (5).

CHAPTER 5

©)

(10

In this case, it is clear that it is considerably easier to compute the force directly. (See the

remarks in Section 5.4.)

5'9-

The contribution to the potential at the point P from a small line element d/ is

M .
where p, is the linear mass density which is expressed as p, = Py Using
7a

r= \/Rz +a* —2aR cos @ and d/ = ad, we can write (1) as

GM ¥ de

¢=- J‘\/R2 +a®>—2aR cos 6

This is the general expression for the potential.

ey

2)

If R is much greater than a, we can expand the integrand in (2) using the binomial expansion:

) 1/2
! =l{1—(2£cosﬁ—a—zﬂ
JR?+a*-2aRcos® R R R

2 2
= 1+l ZECOSH—Q—z +E ZECOSH—H—2
2| R R 8] R R

®3)
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3
If we neglect terms of order (%} and higher in (3), the potential becomes

2z 2 2
O] :—% 1+ 2 cos 92 > +§a—2cos2 6|de
27 R 2R* 2R
2 2
__M 27r—7ra—2+§ﬂa—2 4)
2 R 2 R
or,
GM 14
OR)z———|1+—— 5
®)z-S 12 ®
We notice that the first term in (5) is the potential when mass M is concentrated in the center of
2
the ring. Of course this is a very rough approximation and the first correction term is —%
5-10.
Using the relations
x=/(Rsin6)? + 2> - 2aRsin fcos ¢ )
r=~/x+R> coszﬁz\/R2 +a* —2aRsin fcos ¢ ()
M . .
p, =—— (the linear mass density), (3)
-~ 2ma
the potential is expressed by
2
q):_GJ‘pedfz—GMJ- d¢ @)
r 27R a a>
1-|12—sinfcosgp——
R R
If we expand the integrand and neglect terms of order (a/ R)3 and higher, we have
-1/2
a a’ a 14 3a° ., )
1-12—=siné —— =1+—sin#cos g———+——sin” O cos 5
{ { g omocosd Rzﬂ R "IRTIR $ ©

Then, (4) becomes
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2 2
O = G—M 2ﬁ—la—22ﬂ+§a—2ﬁ5in2 o0
2 R 2 R

Thus,

@(R);—G—M{l—%g—Z[l—%sinz eﬂ (6)

5-11.

The potential at P due to a small mass element dm inside the body is

iv=-cim_ ¢ dm (1)

r Jz2 + 4% —2zac0s0

Integrating (1) over the entire volume and dividing the result by the surface area of the sphere,
we can find the average field on the surface of the sphere due to dm:

do

1 27a% sin 0 d6
— } )

ave = ~G dm

47a’ { {x/zz+a2—22acos<9
Making the variable change cos €= x, we have
G, "% dx

ad,_=——d 3
m 2 m'[ (z2+a2)—22ax ©

Using Eq. (E.5), Appendix E, we find

o, = S im {—i 1/(z2 + az) “om+ L \ /(z2 + az) + Zza}
2 za za

=——dm 4)

This is the same potential as at the center of the sphere. Since the average value of the potential
is equal to the value at the center of the sphere at any arbitrary element dm, we have the same
relation even if we integrate over the entire body.
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5-12.

Let P be a point on the spherical surface. The potential d® due to a small amount of mass dm
inside the surface at P is

B Gdm
7

4D = 1)

The average value over the entire surface due to dm is the integral of (1) over dQ2 divided by 4.
Writing this out with the help of the figure, we have

P 27 si
D :_de_[ sin 8d0
4r 90 [+ R* ~2r'R cos

)

Making the obvious change of variable and performing the integration, we obtain

D :_de J-l du _ _de
4z 124 R - 2r'Ru R

®3)

We can now integrate over all of the mass and get @, =—-Gm/R. This is a mathematical
statement equivalent to the problem’s assertion.

5-13.

R, = position of particle. For R, <R, <R, , we calculate the force by assuming that all mass for
which r <R, is at r = 0, and neglect mass for which r > R, . The force is in the radially inward
direction (—e, ).

The magnitude of the force is

where M = mass for which r <R,
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4 4
M=§ﬂRfP1 +§”(R3 -R)p,

47Gm
So F:_—z(PlRf +p,Rg _p2R13)er
3R,
4 (p—p,) R}
F:—gﬁGm{ . Rgz L+ R, e,

5-14. Think of assembling the sphere a shell at a time (r = 0 to r = R).

For a shell of radius 7, the incremental energy is dU = dm ¢ where ¢ is the potential due to the
mass already assembled, and dm is the mass of the shell.

So
2
dm = ,047T1’2dr - I: 3M3 } 4ridr = L’;d”
472' R
3
¢:_G_m where m:M%
r
So
U= jdu
_ T 3Mr?dr || GMr?
r=0 R3 R3
2 R
== 3G]ZI Ir‘*dr
R” %
5 R

5-15. When the mass is at a distance r from the center of the Earth, the force is in the inward
radial direction and has magnitude F,:

i

r 2

[g xr’ p} where p is the mass density of the Earth. The equation of motion is
r
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or
¥+ @’r =0 where o° =@

This is the equation for simple harmonic motion. The period is

r_27_ 3%
0] Gp

Substituting in values gives a period of about 84 minutes.

5-16.

For points external to the sphere, we may consider the sphere to be a point mass of mass M. Put
the sheet in the x-y plane.

Consider force on M due to the sheet. By symmetry, F, =F, =0

% GMdm

F =|dF,= | 75—y cos @
’ '[ ’ ,'[O(r2+h2)
. h
With dm = p2zrdr and cos 8= ——
r* +h?

we have

*
F. =272p,GMh jom

0

Fz = —27Z',DSGMI’1 [m]

0

F, =27zp,GM

The sphere attracts the sheet in the z-direction
with a force of magnitude 270,GM
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5-17.

moon
(not to scale)

Earth

Start with the hint given to us. The expression for g, and g, are given by

2GM, x  GM,x GM,y GM.,y
&= T ST R 1)
where the first terms come from Equations (5.54) and the second terms come from the standard
assumption of an Earth of uniform density. The origin of the coordinate system is at the center
of the Earth. Evaluating the integrals:

o [2GM,, GM, | xh. e [ GM,, GM, ..
J‘O gx dx _|: D3 - R3 j| 2 4 J‘O gy dy_‘:_ D3 - R3 :| 2 (2)
To connect this result with Example 5.5, let us write (1) in the following way
GMm 2 yrznax GMg 2 2
N |:xmax + T} =R ('xmax - ymax) 3)

The right-hand side can be factored as

GM
- (xmax + ymax)(xmax - ymax) -

GM, B
e (2R)(h) = gh @

2R?

If we make the approximation on the left-hand side of (3) that x> =y2  =R>, we get exactly
Equation (5.55). Turning to the exact solution of (3), we obtain

M, M, [M, 2M

R'Dp VR D
M M, M, _2M,

D3 R® D’

h=2R

(5)

Upon substitution of the proper values, the answer is = 0.54 m, the same as for Example 5.5.

Inclusion of the centrifugal term in ¢ does not change this answer significantly.
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5-18. From Equation (5.55), we have with the appropriate substitutions

3GM,,r?
Hooon 28D M, [R_T M
h, 3GMy> M.|D

28R,

Substitution of the known values gives

2 11 3
Booon  7-350%10 kg{1.495><10 m} 22 (2)

B, 1993x10% kg| 3.84x10° m

sun

5-19.

Because the moon’s orbit about the Earth is in the same sense as the Earth’s rotation, the
difference of their frequencies will be half the observed frequency at which we see high tides.
Thus

1 1 1

— 1
2Ttides T, T, ( )

earth moon

which gives T, =12 hours, 27 minutes.

ides

5-20. The differential potential created by a thin loop of thickness dr at the point (0,0,z) is

-G 2xrdrM  -GM  d(r?) -2GM
Add(z) = N = N :>CD(z)=J.d<D(z)= 2 (\/z2 +R? —z)

Then one can find the gravity acceleration,

~ dD AZGM(\/ZZ+R2 _z)

T O W=

where k is the unit vector in the z-direction.
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5-21. (We assume the convention that D > 0 means m is not sitting on the rod.)

The differential force dF acting on point mass m from the element of thickness dx of the rod,
which is situated at a distance x from m, is

_ G(M/L)mdx

GMm""dx  GMm

dF __GMm
L x> D(L+D)

And that is the total gravitational force acting on m by the rod.
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Some Methods in the
Calculus of Variations

6-1. If we use the varied function

y(a,x)=x+asin z(1-x) 1)
Then
&zl—aﬂcos 7(1-x) (2)
dx

Thus, the total length of the path is

1 d 2
s=| 1+[—yj dx
0 dx

[2-2am cos 7(1-x)+ &’ 7 cos” (1 - x)]l/2 dx 3)

O C—

Setting 7(1-x)=u, the expression for S becomes
1 7 1 1/2
S:—J.\/E|:1—CZ7Z'COSM+50!27Z'2COSZM:| du (4)
4 0

The integral cannot be performed directly since it is, in fact, an elliptic integral. Because «a/is a
small quantity, we can expand the integrand and obtain

27, 1 1 1 1 ’
S=£I 1——[a7rcosu——a27r2 cos’ uj——[omcosu——azﬂz cos’ u) +...|du (5)
T 2 8 2
If we keep the terms up to cos’ u and perform the integration, we find
S=2+ 1£§ 7o’ (6)

which gives

165
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s 2,
—=—ra
oaa 8
Therefore
95
605 a=0

and S is a minimum when a = 0.

6-2. The element of length on a plane is
dS =/dx* + dy’

from which the total length is

X2,Y2

X1,

If S is to be minimum, f is identified as

Then, the Euler equation becomes

where y' =%. (4) becomes
x

al v ],

dx | 1+
or,

y'

= constant = C

from which we have

CZ
y’ = 12 = constant=a

Then,
y=ax+b

This is the equation of a straight line.

(x2,) X I\
S=( I )\/dxz+dy2=;!'1 1+[d—Zj dx

CHAPTER 6

7)

(8)

1)

)

©)

(4)

()

(6)

)

(8)
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6-3. The element of distance in three-dimensional space is

dS = /dx* + dy* +dz*

Suppose x, y, z depends on the parameter t and that the end points are expressed by
(x1(1), v1 (1), 2:(11)), (x2(t2), ¥2 (), 2 (£,)) - Then the total distance is

ty 2 2 2
|G BT &l
I\Lat] “Lar] “Lae

The function f is identified as

¥ I Y

Since — =0, the Euler equations become
ox oy oz

4o
dt ox
1,
dt oy
i,
dt oz i

from which we have

— = constant =C,
Xy +z

= constant =C,

= constant = C,

X
y
Z

From the combination of these equations, we have

X _y
G G
vy _z
C, G,

If we integrate (6) from ¢, to the arbitrary ¢, we have

167

@)

)

®)

(4)

()

(6)
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X—X% _Y¥Y~U
G G,
@)
Yy-Y _z-z
G G,

On the other hand, the integration of (6) from t, to t, gives

X=X _Y.—l
G G,

(8)
Yom¥i _2=%

G, G

from which we find the constants C,, C,, and C,. Substituting these constants into (7), we find

X—X _ Y-y — Z—2Z (9)
Xo =X Yo=Y 277

This is the equation expressing a straight line in three-dimensional space passing through the

two points (xl, Yi, zl), (xz, Yo, zz).

6-4.

The element of distance along the surface is

dS = \Jdx* + dy* + dz* (1)

In cylindrical coordinates (x,y,z) are related to (p,¢,z) by

X =pcCos ¢
y=psin ¢ 2)
z=2z
from which
dx=—-psin ¢pdg¢
dy = pcos ¢dg 3)

dz=dz
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Substituting (3) into (1) and integrating along the entire path, we find

S=J2‘Jp2 dg* +dz* =T«/p2 +2° d¢
1 h

where z = Z—; If S is to be minimum, f =./p’ +z° must satisfy the Euler equation:

d_0F_,
oz 0p 0z

0
Since 6_f =0, the Euler equation becomes
z

o_z
0P p* + 32
from which
Z
—= constant = C
o +z

CZ
=i r

z
— = constant
d

or,

Since pis constant, (8) means

169

(4)

()

(6)

)

(8)

and for any point along the path, z and ¢ change at the same rate. The curve described by this

condition is a helix.

6-5.

The area of a strip of a surface of revolution is

dA=27r><ds=27z><1/dx2+dy2

Thus, the total area is

@
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A=27 [x 1+ dx )

X1

where y = % . In order to make A a minimum, f =x,/1+ 7> must satisfy equation (6.39). Now
x

Substituting into equation (6.39) gives

> d x
L =i (i) 1+ yz)‘” i

1+3°

Multiplying by W and rearranging gives
_dx__ 4y
¥ y(1+9?)
Integration gives

2

Yy
1+y°
where In a is a constant of integration. Rearranging gives

- 1

:<x2/a2)—1

—lnx+lna=lln

Integrating gives

y=b+acosh™ <
a

or

y-b
a

X =a cosh

which is the equation of a catenary.



SOME METHODS IN THE CALCULUS OF VARIATIONS 171

If we use coordinates with the same orientation as in Example 6.2 and if we place the minimum
point of the cycloid at (24,0) the parametric equations are

x=a(1+cos 49)

1)
y=a(6+sin 6)

Since the particle starts from rest at the point (xl, yl) , the velocity at any elevation x is [cf. Eq.
6.19]

2 g(x - xl) ()
Then, the time required to reach the point (xz,yz) is [cf. Eq. 6.20]
Xy 2 1/2
i=| {“—y} dx 3)
012 g(x-x)

Using (1) and the derivatives obtained therefrom, (3) can be written as

6, 1+ 0 1/2
= |2 J' __1FCOSY | ap 4)
ol cos@—cos 6,

Now, using the trigonometric identity, 1+ cos =2 cos? 0/2, we have

\/* CcOS — dé’
\/ cos? = — cos’ 4

cos 4 do
,/E 2 5)
30 sin® ﬁ — sin? Q
\ 2 2

Making the change of variable, z =sin 6/2, the expression for t becomes

(- f j ©

The integral is now in standard form:
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I—dx =sin™ [f} ()
az = x2 a
Evaluating, we find
t=r % )
8

Thus, the time of transit from (x1 , yl) to the minimum point does not depend on the position of

the starting point.

6-7.

The time to travel the path shown is (cf. Example 6.2)

‘ ds:j—de (1)
0 0

Although we have v = v(y), we only have dv/dy #0 when y = 0. The Euler equation tells us

d y'
| ——=|=0 @
dx [v«/1+y'2]

Now use v=c/n and y’ = -tan €to obtain

n sin @= const. 3)

This proves the assertion. Alternatively, Fermat’s principle can be proven by the method
introduced in the solution of Problem 6-8.

6-8. To find the extremum of the following integral (cf. Equation 6.1)

J= j f (y,x)dx
we know that we must have from Euler’s equation

¥y
oy

This implies that we also have
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5] Iafd—o

giving us a modified form of Euler’s equation. This may be extended to several variables and to
include the imposition of auxiliary conditions similar to the derivation in Sections 6.5 and 6.6.
The result is

when there are constraint equations of the form
8 (v, x)=0
a) The volume of a parallelepiped with sides of lengths a,, b,, ¢, is given by
V=a,bc, (1)

We wish to maximize such a volume under the condition that the parallelepiped is
circumscribed by a sphere of radius R; that is,

a; + b} +cl =4R? (2)

We consider a,, b,, ¢, as variables and V is the function that we want to maximize; (2) is the
constraint condition:

g{alfblfcl}zo 3)
Then, the equations for the solution are

WV %8 _

8a1 8111

V%8 g 4)
ob,  ob,

WV _ % _

acl 601

from which we obtain
byc, +22a,=0
a,c, +22b, =0 ©)
a,b, +24c, =0

Together with (2), these equations yield
2

alzblzclzﬁR (6)

Thus, the inscribed parallelepiped is a cube with side % R
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b) In the same way, if the parallelepiped is now circumscribed by an ellipsoid with semiaxes
a, b, ¢, the constraint condition is given by

2 2 2
a4 by G
s B UL W 7
40> 40> 477 @)
where a,, b,, ¢, are the lengths of the sides of the parallelepiped. Combining (7) with (1) and
(4) gives

@ b
e ®
Then,
2 2 2
a,=a—,b=b—,c, =c— 9
1 \/5 1 \/5 1 \/3 ()

6-9. The average value of the square of the gradient of ¢(x1, X, x3) within a certain volume V

is expressed as

I =%IH(V¢)2 dx, dx, dx,

o~ 2] 3] [ e

In order to make I a minimum,
oo | [opT [09T
Fo| 20| |20 |50
ox, 0x, 0x,

must satisfy the Euler equation:

3
i Zi =0 ()
0¢ = ox; 5 7¢
ox;
If we substitute f into (2), we have
3
2, -
i1 Ox; 0x;
which is just Laplace’sequation:
V? $=0 (4)

Therefore, ¢ must satisfy Laplace’s equation in order that I have a minimum value.
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6-10. This problem lends itself to the method of solution suggested in the solution of Problem
6-8. The volume of a right cylinder is given by

V =zR’H (1)
The total surface area A of the cylinder is given by

A=A =27R*+27RH =27zR(R+ H) ()

bases

+A

side
We wish A to be a minimum. (1) is the constraint condition, and the other equations are

8A+/18_g

= =0
OR  OR
) ®)
% + A _g = O
0H ©oH
where g=V - 7zR°’H =0.
The solution of these equations is
1
R=—H 4
5 4)
6-11.
. y
) 0
24 ds
\

The constraint condition can be found from the relation ds = Rd 6 (see the diagram), where ds is
the differential arc length of the path:

ds =(dx® + dy?)"” = Rdo (1)
which, using y = ax?, yields

V1+4a’x* dx =Rdé ()

If we want the equation of constraint in other than a differential form, (2) can be integrated to
yield

A+R0=§\/4ax2 +1+4lln(2ax+\/4a2x2 +1) 3)

a
where A is a constant obtained from the initial conditions. The radius of curvature of a parabola,
y=ax’,is given at any point (x,y) by r, >1/2a. The condition for the disk to roll with one and
only one point of contact with the parabola is R <7, ; that s,
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1
R<— 4
oy 4)
6-12. The path length is given by
S=Ids=j 1+y?+z'% dx (1)
and our equation of constraint is
g(xyz)=x*+y*+2* - p* =0 (2)

The Euler equations with undetermined multipliers (6.69) tell us that

i [—y' ]:id—gzbiy 3)

d_x [1_'_ yr2 +Z'2 dy

with a similar equation for z. Eliminating the factor 4, we obtain

1&{ v }_li[—z’ }:o @)
ydr| Tay? 27 | zdx| fley?ez?
This simplifies to
z[y”(1+y’2+z’2)—y’(y’y”+z'z”)]—y[z”(1+ y’2+z'2)—z’(y’y”+z'z”)]=0 5)
2y +(yy +22') 2y -y — (yy' + 22') g’z =0 ©)
and using the derivative of (2),
(z=xz)y" =(y-xy')z" 7)

This looks to be in the simplest form we can make it, but is it a plane? Take the equation of a
plane passing through the origin:

Ax+By=z 8)

and make it a differential equation by taking derivatives (giving A + By’ =z’ and By" = z") and
eliminating the constants. The substitution yields (7) exactly. This confirms that the path must
be the intersection of the sphere with a plane passing through the origin, as required.

6-13. For the reason of convenience, without lost of generality, suppose that the closed curve
passes through fixed points A(-4,0) and B(a,0) (which have been chosen to be on axis Ox). We
denote the part of the closed curve above and below the Ox axis as y,(x)and y,(x) respectively.

(note that y;, >0and v, <0)

The enclosed area is

a

T v:) = [ yi@dx = [y, (0)dx = [ (v,(x) -y, () dx = [ f(y,,y,)dx

—a
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The total length of closed curve is

K(yl’,yg) = i1/1+(y1’)2dx+i4/1+(y§)2dx = i{\/lJr(y{)z +\/1+(y{)2}dx: ig(y{,yg)dx

Then the generalized versions of Eq. (6.78) (see textbook) for this case are

of d of {Qg dag} d( vy )
< — 2 e 20 = 1-A— —2— =0 1
oy, dxoy; |8y, dx oy ax\ i+ (1)
of d of {Gg dag} dl__y )
2L — 20 = 1-A— —2— =0 )
oy, dx oy, oy, dx oy, dx L«/1+ (y;)zJ
Analogously to Eq. (6.85);
from (1) we obtain (x=A) +(y, - A) =4 ©)
from (2) we obtain (x— B1)2 +(y, - BZ)2 =1° 4)

where constants A’s, B’s can be determined from 4 initial conditions
(x=#a,y,=0) and (x==a,y,=0)

We note that y, <0 and y, >0, so actually (3) and (4) altogether describe a circular path of

radius A. And this is the sought configuration that renders maximum enclosed area for a given
path length.

6-14. Itis more convenient to work with cylindrical coordinates (r, ¢ ,z) in this problem. The
constraint hereisz=1-r, then dz = —dr

ds® = dr® + r?dg? +dz* = 2(dr* + r*df?)
¢

where we have introduced a new angular coordinate f=—=

V2

In this form of ds?, we clearly see that the space is 2-dimensional Euclidean flat, so the shortest
line connecting two given points is a straight line given by:

1 Ty

r= coS(,BO—ﬂO) cos(¢_¢°)

N/

this line passes through the endpoints (r =1, ¢= i%) , then we can determine unambiguously

the shortest path equation

T
cos ——
r(g/ﬁ)z—\/E and z=1-r

()
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Accordingly, the shortest connecting length is

7/2 2
dr T
I=| d¢ 2(—) +7r2 =22 sin ——
Lz d¢ 22

6-15.

I[}/]=H[Z—Zj2—yz}dx

a) Treating I[y] as a mechanical action, we find the corresponding Euler-Lagrange equation

d’y
y(x)——y

Combining with the boundary conditions (x =0, ¥y =0) and (x = 1, y = 1), we can determine
unambiguously the functional form of y(x)=(sin x)/(sin 1).

b) The corresponding minimum value of the integral is

Ily] =H[@j2 —yz}dx _ ! jdxcost = cot (1) =0.642
0

o | Ndx sin®1

c) Ifx=ythenlI[y]=(2/3)=0.667.

6-16.
a) Sisarclength

dy\® (dz\’ L (dy)* 9
S:J‘«/dx2+dy2+dzz:de\/1+(—y) +(—) :J.dx 1+(—yj +—x:Ide
dx dx dx 4

Treating S and L like a mechanical action and Lagrangian respectively, we find the canonical
momentum associated with coordinate y

(]

pe SL dx.
- dy)_ 9 (d 2
5[ 9 yj
dx 1+4x+ Iy

Because L does not depend on y explicitly, then E-L equation implies that p is constant
(i.e.dp/dx =0), then the above equation becomes

9
1+—x 32
—42:>y=LZIdx‘/1+2x =A(1+2x) +B
1-p 1-p 4 4

where A and B are constants. Using boundary conditions (x =0, y =0) and (x =1, y = 1) one can
determine the arc equation unambiguously
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32
y(x)= ﬁ{(l +%x) - 1} and z=x""
b)
6-17.
a) Equation of a ellipse
xZ yZ
e
which implies
2 2 2
xysﬂ because ﬂﬁx—ery—z
2 ab a~ b

so the maximal area of the rectangle, whose corners lie on that ellipse, is

Max[A] = Max[4xy] = 2 iab.

This happens when
x=—= and y= LA
2 R
b) The area of the ellipse is A, = 7ab ; so the fraction of rectangle area to ellipse area is then
Max[A] 2
A T

6-18. One can see that the surface xy = z is “locally” symmetric with respect to the line
x=-y=+/-z where x>0,y <0,z <0. This line is a parabola. This implies that if the particle

starts from point (1,-1,-1) (which belongs to the symmetry line) under gravity ideally will move
downward along this line. Its velocity at altitude z (z < —1) can be found from the conservation
of energy.

v(z) =,/-28(z+1)
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CHAPTER

Hamilton’s Principle—
Lagrangian and Hamiltonian Dynamics

7-1. Four coordinates are necessary to completely describe the disk. These are the x and y
coordinates, the angle & that measures the rolling, and the angle ¢ that describes the spinning
(see figure).

@1 y

Since the disk may only roll in one direction, we must have the following conditions:

X

dx cos ¢+ dy sin ¢=R d6 (1)
ﬂ =tan ¢ (2)
dx

These equations are not integrable, and because we cannot obtain an equation relating the
coordinates, the constraints are nonholonomic. This means that although the constraints relate
the infinitesimal displacements, they do not dictate the relations between the coordinates
themselves, e.g. the values of x and y (position) in no way determine @ or ¢ (pitch and yaw),
and vice versa.

7-2. Start with the Lagrangian

L=%|:(U0+at+€9COS 6)2+(Msin 9)2:|+ mg/( cos 6 (1)

- % [(Uo +at)’ +2(0, +at) £ cos O+ 5292} +mgl cos O 2)

181
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Now let us just compute

d (oL d -
E[%j =E[m(vo +at)f cos 0+ m€20] 3)
= mal cos 6—m(v, —at) (0 sin 0+ m(*0 4)
ggz—m@h+aﬂﬁéﬁn9—ngfﬁn9 ®)

According to Lagrange’s equations, (4) is equal to (5). This gives Equation (7.36)
éZ%SiHH-F%COSQZO 6)

To get Equation (7.41), start with Equation (7.40)

. cos 8, —asin 0
j=-% eg ~n )

and use Equation (7.38)

tan 6, = 4 (8)
8

to obtain, either through a trigonometric identity or a figure such as the one shown here,

cos 6, = 8 sin g, = 2 )
Jg'+a g*+a’

Inserting this into (7), we obtain
[a2 + 2

as desired.

We know intuitively that the period of the pendulum cannot depend on whether the train is
accelerating to the left or to the right, which implies that the sign of a cannot affect the
frequency. From a Newtonian point of view, the pendulum will be in equilibrium when it is in
line with the effective acceleration. Since the acceleration is sideways and gravity is down, and
the period can only depend on the magnitude of the effective acceleration, the correct form is

clearly \Ja* +¢* .
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7'3-

1y

If we take angles € and ¢ as our generalized coordinates, the kinetic energy and the potential
energy of the system are

1 2 1.,
T:Em[(R—p)H] +o 14 (1)
U=[R-(R-p)cos §]mg ()

where m is the mass of the sphere and where U = 0 at the lowest position of the sphere. I is the
moment of inertia of sphere with respect to any diameter. Since I = (2/ 5) mp’ , the Lagrangian

becomes
L=T—U:%m(R—p)292+émp2¢2—[R—(R—p)cose]mg 3)

When the sphere is at its lowest position, the points A and B coincide. The condition A0 = BO
gives the equation of constraint:

f(6,¢)=(R-p)0—pp=0 4)

Therefore, we have two Lagrange’s equations with one undetermined multiplier:

oL d[@L}Maf .

00 dt|loo] “o6

®)
%—i{a—;}+lg:0
o dt| og| "o

After substituting (3) and 6f/00=R-p and of /0¢=—-p into (5), we find

~(R~ p)mg sin @—m(R-p)* 6+ A(R-p)=0 (6)
2 .
—5 P p—4p=0 @)
From (7) we find A:
2 .
’1:_5 mpg ®)
or, if we use (4), we have
/1=—§m(1<—p)é )

Substituting (9) into (6), we find the equation of motion with respect to 8:
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f=-wsin 0 (10)

where wis the frequency of small oscillations, defined by

_ |58
W= 7(R—p) (11)

7'4-

0
X

If we choose (7,8) as the generalized coordinates, the kinetic energy of the particle is
_ 1 ) AN ]. ) 22
T—Em<x +y)—5m(r +r9) (1)

Since the force is related to the potential by

ou
- 2
f=-5 @
we find

u= 4 re 3)
a
where we let U(r = 0) = 0. Therefore, the Lagrangian becomes
_ 1 .2 22 A,
L—Em(r +r6’)—;r (4)

Lagrange’s equation for the coordinate r leads to

|mi" —mré* + Ar®' = 0| (5)

Lagrange’s equation for the coordinate & leads to

%(mrzé) =0 (6)

Since mr*@ =/ is identified as the angular momentum, (6) implies that angular momentum is
conserved. Now, if we use /, we can write (5) as

2
my —

=+ Ar* =0 7)
mr

Multiplying (7) by 7, we have
)2
i

mry — + A =0 (8)

mr?
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which is equivalent to

d [1 .2} d| ¢* d [A a}
— | —mi” | +— |+ —7r"|=0
dt] 2 dt| 2mr dt | a

Therefore,

Z(T+U)=0
= (T+U)

and the total energy is conserved.

7-5.

Let us choose the coordinate system so that the x-y plane lies on the vertical plane in a

185

©)

(10)

gravitational field and let the gravitational potential be zero along the x axis. Then the kinetic
energy and the potential energy are expressed in terms of the generalized coordinates (r,¢) as

T :%m(;”2 + 72¢2)

Uzér“+mgrsin¢
a

from which the Lagrangian is

L:T—U:lm(i’z+r2¢2)—ér“—mgrsin¢
2 a

Therefore, Lagrange’s equation for the coordinate 7 is

mi —mrg” + Ar®" +mg sin =0

Lagrange’s equation for the coordinate ¢is

%(mrzé) +mgr cos ¢=0

1)

)

®3)

(4)

)

Since mr’¢ is the angular momentum along the z axis, (5) shows that the angular momentum is

not conserved. The reason, of course, is that the particle is subject to a torque due to the

gravitational force.
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7'6-

Let us choose &S as our generalized coordinates. The x,y coordinates of the center of the hoop
are expressed by

x=¢&+Scosa+rsina
(1)
y=rcosa+({-S)sina
Therefore, the kinetic energy of the hoop is
1 1,
T, —m(2*+y*)+ =1
h ( Y ) > ¢

oop =
:%m[(f+$cosa)2+(—Ssina)2:|+%l¢2 2)

Using [ =mr* and S=r¢, (2) becomes
T, %m[ZSZ +& 428 cos a] (3)

00p =

In order to find the total kinetic energy, we need to add the kinetic energy of the translational
motion of the plane along the x-axis which is

e =5 M @
Therefore, the total kinetic energy becomes
T=m5'2+%(m+M)§2+m§S' cos a (5)
The potential energy is
U =mgy =mg[rcosa+({-S)sina] (6)
Hence, the Lagrangian is
1=mS* + %(m + M) &> +mé&S cos a—mg[r cos a+ (£~ S)sin & | 7)

from which the Lagrange equations for £and S are easily found to be

2m§+mfcos a-mgsina=0 (8)

(m+M)E+mS cosa=0 9)
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or, if we rewrite these equations in the form of uncoupled equations by substituting for ¢ and

S, we have

2
{Z—M}g—gsinazo

m+M
(10)
.;,é—— mg sin o cos
2(m+M)-mcos® a |
Now, we can rewrite (9) as
%[(m+M)§+mS'cos a]:O (11)

where we can interpret (m+ M )f as the x component of the linear momentum of the total

system and mS cos & as the x component of the linear momentum of the hoop with respect to

the plane. Therefore, (11) means that the x component of the total linear momentum is a
constant of motion. This is the expected result because no external force is applied along the
X-axis.

7-7.

If we take (¢1, ¢2) as our generalized coordinates, the x,y coordinates of the two masses are
x, =1 cos ¢,
Yy, ={sin g ]
x, = cos ¢, +{ cos ¢, ]

Y, =/{sin ¢ +(sin ¢,

1)

()

Using (1) and (2), we find the kinetic energy of the system to be

T =%(§cf +yf)+%(x§ +i2)

- % O+ + 3 + 24y (sin ¢, sin g, +cos ¢, cos 4, ) |

= % 02 [2;}512 + @5 + 24,4, cos(¢, — ¢2)] ®)
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The potential energy is
U =-mgx, —mgx, = —mgfl:Z COs ¢ +cos ¢2] 4)
Therefore, the Lagrangian is
. 1. -
L=mr* {¢f +§¢22 + ¢, cos(g, — ¢2)} +mg[2 cos ¢, +cos ¢, | (5)
from which
oL 20 . )
———=ml"¢p, 51n(¢1 - ¢2) —2mgl sin ¢
¢,
oL - ;
—=2ml*$, + ml*@, cos(¢, — 4,)
¢,
(6)
oL 20 .
———=-ml 4 51n(¢1 - ¢2) —mglsin ¢,
09,
j—.L =ml*g, + ml*¢ cos(¢ - 4,)
#, ]
The Lagrange equations for ¢, and ¢, are
24, +§, cos(gy — ) + &2 sin(¢1—¢2)+2%sin¢1=0 @)
&2"‘(31 COS(¢1—¢2)—¢12 Sin(¢1_¢2)+%Sin ¢2 =0 (8)
7'8-
u, / U,
16,
ol '

Let us choose the x,y coordinates so that the two regions are divided by the y axis:

U, x<0
U(x)=

u, x>0

If we consider the potential energy as a function of x as above, the Lagrangian of the particle is
1
L==—m(x*+7*)-U(x 1
S m(E ) -U() M)

Therefore, Lagrange’s equations for the coordinates x and y are
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dU(x)
dx
mij =0

=0

Using the relation

. d . dP, dP, dx P, dp,
mx =—mx = = —_— =%
dt dt dx dt m dx

(2) becomes

B P, du(y)
m dx dx

=0

Integrating (5) from any point in the region 1 to any point in the region 2, we find

2 2
[Ny LG A
dx

L m dx ]
2 2
= x1+U2—U1=0
2m 2m

or, equivalently,
1 . 1 .
mefﬂl1 =me§+u2

Now, from (3) we have

and my is constant. Therefore,
my, = my,

From (9) we have
1

L1
Em.%z:Emy;

Adding (8) and (10), we have
1 1
Emvf +U, =Emv§ +U,

From (9) we also have
mo, sin 6, = mv, sin 6,

Substituting (11) into (12), we find

sin 6, _ U 1+U1—U2 v
sind, v T

189

)
®)

(4)

()

(6)

)

(8)

©)

(10)

(11)

(12)

(13)
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This problem is the mechanical analog of the refraction of light upon passing from a medium of
a certain optical density into a medium with a different optical density.

7'9-

S

m

o

Using the generalized coordinates given in the figure, the Cartesian coordinates for the disk are
(¢ cos a, —¢sin @), and for the bob they are (¢ sin ¢+ &cos a, —¢ cos ¢— & sin ). The kinetic
energy is given by

1. ., 1. 1 . .
T=Tuu + 1o :{EMé:z +5192}+Em(x§0b +yf)ob) (1)

Substituting the coordinates for the bob, we obtain
T=%(M+m)§2+%I€2+%m£2¢2+m£¢§cos(¢+ a) (2)
The potential energy is given by
U = Ugig, + Upop = MY ik + M&Y 1 = —(M +m) g& sin o —mg( cos ¢ (©)

Now let us use the relation &= Ré to reduce the degrees of freedom to two, and in addition
substitute I = MR?/2 for the disk. The Lagrangian becomes

L=T-U= GM+% ) £2 +%m€2é§2 +mlgE cos(¢+a) + (M +m) g&sin o+ mgl cos ¢ (4)
The resulting equations of motion for our two generalized coordinates are
(%M + m) E—(M+m)gsina+ mf[écos(¢+ a)- ¢ sin(g+ a)} =0 (5)
¢+Z§cos(¢+a)+?sm¢=0 (6)
7'1 o-
Y
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Let the length of the string be / so that

(S—x)-y=! (1)
Then,
k=-y (2)
a) The Lagrangian of the system is
L:%Mx2+%My'2—ng:My2—ng 3)
Therefore, Lagrange’s equation for y is
ia—lf—%:2My+Mg:0 4)
dt oy oy
from which
. g
__% 5
i=-% ©)
Then, the general solution for y becomes
y(t):—%t2+Clt+C2 ©)

If we assign the initial conditions y(t=0)=0 and y(t=0)=0, we find

y()=-5¢ @)

b) If the string has a mass m, we must consider its kinetic energy and potential energy. These

are
1 .
Tstring = E myz (8)
m m
ustring :_ng%:_z_jyz (9)

Adding (8) and (9) to (3), the total Lagrangian becomes
L= My - Mgy +— mj* + 28 2 (10)
2 20
Therefore, Lagrange’s equation for y now becomes

(2M+m)jj—%y+Mg:0 11)

In order to solve (11), we arrange this equation into the form

. M
(2M+m)y=%[y—%} (12)
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2 2
Since % [y - %} _ 4 v, (12) is equivalent to

dr®
d_z{ _ﬂ}_ mg [_ﬂ}
a 1! ~1(2M +m) T

which is solved to give
y—sze“ +Be™”
m

where

If we assign the initial condition y(t=0)=0; y(t=0)=0, we have

A=+B= —w
2m
Then,
(t)=— (1 —cosh }/t)
7-11.

The x,y coordinates of the particle are

x =R cos a)t+Rcos(¢+ a)t)
y=Rsinwt+R sin(¢+ a)t)
Then,

i =-Rwsin ot - R(¢+ o) sin(4 + ot)

Y= Rw cos ot + R(¢+ a)) cos(g+ wt)

CHAPTER 7

(13)

(14)

(15)

(16)

1)

()

Since there is no external force, the potential energy is constant and can be set equal to zero. The

Lagrangian becomes
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L:%n4%+yﬁ

=%[R2a}2+R2(¢+ a))2+2R2a)(¢+ ) cos ¢] 3)
from which
g_zz_msz(¢+w) sin ¢ (4)
d oL d 2
Eﬁ_gbzﬁ[mR (¢+ @+ @ cos ¢)] ®)

Therefore, Lagrange’s equation for ¢ becomes

$+ o> sin =0 (6)

which is also the equation of motion for a simple pendulum. To make the result appear
reasonable, note that we may write the acceleration felt by the particle in the rotating frame as

a=w'R(i'+e]) )

where the primed unit vectors are as indicated in the figure. The part proportional to e, does

not affect the motion since it has no contribution to the torque, and the part proportional to i’ is
constant and does not contribute to the torque in the same way a constant gravitational field
provides a torque to the simple pendulum.

7-12.

m
//}///
0

Put the origin at the bottom of the plane

L=T—U=%m(i’2+r2 92)—mgrsint9
O=at; O=a
r-1 m(;’*z +a’ rz)—mgr sin at
2
Lagrange’s equation for r gives
mi = ma’r —mg sin at

or

F—a’r=—gsin at (1)
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The general solution is of the form r =7, +7, where 7, is the general solution of the

homogeneous equation #—a’r =0 and r, is a particular solution of Eq. (1).
So
r, = Ae” + Be™
For r,, try a solution of the form r, =Csin af. Then #, = -C o’ sin at . Substituting into (1) gives

~C o’ sinat—C o sin at =—g sin at

8
C=
207

So

r(t)=Ae” +Be ™ + g2 sin ot
a

We can determine A and B from the initial conditions:
r(0) =1, @)
#(0)=0 3)
(2) implies r,=A+B

(3) implies 0= A— B+
2a

Solving for A and B gives:

1 8 1 8
- N ]

”(t)zl{”o 8 }eat+l[1’o+%}e_at+ §_sin at

2

2 207 2 a 2a
or
r(t)=r1, cosh at + g2 (sin at —sinh at)
2a
7-13.
a)

'4'”
/eé
m :
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x=Lat _bsing
y=-bcos @

X =at — b cos O
i/ =bfsin @

L:%m(xz +y2)—mgy

=%m(a2t2 —2at b cos 6+ b2€2)+ mgb cos 0

d oL oL .
——=—gives
dt 06 00

%[—mat b cos 6+ mbzé] = mat b@ sin 6 — mgb sin 0

This gives the equation of motion

é+§sin H—ECOS =0
b b

b) To find the period for small oscillations, we must expand sin # and cos € about the

equilibrium point §,. We find 6, by setting 8=0. For equilibrium,
g sin 6, = a cos 6,

or

Using the first two terms in a Taylor series expansion for sin @ and cos 6 gives
F(0)=F(6,)+ £(0)],, (0-0)
sin @=sin 6, +(0—-6,)cos 6,
cos 0= cos 6, — (6 6, )sin 6,

a

Jai+g¢° '

a. .o
tan §, =— implies sin §, =

8

cos 6, = =
a-+g

195
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Thus

sin 9=;(a+g6’—g6’0)
a*+ g’

cos Hzé(g—a9+a¢90)
a’+g°

Substituting into the equation of motion gives

0=0+—23

a
< SR O—00 ) —
b\/a2+g2 (a+g 8 0> b./a2+g2

(g—a9+a90)

This reduces to

0+ \/g2b+ i 0= \/g2b+ - &

The solution to this inhomogeneous differential equation is

0 =6, + A cos w8+ B sin w0

where
(8" +a)’
w= 2
Thus
b1/2
T_ 2_7r B 27 :
2 ( g2 + az)
7-14.
ta
)
x=bsin 0

1 5,
=_—at°-b 0
y 2a cos
x=b0cos 0
i =at+bOsin 6

T= % m(i*+7°) = % m(bzé?2 +a’t* + 2abt0 sin 0)
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U:mgy:mg{%atz —bcos 9}

L=T-U= % m(bzéz +a’t’ + 2abtl sin 0) + mg[b cos 0—% atzj
Lagrange’s equation for #gives
%[mbzéw mabt sin 6’] = mabt@ cos @ —mgb sin O
b*6+ ab sin @+ abtd cos 6 = abté cos 6 — gb sin O

é+azgsm9:0

For small oscillations, sin 8= @

a+g

0+ 6=0.
b
Comparing with 0+ »*6=0 gives
T:E:27r b
® a+g

7-15.

m

b = unextended length of spring

¢ = variable length of spring
1 92 2 2
T==m(I*+0* &)
2
1 2 1 2
U:Ek(é—b) +mgy:5k(€—b) —mg ( cos 6
1 2 2/ 1 2
L:T—Uz—m(f +0 62)——(€—b) +mg ¢ cos 0
2 2
Taking Lagrange’s equations for ¢ and #gives

- . .
E:E[mf]zméﬁz—k(f—b)jtmg cos 0
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0: %[mﬂzé?] =—mg { sin O

This reduces to

i1+ X (¢—b)—gcos6=0

m

912710+ sino=0
A

7-16.

« —= X =asin of

For mass m:

x=asin wt+bsin @
y=-bcos@
X = ae cos ot + bl cos 0
y=b@sin @
Substitute into
1
T==m(%*+y*
S+ i)
U =mgy
and the result is
1 ) )
L=T-U= 5 m(aza)z cos” wt + 2abwl cos wt cos O+ bzé’z) +mgb cos 6
Lagrange’s equation for #gives
%(maba) cos wt cos 0+ mb29) = —mabwé cos wt sin @ — mgb sin @

—abw® sin wt cos @ — abwl cos ot sin O+ b*0 = — abwl cos wt sin §— gb sin 6

or

é+§sin 9—%@2 sin wt cos =0

b
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7-17.

Using g and (= @t since €(0) = 0), the x,y coordinates of the particle are expressed as

x =hcos 6+ qsin 6= h cos wt + q(t)sin ot
y=hsin @—gcos 6= hsin ot — q(t)cos wt
from which

X =—ho sin ot + go cos wt + g sin wt
Y =ho cos ot + qo sin ot — 4 cos wt

Therefore, the kinetic energy of the particle is

T=%m(5c2 +17)

= % m (h2w2 +q’0” + c’;z) — mhwg

The potential energy is

U=mgy= mg(h sin wt — g cos a)t)
Then, the Lagrangian for the particle is

L= % mh’*eo” + % mg’e* + % mg* —mgh sin ot + mgq cos ot — mhwg
Lagrange’s equation for the coordinate is
j—w’q=g cos ot
The complementary solution and the particular solution for (6) are written as
q.(t)= A cos (it + 5)

qp (t)=— 25)2 cos wt

so that the general solution is

q(t)= A cos (iwt + 5) - §_ cos wt
20

2

Using the initial conditions, we have

199

1)

()

3)

(4)

()

(6)

(7)

(8)
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q(0)=Acos - f}z =0

§(0) = —iwAsin 5=0

Therefore,
5=0, A=—5
2w
and
q(t)= g (cos iwt — cos wt)
20°
or,

2w

t

In order to compute the Hamiltonian, we first find the canonical momentum of 4. This is

obtained by

oL
p=—=mq—moh
aq

Therefore, the Hamiltonian becomes

H=pg-L

=mq’ — mwhq —% ma?h? — 1 mae’q* — % mg* + mgh sin ot — mgq cos ot + magh

2
so that
1

H==mg" - % mao’h* —% ma’q* + mgh sin ot — mgq cos wt

2
Solving (13) for 4 and substituting gives

2

2m

H=F 4 whp —% mae’q* + mgh sin ot — mgq cos wt

CHAPTER 7

©)

(10)

(11)

(12)

(13)

(14)

(15)

The Hamiltonian is therefore different from the total energy, T + U. The energy is not conserved
in this problem since the Hamiltonian contains time explicitly. (The particle gains energy from

the gravitational field.)
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7-18.

From the figure, we have the following relation:
AC=(-s=0-R0O
where 68is the generalized coordinate. In terms of 6, the x,y coordinates of the mass are

x=AC cos 0+ Rsin §=(/—R6)cos 8+ Rsin @
y=Rcos @— ACsin @=R cos (¢~ Rf)sin 6
from which
X =ROOsin 6 (Hsin O
1/ =R6O cos (0 cos 0
Therefore, the kinetic energy becomes
_1 .2 '2_1 292 22 52 N2
T—Em(x +7 )_Em[z & +R*6°6° —2R166" |
The potential energy is
U =mgy = mg| R cos 6— (¢ —RO) sin 0]
Then, the Lagrangian is
L=T-U= % m| °6° + R*6°% —2R106" |- mg[ R cos (£ RO) sin 6]
Lagrange’s equation for #is
(¢ ~RO)O—- RGP — g cos 0=0
Now let us expand about some angle §,, and assume the deviations are small. Defining
&= 0-0,, we obtain
. g sin 6, o 808 0,
?—Ré, {—Ré,

The solution to this differential equation is

cos 6,

e=Asin(ot +6)+—
sin 6,

where A and Jare constants of integration and

201

1)

)

3)

(4)

(5)

(6)

(7)

(8)

©)



202 CHAPTER 7

g sin 6, (10)
{—R6,

is the frequency of small oscillations. It is clear from (9) that € extends equally about 6, when
0, =r/2.

@

7-19.

Because of the various constraints, only one generalized coordinate is needed to describe the
system. We will use ¢, the angle between a plane through P perpendicular to the direction of the
gravitational force vector, and one of the extensionless strings, e.g., /,, as our generalized
coordinate.

The, the kinetic energy of the system is

1 a2 1 )
T=—m(tg) +2ma(l29) (1)
The potential energy is given by
U =-mgl, sin(z—(p+06)) - m,g(, sin 4 )

from which the Lagrangian has the form
L=T-U= %(mlﬁ + mZ@) ¢ +mgl, sin(g+6)+m,gl, sin ¢ (3)

The Lagrangian equation for ¢ is
m,gl, cos ¢+m,gl, cos(¢+6?)—(mlﬁ+m2€§)g}5=0 (4)
This is the equation which describes the motion in the plane m,, m,, P.

To find the frequency of small oscillations around the equilibrium position (defined by ¢=¢, ),
we expand the potential energy U about ¢ :

U(d) =U () + U () 8+ 5 U" () + .

1

=S U ()¢ ©)

where the last equality follows because we can take U(¢0) =0 and because U'(¢,)=0.

From (4) and (5), the frequency of small oscillations around the equilibrium position is
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u”
wz — R (¢O) - (6)
mly +m,l;
The condition U'(4,)=0 gives
tan g = myl, + mlél cos & %
m/, sin @
or,
sin g, = myl, +m{, cos 6 - ®)
(mi 03+ m3 0+ 2mymy 0, £, cos 0)
Then from (2), (7), and (8), U"(4,) is found to be
U”(¢0) = ¢ sin ¢, (mzé2 +m,l, cos @+ m,{, sin @ cot ¢O)
m, 0, +ml, cos @ 202 sin”
=— g(2222 Ll ) 7| Moty + 1y cos O+ Th* Sh 5
(m3 03+ m3 05 + 2mym, (40, cos 6) myly +my L, cos
2,2 242 2
=g(m1£1 +myl5 +2m,m, (0, cos 6) )
Finally, from (6) and (9), we have
, (m22 w2+ 2mmyt 1, cos 6)
0" =g 5 5 (10)
(mlé1 +myl 2)
which, using the relation,
2,92 12
cos 6= M (11)
20,0,

can be written as

* = g|:(m1 + m2)<m1€i + mzféz) _ d2m1m2 :|1/2 (12)
(m, 05 +m,13)

Notice that ®” degenerates to the value ¢/ appropriate for a simple pendulum when d — 0
(sothat 7, =1,).
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7-20. The x-y plane is horizontal, and A, B, C are the fixed points lying in a plane above the
hoop. The hoop rotates about the vertical through its center.

The kinetic energy of the system is given by

1 1 MR> ., 1 [ozT].
MR® [89} 7 1)

T==1Iw*+=Mz*= & +—M
2 2 2 2

For small 6, the second term can be neglected since (62/ 69)‘9:0 =0

The potential energy is given by
U=Mgz (2)
where we take U =0atz =—/.

Since the system has only one degree of freedom we can write z in terms of 6. When 6= 0,
z =—{. When the hoop is rotated thorough an angle 6, then

2> =¢* ~(R-Rcos 6)’ —(Rsin 6)’ (3)

so that

12

z=—[*+2R*(cos 6-1)] (4)
and the potential energy is given by

U =-Mg[¢*+2R*(cos 6-1)]" )
for small 6, cos -1z -6 / 2 then,

12

U=-Mg/|1

~—Mg/| 1 (6)

From (1) and (6), the Lagrangian is

7)

207

202
L:T—U:%MR2é2+Mg£{1—R o }
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for small 6. The Lagrange equation for 8 gives
é+%0=0 8)

where

w=|% ©)

which is the frequency of small rotational oscillations about the vertical through the center of
the hoop and is the same as that for a simple pendulum of length /.

7-21.

From the figure, we can easily write down the Lagrangian for this system.

mR? [ 2 .2
T = > (49 + o sin 9) (1)

U=-mgRcos 6 (2)

The resulting equation of motion for & is
0— w* sin9c059+%sin9=0 3)
The equilibrium positions are found by finding the values of # for which

0=é‘ =(a)2 cos 6, —%) sin 6, 4)

6=6,

Note first that 0 and 7 are equilibrium, and a third is defined by the condition

cos 6, = ng (5)

To investigate the stability of each of these, expand using ¢=60-6,

i=w’ [cos 0, - %— gsin 00) (sin 6, + £ cos 6, ) (6)
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For 6, =7, we have

.. g
i=o? a)ZR) ; )
indicating that it is unstable. For 6, =0, we have
8
= w* (1 - a)zR) & 8)

which is stable if ®* < ¢/R and unstable if »” > ¢/R. When stable, the frequency of small
oscillations is +/@* — g/R . For the final candidate,

£=-w"sin® f,¢ 9)

with a frequency of oscillations of /@ - ( g/ wR)2 , when it exists. Defining a critical frequency

w? = g/R, we have a stable equilibrium at 6, =0 when < ,, and a stable equilibrium at

=CoSs~ ( 2o ) when o> w, . The frequencies of small oscillations are then w4/1- (a)c / a))2

and ./ 1—(a)c / a)) , respectively.

To construct the phase diagram, we need the Hamiltonian

H=6 % -L (10)
00
which is not the total energy in this case. A convenient parameter that describes the trajectory

for a particular value of H is

H 1/(8Y) (o)
EW: hw —L—J sin® @ |- cos @ (11)
so that we’ll end up plotting
A 2
{a)i] =2(K+cos 0)+ [a)ﬁ\ sin’ @ (12)

for a particular value of @ and for various values of K. The results for » < w. are shown in
tigure (b), and those for @ > @, are shown in figure (c). Note how the origin turns from an
attractor into a separatrix as @ increases through o, . As such, the system could exhibit chaotic
behavior in the presence of damping.
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7-22. The potential energy U which gives the force

must satisfy the relation

we find

F(x,t)= L

x2
F__ou

ox
u =ke‘t/f

207

ey

)

©)
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Therefore, the Lagrangian is

L=T—U:lm5c2—ke_t/’ (4)
2 x
The Hamiltonian is given by
Hzprjc—L:jcﬁ—;—L (5)
’ ox
so that
2
H:&+ke_t/f (6)
2m  x

The Hamiltonian is equal to the total energy, T + U, because the potential does not depend on
velocity, but the total energy of the system is not conserved because H contains the time
explicitly.

7-23. The Hamiltonian function can be written as [see Eq. (7.153)]
H= Z pq;—L (1)
j

For a particle which moves freely in a conservative field with potential U, the Lagrangian in
rectangular coordinates is

L=%m(3‘c2+y2+22)—u

and the linear momentum components in rectangular coordinates are

—%—mx
Pr =%~
p, =my @)
p, =mz

Y T
H:[mx2+my2+mzz]—[5m(x2+y2+22)—u}
=1m(5c2+'2+z'2)+U=i( 2 p 4 2) 3)
> y m Pyt Py TP

which is just the total energy of the particle. The canonical equations are [from Egs. (7.160) and
(7.161)]
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ou
p. =m¥=———=F
pX ax X
) . ou
py:my:_@:Fy (4)
B =mi=—a—u:FZ
0z

These are simply Newton’s equations.

7-24.

The kinetic energy and the potential energy of the system are expressed as
T=Sm(i +267) == m(a? + 26F)
2 2 (1)
U =-mgl cos 0

so that the Lagrangian is
1 .
L:T—U:Em(az+€292)+mg€c050 2)

The Hamiltonian is

) oL .
H=p,0-L="—6-L
Pe Y;

po 1
= 2m6£2 -3 ma® —mg/ cos 0 (3)

which is different from the total energy, T + U. The total energy is not conserved in this system
because work is done on the system and we have
d

E(TH,I);&O 4)
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7-25.

In cylindrical coordinates the kinetic energy and the potential energy of the spiraling particle

are expressed by
T= % m[ i+ 1’0 + 2 |
U=mgz
Therefore, if we use the relations,
z=ko ie,z=ko
r = const. }

the Lagrangian becomes

Then the canonical momentum is

or,
5 P:
r2
The Hamiltonian is
2
H=p,z-L=p, Pzz - Pzz +mgz
r r
m{kz +1} Zm[szrl}
or,
2
H=-—_F: +mgz

Now, Hamilton’s equations of motion are

CHAPTER 7

1)

()

)

(4)

(5)

(6)

(7)
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oH . oH .
——_ =P, L =%
0z op,
so that
_OoH _
P g=P;
P m[l};ﬁl}

211

(8)

©)

(10)

Taking the time derivative of (10) and substituting (9) into that equation, we find the equation

of motion of the particle:

g

2
i

2:

It can be easily shown that Lagrange’s equation, computed from (3), gives the same result as

(11).
7-26.
a)
L=T—U=Em£ - mgy
1 2 2
L=Em€ 6" +mgl cos 0
oL -
=—.=m£20
Peo 20
SO
h5_ _Po
0=
me*

(11)

Since U is velocity-independent and the coordinate transformations are time-independent, the

Hamiltonian is the total energy

2
H=T+U=-L% —mgtcoso
2m

(2

The equations of motion are
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p=H _ P92 and]bgz—ﬁz—mgﬁsine
op, ml 00
b)

/z__[

i 1

it
v s

-2
T=lmi+ bt 115

2 2 2 a

where I = moment of inertia of the pulley

U = —m,gx —m,g({ - x)

—%—g—[m +m +i}x
P T |
So
o P
[memed]
my+my,+—
a
H=T+U
p2
H= g mgx —myg (L -x)
2[m1+m2+az}
The equations of motion are
P B
P 2[m1+m2+2}
a
P ==, = ey =g )
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7-27.

a)

x;, y; = coordinates of m;,
Using ¢, 6 as polar coordinates
X, =x,+{cos@
Y=Yy, +/{sin @
X, =%, +/ cos O—(fsin O (1)
J,=1,+/sin@+(fcos O )
If we substitute (1) and (2) into
L=T—U=lml(5c12 +yf)+lm2(x§ +y:§)—1k(z—b)2
2 2 2
the result is
L—l(m +m, )i + '2)+l (Zz +£292)
=5 U T {5 Y > m,
+m,l (%, cos O+ i, sin 6)+m,L0(ij, cos O, sin 6) —%k(f— b)*
The equations of motion are
d : : -
X, :—[(m1 + m2)x1 + myl cos @ —m, !0 sin 0] =0
dt
=My, + X, = p,

So p, = constant

n :%[(m1 +1m,) 17, +m,l sin 6+ m, (6 cos H]z 0

=1y, +m,Y, =p,

So p, = constant
l: %[mz'é +m, (%, cos O+ ¥, sin 9)] =m, L& — k(¢ —b)+m,0(i), cos O, sin 0)

which reduces to
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(— 10 + %, cos O+1j, sin6?+i(€—b)=0
nm,

d : . o
0: E[m2€26’+ m, (i, cos O— X, sin 0)]

= —mz'f(fcl sin € -1, cos 9) + mzﬂé’(—fcl cos 60—y, sin 49)

which reduces to

é+z.€9+cosﬁyl_sm¢9x1=0
4 4 4
b) Aswasshown in (a)
oL
—— =p, = constant
0x,
oL

o = p, = constant (total linear momentum)
Y

c¢) Using L from part (a)

Py, =%=(m1 +1m,) %, + myl cos —m,(fsin O
1
oL . oo ;
p,, =——=m +m,)y, +myl sin —m,(6 cos &
1
oL . L ~
P, =57 m, X, cos 0+ m,y, sin @+ m,/

p, = —m,l%, sin O+ m,l1, cos O+ m, (>0

Inverting these equations gives (after much algebra)
1 0
Po
1

X ——[ cos 0+ St
1_77’11 pxl pf

. . cos @

Y = Py, — P 51119—7 Po

. 1 m, +m
{=—|-p cos@-p, sinf+——=2p,
ml[ P, Py m, Pz}

.1 . m, +m
0= {pxl sin @—p, cos O+ 1m . z pg}

m( 2
Since the coordinate transformations are time independent, and U is velocity independent,
H=T+U

Substituting using the above equations for 4; in terms of p, gives
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R O B Y PRy .
H= 2m, {le TPy, t - Py +€—2 —2pé,(px1 cos 0+p, sin 0)

p . 1 2
+ 270(le sin §—p, cos 9)} +Ek(£ -b)

The equations of motion are

_oH _L[ g, Sin® }
1= op., = m, Py, =P , Po

_0H _i[ Yy sin - cos & }
V1= o, = m, Py, — P , Pe

-E_aH:i[ml+m2

=— , = 0- in @
P p,—p, cosf-p, sin }

m,

0= oH__1 [ml 1y Py + Py, sinO—p, cos 0}

“op, mt| myl
p, __OH_, Py =% o
! 0x, ' Y,
. 8H (m+my)p, p, ,
__od_ + sin 6 - O)—k((-b
2 Py, m1m2€3 mlgz (paq 1 p,, cos ) ( )
, OoH p, . i
p,= e Z—Z(—pxl sinf+p, cos 0) —n:;lgg[pxl cos 0+p, sin 9]

Note: This solution chooses as its generalized coordinates what the student would most likely
choose at this point in the text. If one looks ahead to Section 8.2 and 8.3, however, it would
show another choice of generalized coordinates that lead to three cyclic coordinates (X, Ycu

and @), as shown in those sections.

7-28. F=—kr? so U=-kr!

oL . P,
p,=——=mir so T=
or m
oL 2/ h_ Pe
=—=mrd so 0=
Po 06 mr?

Since the coordinate transformations are independent of t, and the potential energy is velocity-
independent, the Hamiltonian is the total energy.
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H=T+uzlm(r'2+r292)——
2

r

1op o P k
=—m|L+r -

2 {mz m*rt r

HoPy P K

2m  2mr® r

Hamilton’s equations of motion are

ﬁ Pr 0= ﬁ _ Po
op, m op, mr’
__O0H_p, k
A
oH
Po 20
7-29.
fa
k
9 m
b = unextended length of spring
¢ = variable length of spring
a) x=/sin @ x=/0sin @+ cos O

yzéﬂfz—ﬂcosé’ yzat—'ﬁcosﬁ+€95in6?
o 1 (0
Substituting into T = 5 m(x +7 )

ll=mgy+%k(€—b)2

gives

L= T—Uzém['fz + 020 +a’t +2at(€[9sin 61 cos 0)]+ mgLE cos 0——J —=(¢-by

Lagrange’s equations give:

at?) k

CHAPTER 7
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E:%[m'ﬁ—amt cos H]z ml & +matdsin @+ mg cos 0—k(¢—b)

9:%[ 0?0+ mat( sin 19] = mat! sin @ —mg/ sin O+ mat( 6 cos O

Upon simplifying, the equations of motion reduce to:

?—f@z—(a+g)cosé’+£(£—b)=0
m

é+%k9+“+gsin9=0
b) p/:%:m'f—matcosﬁ or Z:ﬂ+atcost9 (1)
ol m
Py = % =m0+ mat/( sin @
00
. p, atsind
or 0= - 2
ml? ‘ @

Since the transformation equations relating the generalized coordinates to rectangular
coordinates are not time-independent, the Hamiltonian is not the total energy.

H :Zpiqi -L= pé.f+pg€—L
Substituting (1) and (2) for ¢ and @ and simplifying gives

o, P

at . 1 » 1 >
——p, sin @+atp, cos O+—=k({—-b) +—=mgat” —mg/l cos 6
TRy P, S k(L=b) +—mg 4

The equations for & and / are

_H _ sz _ 2 in g
op, mt~ {
/= oH _Pe + at cos 6 agreeing with (1) and (2)
op, m

The equations for p, and p, are

oH at . ;
BT sin -k (¢ —b)+mg cos 6+ ;;3

f’e’ =

or

2
pI+Z—§p9 sin @+ k(¢ —b)—mg cos 6+ nf} =0

Py = —%:—%}pe cos @+at p, sin 0 —mg/l sin @
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or

pg—a?fpe cos@—atp, sin @+mglsin =0

92
c) sinf@=0,cos 9:1—?

Substitute into Lagrange’s equations of motion

4+ —
m

E—zé%{a+g{1—§;] k(f—b)zo

04279018 o atO
Y4 Y4 Y4
For small oscillations, < 1,0<1,/<1. Dropping all second-order terms gives

Z+£€:a+g+£b
m m

0+28 90
For 6,
T, = 2z =2z !
® a+g
The solution to the equation for 7 is
l= ghomogeneous + eparticular
=Acos\/£t+Bsin\/zt+E(a+g)+b
m m k
So for ¢,
1= _0g |
@ k
7-30.

a) From the definition of a total derivative, we can write

9 _08 , 5|08 09 , 08 Ipi )
dt ot | 0q. ot Op, ot

Using the canonical equations
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oq. . OH
ERar
Pk

2)
Pe_p, __OH
ot "F og,

we can write (1) as

d_gza_g+z{8g oH &g aH} )

dat ot T 0q, dp,  Op, Oy
or
dg _ o8
2% ifeH 4
i~ o sl @)
oq; oH
b g 1 _ o1 5
) CRPY o, ©)

According to the definition of the Poisson brackets,

(4, H]:Z{%ﬁ_%@} ©
! T L9 Opr 0Py 04

but

oqg. og.

Wi _ s, and B —0 forany jk @)

og 7 px
then (6) can be expressed as

oH .
[qj'H]zé_p:qj 8)
]

In the same way, from the canonical equations,

p=—o> ©)
] aqj
so that
op; op;
[pj,H]zz{ﬁﬁ_ﬁ%} 10)
w0 Opc  Opy Oqy
but
op; op.
ﬁzé-k and ﬁzO for any j k (11)
o’ oy

then,
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OH
p] :_a_q_[P,'/H}
j
opy ap] opy ap]
c o =S S TSP T
) [pk P]] Zﬁ:|:aqe op, op, 4,
since,
P =0 for any k¢
q

the right-hand side of (13) vanishes, and

In the same way,

since

the right-hand side of (16) vanishes and

d)

[qk'lﬂ

or,

e) Let g(p.,q;) be a quantity that does not depend explicitly on the time. If g(p,,q;)

commutes with the Hamiltonian, i.e., if

then, according to the result in a) above,

and g is a constant of motion.

14

oq, op,

= Zé‘k/, 5]‘(

l

[qk/pj]:é‘kj

[8,H]=0

B,
dt

0g.
a—q] =0 forany j,/

:Z{%%___'

op, 04,

CHAPTER 7

(12)

(13)

(14)

(15)

(16)

17)

(18)

(19)

(20)

(21)

(22)
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7-31. A spherical pendulum can be described in terms of the motion of a point mass m on the
surface of a sphere of radius ¢, where ¢ corresponds to the length of the pendulum support rod.
The coordinates are as indicated below.

y
The kinetic energy of the pendulum is
T:lllés2 +1126>2 =1m62(¢2 sin® 0+ ¢ 1)
2 2 2
and the potential energy is
U =mgl cos @ (2)
The Lagrangian is
L:%mﬂz(éz sin’ 0+ 92)—mg€ cos @ 3)
so that the momenta are
oL -
=— = m€20 4
Po 20 4)
P, =2—;= ml*$sin’® @ (5)

The Hamiltonian then becomes

H=p,0+ pﬁﬁ—%mﬁz(éz sin® 6+ 92)+ mg/ cos 0
(6)

=p—§+V(€ )
2me? Ps

which is just the total energy of the system and where the effective potential is
pZ
_ [
V(6,py)= S gl cos @)
When p, =0, V(80) is finite for all ¢, with a maximum at =0 (top of the sphere) and a

minimum at &= 7 (bottom of the sphere); this is just the case of the ordinary pendulum. For
different values of p,, the V-6 diagram has the appearance below:
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0 g T 0—

When p, >0, the pendulum never reaches =0 or &= = because V is infinite at these points.

The V-6 curve has a single minimum and the motion is oscillatory about this point. If the total
energy (and therefore V) is a minimum for a given p,,0 is a constant, and we have the case of a

conical pendulum.

For further details, see J. C. Slater and N. H. Frank, Mechanics, McGraw-Hill, New York, 1947,
pp- 79-86.

7-32. The Lagrangian for this case is

L=T—U=%m(r’2+rz[92+r2 sin? [9¢2)+5 1)
r

where spherical coordinates have been used due to the symmetry of U.
The generalized coordinates are r, §, and ¢, and the generalized momenta are

pr - E - mr (2)
oL :

Po 2%: mr0 3)

Py :2—;: mr’¢sin’® 0 (4)

The Hamiltonian can be constructed as in Eq. (7.155):

H=p,i+p,0+p,p-L
L m(r'2 +720% +1*¢* sin® 49)—E
2 r

2 2 2
:lp_r_l_ p0+ p¢ _E (5)

2l m mr* mr*sin®*@| r

Egs. (7.160) applied to H as given in (5) reproduce equations (2), (3), and (4). The canonical
equations of motion are obtained applying Eq. (7.161) to H:

OH_ kv, P
or 2 mr®  mr’sin® 0

pr = (6)
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_0H p; cot & )
700 mrtsin® @
OoH

The last equation implies that p, = const, which reduces the number of variables on which H

depends to four: v, 8, p,, p,:

2
H=L{Pf+&+%}k )
r°or'sin®@| r

For motion with constant energy, (9) fixes the value of any of the four variables when the other
three are given.

From (9), for a given constant value of H = E, we obtain

r? sin® 6 r (10)

p - {ZmE— ps sin® 0+ const | 2mk r

and so the projection of the phase path on the r —p, plane are as shown below.

pr

/-
8, <0,<0,

7-33.

Neglect the masses of the pulleys

T=%mlx2+%m2(fc'—x)2+%m3(—>z—x')2

U=-mgx—m,g({—x+x")—mug({—x+0"—x')
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Lzé(m1 + 1y + 1y ) & +%(m2 +1m5) X" + 31 (my — m,)
+ g (m, —m, —my)x + g(m, — my)x' + constant

We redefine the zero in U such that the constant in L = 0.

oL , :
px:g:(ml+m2+m3)x+(m3—m2)x’ 1

oL : .
px,:gz(m3—m2)x+(m2+m3)x' 2)

Solving (1) and (2) for p, and p, gives

x=D" [(mz + 1y )p., +(m, — mg)px':l
&= D7 [ty + ) p, + (1, + 1y +1,) p,
where D =m,m, +m,m, + 4m,m,

H=T+U

:%(m1 +m, +m3)5c2 +%(m2 +m3)5c'2 +(m3 —mz)xjc
—g(ml -m, —m3)x—g(m2 —ms)x'

Substituting for x and x’ and simplifying gives

H

%(m2 +m,)D™ p? +%(m1 +m, +my) D™ pl

+<m2 _ma)Dil PPy _g(ml —m, +m3)x—g(m2 _m3)x’

where D = m;m, + m,;m, + 4m,m,

The equations of motion are

OH

J'c:—:(mz+m3)D‘l px+(mz—m3)D‘l Py
Py
X' = aaH =(my —my)D7 p,. +(my, +m, +my)D”" p,,
px’
y =9 _ (m, —m, —my)
Px = o =8\ =My =1y
oH
x =—§=g(m2— 3)
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7-34.

The coordinates of the wedge and the particle are

Xy =X X, =1cos@+x
_ (1)
Yy =0 Y, =—rsind
The Lagrangian is then
L= M; i+ (7 + 126 + 247 cos 0~ 2k sin 6) + mgr sin 0 2)
r

Note that we do not take r to be constant since we want the reaction of the wedge on the
particle. The constraint equationis f(x,68,r)=r—-R=0.

a) Right now, however, we may take r = Rand 7=7#=0 to get the equations of motion for x
and 6. Using Lagrange’s equations,

XzaR(ésin 0+ &* cos 0) (3)

ézxsmﬁ};gcosé’ @)

where a=m/(M+m).
b) We can get the reaction of the wedge from the Lagrange equation for r
A = m¥ cos @— mR&* —mg sin @ (5)

We can use equations (3) and (4) to express X in terms of #and 0, and substitute the resulting
expression into (5) to obtain

A= {”—_1}(1292 + g sin 6) 6)

1-asin® @
To get an expression for @, let us use the conservation of energy

M+m .,

H= i %(Rzéz — 2&R@sin 6) - mgR sin §=-mgR sin 6, @)

where 6, is defined by the initial position of the particle, and —mgR sin g, is the total energy of
the system (assuming we start at rest). We may integrate the expression (3) to obtain
% =aR@sin @, and substitute this into the energy equation to obtain an expression for @

P - Zg(sin 0 —sin 90)

R(l —asin? 0) ®)
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Finally, we can solve for the reaction in terms of only #and 6,

5 mMg(3 sin @ —asin® -2 sin 6’0) o)
(M +m)(1-asin® )

7-35. Weuse z; and p, as our generalized coordinates, the subscript i corresponding to the

ith particle. For a uniform field in the z direction the trajectories z = z(t) and momenta p = p(t)
are given by

1
2, =2y + Ut == gt
2 M
Pi = Pio —mgt
where z,,, p,,, and v,, = p;,/m are the initial displacement, momentum, and velocity of the ith
particle.

Using the initial conditions given, we have

Pt 1
Z=2+ =8 (2a)
Py = po —mgt (2b)
Z, =z, + Az, er—ot—lgt‘2 (2¢)
m
Py =p, —mgt (2d)
(P0+Ap0)t 1 5
= — ot 2
=t 58 (2e)
Ps = Po + Apy —mgt (2)
Ap, |t
z4:zO+AZO+<p°Jr ) —%gt‘2 (2g)
Py =Po +Apy —mgt (2h)

The Hamiltonian function corresponding to the ith particle is

mz',2 pz
H =T +V.=—~+mgz, =+ mqz. = const. 3
i=Ti+Vi=— 82 =5 Mgz, 3)

From (3) the phase space diagram for any of the four particles is a parabola as shown below.
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ﬁArea att=0

Po+ Apg
Po

Zy 7 T Az, Z—>
From this diagram (as well as from 2b, 2d, 2f, and 2h) it can be seen that for any time t,
P1=p2 (4)
Ps =P4 )

Then for a certain time f the shape of the area described by the representative points will be of
the general form

(P323) (Pazs)
3 4

1 (p1z1) 2 (przy)

zZ

where the base 1 2 must parallel to the top 3 4. At time = 0 the area is given by Az Ap,, since
it corresponds to a rectangle of base Az, and height Ap,. At any other time the area will be
given by

A= {base of parallelogram|t:t1 =(z, - Zl)|

t=t;

=(z, - zS)L:t1 = Azo}

t=t

x {height of parallelogramL:t] = (p3 - pl)

= (P4 — P2 )L:tl = Apo}

=Ap, Az, (6)

Thus, the area occupied in the phase plane is constant in time.

7-36. The initial volume of phase space accessible to the beam is
V, = 2R np; 1
After focusing, the volume in phase space is

V, = 2R} zp? 2)
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where now p, is the resulting radius of the distribution of transverse momentum components
of the beam with a circular cross section of radius R, . From Liouville’s theorem the phase space
accessible to the ensemble is invariant; hence,

V, = ﬂRéﬂpg =V, = ﬁRfﬁpf 3)
from which
Rypy
= — 4
P @

If R, <R,, then p, >p,, which means that the resulting spread in the momentum distribution
has increased.

This result means that when the beam is better focused, the transverse momentum components
are increased and there is a subsequent divergence of the beam past the point of focus.

7-37. Let’s choose the coordinate system as shown:

X

X3
X, ny

i,

The Lagrangian of the system is

10 (dx)) dx, )’ dx, )
L:T_U:ELml[d_tlj +m2(d—tz) +m3(d—t3j J+g(m1x1+m2x2+m3x3)

with the constraints

x,+y=1l and x,-y+x,-y=1,

2 2 2
dx1+dx2+dx3:

which imply 2x, +x, +x; —(2], +1,)=0 = 2 2 e e

0 1)

The motion equations (with Lagrange multiplier 1) are
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2

mg m1%+2}»:0
2
X
m,g m2ﬁ+l:0
2
m,g — m, ;3+/1:0
Combining (1)-(4) we find
—4g
AE T

my  m, My
Finally, the string tension that acts on m, is (see Eq. (2))

d*x,
hi=mg=m e ="2A=7— 1

m, m, m,

7-38. The Hamiltonian of the system is

H=T+U==m
2

dt 2 4 2m 2

The Hamiltonian motion equations that follow this Hamiltonian are

dx _oH_p

at op m
@z—ﬁz—(karbe)
dt ox

7-39.

The Lagrangian of the rope is

1 [dx)z kx> bx* p* kx*  bxt
=y

229

)

®)

(4)
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from which follows the equation of motion
OL_doL_ mgz dz

—= =m
0z dt oz b dt*

7-40.

2m

X
We choose the coordinates for the system as shown in the figure.

The kinetic energy is
2
T:12m(d—x) 1 bz(dgj +[ﬂj bd—tg@c s6,
2 dt 2" dt dt dt dt

2 2
+1m (ﬂerdi 501+b@cos sz [bd—gsmﬁ +bd€ sm@j
2 dt dt dt dt

dt
The potential energy is
U =-mgb cos 6, —mg(b cos 6, + b cos 6,)
And the Lagrangian is
L=T-U-= 2m(dx) bz[‘w) mb 20 o5, + 1 bz(‘wj
dt dt dt dt 2 dt
b%ddi; cos mb* ddﬁ ddiz cos (6, — 6,) + 2mgb cos 6, + mgb cos 6,
From this follow 3 equations of motion
2 2 2
oL_ddL = 0=4d—f+b Zd 31 cos 6, +d—%cos 0,
ox dt ox dt dt dt
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2 2 2
%:%% = -2g¢sinf, = 2b0f1t‘9 chos@1+b%cos(«91—6’2)
1 1
2

+b(ilitzj sin(6, — 6,)
oL _d oL
86 Tt 69

2 2 2 2
—gsin 6, bdd2 +Z—2 cos 6, +bilt9 cos (6, —6,)— b(ilej sin (6, — 6,)

7-41. For small angle of oscillation & we have

2
Lo (d&j + lm[d—b) and U =-mgbcos @
2 dt 2 \dt

So the Lagrangian reads

2
L=T-U-=2x bz(dej lm[@j +mgb cos 0
2 dt 2 \dt

from which follow 2 equations of motion

oL d oL o\’ &b _ da
—=—— = bl +gcosf=—5=——F
ob dt ob dt dt dt
oL d oL db de d*6 de d’e

—=—— = -—mgbsin 0=2mb——+mb* — = 2mba—+mb* —
06 dt oo dt dt dt* dt dt
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CHAPTER

Central-Force Motion

8'1-

In a uniform gravitational field, the gravitational acceleration is everywhere constant. Suppose
the gravitational field vector is in the x; direction; then the masses m, and m, have the

gravitational potential energies:

Uél) =—FO 3V = —m axl)

ey

U = _F® 30 = g

where r, = (xgl), X, x(;)) and where « is the constant gravitational acceleration. Therefore,

introducting the relative coordinate r and the center of mass coordinate R according to
r=r-r,
)
myx; +myx, = (my, +m,)R
we can express r; and r, in terms of r and R by

m,

r=—-2>*—r+R
m, +m, -
m
r,=———r+R
m, +m,

233
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which differ from Eq. (8.3) in the text by R. The Lagrangian of the two-particle system can now
be expressed in terms of r and R:

1
L=gm i+ mfef Ui -u -u
1 2 2
= |2 i R oy - — i+ R —-U(r) 4)
2 \my+m, m, +m,
+mla[ ™ x+X}rm20{— i x+X}
m, +m, m, +m,

where x and X are the x; components of r and R, respectively. Then, (4) becomes

2
1 m 2 1 m 2 1 2
L== 2 = 1 = R
zml{ } |t|” + m{mﬁ_mz}m +2(m1+m2)| | 5
X
o x+(my +m,)a

Hence, we can write the Lagrangian in the form

1 . 1 :
L=Ey|r|2—U(r)JrE(ml+mz)‘R‘2+(m1 +m,)aX (6)

where uis the reduced mass:

m,m
p=—— )

m, +m,

Therefore, this case is reducible to an equivalent one-body problem.

8-2. Setting u=1/r, Eq. (8.38) can be rewritten as

du

\/Z;EJrzgﬁku—uz

9=— 1)

where we have used the relation du = —(1/ 1’2) dr . Using the standard form of the integral [see
Eq. (E.8c), Appendix EJ:

j ax _ sin”! 2ax+b + const (2)
Jax* vbxvc N-a Jb? - 4ac .
we have
2 2uk
2
0+ const. =sin™ r_{ 3)
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or, equivalently,
2, 2uk
2
sin(@+ const.) = L - £ (4)
F7+%

We can choose the point from which 6 is measured so that the constant in (4) is —7/2 . Then,

()

which is the desired expression.

8-3. When k — k/2, the potential energy will decrease to half its former value; but the kinetic
energy will remain the same. Since the original orbit is circular, the instantaneous values of T
and U are equal to the average values, (T) and(U). For a 1/r* force, the virial theorem states

(T)=-—(u) M)
Hence,
E=T+U=—~U+U=2U @)
2 2
Now, consider the energy diagram
E 5 \\\\/ljz/Zurz
\ c ,
where
CB=E original total energy
CA=U original potential energy
CD=U. original centrifugal energy

The point B is obtained from CB=CA —~CD. According to the virial theorem, E = (1/ Z)U or
CB= (1/ 2)@. Therefore,

CD=CB=BA
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Hence, if U suddenly is halved, the total energy is raised from B by an amount equal to (1/ Z)C_A

or by CB. Thus, the total energy point is raised from B to C; i.e., E(final) = 0 and the orbit is
parabolic.

8-4. Since the particle moves in a central, inverse-square law force field, the potential energy
is

U= —k 1)
T
so that the time average is
1¢ k
Uy=——| —dt 2
wy=-217 @
Since this motion is a central motion, the angular momentum is a constant of motion. Then,
ur* @= 0 = const. 3)
from which
2
dt=*" 40 (4)
14
Therefore, (2) becomes
2 2 2
<u>:_lj kﬂdez_k_ﬂj‘rdg (5)
Ty vt (7204

Now, substituting a/r =1+ gcos 6 and 7=(2u/¢)z\er a?, (5) becomes

kJZT 1

272a7 I 14 gcos 0

{u)=

dae (6)

0

where 4 is the semimajor axis of the ellipse. Using the standard integral [see Eq. (E.15),
Appendix E],

27
I 1+ glcos 0 40= 12_ﬂg2 @
0
and the relation,
a= a(l - gz) (8)
(6) becomes
k
(u)= - )

The kinetic energy is
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-1,y (10)

and the time average is

(T)= —1jT dr= L [ku 2fTr2 do (11)
T 2720\ a®

Part of this integral is trivial,

_ L R BT e g 7
(T>_2M\/;{2 J;(rr) 46+ p } (12)

To evaluate the integral above, substitute the expression for » and make a change of variable

lf(i’r)Z 1( 16)’ sz sin? 0do  (rtg) J-\/l—x dx

(13)
2% 2L/U 01+£Cos¢9 Lﬂ b (1+gx)2

The reader is invited to evaluate this integral in either form. The solution presented here is to
integrate by parts twice, which gives a third integral that can be looked up in a table:

f1—x2 dx 1= x? | 1-1[ x dx
Yrar)  s(leex) | e lI-x (14 )

-1 |t 1 . -1
:_l x sin x| _ISIH xdzx (15)
el l+ex |71 ) (1+ &x)
(16)
-1

V4 1
=— -1+ (17)
& { Ji-¢ }
Substituting this into (13) and then into (12), we obtain the desired answer,
k

(T) = (18)

(14)

1 . 4
= —— + A I\ T
& lsm N (1+&)(1+x)

This explicitly verifies the virial theorem, which states that for an inverse-square law force,

(T)=—2(u) 19)
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/%12

my

8'5-

Suppose two particles with masses m, and m, move around one another in a circular orbit with
radius a. We can consider this motion as the motion of one particle with the reduced mass u
moving under the influence of a central force G m,m, /a*. Therefore, the equation of motion
before the particles are stopped is

LA = G% )
where
11,1, 2 o
uoomom, ’ T
The radius of circular motion is
L | G, 217 3)
- 47’ u

After the circular motion is stopped, the particle with reduced mass x starts to move toward the
force center. We can find the equation of motion from the conservation of energy:

—GM=%yx2 ~c A )
or,
e [M [1 . l] r (5)
U X a
Therefore, the time elapsed before the collision is
t=[dt= —T dx (6)

" [2G mym, [1 _ 1}
7 x a
where the negative sign is due to the fact that the time increases as the distance decreases.
Rearranging the integrand, we can write

_ | AH Jq Vx q
2Gmm,  Na—x

Setting x =1’ (dx =2y dy), the integral in (7) becomes

0 0 2
I:J;'/afx dx:ZJ[Z uy—y2 dy

t= X ()




CENTRAL-FORCE MOTION

Using Eq. (E.7), Appendix E, we find

0
2
yNa-y  a . 4|y a
I:2 _—_— —_ —_— = ——
{ 5 +251n L/Eﬂ >

N
Therefore,
N
2Gmm, 2
or,
fo_°
442
8-6.
m, m,
Oo——+—O
X (@] X,
o
r=[x,—x;

When two particles are initially at rest separated by a distance 7, , the system has the total
energy
mym
E,=-G—=
To
The coordinates of the particles, x; and x,, are measured from the position of the center of
mass. At any time the total energy is
1 ., 1 . mym

Ezamle +Em2x§ —G%

and the linear momentum, at any time, is
p=mx; +myx, =0

From the conservation of energy we have E=E;, or

mm, 1 ., 1 .
G2 =—mil +=mx; -G
Ty 2 2 r

mm,

Using (3) in (4), we find

239

(8)

©)

ey

)

©)

(4)

()
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8-7. Since F(r)=—kr is a central force, angular momentum is conserved and the areal velocity,

dA/dt =(/2u, is trivially constant (see Section 8.3). In order to compute (U), we start with

g = dr :
i
y7, 2ur
and
uok
2

The time average of the potential energy becomes

1 [uat
2 j nax kr dr
mm 4 2
\/Z{Erz - kL - E}
u 2 2u
Substituting
r’=x dr = = dx
2r
(4) becomes
-1
\/ ——+Ex-—x"
2

Using the integrals in Egs. (E.9) and (E.8c), Appendix E,

x dx \/7 _{ 2ax+Db }
ax +bx+c+ —_—
'[\/ax +bx+c a 2a~— ﬂ b* — 4ac

1/2 1,2 2 |
2¢\N 2| k\k {EZ kgz}/ k\ 2 2

(5) becomes

@)

)

®3)

(4)

()

(6)

)

62
But 7, and 7., were originally defined as the roots of ,|[E—-U — R Hence, the second term
\ ur

vanishes at both limits of integration. On the other hand,
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Tmax dr
r=2jrmin -
\/2( 2

;kE—U— 2,ur2J

Tinax rdr
=2u = =
\/— r* +Er* —
2 2u

or, using (5),

Tinax d
- x
2 "min k 2 g 2
2

Now,

E
(T)=E-(U)==

The virial theorem states:
(T)= ”T” (U) when U =k

In our case n = 1, therefore,

(T)={U)=

N |

8-8. The general expression for &(r) is [see Eq. (8.17)]
o/r*)dr

o(r)=] Uis :

1
Fio i

2ur

241

(8)

©)

(10)

(11)

(12)

(13)

ey

where U = —I kr dr =—kr*/2 in the present case. Substituting x = and dx = 2r dr into (1), we

have
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Using Eq. (E.10b), Appendix E,

bx +2¢

dx 1 |
=——sin" | ———=
J-x\/czxz +bx+c ¢ Lx| Vb* —4ac

and expressing again in terms of 7, we find

=]
L

Q(V)lein’ ——— |+,

2 2 [WPEP |k

TN T

or,

0 uE
sin2(0-6,)=——— L J
kT ’k
1+—; 1 5
UE HE

In order to interpret this result, we set

and specifying 6, = 7/4, (5) becomes

f—z =1+ &' cos 260
or,

a' =1 +¢&r’ (cos2 0—sin” 9)
Rewriting (8) in x-y coordinates, we find

o =x"+y +e(x - )

or,
x2 yZ
1 = ! !
a a

1+& 1-¢

Since a’' > 0, & > 1 from the definition, (10) is equivalent to

CHAPTER 8

)

®3)

(4)

()

(6)

)

(8)

©)

(10)
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xZ yz
1=— L (11)
1+& [1-¢

which is the equation of a hyperbola.

8'9-
(a) By the virial theorem, T =—-U/2 for a circular orbit.

The firing of the rocket doesn’t change U, so U F= u,

But

Tf :%m(vz +02) =2T.

1

So
E, =2T,+U,=-U,+U, =0

E
—f_p
E;

The firing of the rocket doesn’t change the angular momentum since it fires in a radial direction.

l
1
/.

1

(b) E =0 means the orbit is parabolic. The satellite will be lost.

E(=0  U(r)=-Mem
.
T(r)=E-u =M s
,
2 2
V() =U(r)+5r =S
2ur r 2ur
Behavior of V(r) is determined by
e 2ur for small r

-GM, m,/r  forlarger
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Energy Vo)
r

T(r) E(r)=0

Minimum in V(r) is found by setting il_v =0atr=r,
r

GM, m, (*
0=l =
To Hiy
€2
fy=——
HGM, m,

8-10. For circular motion

Tzlm * r?
2

e e

_GM, m,
r

e

u:

We can get @” by equating the gravitational force to the centripetal force

GMS me 2
T =m0 1,
rL’
or
2 GMS
w = 3
re
So
s 1 “gG¥;:GM”m:_lu
7, 21,
1
E=T+U==U
2

CHAPTER 8

If the sun’s mass suddenly goes to % its original value, T remains unchanged but U is halved.
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E':T’+U’=T+1U=—1U+1U=0
2 2 2

The energy is 0, so the orbit is a parabola. For a parabolic
orbic, the earth will escape the solar system.

8-11. For central-force motion the equation of orbit is [Eq. (8.21)]

a1l 1 ur’
e v
a
force 0
center
In our case the equation of orbit is
r=2acos 6 (2)
Therefore, (1) becomes
1 a a7 1 a4
o I [(cos 0) ]+ o (cos @) =- EZ'U F(r)cos® @ (3)

But we have

d? a1 d| sind
d0* [(COS 6) } T do Los2 9}

2sin” 0
_l+sm @)

cos@ cos’ O

Therefore, we have

1 2sin” @ 1 _8a3 Y7, F

+ = r) cos® 0 5
cos@ cos’0 cosb 0 ( ) ®)
or,

2 2,2

F(r)z— fs 25 :_8a€ l5 ©)
8a’u cos’ @ 7R
so that
k
F(T‘) = _r_5 (7)
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8-12.

pr,

The orbit of the comet is a parabola (&= 1), so that the equation of the orbit is

2 —1+cosd 1)
b

We choose to measure 6 from perihelion; hence

r(G:O):ﬁrE (2)
Therefore,
(2
a=—=2pr 3)
Lk

Since the total energy is zero (the orbit is parabolic) and the potential energy is U = —k/r, the
time spent within the orbit of the Earth is

dr

Brg z E ~ 62
ulr 2ur?
ny J- _rdr dr )
ﬁrE r= ﬂrE

Bre

T=2f"

from which

T= /27” E r (28+ 1),/1—5} (5)
Now, the period and the radius of the Earth are related by

4
= (6)

or,
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32 _ k' 7,
= |—-E
Mg 27
,/2—'u— ’k 2ﬂ+1 ,3
Mg 2

where k=GM_ u and k' =GM,u; . Therefore,

Substituting (7) into (5), we find

T=3—17[ 2(1-5) (1+26) 7,

where 7, =1year. Now, =Ny, /1; =0.387 . Therefore,

1

T=—./2(1-0.387) (1+2x 0.387) x 365 days

3

so that

8-13. Setting u=1/r we can write the force as

from which

de* ? 2
or,
d: ,ul} uk 1
1-—||lu-= =0
e’ [ & [z
ZZ
If we make the change of variable,
v=1uU— He 1
0* . ud
e

we have

247

)

(8)

©)

(10)

1)

)

©)

(4)

©)

(6)
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or,
—+ =0 )

where A% =1- uA/¢* . This equation gives different solutions according to the value of 4. Let us
consider the following three cases:

i) A< KZ/,u :
For this case > >0 and the solution of (7) is
v=Acos(p6-9)

By proper choice of the position = 0, the integration constant & can be made to equal zero.
Therefore, we can write

lecos,BéhL zﬂk 9)
r 07—l

When =1 (4= 0), this equation describes a conic section. Since we do not know the value of
the constant A, we need to use what we have learned from Kepler’s problem to describe the
motion. We know that for A1 =0,

1wk

;27(1+ £ COoSs 9)
and that we have an ellipse or circle (0 < £< 1) when E < 1, a parabola (¢=1) when E=0, and a
hyperbola otherwise. It is clear that for this problem, if E > 0, we will have some sort of
parabolic or hyperbolic orbit. An ellipse should result when E < 0, this being the only bound
orbit. When £ # 1, the orbit, whatever it is, precesses. This is most easily seen in the case of the
ellipse, where the two turning points do not have an angular separation of 7. One may obtain

most constants of integration (in particular A) by using Equation (8.17) as a starting point, a
more formal approach that confirms the statements made here.

i) A=0/u

For this case f* =0 and (3) becomes

d*u  pk
au_ Hx 10
ae>  r* (10)
so that
uzlz’u—k292+A0+B (11)
r 20

from which we see that r continuously decreases as ¢ increases; that is, the particle spirals in
toward the force center.
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i) A>0/u
For this case f* <0 and the solution (7) is
v=A cosh( —# o 5) (12)

omay be set equal to zero by the proper choice of the position at which #= 0. Then,

lecosh( g 0)+ _HK (13)
r 05— ud

Again, the particle spirals in toward the force center.

8-14. The orbit equation for the central-force field is [see Eq. (8.17)]

2 4 2
[ﬂ} S E-u-— M
do V4 2ur

But we are given the orbit equation:

r=k6& )
from which
2
[Z—;} = 4k*0° 3)
Substituting (2) into (3), we have
2
{j—;} — 4K> % — 4kr (4)
From (1) and (4), we find the equation for the potential U:
4 2
4hkr = 247 {E—LI— ! 2} ©)
l 2ur
from which
2 2
and F(r)=-0U/or . Therefore,
ek 1
F(V)=—; Py ?)
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8-15.

Let us denote by v the velocity of the particle when it is infinitely far from P and traveling along
the line AB. The angular momentum is

(= % = mob2 = vb\2 (1)

where we have used m = 1. Therefore,

Jk

V=—7m—r 2
V2 b @
The total energy E of the particle is equal to the initial kinetic energy:
1 k
E==v"=—+ 3

The general orbit equation for a force, F(r)=~-k/r’ , is

o= ar @)

r’ ko2
olE+ K
\/ [ 4r* 2r2}

Substituting for ¢ and E from (1) and (3), we have

dg_ﬂl dr
b r? \/k+k_k
2v* 21t bt

dr
=bJ2
Nrt =207 + b*

:b\/ELZ
=

or,
dr
r?—b?

where we have taken the negative square root because r decreases as @increases (see the diagram).

d0=—by2 )

We can now use the integral [see Eq. (E.4b), Appendix E]
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dx 1 | ax
e[ 7] ©
from which we obtain
0=+ coth™ [ﬂ +6, 7)
or,
r=b coth {‘9\;;0 } 8)

Now, coth ¢ — w0 as ¢ — 0, since r —» o as §— 0, we must have 6, =0. Thus,

r=bcoth (6/2) ©)

Notice that r is always greater than b (because coth ¢ — 1 as ¢ — «), so that the denominator in
(5) never equals zero nor changes sign. Thus, r always decreases as € increases. This is, the
particle spirals in toward P but never approaches closer than a distance b.

8-16. The total energy of the particle is
E=T+U (1)

a principle that by no means pushes the philosophical envelope of physical interpretation. The
impulse that causes v — v + dv changes the kinetic energy, not the potential energy. We
therefore have

OE =0T = 5(%11102) = 1Mo ov (2)

By the virial theorem, for a nearly circular orbit we have

1

E=——mv’ 3
> ®3)
so that
OE 20v
== @
- v
where we have written —E since E < 0. The major and minor axes of the orbit are given by
PRI 5)

2E J-24E

Now let us compute the changes in these quantities. For 2 we have

o= ) 5 =% ©

and for b we have
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l ol L
ob=0o = + [
{J—Z/ﬂf} V-2UE  2uF?

1

2

Easily enough, we can show that 8¢/ =v/v and therefore

da_ob_SE_260

a b—_E_v

8-17. The equation of the orbit is

a
—=1+¢&cos @
v

from which

a
y=——
1+ &cos @

2
where « = ¢* / uk and =, /1 + 2Ek€2 . Therefore, the radial distance r can vary from the
m

CHAPTER 8

)

(8)

1)

)

maximum value «/(1- ¢) to the minimum value &/(1+ ¢). Now, the angular velocity of the

particle is given by

o = ‘- !
N
1+¢
o = ‘ 1
m ﬂrrlzlaX [a
1-¢

Thus,

from which we find

)

(4)

©)

(6)

8-18. Kepler’s second law states that the areal velocity is constant, and this implies that the
angular momentum L is conserved. If a body is acted upon by a force and if the angular
momentum of the body is not altered, then the force has imparted no torque to the body; thus,
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the force must have acted only along the line connecting the force center and the body. That is,
the force is central.

Kepler’s first law states that planets move in elliptical orbits with the sun at one focus. This
means the orbit can be described by Eq. (8.41):

2 1tecosd  withO<e<1 )
v
On the other hand, for central forces, Eq. (8.21) holds:
az 1] 1 ur?
—|—|+—=-=-F(r 2
e’ [r} r ? (r) @)

Substituting 1/7 from (1) into the left-hand side of (2), we find

1w
22—6—27’2 F(T) (3)
which implies, that
(2
F(r)=- 4
(1= @

8-19. The semimajor axis of an orbit is defined as one-half the sum of the two apsidal
distances, ., and r,,. [see Eq. (8.44)], so

1| « a a
Vo T Foin | == + = 1
o + T 2[1+g 1—5} 1-¢& @

o

This is the same as the semimajor axis defined by Eq. (8.42). Therefore, by using Kepler’s Third
Law, we can find the semimajor axis of Ceres in astronomical units:

o
fo_| Ah @
o | K o
4r 2#15
where k. =yM,m_, and
1 1 1
e
ILIC MS mC

Here, M, and m_ are the masses of the sun and Ceres, respectively. Therefore, (2) becomes

Y3
a M. +m | ¢
€ _ {—s c {_c} } (3)
ag M,+m, | 7,

from which
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1 1/3
333,480 +
a. 8,000

a, | 333,480+1

4.6035)*

so that

b ~ 2767
ag

The period of Jupiter can also be calculated using Kepler’s Third Law:

1/2
47
Hy P2

52
g |k T I Mam[a
. | Art e s M, +m, | a;

from which

1/2
.
_]:[ 333,480 +1 (5.2028)3}

Tr 333,480+ 318.35
Therefore,
7
—=~11.862
T

The mass of Saturn can also be calculated from Kepler’s Third law, with the result

m

==95.3
m

e

8-20. Using Egs. (8.42) and (8.41) for a and r, we have

<(—j Cose> Id{1+gcos¢9} s 0

From Kepler’s Second Law, we can find the relation between t and 6

T r 1 o’

dt=—"da=—"1 _d6
7ab mab 2 (1+ £COS 9)

since dA =(1/2)r* d6. Therefore, (1) becomes

(ﬁr cos ¢ =l;iﬁzfcost9(1+gcose)zd9
r 7(1_52)4 mab 2

It is easily shown that the value of the integral is 2ze. Therefore,

CHAPTER 8

(4)
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(6)

)

(8)
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<[9 cos 6?> = ﬁ a_lb a’e 4)

After substituting @ and b in terms of ¢and « [see Egs. (8.42) and (8.43)], we obtain

e

8-21. If we denote the total energy and the potential of the family of orbits by E and U(r), we
have the relation

2

lyf2+ +U(r)=E (1)

2 2ur’

from which
0% =2 pur? (E—U(r)—%yi’zj )

Here, E and U(r) are same for all orbits, and the different values of / result from different values
of (1/ 2) ur* . For stable circular motion, 7 =0, but for all other motions, i # 0. Therefore, for non-

circular motions, #* >0 and / is smaller than for the circular case. That is, the angular
momentum of the circular orbit is the largest among the family.

8-22. For the given force, F(r)= —k/ r°, the potential is

k
Ur)=-———% 1
()=-5 <>
and the effective potential is
1| 1
V(r)==|—-k | 2
0=3|=-k ] ®
The equation of the orbit is [cf. Eq. (8.20)]
d*u r
ﬁ—'—u:_fzuz (—ku3) (3)
or,
d*u Lk
ﬁ+[l—(—2}u=0 (4)

Let us consider the motion for various values of /.
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i) (P=uk:
In this case the effective potential V(r) vanishes and the orbit equation is
e, .
with the solution
= % _ AG+B ©)

and the particle spirals toward the force center.
i) *>pk:
In this case the effective potential is positive and decreases monotonically with increasing r. For

any value of the total energy E, the particle will approach the force center and will undergo a
reversal of its motion at r =r,; the particle will then proceed again to an infinite distance.

V(r)

:
Ty

Setting 1— uk / *=4*>0, (4) becomes

d*u
3 +pu=0 )
with the solution
uzlecos(ﬂQ—(‘)‘) 8)
r

Since the minimum value of u is zero, this solution corresponds to unbounded motion, as
expected from the form of the effective potential V(r).

i) <k

For this case we set ik / ?-1=G?* >0, and the orbit equation becomes

d*u
ﬁ - GZM =0 (9)
with the solution
uzlecosh(,BH—5) (10)
7

so that the particle spirals in toward the force center.
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In order to investigate the stability of a circular orbit ina 1/7° force field, we return to Eq. (8.83)

and use g(r)=k/ur®. Then, we have

i r — L (11)
1o [ 1+(x/p)] wp’[1+(x/p)]
X{k—ﬁ] LI (12)
11 pp’[1+(x/p) ]

Since i"|r:p =0, Eq. (8.87) shows that k = ¢* / u . Therefore, (12) reduces to

=0 (13)

so that the perturbation x increases uniformly with the time. The circular orbit is therefore not
stable.

We can also reach the same conclusion by examining the basic criterion for stability, namely,
that

o’V

7/,2

ov

—| =0and
or

r=p

r=p

The first of these relations requires k = ¢*/u while the second requires ¢>/u>k . Since these
requirements cannot be met simultaneously, no stable circular orbits are allowed.

8-23. Start with the equation of the orbit:
2 1+ecosb (1)

r

and take its time derivative

T = hsin0=—"sing @)
o« aur
Now from Equation (8.45) and (8.43) we have
T= 2K, 7ab = 2ruac (3)

W1-¢&°

so that from (2)

!
=T 4
a 1-& @

as desired.
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8-24.

a) With the center of the earth as the origin, the equation for the orbit is

a
—=1+¢&cox @
v

Also we know
rmin =a (1 - 8)

T,

max

Tmin =T, =300 km +7, =6.67 x10° m

min

a(l+¢)

Ton =7, =3500 km+7,=9.87 x10° m
1 =827 x10°
a—E(ra +rp)—8. x10° m
Substituting (2) gives £=0.193. When 6=0,

a
L 1+e
T

which gives & =7.96 x10° m . So the equation of the orbit is

7.96 x10° m
r

=1+0.193 cos 8

When 6=90°,

lr =a=7.96x10° m|

[The satellite is 1590 km above the earth.|

b)

CHAPTER 8
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O=r-p
=z—tan™
a— rmin
Using b=+ aa

@=r—tan’

Substituting into (1) gives
r=8.27 x10° m ; which is

[1900 km above the earth]|

8-25. Let us obtain the major axis a by exploiting its relationship to the total energy. In the
following, let M be the mass of the Earth and m be the mass of the satellite.
~GMm _1 , GMm

v
p
2a 2 r

E:

1)

where 7, and v, are the radius and velocity of the satellite’s orbit at perigee. We can solve for a

and use it to determine the radius at apogee by

-1

ra=2a—rp=rp|:2G]\2/I—1} 2)
1o,

Inserting the values
G=6.67x10" N-m” kg™ 3)
M=5.976 x10* kg 4)
r,=6.59 x 10° m 5)
v, =7.797 x10° m-s™ (6)

we obtain 7, =1.010 r, =6.658 x 10°m , or 288 km above the earth’s surface. We may get the

speed at apogee from the conservation of angular momentum,
mr,v, =mr,v, (7)
giving v, = 27,780 km-hr™" . The period can be found from Kepler’s third law

) 47*a

- GM

(8)

Substitution of the value of a found from (1) gives 7= 1.49 hours.
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e N

7, T,

8-26.

First, consider a velocity kick Av applied along the direction of travel at an arbitrary place in
the orbit. We seek the optimum location to apply the kick.

E, =initial energy

1 , GMm
=—mv° —
2 r

E, =final energy

=%m(0+ Av)2 _GMm

r

We seek to maximize the energy gain E, — E;:
E,-E =lm(20Av+sz)
2 1 2
For a given Av, this quantity is clearly a maximum when v is a maximum; i.e., at perigee.

Now consider a velocity kick AV applied at perigee in an arbitrary direction:

Av

v
Vi

The final energy is
1, GMm

muv,
2

Ty

This will be a maximum for a maximum |V2

; which clearly occurs when v, and Av are along
the same direction.

Thus, the most efficient way to change the energy of
an elliptical orbit (for a single engine thrust) is by
tiring along the direction of travel at perigee.
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8-27. By conservation of angular momentum

mr,0, =mr,o,

or 0, =—

Substituting gives

v, =1608 m/s

8-28. Use the conservation of energy for a spacecraft leaving the surface of the moon with
just enough velocity v, to reach r = oo

T+U =T, +U;

%mvz —GMmm=O+0

esc

where

M,, = mass of the moon =7.36 x 10 kg

r, = radius of the moon =1.74 x10° m

Substituting gives

Ve =2380 m/s|

8-29. Vpax =0+ Ty, Upin =0—7,

From conservation of angular momentum we know

muv,r, = Mo,r,

or
UmaxTmin = UminTmax 7 max_ Tmax. 1)
min  Zmin
Also we know
foin =a(1—¢€) )
o =a(1+€) 3)

Dividing (3) by (2) and setting the result equal to (1) gives
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rmax — 1+€ — vmax
rmm 1 —-e Umin

8-30. To just escape from Earth, a velocity kick must be applied such that the total energy E is
zero. Thus

—mvs ————=0 1)

where

v, = velocity after kick
M, =5.98 x10* kg
G=6.67x10" Nm’/kg’
r=200 km +7,
=200 km +6.37 x 10° m

=6.57x10° m
Substituting into (1) gives v, =11.02 km/sec .

For a circular orbit, the initial velocity v, is given by Eq. (8.51)

GM,
r

=7.79 kimm/sec

0, =

Thus, to escape from the earth, a velocity
kick of 3.23 km/sec must be applied.
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Since E =0, the trajectory is a parabola.

arabolic
/ P

escape
orbit

\circular orbit

8-31. From the given force, we find

BE(0) _ iy 2K, 4

=F'
dr (7) re " r°

Therefore, the condition of stability becomes [see Eq. (8.93)]

,025(kp2 +2K)

F'(p)+§= +—>0
1
F(p) p —?(kp2+k’) P
or,
2 '
—kp —k >0
p(kp2+k')

Therefore, if p’k >k’ , the orbit is stable.

8-32. For this force, we have

2k, k.,
EX gty K g

=£3€"/” [2+1}
r a

Therefore, the condition of stability [see Eq. (8.93)] becomes

3 —[2+r}+3
_:—a>0
T

This condition is satisfied if r < a.
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8-33. The Lagrangian of the particle subject to a gravitational force is written in terms of the

cylindrical coordinates as
_ I Ry S _
L—T—U—Em(r +7°6 +z) mgz

From the constraint r* = 4az , we have

.7
Z =—
2a
Therefore, (1) becomes
2
L=t 1+—— [+ g
2 4a 4a
Lagrange’s equation for #is
%—ia—L.:—i(mrzé’) =0
00 dt oo dt

This equation shows that the angular momentum of the system is constant (as expected):

mr*@ = { = const.

Lagrange’s equation for 7 is

from which
2
ﬂzri’ﬂmr@z—@r—m 14— -2 yi? =0
4a 2 2a

After rearranging, this equation becomes

2 2
.. ) 1
m 1+r_2 r+£2rr2 +%r———3:0
4qa 4qa 2a mr
For a circular orbit, we must have 7 =#=0 or, r = p = constant. Then,
mgp_ 1*
2 mp’
or,
2
mg 4
? =
2a r
Equating this with ¢* = m*p*@*, we have
. ng
m2p4€2 — ,04

2a

1)

)

®3)

(4)

()

(6)

)

(8)

©)

(10)

(11)
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or,

8

" 2a

Applying a perturbation to the circular orbit, we can write

r— p+x where Y«
Yol

This causes the following changes:

12> p* +2px |

1-3%
P

from which, we have
it — ( P+ x) %* =0, in lowest order

2

Thus, (8) becomes

1 . mg 2
m|1+— p* |¥+—=(p+x)— 1-3—1=0
[ 4a2p} 2a (p ) mp3k pJ
But
mgp  (°
2a mp’

so that (16) becomes

or,

¥ - (p2 + 2px)5c' = p’%, in lowest order

265

(12)

(13)

(14)

(15)

(16)

17)

(18)

(19)

(20)
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Therefore, the frequency of small oscillations is

where

8-34. The total energy of the system is
E= % m(,;z + 120" + 7% cot? a) +mgr cot &
or,
1 2 -2 1 22
E:—m(1+cot a)r +—mr 6" + mgr cot
2 2

Substituting ¢ = mr’@, we have

2

1
E==m(1+ cot® a)i* + + mgr cot
2 ( ) mr T8
Therefore, the effective potential is
ZZ
Vir)= + mgqr cot o
( ) zmr2 g

At the turning point we have 7 =0, and (3) becomes a cubic equation in :

2
mgr® cot o — Er’ o
2m

Energy

: .
LS 5]

CHAPTER 8

(1)

@)

)

)

(4)

()

This cubic equation has three roots. If we attempt to find these roots graphically from the

intersections of E = const. and V (r) = £*/2mr* + mgr cot &, we discover that only two of the roots

are real. (The third root is imaginary.) These two roots specify the planes between which the

motion takes place.
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8-35. If we write the radial distance r as
r=p+x, L = const.

then x obeys the oscillatory equation [see Egs. (8.88) and (8.89)]

¥+ wpx =0
where
3g(p
Wy = d )+g'(p)
P

The time required for the radius vector to go from any maximum value to the succeeding
minimum value is

At=22
2
2 .
where 7, =—, the period of x. Thus,
@,
At=L
@

The angle through which the particle moves during this time interval is

¢=a)At:@
20

where o is the angular velocity of the orbital motion which we approximate by a circular
motion. Now, under the force F(r)=-ug(r), @ satisfies the equation

ppw® =~F(r) = ug(p)
Substituting (3) and (7) into (6), we find for the apsidal angle

NeE
p=""- £ = Z
@ [3g(p) . 8'(p)
\/p+g(/7) \/3+pg(,0)
Using ¢(7) =§%, we have
g __n
g(p)

Therefore, (8) becomes

267
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)
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In order to have the closed orbits, the apsidal angle must be a rational fraction of 2. Thus, n
must be

n=2,-1,-6,...

n = 2 corresponds to the inverse-square-force and n = -1 corresponds to the harmonic oscillator
force.

8-36. The radius of a circular orbit in a force field described by

Hﬂ=—§f”” (1)

is determined by equating F(r) to the centrifugal force:

k0P
— € ol = 3 (2)
r mp

Hence, the radius p of the circular orbit must satisfy the relation

a 1?
pe = — (3)
mk

Since the orbit in which we are interested is almost circular, we write

r(0)=p[1+5(0)] 4)
where §(6) <1 for all values of 6. (With this description, the apsides correspond to the
maximum and minimum values of 8.)
We can express the following quantities in terms of ¢ by using (4):

1 1

=—=—(1-0 5
=1 == (1-0) ©)
2 2
41 1ds o)
ae | r p do
F(u)=—ku’e "™
ke”l
=—————(1-pd/a 5¢
Then, substitution into Eq. (8.20) yields
1d°5 1 mke "
———+—(1-0)= 1-po 6
Multiplying by p, using (3) and simplifying, (6) reduces to
2
Q+(1—p/a)5:o 7)
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This equation obviously has two types of solution depending on whether p/a is larger than or

smaller than 1; we consider only p < a. (In fact, there is no stable circular orbit for p > a.)

For the initial condition, we choose 6 = ¢, to be a maximum (i.e., an apside) at = 0. Then, we
have

0=0, Cos(l - ,o/a)l/2 0, for p<a (8)

This solution describes an orbit with well-defined apsides. The advance of the apsides can be
found from (8) by computing for what value of 6 is dagain a maximum. Thus,

0= 2z (9)

J1-p/a

The advance of the apside is given by
A=0-27=21[1-(1-p/a) | (10)

In the particular case in which p < 2 we obtain, by extending (10),

AEZ;Z—ZH{1+£} (11)
2a
so that

a

8-37. From the equations in Section 8.8 regarding Hohmann transfers:
Av = Av, + Av,

Av=v, -0, +0, -7,

1/ ,/ ey
mr1 1 +r2 mr, mr2 1, +72

Substituting
% =GM, =(6.67 x10 "' Nm*/kg’}(5.98 x 10** kg)
1, =initial height above center of Earth =27,
r, = final height above center of Earth = 37,
r, = radius of the Earth = 6.37 x 10° m
gives

|Av=1020 m/s|
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8-38. Substitute the following into Eq. (1) of problem 8-37:

% =GM, =(6.67 x 10" Nm*/kg’)(1.99x 10¥ kg)

1, = mean Earth-sun distance = 1.50 x 10"' m

r, =mean Venus-sun distance =1.08 x 10" m

The result is Av=-5275 m/s . The answer is negative because r, <1, ; so the rocket must be fired
in the direction opposite to the motion (the satellite must be slowed down).

|Av = 5275 m/s; opposite to direction of motion.|

From Eq. (8.58), the time is given by

3/2
T:ﬁ\/ﬁafﬂ:ﬁ\/@{ﬁ_@} 1)
k k 2

Substituting gives

8-39. We must calculate the quantity Av, for transfers to Venus and Mars. From Egs. (8.54),
(8.53), and (8.51):

Av, =v, -7,
2k | 1, k
mr | 1, +1, mr,

* _om, - (6.67x10™ m?/s*-kg)(1.99 x10” kg)
m

where

7, = mean Earth-sun distance = 150 x 10° m

Venus . 108 9
n=mean | o |—sun distance = 298 | X 10" m

Substituting gives
AUy s =—2.53 km /sec
Avys =2.92 km/sec

where the negative sign for Venus means the velocity kick is opposite to the Earth’s orbital
motion.

|Thus, a Mars flyby requires a larger Av than a Venus flyby.
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8-40. To crash into the sun, we calculate Av, from Eq. (8.54) with r, = mean distance from
sun to Earth, and r, = radius of the sun. Using Egs. (8.54), (8.53), and (8.51) we have

(Av) B 2GM, 7, B GM,
1sun 7 n+t, r

Substituting
G=6.67 x10""'Nm?*/kg’
M, =1.99x10% kg
r=r,=15x10" m
1, =Ty, =6.96x10° m
gives

(Avl)sun =-26.9 km/sec

To escape from the solar system, we must overcome the gravitational pull of both the sun and
Earth. From conservation of energy (E 0) we have:

final —

GM,n GMm 1 ,
- - +—mv”~ =0
T f 2

Substituting values gives
v=43500 m/s

Now

rSL’
— (43500 —29700) m/s

(Av), . =13.8km/s

escape

To send the waste out of the solar system requires
less energy than crashing it into the sun.

8-41. From the equations in Section 8.8 regarding Hohmann transfers

Av = Av, + Av,
=0, —0;+0, — 7,

where



272

2k [ 1, k
ity A Y
mr | 1+, | mr,
2k [ ] k
O, =y N S
mry | 1, +1, | mr,
Substituting
E — _ -11 2 2 24
=GM, =(6.67 x10™" Nm”/kg’})(5.98 x 10** kg)
m
7, =200 km+7, =6.37 x10° m+2x10° m
r, = mean Earth-moon distance = 3.84 x 10° m
gives

|Av =3966 m/s|

From Eq. (8.58), the time of transfer is given by
m s m[rn+n ]
T=r,|—a’=r|—|1—2
k kL 2

|7 =429,000 sec. =5 days|

Substituting gives

8-42.
G=6.67x10" Nm?/kg’

M, =598 x10* kg
1 =2x10° m+6.37 x10° m
r,="?

r, = mean Earth-moon distance = 3.84 x 10° m

We can get 7, from Kepler’s Third Law (with =1 day)

{GME 72
=

1/3
o } =4.225%x10" m
T

We know E =-GMm/2r

CHAPTER 8
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So

E(r)=—MM _ 304510 ]
! 2r,

E(r,)=-4.72x10" ]
E(r,)=-5.19x10" ]
To place the satellite in a synchronous orbit would require a minimum energy of E(r,)—E(r,) =

257 x10" ]

8-43. In acircular orbit, the velocity v, of satellite is given by

mv, GMm GM

R~ R VR
where M is the Earth’s mass.
Conservation of energy implies
mo? _ GMm _ mv, _ GMm
2 R 2 2R

Conservation of angular momentum gives

mRv, =m2Ro,

4GM

so the velocity need to be increased by a factor ,/4/3 to change the orbit.

From these equations, we find

2

8-44. The bound motion means that E = mo +V <0

k
where V=—=¢7"",
r

The orbit of particle moving in this central force potential is given by
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o(r)= _f le/r)dr

mie 12| E-V
H 2ur’

! j;l dr
N2u, 7’2\/ ke /?
min E+ - 5
r 2ur
In first order of (r/a), thisis
0. ~ l J‘ dr ! J' dr
n=~ =
V2 2 2 2
e E+E—€—2—k e (E—k)+k— ! 5
r 2urc a a’ r 2ur

Now effectively, this is the orbit of particle of total energy (E - Ej moving in potential K Jtis
a r

well known that this orbit is given by (see Chapter 8)
2 -1+ecos0

r

2 2
whereazf— and g=\/1+2i[E—kj

Lk 1k? a

If 0<¢e<1, the orbit is ellipsoid; if £=0, the orbit is circular.

8-45.
a) In equilibrium, for a circular orbit of radius r,,

F
F, =mair, = o,= |—>
mr,

b) The angular momentum (which is conserved) of a particle in circular orbit is

L=mr;w, =/mFr;

The force acting on a particle, which is placed a distance r (r is very close to equilibrium position
r,) from the center of force is

L3

F=majr-F,=—5-F,
mr

r 317 317
zm_rb?’_m_rg(r_ro)_Fo :—m—r;(r—ro)z—k(r—ro)
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where k=3L" /mr, . So the frequency of oscillation is
k [32 [3E
O, === == [—"
m \m’r}  \mp

8-46. In equilibrium circular orbit,

Mo®>  GM® GM
=—— = R=—
R 4R 4v
where M is the Sun’s mass.
The period is
32
7_27R _ 47RJR _ 27D ~9x107yr
v JGM  JGM
where D =2R is the separation distance of 2 stars.
8-47. In equilibrium circular orbit of 1st star
2
Mo, GMM, where L, = M 6 the distance from Tst star to the common center of
L, L, M, + M,
mass.
The corresponding velocity is
o = IGM,L, GM;
' I L(M, + M,)
Finally, the period is
3/2
=2 27T g5000% yr

0 JG(M, +M,)
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CHAPTER

Dynamics of a
System of Particles

9-1. Put the shell in the z > 0 region, with the base in the x-y plane. By symmetry, x =y =0.

=04 6=0

000 part drsinododg

z= T el ot
j: [ prdrsin0dodg

=04 6=0

Using z = r cos € and doing the integrals gives

3(r24 —rf)

E:

9'2-

By symmetry, x =y =0.

Use cylindrical coordinates p, ¢, z.

P, = mass density

277
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CHAPTER 9
L
a

L nepipis

0
h
[0 s

The center of mass is on the axis

of the cone % h from the vertex.

By symmetry, x =y =0.

From problem 9-2, the center of mass of the coneis at z = i h.

From problem 9-1, the center of mass of the hemisphere is at

3
z:—ga(rzza,rl :0)
So the problem reduces to

7= hZz T2, _ pih* —3p,a’

m, +m, 4(p1h+2p2a)

for p, = p,

h? - 34°

“T 420+ h)
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9'4-

By symmetry, y=0.
If o=mass/length then M = ocaé
So

Using M=o0af and x=acos @',

X = lJ. " acos 8'do’ = a sing— sin(—gj
g7-92 o 2 2

ZEZSing
o0 2
- 2a . 0
X =—sin—
o 2
y=0

279
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1, = position of the i™ particle
m, =mass of the i™ particle
M= Z m, = total mass

g = constant gravitational field

Calculate the torque about r,

Z(Zmiri) xg—Mr, xg
Now if the total torque is zero, we must have
> mx; = Mr,
or
1
I, = i z mgx,

which is the definition of the center of mass. So

7=0about r, =1,
or center of gravity = center of mass.

9-6. Since particle 1 hasF=0, r, =v, =0, then r, =0. For particle 2

. . F o
F,=F x then # = x
m

Integrating twice with 1, =v, =0 gives

F A
r,=—"1tx
2m

m,x, + mM,x. E N
_Thh TG N g2 g

I,
CM
m, +m, 4m

CHAPTER 9
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E N
]%Zhd = :iii; tz
F, .
Veum =:?§ji;t
F, .
Ay _'Eiﬁ;'x
9-7.
Y

*H

o /552°
/520 x

.
N
*H

By symmetry
m, =16 my
Let my =m, my=16m
Then
I
X=—) mx
M ; 1 1
52°
% = ——(2ma cos 52°) = 22
18m 9

9-8. By symmetry, [x=0]. Also, by symmetry, we may integrate over the x > 0 half of the
triangle to get iy . o= mass/area

5 (o
- XZZO nyo O'ydydx:

V2 J‘ﬁixadydx 3v2
x=0 Jy=0

a

Y

281
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N7

POW' o
Z T n;\

Uy

Y

45°

y
Let the axes be as shown with the projectile in the y-z plane. At the top just before the explosion,

Yo

Nk

the velocity is in the y direction and has magnitude v,, =

3 vo \} m1 +m2
on

my +m2

where m; and m, are the masses of the fragments. The initial momentum is

p; =(m +m2){0, pr— ,0}

The final momentum is
Pr=p1tP;
pr=m (Orolvl)

p2 :m2(vvay’vz)

The conservation of momentum equations are

P O=m,v, or |v,=0
‘ 1
p,: Eo(ml+m2):mzvy or vy:m— Eo(m1+m2)
2
m,
p.: 0=mo, +m,v, orv, =——=0,
m,
The energy equation is
E 1
(my +my) ——+E, =—mv; + mz(v +v§)
my, +m, 2

or
2 2 2
3E, =mv; +m, (vy + vz)

Substituting for v, and v, gives
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) = \/Eoml (2m, —m,)

rn§(7n1 +m2)

m, .
v, =——=10, gives
1

E,(2m, —m,)

a=" ml(ml +m2)

So
m, travels straight down with speed = |vl|

m, travels in the y-z plane

. (v; . vz)l/z _|E (4m, +m,)

m, (my +m,)

0=tan' L —tan |ZA\ T10) (2m, =)
v, (m, +m,)

The mass m; is the largest it can be when v, =0, meaning 2m, =m, and the mass ratio is

m _1

m,

9-10.

‘0

NN
A X, X,

First, we find the time required to go from A to B by examining the motion. The equation for the
y-component of velocity is

v, =7, sin 0 gt (1)

At B, v, =0; thus t; =9, sin 6/¢ . The shell explodes giving m, and m, horizontal velocities v,

and v, (in the original direction). We solve for v, and v, using conservation of momentum and
energy.

Py (m, +m,)v, cos @ =m,o, +m,v, (2)
. 1 2 2 1 2 1 2
E: E(m1 +11,)v) cos ¢9+E=Emlv1 o Myt (3)

Solving for v, in (2) and substituting into (3) gives an equation quadratic in v, . The solution is
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v, =7, Cos O %

(4)

and therefore we also must have

2m,E
m, (m, +m,)

©)

v, =0, cos OF

Now we need the positions where m, and m, land. The time to fall to the ocean is the same as

the time it took to go from A to B. Calling the location where the shell explodes x = 0 gives for
the positions of m; and m, upon landing;:

X =Uyty; X, = Uty (6)

Thus

|x1 _x2|: |Ul _Uz| (7)
8

Using (4) and (5) and simplifying gives
|x1—x2|=vo sind [ 2E { /ﬁ+ /ﬁ} ®)
8 my +m, | \ M, m

9-11. The term in question is

i
a#b

For n = 3, this becomes
f12 + f13 + f21 + f23 + fSl + f32 = (f12 + f21) + (f13 + f31) + (f23 + fSZ)
But by Eq. (9.1), each quantity in parentheses is zero. Thus
3 3
2.2 £ =0

a=1 =1
a#p

9-12.

m
a) V=0, +uln—=
m

Assuming v, =0, we have

0= [100 E} 1n 100
S 98

v=2.02 m/s; yes, he runs out of gas.|
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b) Relative to Stumblebum’s original frame of reference we have:
Before throwing tank
98 kg

|:|—> 2.02m/s

After throwing the tank we want Stumblebum’s velocity to be slightly greater than 3 m/s (so
that he will catch up to the orbiter).

8 kg 90 kg
vel ] [ Joams
Conservation of momentum gives

(98 kg)(2.02 m/s) =(90 kg)(3 m/s)—(8 kg)v

v=9m/s

(This velocity is relative to Stumblebum’s original reference frame; i.e., before he fires his
pressurized tank.) Since Stumblebum is traveling towards the orbiter at 2.02 m/s, he must
throw the tank atv=9m/s + 2.02 m/s

9-13. From Eq. (9.9), the total force is given by

S YA,
a+f}

As shown in Section 9.3, the second term is zero. So the total force is
z F(f)

It is given that this quantity is zero.

Now consider two coordinate systems with origins at 0 and 0’

where

r, is a vector from 0 to 0’

r, is the position vector of m, in 0

a
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r/, is the position vector of m, in 0’

We see that r, =1, + 1,

The torque in 0 is given by

The torque in 0" is

But it is given that D F =0

Thus

9-14. Neither Eq. (9.11) or Eq. (9.31) is valid for a system of particles interacting by magnetic
forces. The derivations leading to both of these equations assumes the weak statement of
Newton’s Third Law [Eq. (9.31) assumes the strong statement of the Third Law also], which is

f,=—f

af Pa

That this is not valid for a system with magnetic interactions can be seen by considering two
particles of charge g, and g, moving with velocities v; and v, :

q
b !

Now
fij: q,v; x B,

where B is the magnetic field at g; due to the motion of g;.
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Since £, is perpendicular to both v, and B; (which is either in or out of the paper), f, can only

be parallel to £ ; if v, and v; are parallel, which is not true in general.

Thus, equations (9.11) and (9.31) are not valid for
a system of particles with magnetic interactions.

9-15. o= mass/length

F= d_p becomes

dt
mg = mo + mo

where m is the mass of length x of the rope. So
m=ox;,m=ox

dv .
OXg=0X—+0X0
dt

dvdx
Xg=X——+0
dx dt

dv
Xg=X0—+70
dx

Try a power law solution:

do _
v:ax”;d—znax” !
x

Substituting,
xXg= x(ax”)(nax"‘l) +a* x*"
or
xg=a*(n+1)x*"

Since this must be true for all x, the exponent and coefficient of x must be the same on both sides
of the equation.

Thus we have: 1 =2n or n :%

2g

g=a*(n+1) ora= 5

U:;ﬂ
V 3

So
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Cdt dxdt dx | 3

w [og

[&}—1/2
3

: (y=0 on table)

L T
2 3 3

L
Uf =mgh=—mg§

SoF, =0;E, = 8"

Energy lost = m?gL

9-16.

TlT sz

The equation of motion for the falling side of the chain is, from the figure,

pb—x) .. b—x
(2 )x:p(2 Jorm,

From Example 9.2, we have for the energy conservation case

(1)

g(be—xz) ~ i

BT R A Ty @

Substitution gives us

)
px
L= 3)
To find the tension on the other side of the bend, change to a moving coordinate system in

which the bend is instantaneously at rest. This frame moves downward at a speed u = %/2 with
respect to the fixed frame. The change in momentum at the bend is
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-2
Ap =(pAx)-(2u) = 2pu* At :%At

Equating this with the net force gives

.2
px
T +T, =—
1 2 2
Using equation (3), we obtain
.2
T, -2
4

as required. Note that equation (5) holds true for both the free fall and energy conservation

cases.

9-17. As the problem states, we need to perform the following integral

12 —
= J‘ _1-2a dot
"\ 2a(1-a)

289

(4)

()

(6)

1)

Our choice of ¢ is 10™ for this calculation, and the results are shown in the figure. We plot the

natural velocity da/d 7= x/ \J28b vs. the natural time 7.

2

15

do.
dt

0.5

9-18. Once we have solved Problem 9-17, it becomes an easy matter to write the expression

for the tension (Equation 9.18):

T _1+2a-60
mg  2(1-2a)

This is plotted vs. the natural time using the solution of Problem 9-17.

1)
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20 T T T T T T T T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

9-19.
ceiling
/ \x
released at
t=0
b at time
D table

The force that the tabletop exerts on the chain counteracts the force due to gravity, so that we
may write the change in momentum of the center of the mass of the chain as

B pog - F 8
We can write out what the momentum is, though:
p=p(b—x)x )
which has a time derivative
dp _ r ., el 3
o —p[ X%+ (b x)x]—p(bg ng) 3)

where we have used ¥ =g and x =,/2gx . Setting this last expression equal to (1) gives us
F=3pgx (4)

Although M. G. Calkin (personal communication) has found that experimentally the time of fall
for this problem is consistently less than the value one would obtain in the above treatment by
about 1.5%, he also finds evidence that suggests the free fall treatment is more valid if the table
is energy absorbing.
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Let p = mass/length

9-20.

The force on the rope is due to gravity
F=(a+x)pg—(a-x)pg
=2xpg
dp dv dv
—=m—=2ap
dt dt dt

So F= d—P becomes
dt

xXg=a d_v
=70
Now
dt  dx dt  dx
So
xg=av e
g dx
or
vdo = g xdx
a
Integrating yields
o8 v
2 2a
Since v =0whenx=0,c=0.
Thus
= 8 X2
a

When the rope clears the nail, x = a. Thus
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9-21. Letuscall x the length of rope hanging over the edge of the table, and L the total
length of the rope. The equation of motion is

2
Let us look for solution of the form
x=Ae” +Be
Putting this into equation of motion, we find

g

o=,[=
L

Initial conditions are x,_,, =x,=0.3m; v,,,=0m/s.
From these we find A=B=1x,/2.

Finally x = x, cosh (wt). When x =L, the corresponding time is

t= l cosh™ {L\ =0.59s.
w X,

9-22. Let us denote (see figure)

m and 2m mass of neutron and deuteron respectively
v, velocity of deuteron before collision
v, and v, velocity of neutron and deuteron, respectively after collision

a) Conservation of energy:

2mv;  mo;  2mo; , 0 0}
= + = Uy=—t+—=
2 2

2 2 2

Conservation of momentum is
2mB, =2mov, +0, = 4v;+4v; =v; +8y,v, cos i

Solving these equations, we obtain 2 sets of solutions
2 _
v, :%\/6—4 cos® w F2cos 4|4 cos® -3

_ 20, cos t//J_r\/4v§ cos® v —3v;
- 3

0,
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or numerically

v, =5.18km/s v, =14.44km/s and
v, =19.79km/s v, =5.12km/s

b) Letuscall o the lab scattering angle of the neutron, then from the sine theorem we have

mv,  2mo, . v, .
——=——" = sina=2-—=siny
siny sina (3
>a=7484° and «a=5.16°

402 + 405 —v?
c) From a) we see that cos y =—>—2—L
87,0,

=M>£ = |l//|<3003‘// =130°
8v,u, 2 - e

9-23. Conservation of momentum requires v, to be in the same direction as u; (component

of v; 1 to u, must be zero).
pi = mi,

P =(m, +m2)vf

—p, v, =—1_y
Pi pf f m, + m, 1
The fraction of original kinetic energy lost is
1, 1 miu?
K _K Emlul_g(ml+m2) =L
i N f _ (ml + mz)
K. 1 2
! 2 my
2
m
m, !
3 m, +m,
m,
n,
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9-24.

o

m

The energy of the system is, of course, conserved, and so we have the following relation
involving the instantaneous velocity of the particle:

Lo o2 1

> mo” = > mu, 1)
The angular momentum about the center of the cylinder is not conserved since the tension in
the string causes a torque. Note that although the velocity of the particle has both radial and
angular components, there is only one independent variable, which we chose to be 6. Here

o = @ is the angular velocity of the particle about the point of contact, which also happens to be
the rate at which the point of contact is rotating about the center of the cylinder. Hence we may
write

v, = w,b; v =, (b-ab) (2)

From (1) and (2), we can solve for the angular velocity after turning through an angle &

o=—2 3)

1- 5 6

The tension will then be (look at the point of contact)
T = me” (b - ab) = ma,wb 4)

9-25. The best elements are those that will slow down the neutrons as much as possible. In a
collision between m, (the neutron) and m, (moderator atom), we would thus want to minimize
T; (kinetic energy of the neutron after the collision); or alternatively, maximize T, (kinetic
energy of the moderator atom after the collision). From Eq. (9.88)

T, 4m,m,

L _ 2
T, (m,+m,) oS¢

Since one cannot control the angle {; we want to maximize the function

__ M,

(m, +m2)2
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with respect to m, . (m; = constant)

df ml(m12 —mi)
dm,  (m, +n12)4

=0 when m, =m,

d’f
2
2

By evaluating

} one can show that the equilibrium point is a maximum. Thus, T, is a
my=m,

maximum for m, =m,. Back to reactors, one would want elements whose mass is as close as

possible to the neutron mass (thus, as light as possible). Naturally, there are many other factors
to consider besides mass, but in general, the lower the mass of the moderator, the more energy
is lost per collision by the neutrons.

9-26. The internal torque for the system is
N=r xf,+r,xf, (1)
where £, is the force acting on the first particle due to the second particle. Now
f,=—f, 2)
Then,

Nz(r1 —r2)><f12

T

This is not zero in general because (1‘1 - rz) and (1"1 - 1"2) are not necessarily parallel. The

internal torque vanishes only if the internal force is directed along the line joining two particles.
The system is not conservative.

9-27. The equation for conservation of p, in the lab system is (see fig. 9-10c):
0 =mv, sin y —m,v, sin

Thus

M0,
m,0,

T
sin ¢ = fml L sin w
mT,

sind = sin

or
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9-28. Using the notation from the chapter:
m: T,=T,, T,=T

my: T,=0; T,=T,
Thus

T, T
T,=T,+T, or 1=—2+=2 1
0 1 2 T T ()

0 0

If we want the kinetic energy loss for m, to be a maximum, we must minimize ?1 or,
0

. T,
equivalently, maximize T
0

From Eq. (9.88):

T. dm,m
2 17772 2
—=——""5008" ¢

Ty (my +m,)
To maximize this, =0 (it can’t = 180°).
T,  4mm,

Ty (m+ m2)2

The kinetic energy loss for m, is T, —T; . The fraction of kinetic energy loss is thus

LT 1 L_% gom)
T, T, T,
T,-T, | _ 4m,m,
TO max (ml + ﬂ’lz )2

¢'=0implies =0, 180° (conservation of p, ). So the reaction is as follows

Uy
Before: O—— O
m, m,
Uy %
After: O @)
m, my

p,: MU=, + My,

1
mo* == mu: + 5 m,v;

E:
2

1
2

m, —m,

Solving for v, gives v, = v

m, +m,

So
m, travels in + x direction
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+ x direction if m; >m,
m, travels in
— x direction if m; <m,

9-29. From Eq. (9.69)

tan v — sin 6
Ve cos 6+ (ml/m2)
From Eq. (9.74)
O=r-2¢
Substituting gives
sin (7 —2¢)
tan y =
(m, /m, )+ cos (7 —2¢)
or
i sin (2¢)
(m, /m,)—cos (2£)
9-30.
Yy
Before: oO—— O
m, m,
v, v,
After: O ©)
m, m,
a) Ap, =(0.06 kg)[16 m/s cos 15°— (-8 m/s) cos 45° ]
=1.27 N -sec

Ap, =(0.06 kg)[16 m/s cos 15°(-8 m/s) sin 45° ]

=-0.09 N-sec
The impulse P is the change in momentum.
So
P =(-0.09x+1.27y) N -sec
b) P=[Fdt=FAt
So

F=—-(9x+127y) N

297



298

9-31. From Eq. (9.69)

From Eq. (9.74)

Substituting gives

9-32.

Conservation of momentum gives

sin
tan y = ¢
—L —cos ¢
m,

p; = miu,

ps =mu; +2mv,

u,=v,+20, or v,=u —20,

1

1
AT == mu? - =mv> — mo?
1 2 1 2

2

L o
=—mu; ——m
2 2

1

_ 2
=2mu,v, — 3mv,

d(ar)

do,

{dz (AT)

2
dvu,

u

=0 implies 2u; =6v, or v, = ?1

<0, sothisisa maximum}

u
vlzul—szzgl

Y
nensy

(ulz —4u0, + 405) - mv;

CHAPTER 9
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9-33. From Eq. (9.87b) in the text, we have

T m: m, | .
rRRr— cosy+,||—=| —sin®
o (my+m,) m

2 2
1 . .
=—— | cos’ y+ M| —sin? w+2cos p,|| 22| —sin? y
[Hmz} e "
m

Substituting m, /m, =« and cos =y we have

%=(1+a)_2 [2y2+a2—1+2y,/a2+y2—1} (1)

0

9-34.
Before After
Uy °
m m
Cons. of p,:  mu, =mv, cos 45° + mv, cos (1)
Cons. of p,:  0=mo, sin 45°—mv, sin & (2)
Cons. of energy (elastic collision)
1 1 1
5 mu; = 5 mo; — > mv, 3)
Solve (1) for cos 4:
cos = A" NZ ~o/2
U,
Solve (2) for sin 4:
sin = —21
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Substitute into cos”* #+sin® §=1, simplify, and the result is
uw =vs -0 +~2 uyo,
Combining this with (3) gives
207 = V2 U0,

We are told v, #0, hence

vlzul/\/i

Substitute into (3) and the result is

— N

Since v, =v,, (2) implies

9-35. From the following two expressions for T, /T ,

T, o
171 Eqg. (9.82
T, u; q- 082
2
T m? m, |
T (m+m,) m,

we can find the expression for the final velocity v, of m, in the lab system in terms of the
scattering angle v :

2

m,u m

— 171 2 s 2

v, = cosyt,||—| —sin” w (1)
m, +m, m,

If time is to be constant on a certain surface that is a distance r from the point of collision, we
have

r=ut, ()
Thus,

2
————|cosy =+ {%} —sin’® 3)

This is the equation of the required surface. Let us consider the following cases:
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i) m,=my:

£
r:ul_zo[cos Wim}:%to cos

(The possibility r = 0 is uninteresting.)

il) m,=2m,:

rzuthO[cos w+ /4 —sin® 1//]

ill) m, =c: Rewriting (3) as

r

_myty [cosy { 1 T sin® y

m
1+—L| "
m,

and taking the limit m, — o, we find
r=1ut,

All three cases yield spherical surfaces, but with the centers displaced:

ﬁmz =0
m, = 2m,
my =m,

m, —uity ik

301

(4)

(©)

(6)

)

This result is useful in the design of a certain type of nuclear detector. If a hydrogenous material
is placed at 0 then for neutrons incident on the material, we have the case m, = m,. Therefore,

neutrons scattered from the hydrogenous target will arrive on the surface A with the same time

delay between scattering and arrival, independent of the scattering angle. Therefore, a

coincidence experiment in which the time delay is measured can determine the energies of the

incident neutrons. Since the entire surface A can be used, a very efficient detector can be

constructed.

9-36. Since the initial kinetic energies of the two particles are equal, we have

1 1 1
— My = — m,us =— a’m,u;
2 2 2
or,
m
1 — az

1)

()
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Now, the kinetic energy of the system is conserved because the collision is elastic. Therefore,

1 1 1
5 m1”12 = 5 mz”; = m1”12 = 5 mzvg 3)

since v, =0 . Momentum is also conserved, so we can write
My + myuy = (my + am, ) u, = m,o, (4)

Substituting the second equality in (4) into (3), we find

2
1 m, +am
;= 5 m, {#} u; )
1,
or,
1 2
m,=—m, [ﬂ+ a} (6)
2 m,
Using m, /m, = &, (6) becomes
20% = (az + a)2 )
solving for o, we obtain
a=-152; a?=3322 (8)
This gives us
M _35242; 2=-(1242) with[+f“<0 )
m2 ul —-a> 0
9-37. Impulse = IF dt

= 6“073(360 107 ) dt

t=0

2{360.6“0-3 —%-(mm*)ﬂ N-s

Impulse=1.4

4kgm
S

Since the initial velocity is zero, v ;=40
Impulse = AP = mAv
So
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144 k8™
_ S
Vp =
0.003 kg

—480 2
S

Umuzzle

9-38.
1
T, = > mu?
T, = E mlvl2
Thus,
T _o
T, ”12

Now, from the diagram above, we have
v, =V cos y +v] cos(6- y)

Using Eq. (9.68) in the text, this becomes
v, =V [
m

Thus,
o _V°
u12 ulz 1
Using Eq. (9.84) in the text,
v__m
u,  m+m,
Therefore, we find
T, m12
—= 5| cos y +
T (m1 + mz)

If we define

cos V/+&COS(9— )

303

1)

)

)

(4)

(5)

(6)

(7)
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9 _
S=cosy+ cos(0-y) (8)
(ml / mz)

we have

T m?

L= 1 _x¢° )

o (m +m,)

as desired.
9-39.

As explained in Section 9.8, the component of velocity parallel to the wall is unchanged. So
v, =usin @

v, is given by

or
‘vy‘ =cucosd
Thus
. 1/2
v= [uz sin? 8+ &* u® cos? 9]
. 1/2
U= u[sm2 6+ & cos? 9]
usin 0
tan @ =——
cgucos @
or

6 =tan™ [l tan 49}
&
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9-40. Because of the string, m, is constrained to move in a circle of radius a. Thus, initially,
m, will move straight up (taken to be the y direction). Newton’s rule applies to the velocity
component along u, . The perpendicular component of velocity (which is zero) is unchanged.
Thus m, will move in the original direction after the collision.

From conservation of p, we have
myu, sin @ = m,v; sin a + m,v, (1)

From Newton’s rule we have

o 02008 (90°—a)-0,
- .

or
v, =0, sin a — &u, (2)

Substituting (2) into (1) and solving for v, gives

(e+1)mu, sina ,
v, = — straight up
m, sin” a + m,

(2) then gives

ul(m1 sin” o — gmz)

v, = along u,

m, sin® a +m,

1
9-41. Using y=19,t— > ¢t* and v=1v, — gt , we can get the velocities before and after the

collision:
L .
Before: u, =—gt, where h = > gt
So U, =-g z—hlz—,/Zgh1
8
After: O=9,-gt, or t,=1v,/g

So v, =+J28h,
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Thus
_ |772 _U1| _ \28h,
|u2 - u1| 2¢h,
h,
Tlost = ’I; - Tf
T-T,
Fraction lost =
_ “12_012 _ h, —h, :1_£
“12 hy h,
T -T
U S P
Ti
9.42.

As explained in Section 9.8, the velocity component in the y-direction is unchanged.

vo=U ={5E}Sin300=2.5 m/s
S

For the x component we have

o, | v v

|ux| [5 m} cos 30° \f 5 m

0.8=

UX

—232
s

vf=%\/%:4.3 m/s

6=tan™ 6°

25 _,
243
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9-43.

Conservation of p, gives

\2mT, =4mv, cos a+ % mo,

or

\2mT, — \/12 mo,

4mo,

cos a =
Conservation of p, gives
1 .
0=—=mv, —4mv, sin o

V2

or

Substituting into sin® a+cos* @ =1 gives

1
2 2mT, + 5 m*v; —2 JmT,mo,

1= +
3205 16 m” v;
Simplifying gives
, v T, v JTym
Uy =— b ————— (1)
16 8m 8m
The equation for conservation of energy is
T, 1 1
T, —Zozzmvf +E(4m)zJ§
or
5T, = 3mv? +12mv; ()

Substituting (1) into (2) gives a quadratic in v, :

15mv; —64Tym v, —14T, =0
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Using the quadratic formula (taking the positive sign since v, >0) gives:

v, =119 /E
m

Substituting this into the previous expressions for cos & and sin « and dividing gives

sin

tan a = =1.47

cos o

Thus ¢, the recoil angle of the helium, is 55.8°.

9-44.
L
X
Fgrav =mg = HUxg where H= mass/length
Fimpulse = 1o +mo+ mvg, since v = (%Y 0=0.
We have
= (o) = 12 = g

So the total force is

F(x) = uxg + pog
We want F(x = a)

F(a) = uag + pv;

or

2
F=,uag{1+2—;}

9-45. Since the total number of particles scattered into a unit solid angle must be the same in
the lab system as in the CM system [cf. Eq. (9.124) in the text],

o(0)27sin0do=o(y) 2z sin y dy 1)
Thus,

o(0)= o) L 2L @
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The relation between #and y is given by Eq. (9.69), which is

tany =— 3)

where x =m, /m, . Using this relation, we can eliminate y from (2):

1 1 in 6
sin y = = = S (4)

141 (cos 6+ x)* \/1+2xcos€+x2
tan? y 1+—F5—

sin” 6

dy dy  d(tany) , cos0(cosO+x)+sin’ @
——= =cos
0 d(tany) do YT (coso1a)

1

1+tan® y

(5)

Since cos® = , (5) becomes

d_z//_ 1 1+xcos®  1+xcosd
a0 sin @ (cos@+x)* " 1+2x cos O+ x>

1+
(cos@+x)’

(6)

Substituting (4) and (6) into (2), we find

1+xcosé@

o(0)=0o(v) 2 )

(1+2x cos 6+ x2)3

9-46. The change in angle for a particle of mass 4 moving in a central-force field is [cf. Eq.
(9.121)]. Let y = capital € here.
oo o/r*) dr
Ay = Uis — ey
o J2u(E-U - 2 /2pr%)

In the scattering from an impenetrable sphere is the radius of that sphere. Also, we can see

min

from the figure that 6 =7-2y .

For r>r_. , U=0. Thus (1) becomes

s &)
@ J2uE—1?/1?
Substituting

b2uTy=t; E=Tj 3)
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(2) becomes

o dr
Al//:jaT
r bT—l

This integral can be solved by using Eq. (E. 10b), Appendix E:

(4)

0

-2

.1
y=sin" | —— (5)
s
b .
Thus,
sin = B (6)
a
Therefore, we can find the relation between 6 and b by substituting (6= 7 - 21//) into (6). We
have
7
b= - 7
acos 5 @)
Now, the differential cross section is given by Eq. (9.120):
b |db
0)= — 8
0)=Gno ‘d& ®)
From (7), we have
2
o(0)= ‘1 acosIxein 8- )
sin 6 2 2 4
Total cross section is given by
aZ
= 0)dQy=—-4 10
o, _[ o(0) : V4 (10)
so that
o, =na’ (11)

9-47. The number of recoil particles scattered into unit solid angle in each of the two systems,
lab and CM, are the same. Therefore,

0(¢) sin ¢gdg= 0(4’) sin £ dd (1)

where ¢ and § are the CM and lab angles, respectively, of the recoil particle. From (1) we can
write [cf. Eq. (9.125) in the text]

ol¢) _sin¢ d¢

o(¢)  sing dg @
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Now, in general, ¢ =24 [see Eq. (9.74)]. Hence,

sing sing 1
sing sin2{ 2cos{

©)

and
@ _1
i 2 4)
Using (3) and (4) in (2), we have
old)__1
0({)  4cos 4 ©)

For m, =m,, the Rutherford scattering cross section is [Eq. (9.141)]

k1
~4T; " sin® (9)2)

0'(6’) (6)

Also for this case, we have [Egs. (9.71) and (9.75)]

_9
V=3
)
_T_
=5
Hence,
singzsin W =sin (%—{j =cos ¢ (8)

and since the CM recoil cross section o (¢) is the same as the CM scattering cross section o(6),
(6) becomes

k? 1
G(¢) = 4T02 x cos* ¢ )
Using (5) to express o (&), we obtain
o(¢)=0o(p)x4cos ¢ (10)
or,
k* 1
0(()—T—()2x o5’ (11)
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9-48. In the case m, > m,, the scattering angle y for the incident particle measured in the lab

system is very small for all energies. We can then anticipate that o (y) will rapidly approach
zero as y increases.

Eq. (9.140) gives the Rutherford cross section in terms of the scattering angle in the CM system:
k? 1

oom (0) = . D
CM( ) (4T0,)2 Sln4 (9/2)
From Eq. (9.79) we see that for m, > m,,
Ty = m, T, = nm, T, )
m, + m, m
Furthermore, from Eq. (9.69),
in @
tanl//:mL;ﬂsinQ 3)
“Licosg '™
m,
and therefore, since is expected to be small for all cases of interest,
sinﬁsﬂtanl//sﬁl// (4)
m, m,
Then,
2
cos 8= 1—[ﬁ y/} 5)
m,
and
sin2(¢9/2)=l 1- J1- ﬁyfz 6)
2 m,

(Notice that y <1, but since m, > m,, the quantity m,y/m, is not necessarily small compared
to unity.)

With the help of (2) and (6), we can rewrite the CM cross section in terms of y as

2
mk 1
_ 7
cu(y) {ZmZTJ > T @)
1- 1—[’”1 y/}
m,

According to Eq. (9.129),
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2
ﬁc:os W+\/1—{mlsin l//i|
n, n,

OLaB (‘//) =0cu(6) (8)
ol

2
m; .
— sin

m,

2

We can compute o, ,; () with the help of (7) and the simplifications introduced in the right-
hand side of (8) by the fact that y <« 1:

ST TR L1 ©)
AP | 2m,T, 2 T 2
NacHjiacs
m, 2
and so,
2/ 2m2T, )
LAB(‘//)E (m /m ) (10)

This expression shows that the cross section has a second-order divergence at y = 0. For values
of w>m,/m, , (9) gives complex values for o,,, . This result is due to the approximations

involved in its derivation, making our result invalid for angles larger than m, /m, .

9-49. The differential cross section for Rutherford scattering in the CM system is [cf. Eq.
(9.140) in the text]

k? 1
0 sin* =
2
where [cf. Eq. (9.79)]
Ty=—"2—T, @)
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Thus,

o(0)

r 2
S| ml+m2}

T16TE . . 0| m,

sin* =L
2

)

1 [om T
=
16T7 . 9|

2

Since m, /m, <1, we expand
2
{1+ﬂ} =142 4)
m, m,

Thus, to the first order in m, /m, , we have

o(6) K %{n 2ﬂ} )

16T ;1 O m,
2

This result is the same as Eq. (9.140) except for the correction term proportional to m, /m, .

9-50. The potential for the given force law is
U(r)=—>= M)

First, we make a change of variable, z=1/r . Then, from Eq. (9.123), we can write

0_.[2[]16)( bdz
0 1-|b° + k z?
mug

b

4 Z

= gin!' —
z

2 b +

12
Zmax =‘:b2 + £ 2 }
mug

0

(2)

max

k
mu;
b
2 b+ Lz
mu;
20

k
bo= | 3)
miy 7% — 46

Solving (2) for b = b(8),
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According to Fig. 9-22 and Eq. (9.122),
0= (x-9) @

so that b(8) can be rewritten as (6):
k T—6
b(0)= 5

The differential cross section can now be computed from Eq. (9.120):

b |db
0)= — 6
o (0) sinH‘dH (©)
with the result
kn? (71'—(9)
0)= 7
)= i (2r—0) sin 0 7
9.51.

In the CM system, whenever the neutron is scattered through the angle 6, the proton recoils at
the angle ¢ = 7— 6. Thus, the neutron scattering cross section is equal to the recoil cross section
at the corresponding angles:

e 1)

Thus,

dN, szp| dT, |
dQ(0)  dT, |dQ(g)|

@)
where dN, /dT, is the energy distribution of the recoil protons. According to experiment,
dN, /dT, = const. Since m, =m, , T, is expressed in terms of the angle y by using Eq. (9.89b):

T, =T, sin® y (3)
0
We also have y = > for the case m, =m, . Thus,

dT 1

P da .
dQ(g)  2zsin ¢ dg (T, sin* ) @)
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or,
| dTp |=| T, isnz[ﬁ;}
|dQ(¢)| |27sin ¢ dg 2
:L‘_’Singcosg=ﬁ )

Therefore, we find for the angular distribution of the scattered neutron,

dN, _dN, T,
dQ(e)  dT, 4r

(6)

Since dN, /dT, = const., dN,, /dQ is also constant. That is, the scattering of neutrons by protons

is isotropic in the CM system.

9-52. Defining the differential cross section o () in the CM system as in Eq. (9.116), the
number of particles scattered into the interval from 8 to 8+ 46 is proportional to

dN o< o(6) sin 0 d6=-o(6) d(cos 0) (1)
From Eq. (9.87a) and the assumption of elastic collisions (i.e., T, =T, + T, ), we obtain

T, 2m,m,
—“=———=—>(1-cos @ 2
T, (ml+m2)2< cos9) ®

or, solving for cos 6,

cos 9= Tn =212
T

m

®)

4m,m,

where T,, = 5 1;, is the maximum energy attainable by the recoil particle in the lab

(m, +m,)
system. Then, (1) can be rewritten as

dN oc 20(6) % (4)

m

and consequently, we obtain the desired result for the energy distribution:

dN
d_Tz o o(6) (5)
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9-53.
m, =mass of particlea,, m, = mass of **U
uy, ujy : velocity of particle o in LAB and CM before collision

v,, vy : velocity of particle o« in LAB and CM after collision

u,, u}: velocity of **U in LAB and CM before collision

IR

v,,v5” velocity of **U in LAB and CM after collision

2
_ iy

u,=0, T, =7.7MeV

w =90° is angle through which particle « is deflected in LAB

0 is angle through which particle @ and **U are deflected in CM
¢ is recoil angle of **U in LAB
Y
m, u,
o

a) Conservation of momentum in LAB:

m, U, =Mm, v, COS ¢
) = 7U,=u,tang
m, v, =m, v, sin g

Conservation of energy in LAB:

m1”12 m1012+m277§

2 2 2

From these equations we obtain the recoil scattering angle of **U

m,y

tan ¢= [Z2" £=44.50°
m, +m,
b) The velocity of CM of system is
~ mii,
0. =
My +m,

317

The velocity of **U in CM after collision is @, =3, — 0, . From the above figure we can obtain

the scattering angle of particle **U in CM to be
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: 2 2
v, sin my; —m
tan 6= RSiNe | — = 0=89.04°
v, COS§ -0, m;

In CM, clearly after collision, particle @ moves in opposite direction of that of **U'.

c) The kinetic energy of particle U after collision in LAB is

2
2 2.2
mo?  m,( mo, ) m;u 2m
2 2 \m,cos{ mo+m, m+n, 025 Me
2 1 2 1 2

Evidently, conservation of energy is satisfied.

d) The impact parameter in CM is given in Section 9.10.

b=——cot| —
21, \2

where k=192 and Ty = %(mlu{z + mzuéz) is the total energy of system in CM,
g,

2

SO bzmmcot[gj =1.8x10"* m
drs, mymyu; 2

We note that b is the impact parameter of particle o with respect to CM, so the impact

m, +m, )b
parameter of particle & with respect to **U is M =1.83x10™" m.

m,

e) In CM system, the orbit equation of particle « is

o
—=(1+¢)cos@ where §=0 correspondsto r=r,,,
r’
a . . .
=71 = is closest distance from particle « to the center of mass, and

1+¢

* 4ng, (mub)’

- mk - 119> my

o

and

2 Ib 2
E= 1+2E€ :\/1+2E4ﬂ:€0—(m1u1 )
mk 119> my

1

11.\2
- \/1 rmu? 2 (meab)
' M M

But the actual minimum distance between particles is
m, +m
r. =—t—2y

min min

m,

=0.93x107" m.
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f) Using formula

2
(x cos  + /1 - x* sin’ v//)

\/1—x2 sin’® y

O1AB (‘/’) =O0cMm (‘9)

2
where x="0 1y =90°, oo, (6)=—— — 1 >
My (4T0’) sin* (j

2

We find this differential cross section in LAB at y = 90°:
ouap (¥ =90°)=3.16x10" m?

g) Since dWN = o(0) sin ydywd¢ we see that the ratio of probability is

o(y)siny

=11.1
0(1//') sin '

9-54. Equation 9.152 gives the velocity of the rocket as a function of mass:

m m
v=0,+uln—L=yln -2 (vo=0)
m m

m,
p=mv=muln—
m

dp

To maximize p, set —=0
m

Ozd—pzu[lnﬂ— }

dm m
m m m
In—=1 L —p or — =
m m m,

To check that we have a maximum, examine

d’p dp u
dm? | dm?
, -
dp u .
=—— , SO W Y ximum.
i e <0, sowe have a maximum
m _m=moe'1 mo
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9-55. The velocity equation (9.165) gives us:

o(t)=—gt+uln {%} (1)

where m(t) =m, —at , the burn rate @ =9m, /107, the burn time 7=300 s, and the exhaust
velocity 1 =4500 m-s™ . These equations are good only from ¢ = 0 to t = 7. First, let us check that
the rocket does indeed lift off at t = 0: the thrust au =9um,/107=13.5m-s -m, >m,g, as

required. To find the maximum velocity of the rocket, we need to check it at the times t = 0 and
t = 7, and also check for the presence of any extrema in the region 0 < t < z. We have v(0) =0,
o(r)=-gr+uln10=7400 m-s™, and calculate

dov au au

ar - S :g{m(t)

The inequality follows since au >m,g >m(t)g . Therefore the maximum velocity occurs at t =

—1}0 @)
8

where v=-g¢7+uIn10=7400 m-s™'. A similar single-stage rocket cannot reach the moon since

v(H)<uln(m,/m, )=uln10=10.4 m-s, which is less than escape velocity and independent of
0 final P y P

fuel burn rate.

9-56.
a) Since the rate of change of mass of the droplet is proportional to its cross-sectional area, we
have
dm
2 ket 1
Tt 1)
If the density of the droplet is p,
4 5
m=—pr 2
3P 2)
so that
dm dm dr dr
_———= 4 2 —_— = k 2 3
at arar 0w ®
Therefore,
dr k
T_L )
dt 4p
or,
r=1,+ L t 5)
4p

as required.
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b) The mass changes with time, so the equation of motion is

d dv  dm
F=—(mv)=m—+v——=mg
dt dt dt
Using (1) and (2) this becomes
47 5 dv ,  4r
_ -+ k -
3 T T e
or,
dv 3k
—+—Uv=g
dt 4pr
Using (5) this becomes
do % o
at - 4p r LI
4p
3k k . .
If we set A=— and B=-—, this equation becomes
4p 4p
dv A
—+ v=g
dt r,+Bt

and we recognize a standard form for a first-order differential equation:

dv
—+P(t)o=0(t
% peo=0)
in which we identify
A
Pt: , t =
(t) 1, + Bt Qb =g

The solution of (11) is

o(t)= PG U Jro Qdt+ constant}

Now,

A
1, + Bt

[P(t)dt=]

= ln(ro + Bif)3
. A
since E = 3. Therefore,

I (r, + Bt)’

A
dt :Eln(;’O +Bt)

321

(6)

)

(8)

©)

(10)

(11)

(12)

(13)

(14)

(15)
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Thus,

o(t)=(r, +Bt)” U(ro +Bt) g dt+ constant}

(50| S+ Bi) o (16)

The constant C can be evaluated by setting v(t=0)=1,:

118/
o :E[E(Yo +c)} (17)
so that
C=v,1; —% r (18)
We then have
1 8 4 3 8 4}
f)=——| = Bt - 19
o(t) 0 +Bt)3 [4B (1, +Bt)" + 0,1, 15" (19)
or,
1 8 4 3
t)= < (Bt)" +0 20

where O(r03) means “terms of order 7, and higher.” If 1, is sufficiently small so that we can

neglect these terms, we have
o(t)oct (21)

as required.

9-57. Start from our definition of work:
dp
W=|Fdx=|—dx=|vd 1
[Fax=[—"dv=[odp (1)
We know that for constant acceleration we must have v = at (zero initial velocity). From
Equation (9.152) this means
m=mye " )

We can then compute dp:

dp = d(mv) = d(mat) = ma dt + at dm = m, ae™"" [1 _a_t} dt 3)
u

This makes our expression for the work done on the rocket

W, =2 [ (at)(u—at)e ™" dt (4)
u
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The work done on the exhaust, on the other hand, is given with v — (v - ) and
dp - dmexhaust (U - Ll) , SO that

W, = Ll Ot(at —u)?e " dt (5)
u

The upper limit on the integrals is the burnout time, which we can take to be the final velocity
divided by the acceleration. The total work done by the rocket engines is the sum of these two
quantities, so that

W= % J.;/u(uZ - uat) e dt = myu® I;/u(l —x)e " dx (6)

where the obvious substitution was made in the last expression. Upon evaluating the integral
we find

W = myuve " = muv 7)

where m is the mass of the rocket after its engines have turned off and v is its final velocity.

9-58. From Eq. (9.165) the velocity is

v:d—yz—gt+uln&
dt m

m,
dy=||—-gt+uln—2|dt
[ay j[ gt+uln m}
Since ﬂ=—0¢, dt =—dm/a
dt

+C——l tZ_EJ' In 20 g

Y a Zg a m

jlnﬁdxzx[1+ln£j,sowehave

x x

1 u m
+C=—=ot* ——|m+mln—2
Y 2g a[ nm}

Evaluate C using y = 0 when t =0, m =m,

C o _um
a
u(my —m
y= (m, )—%gtz—muln%;mo—mzat
a a
1 , mu, m
y=ut—-—gt"——In—
2 a m

Atburnout, y=y;, t=t;
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mu m
T In—=

1
Yp :utB_Egté -
(04 m

After burnout, the equations are
y=1, +vot—%gt2 and v=79, - gt
Calling the top of the path the final point
vp=0=0vy—gt;, or t,=v,/g

2 2 2
Up Up _ Up
Y=Y ¢ 2¢ 2¢ Yo

2
_%

y_Zg

CHAPTER 9

9-59. In order to immediately lift off, the thrust must be equal in magnitude to the weight of

the rocket. From Eq. (9.157):

Thrust =v,a v, = velocity of fuel
So
vy =mg

or

9-60. The rocket will lift off when the thrust just exceeds the weight of the rocket.

Thrust = —u d_m =ua
dt

Weight =mg = (mo - at)g
Set thrust = weight and solve for t:

uaz(mo—at)g; tzﬂ—E

a g
With m, =70000 kg, =250 kg/s, u=2500 m/s, g=9.8 m/s’

The design problem is that there is too much fuel on board. The rocket sits on the ground
burning off fuel until the thrust equals the weight. This is not what happens in an actual launch.
A real rocket will lift off as soon as the engines reach full thrust. The time the rocket sits on the
ground with the engines on is spent building up to full thrust, not burning off excess fuel.
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9-61. From Eq. (9.153), the velocity after the first state is:
v, =70, +ulnk
After the second stage:
v,=v,+ulnk=v,+2ulnk
After the third stage:
v,=0,+ulnk=v,+3ulnk
After the n stages:

v,=v, +ulnk=v,+nulnk

v, =0, +hulnk

9-62. To hover above the surface requires the thrust to counteract the gravitational force of
the moon. Thus:

_ydm 1
a6
_budm _
g m
Integrate from m=m, to 0.8 m; and t =0 to T:
=81 0g-_02000m/s) ) o
g 9.8 m/s

T =273 sec
9-63.

a) With no air resistance and constant gravity, the problem is simple:
1
5 mv; = mgh 1)

giving the maximum height of the object as =0 /2¢ = 1800 km . The time it takes to do this is
v,/§=610s.

b) When we add the expression for air resistance, the differential equation that describes the
projectile’s ascent is

()
Fzmﬁz—mg—%cwp/lvz =-mg 1+L1J
vt

o )
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where v, =,/2mg /c,,pA =25 km-s™ would be the terminal velocity if the object were falling

from a sufficient height (using 1.3 kg-m™ as the density of air). Solution of this differential
equation gives

tan™ [U—OJ _&t (3)

t)=10,t
v(t) =1, tan e e

This gives v = 0 at time 7= (Ut / g) tan™ (vo / Ut) =300 s. The velocity can in turn be integrated to

give the y-coordinate of the projectile on the ascent. The height it reaches is the y-coordinate at
time «

2
hzv—tln

2 (4)

1+LU—OJ

which is = 600 km.

c¢) Changing the acceleration due to gravity from -g to —GM, / (Re + y)z =— g[RE / (RE + y)]Z
changes our differential equation for y to

P (R YV
. Yy R,
=—g||=| +| —— 5
o= 42 o
Using the usual numerical techniques, we find that the projectile reaches a height of = 630 km in

a flight time of = 330 s.

d) Now we must replace the p in the air resistance equation with p(y). Given the dependence

of v, on p, we may write the differential equation
G (R Y
.. Y R,
=g —%% Hr o) (6)
pO Ut Re + y
where we uselog,, p(y)=0.11-(5x 10°° )y and p, =1.3, with the p’s in kg- m~ and y in meters.

The projectile then reaches a height of = 2500 km in a flight time of = 940 s. This is close to the

height to which the projectile rises when there is no air resistance, which is = 2600 km.
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2.5 T T T T T T T =T—

15 7 _

height (1000 km)

9-64. We start with the equation of motion for a rocket influenced by an external force, Eq.
(9.160), with F,, including gravity, and later, air resistance.

xt

a) There is only constant acceleration due to gravity to worry about, so the problem can be
solved analytically. From Eq. (9.166), we can obtain the rocket’s height at burnout

yb:utb_%gtg_ﬁln[%} 1)
a m,

where m, is the mass of the rocket at burnout and a = (mo —m, ) / t, . Substitution of the given
values gives y, =250 km . After burnout, the rocket travels an additional v; /2g, where v, is the

rocket velocity at burnout. The final height the rocket ends up being = 3700 km, after everything
is taken into account.

b) The situation, and hence the differential equation, becomes more complicated when air
resistance is added. Substituting F,, = -mg —c,,pAv* /2 (with p=1.3 kg-m™) into Equation
(9.160), we obtain

dv  ua Cy PAT
e @)
at  m 2m

We must remember that the mass m is also a function of time, and we must therefore include it
also in the system of equations. To be specific, the system of equations we must use to do this by
computer are

0

Y 2
. ua Cy PAv
V|=l——8g-——7— 3
. m & 2m ©)
1

-a

These must be integrated from the beginning until the burnout time, and therefore must be
integrated with the substitution o = 0. Firstly, we get the velocity and height at burnout to be
v, =7000 m-s™ and y, =230 km . We can numerically integrate to get the second part of the
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journey, or use the results of Problem 9-63(b) to help us get the additional distance travelled

with air resistance, analytically. The total height to which the rocket rises is = 890 km in a total

flight time of = 410 s.

€) The variation in the acceleration of gravity is taken into account by substituting
GM, / (Re + y)z = g[Rc / (Re + y)]z for g in the differential equation in part (b). This gives
v, =6900 m-s™, y, =230 km, with total height = 950 km and time-of-flight = 460 s.

d) Now one simply substitutes the given expression for the air density, p(y) for p, into the
differential equation from part (c). This gives v, =8200 m-s™', y, =250 km, and total height

= 8900 km with time-of-flight = 2900 s.

10

height (km)

0.5 1 15 2 25 3
£ (1000 5)

@ ® -0 @
9-65-
Total impulse P=85N-s
Total mass m, =0.054 kg
Burn time t;=15s

rd?

Rocket cross section area

Drag coefficient

Drag force

S=""=45x10"* m?

4
¢, =075

1 2 2 -4 2
Dzapchv =Kv"=2x10"v" N

where p=1.2 kg/m® is density of air

and v is rocket’s speed

Rocket exhaust speed 1 = 800 m/s

a) The total mass of propellant is

am=L20.0106 kg
u
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Since am ~20% m, , we will assume that the rocket’s mass is approximately constant in this
problem. The equation of motion of rocket is

mogz—mongua—sz

(where o = At_m =7.1x10" kg/s is fuel burn rate)
f
mydo

- (ua—mog)—K02 -

Using the initial condition att =0, v = 0, we find

o(t) = —(ua _Kmog) tanh [ —K(ua ~g) ]

At burn-out, = t;=15s,we find
v, =0(t;)=114.3 m/s

The height accordingly is given by

([ [k(ua=myg))
h(t) = !U(t) dt = %ln [cosh Lt\/@ﬂ

Atburnout, t=t¢ FoWe find the burn-out height
hf = h(tf) =95.53 m

b) After the burn-out, the equation of motion is

with solution

o(t) = —\/@ tan {t\/% - Cj

Using the initial condition at t =¢ fr Uy =0p, We find the constant C =-1.43 rad, so

( )
o(t)=— |08 tan & /ﬁ ~1.43]
K m,
and the corresponding height

h(t) = h; +jv(t) dt=h, +%{0.88+ lr{cos {t\/%—l.%ﬂ}

tr
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When the rocket reaches its maximum height (at t =t ) the time ¢, can be found by setting

max X

U(t ) =0. We then find t, =7.52 s. And the maximum height the rocket can reach is
h.. =ht,,)=334m
c¢) Acceleration in burn-out process is (see v(t) in a))
a(t):%:uar—nmog 1
" cosh? [t 71((”0{ —Zmog)]
mO

Evidently, the acceleration is maximum when t = 0 and

0 =a(t=0)="2""8 _954 m/s?
m,

d) In the fall-down process, the equation of motion is

With the initial condition t=t,, , v =0, we find (f> tmax)

max /

o(t)=— % tanh {(t—tmax)\/i—ig}

(v(t) is negative for t >t . , because then the rocket falls downward)

max /

The height of the rocket is

t
=l + [ 0(t)dt =y —ﬂln{cosh {(t—tmx) /ﬁ}}
o K m,

To find the total flight-time, we set & = 0 and solve for t. We find ¢, =17.56 s

tota

e) Putting t=t,, into the expression of V|, in part d), we find the speed at ground impact to

be
m K
v, =~ [zg tanh {(tmmz - tmax) /m_f} =-492m/s

9-66. If we take into account the change of the rocket’s mass with time m =m, —at, where «

is the fuel burn rate,
a=71x10" kg/s
as calculated in problem 9-65.

The equation of motion for the rocket during boost phase is
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dov dov dt
(mo—at)azua—sz = KUZ—ua:at—m
0

Integrating both sides we obtain finally
® (14 C(at- mO)ZM\ ua
0 — _
P

where C is a constant. Using the initial condition v(t)=0att=0, we can find C and the velocity

is

uo m
B=\— —
S A

1+1-%

m,

a) The rocket speed at burn-out is (note t, =1.5s).
v, =0(t;)=131.3 m/s

b) The distance the rocket has traveled to the burn-out is

tr
=[o(t)dt=1085m

[

9-67. From Equation (9.167) we have

H, =—w lnL— +m, — }

Using numerical values from Example 9.12
a=-142x10" kg/s

m, =2.8x10° kg

m,; =0.7 x10° kg

u=2.600m/s

we find H,, =97.47 km .

From Equation (9.168) we find

g(my —my) m, )

v =——+uln{ "J

a mf

v, =2125m/s



332 CHAPTER 9



CHAPTER 1 O

Motion in a
Noninertial Reference Frame

10-1. The accelerations which we feel at the surface of the Earth are the following:

(1) Gravitational : [980 cm/sec”

(2) Due to the Earth’s rotation on its own axis:

rw’ :(6.4 x10° cm) x{

27 rad/day ’
86400 sec/day

—(64x10°)x(7.3x10°)" =

(3) Due to the rotation about the sun:

2
2
ro* =(15x10" em) { 7 rad/year }

86400 x 365 sec/day

=2
z(lmow){M} _[06 cm/sec]

365

10-2. The fixed frame is the ground.

The rotating frame has the origin at the center of the tire and is the frame in which the tire is at
rest.

From Egs. (10.24), (10.25):

a,=R;+a, +Oxr+ox(®xr)+2oxv,

333
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Now we have

R, =—acos@i+asinf]

r=r,i v,=a, =0
0=2k b="k
To To
Substituting gives
,02
a,=—acosfi+asinfj+aj-——i
To
2
.| 0 o .
af=—1{—+acos€}+](sm6+1)a 1)
To

2
, or alternatively, we maximize ‘a f‘ :

We want to maximize ‘

vt 2av?
‘af‘ =—+a’ cos’ O+ cos O+a” +2a” sin O+ a® sin® 6
7 7
4 2
v 2av )
=—2+2a2+ cos O+ a” sin” 0

Ty Ty

2
M _2a0°

=— cos 0+ 2a* cos 0
do 7

ar,
=0 when tan §=—"

[

(Taking a second derivative shows this point to be a maximum.)

02

Jairg + ot

tan 6= 1mphes cos 0=
v

and
. ar,
sin 6= —O
Ja'ry +ot
Substituting into (1)
a,=-i : + av’ il +1|a
s =i —
) \/azroz +0* \/a 17+t

This may be written as

_ 2 4 /.2
‘af‘—a+./a +v*/1;
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This is the maximum acceleration. The point which experiences this acceleration is at A:

ar,

where tanf=—
v

10-3. We desire E; =0 . From Eq. (10.25) we have

FeffZF—me—m05><r—m0)><(0)><r)—2mm><vr

).

The only forces acting are centrifugal and friction, thus g mg = mw’r , or

10-4. Given an initial position of (-0.5R,0) the initial velocity (0,0.5@R) will make the puck
motionless in the fixed system. In the rotating system, the puck will appear to travel clockwise
in a circle of radius 0.5R. Although a numerical calculation of the trajectory in the rotating
system is a great aid in understanding the problem, we will forgo such a solution here.

10-5. The effective acceleration in the merry-go-round is given by Equation 10.27:
¥=o"x+20y (1)
=0’y — 20 (2)

These coupled differential equations must be solved with the initial conditions

%, =x(0)=-05m, y,=y(0)=0m, and %(0)=1(0)=1v,/v2 m-s™, since we are given in the
problem that the initial velocity is at an angle of 45° to the x-axis. We will vary v, over some
range that we know satisfies the condition that the path cross over (x,,y,). We can start by

looking at Figures 10-4e and 10-4f, which indicate that we want v, >0.47 m-s™" . Trial and error

can find a trajectory that does loop but doesn’t cross its path at all, such as v, =0.53 m-s".
From here, one may continue to solve for different values of v, until the wanted crossing is

eyeball-suitable. This may be an entirely satisfactory answer, depending on the inclinations of
the instructor. An interpolation over several trajectories would show that an accurate answer to

the problem is v, =0.512 m-s™, which exits the merry-go-round at 3.746 s. The figure shows
this solution, which was numerically integrated with 200 steps over the time interval.
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10-6.
z
z=f(r)

r

Consider a small mass m on the surface of the water. From Eq. (10.25)

E;=F—mR; —me xr—m x (o xr)—2meo x v,

€

In the rotating frame, the mass is at rest; thus, F,; =0 . The force F will consist of gravity and the
force due to the pressure gradient, which is normal to the surface in equilibrium. Since

R, =0 =v, =0, we now have
0=mg+F, —mam x (@ xr)

where F, is due to the pressure gradient.

Since F; =0, the sum of the gravitational and centrifugal forces must also be normal to the
surface.

Thus ¢ = 6.

2
or
tan @' =tan 0=——
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but

tan 0=—
dr

Thus

2
o,
zZ= —2 7° + constant

8

The shape is a circular paraboloid.

10-7. For a spherical Earth, the difference in the gravitational field strength between the poles
and the equator is only the centrifugal term:

_ 2
gpoles - gequator =o'R

For @=7.3x10"rad -s™ and R = 6370 km, this difference is only 34 mm-s~. The disagreement
with the true result can be explained by the fact that the Earth is really an oblate spheroid,
another consequence of rotation. To qualitatively describe this effect, approximate the real Earth
as a somewhat smaller sphere with a massive belt about the equator. It can be shown with more
detailed analysis that the belt pulls inward at the poles more than it does at the equator. The
next level of analysis for the undaunted is the “quadrupole” correction to the gravitational
potential of the Earth, which is beyond the scope of the text.

10-8.

fo

‘V

Choose the coordinates x, y, z as in the diagram. Then, the velocity of the particle and the
rotation frequency of the Earth are expressed as

v=(0,0,2) "

o= (—a) cos 4,0, w sin i)

so that the acceleration due to the Coriolis force is

a=-20xi=2w(0,-zcos 4,0) 2)
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This acceleration is directed along the y axis. Hence, as the particle moves along the z axis, it
will be accelerated along the y axis:

iy =—-2wzcos A (3)
Now, the equation of motion for the particle along the z axis is
z=1, - gt 4
L .
z=0vt——gt 5
0t 75 8 )

where v, is the initial velocity and is equal to /2gh if the highest point the particle can reach is
h:

v, =+J2¢h (6)
From (3), we have

y=-2wzcos A+c 7)

but the initial condition j(z=0)=0 implies ¢ = 0. Substituting (5) into (7) we find
. 1 .,
y=-2wmcos A vot—agt

=@ cos A (gt2 —~ Zvotz) (8)
Integrating (8) and using the initial condition y(t = 0) = 0, we find
y=wmcos A [% gt — votz} )

From (5), the time the particle strikes the ground (z = 0) is

Oz(vo—%gt]t

so that
t= 2% (10)
Substituting this value into (9), we have
yzwcos/{lg%—vo 4—023}
378 8
=—%wcoslv—‘z (11)

If we use (6), (11) becomes
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4 8h’
Yy=—-—mcos A [— (12)
3 \ g

The negative sign of the displacement shows that the particle is displaced to the west.

10-9. Choosing the same coordinate system as in Example 10.3 (see Fig. 10-9), we see that the
lateral deflection of the projectile is in the x direction and that the acceleration is

a,=X=20,v, =2(a) sin i)(VO cos a) (1)
Integrating this expression twice and using the initial conditions, %(0)=0 and x(0)=0, we
obtain
x(t)= @ Vyt* cos a sin A (2)

Now, we treat the z motion of the projectile as if it were undisturbed by the Coriolis force. In
this approximation, we have

z(t)=V,t sin cz—%(tgt‘2 (3)
from which the time T of impact is obtained by setting z = 0:
T_ 2V, sina @)
8
Substituting this value for T into (2), we find the lateral deflection at impact to be
3
x(T) = 4'60‘2/0 sin 4 cos & sin” & (5)

10-10. In the previous problem we assumed the z motion to be unaffected by the Coriolis
force. Actually, of course, there is an upward acceleration given by —2w,v, so that

Zz=2wV,cosacosl—-g (1)

from which the time of flight is obtained by integrating twice, using the initial conditions, and
then setting z = 0:
2V, sin

T = @)

g—2wV, cos acos A

Now, the acceleration in the y direction is

a, =y =20,
= 2(—a) Cos l)(VO sin o — gt) 3)

Integrating twice and using the initial conditions, 7(0)=V, cos & and y(0)=0, we have
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1
y(t)= 3 wgt’ cos A — wV,t* cos Asin a+ Vt cos a (4)

Substituting (2) into (4), the range R’ is

8 wVypgsin®acosd 4wV sin’ acos 2V cos a cos A
3 (g -2V, cos o cos /1)3 (g — 2wV, cos a cos /1)2 g — 2wV, cos a cos 4

[

()

We now expand each of these three terms, retaining quantities up to order @ but neglecting all
quantities proportional to @ and higher powers of @. In the first two terms, this amounts to
neglecting 2wV, cos a cos A compared to g in the denominator. But in the third term we must

use
2V2 . 2
20 (‘:;)sasma ;ZVO cosozsilrw{l+mmsO‘COS)b
g[1— @Yo cosacos/l} g $
g
@ 3
=R, +——"sin a cos® a cos 1 6)

where R/ is the range when Coriolis effects are neglected [see Example 2.7]:

2

Rj=—cosasina (7)
8
The range difference, AR’ =R’ — R}, now becomes
4 3
AR’ = a)i/o cos A [sin acos® a —% sin’ a) (8)

Substituting for V,, in terms of R from (7), we have, finally,

AR' = /& @ COos A [cotl/2 a —% tan¥? a) )
8
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10-11.

R sin 6

This problem is most easily done in the fixed frame, not the rotating frame. Here we take the
Earth to be fixed in space but rotating about its axis. The missile is fired from the North Pole at
some point on the Earth’s surface, a direction that will always be due south. As the missile
travels towards its intended destination, the Earth will rotate underneath it, thus causing it to
miss. This distance is:

A = (transverse velocity of Earth at current latitude) x (missile’s time of flight)

=wRsin @xT (1)
= doR sin [i) (2)
v R

Note that the actual distance d traveled by the missile (that distance measured in the fixed
frame) is less than the flight distance one would measure from the Earth. The error this causes

in A will be small as long as the miss distance is small. Using R = 6370 km, @ =7.27 x 10°°
rad-s™, we obtain for the 4800 km, T = 600 s flight a miss distance of 190 km. For a 19300 km
flight the missile misses by only 125 km because there isn’t enough Earth to get around, or

rather there is less of the Earth to miss. For a fixed velocity, the miss distance actually peaks
somewhere around 4 = 12900 km.

Doing this problem in the rotating frame is tricky because the missile is constrained to be in a
path that lies close to the Earth. Although a perturbative treatment would yield an order of
magnitude estimate on the first part, it is entirely wrong on the second part. Correct treatment
in the rotating frame would at minimum require numerical methods.

10-12.
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Using the formula

Fy =ma, —mo x (o x1)—2mo x v,

(S

CHAPTER 10

1)

we try to find the direction of F; when ma, (which is the true force) is in the direction of the z

axis. Choosing the coordinate system as in the diagram, we can express each of the quantities in

(1) as
v,=0
o=(-wcos,0,wsin 1)

r=(0,0,R)

ma, =(0,0,-mg,)

Hence, we have
0] xrzRa)cos/ley
and (1) becomes

€ e €

X y z
F; =—mg,e, —m|-w cos A 0 wsin A
0 Rw cos A 0
from which, we have
F, =-mg.e. + mRe* sin A cos A e + mRw* cos* 1 e,

Therefore,

(F), = mRw” sin A cos A

(F;). =—mg, + mRe* cos® 4

The angular deviation is given by

_ Ro’sin Acos A

- g, — Ro* cos® 1

Since gis very small, we can put ¢= &. Then, we have

_ Ro’sin Acos A

g

g, — R’ cos® 1

It is easily shown that ¢is a maximum for A4 =45°.

Using R=6.4x10° cm, @=7.3x10" sec', g =980 cm/sec’, the maximum deviation is

&= i =0.002 rad
980

)

©)

(4)

(5)

(6)

)

(8)

©)
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10-13.

The small parameters which govern the approximations that need to be made to find the
southerly deflection of a falling particle are:
h  height of fall

S=o=— (1)
R radius of Earth

and

Raw?* centrifugal force

g,  purely gravitational force

(2

The purely gravitational component is defined the same as in Problem 10-12. Note that
although both sand « are small, the product da = ha?/g, is still of order w* and therefore
expected to contribute to the final answer.

Since the plumb line, which defines our vertical direction, is not in the same direction as the
outward radial from the Earth, we will use two coordinate systems to facilitate our analysis. The
unprimed coordinates for the Northern Hemisphere-centric will have its x-axis towards the
south, its y-axis towards the east, and its z-axis in the direction of the plumb line. The primed
coordinates will share both its origin and its y'-axis with its unprimed counterpart, with the z'-
and x'-axes rotated to make the z'-axis an outward radial (see figure). The rotation can be
described mathematically by the transformation

X=x'cos e+z'sin ¢ 3)
y= y' (4)
z=-x'sin &+z' cos ¢ (5)
where
a)Z
= sin A cos 4 (6)
8

as found from Problem 10-12.
a) The acceleration due to the Coriolis force is given by
ay, =20 xVv' (7)

Since the angle between @ and the z'-axis is 7— 4, (7) is most appropriately calculated in the
primed coordinates:
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X'=2wy' sin A ®)
i’ =—2a)(2’cos/1+5c’sin /1) 9)
7' =21’ cos A (10)

In the unprimed coordinates, the interesting component is

5&=2a)y(sin/1cos &+ cos A sin g) (11)
At our level approximation this becomes

¥ =20ysin A (12)
Using the results for i and z, which is correct to order o (also found from Example 10.3),

¥ =2w’gt* sin A cos A (13)

Integrating twice and using the zeroth order result for the time-of-fall, t =,/2h/g , we obtain for
the deflection

dy = % %2 o” sin A cos A (14)
b) The centrifugal force gives us an acceleration of

a,=-ox(®xr) (15)
The component equations are then

i'=w’ sin A[x'sin A+ (R+2z')cos 4 | (16)

=o'y (17)

7=’ cos A[x'sin A+(R+z')cos A ]- g, (18)

where we have included the pure gravitational component of force as well. Now transform to
the unprimed coordinates and approximate

¥=w"(R+z)sin Acos g, sin ¢ (19)

We can use Problem 10-12 to obtain sin ¢ to our level of approximation

2
9 sin A cos A (20)
8o

The prompts a cancellation in equation (19), which becomes simply

sins=¢&=

x=w’zsin A cos A (21)

Using the zeroth order result for the height, z=h—gt* /2, and for the time-of-fall estimates the
deflection due to the centrifugal force

2
d :Eh—a)2 sin A cos 4 (22)

c 6 g
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€) Variation in gravity causes the acceleration

GM
ag E—r—3r+g0k (23)

where r=x'i+y'j+(R+z')k is the vector pointing to the particle from the center of the
spherical Earth. Near the surface

r?=x"+y? +(z'+R)’ =R* + 2Rz’ (24)

so that (23) becomes, with the help of the binomial theorem,

a :—%(x'i+y’j—22'k) (25)

8

Transform and get the x component

jé:%(—x’ cos ¢+ 2z' sin g) (26)
= %[—(x cos €—z sin g) Cos €+ 2(x sin € + z cos g) sin g} (27)
= %(—x + 3z sin 8) (28)
Using (20),
¥ =3w’zsin A cos A (29)

where we have neglected the x/R term. This is just thrice the part (b) result,

2
dg :Eh—a)z sin A cos 4 (30)
28
Thus the total deflection, correct to order @?,is

2
d:4h—a)2 sin A cos A (31)
8

(The solution to this and the next problem follow a personal communication of Paul Stevenson,
Rice University.)

10-14. The solution to part (c) of the Problem 10-13 is modified when the particle is dropped
down a mineshaft. The force due to the variation of gravity is now

a, E—%r+gok (1)

As before, we approximate r for near the surface and (1) becomes
a, :—%(x'i+y'j+z'k) (2)

In the unprimed coordinates,
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. X
X ==& R 3)

To estimate the order of this term, as we probably should have done in part (c) of Problem
10-13, we can take x ~ hza)z/g , so that

h
..N Zh e 4
= othx o (4)

which is reduced by a factor /1//R from the accelerations obtained previously. We therefore have

no southerly deflection in this order due to the variation of gravity. The Coriolis and centrifugal
forces still deflect the particle, however, so that the total deflection in this approximation is

2
d:%h—a)z sin A cos 4 (5)

8

10-15. The Lagrangian in the fixed frame is
1
L:Emv]%—U(rf) (1)

where v, and 7, are the velocity and the position, respectively, in the fixed frame. Assuming

we have common origins, we have the following relation

Vf:V’+0)><l" (2)

where v, and 7, are measured in the rotating frame. The Lagrangian becomes

r

L:%[vrz+2v,-(oo><rr)+(03xr,)2]—ll(r) 3)
The canonical momentum is

prE—:merrm(mxrr) (4)

ov,

The Hamiltonian is then
1, 1 2
H=v, -p,—L=—mv; =U(r,)=—m(oxr) @)

r

H is a constant of the motion since dL/6t =0, but H # E since the coordinate transformation
equations depend on time (see Section 7.9). We can identify

c

1
U =—Em(wxrr)2 (6)
as the centrifugal potential energy because we may find, with the use of some vector identities,
vU =2y — (@1 )
VU, = V] o - (@)’ ] 7)

=m|w’t, —(01,)0 ] 8)
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=-mo x(o-r,) )

which is the centrifugal force. Computing the derivatives of (3) required in Lagrange’s
equations

d oL

——=ma, +mo xv, (10)
dt ov,
oL

a—rr:mv[(vrxm)-rr}—V(Uc+U) (11)

:-m(mxvr)—mo)x(mxrr)—vu (12)

The equation of motion we obtain is then
ma, =-VU - mw x(mxrr)—Zm(mxvr) (13)

If we identify E; =ma, and F=-VU, then we do indeed reproduce the equations of motion
given in Equation 10.25, without the second and third terms.

10-16. The details of the forces involved, save the Coriolis force, and numerical integrations
in the solution of this problem are best explained in the solution to Problem 9-63. The only thing
we do here is add an acceleration caused by the Coriolis force, and re-work every part of the
problem over again. This is conceptually simple but in practice makes the computation three
times more difficult, since we now also must include the transverse coordinates in our
integrations. The acceleration we add is

a = 2a)[vy sin i — (vx sin A+ v, cos /I)j +0, cos /’Lk} (1)
where we have chosen the usual coordinates as shown in Figure 10-9 of the text.

a) Our acceleration is

a=-gk+a. (2)

As a check, we find that the height reached is = 1800 km, in good agreement with the result of
Problem 9-63(a). The deflection at this height is found to be = 77 km, to the west.

b) This is mildly tricky. The correct treatment says that the equation of motion with air
resistance is (cf. equation (2) of Problem 9-63 solution)

a:—g{k+%v}+ac (3)
Z)t

The deflection is calculated to be = 8.9 km.

c¢) Adding the vaiation due to gravity gives us a deflection of = 10 km.

d) Adding the variation of air density gives us a deflection of = 160 km.
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Of general note is that the deflection in all cases was essentially westward. The usual small
deflection to the north did not contribute significantly to the total transverse deflection at this
precision. All of the heights obtained agreed well with the answers from Problem 9-63.
Inclusion of the centrifugal force also does not change the deflections to a significant degree at
our precision.

10-17. Due to the centrifugal force, the water surface of the lake is not exactly perpendicular
to the Earth’s radius (see figure).

B
& (%!);\ A C
PN N
N
/o) .
@ .

A C

The length BC is (using cosine theorem)

BC =JAC? +(mg)* =2ACmg cos a

where AC is the centrifugal force AC = mw’R cos & with & = 47° and Earth’s radius
R=6400km,

The angle Sthat the water surface is deviated from the direction tangential to the Earth’s surface
is

BC _AC i p=ACSNE 43007
BC

sina  sin p
So the distance the lake falls at its center is 4 = r sin # where r = 162 km is the lake’s radius.

So finally we find & =7 m.
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10-18. Let us choose the coordinate system Oxyz as shown in the figure.

The projectile’s velocity is

(v.\ ( vycosfB )
V= Lvy =| v, sin f— gtJ where f = 37°
0 0

The Earth’s angular velocity is

- COS &
O=|-wsina where « =50°

0
So the Coriolis acceleration is
a,=2Vxo= (—2v0 @ cos B sin a+2(v0 sin ﬂ—gt)a) cos a)ez

The velocity generated by Coriolis force is
t
v, = jac dt =2v, ot (cos fsin a—sin S cos a) —gt’wcosa
0

And the distance of deviation due to the Coriolis force is

gt’wcos a

z, :Ivc dt =-v, wt’ sin(a—p) 3
0

2v, sin B

The flight time of the projectile is ¢ = . If we put this into z_, we find the deviation

distance due to Coriolis force to be

z, ~260 m
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10-19. The Coriolis force acting on the car is

F. =2m\7><c7):>‘li‘=2mva)sina
where o = 65°, m = 1300 kg, v = 100 km /hr.
So |F|=4.76 N.

10-20. Given the Earth’s mass, M =5.976 x10** kg, the magnitude of the gravitational field
vector at the poles is

M
S pote = % =9.866 m/s’

pole
The magnitude of the gravitational field vector at the equator is
_GM
T p2
R,

2 2
- —o"R,, =9.768 m/s

where @ is the angular velocity of the Earth about itself.

If one use the book’s formula, we have
(1 =90°)=9.832 m/s” at the poles
and

g(A=0°)=9.780 m/s’ at the equator

10-21. The Coriolis acceleration acting on flowing water is
i,=2x® = |d|=2veosina

Due to this force, the water is higher on the west bank. As in problem 10-17, the angle g that the
water surface is deviated from the direction tangential to Earth’s surface is

a, 2ve sin o

sin = =2.5%x10""

\/gz +a’ - \/g2 +4’w” sin® a o
The difference in heights of the two banks is
Ah=/sin f=12x10" m

where ¢ =47 m is the river’s width.

10-22. The Coriolis acceleration is @, = 2V x @ . This acceleration @, pushes lead bullets

eastward with the magnitude |ﬁ(,| =2vw cos o = 2gt @ cos o, where o = 42°.

The velocity generated by the Coriolis force is
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v.(t)= j adt=gt’wcos a

and the deviation distance is

3

gt
Ax =|lv()dt=="—wcos «
=@ a==

The falling time of the bullet is # = /2//g . So finally

3
Ax, =2 /% cos @ =226x10"m
3V g
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CHAPTER 1 1

Dynamics
of Rigid Bodies

11-1. The calculation will be simplified if we use spherical coordinates:

X =7sin 6 cos ¢
y=rsin@sin ¢ 1)

z=rcos

zZ

X

Using the definition of the moment of inertia,

I, =.fp(r)[§ij D oxi- xix]} do ()

we have
L, =pj.(r2 —zz)dv
3)
= pj.(rz —r? cos’ 0) r*dr d(cos 0) dg
or,
R +1 2
I, =pjr4 dr I(l—cosz «9) d(cos 6) f dg
0 -1 0
) R 4 (4)
~TTE S

353
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The mass of the sphere is

M=—=pR® 5
37 )

Therefore,
I, :%MRz ©)

Since the sphere is symmetrical around the origin, the diagonal elements of {I} are equal:
2
Ly =1y =1Is ZgMRZ 7)

A typical off-diagonal element is

I, :pI(—xy) do
®)
= —,oJ‘r2 sin” @sin ¢ cos ¢ rdr d(cos 6) dg

This vanishes because the integral with respect to ¢ is zero. In the same way, we can show that
all terms except the diagonal terms vanish. Therefore, the secular equation is

I,-1 0 0
0 I,-I 0 |=0 9)
0 0 I, -1
From (9) and (7), we have
2\ ip2
11=12=13=EMR (10)

11-2.
a) Moments of inertia with respect to the x; axes:

,
X3 = X3

I
CM o

2

/ ————— X,

X

,
X

It is easily seen that [; =0 fori#j. Then the diagonal elements I; become the principal

moments [., which we now calculate.
The computation can be simplified by noting that because of the symmetry, I, =1, # I, . Then,

L+,

11212 >

:gj(2x§+x12+x§)dv @D
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which, in cylindrical coordinates, can be written as
. pper h Rzfl; )
Il_IZ_EJo d¢jodzj0 (r +22)rdr

where

M _ 3
Py TR

Performing the integration and substituting for p, we find
3 2 2
I,=1, :2—OM(R +417)
I, is given by
I, =pj(x12 +x§) dvz,oJ.r2 rdr dg dz

from which

1= MR
10

b) Moments of inertia with respect to the x/ axes:

355

)

®3)

(4)

()

(6)

Because of the symmetry of the body, the center of mass lies on the x} axis. The coordinates of

the center of mass are (0,0, z,), where

x! do
ZO = J‘ 3 = E h
Idv
Then, using Eq. (11.49),
Il =1, M[azé}j - aiaj]

In the present case, 4, =4, =0 and a, = (3/ 4) h, so that

PEEERVERERY P

16 20 4

I =1, -2 MR =3M(R2 +1h2]
16 20 4

I;=1, —%MR2

11-3. The equation of an ellipsoid is

)

(8)

1)
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which can be written in normalized form if we make the following substitutions:
x,=aé, x,=bn, x,=cf 2)
Then, Eq. (1) reduces to
Sntrgt=1 (©)
This is the equation of a sphere in the (&, 7,4) system.

If we denote by dv the volume element in the x; system and by d7 the volume element in the
(&n,¢) system, we notice that the volume of the ellipsoid is

V =[dv=[dx, dx, dx, =abc [dédndS

. @
:abcjerEﬂabc

because _fd 7 is just the volume of a sphere of unit radius.

The rotational inertia with respect to the x;-axis passing through the center of mass of the
ellipsoid (we assume the ellipsoid to be homogeneous), is given by

I, =%I(xf + xg) do
= % abc I(uzfz + b2772) dr ®)

In order to evaluate this integral, consider the following equivalent integral in which z = 7 cos 8:

JaZ z* dvzja2 z* (rdrrsin 046 dg)
5 2z T 5 . R=1 4
=a 'fo d¢.[0 cos” @sin ﬁdﬁjo r*dr

1

=a* X 2T x=x=

47a®
" 15 (©)
Therefore,
j(a2§2+b2n2)dr=%(a2+b2) )
and
I =%M(a2+b2) (8)

Since the same analysis can be applied for any axis, the other moments of inertia are
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©)
I, :—M(a2 +c2)
11-4.
| |
—
The linear density of the rod is
m
P = 7 1)
For the origin at one end of the rod, the moment of inertia is
‘ 3
me  m
I=|p xX*dx=——=—1 2
{pf ¢33 @
If all of the mass were concentrated at the point which is at a distance a from the origin, the
moment of inertia would be
[ =ma* 3)
Equating (2) and (3), we find
4
a=— 4
Ne 4)

This is the radius of gyration.

11-5-

a) The solid ball receives an impulse J; that is, a force F(t) is applied during a short interval of
time rso that

J=[F(t)dr 1)
The equations of motion are
dp
—==F 2
2 (2)
dL

EZI'XF (3)
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which, for this case, yield
Ap=[F(t)dt' =] 4)
Aszer(t’)dt'zrx] (5)

Since p(t = 0) = 0 and L(t = 0) = 0, after the application of the impulse, we have

p=MV,, =J; L=l,o=rxJ=(z-0a)] 2 (6)
o
so that
_J
VCM—M )
and
J ®
o=—(z—a)— (8)
I, )

where I, = (2/5)Ma2 .
The velocity of any point a on the ball is given by Eq. (11.1):
v,=Voy +tO X1, )

For the point of contact Q, this becomes

VQ:VCM—a)a%

=ﬁ{ _5(7;&—11)} (10)

Then, for rolling without slipping, v, =0, and we have

20=5(z—a) (11)
so that
7
== 12
z 5a (12)

b) Many billiard tricks are performed by striking the ball at different heights and at different
angles in order to impart slipping and spinning motion (“English”). For the table not to
introduce spurious effects, the rail must be at such a height that the ball will be “reflected” upon
collision.

Consider the case in which the ball is incident normally on the rail, as in the diagram. We have
the following relationships:
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Before Collision After Collision
Linear Momentum p, =—-MVy, pr =+MVy,

p,=0 py =0
Angular Momentum | L, =0 L,=0

L,=* L) =-Ly

L,=0 L!=0

* The relation between L, and V,,, depends on whether or not slipping occurs.

Then, we have

Ap=-2p,=]=2MVy (13)
AL=-2L, =2I, a)=](z—a) (14)

so that
21, 0 =2MVy, (z—a) (15)

from which

Lo 2Mlo 2de

z—a= =— =—
MVy, 5MVy, 5 Vg,

(16)

If we assume that the ball rolls without slipping before it contacts the rail, then V., = wa, and
we obtain the same result as before, namely,

2
z—a=—a 17
5 (17)
or,
7
z=—a 18
= (18)

Thus, the height of the rail must be at a height of (2/ 5) a above the center of the ball.
11-6. Let us compare the moments of inertia for the two spheres for axes through the centers
of each. For the solid sphere, we have

I, = % MR? (see Problem 11-1) (1)
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For the hollow sphere,

Rsin©

2z T
I,=c[ dg[(Rsin 6)° R sin 00
0 0

— 270R* j sin® 6o

0

= §7[0'R4
3
or, using 476R* = M , we have
I, = EMR2 2)
3
Let us now roll each ball down an inclined plane. [Refer to Example 7.9.] The kinetic energy is
1 1.
T=—My’+=1&" 3
y My +5 )
where y is the measure of the distance along the plane. The potential energy is
U=Mg(t-y)sina (4)

where / is the length of the plane and «is the angle of inclination of the plane. Now, y = R6, so
that the Lagrangian can be expressed as

L:%My2+%%y2+ngsina (5)

where the constant term in U has been suppressed. The equation of motion for y is obtained in

the usual way and we find

. ¢MR? sin «
ITTMRT T

Therefore, the sphere with the smaller moment of inertia (the solid sphere) will have the greater

acceleration down the plane.

(6)
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11-7.

Y.

¢

The force between the force center and the disk is, from the figure
F=—kr (1)
Only the component along x does any work, so that the effective force is F, = —kr sin ¢ = —kx .

This corresponds to a potential U = kx*/2 . The kinetic energy of the disk is
T=Lave s Lip 22 me ()
2 2 4
where we use the result I = MR?/2 for a disk and dx = R d6. Lagrange’s equations give us

%Mjc'+kx=0 3)

This is simple harmonic motion about x = 0 with an angular frequency of oscillations
2k
o=,— 4
| 3 (4)

11-8.

We let x} be the vertical axis in the fixed system. This would be the axis (i.e., the hinge line) of
the door if it were properly hung (no self-rotation), as indicated in the diagram. The mass of the
door is M=pwhd.

The moment of inertia of the door around the x} axis is

h w
I dh'fw'zddw’lewz )
whd 0 3

where the door is considered to be a thin plate, i.e., d < w,h.
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The initial position of the self-closing door can be expressed as a two-step transformation,
starting with the position in the diagram above. The first rotation is around the x{-axis through

an angle # and the second rotation is around the x;-axis through an angle y

’

,
X3 b x; = x3
=w

w

x,
[ \y X,
X =x" xz ) xz”

"

x” Ix

~

X

The x{-axes are the fixed-system axes and the x;-axes are the body system (or rotating) axes
which are attached to the door. Here, the Euler angle ¢is zero.
The rotation matrix that transforms the fixed axes into the body axes (x[ - xi) is just Eq. (11.99)
with ¢=0and §— — @ since this rotation is performed clockwise rather than counterclockwise
as in the derivation of Eq. (11.99):
cosy cos@siny —sindsin
A=|-siny cosfcosy —sinfcos iy (2)
0 sin € cos 6

The procedure is to find the torque acting on the door expressed in the fixed coordinate system
and then to obtain the x, component, i.e., the component in the body system. Notice that when

the door is released from rest at some initial angle v/, the rotation is in the direction to decrease
w. According to Eq. (11.119),

Lao,=N, =1, (©)
where o, = w, =0 since ¢=6=0.

In the body (x;) system the coordinates of the center of mass of the door are

R:

N | =

0
w (4)
h

where we have set the thickness equal to zero. In the fixed (x/) system, these coordinates are
obtained by applying the inverse transformation 1™ to R;but 2" =1, so that
1 —w sin
R':)JR:E w cos 6 cos y + hsin (5)
—w sin @ cos v + h cos 6

Now, the gravitational force acting on the door is downward, and in the x/ coordinate system
is

=-Mge; (6)
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There the torque on the door, expressed in the fixed system, is
N'=R'xF'

! !/ ’
e; e e;

=—%Mg —wsiny wcosf@cosy+hsin@ —wsin @ cos y+hcos b

0 0 1
. W cos 0 cos y + hsin 6
= —5 Mg w sin (7)
0

so that in the body system we have

) w cos @ cos” y + hsin @ cos y + w cos @sin® v
N’ =AN’ =3 Mg —hsin @sin 8)
w sin @'sin

Thus,
1 . .
-N, = > Mgw sin @sin y 9)
and substituting this expression into Eq. (3), we have
—%Mgw sin @sin y =1, &)z%sz v (10)

where we have used Eq. (1) for I, . Solving for v,

t))z—%%sin fsin (11)

This equation can be integrated by first multiplying by  :

: 2

_[y/y/dt— =—§£sin Hjsinwy)dt
2w

1

2

= 38 sin 6 cos (12)
2w

where the integration constant is zero since cos ¢ =0 when y =0 . Thus,

W=t ,/3—gsin0cos 7 (13)
w

We must choose the negative sign for the radical since 7 <0 when cos i > 0. Integrating again,

from w=90°to w=0°,

0 d T
[ == =S sin 6 [ dt (14)
= /COS l// w 0

2
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where T = 2 sec. Rewriting Eq. (14),

L rll
f Jr |4
Icos wdy = > T3]
0 T —
i
From Egs. (E.20) and (E.23),
= H _r [1 l} ~0.906
4
r [l} =3.624
4
And from Egs. (E.20) and (E.24),
3¢ H _r [1 E] ~0919
4
r {E} =1.225
4

Therefore,

=———=262
cosy 2 1.225
Returning to Eq. (15) and solving for sin 6,
sin §= x (2.62)*

T2
Inserting the values for g, w(= 1m), and T(= 2 sec), we find
0 =sin"' (0.058)

or,

0=3.33°

CHAPTER 11

(15)

(16)

17)

(18)

(19)

(20)

(21)
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11-9.

The diagram shows the slab rotated through an angle & from its equilibrium position. At
equilibrium the contact point is Q and after rotation the contact point is P. At equilibrium the
position of the center of mass of the slab is C and after rotation the position is C'.

Because we are considering only small departures from 6= 0, we can write

QP=R# (1)
Therefore, the coordinates of C’ are (see enlarged diagram below)
r=0A+AC’ (2)
so that
x= (R+%j sin 6 — R cos 0
)
y:[m%j cos 6+ ROsin 0

O =

Consequently,



366

from which

The kinetic energy is

—[R+§j sin 6+ RO cos 6+ R sin 0}9

%sin 0+ RO cos 6?) 0

Xyt = {§+ Rzaz} &

T:%M(x2+y2)+%192

CHAPTER 11

(4)

()

where [ is the moment of inertia of the slab with respect to an axis passing through the center of
mass and parallel to the z-axis:

Therefore,

where

The potential energy is

where

1:%M(£2+a2)

T2 (0)F
fl(H):M[éﬂazﬁz] +1
U=Mgy=-£,(6)

f(0)= —Mg[(R + %j cos 6+ ROsin 0}

and where Eq. (3) has been used for y.

The Lagrangian is

L=2A(0)F + £.(0)

The Lagrange equation for 6 is

(6)

)

(8)

©)

(10)

(11)
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Now,

d oL

E£=f1(9)é+fl(9)9

{M(ﬁmzeﬂ +1}é+ 2MR? 6 &
4

o RO)F + £2(0)

=MR? 6 & +Mg{(R+gj sin @— Ré cos 6 - R sin 9}

Combining, we find

2
{M[“Zmzez) +1}9+ MR?* 06 —Mg[[m@ sin &— RO cos O R sin 9}:0

For the case of small oscillations, &* < 6 and & < @, so that Eq. (15) reduces to

Mg(r-7)
br—— 2 g-0
Ma
+1

4

The system is stable for oscillations around &= 0 only if

a
vg(r-7)
g 2
Ma?
4

=w’ >0
+1

This condition is satisfied if R—a/2>0, i.e.,

Then, the frequency is

Mg (R—”j

2
o= 5
Ma 1

4 12
Simplifying, we have

+—M(£2 +a2)

367

(12)

(13)

(14)

(15)

(16)

17)

(18)

(19)
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(20)

According to Egs. (9) and (10), the potential energy is
u(o) = MgKR + gj cos 0+ ROsin 0} (21)

This function has the following forms for R>a/2 and R<a/2:

u(e) Mg(R+%j ue)

0 — 60—

To verify that a stable condition exists only for R >a/2, we need to evaluate 6°U/d6” at 6= 0:

§=Mg[—£ sin 0+ RO cos 9} (22)
o6 2
2
0 9_ g {—5 cos 0+ R cos O— ROsin a} (23)
Y. 2
and
2
Ul g (R—ﬂj (24)
0|, 2
so that
2
U gifR>2 (25)
00 2
11-10.

When the mass m is at one pole, the z component of the angular momentum of the system is
L, =Ia)=§MR2a) (1)

After the mass has moved a distance vt = R along a great circle on the surface of the sphere,
the z component of the angular momentum of the system is
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L = E MR? + mR? sin’ 9}& )

where ¢ is the new angular velocity. Since there is no external force acting on the system,
angular momentum must be conserved. Therefore, equating (1) and (2), we have

' ; MR’w
b= 3)
g MR? + mR? sin® 0

Substituting 6=0vt/R and integrating over the time interval during which the mass travels from

one pole to the other, we have

=7 2 MR’
o= | 2 dt o)
2 2 2 .2
=0 < MR*+mR” sin (vt/R)

Making the substitutions,

vt/R=u, dt= (R/v) du 5)
we can rewrite (4) as
2
x = MR*w
R
¢= j 5 5 —du
0 5 MR? + mR? sin* u ¢

_ 2R ”f du

s 2
v o 1+psin"u

(6)

where f#=5m/2M and where we have used the fact that the integrand is symmetric around

u=r/2 towrite ¢ as twice the value of the integral over half the range. Using the identity

. 2 1
=—(1- 2 7
sin” u 2( cos u) (7)
we express (6) as
/2
2Rw du
#= v -([(1 1 ) 1 9 ®)
+§ﬁ —Eﬂcos U
or, changing the variable to x = 2u,
p-Re) 1 dxl ©)
v (1+2,b’j—2ﬂcosx

Now, we can use Eq. (E.15), Appendix E, to obtain
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i

jo 2Ro_ o (1+ p) tan (x/2)
o1+ f 1+4 .
7Rw 2M

v 2M+5m
2M+5m

where T = 7R/v is the time required for the particle to move from one pole to the other.

If m =0, (10) becomes

¢(m=0)=aT (11)
Therefore, the angle of retardation is
o = ¢(m=0)-¢(m) (12)
or,
a=oT|1- _2M (13)
2M+5m
11-11.

a) No sliding:

o2
. 02
<2 = L

From energy conservation, we have
! 1, 1.,
Mg —==mg—+—mvcy +—=1 1
g NG s 5 T Mem T5 10 (1)
where v, is the velocity of the center of mass when one face strikes the plane; v.,, is related

to @ by

Y4
Dent = = 2)

2

I'is the moment of inertia of the cube with respect to the axis which is perpendicular to one face
and passes the center:

Izémfz (3)

Then, (1) becomes
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mg/ 1 [to] 1[mt] , 1 ,,
= (J2-1)==m|—=| += =—ml 4
2 V2-1) 2"{\/5} 2{6 @ =zme @)
from which, we have
o' =28 (21 (5)
2/

b) Sliding without friction:

In this case there is no external force along the horizontal direction; therefore, the cube slides so
that the center of mass falls directly downward along a vertical line.

A\
L -

While the cube is falling, the distance between the center of mass and the plane is given by

14
=—cos ¥ 6
V=r (6)
Therefore, the velocity of center of mass when one face strikes the plane is
4 : 1 . 1
y =——sinf46 =——(0=—="/ 7
y N sin > > w (7)
0=r/4 0=r/4

From conservation of energy, we have

2
mg%:mgng%m[—lEa)j +%[lm€2j o’ (8)

from which we have

af:%%(ﬁq) 9)

11-12. According to the definition of the principal moments of inertia,
I +1, :jp(xf +x,f) dv+.[p(xf +xf) dv
:J'p(xf +x,§)dv+2jpr dv
=Ii+2_[prdv (1)
since
I pxdv>0

we have
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@

11-13. We get the elements of the inertia tensor from Eq. 11.13a:

I = Zma (xi,z + xis)
=3m(b”)+ 4m(2b%) + 2m(b*) = 13mb”
Likewise I,, =16mb* and I,, = 15mb’

Iy =1, = _Z My Xop Xap
a

= —4m(b2) - 2m(—b2) =—2mb*
Likewise I, = I,, = mb’
and I,, =1, = 4mb’

Thus the inertia tensor is

13 2 1
(I}=mb*| 2 16 4
1 4 15

The principal moments of inertia are gotten by solving
13-2 -2 1]
mb*| -2 16-12 4 |=0
1 4 15-1]

Expanding the determinant gives a cubic equation in A:
A°— 4427 +6222-2820=0

Solving numerically gives

4, =10.00
A, =14.35
Ay =19.65

Thus the principal moments of inertia are I, =10 mb”

I, =14.35 mb*

I, =19.65 mb*

To find the principal axes, we substitute into (see example 11.3):
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(13- 4) @, — 2w, + w5, =0
20, +(16 - 4;) @, + 405, =0
oy + 40, +(15- 1) 0, =0
Fori=1, we have (/I1 = 10)
3wy, — 2w, + w5, =0
—2w,, — 60, + 4w, =0
@y, — 4w, + 5w, =0
Solving the first for @,, and substituting into the second gives
@y = Oy
Substituting into the third now gives
05 = =0y
or
Wi Wy 0y =1:1:-1

So, the principal axis associated with I, is

T (xey=2)

Proceeding in the same way gives the other two principal axes:

i=2: -8Ix+.29y-.52z

i=3: -14x+.77y+.63z

We note that the principal axes are mutually orthogonal, as they must be.

11-14.

X

Let the surface of the hemisphere lie in the x-y plane as shown. The mass density is given by

_M_ M  3M
\%4 ;ﬂbS 27Z'b3

P

First, we calculate the center of mass of the hemisphere. By symmetry

373
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Using spherical coordinates (z =r cos 6, dv =r> sin 0 dr d9 dg) we have

27 72

Zoy = i j d¢j sin @ cos 646 I r dr

¢=0 r=0

R !

We now calculate the inertia tensor with respect to axes passing through the center of mass

By symmetry, I,, =1, =1,; =1, =1,; =1,, =0. Thus the axes shown are the principal axes

Also, by symmetry I,; =1,,. We calculate I;; using Eq. 11.49:

I, =]11_M{§U} 1)

where [, = the moment of inertia with respect to the original axes

:pjv(yz + zz) do

= I (r2 sin” @sin® ¢+ r* cos’ 49) r* sin @dr dO dg

/2 T
2 3 Ir dr I rj sm2 @'sin’ ¢+ cos’ 9)d¢]sin¢9d9
T

6=0| ¢=0
2 72
= 3Mb J (72 sin® 6+ 27 cos? @sin 0) do
107 .,
_2 v
5

Thus, from (1)

I, =L =2 Mb? -2 Mb? = 52 A2
5 64 320
Also, from Eq. 11.49
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Iy = T3 _M(O) =3
(I3 = J3; should be obvious physically)
So

I, = ,o_[v(x2 +y*)do

=pj r* sin® @dr d@d¢=§Mb2

Thus, the principal axes are the primed axes shown
in the figure. The principal moments of inertia are

83
Ill = 122 = % sz

2
I, == Mb°
B~

11-15.

7

8

We suspend the pendulum from a point P which is a distance ¢ from the center of mass. The

rotational inertia with respect to an axis through P is

I=MR; + M/?? (1)
where R, is the radius of gyration about the center of mass. Then, the Lagrangian of the system
is

16

L:T—U:T—Mgf(l—cose) )
Lagrange’s equation for #gives
16+ Mg/ sin =0 (©)
For small oscillation, sin = &. Then,
. !
P 4)
I
or,
. !
b+ —5"_9=0 )

R} + /7
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from which the period of oscillation is

2 2
r=2—7[=27z Ry +7

w gl ©)

If we locate another point P’ which is a distance /' from the center of mass such that the period

of oscillation is also 7, we can write
Ry +02 Ry+1(7
44 gt
from which R} = ¢/’ . Then, the period must be

7)

’ 2
. 0+ 0 ®)
gl
or,
=21 Gl ©)
8

This is the same as the period of a simple pendulum of the length ¢ + ¢'. Using this method, one

does not have to measure the rotational inertia of the pendulum used; nor is one faced with the
problem of approximating a simple pendulum physically. On the other hand, it is necessary to
locate the two points for which 7 is the same.

11-16. The rotation matrix is

cosf sind 0
(A)=|-sin@ cos@ 0 1)
0 0 1

The moment of inertia tensor transforms according to

@) =)m(») 2

That is
Yasn Lia-m) o
cosd sind 0 % % cosfd —-sin@d 0
(I')=|-sin@ cos® 0 E(A_B) E(A+B) 0|[sind cosé O
0 0 1 0 0 C 0 0 1




DYNAMICS OF RIGID BODIES 377

(A+B)cos€+l(A—B)sin0 —l(A+B)sin¢9+l(A—B)cose 0
cosf sind 0 2 2 2

=|-sin® cosfd O
0 0 1

N|— N~

(A-B)cos 6’+%(A+B) siné —%(A—B) sin9+%(A+B) cos@ 0
0 0 C

%(A-i-B) cos” 0+ (A -B)cos fsin 6’+%(A+ B)sin® @

- —%(A—B) sin’ 9+%(A—B)c0526’

0
1 , 1 L, T
E(A—B)cos H—E(A—B)sm 0 0
%(A-FB)Sinz0—(A—B)Sin9COS9+%(A+B)COSZ0 0
0 C
or
1 . 1 2 1 . 2 i
E(A+B)+(A—B)Cos€sm¢9 E(A—B)Cos G—E(A—B)sm 0 0
()= —%(A—B)sin20+%(A—B)coszt9 %(A+B)—(A—B)cos€sin0 0 3)
0 0 C

If =7/4, sin 6= cos ¢9=1/\/§. Then,

(I')= (4)

o o
o W™ o
o

11-17.
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The plate is assumed to have negligible thickness and the mass per unit area is p, . Then, the
inertia tensor elements are

I, =p, J(rz —xf) dx, dx,

:ps'f(xg + xg) dx,dx, = p, .[xg dx, dx,=A (1)
I, =p, _[(rz —xg) dx, dx, = p, fxf dx, dx, =B ()
Iy = p, I(”z —x;) dx, dx, =psj(xf + x%) dx, dx, 3)

Defining A and B as above, I,; becomes

I,=A+B 4)
Also,
I, I( xlxz) dx, dx, =-C ®)
L, j( —x,%, ) dx, dx, =—C (6)
I, I( xX,%;) dx; dx, =0=1 7)
I, 'f( x2x3) dx, dx, =0=1,, (8)
Therefore, the inertia tensor has the form
A -C 0
{I}=|-C B 0 9)
0 0 A+B

11-18. The new inertia tensor {I'} is obtained from {I} by a similarity transformation [see
Eq. (11.63)]. Since we are concerned only with a rotation around the x;-axis, the transformation
matrix is just A, as defined in Eq. (11.91). Then,

I'=x,IA; 1)
where
A=A 2)
Therefore, the similarity transformation is

cosd sind 0|| A -C 0 cosfd —-sind O
I'=|-sin@ cos@ 0| -C B 0 sind cosfd O
0 0 1(] 0 0 A+B 0 0 1

Carrying out the operations and simplifying, we find
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Acos® §-Csin20+Bsin® @ —C cos 20+%(B—A) sin20 0

{I'} = —Cc0329+%(B—A)sin29 Asin® 0+Csin20+Bcos’ 6 0
0 0 A+B

Making the identifications stipulated in the statement of the problem, we see that

I =A", I,=B
I, =I; ==C'
and
Il,=A+B=A"+B'
Therefore
A =C 0
{Iy=|-C" B 0
0 0 A'+B

In order that x, and x, be principal axes, we require C' = 0:
C cos 20—%(B—A) sin20=0

or,

tar120=£
B-A

from which

2

9 — l tan_l [i}

Notice that this result is still valid if A = B. Why? (What does A = B mean?)

11-19.

The boundary of the plate is given by r =ke®. Any point (77,6) has the components
x, =ncos 8 }

X, =nsin @

379

®3)

(4)

()

(6)

7)

(8)

©)

1)
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The moments of inertia are

L=A =pj.0”J.:€a0 x; ndndé

kea(;’

=,0J‘0”sir12 HdHJO 7 dn

The integral over 6 can be performed by using Eq. (E.18a), Appendix E, with the result

4
I :A:—pk )
2a
where
e47za _1
P=—u»«+— 3
16(1+4a2) ©)

In the same way,

I,=B =p_|.:.|.;ew x> ndndé

_ z 5 ke 3
—pjo cos Hdﬁ_[o n’ dn 4)
Again, we use Eq. (E.18a) by writing cos” §=1-sin” #, and we find

B _/Ok4 )
IZ—B——Za P(1+8a) 5)
Also

kea{}

[,=—C= —pJ.O”J.O x,x, ndndo
(6)
z ke®?
= —pjo cos @sin Hdﬁjo 7’ dn

In order to evaluate the integral over ¢ in this case we write cos #sin = (1/ 2) sin 26 and use
Eq. (E.18), Appendix E. We find

I,,=-C=pk*P (7)
Using the results of problem 11-17, the entire inertia tensor is now known.

According to the result of Problem 11-18, the angle through which the coordinates must be
rotated in order to make {I} diagonal is

0= 1 tan™ {i} (8)
2 B-A
Using Egs. (2), (5), and (7) for A, B, C, we find

¢ 1 o)
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so that

tan 20 = i

Vi+ 4a2“ 1

200

Therefore, we also have

1

V1+4a?

2a

J1+4a?

Then, according to the relations specified in Problem 11-18,

I;=A"=Acos® 6—Csin 20+ Bsin® 6

sin 26 =

cos 20 =

Using cos® 0= (1/2)(1 + cos 29) and sin® 8= (1/2)(1 —Cos 29) , we have

1

I = A =E(A+B)+%(A—B) c0s 20— C sin 20
Now,
4
A+B=PEL (1+4a?)
a
A—B=—4apk*P
Thus,
pk'P 2 4 2a 4
II=A"= 1+4a” |- 20pk™ P x ——— pk”P x
' 2| ) J1+40?
or,
I = A"= pk*P(Q-R)
where
1+4a°
Q= 2a
R=+1+4a"
Similarly,

I =B' = pk*P(Q+R)

and, of course,

V1+4a?

381

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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I3=A"+B'=1]+1}

We can also easily verify, for example, that I}, =-C'=0.

CHAPTER 11

(19)

11-20. We use conservation of energy. When standing upright, the kinetic energy is zero.

Thus, the total energy is the potential energy

E=U1=mg%

(g is the height of the center of mass above the floor.)
When the rod hits the floor, the potential energy is zero. Thus
E=T, = 1 Iw®
2

where [ is the rotational inertia of a uniform rod about an end. For a rod of length b,
mass/length o

o2 ae Ll 1 0
Iendzjax dngab =§mb

0

Thus
T, = Low o
6
By conservation of energy
u, =1,
b
mg —=—mb* &*
8 5 w
3
= _g
b

11-21. Using I to denote the matrix whose elements are those of {I}, we can write
L=Iwo
L'=T'o
We also have x’=A x and x’=A' x’ and therefore we can express L and w as
L=AL
o=\

substituting these expressions into Eq. (11.54), we have

(11.54)
(11.54a)

(11.55a)

(11.55b)
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AL =IA'o’
and multiplying on the left by A,
ML =AM o'
or
L'=(AA o’

by virture of Eq. (11.54a), we identify

11-22. According to Eq. (11.61),

I = > A L A
k,l

Then,
tr{l'} = ZI;: zzzj’ik L, A;}
i i kit
= Zlk/:zflg_il A
k! i
= Zlkﬂ Oy = Zlkk
k.l 3
so that

tr{l'} =tr{I}

This relation can be verified for the examples in the text by straightforward calculations.

383

(11.61)

1)

)

®)

Note: A translational transformation is not a similarity transformation and, in general, tr{I} is not

invariant under translation. (For example, tr{I} will be different for inertia tensors expressed in

coordinate system with different origins.)

11-23. We have
I'=AIL"!
Then,

1)
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U|=[a107"|
= |?\.| x |1 x |7\._1|

=[an =1

so that,

@)

This result is easy to verify for the various examples involving the cube.

11-24.

The area of the triangle is A =+/3 a%/4, so that the density is

e )
P A 34

a) The rotational inertia with respect to an axis through the point of suspension (the origin) is

~ L .
HP

I, :,r)."(acl2 +x§)dx1 dx,

a/2 0

=2pj;clx1 ﬁj. (x +23) dx,

Ba-20)
3 1
= g pﬂ4 = g Mﬂz (2)

When the triangle is suspended as shown and when €= 0, the coordinates of the center of mass
are (0,x,,0), where
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M 0 —«/5(»1—2*{1)
-1
243
The kinetic energy is
T =113¢92 =iMa2¢92
2 12
and the potential energy is
Mga
U=—=(1-cos@
25\ )

Therefore,

1 »  Mga
L=— Ma*&" + cos 6
12 23
where the constant term has been suppressed. The Lagrange equation for is

643 sin0=0
a

and for oscillations with small amplitude, the frequency is

o= 38

a

b) The rotational inertia for an axis through the point of suspension for this case is

X

*xz/\/g

The Lagrangian is now

385

®3)

(4)

(5)

(6)

)

(8)

©)

(10)
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and the equation of motion is

. 12 g .
0+—==sin0d=0 11
53 4 (11)
so that the frequency of small oscillations is
12 ¢
o=, |—F7<= 12
503 o (12)
which is slightly smaller than the previous result.
11-25.
X
R
P
;
0 N
2p
The center of mass of the disk is (0,x,), where
X, =L j x, dx, dx, + I x, dx, dx,
M serlr(m)iwderzle se;}i)cpiisle
=L [ 5[ *(rsin6)-rdrdo+2 [ [ (r sin 6)- rdrde
MlJoJo 0dx
VS M
3 M
Now, the mass of the disk is
M=p-=zR*+2p-— 7R?
3 e
=—pnR 2
5 P (2)
so that
4
X,=——R 3
. ®)

The direct calculation of the rotational inertia with respect to an axis through the center of mass
is tedious, so we first compute I with respect to the x,-axis and then use Steiner’s theorem.
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I, =,0U0R.foﬁr2 -rdr d6+ ZJ‘ORJ.jﬁrZ -rdr dﬁ}

R
== 7pR* == MR 4
1 PR =2 4)
Then,
I, =1, - Mx,

~Lyvre oM. 162 R?

2 81z

=1MR2 {1— 322} )

2 81rx

When the disk rolls without slipping, the velocity of the center of mass can be obtained as
follows:

Thus
Xcy =RO-|%,|sin 6
You = R—|%,| cos 0
Xem = R9—|EZ| 6 cos 0
You =|%,| @sin @
(2 +72y) = V2 = R*& + 33 & — 207 R|T,| cos 6
V2 =g’ 6)
where
a=\|R* +X; —2R|%,| cos 0 )
Using (3), a can be written as
1
a:R\/1+ 62 —icose (8)
81z~ 9z

The kinetic energy is
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T = 'Ttrans + Trot
1 1. .
== Mo’ += 1,6 9
> v 50 )
Substituting and simplifying yields
-l MR?*&* F— 3 cos 0} (10)
2 2 Iz

The potential energy is

UzMg{%RJrYZ cos@}

=%MgR [1—%@5 6} (11)
Thus the Lagrangian is
L=1MR| R [E—icosﬁ}—g[l—icosﬁ} (12)
2 2 97 O

11-26. Since o, =¢ lies along the fixed x}-axis, the components of w, along the body axes

(x;) are given by the application of the transformation matrix A [Egs. (11.98) and (11.99)]:

(C%)l & 0
(,), |=| & |=2] 0 (1)
(o), 1] L9
Carrying out the matrix multiplication, we find
(a)¢)1 sin i sin 6
(a)¢)2 = ¢| cos y sin (2)
(a) ) cos &
?)3

which is just Eq. (11.101a).

"

The direction of @, =@ coincides with the line of nodes and lies along the x!" axis. The
components of @, along the body axes are therefore obtained by the application of the

"
i

transformation matrix lw which carries the x

(), 0 cos
(a)‘g)2 =X, |0 =0|-siny 3)
(), 0 0

system into the x; system:
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which is just Eq. (11.101b).

Finally, since @, lies along the body x;-axis, no transformation is required:

w'/’)l 0
(@,), |=v]0 )
1

which is just Eq. (11.101c).

Combining these results, we obtain

(“’¢)3 + (), +(“’y/)3

$sin y sin O+ 0 cos

=¢| ¢ cos y sin O Osin y (@)

0 cos 0+ yr

which is just Eq. (11.02).

11-27.
Initially:

L =0=1o

L,=Lsinf=I0,=Losina

L,=Lxos0=1,0,=1,0cos a
Thus

tanﬁzhzl—ltana (1)
L3 13

From Eq. (11.102)
®, = $cos O+ yr

Since @, = w cos a, we have
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$cos 0=w cos a— (2)
From Eq. (11.131)
I, -1
— —Q _ -3 1
4 I, 3
(2) becomes
- I
¢c05¢9=1—3a)cosa 3)

1

From (1), we may construct the following triangle

I; tan o

Iy

I+ tan’ & V2
[13+1} tan” o]

from which cos 8=

Substituting into (3) gives

) ,
¢:I—\/If sin® @+ I cos’ a
1

11-28. From Fig. 11-7c we see that ©, = ¢ is along the x}-axis, @, = @ is along the line of
nodes, and ®, =y is along the x,-axis. Then,
®)=ge, 1
whee e} is the unit vector in the x} direction.
Projecting the lines of nodes into the x{- and x}-axes, we obtain
0= 9(e{ Cos ¢ + e} sin ¢) (2)

o,, has components along all three of the x; axes. First, we write o, in terms of a component
along the x}-axis and a component normal to this axis:
®, = y)(e{z sin 6+ e} cos 0) (3)
where
e/, =e; sin g—e) cos ¢ (4)
Then,

o, = y)(e{ sin @sin ¢— e} sin € cos ¢+ e} cos 49) (5)
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Collecting the various components, we have

=0 cos ¢+ iy sin Osin ¢
@} = @sin ¢— yr sin O cos ¢ 6)

=y cos O+ ¢

11-29. When the motion is vertical &= 0. Then, according to Egs. (11.153) and (11.154),
=L(¢+y)=P, 1)
and using Eq. (11.159), we see that
P,=P, =1, o, (2)

Also, when =0 (and 8=0), the energy is [see Eq. (11.158)]
E=%I3 ; + Mgh (3)
Furthermore, referring to Eq. (11.160),
E'=E—%13a)§=Mgh 3)

If we wish to examine the behavior of the system near &= 0 in order to determine the conditions
for stability, we can use the values of P,, P;, and E' for 6= 0 in Eq. (11.161). Thus,

I @2 (1-cos 6
Mgh=21,6" + 05 < )
2 2[,, sin” 6

+ Mgh cos 6 ®)

Changing the variable to z = cos #and rearranging, Eq. (5) becomes

2 (102 [2Mgh T, (1+2) - I w?] 6)

12

The questions concerning stability can be answered by examining this expression. First, we note

that for physically real motion we must have z* > 0. Now, suppose that the top is spinning very
rapidly, i.e., that o, is large. Then, the term in the square brackets will be negative. In such a

case, the only way to maintain the condition 22 >0 is tohave z = 1, i.e., = 0. Thus, the motion
at 6= 0 will be stable as long as

4AMghl, —I? @2 <0 @)

or,

4Mgh1,,

<1 8
I ; ®
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Suppose now that the top is set spinning with 8= 0 but with @, sufficiently small that the

condition in Eq. (8) is not met. Any small disturbance away from #= 0 will then give z a
negative value and @ will continue to increase; i.e., the motion is unstable. In fact, dwill
continue until z reaches a value z, that again makes the square brackets equal to zero. This is a

turning point for the motion and nutation between z = 1 and z = z, will result.

From this discussion it is evident that there exists a critical value for the angular velocity, @,
such that for @, > @, the motion is stable and for @ < @, there is nutation:

2 /Mghl,,
O == )
3

If the top is set spinning with @, > @, and 6= 0, the motion will be stable. But as friction slows

the top, the critical angular velocity will eventually be reached and nutation will set in. This is
the case of the “sleeping top.”

11-30. Ifweset =0, Eq. (1.162) becomes

~ (P¢ - P, cos 49)2
2 I, (1—Cos2 49)

E'=V(6)

+ Mgh cos 6 (1)

Re-arranging, this equation can be written as
(2Mgh I,,) cos® 0 (2E' I, + P} ) cos” 0+2(P,P, — Mgh I,, ) cos 0+ (2E' I,, - P} ) =0 @)
which is cubic in cos 6.

V(6) has the form shown in the diagram. Two of the roots occur in the region —1<cos#<1, and
one root lies outside this range and is therefore imaginary.

V(e)

+1

-1 cos 0 —
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11-31. The moments of inertia of the plate are

I, =1, cos2a

L

I=1+1, @)
=1, (1+cos Za)
=2I, cos’ a

We also note that
IL-1,=-1I, (1 —Cos Za)

)
=-2I, sin* &
Since the plate moves in a force-free manner, the Euler equations are [see Eq. (11.114)]
(I, - L) ®,0, - Lo, =0
(I, - 1) w,0, - L, =0 ©)
(I, - 1,) @30, - Lo, =0
Substituting (1) and (2) into (3), we find
(—212 sin’ a) 0,0, —(212 cos” a) @, =0 1
(~1, cos 2a) w,w, — (I, cos 2a) @, =0 (4)
I, o,0, - 1,0, =0
These equations simplify to
@, = -0,0, tan” a
W) = —0,0, 5)
W, = 0,0,
From which we can write
O,0,0; = O,0, = —O,0, = —0,0, COt” a (6)
Integrating, we find
w; —w;(0)=-o; + w; (0) = -a; cot’ a+ w; (0) cot’ a 7)

Now, the initial conditions are
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Therefore, the equations in (7) become

2
) =-o] +Q* cos” a=-w; cot’ a+Q” cos”*

From (5), we can write
and from (9), we have @} = @: cot” . Therefore, (10) becomes
@, = 0> cot a
and using @} = Q” sin* @ — w5 tan” & from (9), we can write (11) as

@,

=-cota
o} tan® a—Q’ sin® a

Since w, =dw,/dt, we can express this equation in terms of integrals as

do,
=—cota |dt
Iw§ tan® a — Q* sin® « -[

Using Eq. (E.4c), Appendix E, we find

- 1 , tanh™’ m =—tcota
(tan a)(Q sin a) Qsina

Solving for w,,

o, (t)=Q cos  tanh (Q ¢ sin @)

11-32.
a) The exact equation of motion of the physical pendulum is
16+ MgLsin 0=0

where I = Mk?, so we have

.. L
Hz—i—z sin @

or
. d 0
E(Q)ZX_SM
V)= " de

or
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©)

(10)

(11)

(12)

(13)

(14)

(15)
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. . L
Hd(ﬁ) = (Ii_z d(cos 0)

SO

., 2¢L
& = 8 cos@+a

k2

where a is a constant determined by the initial conditions. Suppose thatat t=0, =6, and at

—-2gl
that initial position the angular velocity of the pendulum is zero, we find a = § cos 6, . So
k

finally

2

- |28l
0= \/k—g<cos 60— cos 6’0)

b) One could use the conservation of energy to find the angular velocity of the pendulum at
any angle @, but it is exactly the result we obtained in a), so at #=1°, we have

. |2gL
a)zﬁz\/ & (COSH—Cosé?O):53.7s’1

k2

11-33. Cats are known to have a very flexible body that they can manage to twist around to a
feet-first descent while falling with conserved zero angular momentum. First they thrust their
back legs straight out behind their body and at the same time they tuck their front legs in.
Extending their back legs helps to resist spinning, since rotation velocity evidently is inversely
proportional to inertia momentum. This allows the cat to twist their body differently to preserve
zero angular momentum: the front part of the body twisting more than the back. Tucking the
front legs encourages spinning to a downward direction preparing for touchdown and as this
happens, cats can easily twist the rear half of their body around to catch up with the front.

However, whether or not cats land on their feet depends on several factors, notably the distance
they fall, because the twist maneuver takes a certain time, apparently around 0.3 sec. Thus the
minimum height required for cats falling is about 0.5m.

11-34. The Euler equation, which describes the rotation of an object about its symmetry axis,
say Ox, is

Ioa,~(I,-1.)o,0, =N

X

where N, =-b o, is the component of torque along Ox. Because the object is symmetric about
Ox, we have I, =1, , and the above equation becomes

b
dw -5t
I L= bw., = w. .= o
X dt x X x0
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CHAPTER 1 2

Coupled Oscillations

12-1.

The equations of motion are

M5, + (1, +5c,) % — K, X, =0

1)

Mz, + (10, +1c5) X, — K7, X, =0
We attempt a solution of the form
x,(t)=B, e
, 2)
x,(t)=B, e
Substitution of (2) into (1) yields

(<, + x5 — M*) B, &}, B, =0
(3)

-k, B, +(K2 + Ky —Ma)z) B,=0

In order for a non-trivial solution to exist, the determinant of coefficients of B, and B, must
vanish. This yields

|:K1 + (K'lz - Ma)z)][icz + (K'lz - Ma)z)] =K, 4)

from which we obtain

2 _ Ky K+ 2Ky, + 1

@ *
2M 2M

(Kl _K2)2 +4K122 5)

This result reduces to ® =(x +x,, * Ku) / M for the case x; =k, =« (compare Eq. (12.7)].

397
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If m, were held fixed, the frequency of oscillation of m, would be
w} = 1 (K +K ) (6)
01 M 1 12
while in the reverse case, m, would oscillate with the frequency
o, = 1 (K‘ +K ) (7)
02 M 2 12

Comparing (6) and (7) with the two frequencies, », and @_, given by (5), we find

> :L[Kl +i, + 2K, +\/(K'1 —K'Z)Z +él~.l<122 }

T2M
>L|:K1+K2+2K12+(K1—K‘z)]=i(lfl+l(12)=a)§1 8)
2M M
so that
®, >0y )
Similarly,
o’ = ﬁ |:K1 + K, + 2K, —\/(K1 —K2)2 + 4K, }
<L|:K1 + K, + 2K, —(Kl —Kz)]zi(lcz +K12)=a)§2 (10)
2M M
so that
@_ <oy, (11)

If x; >«,, then the ordering of the frequencies is

O, > Wy >0y >0 (12)

12-2. From the preceding problem we find that for «,, <«,, x,

/K +x K, +K
o, = 1M12; o, = 2M12 1)
If we use
K K
W1 = MIP Wpp = MZ )

then the frequencies in (1) can be expressed as
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[«
o =0y [1+=2 =0y (1+¢)
Ky
/ K
@y = Wy 1+fza)02(1+82)
2

®3)

where

K K
& =mt g =0 4)
2K, 2K,

For the initial conditions [Eq. 12.22)],
%,(0)=D, x,(0)=0, %,(0) =0, %, (0) =0, (5)
the solution for x, (t) isjust Eq. (12.24):

2 2
Using (3), we can write

o, + 0, =0y + 0y, )+( &0y + &,04)

@)
=2Q, +2¢,
W, — W, = (a’m - woz) + (‘91(001 - 52(002)
8)
=20 +2¢
Then,
x,(t)=D cos (Q,t + &,t) cos (Q_t+ £.t) ©)
Similarly,
x,(t)=Dsin [M t} sin [M t}
2 2
=Dsin (Q,t+¢,t)sin (Qt+&.t) (10)
Expanding the cosine and sine functions in (9) and (10) and taking account of the fact that ¢,
and &_ are small quantities, we find, to first order in the &'s,
x,(t)=D[cos Q,tcosQ t—&,tsinQ,t cosQ_t— & t cos Q,tsin Q f ] (11)
%, (t)=D[sinQ,tsinQ t+&,tcos Q,tsin Q_t+ & tsin Q,t cos O _t ] (12)

When either x, (t) or x,(t) reaches a maximum, the other is at a minimum which is greater
than zero. Thus, the energy is never transferred completely to one of the oscillators.
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12-3. The equations of motion are

. om .. ’
X, +—X, +w;, x;, =0
1 M 2 0 *1
1)

x2+ﬁx2+a)§ x, =0
We try solutions of the form
x,(t)=B, ™ x,(t)=B, ™ 2)

We require a non-trivial solution (i.e., the determinant of the coefficients of B, and B, equal to
zero), and obtain

2
2 2\2 4| M
_ _ — 1 =0 3
(a)o a)) Q{M} (3)
so that
2 _ Pt o M 4
Wy — @ w i 4)
and then
2
o =—2 (5)
1+

(6)

where @, corresponds to the symmetric mode and ®, to the antisymmetric mode.

By inspection, one can see that the normal coordinates for this problem are the same as those for
the example of Section 12.2 [i.e., Eq. (12.11)].

12-4. The total energy of the system is given by
E=T+U
@)

:%M(a’cf +X§)+%K(x12 +x§)+%xu (x, —x,)°

Therefore,
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dE Ce : . .
o M (%%, + 3,5, )+ & (2,5, + 2,0, ) + &3, (%, — %, ) (3, — x,)

= [Mjél + [le — K1y (x2 - xl)ﬂ X, + [Mjc'z + [sz + Ky (x2 - xl)ﬂxz
=[ M, +(k +10p,) 3, = K0p%, |1y +[ M, — K%, + (1 + 53, 3, |, )

which exactly vanishes because the coefficients of x; and %, are the left-hand sides of Egs.
(12.1a) and (12.1b).

An analogous result is obtained when T and U are expressed in terms of the generalized
coordinates 7, and 7, defined by Eq. (12.11):

1 . .
1 1
U= sl +m)+ = xm; ®
Therefore,
dE . . . :
2'E=|:M771+(K+2K12)771:|771+[M772+K772]772 ©

which exactly vanishes by virtue of Egs. (12.14).

When expressed explicitly in terms of the generalized coordinates, it is evident that there is only
one term in the energy that has «,, as a coefficient (namely, «,7; ), and through Eq. (12.15) we
see that this implies that such a term depends on the C,’s and @,, but not on the C,’s and w, .

To understand why this is so, it is sufficient to recall that 7, is associated with the
anitsymmetrical mode of oscillation, which obviously must have «, as a parameter. On the
other hand, 7, is associated to the symmetric mode, x, (t)=x,(t), %, (t) = X, (t), in which both

masses move as if linked together with a rigid, massless rod. For this mode, therefore, if the
spring connecting the masses is changed, the motion is not affected.

12-5. Weset «; =k, =k, =« . Then, the equations of motion are

mX, +2xx, —xx, =0

. 1)
MyX, +2xx, —kx; =0
Assuming solutions of the form
x, (t) =B,
. @)
x, (t)=B,e'”

we find that the equations in (1) become



402 CHAPTER 12

(2= m,0°) B, =B, =0

(©)
—KkB, + (2/( —~ m2w2)82 =0

which lead to the secular equation for @’:

(ZK—mlwz)(ZK—mza)z) =’ (4)

af:f{u — } (5)
Y7 m, +m,

where u=mm, / (m, +m,) is the reduced mass of the system. Notice that (5) agrees with Eq.

Therefore,

(12.8) for the case m, =m, =M and x, =« . Notice also that @ is always real and positive since
the maximum value of 3/1/ (ml + mz) is 3/4. (Show this.)

Inserting the values for @, and @, into either of the equations in (3), we find'

I: _ﬂ{l"‘ 1- o :Han:an (6)
7 m, +m,

au:{ _ﬂ{p 13 ”a22 @)
u m, +m,

Using the orthonormality condition produces

and

) ®

a, = NoX )

where
2
D, =2(my, —my) +2 704 (i —m3) [1- Sty (10)
m, m, (ml + mz)
The second eigenvector has the components
gty 3m,m, :
m, (my +m,)
Oy = (11)

/D

' Recall that when we use @ = @, , we call the coefficients f, (a) =, )=a, and S, (a) = a)l) =a,,,etc.
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1
Ay == (12)
DZ
where
2 2 2
D, =2m [1'“_}”1 {Mﬂpm {1"1_} T 13)
m, m, m, (Wll + mz)
The normal coordinates for the case in which 4;(0)=0 are
T (t) = (mlallxlo + m2a21x20) cos ot
(14)
Ui (t) = (mlalzxw + mz”zzxzo) COs ,t
12-6.
If the frictional force acting on mass 1 due to mass 2 is
f==B~1,) (1)
then the equations of motion are
m¥, + B, — %) +xx, =0
(2)
mx, + B(%, — %, )+ xx, =0
Since the system is not conservative, the eigenfrequencies will not be entirely real as in the
previous cases. Therefore, we attempt a solution of the form
x(t)=Be™; x,(t)=B,e” 3)

where a =1 +iw is a complex quantity to be determined. Substituting (3) into (1), we obtain the
following secular equation by setting the determinant of the coefficients of the B’s equal to zero:

(ma2 +ﬂa+i€)2 = [a? 4)

from which we find the two solutions

The general solution is therefore
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x, (t) =B} et B, et 4 e'gt/m(Bf2 eV i +B, eV t/m) (6)

and similarly for x,(f).
The first two terms in the expression for x, (t) are purely oscillatory, whereas the last two terms
contain the damping factor ¢”. (Notice that the term Bj, exp(«/ B —mx t) increases with time if

B* >mx , but B;, is not required to vanish in order to produce physically realizable motion
because the damping term, exp(-f), decreases with time at a more rapid rate; that is

—B+f —mx <0.)

To what modes do ¢; and «, apply? In Mode 1 there is purely oscillating motion without

friction. This can happen only if the two masses have no relative motion. Thus, Mode 1 is the
symmetric mode in which the masses move in phase. Mode 2 is the antisymmetric mode in which

the masses move out of phase and produce frictional damping. If 4° < mx , the motion is one of

damped oscillations, whereas if 4° > mx , the motion proceeds monotonically to zero amplitude.

12.7.

We define the coordinates x; and x, as in the diagram. Including the constant downward

gravitational force on the masses results only in a displacement of the equilibrium positions and
does not affect the eigenfrequencies or the normal modes. Therefore, we write the equations of
motion without the gravitational terms:

mi, +2xx, —kx, =0
1)

mi, +xx, —kx; =0
Assuming a harmonic time dependence for x, (f) and x,(t) in the usual way, we obtain

(21(— ma)z)B1 -xB,=0
)

—kB, +(1c—ma)2)B2 =0

Solving the secular equation, we find the eigenfrequencies to be
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) 3+5 «
w; = —
2 m

3)
2 3_\/5 K
Wy, =———
2 m

Substituting these frequencies into (2), we obtain for the eigenvector components

1-45

> Ay =0y
4)
1++/5
5 Ay =ly

For the initial conditions %, (0) =, (0) =0, the normal coordinates are

1-5

(
7, (t)=may, Lxlo + xzo) cos w,t

()
1+/5

1, (t) = ma,, Lxlo + — xZOJ cos w,t

Therefore, when x,, =-1.6180 x,,, 7, () =0 and the system oscillates in Mode 1, the
antisymmetrical mode. When x,, =0.6180 x,,, 7,(f)=0 and the system oscillates in Mode 2, the
symmetrical mode.

When mass 2 is held fixed, the equation of motion of mass 1 is

mi, +2xx, =0 (6)

Wy = \/g ()
m

When mass 1 is held fixed, the equation of motion of mass 2 is

and the frequency of oscillation is

m¥, +xx, =0 )
and the frequency of oscillation is
K
LY 9)
m

Comparing these frequencies with @, and w, we find

a)1=4/3+Jg 125 _11441 |2 s 0,
4 m m
w2=1/ﬂ 1= 20,6180, % < oy
4 m m )
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Thus, the coupling of the oscillators produces a shift of the frequencies away from the
uncoupled frequencies, in agreement with the discussion at the end of Section 12.2.

12-8. The kinetic and potential energies for the double pendulum are given in Problem 7-7. If
we specialize these results to the case of small oscillations, we have

T =2 me (268 +  +24, ) M)

U= mgt(24; + 42) @

where ¢, refers to the angular displacement of the upper pendulum and ¢, to the lower

pendulum, as in Problem 7-7. (We have also discarded the constant term in the expression for
the potential energy.)

Now, according to Egs. (12.34),

1 ..
T :Ezmjkqjqk 3)
Tk
1
u :EZAM]'% (4)
ik
Therefore, identifying the elements of {m} and {A}, we find
= m/(? { 1 } )
2 0
=mglly (6)
and the secular determinant is
2 8 _ 20° o’
! =0 ?)
— 0> % .
or,
[2%—2w2j{%—a)2}—w4=0 (8)
Expanding, we find
2
a)4—4‘§a) +2[ﬂ -0 )

which yields
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o* =(2iﬁ)% (10)

and the eigenfrequencies are

w, =N2+~2 \/%zl.848\/%
w, =22 J%:o.mg

To get the normal modes, we must solve

(11)

For k = 1, this becomes:
(Au -] mn)au +<A21 -] mzl)azr =0

Forr=1:
[2mg€—(2+\/§)%2m€2}an —(2+x/§)%m€2 a, =0

Upon simplifying, the result is
A, =—2ay,
Similarly, for r = 2, the result is
iy =~N2a,
The equations
X, =0y, 1 +a, 1,

Xy =0y 1y tay 1,

can thus be written as

Xy =0y 1h+

1
ﬁ Ay 1
X = —2 Ay Th+ay 1,

Solving for 7, and 7,:

_\/Exl—xz. V2 x,+x,
Th N m 2a,,
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n, occurs when 77, =0; i.e. when x;, =—

X
—0 _ X
n, occurs when 7, =0; i.e. when x, =

=

X,

NA

CHAPTER 12

Mode 2 is therefore the symmetrical mode in which both pendula are always deflected in the
same direction; and Mode 1 is the antisymmetrical mode in which the pendula are always
deflected in opposite directions. Notice that Mode 1 (the antisymmetrical mode), has the higher

frequency, in agreement with the discussion in Section 12.2.

12-9. The general solutions for x,(t) and x, () are given by Egs. (12.10). For the initial

conditions we choose oscillator 1 to be displaced a distance D from its equilibrium position,

while oscillator 2 is held at x, =0, and both are released from rest:

x,(0)=D, %,(0)=0, %,(0)=0, %, (0) =0

Substitution of (1) into Eq. (12.10) determines the constants, and we obtain

x, ()= % (cos a,t + cos w,t)

x, (t) = % (cos @,t —cos at)

K+ 2K, K
WM M

where

As an example, take @, =1.2 w,; x,(t) vs. x,(t) is plotted below for this case.

1)

)

©)

(4)

It is possible to find a rotation in configuration space such that the projection of the system

point onto each of the new axes is simple harmonic.
By inspection, from (2) and (3), the new coordinates must be
x| =%, —x, =D cos ot

[ J— —
X5 =x,+x, =D cos w,t

These new normal axes correspond to the description by the normal modes. They are

represented by dashed lines in the graph of the figure.

()
(6)



COUPLED OSCILLATIONS 409

12-10. The equations of motion are

m¥, + b, + (K +1c,) X, — Ky, X, = F, cos ot
(D

m¥, + bk, + (K + 10, ) X, — K7, X, =0
The normal coordinates are the same as those for the undamped case [see Egs. (12.11)]:
Th=X =X, 1h=X+X ()
Expressed in terms of these coordinates, the equations of motion become

m(772 + ﬁ1)+b(772 + i71)+(K+K12)(772 + 771)_K12(772 - 771): 2F, cos wt
3)
m(’?z - ﬁ1)+b(772 - 7'71)"‘(’(""(12)(772 - 771)_’(12(772 + 771):0

By adding and subtracting these equations, we obtain the uncoupled equations:

. b . +2 F
771+—771+—K 12 17, =2 cos wt
m

m

(4)

. b . « F,
m+—n,+—n,=—~cos wt
m m m

With the following definitions,
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2p=L
m
+2
o = K+2K,,
m
©)
w2 ==
m
A=t
m .
the equations become
i, + 2P0, + o, = A cos ot
(6)
1, + 2810, + win, = A cos ot

Referring to Section 3.6, we see that the solutions for 7, (t) and 7, (t) are exactly the same as

that given for x(t) in Eq. (3.62). As a result 7, () exhibits a resonance at =@, and 7, (t)
exhibits a resonance at @ = w, .

12-11. Taking a time derivative of the equations gives (§=1 )
. .
LI, +—=+MI, =0
C
S .
LI, +—=+MI, =0
C
Assume I, =Be'”, I, = B¢ ; and substitute into the previous equations. The result is
~w’LB, e + lBlei“’t ~Ma*B,e =0
C
2 iot 1 iot 2 iot
-w°LB,e"” +—=B,e'” — Mo Be” =0
C
These reduce to

0

B, E— sz} +B,(-Ma’)

0

B,(-Mo’)+B, E - aJZL}

This implies that the determinant of coefficients of B, and B, must vanish (for a non-trivial
solution). Thus
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or

Thus

12-12. From problem 12-11:

Lf1+%ll+Mf2=0

LI'2+%12+M'1'1=0

Solving for I, in (1) and substituting into (2) and similarly for I, , we have

. B}
[L—K\fﬁlll—ﬂlz:o
L c' CL
2
[L—K\fﬁlg—ﬂll:o
L C? CL |
If we identify
2
mel_ Y
L
M
Klz—ﬁ
K=l(1—M]
C L/ |

411

1)

)

®3)

(4)
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then the equations in (3) become

ml, +(1<+/c12)11 -Kx,,1,=0

mfz +(K+K12)IZ —x,1, =0

which are identical in form to Egs. (12.1). Then, using Egs. (12.8) for the characteristic

frequencies, we can write

which agree with the results of the previous problem.

12-13.

T D

G G
Ll% \Dl] §L12 le

The Kirchhoff circuit equations are

L11'1+%+Lu(1'1—1'2)=0

1

L212+g—2+L12(12—11)=

2

Differentiating these equations using q =1, we can write

%
}

(L, +Ly,)1, +Cl11 ~L,I,=0

1

|

(L, +Ly,)I, +C—12 ~L,I,=0

2

As usual, we try solutions of the form

which lead to

CHAPTER 12

()

(6)

1)

()

®3)
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1
{a)z (L, +Ly,) —%}Bl —-L, »*B,=0
1
4)
—L, B, + [wz (L,+Ly,)- L}Bz =0
C J
Setting the determinant of the coefficients of the B’s equal to zero, we obtain
2 1 2 1 4712
@ (L, +Ly,)-—|| @* (L, + L,) - = |= &*L, (5)
G C,

with the solution

e (L, +L,)C, +(L, +L,)C, £ \/[(Ll +L,)C, —(L, + le)Cz]z +412,C,C, ©
2C,C, [ (Ly + Ly )(L, + Ly, ) - I,

We observe that in the limit of weak coupling (le - O) and L, =L,=L, C;=C, =C, the
frequency reduces to

0=— (7)

which is just the frequency of uncoupled oscillations [Eq. (3.78)].

12-14.

L, L,

N R

The Kirchhoff circuit equations are (after differentiating and using g=1)

G

LI, +[i+i}ll —ilz =0
G Gy Ci
@)
LI, +{i+i}lz —ill =0
C2 C12 C12
Using a harmonic time dependence for I, (t) and I,(t), the secular equation is found to be
{Llwz_cﬁ'clz}{hwz_cz+C12}ZL2 @)
112 CZ C12 ClZ
Solving for the frequency,
2
1 CL(C+Ca) Ol (G +Cy) JCL(C, +C)~CoLy (€, +C ) T +4CICILLL, o
2L1L2C1C2C12




414 CHAPTER 12

Because the characteristic frequencies are given by this complicated expression, we examine the
normal modes for the special case in which L, =L, =L and C, =C, =C. Then,

o = 2C+Cy,
LCC,, "
1
2 e
e

Observe that @, corresponds to the case of uncoupled oscillations. The equations for this

simplified circuit can be set in the same form as Eq. (12.1), and consequently the normal modes
can be found in the same way as in Section 12.2. There will be two possible modes of oscillation:
(1) out of phase, with frequency ,, and (2) in phase, with frequency , .

Mode 1 corresponds to the currents I, and I, oscillating always out of phase:

PWWWPWPW

[ Cupip S g

Mode 2 corresponds to the currents I, and I, oscillating always in phase:

I“WPWWPWWWMW

177 4]

(The analogy with two oscillators coupled by a spring can be seen by associating case 1 with
Fig. 12-2 for o = w, and case 2 with Fig. 12-2 for o =w, .) If wenow let L, # L, and C, #C,, we

do not have pure symmetrical and antisymmetrical symmetrical modes, but we can associate
o, with the mode of highest degree of symmetry and @, with that of lowest degree of

symmetry.

12-15.
o G,

ég \)11 %R \)Iz %Lz

Setting up the Kirchhoff circuit equations, differentiating, and using q=1, we find

L1'1'1+R(1'1—I2)+Ci11 =0

1

. 1)
LI, +R(I, - I,)+—1,=0
212 ( 2 1) c,
Using a harmonic time dependence for I, (¢) and I,(t), the secular equation is
{a)zL —-——iwR ] {a)sz —i—la)R\ +0°R*=0 (2)
CZ
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From this expression it is clear that the oscillations will be damped because @ will have an
imaginary part. (The resistor in the circuit dissipates energy.) In order to simplify the analysis,
we choose the special case in which L, =L, =L and C, =C, =C. Then, (2) reduces to

2
o°L . ioR| +@’R*=0 3)
C

which can be solved as in Problem 12-6. We find

1
W, =%
NTe

T 4)

0, =—|R+ R —=

L C

The general solution for I, (¢) is

1,(f) = B VICt 4 B o HICH | il [Bbem” + B;Zej/m t/L:| 5)

and similarly for I, (t) . The implications of these results follow closely the arguments presented
in Problem 12-6.

Mode 1 is purely oscillatory with no damping. Since there is a resistor in the circuit, this means
that I, and I, flow in opposite senses in the two parts of the circuit and cancel in R. Mode 2 is the
mode in which both currents flow in the same direction through R and energy is dissipated. If
R* <L/C, there will be damped oscillations of I, and I,, whereas if R* > L/C, the currents will
decrease monotonically without oscillation.

12-16.

Let O be the fixed point on the hoop and the origin of the coordinate system. P is the center of
mass of the hoop and Q(x,y) is the position of the mass M. The coordinates of Q are
X = R(sin 6+ sin ¢)
(1)
y= —R(cos 6+ cos ¢)

The rotational inertia of the hoop through O is
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Iy =1y + MR? =2MR? (2)
The potential energy of the system is
u=u,,,+U

hoop mass
)
= —MgR(Z cos @+ cos ¢)
Since @and ¢ are small angles, we can use cos x =1-x/2. Then, discarding the constant term in
U, we have
1
U=- MgR (26" + #) ()
The kinetic energy of the system is
T= Thoop + Tmass
1,1 2 .2
=10 +EM(x +17) (5)

= MR +%MR2 (6 + ¢ +20p]

where we have again used the small-angle approximations for #and ¢. Thus,

T= % MR?[ 36" + ¢ + 204 (6)
Using Egs. (12.34),
1 ..
T:EZI;m]‘k q; 9k )
j,
1
s

we identify the elements of {m} and {A}:

fm] = MR [i’ ﬂ ©)

2 0
{A}= MgR[O J (10)

The secular determinant is
=0 (11)

from which
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(2§—3a)2] [i—afj —w*=0
R R

Solving for the eigenfrequencies, we find
- &
o, R

b2 [T
2 VR
To get the normal modes, we must solve:

Z(Af" - mjk)aj, =0
]

For k = r = 1, this becomes:
(ngR -2 % 3mR2) ay, -2 % mR* a, =0

or
Ay =—2ay
Fork=1,r=2, theresultis
Ay =y
Thus the equations

X =0y Ty +ap 1,

Xy =0y T +ay 1,

can be written as
Xy =0y 1+ 0y 1,

Xy = =20y 1 +ay 1,
Solving for 7, 7,

X=X, 22X+ X,
’ 1
3a,, 3a,,

=

n, occurs when the initial conditions are such that 7, =0;i.e., x,, = - X0

This is the antisymmetrical mode in which the CM of the hoop and the mass are on opposite
sides of the vertical through the pivot point.

n, occurs when the initial conditions are such that 7, =0;i.e., x;, = x,,

417
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This is the symmetrical mode in which the pivot point, the CM of the hoop, and the mass
always lie on a straight line.

12-17.
k " k " k " k
V00 (R0a00 V0 (GR0a00
Xy X X3
Following the procedure outlined in section 12.6:

T =lm5c12 +lm5c§ +lm5c§
2 2

u =%kxl2 +%k(x2 -x) +%k(x3 - xz)z +%kx§

= k[xl2 F XS+ XS — XXy — xzxs]

Thus
m 0 O
m=|0 0
0 0 m
2k -k 0
A=|-k 2k -k
0 -k 2k
Thus we must solve
2k — w*m —k 0
—k 2k — w*m —k =0
0 —k 2k — w*m

This reduces to
(2K~ w*m)’ —2k% (2k ~ &?m) =0
or
(2k- a)zm)[(Zk —o*m) - 2k2} 0

If the first term is zero, then we have

If the second term is zero, then

2k —a’m=+2 k
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which leads to

~ (2+x/§)k_ ~ (2—ﬁ)k

Wy = (| Wy =|————
m m

To get the normal modes, we must solve

Z(Af" - mjk)aj, =0
]

For k =1 this gives:
(Zk —~ a)fm) a, +(-k)a,, =0
Substituting for each value of r gives
r=1: (2k-2k)a,, —ka, =0—>a, =0
r=2: (—\/E k)a12 —kay, =0 a, =—/2a,
r=3: (x/Ek)aB —Kay, =0 ay, =2 ay,

Doing the same for k = 2 and 3 yields

Ay = —lz ay =0
by =z Ay =2 a5
a3 =0z Ay = V2 a3

The equations

Xy =0y Th a4y, 1, +a3 7
Xy =0y Th + Ay 1) + 053 13

Xy =0z Th + Az 1, + 33 73

can thus be written as
1
Xy =0y 1 _Eazz 1, +ags 15
Xy =y 1, +N2 dgs 175

X3 ==y Th — NA Ay 1y + 33 13

We get the normal modes by solving these three equations for 7,, 7,, 7;:
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ﬂ_x1_x3
=1L =3
2a,
. _ TNt 2 x, — X,
2 2\/§a22
and
. _xnt 2%, + x5
3 4a,,
The normal mode motion is as follows
- ¢ - ° — o X, =—X,
M: < e e > < o X, =—2x, =—2 x4
s . - ¢ - o o x,=2x=2x,

12-18.
x,=x+bsin@; %, =x+bdcosb
y,=b-bcos@; 1,=bOsinb
Thus
_1 .2 1 .2 .2
T—EMx +Em(x1+y1)
1

=—Mx2+1m(5c2+b2 & +2b %0 cos 9)
2 2

U =mgy, =mgb (1 —Cos 6’)

2
For small 6, cos =1~ % . Substituting and neglecting the term of order 6°0 gives
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]. -2 ]. 2/ . 7
T=—(M+m)x +—m(b & +2b xﬁ)
2 2
=80
2
Thus
~ M+m mb
M= mp?
A 0 0
|0 mgb
We must solve
-0’ (M+m)  —o’mb |
—w*mb mgb — w*mb?|

which gives
@ (M+m)(a’mb® - mgb) —o'm’b* =0
@[ @’ Mb* —mgb(m+ M) |=0

Thus

Thus the equations

X =0y 1y + a1,

O=ay n +ay, 1,
become

mb
X =0y T _mazz 7,

421
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0=ay 1,
Solving for 7,, n,:
0

=

Ay

X+ brm 0

(m+ M)
n=————
ayq

n, occurs when n, =0; or =0

bm
(m+ M)

n, occurs when n, =0; or x =—

12-19. With the given expression for U, we see that {A} has the form

I -&, -¢
{Al=|-&, 1 -&y

—&3 &3 1

The kinetic energy is
1,0 . .
T= 5 (4912 +62 + 6§)

so that {m} is

The secular determinant is

1-w —&p, &
2
-&, l-w° -&,|=0
2
—&5 &, l-o

Thus,
(1 - a)2)3 —(1— a)z)(glz2 + & + 553) — 281,636, =0
This equation is of the form (with 1-@* = x)
x*=3a°x-2p°=0

which has a double root if and only if
()" =7

CHAPTER 12

)

)

®)

(4)

()

(6)

)
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Therefore, (5) will have a double root if and only if

32
2 2 2
&, + EL T+ E
{ 2 ;,3 2 } = &3l (8)

This equation is satisfied only if

©9)

Consequently, there will be no degeneracy unless the three coupling coefficients are identical.

12-20. If werequire a,, =2a,,, then Eq. (12.122) gives a,, = -3a,,, and from Eq. (12.126) we
obtain a,, = 1/ V14 . Therefore,

. _{ 2 1 3 } (1)
V14T V14T V4

The components of a, can be readily found by substituting the components of a, above into Eq.

(12.125) and using Egs. (12.123) and (12.127):

] _[ 4 -5 1 } 2
S NIV MNITNE)

These eigenvectors correspond to the following cases:

L a,

12-21. Thetensors {A} and {m} are:

1
KoK 0
1 1
{A}= E’fs Ky E’fs 1)
1
I 0 EKS K, |
m 0 O
{mj=|0 m 0 (2)
0 0 m

thus, the secular determinant is
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K, —mo’ =k, 0
1 >
EK'3 K, — M@ EK'3 =0 3)
1 2
0 > Ky K, — Mo
from which
(/q —ma)z)2 <K2 —ma)z)—%/cg (Kl —mwz) =0 (4)

In order to find the roots of this equation, we first set (1/2)x3 =xx, and then factor:
= m07) [~ m0?) e, o) -] =0
(k, —ma?®)[ 0" (x, + 1) ma | = 0 (5)
=m0 [~ +5,)] =0

Therefore, the roots are

K
W, =,[—
m
K, +K
w, =7 —= (6)
m
w,=0

Consider the case @, =0. The equation of motion is

ity + @317, =0 @)
so that
i,=0 8)
with the solution
ny(t)=at+b 9)

That is, the zero-frequency mode corresponds to a translation of the system with oscillation.
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12-22. The equilibrium configuration is shown in diagram (a) below, and the non-
equilibrium configurations are shown in diagrams (b) and (c).

=
[

(a) é
@

o |

O honn \-I

The kinetic energy of the system is

N
o~}

=
N

T=%M5c§+%1192+%12¢2

where I, =(1/3)MA® and I, =(1/3) MB®.
The potential energy is
1

u:EK[(xS ~ AO-BY)" +(x, + AO-Bg)" +(x; + AG+BY)" +(x, - A0+ By)' |

= % K (423 +4A°0 +4B°¢)

Therefore, the tensors {m} and {A} are

M 0
mj=| 0 1ma
3
0 0
4x 0
(Al=| 0 4xA
0 0

The secular equation is

425
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(4x - Ma)z)[élrcAz - % MA%) (4;(132 —% MBZa)Z) =0 (5)

Hence, the characteristic frequencies are

w, =2 =
M
3k
w, = M (6)

W, =2 /SMK:a)Z

We see that o, = @;, so the system is degenerate.

The eigenvector components are found from the equation
3 (A ~of my)a, =0 ?)
j

Setting a,, =0 to remove the indeterminacy, we find

WM 0 0
a=| 0 |; a,=|3/MA*|; a,=| 0 (8)

The normal coordinates are (for i,(0)=8(0)=¢(0)=0)

1 (t) = x5y /M cos ot

_9,AVM

Uy (t) 3 Cos w,t 9)
17, (t) = @ oS Wyt

Mode 1 corresponds to the simple vertical oscillations of the plate (without tipping). Mode 2
corresponds to rotational oscillations around the x; axis, and Mode 3 corresponds to rotational

oscillations around the x, -axis.

The degeneracy of the system can be removed if the symmetry is broken. For example, if we
place a bar of mass m and length 2A along the x,-axis of the plate, then the moment of inertia

around the x;-axis is changed:

I =%(M+ m) A (10)

The new eigenfrequencies are
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w, =2 x
M

0, =2 3Kk
M+m

W, =2 3
M

and there is no longer any degeneracy.

12-23. The total energy of the r-th normal mode is

where

Thus,

In order to calculate T, and U,, we must take the squares of the real parts of 7, and 7,:

so that

Also

so that

Expanding the squares in T, and U,, and then adding, we find

2 =(Ren,)" = [Rei o, (4, +iv,)(cos @t +isin a),,t)J

=[—a), v, cos w,t —w, u, sin a),ﬂ2

n; =(Re nr)z = [Re(,u, +iv,)(cos w,t +isin a),t)}

T,

7

1 .
= o} v, cos ot + u, sin co,t]2

E =T +U,

1., 1
=— i+

2 2

7, = B!

iw, t

7‘77' = ia)TﬂTe

=[,ur cos ,t — v, sin wrtjz

u

r

; o’ [,u, cos w,t — v, xin w,t]z

2

2

427
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E =T +U,

=Sk (i +7?)

Thus,

E, =la)r2
2

2

P, (8)

So that the total energy associated with each normal mode is separately conserved.

For the case of Example 12.3, we have for Mode 1

IM
= ? (xlo - xzo) cos oyt )

Thus,
. M .
Th =—0, Y (xlo - xzo) sin w,t (10)
Therefore,
1. 1
E1:E7712+E(0127712 (11)
But
,» K+2x,
w2 = Kt 2 12
-2 (12)
so that
1lx+2x, M 2 . 1x+2x, M 2
E, :ETH?(xm — Xy ) sin’ a)lt+E v 12 7(x10 —Xy) cos® ot
1 2
:Z(K+2K12)(X10 —Xy) (13)

which is recognized as the value of the potential energy att = 0. [Att =0, x, =x, =0, so that the
total energy is U, (t=0).]

12-24. Refer to Fig. 12-9. If the particles move along the line of the string, the equation of
motion of the j-th particle is

mx; :—K(xj —xH)—K(xj —xm) (1)
Rearranging, we find
£ = —2x 4 ) )

which is just Eq. (12.131) if we identify z/md with x/m .
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12-25. The initial conditions are

7,(0)=4,(0)=g,(0)=a

. . . (1)
1 (0) =4 (0) =13 (0) =0

Since the initial velocities are zero, all of the v, [see Eq. (12.161b)] vanish, and the x, are given
by [see Eq. (12.161a)]

a| . #ar . mr . 3xr
M, == [sm — +sin—+sin —} (2)
2 4 2 4
so that
V2 +1
1= a
2
=0 3)
=y
Hs 5 |

The quantities sin[jrz/(n+1)] are the same as in Example 12.7 and are given in Eq. (12.165).
The displacements of the particles are

q,(t)= %a (cos @t +cos wt) + 72 a(cos wt - cos wt)

q,(t) = 7261 (cos @t - cos wyt) + % a(cos @t + cos w,t) (4)

q,(t) = %a (cos @t — cos wt) + TZ a(cos @t + cos w,t)

where the characteristic frequencies are [see Eq. (12.152)]

®, =2 Lsin[r—”}, r=1,2,3 5)
md 8

Because all three particles were initially displaced, there can exist no normal modes in which

any one of the particles is located at a node. For three particles on a string, there is only one

normal mode in which a particle is located at a node. This is the mode @ = @, (see Figure 12-11)

and so this mode is absent.

mb*

(912+922+«9§) = [m]= mb*

mb*

12-26. Kinetic energy T = 5

+mb?

Potential energy
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u =mgb[(1—cos 01)+(1—cos 02)+(1—cos 493)J+§b2 [(sin 6, —sin 01)2 +(sin 6, —sin 02)2}

2
zngb(le + 6+ 9§)+%(af +263 + 63— 26,6, - 26,6,

mgb+kb> kb 0
= [A]=| kb*  mgbekb? kb
0 —kb*  mgb+ kb

The proper frequencies are solutions of the equation

(mgb+kb* — mb*e?)

0=Det([A] - &’ [m]) = Det —kb? (mgb + 2kb” — mb’ e’

0

We obtain 3 different proper frequencies

w12=n1g+kb => o= /mg+kb=4.64rad/s
mb mb
a)g :M => w,= fM =4.81rad/s
mb mb

a)g—% = w3=\/%=4.57rad/s

 mb

Actually those values are very close to one another, because k is very small.

12-27. The coordinates of the system are given in the figure:

Kinetic energy:

Tzlml2
2

1. 1 . P | .
~ Eef(mlLi +m,L5 ) +Em2L22022 -mLL00, = > my 6,6,
jk

& 12 +%m2 (L3 67 + I3 6 —2L,L,0,0, cos(6, - 6, ))

0
—kb?

(mgb +kb? — mbza)z)
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| (myrmy) 5~ myLL
- [mjk]_ -m,L,L, m2L22

Potential energy:

U= mlng(l—cos 191)+m2g[L1(1—cos 191)+L2(1—cos 492)]

6> 6 1
~(m, +m,)gL, ?1+ m,gL, ?2 = EZAijij
ik

3[1‘\7(]: (m, +m,)gL, 0
! 0 m,gL,

Proper oscillation frequencies are solutions of the equation

Det([A] —a)z[m]) =0

() g (L + L) 3y 4 ) 82 [y (L = L) o, (L + )|

= W, =

2m,L,L,
The ei . ()
e eigenstate corresponding to @, is La J where
21
( )
1. = (ml + m2)L1 1— 2gm,L, ¥
21 — m.L 3 2 2 1
iLs () g (L + L) () g2 [y (Ly = L o,y (L + L, |

. . ()
The eigenstate corresponding to @, is LalzJ where
22

3
1— 2gmyL, ¥
m,L ) > > 12
12 (ml+m2)g(Ll+L2)—\/(m1+m2)g [ml(Ll—Lz) +m2(L1+L2) ]

These expressions are rather complicated; we just need to note that 4,; and a,, have the same

0, (my +m,)L,

sign (Zi > 0} while a,, and a,, have opposite sign (Zi < 0} .
21 21

The relationship between coordinates («91 , 02) and normal coordinates 7,, 7, are

4y
0 = m~6 - 0,
1=0y 1 T4y 772} )
=

0, =y 1 +ay 1, n, ~ 0 _he
» ~ 6 2

ay
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To visualize the normal coordinate 7,, let 77, =0. Then to visualize the normal coordinate 7,,

a a . .
we let 1, =0. Because =1 >0 and —2 <0, we see that these normal coordinates describe two

lx )
oscillation modes. In the first one, the two bobs move in opposite directions and in the second,
the two bobs move in the same direction.

o 1 | , m,b> 0
12-28. Kinetic energy: T= Emlbz@?l2 + Emzb%); = [m]= { 6 msz}
Potential energy: U=mgb (1 —Cos 01) + 1, gb(l —Cos 02) + g(b sin @, — b sin 02)

2 172
AN m,gb + kb kb }

—kb* m,gb + kb*
Solving the equation, Det([A] -’ [m]) =0, gives us the proper frequencies of oscillation,

o} _8_»5 (rad/s)? w’ :£+L+£: 25.11(rad/s)?
b b m  m,

a
The eigenstate corresponding to @, is (an} with a, =7.444,,
22

a
The eigenstate corresponding to w, is [alz] with a, =8.554,,
22

From the solution of problem 12-27 above, we see that the normal coordinates are

m~0,-129, =6 +0120,

Ay
7, ~0,-2L0, =6, +0.13 6,
21

Evidently 7, then characterizes the in-phase oscillation of two bobs, and 7, characterizes the
out-of-phase oscillation of two bobs.

Now to incorporate the initial conditions, let us write the most general oscillation form:
P
0, = Re(a a; e 4 g a,, eint’idz)

iy

0, = Re(a iy € i a,, eza)zt—zo‘z)
— Re(7.44aall eiwlt7i§1 _ 8.350!6112 elwszlé'z )

where ¢ is a real normalization constant. The initial conditions helps to determine parameters
a’s,a’s, Js.
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Re (6’1 (t=0)=-7" = aa, cosd, +aa, cosd, =-0.122 rad)
Re(6,(t=0)=0° = 7.44aa,, cos J, +8.35aa,, cosd, =0)

= sin o, =sin g, =0. Then
6, = aa,, cos o\t + aa,, cos m,t =—0.065 cos w,t —0.057 cos w,
0, =7.44aa,, cos ot + 8.35aa,, cos w,t =0.48 (Cos w,t —cos a)lt)

where @, =5.03 rad/s, w, =498 rad/s (found earlier)

Approximately, the maximum angle 6, is 0.096 rad and it happens when

cos w,t =1
cos ot =-1
which gives
,t=2nrw @ _2k+1
ot =(2k+1) 7 w, 2n
because L = 101 we finally find k=n=50 and = 1007 _ 63s
o, 1 w,

Note: 6, .. =0.96 rad and at this value the small-angle approximation breaks down, and

2 max

the value 6, we found is just a rough estimate.

2max
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CHAPTER 1 3

Continuous Systems;
Waves

13-1. The initial velocities are zero and so all of the v, vanish [see Eq. (13.8b)]. The x, are
given by [see Eq. (13.8a)]

2A ¢ . 3nx rTx
U, =— | sin — sin —dx
L 0 L L 1)
= A53r
so that
Hy = A
2)

u, =0, r+3

The characteristic frequency o, is [see Eq. (13.11)]

3z |t
(03=T ;

q(x,t)=Acos {3—; \/% t} sin [3—?} (4)

For the particular set of initial conditions used, only one normal mode is excited. Why?

®3)

and therefore,

13-2.

435
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The initial conditions are

q(x,0)= 1)

4(x,0)=0 (2)

Because §(x,0)=0, all of the v, vanish. The x, are given by

L3 L
4, =% j xsinﬂder% I (L—x)sin@dx
L L s L
Oh . rm
ZWSIH? (3)

We see that x4, =0 forr =3, 6, 9, etc. The displacement function is

NBh[ . 7x 1 . 27x 1 . 4zx
q(x,t) = ———| sin —— cos w,t + —sin X COS @, —— sin —— oS Wt —... 4)
27 L 4 16 L
where
rr |t
w,=Z |~ 5
=T ®)

The frequencies @,, @, w,, etc. are absent because the initial displacement at L/3 prevents
that point from being a node. Thus, none of the harmonics with a node at L/3 are excited.

13-3. The displacement function is

g) . 1 . 1 .
q(Lz)=sm”—xcosa)1t——sm%cosa)3t+—sm5ixcosa)5t+... (1)
8h/x L 9 L 25 L
where
T |T
o == |-
He @
o, =10,
Fort =0,

—q(x'oz)=sin”—x—1sin3ix+isin5ix+... (3)
8h/x L 9 L 25 L

The figure below shows the first term, the first two terms, and the first three terms of this
function. It is evident that the triangular shape is well represented by the first three terms.
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The time development of g(x,t) is shown below at intervals of 1/8 of the fundamental period.

13-4.

so that

Since

0

1 term

L

2 terms

L
3 terms

L

p=ir 37
4

p=37,21
8

=11

The coefficients v, are all zero and the x, are given by Eq. (13.8a):

r even

437
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q(x,t)=> u, sin % cos @, 3)

the amplitude of the n-th mode is just 4,
The characteristic frequencies are given by Eq. (13.11):

nr |t
w,=— |— 4
=T (4)

13-5. The initial conditions are

q(x,0)=0

<s (1)

0, otherwise

The u, are all zero and the v, are given by [see Eq. (13.8b)]

(L/2)+s

v, N _[ U, sin 22 dx
oL 5
4
= 2% gin P gin I8 ()
7o, 2 L
from which
0, r even
v, = )
_ A% (-1) 2 sin’2, ¢ odd
7o, L
(Notice that the even modes are all missing, as expected from the symmetrical nature of the
initial conditions.)
Now, from Eq. (13.11),
T |t
w, == |— 4)
1T »
and o, =rw, . Therefore,
_4 r— .
v, =— 0 (-2 gin By odd )
r o, L

According to Eq. (13.5),



CONTINUOUS SYSTEMS; WAVES

rzx

q(x,t)=> e sin T

. . t7X
= —Z Vv, sin @,f sin ——
L

r

Therefore,

4o, ( . .onms . ax 1, . 3ms . 3mx
q(x,t)= sin @t sin = sin = — —sin @,f sin — sin —— +...
o, L L9 L

Notice that some of the odd modes—those for which sin (37rs/ L) =(0—are absent.

13-6. The initial conditions are

q(x,0)=0
ﬂx 0£x££
L 4
4v,. | L L L
x,0)=| =2 =— —<x<=
1(x0)=7 [2 } 1777
0 £SxSL
L 2 |

E
4

N |~

L
4

The 4, are identically zero and the v, are given by:

L

v, =— 2 q(x,O)sinﬂdx
rLe, L

87, . 1T . I
=—— —|sin——2sin—
o, 2 4

Observe that for r = 4n, v, is zero. This happens because at t = 0 the string was struck at L/4,

and none of the harmonics with modes at that point can be excited.

Evaluation of the first few v, gives

439
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v, = -0.414. 5% v, =0
o)
1 8v 2414 8o,
VZ:_Z' 7 L 3)
b aon 125 7 e,
2414 8y, 2 8y,
V3 = > V6 = —_ 7
27 rmo 216 7w,
and so,
q(x,t)= 8200 (0.414 sin o,t sin 2 + Lgin w,t sin 27
T, L 4 L
(4)
2414 . . 3rx 2414 . . brx )
+ sin w,t sin —— — sin w;t sin——— ...
27 L 135 L

From these amplitudes we can find how many db down the fundamental are the various
harmonics:

Second harmonic:

2
101og {@} —_44db 5)
0.414
Third harmonic:
2.414/27 T
101og [—/} =-13.3db (6)
0.414

These values are much smaller than those found for the case of example (13.1). Why is this so?
(Compare the degree of symmetry of the initial conditions in each problem.)

13-7.

Since §(x,0)=0, we know that all of the v, are zero and the 4, are given by Eq. (13.8a):

L
=2 [qlx,0)sin - dx 1)

0

The initial condition on g(x, ) is
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7h 3

——X, 0<x<—=

3L 7

7h 3 4
,0)=|—(2x—-L), —L<x<=L
a0)=| P ax-n), Srexs?

7—h(L—x), éLSJCS

3L 7

Evaluating the x4, we find

i =— sin
"3 g

98 h [ 4rr . 37’7[}
—sin

441

)

®)

Obviously, u, =0 when 4r/7 and 3r/7 simultaneously are integers. This will occur when r is
any multiple of 7 and so we conclude that the modes with frequencies that are multiples of 7,

will be absent.

13-8. For the loaded string, we have [see Eq. (12.152)]

/ T rm
®, =2 ,/[— sin
md — 2(n+1)

Using p=m/d and L=(n+1)d, we have

The function

w
—=(n+1)si
2 [ lsingr

L\p

is plotted in the figure for n = 3, 5, and 10. For comparison, the characteristic frequency for a

continuous string is also plotted:

1)

)

)

(4)
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12+

10+

0

o 2 4 6 8 10

Of course, the curves have meaning only at the points for which r is an integer.

13-9. From Eq. (13.49), we have:

D sr't
B= 2—} @ = D
o Pb
From section 3.5, we know that underdamped motion requires:
B <oy
Using (1) this becomes
D* 7't
17 pb
o p
2_2
or D*< 405 bﬁ d underdamped
2_2
Likewise D? = % critically damped
2_2
D?*> 4ps bﬂ ¢ overdamped

The complementary solution to Eq. (13.48) for underdamped motion can be written down using
Eq. (3.40). The result is:

1, (t)=C.e™” cos (a)lt - ¢s)



CONTINUOUS SYSTEMS; WAVES

where o} =} - *, @, and Bare as defined in (1), and C, and ¢, are arbitrary constants
depending on the initial conditions. The complete solution to Eq. (13.48) is the sum of the

particular and complementary solutions (analogous to Eq. (13.50)):

2F, sm[s2 }cos(a)t 5)

2_2
,Ob\/{s T T—a)z}+Da)2
pb P

n.(t)=C.e” cos(wt—g¢.)+

where
o. =tan > lga)
ST e
p{ pb }
From Eq. (13.40):
. rTX
277, sm—

Thus

rrx

2p ob 42

> 2F, sm[ }cos (wt-3,)
x,t)=>|C, exp[—z}co{ sz D t— ,]
r D

(underdamped)

13-10. From Eq. (13.44) the equation for the driving Fourier coefficient is:
b
£.(t)=[F(x,1)sin % dx
0

If the point x is a node for normal coordinate s, then

X n . .
Y =— where 7 is an integer < s
S

(This comes from the fact that normal mode s has s-half wavelengths in length b.)

X n
For —=—,
b s

sin%z sin nz=0; hencef, (t)=0

443
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Thus, if the string is driven at an arbitrary point,
none of the normal modes with nodes at the driving
point will be excited.

13-11. From Eq. (13.44)

£.(1) :fp(x,t) sin%dx (1)

0

where F(x,t) is the driving force, and f,(t) is the Fourier coefficient of the Fourier expansion of
F(x,t).Eq. (13.45) shows that f,(t) is the component of F(x,t) effective in driving normal

coordinate s. Thus, we desire F(x,t) such that

f.(t)=0 fors=n
#0 fors=mn

From the form of (1), we are led to try a solution of the form

F(x,t)=g(t) sin’%rx

where g(t) is a function of t only.
Thus

b
nmx . Smx
£) = [ g(t) sin 22X sin 22X 4
f.(t) Ig()sm - sin——dx

0
(nts)zx|
For n # s, the integral is proportional to sin _T} ;hence f,(t)=0 fors=n.
x=0

For n = s, we have
’ Nnwx b
f(£)=g(1) [ sin® == dx=g(t) - =0
0

Only the n™ normal coordinate will be driven.

Thus, to drive the n'™ harmonic only,

F(x,t)= g(t)sin%
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13-12. The equation to be solved is

Compare this equation to Eq. (3.35):
X+2p5+w; x=0
The solution to Eq. (3.35) is Eq. (3.37):
x(H)=e” [Al exp(\/m t) +A, exp(—m t)]

Thus, by analogy, the solution to (1) is

2 2_2 2 2_2
ns(t)ze"Dt/z‘[Alexp{ D——S”Tt]kAzexp{— D——Sﬂrt”

4p>  pb 4p*  pb

13-13. Assuming k is real, while w and v are complex, the wave function becomes
l//(x,t) _ Apilat+ipt)
= ppletke) ot
whose real part is
w(x,t)=Ae” cos(at —kx)
and the wave is damped in time, with damping coefficient /.

From the relation

we obtain

(a+ip)’ =k* (u+iw)’

445

1)

1)

)

®)

(4)

By equating the real and imaginary part of this equation we can solve for e and f#in terms of u

and w:
k*uw
a=
B
and
kw
p=|
iku

Since we have assumed £ to be real, we choose the solution

()

(6)
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f=kw @)
Substituting this into (5), we have

a=ku (8)
as expected.
Then, the phase velocity is obtained from the oscillatory factor in (2) by its definition:

V:Rea):g )

k k

That is,

13-14.

n+2

T QVHZ
’

Consider the above circuit. The circuit in the n™ inductor is I,, and the voltage above ground

at the point between the n™ elements is V, . Thus we have

e
C!
and
' ﬂ — Vu1T ‘/n
dt
L O 1)
c
We may also write
dQ
—r=1,-1 2
dt n n+1 ( )
Differentiating (1) with respect to time and using (2) gives
AL 1
L ?:E In—l_21n+1n+l] (3)
or
T 1y o] @
dtz - L,C, n-1 n n+1
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Let us define a parameter x which increases by Ax in going from one loop to the next (this will

become the coordinate x in the continuous case), and let us also define
L' C’

== C=C ©)

Ax Ax

which will become the inductance and the capacitance, respectively, per unit length in the limit
Ax—0.

From the above definitions and

Al =1, -1, (6)
(4) becomes
”Z:; - % (AL,_,—AL)=0 ?)
or,

Dividing by (Ax)?, and multiplying by (-L'C"), we find

A(AL) d’l
2 LC—2£=0 9
(Ax)? dt’ ®
But by virtue of the above definitions, we can now pass to the continuous limit expressed by
I, (t)—>I(x,t) (10)
Then,
A(AI(x,t 2
(Al ) o P (11)
Ax ot
and for Ax - 0, we obtain
o’ 10’1
20 12
ox*>  v* o (12)
where
1
V=—e 13
Tc (13)

13-15. Consider the wave functions

w,=Aexp[i(ot—kx)] "
v, =Bexp [1(((0 +Aw)t—(k+ Ak)x)]

where Aw < w; Ak <k . A and B are complex constants:
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A=|Alexp (i¢ﬂ) ]

B=|B|exp (ig,)
The superposition of y;, and y, is given by

V=y,t+y,

~op {0+ P)i-(k+5)+])> {'A' explig)e T L+l exp(i@)e“[mimﬂ

which can be rewritten as

i Awt-Akx—g,+¢, ; Awt—Akx+¢,—¢,
ylz{exp[{[w—i—ATw]t—(kth—kjx+mﬂ}<|:|A|e [ 2 }+|B|e[ 2 q

2 2
Define
tAw — xAk =6
-t =a ]
and
|A| e ez 4 |B| el = IT|e”
Therefore,

[T = 2(|AF +[B")

Al (o
[2(1F +1er) | ?

R A%
248 )] 2

That is, @is a function of (Aw)t—(Ak)x . Using (6) and (7) - (9), we can rewrite (4) as

v=|r] eXp{i{(mAijt—[k+%k]x+@ﬂew

cos 0=

sin @ =

and then,

CHAPTER 13

)

®3)

(4)

()

(6)

@)

(8)

©)

(10)

(11)
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From this expression we see that the wave function is modulated and that the phenomenon of
beats occurs, but for A # B, the waves never beat to zero amplitude; the minimum amplitude is,

shown in the figure.

|Al+|B| \ |Al-|B|

Tt ﬂﬁﬂm .

A

, and the maximum amplitude is |A|+|B|. The wave function has the form

13-16. As explained at the end of section 13.6, the wave will be reflected at x = x, and will

then propagate in the —x direction.

13-17. Welet

where 7 is an integer.

Following the procedure in Section 12.9, we write

g(an—l —24q,, + ‘72n+1)

— 4 —
FZn =m an -

e T
By =m"Gy,, = 7 (%n =205, + ’12n+2)

Assume solutions of the form

A i(wt—2nkd)

T2n

Gyar = Bei[(ut—(2n+l)kd]

Substituting (3a,b) into (2a,b), we obtain

—wtA=—"1 (Be™ ~2A+Be ™)
m'd

~0*B=——(Ae" — 2B+ Ae™™)
m'"d

from which we can write

1)

(2a)

(2b)

(3a)

(3b)

(4)
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A[ﬁ—wz}—Bﬁcoskd:O
m'd m'd

5)
—Az—coskd+B[£—a)} 0
'd m"d

The solution to this set of coupled equations is obtained by setting the determinant of the
coefficients equal to zero. We then obtain the secular equation

2
[ﬁ—a)zﬂ 2t —wz}—;[gcoskd} (6)
m'd m"d m'm" | d

1 1) 4 v
|:(—+—) - sinzkd} ] (7)
m  m"” m'm"

Y27

Solving for , we find

)
N

1l

Ul
1

S~
§‘|»—x

+
e
N

H+

(8)

r 12 7]

If m' <m"”, and if we define

,/ v o, = ,/ =0’ + o, 9)

Then the @ vs. k curve has the form shown below in which two branches appear, the lower
branch being similar to that for m' = m" (see Fig. 13-5).

0 k — n/Zd

Using (9) we can write (6) as

2

sin® kd = (a)j + o, —wz)EW(w) (10)

2
b

From this expression and the figure above we see that for @ > @, and for o, < w < ,, the wave
number k is complex. If we let k =« + i3, we then obtain from (10)

sin® (k- +if3)d = sin” xd cosh® fd — cos” xd sinh® fd + 2i sin xd cos xd sinh fd cosh pd =W (w) (11)

Equating the real and imaginary parts, we find
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sin xd cos xd sinh fd cosh fd =0

sin® xd cosh® d — cos” kd sinh® pd =W () 2
We have the following possibilities that will satisfy the first of these equations:
a) sin xd = 0, which gives k= 0. This condition also means that cos xd = 1; then B is
determined from the second equation in (12):
—sinh® fd =W () (13)

Thus, ® > w,, and xis purely imaginary in this region.

b) cos xd = 0, which gives k= 72d. Then, sin xl = 1, and cosh® fd = W(a)) .Thus, o, <0< w,,
and « is constant at the value 7/2d in this region.

c) sinh Bd = 0, which gives #= 0. Then, sin’ kd =W (). Thus, @< ®, or @, <w<®,,and « is
real in this region.

Altogether we have the situation illustrated in the diagram.

13-18. The phase and group velocities for the propagation of waves along a loaded string are

V(k)_ﬂ_w_ﬂM (1)
k2 Kkd)2

do od
U(k) ==

cos (kd/ 2)‘ 2)
where
0=, ‘sin (kd/Z)‘ 3)

The phase and group velocities have the form shown below.

When k=7/d,U=0but V=w.d/x.In this situation, the group (i.e., the wave envelope) is

stationary, but the wavelets (i.e., the wave structure inside the envelope) move forward with the
velocity V.
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13-19. The linear mass density of the string is described by

o ifx<0;x>L
pP= ]

p>p if0<x<L

I i I
P P2 _74'91

—X
!

0

Consider the string to be divided in three different parts: I for x < 0, I for 0 < x <L, and III for
x> L.

Let g=A ¢ be a wave train, oscillating with frequency o, incident from the left on II. We can write

for the different zones the corresponding wave functions as follows:

w, = Aei(mt—klx) " Bei(wt+k1x) — ot |:Ae—ik1x + Beiklx]

l//H — Cei(a)t—kzx) + Dei(a)t+kzx) — eia)t I:Ce—ikzx + Deikzx:| (1)

i(t-kyx)

Wy =Ee

w [0} T T
ki=—, k,=—, V. = ’—, V, = ,— ()
! Vi : V, ! P1 ? 2

and where 7 is the tension in the string (constant throughout). To solve the problem we need to state first
the boundary conditions; these will be given by the continuity of the wave function and its derivative at
the boundaries x = 0 and x = L. For x = 0, we have

Where

y(x=0)=yy (x=0)

vl _ow ©
0x |op  Ox |
and for x = L, the conditions are
yy(x=0)=ypy (x=L)
Ou| _ 0w @
ox |x:L Coox |x:L
Substituting w as given by (1) into (3) and (4), we have
A+B=C+D
©)

—A+B=];—2(—C+D)

1

and
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Ce el 4 D el — F kil

_Ce ikl 4 Dol — —ﬁE oL ©)
k,
From (6) we obtain
- Ly k) ptoan
Ay
)
p.l (1 k) | gkt
27k, |
Hence,
C— Zz t’; o2l ®)
2 1
From (5) we have
1 k). 1(. k)
A=—|1+-2|C+=|1--2|D 9
2% ) 20w ®
Using (7) and rearranging the above equation
k +k)
= L ( 1 2) elzkzL _(k2 _ kl) D (10)
2k, (k2 - kl)
In the same way
B= %[—(k2 +k,) ™"+ (k, +k,) | D (11)
1
From (10) and (11) we obtain
B (K-K)[e™ 1] W)
Ak +k, ) e —(k, —k,)°
On the other hand, from (6) and (8) we have
E= kaZIIz i(ky +ky)L (13)
2~ M
which, together with (10) gives
Ez 4k1k2 ei(k1+k2)L (14)
A (k +k,)" et —(k, —k,)°

? the reflected intensity is I, =|B ? and the total

Since the incident intensity I, is proportional to |A

2 .
, wWe can write

transmitted intensity is I, =|E
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L} [Ef
[ =1 - =J = 15
r 0 |A|2 t 0 |A|2 ( )
Substituting (12) and (14) into (15), we have, for the reflected intensity,
, 2
=1, | (k12 . ké)[eZZkZL - 1] | (16)
r 2 ) 2
(K, +k,) e —(k, k)|
From which
(kl2 - k;)2 (1 —cos ZkZL)
I, =1 4 74 272 2 12)\2 (17)
ki + k3 +6kk; — (k7 k) cos 2k, L
and for the transmitted intensity, we have
2
4k k ei(k1+k2)L
I, =1, | 21 12‘2k - 2| (18)
\(k, + K, ) € —(k, K, )|
so that
272
I =1 B kik; (19)

UKk 6k2K2 —2(Kk2 - K3 cos 2k,L

We observe that I, + I, = I, as it must.

For maximum transmission we need minimum reflection; that is, the case of best possible transmission is

that in which

I, =1,

(20)
I.=0

In order that I, =0, (17) shows that L must satisfy the requirement

1-cos2k,L=0 (21)
so that we have
L= —0,1,2,. (22)
ky @0 NP,

The optical analog to the reflection and transmission of waves on a string is the behavior of light
waves which are incident on a medium that consists of two parts of different optical densities
(i.e., different indices of refraction). If a lens is given a coating of precisely the correct thickness
of a material with the proper index of refraction, there will be almost no reflected wave.
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13-20.
y
I 1l
M
0
We divide the string into two zones:
I x<0
II: x>0

Then,

W, = Alei(a)t—kx) + Blei(wt+kx)
(1)

i(wt—kx)

yy = Aye
The boundary condition is
vi(x=0)=yy(x=0) 2

That is, the string is continuous at x = 0. But because the mass M is attached at x = 0, the
derivative of the wave function will not be continuous at this point. The condition on the
derivative is obtained by integrating the wave equation from x = —¢to x = +¢and then taking
the limit £ — 0.

Thus,
0* 0 0
Z/ =T|: Yu WI} 3)
ot | ox  ox |,
Substituting the wave functions from (1), we find
A +B =A, 4)
ikt(-A, + A, —B,) =-0’MA, (5)
which can be rewritten as
(ikr - a)2M)
A -B=A———~ (6)
ikt
From (4) and (6) we obtain
A +B ikt @)
A -B, ikr-o’M
from which we write
B oM o’ M)/2ikr

- - 8
A, 2ikt-o’M 1-w’M/2ikt ®)

Define
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2
oM _ P=tan @ )
2kt
Then, we can rewrite (8) as
B _ P (10)
A 1+4iP
And if we substitute this result in (4), we obtain a relation between A, and A,:
L (1)
A 1+iP
B 2
The reflection coefficient, R = Il , will be, from (10),
1
2 2 2
t 0
R=|B - Pzz an > 12)
A 1+P° 1+tan” @
or,
R=sin* @ (13)
2
and the transmission coefficient, T =|—=| , will be from (10)
2
T L 1 (14)
A 1+P° 1+tan” @
or,
T =cos” 6 (15)

The phase changes for the reflected and transmitted waves can be calculated directly from (10)

and (11) if we substitute

B, =|B,| ¢”B,
A=A e’A, (16)
A, =|A,|e?A,
Then,
B, _|Bi| i( g5,y ) P itan” (1/P)
L L) e 17
A |A1| \J1+ P? 17
and
AZ |A2| i(¢A —#a ) 1 itan™! (-P)
=8 e 18
A |A1| J1+P? (18)
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Hence, the phase changes are

by, ~ ), = tan” H ~tan” (cot 0)

(19)
s, — 4, =—tan” (P)=—tan™' (tan ) =-0
13-21. The wave function can be written as {see Eq. (13.111a)]
w(x,t)= [ A(k)e" ™ dk )
Since A(k) has a non-vanishing value only in the vicinity of k =k, (1) becomes
ko+Ak .
w(xt)= [ e dk @)
ko —Ak
According to Eq. (13.113),
w=w,+o)(k-k) ©)
Therefore, (2) can now be expressed as
] ko+Ak ]
l//(x, t) _ el(a)o —wiko )t J' et(w{)t—x)k dk
ko—Ak
_ Ei([007wéko)t ei(kU+Ak)(a)(3t—x) _ ei(kO—Ak)(a)()t—x)
i(wjt - x)
2ei(w0—m(5k0)t ei(a)()t—x)Ak _ ei(m(;t—x)Ak
2 , @
wit —x 2i
and writing the term in the brackets as a sine, we have
2sin | (ot —x)Ak | . !
1//(x, t) _ [( 0 ) :| ez(wot—kox) (5)
Wit —x
The real part of the wave function att =0 is
2 sin (xAk
Rey(x,0) =mcos kyx (6)
X

If Ak <k, , the cosine term will undergo many oscillations in one period of the sine term. That

is, the sine term plays the role of a slowly varying amplitude and we have the situation in the
tigure below.



458 CHAPTER 13

Re¥(x,0)

) m AANTad M X
U U}N\uu‘uﬂiu_\y

13-22.
a) Using Eq. (13.111a), we can write (for t = 0)

w(x,0)= [ A(k)e™ dk
5 [t o gy
_ Be ko T efcr(k—ko)z o lkko)x g1

+00
zBe—ikox J‘e—o‘uz e—iux du (1)

This integral can be evaluated by completing the square in the exponent:

b
¥ -=x

ﬂ]dx

+00 +00
—a

£ gt
= et I e - 2 dx ()
and letting y = x —b/2a, we have
+00 ) ﬁ +00 )
I e™ ™ dx = eta J. e dy 3)

Using Eq. (E.18c) in Appendix E, we have

+00 bv?
J'e—aXZ ebx dx:\/gem (4)
a

—00

Therefore,
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v (x,0)= B\ﬁ g ox g7/t
o

459

(5)

The form of |l//(x,0)| (the wave packet) is Gaussian with a 1/e width of 4o, as indicated in the

diagram below.

b) The frequency can be expressed as in Eq. (13.113a):
o(k) =, + o) (k-k))+...

and so,

w(x,t)= [ A(k)e' ™) dk

_ IA(k) ei[a)ot+a)()(k—ko)t—kx:| dk

+00

— Bellent=kov) J'e—a(k—ko)z ei[a}(’)(k—ko)t—(k—ko)x] dk

—0

+o0
:Bei(a’ot*kux) je—Ullz ei(wbtfx)u du

—0

Using the same integral as before, we find

o

c¢) Retaining the second-order term in the Taylor expansion of @ (k), we have

co(k)za)o+wé(k—k0)+%a}5’(k—ko)2+...

Then,

w(x,t) = et o) J A(k)e

—00

oft

+o0 2
_ Bei(wot—kox) J‘ e_[g_lTJu ei(w(’]t—x)u
—o0

We notice that if we make the change o —iw(t/2 — o, then (10) becomes identical to (7).

Therefore,

i[w(’] (ko -+ o k—ko (kg )x}

(6)

@)

®)

©)

(10)
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2z “i(wgt—kox) —a(x,t)
xX,t)=B [———— 17" 0 g7 11
‘//( ) 20— iw]t (11)

where

(a)(;t—x)z(c+;ia)é'j
)= 12
alxt) 46% + (@)’ 12 (12

The 1/e width of the wave packet will now be

46 + (") 12
w,,,(t)=2 % (13)

or,

Wy (t)= 4o |1+ [“’—Ot} (14)
20

In first order, W, , shown in the figure above, does not depend upon the time, but in second
order, W, depends upon t through the expression (14). But, as can be seen from (8) and (11),

the group velocity is @/, and is the same in both cases. Thus, the wave packet propagates with
velocity @] but it spreads out as a function of time, as illustrated below.
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of Relativity

14-1. Substitute Eq. (14.12) into Egs. (14.9) and (14.10):

v
x| = 7(951 - xl] 1)
c
v
X, =7(x{ +;X{) (r=7r") (2)
From (1)
X y[l_z}
x c
From (2)
X 1
S
c
So

or

461
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14-2. We introduce cosh a =y, sinh @ = y v/c and substitute these expressions into Eqgs.
(14.14); then

x] =x, cosh a —ct sinh « |

t':tcosha—ﬁsinha (1)
c

r . [
Xy =Xy, X3=X3 ]

Now, if we use cosh a = cos (i) and i sinh « = sin (i), we can rewrite (1) as

x; = x,; cos (ia) +ict sin (iax)

)
ict' = —x, sin (ia) + ict cos (icx)
Comparing these equations with the relation between the rotated system and the original
system in ordinary three-dimensional space,
x| =X, cos 6+ x, sin &
x) =—x, sin 6+ x, cos & ©))
We can see that (2) corresponds to a rotation of the x, —ict plane through the angle ic.
14-3. If the equation
: 1 & w(x,ict)
Vip(x,ict)-—=—""2""7-0 1
W( ) CZ atZ ( )
is Lorentz invariant, then in the transformed system we must have
, 1 0 y(x',ict’)
V2 (x',ict) - = ———Z—2=0 2
l//( ) C2 atyz ( )
where
2 2 2
V’Z—az 62+82 3)
ox'* oy'” oz
We can rewrite (2) as
4 62 r, ict'
e @
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2 2

Now, we first determine how the operator » — is related to the original operator Za—z
u u u 0%,
We know the following relations:
x/’t zzﬂ’yv xv (5)
X, = Z A X, (6)
Zﬂ’yv ]’;M = 5\% (7)
U
Then,
0 ox, 0
=> 1, — 8
ox/, Z@x ox/, Zvl‘”@xv ®)
0 0 0
-— = -— 9
ox:? Z “ Z ”Aﬁxl ZV:Z “ "lax ox, ®)
Therefore,

0 0

Zaxﬂ ZZZ uv /M ax a

v

=220 Max a

A

82

=) — 10
o (10)
Since 1 and A are dummy indices, we see that the operator Z o / ox; is invariant under a
Lorentz transformation. So we have
Oy (x',ict’
Z—Wé 5 )_g (11)
u Xy
This equation means that the function y taken at the transformed point (x’,ict') satisfies the
same equation as the original function y (x,ict) and therefore the equation is invariant. In a
Galilean transformation, the coordinates become
xX'=x-vt ]
Yy =y-ot
(12)
z'=z-uv,t
t=t |

Using these relations, we have
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o0 _oox 0o _2 10]
ox' oOx Ox' ot ox' ox v, ot
o0 _°0 19
oy’ oy v, ot
(13)
0 _0 190
0z' oy v, ot
o_9
o ot ]
Therefore,
ox'2 oy oz ot |ox* oyt oz ot | |ovp v, ovl|of
(14)

1 & 1 & 1 0
-2 — +— +—
v, Oxot v, Oyot v, 0zot

This means that the function y (x',ict’) does not satisfy the same form of equation as does

w(x,ict) , and the equation is not invariant under a Galilean transformation.

14-4. In the K system the rod is at rest with its ends at x; and x,. The K’ system moves with a
velocity v (along the x axis) relative to K.

If the observer measures the time for the ends of the rod to pass over a fixed point in the K’
system, we have

, 1 v |
tl = > (tl iy le
-
C2
1)
1 v
té = > (tz - xzj
-2 €
c? ]

where t; and t; are measured in the K’ system. From (1), we have



THE SPECIAL THEORY OF RELATIVITY 465

1 %
tl,_téz—vzl:(tl_tz)_c_z( xl_x2):| )
1=
C2
We also have
X=X, =1 3)
o(t,—t,) =1 (4)
ot —t5)=1" (5)
Multiplying (2) by v and using (3), (4), and (5), we obtain the FitzGerald-Lorentz contraction:
2
r=01-2 6)
c

14-5. The “apparent shape” of the cube is that shape which would be recorded at a certain
instant by the eye or by a camera (with an infinitesimally short shutter speed!). That is, we must
find the positions that the various points of the cube occupy such that light emitted from these
points arrives simultaneously at the eye of the observer. Those parts of the cube that are farther
from the observer must then emit light earlier than those parts that are closer to the observer. An
observer, looking directly at a cube at rest, would see just the front face, i.e., a square.

When in motion, the edges of the cube are distorted, as indicated in the figures below, where
the observer is assumed to be on the line passing through the center of the cube. We also note
that the face of the cube in (a) is actually bowed toward the observer (i.e., the face appears
convex), and conversely in (b).

(a) Cube moving toward the (a) Cube moving away from the
observer. observer.
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14-6.

We transform the time ¢ at the points x;, and x, in the K system into the K’ system. Then,

At =t —th=—yo "2 = _ypAx — )

14-7.

I ¢ |

Suppose the origin of the K’ system is at a distance x from the origin of the K system after a time
t measured in the K system. When the observer sees the clock in the K’ system at that time, he
actually sees the clock as it was located at an earlier time because it takes a certain time for a

light signal to travel to 0. Suppose we see the clock when it is a distance ¢ from the origin of the

K system and the time is f, in Kand #; in K'. Then we have

C(i’—tl)Zf (1)
tv=x
to="~

We eliminate /, t,, and x from these equations and we find
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t; =}/[1—2} )
C

This is the time the observer reads by means of a telescope.

14-8. The velocity of a point on the surface of the Earth at the equator is

27R,  27x(6.38x10° cm)
0= =
T 8.64 x 10* sec (1)
=4.65x10" cm/sec
which gives

4. 10*
p=l o265 X10 em/sec ) oo, 9 2
c 3x10" cm/sec

According to Eq. (14.20), the relationship between the polar and equatorial time intervals is
At

At':ﬁ;m(l+%ﬂ2] (3)

so that the accumulated time difference is

AzAi’—Aiz%ﬂzAt 4)
Supplying the values, we find
1
A==x(1.55x10"°)x(3.156 x 10’ 107 5
zx( X )x( X sec/yr)x( yr) @)
Thus,
A =0.0038 sec (6)
14-9.

w v+ dv
dm’

The unsurprising part of the solution to the problem of the relativistic rocket requires that we
apply conservation of momentum, as was done for the nonrelativistic case. The surprising, and
key, part of the solution is that we not assume the mass of the ejected fuel is the same as the
mass lost from the rocket. Hence

p=ymo=(y+dy)(m+dm)(v+do)+y,dm'w (1)

where —dm is the mass lost from the rocket, dm' is the mass of the ejected fuel,
w=(v-V) / (1 -oV/ cz) is the velocity of the exhaust with respect to the inertial frame, and

Vo = 1/ J1-w?/c* . One can easily calculate dy = y°Bdf3, ad after some algebra one obtains
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!

d
yzmd0+vdm+%w 2)

where we of course keep infinitesimals only to first order. The additional unknown dm’ is
unalarming because of another conservation law

E=ymc® =(y+dy)(m+dm)c* +y, dm' ¢ 3)
Subsequent substitution of dm' into (2) gives, in one of its many intermediate forms
]/ZMdU(l—ﬂ—wj-i-dm(’U—ZU):O (4)
c

and will finally come to its desired form after dividing by dt

m@+Vd—m
dt dt

The quantity dt can be measured in any inertial frame, but would presumably only make sense
for the particular one in which we measure v. Interestingly, it is not important for the ejected
fuel to have an especially large kinetic energy but rather that it be near light speed, a nontrivial
distinction. For such a case, a rocket can reach 0.6c by ejecting half its mass.

(1-4)=0 )

14-10. From Eq. (14.14)

xi =y/(x, —ot) ey
v
ooi-2) o
c
Solving (1) for x; and substituting into (2) gives

t':y{t—%[ﬁ+vtﬂ
¢y

2

v v t
t+—xl=yt—y—t=—
C2 1 7 7C2

t=;{t'+%x1’}
C

Solving (2) for t and substituting into (1) gives
, { [t’ v ﬂ
X{=y|x -0 —+—5x
vy c

x; =y(x] +ot')

or
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14-11.

Xy
From example 14.1 we know that, to an observer in motion relative to an object, the dimensions

of objects are contracted by a factor of \/1-o”/c* in the direction of motion. Thus, the x]
component of the stick will be

(cos 0/1-v%/c

while the perpendicular component will be unchanged:
lsin @

So, to the observer in K, the length and orientation of the stick are

12

(= Z[sin2 H+(1—vz/c2) cos’ 0]

@' =tan™’ sin 0
cos 0 1-v%/c?

or

2

5 Y2

o0

V= E{sin2 0+ cos }
Y

tané’ =y tan

14-12. The ground observer measures the speed to be

p=100M 10 m/s

4 usec

The length between the markers as measured by the racer is

0 =0 1-v*/c?

2
100 m 1[2—35} _ [553 meters|

The time measured in the racer’s frame is given by
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, 0
t'= ]/(t—c—lej

( (2.5%10° m/s)(100 m))
L.4 usec — a2

) 1-(2.5/3)

- [22med]

The speed observed by the racer is

vzz—zéz 25x10° m/s

t/

14-13. At' =y At

At=1.5 us

y=(1-0999%) " =224

Therefore |At' =34 us|.
14-14.
K K
Xt -
source receiver

In K, the energy and momentum of each photon emitted are

E=hv, and p=m
c

Using Eq. (14.92) to transform to K":
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So

which agrees with Eq. (14.31).

14-15. From Eq. (14.33)

Since A=c/v

or

4x10*

With 4, =656.3 nm and f=——, 1=656.4nm.
3x10

|So the shift is 0.1 nm toward the red (longer wavelength).|

14-16.

Consider a photon sent from the star to the Earth. From Eq. (14.92)

also

E'=y(E—vp1)

E=y(E +vp;)

471
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Now
E=hv, E'=hyv,, p,= —ﬂcos 6, p = I cos '
c c

Substituting yields

v, = v;/(1+ﬂcos H)
and

v=y Vo(l—ﬂcos 6”)
Thus

(1+Bcos 0)(1-Bcos0')=y"
1+ Bcos @— fcos & — > cos B cos O =1— [
cos @—cos @' — fcosBcos @' =—f8

Solving for cos fyields

cosd' -

cosf=——
1-pBcos &

where
p=0/c
6 =angle in earth’s frame

¢’ = angle in star’s frame

14-17. From Eq. (14.33)

1—
V= ﬂvo
1+ 4
Since
v=c/A,
j/: ﬂﬂo
1-p

We have 4=1.5 4. This gives = %

or

lv=1.2x10° m/sec|

CHAPTER 14
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14-18.

Il observer

Proceeding as in example 14.11, we treat the light as a photon of energy hv.

InK': E'=hy, p'="%
c

In K: E=hv=y(E'+vp,)

For the source approaching the observer at an early time we have

hv,
Pr="_
Thus
v=;/(v0 +2 voj =, 1+4
c 1-4
For the source receding from the observer (at a much later time) we have
hv,
Pr=—"_
and
1+ 4
So
1+ .
V= Vo, [ Source approaching observer
1-p .
V=1, source receding from observer
1+ 4
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14-19.

|| observer

source

%
_—

Proceeding as in the previous problem, we have

InK': E'=hv

hv hv B,

!

p; =——c0s = —————=

c c JE

In K: E=y(E'+vpj)=hy,
So

1
hv, =

or

Tﬁ{h[ﬂ][

v(1-5,)

RNy

14

Vo

Ay N1-B B

%o
A 1-5,

For 4> 4,, we have

(1-B)>1-p -5

B >2B,-2p;

B >25,(1-5,)

hv g,

B+ B

14-20. As measured by observers on Earth, the entire trip takes

d

4 lightyears} 80

03¢ 3

=— years

ﬂ

CHAPTER 14

The people on earth age % years. The astronaut’s clock is ticking slower by a factor of y. Thus,

the astronaut ages
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8—30 V1-0.3* =0.95 [8—30} years

dt

So
Those on Earth age 26.7 years.
The astronaut ages 25.4 years.
1] .
: (— (-28)8
14-21. d {ﬂ}mo V_ v 2 )

J1- /4

1- 5 (1-52)"

=11 v + Vﬂlgn
’”Llﬂz (1—ﬂ2>/]

If we take v =1v,e, (this does not mean v, =9, =0), we have

v, O

v 1 m . .
F =m, L <= . =m, 0, ()

+ 32 32 %1
1-f (1—ﬂ2)/ (1_ 2)/

m, . :

F,= : ~ 0, =M, 0y ()
1-p
m, . :

F=——=—10;=m, 0, 4
1-p

14-22. The total energy output of the sun is

‘;—f - (1.4 x10° W-m_z) x 47R? @

where R=1.50 x10" m is the mean radius of the Earth’s orbit around the sun. Therefore,

aE_ 3.96 x10* W ()
dt
The corresponding rate of mass decrease is
dm 1 dE
—=——=44x10"kg-s" 3
dt ¢ dt g & ®

The mass of the sun is approximately 1.99 x10* kg, so this rate of mass decrease can continue
for a time
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1.99x10* yr
124410 kg .ys*1 = L4107 yr @

Actually, the lifetime of the sun is limited by other factors and the sun is expected to expire
about 4.5x10° years from now.

14-23. From Eq. (14.67)
p’c® =E*-E}

=(E, +T)" - E2

=2E,T+T?

p’c® =2T mc*> +T?

14-24. The minimum energy will occur when the four particles are all at rest in the center of
the mass system after the collision.

Conservation of energy gives (in the CM system)
2E, = 4m,c’
or
E, v =2m,c* =2E,
which implies y=2 or = J3 / 2

To find the energy required in the lab system (one proton at rest initially), we transform back to
the lab

E=y(E +vp]) (1)

The velocity of K'(CM) with respect to K(lab) is just the velocity of the proton in the K’ system.
Sou=mo.

Then
op; =0(pey ) =v(ymu) = ymv* = ymc*
Since y=2, #=+/3/2,
3
Z)pl' = E Eo

Substituting into (1)
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E,= }/(ZEO +%E0j = 2[% EO} =7E,

The minimum proton energy in the lab system
is 7 mpc2 , of which 6 mpc2 is kinetic energy.

14-25. Let B=B,z

Then

quvazi(p)zy (v) gives

m —_—
dt dt

Define w=qB,/ym

Thus
0, =wv, and 0, =-wo,
or
o 2

U, =00, =-0"v,
and

U, =-w0, =-0",
So

v, = A cos ot + B sin ot
v, =C cos wt + D sin wt

Take v,(0)=v, v,(0)=0.Then A = v, C = 0. Then 9,(0) = wv, (0)=0
?,(0)=~wv,(0)=-0v

—>B=0,D=-v
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Thus
v =10 cos ot —jvsin ot

Then

.0 . .0
r=1—sin ot +j— cos wt
[0 [0

The path is a circle of radius 2
®

re 0 _}/Wl?)_ p
qB,/ym qB, qB,

T2 1/2
p= {2Tm+—2}

From problem 14-22

c

5 12
{ZTm + Tz}
c

qB,

So

Y =

14-26. Suppose a photon traveling in the x-direction is converted into an e~ and e* as shown
below

before after
Cons. of energy gives

p,c=2E,
where
p, = momentum of the photon
E, =energy of e" =energy of e~
Cons. of p, gives
p, =2p, cos ¢ (pg =momentum of e”, e’)

Dividing gives
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Pe_.__E
p, p, cos &
or
pic* cos” O=E; (1)

But E? > p’c*, so (1) cannot be satisfied for cos® 9<1.

An isolated photon cannot be converted
into an electron-positron pair.

This result can also be seen by transforming to a frame where p, =0 after the collision. But,
before the collision, p, =p,c#0 in any frame moving along the x-axis. So, without another

object nearby, momentum cannot be conserved; thus, the process cannot take place.

14-27. The minimum energy required occurs when the p and p are at rest after the collision.
By conservation of energy

2E, = 2(938 MeV)
E, =938 MeV=T+E,
Since E, =0.5 MeV,

T. =T =9375MeV

classical —

14-28. T % mo*

Ta=(y-1)mc*=T,

rel — classical

We desire

Trel — Tclassical < 001

rel

Putting y = (1 - ﬁz)_l/z and solving gives
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v<0.115¢

The classical kinetic energy will be within 1% of the correct
value for 0<v<3.5x10” m/sec, independent of mass.

14-29. E=yE,
For

E=30x10° eV
E,=051x10° eV,

y =5.88x10*

y= or p=(1-y2)"

1
1- 5

ﬂ:1—iz=1—1.4x10-1°
2y

v=(1—1.4><10-1°) c

=0.99999999986 ¢

14-30. A neutron at rest has an energy of 939.6 MeV. Subtracting the rest energies of the
proton (938.3 MeV) and the electron (0.5 MeV) leaves 0.8 MeV.

|Other than rest energies 0.8 MeV is available.|

14-31.

0.98¢

Conservation of energy gives

E, =2E

z 4

where E, = energy of each photon (Cons. of p, implies that the photons have the same energy).
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Thus
y Ey=2E,
E
£, =Lt 1MV 559 ey
2 24/1-0.98°

|The energy of each photon is 339 MeV.

Conservation of p, gives

ymv =2p, cos @ where p, = momentum of each photon

) (135 Mev/c?)(0.98 ¢) 098
COs 0= =U.
241-0.987 (339 MeV /<)

6=cos"098=11.3°

14-32. From Eq. (14.67) we have
E*-E =p°c’
With E=E;+T, this reduces to
2E,T +T? =p*c®
Using the quadratic formula (taking the + root since T > 0) gives
T =JE2 +p*c - E,

Substituting pc = 1000 MeV
E, (electron) =0.5 MeV

E, (proton) =938 MeV

gives

T

electron

=999.5 MeV

T =433 MeV

proton
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14-33.

before after

Conservation of p, gives
p, sin 60° = p; sin 60° or p, = p;
Conservation of p, gives
p, =P, c0s 60° + p; cos 60° = p,
So
P.=P,=Pz=P
Conservation of energy gives

E,, =E, +E, +E;

E,, = \/Egg +pic + \/Egp +pc +pc (1)
Substituting
E,, =939.6 MeV
E,, =938.3 MeV
E,, =0.5 MeV

and solving for pc gives
p =0.554 MeV/c

p,=p.=p, =0.554 MeV/c

Substituting into
T=E-E,

=E; +p’c® - E,

gives (EOV = 0)

T, =0.554 MeV

Tp =2x10"* MeV, or 200 eV

T, =0.25 MeV
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14-34. As"? =t + x] + x)? + xf’
Using the Lorentz transformation this becomes

2
v’x
-t ==L+ 2x,0t
c

2 2,2
xX; +v°t" —2x,0t
As'? = T +- n 2/21 +X5+ x5
-v’/c -v’/c
2.2 2
v’x v
xp-—St = -
c c o
= - + X7+ X

=t x] X+ x§
So
As'? = As”

14-35. Let the frame of Saturn be the unprimed frame, and let the frame of the first spacecraft
be the primed frame. From Eq. (14.17a) (switch primed and unprimed variables and change the

sign of v)

=
1+ Clz
Substituting v = 0.9 ¢
u;=02c¢
gives
u; =093 ¢

14-36. Since

d dXu .
F :—[m . }andxﬂz(xl,xz,xyzct)

we have

2
F, d [m%}:md it

:E dr dr?
d’x d*x
h=m d122 F=m d123

d| dict)| . —dt
F4=—{m%}=zcmﬁ
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Thus
Bzt (x,o)]
=y oz;le’ = ymov d22 =y(F, +ipF,)
ngzcm%{y[t—%ﬂ
=7icm5%—7iﬂm i;le
=y(F, ~ipF)

Thus the required transformation equations are shown.

14-37. From the Lagrangian
Lzmcz(l—\/l—ﬂz)—%ka

we compute

oL

—=—kx

0x
oOL_opot_ .. B
v ov 6,8_ /1_ﬂ2

Then, from (2) and (3), the Lagrange equation of motion is

d| mcp
— kx=0
‘s ],
from which

_meB g
2\ 2

(1-7)

Using the relation

. dv  doudx do
f=—=——=0v—
dt dx dt dx

we can rewrite (4) as

CHAPTER 14

M)

)

®3)

(4)

)

(6)
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Lﬂw 9B k=0 )
(1 B ) dx
This is easily integrated to give
2
me ek ®)
1-p 2

where E is the constant of integration.

The value of E is evaluated for some particular point in phase space, the easiest being x = g;

£=0:

E=mc* + % ka® 9)
From (8) and (9),
2

me +lkx2 =mc* +lka2 (10)

1-5 2 2
Eliminating £° from (10), we have

2 4
2 _1_ m-c
g 1

(11)

and, therefore,

1 dx \/k a -x° \/mc +ka -x )/4
cdt mc +k( )/2

B= (12)

The period will then be four times the integral of dt = dt(x) from x = 0 to x = a:

r= 4\/7j [ 2mc” (az_xﬂ dx (13)

ﬁ\/l

Since x varies between 0 and 4, the variable x/a takes on values in the interval 0 to 1, and

CI—X)

therefore, we can define
sin ¢ = x (14)
a

from which
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2 2

a-—x

oS p=———
a

and

=~a* —x* d¢

We also define the dimensionless parameter,

A
Il
I

2 \'mc?

Using (14) — (17), (13) transforms into

2 ”/2(1+2K2 cos’ ¢) p

KC }[ J1+x7% cos® ¢

T=

CHAPTER 14

(15)

(16)

17)

(18)

Since ka’/mc* <1 for the weakly relativistic case, we can expand the integrand of (18) in a

series of powers of x:

((11 :— 2; C(:S¢)(’f/)2 (1 +2x?% cos? ¢) [1 - K—ZZ cos’ ¢}
x* cos

I

;1+{2—%}<2 cos” ¢

=1+%K‘2 cos’ ¢

Substitution of (19) into (18) yields

/2

E—.([|:1+2K cos ¢}d¢

7/2
= a_;r 3xa [¢+E sin 24

Kc  2c 0

Evaluating (20) and substituting the expression for x from (17), we obtain

Tzﬁﬁ 37m\/7

T=T, 1+i ka
-0 16 mc?

or,

(19)

(20)

(1)

(22)
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dp d
14-38. p=P_4
38 A (ymu)

=m % (yu) (for m = constant)

d u
=M —| —
dt{ 1—u2/c2]

Thus

14-39. The kinetic energy is

T = p>c® + mic* —m,c?

For a momentum of 100 MeV /c,

T proton = /10* +(931)” =931=936 - 931 =5 MeV
Toectron =/ 10* +(0.51)* =0.512100 - 0.5=99.5 MeV

In order to obtain yand £, we use the relation

2
mc

J1-4

2 2
E=mc” =ymy” =

so that
_E
= o
and
f= 1—%
100

=——=200
}/electron 051

487

1)

)
©)

(4)

()

(6)

@)
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1 2
=, |1-|— | =0.999988 8
ﬂelectron l:zoo:| ( )
This is a relativistic velocity.
936
=——=1.0054 9
yproton 931 ( )
1 2
=,/1-|——| =0.1 10
Poroon [1.0053} (10)

This is a nonrelativistic velocity.

14-40. If we write the velocity components of the center-of-mass system as v, , the

transformation of p, ; into the center-of-mass system becomes

( ’Uan\\
! = L 1
pa,] 7Lpa,] C2 J ( )
where y = = Since in the center-of-mass system, Z P = 0 must be satisfied, we have
1= ¢
C2
v.E,
Zp:x,j227|:pa,j_ ]Cz :|=O (2)
or,
Uj Zpa,j ¢
J__a 3
— ©)
14-41. We want to compute
T, E, —mc*
1 — 1 0 (1)

T 2
T, E,—myc

where T and E represent the kinetic and total energy in the laboratory system, respectively, the
subscripts 0 and 1 indicate the initial and final states, and m, is the rest mass of the incident

particle.
The expression for E; in terms of y, is
E, — myc’y, 2)

E, canbe related to E| (total energy of particle 1 in the center of momentum reference frame

after the collision) through the Lorentz transformation [cf. Eq. (14.92)] (remembering that for the
inverse transformation we switch the primed and unprimed variables and change the sign of v):
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E =y (El' +cpip; cos 0) 3)
where p] =m,cBy] and E| =m,’y]:
E, =myc’yi? (1+ B cos 0) (4)
Then, from (1), (2), and (4),

T,y +7 B cos -1
T 71—1

()

For the case of collision between two particles of equal mass, we have, from Eq. (14.127),

1+y
12 _ 1 6
71 > (6)
and, consequently,
-1
PR = 1= @)

Thus, with the help of (6) and (7), (5) becomes
L_ 12 —1+(7/1 —1)cos6’

T, 2(}/1 —1)

_1+COS(9
2

(8)

We must now relate the scattering angle & in the center of momentum system to the angle yin
the lab system.

Squaring Eq. (14.128), which is valid only for m, =m,, we obtain an equation quadratic in cos €.
Solving for cos @ in terms of tan” i, we obtain

—7/17+1tan2 wt1

2
cos 0= 9)
1+ ntl tan® v

One of the roots given in (9) corresponds to §= 7, i.e., the incident particle reverses its path and
is projected back along the incident direction. Substitution of the other root into (8) gives

T, 1 2cos” v

TO 1_}.]/17—’_1
2

= : (10)
tan® 2cos” y+(y, +1)sin® y

An elementary manipulation with the denominator of (10), namely,
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2 cos® l//+(}/1 +1) sin® w =2 cos” 1//-|—7/1(1—cos2 t//)+sin2 v
=y, +sin® y+cos’ -y, cos” y +cos” i

=y, +1—y, cos® y+cos’

=(}/1+1)—(}/1—1) cos® y (11)
provides us with the desired result:
T, 2 cos’
T _ cos” v i (12)
T, (7 +1)=(r;-1)cos’ v
Notice that the shape of the curve changes when T, > m,c?, i.e.,, when y, >2.
I
0
1.0
T,=0.1GeV
081 /
T,=1GeV
0.6+
T, =10 GeV
04+
02+
0 i
0 30 60° 90° v
14-42.
hv
From conservation of energy, we have
h,+m,c* =ym,c* +hv' (1)
Momentum conservation along the x axis gives
hv  hv'
—V=—Vcost9+7mevcos¢ (2)
c

Momentum conservation along the y axis gives

!

ym, vsin ¢ = sin 0 3)
C
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In order to eliminate ¢, we use (2) and (3) to obtain

Cos ¢ = ! [ﬂ—h—vcosﬁ}
ymo | ¢ c

sin ¢ = sin @
ym,o

Then,

2 ;2 ’
cos® p+sin® p=1=— 12 ZHE} +[h—v} —Z[Q}{h—v}cos 6’}
yimot | c ¢ ¢ ¢

1
Since y = — and v=Sy* 1 we have
v v
1-2
C2

Substituting y from (1) into (6), we have

2 2 2h , h2
= — — + —
yo - (V V) 2c?

e e

(v=v)

From (5) and (7), we can find the equation for v:

ol Rl e il e S B

c c c c
or,
2m c* 2m c*
.C +2v(1—c050) V' = M€ v
h h
Then,
, 1
V' = T v
1+ 1-cos @
mec2< )
or,

m,c

e

-1
E'=E{1+ E2 (1—cos «9)}

The kinetic energy of the electron is

491

(4)

)

(6)

)

(8)

©)

(10)

(11)



492 CHAPTER 14

T=ym,c* —m,c>=hv—hv =E|1-

1+mc2 (1—cost9)

e

2 —
T E 1-cos @ 12)

+ E2 (l—cos&)
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