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1 Introduction

No exercises assigned.

2 Fundamentals of Unconstrained Optimization

Problem 2.1

∂f

∂x1
= 100 · 2(x2 − x2

1)(−2x1) + 2(1 − x1)(−1)

= −400x1(x2 − x2
1) − 2(1 − x1)

∂f

∂x2
= 200(x2 − x2

1)

=⇒ ∇f(x) =
[−400x1(x2 − x2

1) − 2(1 − x1)
200(x2 − x2

1)

]
∂2f

∂x2
1

= −400[x1(−2x1) + (x2 − x2
1)(1)] + 2 = −400(x2 − 3x2

1) + 2

∂2f

∂x2∂x1
=

∂2f

∂x1∂x2
= −400x1

∂2f

∂x2
2

= 200

=⇒ ∇2f(x) =
[−400(x2 − 3x2

1) + 2 −400x1

−400x1 200

]

1. ∇f(x∗) =
[
0
0

]
and x∗ =

(
1
1

)
is the only solution to ∇f(x) = 0

2. ∇2f(x∗) =
[

802 −400
−400 200

]
is positive definite since 802 > 0, and det(∇2f(x∗)) =

802(200) − 400(400) > 0.

3. ∇f(x) is continuous.

(1), (2), (3) imply that x∗ is the only strict local minimizer of f(x).
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Problem 2.2

∂f

∂x1
= 8 + 2x1

∂f

∂x2
= 12 − 4x2

=⇒ ∇f(x) =
[

8 + 2x1

12 − 4x2

]
=
[
0
0

]

One solution is x∗ =
(−4

3

)
.

This is the only point satisfying the first order necessary conditions.

∇2f(x) =
[
2 0
0 −4

]
is not positive definite, since det(∇2f(x)) = −8 < 0.

Therefore, x∗ is NOT a minimizer. Consider min(−f(x)). It is seen that
∇2[−f(x)] is also not positive definite. Therefore x∗ is NOT a maximizer.
Thus x∗ is a saddle point and only a stationary point.

The contour lines of f(x) are shown in Figure 1.

Problem 2.3

(1)

f1(x) = aTx

=
n∑
i=1

aixi

∇f1(x) =



∂f1
∂x1

. . .
∂f1
∂xn


 =


a1

. . .
an


 = a

∇2f1(x) =


∂2f1
∂x2

1

∂2f1
∂x2∂x1

. . .

...
...

. . .


 =

[
∂2

P
i aixi

∂xs∂xt

]
s = 1 · · ·n
t = 1 · · ·n

= 0
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Figure 1: Contour lines of f(x).

(2)

f2(x) = xTAx =
n∑
i=1

n∑
j=1

Aijxixj

∇f2(x) =
[
∂f2
∂xs

]
s=1···n

=
[∑

j Asjxj +
∑

iAisxi
]
s=1···n

=
[
2
∑n

j=1Asjxj
]
s=1···n (since A is symmetric)

= 2Ax

∇2f2(x) =
[

∂2f2
∂xs∂xt

]
s = 1 · · ·n
t = 1 · · ·n

=
[
∂2

P
i

P
j Aijxixj

∂xs∂xt

]
s = 1 · · ·n
t = 1 · · ·n

=
[
Ast +Ats

]
s = 1 · · ·n
t = 1 · · ·n

= 2A
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Problem 2.4

For any univariate function f(x), we know that the second oder Taylor
expansion is

f(x+ ∆x) = f(x) + f (1)(x)∆x+
1
2
f (2)(x+ t∆x)∆x2,

and the third order Taylor expansion is

f(x+ ∆x) = f(x) + f (1)(x)∆x+
1
2
f (2)(x)∆x2 +

1
6
f (3)(x+ t∆x)∆x3,

where t ∈ (0, 1).
For function f1(x) = cos (1/x) and any nonzero point x, we know that

f
(1)
1 (x) =

1
x2

sin
1
x
, f

(2)
1 (x) = − 1

x4

(
cos

1
x

+ 2x sin
1
x

)
.

So the second order Taylor expansion for f1(x) is

cos 1
x+∆x = cos 1

x +
(

1
x2 sin 1

x

)
∆x

− 1
2(x+t∆x)4

[
cos 1

x+t∆x − 2(x+ t∆x) sin 1
x+t∆x

]
∆x2,

where t ∈ (0, 1). Similarly, for f2(x) = cosx, we have

f
(1)
2 (x) = − sinx, f

(2)
2 (x) = − cosx, f

(3)
2 (x) = sinx.

Thus the third order Taylor expansion for f2(x) is

cos (x+ ∆x) = cosx− (sinx)∆x− 1
2
(cosx)∆x2 +

1
6
[sin (x+ t∆x)]∆x3,

where t ∈ (0, 1). When x = 1, we have

cos (1 + ∆x) = cos 1 − (sin 1)∆x− 1
2
(cos 1)∆x2 +

1
6
[sin (1 + t∆x)]∆x3,

where t ∈ (0, 1).
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Problem 2.5

Using a trig identity we find that

f(xk) =
(

1 +
1
2k

)2

(cos2 k + sin2 k) =
(

1 +
1
2k

)2

,

from which it follows immediately that f(xk+1) < f(xk).
Let θ be any point in [0, 2π]. We aim to show that the point (cos θ, sin θ)

on the unit circle is a limit point of {xk}.
From the hint, we can identify a subsequence ξk1 , ξk2 , ξk3 , . . . such that

limj→∞ ξkj = θ. Consider the subsequence {xkj}∞j=1. We have

lim
j→∞

xkj = lim
j→∞

(
1 +

1
2k

)[
cos kj
sin kj

]

= lim
j→∞

(
1 +

1
2k

)
lim
j→∞

[
cos ξkj

sin ξkj

]

=
[

cos θ
sin θ

]
.

Problem 2.6

We need to prove that “isolated local min” ⇒ “strict local min.” Equiv-
alently, we prove the contrapositive: “not a strict local min” ⇒ “not an
isolated local min.”

If x∗ is not even a local min, then it is certainly not an isolated local
min. So we suppose that x∗ is a local min but that it is not strict. Let N
be any nbd of x∗ such that f(x∗) ≤ f(x) for all x ∈ N . Because x∗ is not a
strict local min, there is some other point xN ∈ N such that f(x∗) = f(xN ).
Hence xN is also a local min of f in the neighborhood N that is different
from x∗. Since we can do this for every neighborhood of x∗ within which x∗

is a local min, x∗ cannot be an isolated local min.

Problem 2.8

Let S be the set of global minimizers of f . If S only has one element, then
it is obviously a convex set. Otherwise for all x, y ∈ S and α ∈ [0, 1],

f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(y)

since f is convex. f(x) = f(y) since x, y are both global minimizers. There-
fore,

f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(x) = f(x).
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But since f(x) is a global minimizing value, f(x) ≤ f(αx + (1 − α)y).
Therefore, f(αx+ (1− αy) = f(x) and hence αx+ (1− α)y ∈ S. Thus S is
a convex set.

Problem 2.9

−∇f indicates steepest descent. (pk) · (−∇f) = ‖pk‖ · ‖∇f‖ cos θ. pk is a
descent direction if −90◦ < θ < 90◦ ⇐⇒ cos θ > 0.

pk · −∇f
‖pk‖‖∇f‖ = cos θ > 0 ⇐⇒ pk · ∇f < 0.

∇f =
[

2(x1 + x2
2)

4x2(x1 + x2
2)

]

pk · ∇fk

x=

0
@1

0

1
A=

(−1
1

)
·
(

2
0

)
= −2 < 0

which implies that pk is a descent direction.

pk =
(−1

1

)
, x =

(
1
0

)
f(xk + αkpk) = f((1 − α, α)T ) = ((1 − α) + α2)2

=⇒ d

dα
f(xk + αkpk) = 2(1 − α+ α2)(−1 + 2α) = 0 only when α =

1
2
.

It is seen that
d2

dα2
f(xk + αkpk)


α= 1

2

= 6(2α2 − 2α + 1)

α= 1

2

= 3 > 0, so

α =
1
2

is indeed a minimizer.

Problem 2.10

Note first that

xj =
n∑
i=1

Sjizi + sj .
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By the chain rule we have

∂

∂zi
f̃(z) =

n∑
j=1

∂f

∂xj

∂xj
∂zi

=
n∑
j=1

Sji
∂f

∂xj
=
[
ST∇f(x)

]
i
.

For the second derivatives, we apply the chain rule again:

∂2

∂zi∂zk
f̃(z) =

∂

∂zk

n∑
j=1

Sji
∂f(x)
∂xj

=
n∑
j=1

n∑
l=1

Sji
∂2f(x)
∂xj∂xl

∂xl
∂zk

Slk

=
[
ST∇2f(x)S

]
ki
.

Problem 2.13

x∗ = 0

‖xk+1 − x∗‖
‖xk − x∗‖ =

 k

k + 1

 < 1 and
k

k + 1
→ 1.

For any r ∈ (0, 1),∃ k0 such that ∀ k > k0,
k

k + 1
> r.

This implies xk is not Q-linearly convergent.

Problem 2.14

‖xk+1 − x∗‖
‖xk − x∗‖2

=
(0.5)2

k+1

((0.5)2k)2
=

(0.5)2
k+1

(0.5)2k+1 = 1 <∞.

Hence the sequence is Q-quadratic.

Problem 2.15

xk =
1
k!

x∗ = lim
n→∞xk = 0

‖xk+1 − x∗‖
‖xk − x∗‖ =

k!
(k + 1)!

=
1

k + 1
k→∞−−−→ 0.
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This implies xk is Q-superlinearly convergent.

‖xk+1 − x∗‖
‖xk − x∗‖2

=
k!k!

(k + 1)!
=

k!
k + 1

−→ ∞.

This implies xk is not Q-quadratic convergent.

Problem 2.16

For k even, we have

‖xk+1 − x∗‖
‖xk − x∗‖ =

xk/k

xk
=

1
k
→ 0,

while for k odd we have

‖xk+1 − x∗‖
‖xk − x∗‖ =

(1/4)2
k

xk−1/k
= k

(1/4)2
k

(1/4)2k−1 = k(1/4)2
k−1 → 0,

Hence we have ‖xk+1 − x∗‖
‖xk − x∗‖ =→ 0,

so the sequence is Q-superlinear. The sequence is not Q-quadratic because
for k even we have

‖xk+1 − x∗‖
‖xk − x∗‖2

=
xk/k

x2
k

=
1
k
42k → ∞.

The sequence is however R-quadratic as it is majorized by the sequence
zk = (0.5)2

k
, k = 1, 2, . . . . For even k, we obviously have

xk = (0.25)2
k
< (0.5)2

k
= zk,

while for k odd we have

xk < xk−1 = (0.25)2
k−1

= ((0.25)1/2)2
k

= (0.5)2
k

= zk.

A simple argument shows that zk is Q-quadratic.
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3 Line Search Methods

Problem 3.2

Graphical solution
We show that if c1 is allowed to be greater than c2, then we can find a
function for which no steplengths α > 0 satisfy the Wolfe conditions.

Consider the convex function depicted in Figure 2, and let us choose c1 =
0.99.

sufficient decrease line
slope = -1

slope = -1/2

Φ(α)

Φ(α)
α

Figure 2: Convex function and sufficient decrease line

We observe that the sufficient decrease line intersects the function only once.
Moreover for all points to the left of the intersection, we have

φ′(α) ≤ −1
2
.

Now suppose that we choose c2 = 0.1 so that the curvature condition requires

φ′(α) ≥ −0.1. (1)

Then there are clearly no steplengths satisfying the inequality (1) for which
the sufficient decrease condition holds.
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Problem 3.3

Suppose p is a descent direction and define

φ(α) = f(x+ αp), α ≥ 0.

Then any minimizer α∗ of φ(α) satisfies

φ′(α∗) = ∇f(x+ α∗p)T p = 0. (2)

A strongly convex quadratic function has the form

f(x) =
1
2
xTQx+ bTx, Q > 0,

and hence
∇f(x) = Qx+ b. (3)

The one-dimensional minimizer is unique, and by Equation (2) satisfies

[Q(x+ α∗p) + b]T p = 0.

Therefore
(Qx+ b)T p+ α∗pTQp = 0

which together with Equation (3) gives

α∗ = −(Qx+ b)T p
pTQp

= −∇f(x)T p
pTQp

.

Problem 3.4

Let f(x) = 1
2x

TQx+bTx+d, with Q positive definite. Let xk be the current
iterate and pk a non-zero direction. Let 0 < c < 1

2 .
The one-dimensional minimizer along xk + αpk is (see the previous ex-

ercise)

αk = −∇fTk pk
pTkQpk

Direct substitution then yields

f(xk) + (1 − c)αk∇fTk pk = f(xk) − (∇fTk pk)2
pTkQpk

+ c
(∇fTk pk)2
pTkQpk

15



Now, since ∇fk = Qxk + b, after some algebra we get

f(xk + αkpk) = f(xk) − (∇fTk pk)2
pTkQpk

+
1
2

(∇fTk pk)2
pTkQpk

,

from which the first inequality in the Goldstein conditions is evident. For
the second inequality, we reduce similar terms in the previous expression to
get

f(xk + αkpk) = f(xk) − 1
2

(∇fTk pk)2
pTkQpk

,

which is smaller than

f(xk) + cαk∇fTk pk = f(xk) − c
(∇fTk pk)2
pTkQpk

.

Hence the Goldstein conditions are satisfied.

Problem 3.5

First we have from (A.7)

‖x‖ = ‖B−1Bx‖ ≤ ‖B−1‖ · ‖Bx‖,

Therefore
‖Bx‖ ≥ ‖x‖/‖B−1‖

for any nonsingular matrix B.
For symmetric and positive definite matrix B, we have that the matrices

B1/2 and B−1/2 exist and that ‖B1/2‖ = ‖B‖1/2 and ‖B−1/2‖ = ‖B−1‖1/2.
Thus, we have

cos θ = − ∇fT p
‖∇f‖ · ‖p‖ =

pTBp

‖Bp‖ · ‖p‖

≥ pTBp

‖B‖ · ‖p‖2
=
pTB1/2B1/2p

‖B‖ · ‖p‖2

=
‖B1/2p‖2

‖B‖ · ‖p‖2
≥ ‖p‖2

‖B−1/2‖2 · ‖B‖ · ‖p‖2

=
1

‖B−1‖ · ‖B‖ ≥ 1
M
.

16



We can actually prove the stronger result that cos θ ≥ 1/M1/2. Defining
p̃ = B1/2p = −B−1/2∇f , we have

cos θ =
pTBp

‖∇f‖ · ‖p‖ =
p̃T p̃

‖B1/2p̃‖ · ‖B−1/2p̃‖
=

‖p̃‖2

‖B1/2‖ · ‖p̃‖ · ‖B−1/2‖ · ‖p̃‖ =
1

‖B1/2‖ · ‖B−1/2‖ ≥ 1
M1/2

.

Problem 3.6

If x0 − x∗ is parallel to an eigenvector of Q, then

∇f(x0) = Qx0 − b = Qx0 −Qx∗ +Qx∗ − b
= Q(x0 − x∗) + ∇f(x∗)
= λ(x0 − x∗)

for the corresponding eigenvalue λ. From here, it is easy to get

∇fT0 ∇f0 = λ2(x0 − x∗)T (x0 − x∗),
∇fT0 Q∇f0 = λ3(x0 − x∗)T (x0 − x∗),
∇fT0 Q−1∇f0 = λ(x0 − x∗)T (x0 − x∗).

Direct substitution in equation (3.28) yields

‖x1 − x∗‖2
Q = 0 or x1 = x∗.

Therefore the steepest descent method will find the solution in one step.

Problem 3.7

We drop subscripts on ∇f(xk) for simplicity. We have

xk+1 = xk − α∇f,
so that

xk+1 − x∗ = xk − x∗ − α∇f,
By the definition of ‖ · ‖2

Q, we have

‖xk+1 − x∗‖2
Q = (xk+1 − x∗)TQ(xk+1 − x∗)

= (xk − x∗ − α∇f)TQ(xk − x∗ − α∇f)

= (xk − x∗)TQ(xk − x∗) − 2α∇fTQ(xk − x∗) + α2∇fTQ∇f
= ‖xk − x∗‖2

Q − 2α∇fTQ(xk − x∗) + α2∇fTQ∇f

17



Hence, by substituting ∇f = Q(xk − x∗) and α = ∇fT∇f/(∇fTQ∇f), we
obtain

‖xk+1 − x∗‖2
Q = ‖xk − x∗‖2

Q − 2α∇fT∇f + α2∇fTQ∇f
= ‖xk − x∗‖2

Q − 2(∇fT∇f)2/(∇fTQ∇f) + (∇fT∇f)2/(∇fTQ∇f)

= ‖xk − x∗‖2
Q − (∇fT∇f)2/(∇fTQ∇f)

= ‖xk − x∗‖2
Q

[
1 − (∇fT∇f)2

(∇fTQ∇f)‖xk − x∗‖2
Q

]

= ‖xk − x∗‖2
Q

[
1 − (∇fT∇f)2

(∇fTQ∇f)(∇fTQ−1∇f)

]
,

where we used
‖xk − x∗‖2

Q = ∇fTQ−1∇f
for the final equality.

Problem 3.8

We know that there exists an orthogonal matrix P such that

P TQP = Λ = diag {λ1, λ2, · · · , λn} .

So
P TQ−1P = (P TQP )−1 = Λ−1.

Let z = P−1x, then

(xTx)2

(xTQx)(xTQ−1x)
=

(zT z)2

(zTΛz)(zTΛ−1z)
=

(
∑

i z
2
i )

2

(
∑

i λiz
2
i )(
∑

i λ
−1
i z2

i )
=

1P
i λiz2iP

i z
2
i

·
P

i λ
−1
i z2iP

i z
2
i

.

Let ui = z2
i /
∑

i z
2
i , then all ui satisfy 0 ≤ ui ≤ 1 and

∑
i ui = 1. Therefore

(xTx)2

(xTQx)(xTQ−1x)
=

1
(
∑

i uiλi)(
∑

i uiλ
−1
i )

=
φ(u)
ψ(u)

, (4)

where φ(u) = 1P
i uiλi

and ψ(u) =
∑

i uiλ
−1
i .

Define function f(λ) = 1
λ , and let λ̄ =

∑
i uiλi. Note that λ̄ ∈ [λ1, λn].

Then
φ(u) =

1∑
i uiλi

= f(λ̄). (5)
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Let h(λ) be the linear function fitting the data (λ1,
1
λ1

) and (λn, 1
λn

). We
know that

h(λ) =
1
λn

+
1
λ1

− 1
λn

λn − λ1
(λn − λ).

Because f is convex, we know that f(λ) ≤ h(λ) holds for all λ ∈ [λ1, λn].
Thus

ψ(λ) =
∑
i

uif(λi) ≤
∑
i

uih(λi) = h(
∑
i

uiλi) = h(λ̄). (6)

Combining (4), (5) and (6), we have

(xT x)2

(xTQx)(xTQ−1x)
= φ(u)

ψ(u) ≥ f(λ̄)

h(λ̄)
≥ minλ1≤λ≤λn

f(λ)
h(λ) (since λ̄ ∈ [λ1, λn])

= minλ1≤λ≤λn
λ−1

1
λn

+λn−λ
λ1λn

= λ1λn · minλ1≤λ≤λn
1

λ(λ1+λn−λ)

= λ1λn · 1
λ1+λn

2
(λ1+λn−λ1+λn

2
)

(since the minimum happens at d = λ1+λn
2 )

= 4λ1λn

(λ1+λn)2
.

This completes the proof of the Kantorovich inequality.

Problem 3.13

Let φq(α) = aα2+bα+c. We get a, b and c from the interpolation conditions

φq(0) = φ(0) ⇒ c = φ(0),
φ′q(0) = φ′(0) ⇒ b = φ′(0),

φq(α0) = φ(α0) ⇒ a = (φ(α0) − φ(0) − φ′(0)α0)/α2
0.

This gives (3.57). The fact that α0 does not satisfy the sufficient decrease
condition implies

0 < φ(α0) − φ(0) − c1φ
′(0)α0

< φ(α0) − φ(0) − φ′(0)α0,

where the second inequality holds because c1 < 1 and φ′(0) < 0. From here,
clearly, a > 0. Hence, φq is convex, with minimizer at

α1 = − φ′(0)α2
0

2 [φ(α0) − φ(0) − φ′(0)α0]
.
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Now, note that

0 < (c1 − 1)φ′(0)α0

= φ(0) + c1φ
′(0)α0 − φ(0) − φ′(0)α0

< φ(α0) − φ(0) − φ′(0)α0,

where the last inequality follows from the violation of sufficient decrease at
α0. Using these relations, we get

α1 < − φ′(0)α2
0

2(c1 − 1)φ′(0)α0
=

α0

2(1 − c1)
.

4 Trust-Region Methods

Problem 4.4

Since lim inf ‖gk‖ = 0, we have by definition of the lim inf that vi → 0,
where the scalar nondecreasing sequence vi is defined by vi = infk≥i ‖gk‖.
In fact, since {vi} is nonnegative and nondecreasing and vi → 0, we must
have vi = 0 for all i, that is,

inf
k≥i

‖gk‖ = 0, for all i.

Hence, for any i = 1, 2, . . . , we can identify an index ji ≥ i such that
‖gji‖ ≤ 1/i, so that

lim
i→∞

‖gji‖ = 0.

By eliminating repeated entries from {ji}∞i=1, we obtain an (infinite) subse-
quence S of such that limi∈S ‖gi‖ = 0. Moreover, since the iterates {xi}i∈S
are all confined to the bounded set B, we can choose a further subsequence
S̄ such that

lim
i∈S̄

xi = x∞,

for some limit point x∞. By continuity of g, we have ‖g(x∞)‖ = 0, so
g(x∞) = 0, so we are done.

Problem 4.5

Note first that the scalar function of τ that we are trying to minimize is

φ(τ) def= mk(τpS
k) = mk(−τ∆kgk/‖gk‖) = fk−τ∆k‖gk‖+1

2
τ2∆2

kg
T
k Bkgk/‖gk‖2,
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while the condition ‖τpS
k‖ ≤ ∆k and the definition pS

k = −∆kgk/‖gk‖ to-
gether imply that the restriction on the scalar τ is that τ ∈ [−1, 1].

In the trivial case gk = 0, the function φ is a constant, so any value will
serve as the minimizer; the value τ = 1 given by (4.12) will suffice.

Otherwise, if gTk Bkgk = 0, φ is a linear decreasing function of τ , so its
minimizer is achieved at the largest allowable value of τ , which is τ = 1, as
given in (4.12).

If gTk Bkgk �= 0, φ has a parabolic shape with critical point

τ =
∆k‖gk‖

∆2
kg
T
k Bkgk/‖gk‖2

=
‖gk‖3

∆kg
T
k Bkgk

.

If gTk Bkgk ≤ 0, this value of τ is negative and is a maximizer. Hence, the
minimizing value of τ on the interval [−1, 1] is at one of the endpoints of
the interval. Clearly φ(1) < φ(−1), so the solution in this case is τ = 1, as
in (4.12).

When gTk Bkgk ≥ 0, the value of τ above is positive, and is a minimizer
of φ. If this value exceeds 1, then φ must be decreasing across the interval
[−1, 1], so achieves its minimizer at τ = 1, as in (4.12). Otherwise, (4.12)
correctly identifies the formula above as yielding the minimizer of φ.

Problem 4.6

Because ‖g‖2 = gT g, it is sufficient to show that

(gT g)(gT g) ≤ (gTBg)(gTB−1g). (7)

We know from the positive definiteness of B that gTBg > 0, gTB−1g > 0,
and there exists nonsingular square matrix L such that B = LLT , and thus
B−1 = L−TL−1. Define u = LT g and v = L−1g, and we have

uT v = (gTL)(L−1g) = gT g.

The Cauchy-Schwarz inequality gives

(gT g)(gT g) = (uT v)2 ≤ (uTu)(vT v) = (gTLLT g)(gTL−TL−1g) = (gTBg)(gTB−1g).
(8)

Therefore (7) is proved, indicating

γ =
‖g‖4

(gTBg)(gTB−1g)
≤ 1. (9)
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The equality in (8) holds only when LT g and L−1g are parallel. That is,
when there exists constant α �= 0 such that LT g = αL−1g. This clearly
implies that αg = LLT g = Bg, 1

αg = L−TL−1g = B−1g, and hence the
equality in (9) holds only when g, Bg and B−1g are parallel.

Problem 4.8

On one hand, φ2(λ) = 1
∆ − 1

‖p(λ)‖ and (4.39) gives

φ′2(λ) = − d

dλ

1
‖p(λ)‖ = − d

dλ
(‖p(λ)‖2)−1/2 =

1
2
(‖p(λ)‖2)−3/2 d

dλ
(‖p(λ)‖2)

=
1
2
‖p(λ)‖−3 d

dλ

n∑
j=1

(qTj g)
2

(λj + λ)2
= −‖p(λ)‖−3

n∑
j=1

(qTj g)
2

(λj + λ)3

where qj is the j-th column of Q. This further implies

φ2(λ)
φ′2(λ)

=
‖p(λ)‖−1 ‖p(λ)‖−∆

∆

−‖p(λ)‖−3
∑n

j=1

(qT
j g)

2

(λj+λ)3

= −‖p(λ)‖2 ‖p(λ)‖−∆
∆∑n

j=1

(qT
j g)

2

(λj+λ)3

. (10)

On the other hand, we have from Algorithm 4.3 that q = R−T p andR−1R−T =
(B + λI)−1. Hence (4.38) and the orthonormality of q1, q2, . . . , qn give

‖q‖2 = pT (R−1R−T )p = pT (B + λI)−1p = pT
n∑
j=1

qTj qj

λj + λ
p

=


 n∑
j=1

qTj g

λj + λ
qTj




 n∑
j=1

qTj qj

λj + λ




 n∑
j=1

qTj g

λj + λ
qj




=
n∑
j=1

(qTj g)
2

(λj + λ)3
. (11)

Substitute (11) into (10), then we have that

φ2(λ)
φ′2(λ)

= −‖p‖2

‖q‖2
· ‖p‖ − ∆

∆
. (12)

Therefore (4.43) and (12) give (in the l-th iteration of Algorithm 4.3)

λ(l+1) = λ(l) +
‖pl‖2

‖ql‖2
· ‖pl‖ − ∆

∆
= λ(l) +

(‖pl‖
‖ql‖

)2(‖pl‖ − ∆
∆

)
.

This is exactly (4.44).
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Problem 4.10

Since B is symmetric, there exist an orthogonal matrix Q and a diagonal
matrix Λ such that B = QΛQT , where Λ = diag {λ1, λ2, . . . , λn} and λ1 ≤
λ2 ≤ . . . λn are the eigenvalues of B. Now we consider two cases:

(a) If λ1 > 0, then all the eigenvalues of B are positive and thus B is
positive definite. In this case B + λI is positive definite for λ = 0.

(b) If λ1 ≤ 0, we choose λ = −λ1 + ε > 0 where ε > 0 is any fixed
real number. Since λ1 is the most negative eigenvalue of B, we know that
λi+λ ≥ ε > 0 holds for all i = 1, 2, . . . , n. Note that B+λI = Q(Λ+εI)QT ,
and therefore 0 < λ1+ε ≤ λ2+ε ≤ . . . ≤ λn+ε are the eigenvalues of B+λI.
Thus B + λI is positive definite for this choice of λ.

5 Conjugate Gradient Methods

Problem 5.2

Suppose that p0, . . . , pl are conjugate. Let us express one of them, say pi,
as a linear combination of the others:

pi = σ0p0 + · · · + σlpl (13)

for some coefficients σk(k = 0, 1, . . . , l). Note that the sum does not include
pi. Then from conjugacy, we have

0 = pT0Api = σ0p
T
0Ap0 + · · · + σlp

T
0Apl

= σ0p
T
0Ap0.

This implies that σ0 = 0 since the vectors p0, . . . , pl are assumed to be
conjugate and A is positive definite. The same argument is used to show
that all the scaler coefficients σk(k = 0, 1, . . . , l) in (13) are zero. Equation
(13) indicates that pi = 0, which contradicts the fact that pi is a nonzero
vector. The contradiction then shows that vectors p0, . . . , pl are linearly
independent.

Problem 5.3

Let

g(α) = φ(xk + αpk)

=
1
2
α2pTkApk + α(Axk − b)T pk + φ(xk).
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Matrix A is positive definite, so αk is the minimizer of g(α) if g′(αk) = 0.
Hence, we get

g′(αk) = αkp
T
kApk + (Axk − b)T pk = 0,

or

αk = −(Axk − b)T pk
pTkApk

= − rTk pk

pTkApk
.

Problem 5.4

To see that h(σ) = f(x0 + σ0p0 + · · · + σk−1pk−1) is a quadratic, note that

σ0p0 + · · · + σk−1pk−1 = Pσ

where P is the n× k matrix whose columns are the n× 1 vectors pi, i.e.

P =


 | . . . |
p0 . . . pk−1

| . . . |




and σ is the k × 1 matrix

σ =
[
σ0 · · · σk−1

]T
.

Therefore

h(σ) =
1
2
(x0 + Pσ)TA(x0 + Pσ) + bT (x0 + Pσ)

=
1
2
xT0Ax0 + xT0APσ +

1
2
σTP TAPσ + bTx0 + (bTP )σ

=
1
2
xT0Ax0 + bTx0 + [P TATx0 + P T b]Tσ +

1
2
σT (P TAP )σ

= C + b̂Tσ +
1
2
σT Âσ

where

C =
1
2
xT0Ax0 + bTx0, b̂ = P TATx0 + P T b and Â = P TAP.

If the vectors p0 · · · pk−1 are linearly independent, then P has full column
rank, which implies that

Â = P TAP

is positive definite. This shows that h(σ) is a strictly convex quadratic.
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Problem 5.5

We want to show

span {r0, r1} = span {r0, Ar0} = span {p0, p1} . (14)

From the CG iteration (5.14) and p0 = −r0 we know

r1 = Ax1 − b = A(x0 + α0p0) − b = (Ax0 − b) − α0Ar0 = r0 − α0Ar0. (15)

This indicates r1 ∈ span {r0, Ar0} and furthermore

span {r0, r1} ⊆ span {r0, Ar0} . (16)

Equation (15) also gives

Ar0 =
1
α0

(r0 − r1) =
1
α0
r0 − 1

α0
r1.

This shows Ar0 ∈ span {r0, r1} and furthermore

span {r0, r1} ⊇ span {r0, Ar0} . (17)

We conclude from (16) and (17) that span {r0, r1} = span {r0, Ar0}.
Similarly, from (5.14) and p0 = −r0, we have

p1 = −r1 + β1p0 = −β1r0 − r1 or r1 = β1p0 − p1.

Then span {r0, r1} ⊆ span {p0, p1}, and span {r0, r1} ⊇ span {p0, p1}. So
span {r0, r1} = span {p0, p1}. This completes the proof.

Problem 5.6

By the definition of r, we have that

rk+1 = Axk+1 − b = A(xk + αkpk) − b
= Akxk + αkApk − b = rk + αkApk.

Therefore
Apk =

1
αk

(rk+1 − rk). (18)

Then we have

pTkApk = pTk (
1
αk

(rk+1 − rk)) =
1
αk
pTk rk+1 − 1

αk
pTk rk.
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The expanding subspace minimization property of CG indicates that pTk rk+1 =
pTk−1rk = 0, and we know pk = −rk + βkpk−1, so

pTkApk = − 1
αk

(−rTk + βkp
T
k−1)rk =

1
αk
rTk rk −

βk
αk
pTk−1rk =

1
αk
rTk rk. (19)

Equation (18) also gives

rTk+1Apk = rTk+1(
1
αk

(rk+1 − rk))

=
1
αk
rTk+1rk+1 − 1

αk
rTk+1rk

=
1
αk
rTk+1rk+1 − 1

αk
rTk+1(−pk + βkpk−1)

=
1
α
rTk+1rk+1 +

1
α
rTk+1pk −

βk
αk
rTk+1pk−1

=
1
α
rTk+1rk+1.

This equation, together with (19) and (5.14d), gives that

βk+1 =
rTk+1Apk

pTkApk
=

1
αr

T
k+1rk+1

1
αk
rTk rk

=
rTk+1rk+1

rTk rk
.

Thus (5.24d) is equivalent to (5.14d).

Problem 5.9

Minimize Φ̂(x̂) = 1
2 x̂

T (C−TAC−1)x̂−(C−T b)T x̂ ⇐⇒ solve (C−TAC−1)x̂ =
C−T b. Apply CG to the transformed problem:

r̂0 = Âx̂0 − b̂ = (C−TAC−1)Cx0 − C−T b = C−T (Ax0 − b) = C−T r0.{
p̂0 = −r̂0 = −C−T r0

My0 = r0

}
=⇒ p̂0 = −C−T (My0) = −C−TCTCy0 = −Cy0.
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=⇒ α̂0 =
r̂T0 r0

p̂T0 Âp̂0

=
rT0 C

−1C−T r0
yT0 C

TC−TAC−1Cy0
=
rT0 M

−1r0

yT0 Ay0
=

rT0 y0

pT0Ay0
= α0.

x̂1 = x̂0 + α̂0p0 ⇒ Cx1 = Cx0 +
rT0 y0

pT0Ay0
(−Cy0)

=⇒ x1 = x0 − rT0 y0

pT0Ay0
y0 = x0 + α0p0

r̂1 = r̂0 + α̂0Âp̂0 ⇒ C−T r1 = C−T r0 +
rT0 y0

pT0Ay0
C−TAC−1(−Cy0)

=⇒ r1 = r0 +
rT0 y0

pT0Ay0
A(−y0) = r0 + α0Ap0

β̂1 =
r̂T1 r̂1

r̂T0 r̂0
=
rT1 C

−1C−T r1
rT0 C

−1C−T r0
=
rT1 M

−1r1

rT0 M
−1r0

=
rT1 y1

rT0 y0
= β1

p̂1 = −r̂1 + β̂1p̂0 ⇒ −Cy1 = −C−T r1 + β1(−Cy0)

=⇒ y1 = M−1r1 + β1y0 ⇒ p1 = −y1 + β1p0 ( because p̂1 = Cp1).

By comparing the formulas above with Algorithm 5.3, we can see that
by applying CG to the problem with the new variables, then transforming
back into original variables, the derived algorithm is the same as Algorithm
5.3 for k = 0. Clearly, the same argument can be used for any k; the key is
to notice the relationships: 


x̂k = Cxk

p̂k = Cpk

r̂k = C−T rk


 .

Problem 5.10

From the solution of Problem 5.9 it is seen that r̂i = C−T ri and r̂j = C−T rj .
Since the unpreconditioned CG algorithm is applied to the transformed
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problem, by the orthogonality of the residuals we know that r̂Ti r̂j = 0 for
all i �= j. Therefore

0 = r̂Ti r̂j = rTi C
−1 · C−T rj = rTi M

−1rj .

Here the last equality holds because M−1 = (CTC)−1 = C−1C−T .

6 Quasi-Newton Methods

Problem 6.1

(a) A function f(x) is strongly convex if all eigenvalues of ∇2f(x) are positive
and bounded away from zero. This implies that there exists σ > 0 such that

pT∇2f(x)p ≥ σ‖p‖2 for any p. (20)

By Taylor’s theorem, if xk+1 = xk + αkpk, then

∇f(xk+1) = ∇f(xk) +
∫ 1

0
[∇2f(xk + zαkpk)αkpk]dz.

By (20) we have

αkp
T
k yk = αkp

T
k [∇f(xk+1 −∇f(xk)]

= α2
k

∫ 1

0

[
pTk∇2f(xk + zαkpk)pk

]
dz

≥ σ‖pk‖2α2
k > 0.

The result follows by noting that sk = αkpk.

(b) For example, when f(x) =
1

x+ 1
, we have g(x) = − 1

(x+ 1)2
. Obviously

f(0) = 1, f(1) =
1
2
, g(0) = −1, g(1) = −1

4
.

So
sT y = (f(1) − f(0)) (g(1) − g(0)) = −3

8
< 0

and (6.7) does not hold in this case.
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Problem 6.2

The second strong Wolfe condition is∣∣∇f(xk + αkpk)T pk
∣∣ ≤ c2

∣∣∇f(xk)T pk
∣∣

which implies

∇f(xk + αkpk)T pk ≥ −c2
∣∣∇f(xk)T pk

∣∣
= c2∇f(xk)T pk

since pk is a descent direction. Thus

∇f(xk + αkpk)T pk −∇f(xk)T pk = (c2 − 1)∇f(xk)T pk
> 0

since we have assumed that c2 < 1. The result follows by multiplying both
sides by αk and noting sk = αkpk, yk = ∇f(xk + αkpk) −∇f(xk).

7 Large-Scale Unconstrained Optimization

Problem 7.2

Since sk �= 0, the product

Ĥk+1sk =
(
I − sky

T
k

yTk sk

)
sk

= sk − yTk sk

yTk sk
sk

= 0

illustrates that Ĥk+1 is singular.
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Problem 7.3

We assume line searches are exact, so ∇fTk+1pk = 0. Also, recall sk = αkpk.
Therefore,

pk+1 = −Hk+1∇fk+1

= −
((

I − sky
T
k

yTk sk

)(
I − yks

T
k

yTk sk

)
+
sks

T
k

yTk sk

)
∇fk+1

= −
((

I − pky
T
k

yTk pk

)(
I − ykp

T
k

yTk pk

)
+ αk

pkp
T
k

yTk pk

)
∇fk+1

= −
(
I − pky

T
k

yTk pk

)
∇fk+1

= −∇fk+1 +
∇fTk+1yk

yTk pk
pk,

as given.

Problem 7.5

For simplicity, we consider (x3 −x4) as an element function despite the fact
that it is easily separable. The function can be written as

f(x) =
3∑
i=1

φi(Uix)

where

φi(u1, u2, u3, u4) = u2u3e
u1+u3−u4 ,

φ(v1, v2) = (v1v2)2,
φ(w1, w2) = w1 − w2,

and

U1 = I,

U2 =
[
0 1 0 0
0 0 1 0

]
,

U3 =
[
0 0 1 0
0 0 0 1

]
.
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Problem 7.6

We find

Bs =

(
ne∑
i=1

UTi B[i]Ui

)
s

=
ne∑
i=1

UTi B[i]s[i]

=
ne∑
i=1

UTi y[i]

= y,

so the secant equation is indeed satisfied.

8 Calculating Derivatives

Problem 8.1

Supposing that Lc is the constant in the central difference formula, that is,∣∣∣∣ ∂f∂xi −
[
f(x+ εei) − f(x− εei)

2ε

]∣∣∣∣ ≤ Lcε
2,

and assuming as in the analysis of the forward difference formula that

|comp(f(x+ εei)) − f(x+ εei))| ≤ Lfu,

|comp(f(x− εei)) − f(x− εei))| ≤ Lfu,

the total error in the central difference formula is bounded by

Lcε
2 +

2uLf
2ε

.

By differentiating with respect to ε, we find that the minimizer is at

ε =
(
Lfu
2Lc

)1/3

,

so when the ratio Lf/Lc is reasonable, the choice ε = u1/3 is a good one.
By substituting this value into the error expression above, we find that both
terms are multiples of u2/3, as claimed.
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4

3

6

5

Figure 3: Adjacency Graph for Problem 8.6

Problem 8.6

See the adjacency graph in Figure 3.
Four colors are required; the nodes corresponding to these colors are {1},

{2}, {3}, {4, 5, 6}.

Problem 8.7

We start with

∇x1 =


1

0
0


 , ∇x2 =


0

1
0


 , ∇x3 =


0

0
1


 .
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By applying the chain rule, we obtain

∇x4 = x1∇x2 + x2∇x1 =


x2

x1

0


 ,

∇x5 = (cosx3)∇x3 =


 0

0
cosx3


 ,

∇x6 = ex4∇x4 = ex1x2


x2

x1

0


 ,

∇x7 = x4∇x5 + x5∇x4 =


 x2 sinx3

x1 sinx3

x1x2 cosx3


 ,

∇x8 = ∇x6 + ∇x7 = ex1x2


x2

x1

0


+


 x2 sinx3

x1 sinx3

x1x2 cosx3


 ,

∇x9 =
1
x3

∇x8 − x8

x2
3

∇x3.

9 Derivative-Free Optimization

Problem 9.3

The interpolation conditions take the form

(ŝl)T ĝ = f(yl) − f(xk) l = 1, . . . , q − 1, (21)

where

ŝl ≡
(
(sl)T , {slislj}i<j ,

{
1√
2
(sli)

2
})T

l = 1, . . . ,m− 1,

and sl is defined by (9.13). The model (9.14) is uniquely determined if and
only if the system (21) has a unique solution, or equivalently, if and only if
the set {ŝl : l = 1, . . . , q − 1} is linearly independent.

Problem 9.10

It suffices to show that for any v, we have maxj=1,2,...,n+1 v
Tdj ≥ (1/4n)‖v‖1.

Consider first the case of v ≥ 0, that is, all components of v are nonnegative.
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We then have

max
j=1,2,...,n+1

vTdj ≥ vTdn+1 ≥ 1
2n
eT v =

1
2n

‖v‖1.

Otherwise, let i be the index of the most negative component of v. We have
that

‖v‖1 = −
∑
vj<0

vj +
∑
vj≥0

vj ≤ n|vi| +
∑
vj≥0

vj .

We consider two cases. In the first case, suppose that

|vi| ≥ 1
2n

∑
vj≥0

vj .

In this case, we have from the inequality above that

‖v‖1 ≤ n|vi| + (2n)|vi| = (3n)|vi|,

so that

max
d∈Dk

dT v ≥ dTi v

= (1 − 1/2n)|vi| + (1/2n)
∑
j �=i

vj

≥ (1 − 1/2n)|vi| − (1/2n)
∑

j �=i,vj<0

vj

≥ (1 − 1/2n)|vi| − (1/2n)n|vi|
≥ (1/2 − 1/2n)|vi|
≥ (1/4)|vi|
≥ (1/12n)‖v‖1,

which is sufficient to prove the desired result. We now consider the second
case, for which

|vi| < 1
2n

∑
vj≥0

vj .

We have here that

‖v‖1 ≤ n
1
2n

∑
vj≥0

vj +
∑
vj≥0

vj ≤ 3
2

∑
vj≥0

vj ,
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so that

max
d∈Dk

dT v ≥ dTn+1v

=
1
2n

∑
vj≤0

vj +
1
2n

∑
vj≥0

vj

≥ − 1
2n
n|vi| + 1

2n

∑
vj≥0

vj

= −1
2
|vi| + 1

2n

∑
vj≥0

vj

≥ − 1
4n

∑
vj≥0

vj +
1
2n

∑
vj≥0

vj

=
1
4n

∑
vj≥0

vj

≥ 1
6n

‖v‖1.

which again suffices.

10 Least-Squares Problems

Problem 10.1

Recall:
(i) “J has full column rank” is equivalent to “Jx = 0 ⇒ x = 0”;
(ii) “JTJ is nonsingular” is equivalent to “JTJx = 0 ⇒ x = 0”;
(iii) “JTJ is positive definite” is equivalent to “xTJTJx ≥ 0(∀x)” and

“xTJTJx = 0 ⇒ x = 0”.

(a) We want to show (i) ⇔ (ii).

• (i) ⇒ (ii). JTJx = 0 ⇒ xTJTJx = 0 ⇒ ‖Jx‖2
2 = 0 ⇒ Jx = 0 ⇒

(by (i)) x = 0.

• (ii) ⇒ (i). Jx = 0 ⇒ JTJx = 0 ⇒ (by (ii)) x = 0.

(b) We want to show (i) ⇔ (iii).

• (i) ⇒ (iii). xTJTJx = ‖Jx‖2
2 ≥ 0(∀x) is obvious. xTJTJx = 0 ⇒

‖Jx‖2
2 = 0 ⇒ Jx = 0 ⇒ (by (i)) x = 0.

35



• (iii) ⇒ (i). Jx = 0 ⇒ xTJTJx = ‖Jx‖2
2 = 0 ⇒ (by (iii)) x = 0.

Problem 10.3

(a) Let Q be a n×n orthogonal matrix and x be any given n-vector. Define
qi(i = 1, 2, · · · , n) to be the i-th column of Q. We know that

qTi qj =
{ ‖qi‖2 = 1 (if i = j)

0 (if i �= j).
(22)

Then

‖Qx‖2 = (Qx)T (Qx)
= (x1q1 + x2q2 + · · · + xnqn)T (x1q1 + x2q2 + · · · + xnqn)

=
n∑
i=1

n∑
j=1

xixjq
T
i qj (by (22))

=
n∑
i=1

x2
i = ‖x‖2.

(b) If Π = I, then JTJ = (Q1R)T (Q1R) = RTR. We know that the
Cholesky decomposition is unique if the diagonal elements of the upper
triangular matrix are positive, so R̄ = R.

Problem 10.4

(a) It is easy to see from (10.19) that

J =
n∑
i=1

σiuiv
T
i =

∑
i:σi �=0

σiuiv
T
i .

Since the objective function f(x) defined by (10.13) is convex, it suffices to
show that ∇f(x∗) = 0, where x∗ is given by (10.22). Recall vTi vj = 1 if
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i = j and 0 otherwise, uTi uj = 1 if i = j and 0 otherwise. Then

∇f(x∗) = JT (Jx∗ − y)

= JT


 ∑
i:σi �=0

σiuiv
T
i


 ∑
i:σi �=0

uTi y

σi
vi +

∑
i:σi=0

τivi


− y




= JT


 ∑
i:σi �=0

σi
σi

(uTi y)ui(v
T
i vi) − y




=


 ∑
i:σi �=0

σiviu
T
i




 ∑
i:σi �=0

(uTi y)ui − y




=
∑
i:σi �=0

σi(uTi y)vi(u
T
i ui) −

∑
i:σi �=0

σivi(uTi y)

=
∑
i:σi �=0

σi(uTi y)vi −
∑
i:σi �=0

σivi(uTi y) = 0.

(b) If J is rank-deficient, we have

x∗ =
∑
i:σi �=0

uTi y

σi
vi +

∑
i:σi=0

τivi.

Then

‖x∗‖2
2 =

∑
i:σi �=0

(
uTi y

σi

)2

+
∑
i:σi=0

τ2
i ,

which is minimized when τi = 0 for all i with σi = 0.
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Problem 10.5

For the Jacobian, we get the same Lipschitz constant:

‖J(x1) − J(x2)‖
= max

‖u‖=1
‖(J(x1) − J(x2))u‖

= max
‖u‖=1

∥∥∥∥∥∥∥



(∇r1(x1) −∇r1(x2))Tu
...

(∇rm(x1) −∇rm(x2))Tu



∥∥∥∥∥∥∥

≤ max
‖u‖=1

max
j=1,...,m

|(∇rj(x1) −∇rj(x2))Tu|
≤ max

‖u‖=1
max

j=1,...,m
‖∇rj(x1) −∇rj(x2)‖‖u‖|cos(∇rj(x1) −∇rj(x2), u)|

≤ L‖x1 − x2‖.

For the gradient, we get L̃ = L(L1 +L2), with L1 = maxx∈D‖r(x)‖1 and
L2 = maxx∈D

∑m
j=1‖∇rj(x)‖:

‖∇f(x1) −∇f(x2)‖

=

∥∥∥∥∥∥
m∑
j=1

∇rj(x1)rj(x1) −
m∑
j=1

∇rj(x2)rj(x2)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
m∑
j=1

(∇rj(x1) −∇rj(x2))rj(x1) +
m∑
j=1

∇rj(x2)(rj(x1) − rj(x2))

∥∥∥∥∥∥
≤

m∑
j=1

‖∇rj(x1) −∇rj(x2)‖ |rj(x1)| +
m∑
j=1

‖∇rj(x2)‖ |rj(x1) − rj(x2)|

≤ L‖x1 − x2‖
m∑
j=1

|rj(x1)| + L‖x1 − x2‖
m∑
j=1

‖∇rj(x2)‖

≤ L̃‖x1 − x2‖.
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Problem 10.6

If J = U1SV
T , then (JTJ + λI) = V (S2 + λI)V T . From here,

pLM = −V (S2 + λI)−1SUT1 r

= −
n∑
i=1

σi
σ2
i + λ

(uTi r)vi

= −
∑
i:σi �=0

σi
σ2
i + λ

(uTi r)vi.

Thus,

‖pLM‖2 =
∑
i:σi �=0

(
σi

σ2
i + λ

(uTi r)vi

)2

,

and

lim
λ→0

pLM = −
∑
i:σi �=0

uTi r

σi
vi.

11 Nonlinear Equations

Problem 11.1

Note sT s = ‖s‖2
2 is a scalar, so it sufficies to show that ‖ssT ‖ = ‖s‖2

2. By
definition,

‖ssT ‖ = max
‖x‖2=1

‖(ssT )x‖2.

Matrix multiplication is associative, so (ssT )x = s(sTx), and sTx is a scalar.
Hence,

max
‖x‖2=1

‖s(sTx)‖2 = max
‖x‖2=1

|sTx|‖s‖2.

Last,
|sTx| = |‖s‖2‖x‖2 cos θs,x| = ‖s‖2| cos θs,x|,

which is maximized when | cos θs,x| = 1. Therefore,

max
‖x‖2=1

|sTx| = ‖s‖2,

which yields the result.
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Problem 11.2

Starting at x0 �= 0, we have r′(x0) = qxq−1
0 . Hence,

x1 = x0 − xq0
qxq−1

0

=
(

1 − 1
q

)
x0.

A straghtforward induction yields

xk =
(

1 − 1
q

)k
x0,

which certainly converges to 0 as k → ∞. Moreover,

xk+1

xk
= 1 − 1

q
,

so the sequence converges Q-linearly to 0, with convergence ratio 1 − 1/q.

Problem 11.3

For this function, Newton’s method has the form:

xk+1 = xk − r(x)
r′(x)

= xk − −x5 + x3 + 4x
−5x4 + 3x2 + 4

.

Starting at x0 = 1, we find

x1 = x0 − −x5
0 + x3

0 + 4x0

−5x4
0 + 3x2

0 + 4
= 1 − 4

2
= −1,

x2 = x1 − −x5
1 + x3

1 + 4x1

−5x4
1 + 3x2

1 + 4
= −1 +

4
2

= 1,

x3 = −1,
...

...
...

as described.
A trivial root of r(x) is x = 0, i.e.,

r(x) = (−x− 0)(x4 − x2 − 4).

The remaining roots can be found by noticing that f(x) = x4 − x2 − 4 is
quadratic in y = x2. According to the quadratic equation, we have the roots

y =
1 ±√

17
2

= x2 ⇒ x = ±
√

1 ±√
17

2
.
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As a result,

r(x) = (−x)
0
@x−

s
1 −√

17

2

1
A

0
@x−

s
1 +

√
17

2

1
A

0
@x+

s
1 −√

17

2

1
A

0
@x+

s
1 +

√
17

2

1
A .

Problem 11.4

The sum-of-squares merit function is in this case

f(x) =
1
2

(sin(5x) − x)2 .

Moreover, we find

f ′(x) = (sin(5x) − x) (5 cos(5x) − 1) ,
f ′′(x) = −25 sin(5x) (sin(5x) − x) + (5 cos(5x) − 1)2 .

The merit function has local minima at the roots of r, which as previously
mentioned are found at approximately x ∈ S = {−0.519148, 0, 0.519148}.
Furthermore, there may be local minima at points where the Jacobian is
singular, i.e., x such that J(x) = 5 cos(5x) − 1 = 0. All together, there are
an infinite number of local minima described by

x∗ ∈ S ∪ {x | 5 cos(5x) = 1 ∧ f ′′(x) ≥ 0
}
.

Problem 11.5

First, if JT r = 0, then φ(λ) = 0 for all λ.
Suppose JT r �= 0. Let the singular value decomposition of J ∈ �m×n be

J = USV

where U ∈ �m×n and V ∈ �n×n are orthogonal. We find (let z = STUT r):

φ(λ) = ‖(JTJ + λI)−1JT r‖
= ‖(V TSTUTUSV + λV TV )−1V T z‖
= ‖(V T (STS + λI)V )−1V T z‖
= ‖V T (STS + λI)−1V V T z‖ (sinceV −1 = V T )
= ‖V T (STS + λI)−1z‖
= ‖(STS + λI)−1z‖ (sinceV T is orthogonal)
= ‖(D(λ))−1z‖
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where D(λ) is a diagonal matrix having

[D(λ)]ii =
{
σ2
i + λ, i = 1, . . . ,min(m,n)

λ, i = min(m,n) + 1, . . . ,max(m,n).

Each entry of y(λ) = (D(λ))−1z is of the form

yi(λ) =
zi

[D(λ)]ii
.

Therefore, |yi(λ1)| < |yi(λ2)| for λ1 > λ2 > 0 and i = 1, . . . , n, which implies
φ(λ1) < φ(λ2) for λ1 > λ2 > 0.

Problem 11.8

Notice that
JJT r = 0 ⇒ rTJJT r = 0.

If v = JT r, then the above implies

rTJJT r = vT v = ‖v‖2 = 0

which must mean v = JT r = 0.

Problem 11.10

The homotopy map expands to

H(x, λ) = λ
(
x2 − 1

)
+ (1 − λ)(x− a)

= λx2 + (1 − λ)x− 1
2
(1 + λ).

For a given λ, the quadratic formula yields the following roots for the above:

x =
λ− 1 ±√(1 − λ)2 + 2λ(1 + λ)

2λ

=
λ− 1 ±√

1 + 3λ2

2λ
.

By choosing the positive root, we find that the zero path defined by{
λ = 0 ⇒ x = 1/2,
λ ∈ (0, 1] ⇒ x = λ−1+

√
1+3λ2

2λ ,

connects (1
2 , 0) to (1, 1), so continuation methods should work for this choice

of starting point.

42



12 Theory of Constrained Optimization

Problem 12.4

First, we show that local solutions to problem 12.3 are also global solutions.
Take any local solution to problem 12.3, denoted by x0. This means that
there exists a neighborhood N(x0) such that f(x0) ≤ f(x) holds for any
x ∈ N(x0) ∩ Ω. The following proof is based on contradiction.

Suppose x0 is not a global solution, then we take a global solution x̃ ∈ Ω,
which satisfies f(x0) > f(x̃). Because Ω is a convex set, there exists α ∈ [0, 1]
such that αx0 + (1 − α)x̃ ∈ N(x0) ∩ Ω. Then the convexity of f(x) gives

f(αx0 + (1 − α)x̃) ≤ αf(x0) + (1 − α)f(x̃)
< αf(x0) + (1 − α)f(x0)
= f(x0),

which contradicts the fact that x0 is the minimum point in N(x0) ∩ Ω. It
follows that x0 must be a global solution, and that any local solution to
problem 12.3 must also be a global solution.

Now, let us prove that the set of global solutions is convex. Let

S = {x | x is a global solution to problem 12.3},

and consider any x1, x2 ∈ S such that x1 �= x2 and x = αx1 + (1 − α)x2,
α ∈ (0, 1). By the convexity of f(x), we have

f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2)
= αf(x1) + (1 − α)f(x1)
= f(x1).

Since x ∈ Ω, the above must hold as an equality, or else x1 would not be a
global solution. Therefore, x ∈ S and S is a convex set.

Problem 12.5

Recall

f(x) = ‖v(x)‖∞
= max |vi(x)|, i = 1, . . . ,m.
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Minimizing f is equivalent to minimizing t where |vi(x)| ≤ t, i = 1, . . . ,m;
i.e., the problem can be reformulated as

min
x

t

s.t. t− vi(x) ≥ 0, i = 1, . . . ,m,
t+ vi(x) ≥ 0, i = 1, . . . ,m.

Similarly, for f(x) = max vi(x), i = 1, . . . ,m, the minimization problem
can be reformulated as

min
x

t

s.t. t− vi(x) ≥ 0, i = 1, . . . ,m.

Problem 12.7

Given

d = −
(
I − ∇c1(x)∇cT1 (x)

‖∇c1(x)‖2

)
∇f(x),

we find

∇cT1 (x)d = −∇cT1 (x)
(
I − ∇c1(x)∇cT1 (x)

‖∇c1(x)‖2

)
∇f(x)

= −∇cT1 (x)∇f(x) +
(∇cT1 (x)∇c1(x))(∇cT1 (x)∇f(x))

‖∇c1(x)‖2

= 0.

Furthermore,

∇fT (x)d = −∇fT (x)
(
I − ∇c1(x)∇cT1 (x)

‖∇c1(x)‖2

)
∇f(x)

= −∇fT (x)∇f(x) +
(∇fT (x)∇c1(x))(∇cT1 (x)∇f(x))

‖∇c1(x)‖2

= −‖∇f(x)‖2 +
(∇fT (x)∇c1(x))2

‖∇c1(x)‖2

The Hölder Inequality yields

|∇fT (x)∇c1(x)| ≤ ‖∇fT (x)‖‖∇c1(x)‖
⇒ (∇fT (x)∇c1(x))2 ≤ ‖∇fT (x)‖2‖∇c1(x)‖2,
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and our assumption that (12.10) does not hold implies that the above is
satisfied as a strict inequality. Thus,

∇fT (x)d = −‖∇f(x)‖2 +
(∇fT (x)∇c1(x))2

‖∇c1(x)‖2

< −‖∇f(x)‖2 +
‖∇f(x)‖2‖∇c1(x)‖2

‖∇c1(x)‖2

= 0.

Problem 12.13

The constraints can be written as

c1(x) = 2 − (x1 − 1)2 − (x2 − 1)2 ≥ 0,

c2(x) = 2 − (x1 − 1)2 − (x2 + 1)2 ≥ 0,
c3(x) = x1 ≥ 0,

so

∇c1(x) =
[−2(x1 − 1)
−2(x2 − 1)

]
, ∇c2(x) =

[−2(x1 − 1)
−2(x2 + 1)

]
, ∇c3(x) =

[
1
0

]
.

All constraints are active at x∗ = (0, 0). The number of active constraints
is three, but the dimension of the problem is only two, so {∇ci | i ∈ A(x∗)}
is not a linearly independent set and LICQ does not hold. However, for
w = (1, 0), ∇ci(x∗)Tw > 0 for all i ∈ A(x∗), so MFCQ does hold.

Problem 12.14

The optimization problem can be formulated as

min
x

f(x) = ‖x‖2

s.t. c(x) = aTx+ α ≥ 0.

The Lagrangian function is

L(x, λ) = f(x) − λc(x)

= ‖x‖2 − λ(aTx+ α)
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and its derivatives are

∇xL(x, λ) = 2x− λa

∇xxL(x, λ) = 2I.

Notice that the second order sufficient condition ∇xxL(x, λ) = 2I > 0 is
satisfied at all points.

The KKT conditions ∇xL(x∗, λ∗) = 0, λ∗c(x∗) = 0, λ∗ ≥ 0 imply

x∗ =
λ∗

2
a

and

λ∗ = 0 or aTx∗ + α =
λ∗‖a‖2

2
+ α = 0.

There are two cases. First, if α ≥ 0, then the latter condition implies
λ∗ = 0, so the solution is (x∗, λ∗) = (0, 0). Second, if α < 0, then

(x∗, λ∗) = −
(

α

‖a‖2
a,

2
‖a‖2

)

Problem 12.16

Eliminating the x2 variable yields

x2 = ±
√

1 − x2
1

There are two cases:

Case 1: Let x2 =
√

1 − x2
1. The optimization problem becomes

min
x1

f(x1) = x1 +
√

1 − x2
1.

The first order condition is

∇f = 1 − x1√
1 − x2

1

= 0,

which is satisfied by x1 = ±1/
√

2. Plugging each into f and choosing
the value for x1 that yields a smaller objective value, we find the
solution to be (x1, x2) = (−1/

√
2, 1/

√
2).
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Case 2: Let x2 = −
√

1 − x2
1. The optimization problem becomes

min
x1

f(x1) = x1 −
√

1 − x2
1.

The first order condition is

∇f = 1 +
x1√

1 − x2
1

= 0,

which is satisfied by x1 = ±1/
√

2. Plugging each into f and choosing
the value for x1 that yields a smaller objective value, we find the
solution to be (x1, x2) = (−1/

√
2,−1/

√
2).

Each choice of sign leads to a distinct solution. However, only case 2 yields
the optimal solution

x∗ =
(
− 1√

2
,− 1√

2

)
.

Problem 12.18

The problem is

min
x,y

(x− 1)2 + (y − 2)2

s.t. (x− 1)2 − 5y = 0.

The Lagrangian is

L(x, y, λ) = (x− 1)2 + (y − 2)2 − λ((x− 1)2 − 5y)

= (1 − λ)(x− 1)2 + (y − 2)2 + 5λy,

which implies

∂

∂x
L(x, y, λ) = 2(1 − λ)(x− 1)

∂

∂y
L(x, y, λ) = 2(y − 2) + 5λ.

The KKT conditions are

2(1 − λ∗)(x∗ − 1) = 0
2(y∗ − 2) + 5λ∗ = 0

(x∗ − 1)2 − 5y∗ = 0.
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Solving for x∗, y∗, and λ∗, we find x∗ = 1, y∗ = 0, and λ∗ = 4
5 as the only

real solution. At (x∗, y∗) = (1, 0), we have

∇c(x, y)|(x∗,y∗) =
[
2(x− 1)

−5

]∣∣∣∣
(x∗,y∗)

=
[

0
−5

]
�=
[
0
0

]
,

so LICQ is satisfied.
Now we show that (x∗, y∗) = (1, 0) is the optimal solution, with f∗ = 4.

We find

w ∈ F2(λ∗) ⇔ w = (w1, w2) satisfies [∇c(x∗, y∗)]T w = 0

⇔ [
0 −5

] [w1

w2

]
= 0

⇒ w2 = 0,

then for all w = (w1, 0) where w1 �= 0,

wT∇2L(x∗, y∗, λ∗)w =
[
w1 0

] [2(1 − 4
5) 0

0 2

] [
w1

0

]

=
2
5
w2

1 > 0 (for w1 �= 0).

Thus from the second-order sufficient condition, we find (1, 0) is the optimal
solution.

Finally, we substitute (x− 1)2 = 5y into the objective function and get
the following unconstrained optimization problem:

min
y

5y + (y − 2)2 = y2 + y + 4.

Notice that y2 + y+4 = (y+ 1
2)2 + 15

4 ≥ 15
4 , so ỹ = −1/2 yields an objective

value of 15/4 < 4. Therefore, optimal solutions to this problem cannot yield
solutions to the original problem.

Problem 12.21

We write the problem in the form:

min
x1,x2

− x1x2

s.t. 1 − x2
1 − x2

2 ≥ 0.
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The Lagrangian function is

L(x1, x2, λ) = −x1x2 − λ(1 − x2
1 − x2

2).

The KKT conditions are

−x2 − λ(−2x1) = 0
−x1 − λ(−2x2) = 0

λ ≥ 0

λ(1 − x2
1 − x2

2) = 0.

We solve this system to get three KKT points:

(x1, x2, λ) ∈
{

(0, 0, 0),

(√
2

2
,

√
2

2
,
1
2

)
,

(
−
√

2
2
,−

√
2

2
,
1
2

)}

Checking the second order condition at each KKT point, we find

(x1, x2) ∈
{(√

2
2
,

√
2

2

)
,

(
−
√

2
2
,−

√
2

2

)}

are the optimal points.

13 Linear Programming: The Simplex Method

Problem 13.1

We first add slack variables z to the constraint A2x+B2y ≤ b2 and change
it into

A2x+B2y + z = b2, z ≥ 0.

Then we introduce surplus variables s1 and slack variables s2 into the two-
sided bound constraint l ≤ y ≤ u:

y − s1 = l, y + s2 = u, s1 ≥ 0, s2 ≥ 0.

Splitting x and y into their nonnegative and nonpositive parts, we have

x = x+ − x−, x+ = max(x, 0) ≥ 0, x− = max(−x, 0) ≥ 0,
y = y+ − y−, y+ = max(y, 0) ≥ 0, y− = max(−y, 0) ≥ 0.
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Therefore the objective function and the constraints can be restated as:

max cTx+ dT y ⇔ min−cT (x+ − x−) − dT (y+ − y−)
A1x = b1 ⇔ A1(x+ − x−) = b1

A2x+B2y ≤ b2 ⇔ A2(x+ − x−) +B2(y+ − y−) + z = b2
l ≤ y ≤ u ⇔ y+ − y− − s1 = l, y+ − y− + s2 = u,

with all the variables (x+, x−, y+, y−, z, s1, s2) nonnegative. Hence the stan-
dard form of the given linear program is:

minimizex+,x−,y+,y−,z,s1,s2




−c
c
−d
d
0
0
0




T 


x+

x−

y+

y−

z
s1
s2




subject to



A1 −A1 0 0 0 0 0
A2 −A2 B2 −B2 I 0 0
0 0 I −I 0 −I 0
0 0 I −I 0 0 I







x+

x−

y+

y−

z
s1
s2




=



b1
b2
l
u




x+, x−, y+, y−, z, s1, s2 ≥ 0.

Problem 13.5

It is sufficient to show that the two linear programs have identical KKT
systems. For the first linear program, let π be the vector of Lagrangian
multipliers associated with Ax ≥ b and s be the vector of multipliers asso-
ciated with x ≥ 0. The Lagrangian function is then

L1(x, π, s) = cTx− πT (Ax− b) − sTx.

The KKT system of this problem is given by

ATπ + s = c
Ax ≥ b
x ≥ 0
π ≥ 0
s ≥ 0

πT (Ax− b) = 0
sTx = 0.
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For the second linear program, we know that max bTπ ⇔ min−bTπ. Simi-
larly, let x be the vector of Lagrangian multipliers associated with ATπ ≤ c
and y be the vector of multipliers associated with π ≥ 0. By introducing
the Lagrangian function

L2(π, x, y) = −bTπ − xT (c−ATπ) − yTπ,

we have the KKT system of this linear program:

Ax− b = y
ATπ ≤ c

π ≥ 0
x ≥ 0
y ≥ 0

xT (c−ATπ) = 0
yTπ = 0.

Defining s = c−ATπ and noting that y = Ax− b, we can easily verify that
the two KKT systems are identical, which is the desired argument.

Problem 13.6

Assume that there does exist a basic feasible point x̂ for linear program
(13.1), where m ≤ n and the rows of A are linearly dependent. Also as-
sume without loss of generality that B(x̂) = {1, 2, . . . ,m}. The matrix
B = [Ai]i=1,2,...,m is nonsingular, where Ai is the i-th column of A.

On the other hand, sincem ≤ n and the rows of A are linearly dependent,
there must exist 1 ≤ k ≤ m such that the k-th row of A can be expressed as a
linear combination of other rows of A. Hence, with the same coefficients, the
k-th row of B can also expressed as a linear combination of other rows of B.
This implies that B is singular, which obviously contradicts the argument
that B is nonsingular. Then our assumption that there is a basic feasible
point for (13.1) must be incorrect. This completes the proof.

Problem 13.10

By equating the last row of L1U1 to the last row of P1L
−1B+P T1 , we have

the following linear system of 4 equations and 4 unknowns:

l52u33 = u23

l52u34 + l53u44 = u24

l52u35 + l53u45 + l54u55 = u25

l52w3 + l53w4 + l54w5 + ŵ2 = w2.
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We can either successively retrieve the values of l52, l53, l54 and ŵ2 from

l52 = u23/u33

l53 = (u24 − l52u34)/u44

l54 = (u25 − l52u35 − l53u45)/u55

ŵ2 = w2 − l52w3 − l53w4 − l54w5,

or calculate these values from the unknown quantities using

l52 = u23/u33

l53 = (u24u33 − u23u34)/(u33u44)
l54 = (u25u33u44 − u23u35u44 − u24u33u45 + u23u34u45)/(u33u44u55)

ŵ2 = w2 − w3
u23

u33
− w4

u24u33 − u23u34

u33u44

−w5
u25u33u44 − u23u35u44 − u24u33u45 + u23u34u45

u33u44u55
.

14 Linear Programming: Interior-Point Methods

Problem 14.1

The primal problem is

min
x1,x2

x1

s.t. x1 + x2 = 1
(x1, x2) ≥ 0,

so the KKT conditions are

F (x, λ, s) =



x1 + x2 − 1
λ+ s1 − 1
λ+ s2
x1s1
x2s2


 = 0,

with (x1, x2, s1, s2) ≥ 0. The solution to the KKT conditions is

(x1, x2, s1, s2, λ) = (0, 1, 1, 0, 0),

but F (x, λ, s) also has the spurious solution

(x1, x2, s1, s2, λ) = (1, 0, 0,−1, 1).
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Problem 14.2

(i) For any (x, λ, s) ∈ N2(θ1), we have

Ax = b (23a)

ATλ+ s = c (23b)
x > 0 (23c)
s > 0 (23d)

‖XSe− µe‖2 ≤ θ1µ. (23e)

Given 0 ≤ θ1 < θ2 < 1, equation (23e) implies

‖XSe− µe‖2 ≤ θ1µ < θ2µ. (24)

From equations (23a)–(23d),(24), we have (x, λ, s) ∈ N2(θ2). Thus
N2(θ1) ⊂ N2(θ2) when 0 ≤ θ1 < θ2 < 1.

For any (x, λ, s) ∈ N−∞(γ1), we have

Ax = b (25a)

ATλ+ s = c (25b)
x > 0 (25c)
s > 0 (25d)

xisi ≥ γ1µ, i = 1, 2, . . . , n. (25e)

Given 0 < γ2 ≤ γ1 ≤ 1, equation (25d) implies

xisi ≥ γ1µ ≥ γ2µ. (26)

We have from equations (25a)–(25d),(26) that (x, λ, s) ∈ N−∞(γ2).
This shows that N−∞(γ1) ⊂ N−∞(γ2) when 0 < γ2 ≤ γ1 ≤ 1.

(ii) For any (x, λ, s) ∈ N2(θ), we have

Ax = b (27a)

ATλ+ s = c (27b)
x > 0 (27c)
s > 0 (27d)

‖XSe− µe‖2 ≤ θµ. (27e)
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Equation (27e) implies

n∑
i=1

(xisi − µ)2 ≤ θ2µ2. (28)

Suppose that there exists some k ∈ 1, 2, . . . , n satisfying

xksk < γµ where γ ≤ 1 − θ. (29)

We have

xksk < γµ ≤ (1 − θ)µ
=⇒ xksk − µ < −θµ < 0

=⇒ (xksk − µ)2 > θ2µ2.

Obviously, this contradicts equation (28), so we must have xksk ≥ γµ
for all k = 1, 2, . . . , n. This conclusion, together with equations (27a)–
(27d), gives (x, λ, s) ∈ N−∞(γ). Therefore N2(θ) ⊂ N−∞(γ) when
γ ≤ 1 − θ.

Problem 14.3

For (x̄, λ̄, s̄) ∈ N−∞(γ) the following conditions hold:

(x̄, λ̄, s̄) ∈ F0, (30)
x̄is̄i ≥ γµ, i = 1, . . . , n. (31)

Therefore, for an arbitrary point (x, λ, s) ∈ F0 we have (x, λ, s) ∈ N−∞(γ)
if and only if condition (31) holds. Notice that

xisi ≥ γµ ⇔ xisi
µ

≥ γ ⇔ nxisi
xT s

≥ γ.

Therefore, the range of γ such that (x, λ, s) ∈ N−∞(γ) is equal to the set

Γ =
{
γ : γ ≤ min

1≤i≤n
nxisi
xT s

}
.
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Problem 14.4

First, notice that if ‖XSe − µe‖2 > θµ holds for θ = 1, then it must hold
for every θ ∈ [0, 1). For n = 2,

‖XSe− µe‖2 > µ ⇔ (x1s1 − µ)2 + (x2s2 − µ)2 > µ2

⇔
(
x1s1 − x2s2

2

)2

+
(
x2s2 − x1s1

2

)2

>

(
x1s1 + x2s2

2

)2

⇔ 2(x1s1 − x2s2)2 > (x1s1 + x2s2)2

⇐
√

2(x1s1 − x2s2) > x1s1 + x2s2

⇔ x1s1
x2s2

>

√
2 + 1√
2 − 1

≈ 5.8284,

which holds, for example, when

x =
(

6
1

)
and s =

(
1
1

)
.

Problem 14.5

For (x, λ, s) ∈ N−∞(1) the following conditions hold:

(x, λ, s) ∈ F0 (32)
xisi ≥ µ, i = 1, . . . , n. (33)

Assume that for some i = 1, . . . , n we have xisi > µ. Then,

n∑
i=1

xisi > nµ ⇔ xT s

n
> µ ⇔ µ > µ,

which is a contradiction. Therefore, xisi = µ for i = 1, . . . , n. Along with
condition (32), this coincides with the central path C.

For (x, λ, s) ∈ N2(0) the following conditions hold:

(x, λ, s) ∈ F0 (34)
n∑
i=1

(xisi − µ)2 ≤ 0. (35)
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If xisi �= µ for some i = 1, . . . , n, then

n∑
i=1

(xisi − µ)2 > 0,

which contradicts condition (35). Therefore, xisi = µ for i = 1, . . . , n which,
along with condition (34), coincides with C.

Problem 14.7

Assuming
lim

xisi→0
µ = lim

xisi→0
xT s/n �= 0,

i.e., xksk > 0 for some k �= i, we also have

lim
xisi→0

xT s �= 0 and lim
xisi→0

log xT s �= −∞.

Consequently,

lim
xisi→0

Φρ = lim
xisi→0

(
ρ log xT s−

n∑
i=1

log xisi

)

= ρ lim
xisi→0

log xT s− lim
xisi→0

log x1s1 − · · · − lim
xisi→0

log xnsn

= c− lim
xisi→0

log xisi
= ∞,

as desired, where c is a finite constant.

Problem 14.8

First, assume the coefficient matrix

M =


0 AT I
A 0 0
S 0 X




is nonsingular. Let

M1 =
[
0 AT I

]
, M2 =

[
A 0 0

]
, M3 =

[
S 0 X

]
,

then the nonsingularity of M implies that the rows of M2 are linearly inde-
pendent. Thus, A has full row rank.
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Second, assume A has full row rank. If M is singular, then certain rows
of M can be expressed as a linear combination of its other rows. We denote
one of these such rows as row m. Since I, S, X are all diagonal matrices
with positive diagonal elements, we observe that m is neither a row of M1

nor a row of M3. Thus m must be a row of M2. Due to the structure of
I, S, and X, m must be expressed as a linear combination of rows of M2

itself. However, this contradicts our assumption that A has full row rank,
so M must be nonsingular.

Problem 14.9

According to the assumptions, the following equalities hold

A∆x = 0 (36)

AT∆λ+ ∆s = 0. (37)

Multiplying equation (36) on the left by ∆λT and equation (37) on the left
by ∆xT yields

∆λTA∆x = 0 (38)

∆xTAT∆λ+ ∆xT∆s = 0. (39)

Subtracting equation (38) from (39) yields

∆xT∆s = 0,

as desired.

Problem 14.12

That AD2AT is symmetric follows easily from the fact that(
AD2AT

)T
=
(
AT
)T (

D2
)T (A)T = AD2AT

since D2 is a diagonal matrix.
Assume that A has full row rank, i.e.,

AT y = 0 ⇒ y = 0.

Let x �= 0 be any vector in Rm and notice:

xTAD2ATx = xTADDATx

=
(
DATx

)T (
DATx

)
= vT v

= ||v||22,
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where v = DATx is a vector in Rm. Due to the assumption that A has full
row rank it follows that ATx �= 0, which implies v �= 0 (since D is diagonal
with all positive diagonal elements). Therefore,

xTAD2ATx = ||v||22 > 0,

so the coefficient matrix AD2AT is positive definite whenever A has full row
rank.

Now, assume that AD2AT is positive definite, i.e.,

xTAD2ATx > 0

for all nonzero x ∈ Rm. If some row of A could be expressed as a linear
combination of other rows in A, then AT y = 0 for some nonzero y ∈ Rm.
However, this would imply

yTAD2AT y =
(
yTAD2

) (
AT y

)
= 0,

which contradicts the assumption that AD2AT is positive definite. There-
fore, A must have full row rank.

Finally, consider replacing D by a diagonal matrix in which exactly m of
the diagonal elements are positive and the remainder are zero. Without loss
of generality, assume that the first m diagonal elements of m are positive.
A real symmetric matrix M is positive definite if and only if there exists a
real nonsingular matrix Z such that

M = ZZT . (40)

Notice that

C = AD2AT = (AD)(AD)T =
(
BD′) (BD′)T ,

where B is the submatrix corresponding to the first m columns of A and D′

is the m ×m diagonal submatrix of D with all positive diagonal elements.
Therefore, according to (40), the desired results can be extended in this case
if and only if BD′ is nonsingular, which is guaranteed if the resulting matrix
B has linearly independent columns.
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Problem 14.13

A Taylor series approximation to H near the point (x, λ, s) is of the form:(
x̂(τ), λ̂(τ), ŝ(τ)

)
=
(
x̂(0), λ̂(0), ŝ(0)

)
+ τ
(
x̂′(0), λ̂′(0), ŝ′(0)

)
+

1
2
τ2
(
x̂′′(0), λ̂′′(0), ŝ′′(0)

)
+ · · · ,

where
(
x̂(j)(0), λ̂(j)(0), ŝ(j)(0)

)
is the jth derivative of

(
x̂(τ), λ̂(τ), ŝ(τ)

)
with respect to τ , evaluated at τ = 0. These derivatives can be deter-
mined by implicitly differentiating both sides of the equality given as the
definition of H. First, notice that

(
x̂′(τ), λ̂′(τ), ŝ′(τ)

)
solves


 0 AT I
A 0 0
Ŝ(τ) 0 X̂(τ)




x̂′(τ)λ̂′(τ)
ŝ′(τ)


 =


 −rc

−rb
−XSe


 . (41)

After setting τ = 0 and noticing that X̂(0) = X and Ŝ(0) = S, the linear
system in (41) reduces to

0 AT I
A 0 0
S 0 X




x̂′(0)
λ̂′(0)
ŝ′(0)


 =


 −rc

−rb
−XSe


 , (42)

which is exactly the system in (14.8). Therefore,(
x̂′(0), λ̂′(0), ŝ′(0)

)
=
(
∆xaff,∆λaff,∆saff

)
. (43)

Differentiating (41) with respect to τ yields
 0 AT I
A 0 0
Ŝ(τ) 0 X̂(τ)




x̂′′(τ)λ̂′′(τ)
ŝ′′(τ)


 =


 0

0
−2X̂ ′(τ)Ŝ′(τ)e


 . (44)

If we let (∆xcorr,∆λcorr,∆scorr) be the solution to the corrector step, i.e.,
when the right-hand-side of (14.8) is replaced by

(
0, 0,−∆Xaff∆Saffe

)
,

then after setting τ = 0 and noting (43) we can see that(
x̂′′(0), λ̂′′(0), ŝ′′(0)

)
=

1
2
(
∆xcorr,∆λcorr,∆scorr) . (45)
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Finally, differentiating (44) with respect to τ yields


 0 AT I
A 0 0
Ŝ(τ) 0 X̂(τ)




x̂′′′(τ)λ̂′′′(τ)
ŝ′′′(τ)


 =




0
0

−3
(
X̂ ′′(τ)Ŝ′(τ) + Ŝ′′(τ)X̂ ′(τ)

)
e


 .(46)

Setting τ = 0 and noting (43) and (45), we find


0 AT I
A 0 0
S 0 X




x̂′′′(0)
λ̂′′′(0)
ŝ′′′(0)


 =




0
0

−3
2

(
∆Xcorr∆Saff + ∆Scorr∆Xaff

)
e


 .(47)

In total, a Taylor series approximation to H is given by(
x̂(τ), λ̂(τ), ŝ(τ)

)
= (x, λ, s)

+τ
(
∆xaff,∆λaff,∆saff

)
+τ2

(
∆xcorr,∆λcorr,∆scorr)

+
τ3

3!

(
x̂′′′(0), λ̂′′′(0), ŝ′′′(0)

)
,

where
(
x̂′′′(0), λ̂′′′(0), ŝ′′′(0)

)
solves (47).

Problem 14.14

By introducing Lagrange multipliers for the equality constraints and the
nonnegativity constraints, the Lagrangian function for this problem is given
by

L(x, y, λ, s) = cTx+ dT y − λT (A1x+A2y − b) − sTx.

Applying Theorem 12.1, the first-order necessary conditions state that for
(x∗, y∗) to be optimal there must exist vectors λ and s such that

AT1 λ+ s = c, (48)
AT2 λ = d, (49)

A1x+A2y = b, (50)
xisi = 0, i = 1, . . . , n, (51)

(x, s) ≥ 0. (52)
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Equivalently, these conditions can be expressed as

F (x, y, λ, s) =



AT1 λ+ s− c
AT2 λ− d

A1x+A2y − b
XSe


 = 0, (53)

(x, s) ≥ 0. (54)

Similar to the standard linear programming case, the central path is de-
scribed by the system including (48)-(52) where (51) is replaced by

xisi = τ, i = 1, . . . , n.

The Newton step equations for τ = σµ are


0 0 AT1 I
0 0 AT2 0
A1 A2 0 0
S 0 0 X






∆x
∆y
∆λ
∆s


 =




−rc
−rd
−rb

−XSe+ σµe


 (55)

where

rb = A1x+A2y = b, rc = AT1 λ+ s− c, and rd = AT2 λ− d.

By eliminating ∆s from (55), the augmented system is given by
 0 0 AT2

A1 A2 0
−D−2 0 AT1




∆x

∆y
∆λ


 =


 −rd

−rb
−rc + s− σµX−1e


 , (56)

∆s = −s+ σµX−1e−D−2∆x, (57)

where D = S−1/2X1/2.
We can eliminate ∆x from (56) by noting

−D−2∆x+AT1 ∆λ = −rc + s− σµX−1e
⇐⇒ ∆x = −D2

(
rc + s− σµX−1e−AT1 ∆λ

)
,

which yields the system[
0 AT2
A2 A1D

2AT1

] [
∆y
∆λ

]
=
[ −rd
−rb +A1D

2
(−rc + s− σµX−1e

)] (58)

∆x = −D2
(−rc + s− σµX−1e−AT1 ∆λ

)
(59)

∆s = −s+ σµX−1e−D−2∆x. (60)

Unfortunately, there is no way to reduce this system any further in general.
That is, there is no way to create a system similar to the normal-equations
in (14.44).
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15 Fundamentals of Algorithms for Nonlinear Con-
strained Optimization

Problem 15.3

(a) The formulation is

min x1 + x2

s.t. x2
1 + x2

2 = 2
0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1.

This problem has only one feasible point, namely x1 = x2 = 1. Thus
it has a solution at x∗ = x∗2 = 1, and the optimal objective is 2.

(b) The formulation is

min x1 + x2 (61a)
s.t. x2

1 + x2
2 ≤ 1 (61b)

x1 + x2 = 3 (61c)

Substituting equation (61c) into (61b), we get

x2
1 + (3 − x1)2 ≤ 1 which implies x2

1 − 3x1 + 4 ≤ 0.

This inequality has no solution; thus the feasible region of the original
problem is empty. This shows that the problem has no solution.

(c) The formulation is

min x1x2

s.t. x1 + x2 = 2

Since the constraint of this problem is linear, we eliminate x2 from the
objective and get an unconstrained problem, namely

min x1(2 − x1) = −(x1 − 1)2 + 1.

Obviously, when |x1 − 1| → +∞, we see that −(x1 − 1)2 + 1 → −∞.
This shows that the original problem is unbounded below, hence it has
no solution.
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Problem 15.4

The optimization problem is

min
x,y

x2 + y2

s.t. (x− 1)3 = y2.

If we eliminate x by writing it in terms of y, i.e. x = 3
√
y2 + 1, then the

above becomes the unconstrained problem

min f(y) ≡ (y2/3 + 1)2 + y2.

Notice f ≥ 0, so the optimal solution to the unconstrained problem is y∗ = 0,
which corresponds to the optimal solution (x∗, y∗) = (1, 0) to the original
problem.

Problem 15.5

We denote the ith column of B−1 by yi, (i = 1, 2, . . . ,m), and the jth column
of −B−1N by zj , (j = 1, 2, . . . n − m). The existence of B−1 shows that
y1, y2, . . . , ym are linearly independent. Let us consider

[
Y Z

]
=
[
B−1 −B−1N

0 I

]
=
[
y1 y2 . . . ym z1 z2 . . . zn−m
0 0 . . . 0 e1 e2 . . . en−m

]
.

In order to see the linear dependence of
[
Y Z

]
, we consider

k1

[
y1

0

]
+k2

[
y2

0

]
+ · · ·+km

[
ym
0

]
+ t1

[
z1
e1

]
+ t2

[
z2
e2

]
+ · · ·+ tn−m

[
zn−m
en−m

]
= 0.

(62)
The last (n−m) equations of (62) are in fact

t1e1 + t2e2 + · · · + tn−men−m = 0,

where ej =
[
0 0 · · · 0 1 0 0 · · · 0

]T. Thus t1 = t2 = · · · = tn−m = 0. This
shows that the first m equations of (62) are

k1y1 + k2y2 + · · · + kmym = 0.

It follows immediately that k1 = k2 = · · · = km = t1 = t2 = · · · = tn−m = 0,
which indicates that the collection of columns of

[
Y Z

]
form a linearly

independent basis of R
n.
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Problem 15.6

Recall ATΠ = Y R. Since Π is a permutation matrix, we know ΠT = π−1.
Thus A = ΠRTY T . This gives

AAT = ΠRTY TY RΠT . (63)

The matrix
[
Y Z

]
is orthogonal, so Y TY = I. Then (63) gives

AAT = ΠRTRΠT

(AAT )−1 = ΠR−1R−TΠT

AT (AAT )−1 = (Y RΠT )ΠR−1R−TΠT

AT (AAT )−1 = Y R−TΠT

AT (AAT )−1b = Y R−TΠT b.

Problem 15.7

(a) We denote the ith column of matrix

[
I

(B−1N)T

]
=


 | . . . | . . . |
y1 . . . yi . . . yn
| . . . | . . . |


 by yi.

Then
‖yi‖2 = 1 + ‖(B−1N)i‖2 ≥ 1.

Thus Y is no longer of norm 1. The same argument holds for the
matrix

Z =
[−B−1N

I

]
.

Furthermore,

Y TZ =
[
I B−1N

] [−B−1N
I

]
= −B−1N +B−1N = 0,

AZ =
[
B N

] [−B−1N
I

]
= −BB−1N +N = 0.

These show that the columns of Y and Z form an independent set and
Y , Z are valid basis matrices.
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(b) We have from A =
[
B N

]
that

AAT =
[
B N

] [BT

NT

]
= BBT +NNT .

Therefore,

AY =
[
B N

] [ I
(B−1N)T

]
= B +N(B−1N)T = B +NNTB−T

= (BBT +NNT )B−T = (AAT )B−T .

And then,

(AY )−1 = BT (AAT )−1

=⇒ Y (AY )−1 = Y BT (AAT )−1

=⇒ Y (AY )−1(AAT ) = Y BT (AAT )−1(AAT ) = Y BT

=
[

I
(B−1N)T

]
BT =

[
NTB−TBT

]
=
[
BT

NT

]
= AT .

This implies Y (AY )−1 = AT (AAT )−1. Thus Y (AY )−1b = AT (AAT )−1b,
which is the minimum norm solution of Ax = b.

Problem 15.8

The new problem is:

min sin(x1 + x2) + x2
3 +

1
3

(
x4 + x4

5 +
1
2
x6

)
s.t. 8x1 − 6x2 + x3 + 9x4 + 4x5 = 6

3x1 + 2x2 − x4 + 6x5 + 4x6 = −4
3x1 + 2x3 ≥ 1.

If we eliminate variables with (15.11):

(
x3

x6

)
= −

(
8 −6 9 4
3
4

1
2 −1

4
3
2

)


x1

x2

x3

x4

x5


+

(
6
−1

)
,
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the objective function will turn out to be (15.12). We substitute (15.11)
into the inequality constraint:

1 ≤ 3x1 + 2(−8x1 + 6x2 − 9x4 − 4x5 + 6)
= −13x1 + 12x2 − 18x4 − 8x5 + 12

=⇒ −13x1 + 12x2 − 18x4 − 8x5 ≥ −11,

which is exactly (15.23). Thus the problem turns out to be minimizing
function (15.12) subject to (15.23).

16 Quadratic Programming

Problem 16.1

(b) The optimization problem can be written as

min
x

1
2
xTGx+ dTx

s.t. c(x) ≥ 0,

where

G =
[−8 −2
−2 −2

]
, d =

[−2
−3

]
, and c(x) =


 x1 − x2

4 − x1 − x2

3 − x1


 .

Defining

A = ∇c(x) =


 1 −1
−1 −1
−1 0


 ,

we have the Lagrangian

L(x, λ) =
1
2
xTGx+ dTx− λT c(x)

and its corresponding derivatives in terms of the x variables

∇xL(x, λ) = Gx+ d−ATλ and ∇xxL(x, λ) = G.

Consider x = (a, a) ∈ �2. It is easily seen that such an x is feasible for a ≤ 2
and that

q(x) = −7a2 − 5a→ −∞ as a→ −∞.

Therefore, the problem is unbounded. Moreover, ∇xxL = G < 0, so no
solution satisfies the second order necessary conditions are there are no local
minimizers.
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Problem 16.2

The problem is:

min
x

1
2
(x− x0)T (x− x0)

s.t. Ax = b.

The KKT conditions are:

x∗ − x0 −ATλ∗ = 0, (64)
Ax∗ = b. (65)

Multiplying (64) on the left by A yields

Ax∗ −Ax0 −AATλ = 0. (66)

Substituting (65) into (66), we find

b−Ax0 = AATλ,

which implies
λ∗ =

(
AAT

)−1
(b−Ax0). (67)

Finally, substituting (67) into (64) yields

x∗ = x0 +AT (AAT )−1(b−Ax0). (68)

Consider the case where A ∈ �1×n. Equation (68) gives

x∗ − x0 = AT (AAT )−1(b−Ax0) =
1

‖A‖2
AT (b−Ax0),

so the optimal objective value is given by

f∗ =
1
2
(x∗ − x0)T (x∗ − x0)

=
1
2

(
1

‖A‖2
2

)2

(b− ax0)TAAT (b−Ax0)

=
1
2

1
‖A‖4

2

(‖A‖2
2

)
(b−Ax0)T (b−Ax0)

=
1
2

1
‖A‖2

2

(b−Ax0)2.

and the shortest distance from x0 to the solution set of Ax = b is

√
2f∗ =

√
1

‖A‖2
2

(b−Ax0)2 =
|b−Ax0|
‖A‖2

.
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Problem 16.6

First, we will show that the KKT conditions for problem (16.3) are satisfied
by the point satisfying (16.4). The Lagrangian function for problem (16.3)
is

L(x, λ) =
1
2
xTGx+ dTx− λT (Ax− b),

so the KKT conditions are

Gx+ d−ATλ = 0
Ax = b.

The point (x∗, λ∗) satisfies the KKT conditions if and only if[
G −AT
A 0

] [
x∗

λ∗

]
=
[−d
b

]
,

which is exactly the system given by (16.4).
Now assume that the reduced Hessian ZTGZ is positive definite. The

second order conditions for (16.3) are satisfied if wT∇xxL(x∗, λ∗)w = wTGw >
0 for all w ∈ C(x∗, λ∗), w �= 0. By definition, w ∈ C(x∗, λ∗) if w = Zu for
any real u, so

wTGw = uTZTGZu > 0

and the second order conditions are satisfied.

Problem 16.7

Let x = x∗ + αZu, α �= 0. We find

q(x) = q(x∗ + αZu)

=
1
2
(x∗ + αZu)TG(x∗ + αZu) + dT (x∗ + αZu)

=
1
2
x∗TGx∗ + αx∗TGZu+

1
2
α2uTZTGZu+ dTx∗ + αdTZu

= q(x∗) +
1
2
α2uTATGZu+ α(x∗TGZu+ dTZu).

A point (x∗, λ∗) satisfying the KKT conditions yields

0 = Gx∗ + d−ATλ∗.

Taking the transpose and multiplying on the right by Zu, we find

0 = x∗TGZu+ dTZu− λ∗TAZu = x∗TGZu+ dTZu,
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so in fact
q(x) = q(x∗) +

1
2
α2uTATGZu.

If there exists a u such that uTZTGZu < 0, then q(x) < q(x∗). Hence
(x∗, λ∗) is a stationary point.

Problem 16.15

Suppose that there is a vector pair (x∗, λ∗) that satisfies the KKT conditions.
Let u be some vector such that uTZTGZu ≤ 0, and set p = Zu. Then for
any α �= 0, we have

A(x∗ + αp) = b,

so that x∗ + αp is feasible, while

q(x∗ + αp) = q(x∗) + αpT (Gx∗ + c) +
1
2
α2pTGp

= q(x∗) +
1
2
α2pTGp

≤ q(x∗),

where we have used the KKT condition Gx∗ + c = ATλ∗ and the fact that
pTATλ∗ = uTZTATλ∗ = 0. Therefore, from any x∗ satisfying the KKT
conditions, we can find a feasible direction p along which q does not increase.
In fact, we can always find a direction of strict decrease when ZTGZ has
negative eigenvalues.

Problem 16.21

The KKT conditions of the quadratic program are

Gx+ d−ATλ− ĀTµ = 0,
Ax− b ≥ 0,
Āx− b̄ = 0,

[Ax− b]iλi = 0, i = 1, . . . , n
λ ≥ 0.
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Introducing slack variables y yields

Gx+ d−ATλ− ĀTµ = 0,
Ax− y − b = 0,

Āx− b̄ = 0,
yiλi = 0, i = 1, . . . , n

(y, λ) ≥ 0,

which can be expressed as

F (x, y, λ, µ) =



Gx+ d−ATλ− ĀTµ

Ax− y − b
Āx− b̄
Y Λe


 = 0.

The analog of (16.58) is

G −AT −ĀT 0
A 0 0 −I
Ā 0 0 0
0 0 Y Λ






∆x
∆λ
∆µ
∆y


 =




−rd
−rb
−rb̄

−ΛY e+ σµe




where

rd = Gx+ d−ATλ, rb = Ax− y − b, and rb̄ = Āx− b̄.

17 Penalty and Augmented Lagrangian Methods

Problem 17.1

The following equality constrained problem

min
x

− x4

s.t. x = 0

has a local solution at x∗ = 0. The corresponding quadratic penalty function
is

Q(x;µ) = −x4 +
1
2
µx2,
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which is unbounded for any value of µ.
The inequality constrained problem

min
x

x3

s.t. x ≥ 0

has a local solution at x∗ = 0. The corresponding quadratic penalty function
is

Q(x;µ) = x3 +
1
2
µ([x]−)2

= x3 +
1
2
µ(max(−x, 0))2

=
{
x3 if x ≥ 0
x3 + 1

2µx
2 if x < 0,

which is unbounded for any value of µ.

Problem 17.5

The penalty function and its gradient are

Q(x;µ) = −5x2
1 + x2

2 +
µ

2
(x1 − 1)2 and ∇Q(x;µ) =

[
(µ− 10)x1 − µ

2x2

]
,

respectively. For µ = 1, the stationary point is (−1/9, 0) and the contours
are shown in figure 4.

Problem 17.9

For Example 17.1, we know that x∗ = (−1,−1) and λ∗ = −1
2 . The goal

is to show that φ1(x;µ) does not have a local minimizer at (−1,−1) unless
µ ≥ ‖λ∗‖∞ = 1

2 .
We have from the definition of the directional derivative that for any

p = (p1, p2),

D(φ1(x∗;µ), p) = ∇f(x∗)T p+ µ
∑
i∈E

|∇ci(x∗)T p|

= (p1 + p2) + µ|−2(p1 + p2)|
=
{

(1 − 2µ)(p1 + p2) if p1 + p2 < 0
(1 + 2µ)(p1 + p2) if p1 + p2 ≥ 0.
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Figure 4: Contours for the quadratic penalty function Q(x;µ), µ = 1.

It is easily seen that when µ < 1
2 , we can always choose p1 + p2 < 0 such

that
(1 − 2µ)(p1 + p2) < 0,

in which case p is a descent direction for φ1(x∗;µ). On the other hand, when
µ ≥ 1

2 , there can be no descent directions for φ1(x∗;µ) sinceD(φ1(x∗;µ), p) ≥
0 always holds. This shows that φ1(x;µ) does not have a local minimizer at
x∗ = (−1,−1) unless µ ≥ ‖λ∗‖∞ = 1

2 .

18 Sequential Quadratic Programming

Problem 18.4

When θk �= 1, we have

θk =
0.8sTkBksk

sTkBksk − sTk yk
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where sTk yk < 0.2sTkBksk. Therefore

sTk rk = sTk (θkyk + (1 − θk)Bksk)
= θk(sTk yk) + (1 − θk)sTkBksk

=
0.8sTkBksk

sTkBksk − sTk yk
sTk yk +

0.2sTkBksk − sTk yk

sTkBksk − sTk yk
sTkBksk

=
sTkBksk

sTkBksk − sTk yk

(
0.8sTk yk + 0.2sTkBksk − sTk yk

)

=
sTkBksk

sTkBksk − sTk yk

(
0.2sTkBksk − 0.2sTk yk

)
= 0.2sTkBksk
> 0.

This shows that the damped BFGS updating satisfies (18.17).

Problem 18.5

We have

c(x) = x2
1 + x2

2 − 1 and ∇c(x) =
[
2x1

2x2

]
,

so the linearized constraint at xk is

0 = c(xk) + ∇c(xk)T p
= x2

1 + x2
2 − 1 + 2x1p1 + 2x2p2.

(a) At xk = (0, 0), the constraint becomes

0 = −1,

which is incompatible.

(b) At xk = (0, 1), the constraint becomes

0 = 2p2,

which has a solution of the form p = (q, 0), q ∈ �.

(c) At xk = (0.1, 0.02), the constraint becomes

0 = −0.9896 + 0.2p1 + 0.04p2,

which has a solution of the form p = (4.948, 0) + q(−0.2, 1), q ∈ �.
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(d) At xk = −(0.1, 0.02), the constraint becomes

0 = −0.9896 − 0.2p1 − 0.04p2,

which has a solution of the form p = −(4.948, 0) + q(−0.2, 1), q ∈ �.

19 Interior-Point Methods for Nonlinear Program-
ming

Problem 19.3

Define the vector function

c(x) = Dr(x),

where D is a diagonal scaling matrix with nonzero diagonal entries. The
Jacobian corresponding to c(x) is

A(x) =



∇c1(x)T

...
∇cn(x)T


 =



D11∇r1(x)T

...
Dnn∇rn(x)T


 = DJ(x).

Therefore, the Newton step p is obtained via the solution of the linear system

DJ(x)p = −Dr(x),

which is equivalent to
J(x)p = −r(x)

since D is nonsingular.

Problem 19.4

Eliminating the linear equation yields x1 = 2−x2. Plugging this expression
into the second equation implies that the solutions satisfy

−3x2
2 + 2x2 + 1 = 0. (69)

Thus, the solutions are

(x1, x2) ∈
{

(1, 1) ,
(

7
3
,
1
3

)}
.
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Similarly, multiplying the first equation by x2 yields the system[
x1x2 + x2

2 − 2x2

x1x2 − 2x2
2 + 1

]
= 0.

Subtracting the first equation from the second again yields (69), and the
solutions remain unchanged.

Newton’s method applied to the two systems yields the linear systems[
1 1
x2 x1 − 4x2

]
d = −

[
x1 + x2 − 2

x1x2 − 2x2
2 + 1

]

and [
x2 x1 + 2x2 − 2
x2 x1 − 4x2

]
d = −

[
x1x2 + x2

2 − 2x2

x1x2 − 2x2
2 + 1

]
.

From the point x = (1,−1), the steps are found to be d = (4/3, 2/3) and
d = (1/2, 1/2), respectively.

Problem 19.14

For clarity, define

U =



W
0
0
0


 , V =



WMT

0
0
0



T

,

and

C =
[
D AT

A 0

]
,

where

D =
[
ξI 0
0 Σ

]
and A =

[
AE 0
AI I

]
.

It can easily be shown that

C−1 =
[
D−1 −D−1AT (AD−1AT )−1AD−1 D−1AT (AD−1AT )−1

(AD−1AT )AD−1 −(AD−1AT )−1

]
,

so the solution r of the primal-dual system (C+UV T )r = −s can be obtained
via the Sherman–Morrison–Woodbury formula as

r = −(C + UV T )−1s = − (C−1 − C−1U(I + V TC−1U)−1V TC−1
)
s,

which requires only solutions of the system Cv = b for various b.
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