
Journal of Systems Architecture 57 (2011) 452–462
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc
Dynamic cohesion measures for object-oriented software

Varun Gupta *, Jitender Kumar Chhabra
Department of Computer Engineering, National Institute of Technology, Kurukshetra, Kurukshetra 136 119, India
a r t i c l e i n f o

Article history:
Received 15 October 2009
Received in revised form 18 April 2010
Accepted 19 May 2010
Available online 26 May 2010

Keywords:
Cohesion
Dynamic metrics
Dynamic analysis
Software engineering
Object-oriented software systems
1383-7621/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.sysarc.2010.05.008

* Corresponding author.
E-mail addresses: varun3dec@yahoo.com (V. Gu

mail.com (J.K. Chhabra).
a b s t r a c t

Most of the object-oriented cohesion metrics proposed in the literature define static cohesion at class
level. Measurement of object-level dynamic cohesion however gives better insight into the behavioural
aspects of the system. In this paper, dynamic cohesion metrics are introduced which provide scope of
cohesion measurement up to object level and take into account important and widely used object-ori-
ented features such as inheritance, polymorphism and dynamic binding during measurement. A theoret-
ical framework is introduced before defining the measures and a theoretic validation of the proposed
measures is carried out to make them more meaningful. A dynamic analyser tool is developed using
aspect-oriented programming (AOP) to perform dynamic analysis of Java applications for the purpose
of collecting run-time data for computation of the proposed dynamic cohesion measures. Further, an
experiment is carried out for the proposed dynamic cohesion metrics using 20 Java programs and this
study shows that the proposed dynamic cohesion metrics are more accurate and useful in comparison
to the existing cohesion metrics. Moreover, the proposed dynamic cohesion metrics are validated empir-
ically using source code APIs of Java Development Kit (JDK) and the proposed metrics are found to be
better indicators of change-proneness of classes than the existing cohesion metrics.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Object-oriented software is a collection of many classes and
each class is a collection of attributes and methods. Software can
be said to be of good quality if its classes have maximum cohesion
and minimum coupling. Cohesion of a class is an internal software
attribute representing the degree to which its elements are bound
together. A large number of measures have been proposed to quan-
tify this concept [7,9,11–14,19,20,28,33,37,38,40,41,43]. Most of
the class cohesion measures proposed in literature are static in nat-
ure. Only a few attempts have been made to measure cohesion of a
class at run-time [17,30,31]. However, these run-time cohesion
measures are direct extensions of the existing static cohesion mea-
sures. In this paper, an attempt has been made to define the dy-
namic cohesion measures for objects as well as classes from the
scratch and the proposed dynamic cohesion measures take into
consideration the features of object-orientation like inheritance,
polymorphism and dynamic binding. The inclusion of effect of
these features in computation of cohesion makes them different
and more accurate than the existing static cohesion measures.
The dynamic cohesion metrics proposed in this paper are based
on the executable code from which dynamic behaviour of applica-
tions is obtained. The method to measure object-level dynamic
ll rights reserved.

pta), jitenderchhabra@rediff-
cohesion is to instrument the source code to log all occurrences
of interactions among object-members while the application is
being executed.

The main difference between static and dynamic cohesion
metrics is the scope of measurement at which cohesion is being
measured. The scope of static cohesion measurement is always
the whole class. On the other hand, scope of dynamic cohesion
measurement can even be specific to a single object belonging to
a class at run-time. In case of dynamic metrics, cohesion is first
measured at object level and then cohesion of corresponding class
is obtained by aggregating cohesion values of all objects belonging
to that class. Moreover, static cohesion metrics attempt to predict
the potential interactions that would take place at run-time,
whereas dynamic cohesion metrics measure what is actually hap-
pening at run-time rather than predicting.

With ever increasing use of object-oriented software in indus-
try, it has been observed that inheritance and polymorphism are
used more frequently to improve internal reuse in a system and
facilitate maintenance [3]. The actual target of polymorphic meth-
od invocations can only be determined at run-time as per the
inherited members of the class. Thus, it is not feasible to obtain
precise static measures which take inheritance and polymorphism
into account [2]. Dynamic cohesion measures are likely to be more
accurate than static cohesion metrics for object-oriented programs
involving inheritance and polymorphism.

The development of a well-defined cohesion measure consists
of two steps: first, a well-defined theoretical framework should

http://dx.doi.org/10.1016/j.sysarc.2010.05.008
mailto:varun3dec@yahoo.com
mailto:jitenderchhabra@rediffmail.com
mailto:jitenderchhabra@rediffmail.com
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

V. Gupta, J.K. Chhabra / Journal of Systems Architecture 57 (2011) 452–462 453
be constructed that characterizes the elements and relationships
among the elements of an object or a class; second, a cohesion
measure (satisfying well-defined theoretical properties) should
be defined. This paper measures the dynamic cohesion on basis
of four types of relationship among the elements of an object:
the write dependence of attributes on methods, the read depen-
dence of methods on attributes, the call dependence between
methods and the reference dependence between attributes.

The remainder of this paper is organized as follows. Section 2
discusses the related work and Section 3 constructs a well-defined
theoretical framework, proposes the definitions of dynamic cohe-
sion metrics and performs theoretic validation of the proposed
measures. Section 4 introduces a dynamic analyser tool for compu-
tation of proposed dynamic metrics using aspect-oriented ap-
proach and Section 5 presents a case study for the demonstration
of computation of dynamic cohesion measures. Section 6 carries
out an empirical study using 20 Java programs which assesses
the proposed dynamic cohesion measures and compares them
with the existing cohesion metrics. Section 7 validates the pro-
posed measures empirically using source code APIs of JDK and Sec-
tion 8 presents conclusions and future work directions.
2. Related work

A variety of cohesion metrics have been proposed and used in
past empirical studies [7,9,11–14,19,20,28,33,37,38,40,41,43].
However, most of these measures are defined at class level. Only
a few attempts have been made to define run-time cohesion met-
rics [17,30,31]. Gupta et al. [17] re-defined module cohesion met-
rics, SFC (Strong Functional Cohesion) and WFC (Weak Functional
Cohesion) originally proposed by Bieman and Ott [7,37,38]. Gupta
et al. [17] proposed program execution based module cohesion
metrics based on the dynamic slicing of the program. They used
dynamic slices of outputs to measure module cohesion. They sta-
ted that module cohesion metrics based on static slicing approach
have got some inadequacies in cohesion measurement. The static
measures significantly overestimate the levels of cohesion present
in the software. Their approach addressed the drawbacks of static
cohesion metrics by considering dynamic behaviour of programs
and designing metrics based on dynamic slices obtained through
program execution. The dynamic cohesion metrics are defined on
the basis of common definitions, common use and common defini-
tion-use pairs in dynamic slices, which facilitate more precise
cohesion measurement than the corresponding static metrics.
The authors defined SFC as module cohesion obtained from com-
mon def-use pairs of each type common to the dynamic slices of
all the output variables and WFC as module cohesion obtained
from def-use pairs of each type found in dynamic slices of two or
more output variables.

The proposal of Gupta et al. is an extension of Bieman’s static
cohesion and Mitchell and Power [30,31] defined dynamic cohe-
sion metrics based on CK’s LCOM (Lack of COhesion Metric) [4].
Mitchell and Power proposed two metrics Run-time Simple LCOM
(RLCOM) and Run-time Call-Weighted LCOM ðRW

LCOMÞ based on LCOM
metric. First metric is a direct translation of the LCOM metric to
take into account only those instance variables that are actually ac-
cessed at run-time. Second metric is an extension of the Run-time
Simple LCOM, modified to take into account the total number of
accesses made to an instance variable by a method of the class.

The dynamic cohesion metrics given by Gupta et al. [17] only
deal with procedure-oriented program and the run-time cohesion
metrics proposed by Mitchell et al. are just dynamic equivalent
of the existing cohesion metrics such as LCOM given by Chidamber
and kemerer [14]. To the best of our knowledge, this is the first at-
tempt to define dynamic cohesion metrics from the beginning
although a number of dynamic metrics have been proposed for
the measurement of other software attributes such as coupling
[42,2,3,21–23] and complexity [25,34,35]. Recently, empirical
studies have indicated that static measures are insufficient for cap-
turing dynamic aspects of object-oriented systems such as those
related to inheritance and polymorphism [2,3]. Thus, it becomes
important to define new metrics for the measurement of cohesion
in object-oriented systems at run-time.

3. Dynamic cohesion measurement

In object-oriented systems, attributes and methods are the
basic elements of an object or a class. A well-defined theoretical
framework that formally defines these elements and depicts the
relationships among the elements is the precondition of a well-
defined cohesion measure. Here, a novel theoretical framework is
proposed for characterizing elements and dependence relation-
ships among elements of an object or class. This framework is used
to describe relationships of four types: (i) write dependence rela-
tion between attributes and methods, (ii) read dependence relation
between methods and attributes, (iii) call dependence relation
among methods, and (iv) reference dependence relation among
attributes.

The proposed measures take into account two types of access
relationships between methods and attributes, i.e. read access rela-
tions and write access relations between methods and attributes. If
a method having some logical error writes an attribute, then the
value of attribute may also be incorrect. Thus, value of the attribute
is dependent on the behaviour of the method during write access
relationship between methods and attributes. Similarly, if a meth-
od reads an attribute that has incorrect value, then behaviour of
the method may also be erroneous. Though, if method has a logical
error, the value of attribute will not be affected by the method
reading it. This fact states that the behaviour of method is depen-
dent on the value of attribute during read access relationship be-
tween methods and attributes [1].

The proposed metrics account for inheritance and polymor-
phism present in object-oriented software. During dynamic cohe-
sion measurement, we treat class (including inherited features)
as a single semantic concept. Thus, set of attributes and set of
methods of a class (formally defined in the next section) include
set of inherited attributes and set of inherited methods, respec-
tively. The concept of polymorphism is relevant only in method
invocation type of connections. Since, cohesion is being measured
for an object at run-time; polymorphic method invocations are ac-
counted for automatically instead of static method invocations.

3.1. Definitions and terminology

Methods: M(c) is the set of methods of a class c, which may be
either inherited, or implemented in the class. Moreover, MINH(c)
is the set of methods inherited in class c and MIMP(c) is the set of
methods implemented (including overridden/re-defined methods)
in class c. Further, MDEF(c) is the set of methods defined in class c
and MREDEF(c) is the set of methods re-defined in class c. The fol-
lowing properties hold:

MIMPðcÞ ¼ MDEFðcÞ [MREDEFðcÞ
MðcÞ ¼ MINHðcÞ [MIMPðcÞ
MINHðcÞ \MIMPðcÞ ¼ ;

However, not all the methods of a class contribute to its cohe-
sion [40]. There exist some special methods such as constructor,
destructor, access methods and delegation methods intrinsically
accessing only some of the attributes in the class [9,11,12,40]. A
constructor is a type of method that initialises essential attributes

454 V. Gupta, J.K. Chhabra / Journal of Systems Architecture 57 (2011) 452–462
of the class and a destructor is a type of method that may only
de-initialise crucial attributes of the class. An access method is a
method that only reads or writes a particular attribute of the class.
A delegation method is a method that only delegates a message to
another object, especially to an attribute in the class, thus, gener-
ally has only one interaction with one attribute. These special
methods may not essentially access all of the attributes. It has been
widely accepted by a number of authors that these methods have
no influence on the cohesion of a class [9,11,12,40]. Thus, these
methods need to be excluded in the measurement of cohesion of
a class. To describe this proposal better, special methods and nor-
mal methods are defined as follows:

MS(c) is the set of special methods in class c, which may be con-
structors, destructors, access methods or delegation methods in
class c and MN(c) is the set of normal methods in class c, which
are not special methods. The following properties also hold:

MðcÞ ¼ MSðcÞ [MNðcÞ
MSðcÞ \MNðcÞ ¼ ;

Similarly, MR(o) is the set of methods used by an object o at run-
time and MR

SðoÞ is the set of special methods used by object o and
MR

NðoÞ is the set of normal methods used by object o and all
above-defined properties also hold for methods used by an object
at run-time.

Attributes: A(c) represents set of all attributes whether imple-
mented or inherited in a class c. Furthermore, AINH(c) and AIMP(c)
are the set of attributes inherited and implemented respectively
in class c. Also, A(c) = AINH(c) [AIMP(c) and AINH(c) \ AIMP(c) = ;.

Similarly, AR(o) represents the set of attributes used by object o
at run-time and all above-defined properties also hold for attri-
butes used by the object at run-time.

Class: A class in an object-oriented system is the encapsulation
of attributes and methods. However, if no relationship exists
between members of a class, then there is no point of encapsulat-
ing them together. Thus, for the purpose of measurement of cohe-
sion, a class must be considered as a set of its members and set of
relationships between its members. A class, c in an object-oriented
system can be defined as a set of its elements (attributes and meth-
ods) and relations between these elements, i.e. c = hE,Ri, where E
represents the set of elements of a class, which may be attributes
(instance variables) and methods (member functions), i.e.
E 2 A(c) [M(c) ^ c 2 C, where C represents the set of classes in an
object-oriented system. The elements in a class may be imple-
mented in the class itself or may be inherited from super classes.
R represents set of relations among elements, E of the class.

Object: Objects are concrete representations of the classes and
set of values of attributes of an object represent state of that object.
Methods of an object define behaviour of the object at run-time. An
object o is an instance of a class c created at run-time such that
o 2 O(c) ^ c 2 C where O(c) represents the set of objects of a class
c created during execution of the program. An object o is defined
in terms of its elements (attributes and methods) and relations
existing at run-time between these elements, i.e. o = hER,RRi, where
ER represents the set of elements (attributes and methods) used by
object o at run-time, i.e. ER 2 AR(o) [MR(o) and RR is a set of rela-
tions among elements, ER at run-time.

Relations: The relation between a pair of elements eR
i and eR

j of
an object at run-time is represented by rR

T eR
i ; e

R
j

� �
where T describes

the type of relationship. The presence of a relation from element eR
i

to eR
j at run-time is denoted by rR

T eR
i ; e

R
j

� �
¼ 1. Moreover, this rela-

tion depicts that element eR
i depends on eR

j at run-time. The pres-
ence of two types of elements of an object (i.e. attributes and
methods) causes four types of relations among object-elements.
These types of relations between object-elements are described
as follows:
Attribute–Method Write Relation rR
W eR

i ; e
R
j

� �� �
: This type of

dependence relation exists between attribute type element and
method type element of an object. This relation exists when a
method m of an object writes value of an attribute a of the object.
In this sort of relation, attribute a depends on the method m due to
the fact that value of attribute a is dependent on the behaviour of
method m and this relation is termed as write dependency
between attribute and method. This kind of relation between a pair

of elements of an object, o(o = hER,RRi, where rR
W eR

i ; e
R
j

� �
2 RR^

�
eR

i 2 ER ^ eR
j 2 ERÞ is represented as:

rR
W eR

i ; e
R
j

� �
¼ 1 ^ eR

i 2 ARðoÞ ^ eR
j 2 MRðoÞ ^ o 2 OðcÞ ^ c 2 C

Method–Attribute Read Relation rR
R eR

i ; e
R
j

� �� �
: This kind of

dependence relation exists between a method and an attribute of
an object when a method reads an attribute of the object at run-
time. Due to this relation, method depends on the attribute since
behaviour of the method is dependent on the value of the attribute
being read and this type of relation is referred as read dependency
between method and attribute. This kind of relation between a pair
of elements of an object, o(o = hER,RRi, where rR

R eR
i ; e

R
j

� �
2 RR^

�
eR

i 2 ER ^ eR
j 2 ERÞ is denoted as:

rR
W eR

i ; e
R
j

� �
¼ 1 ^ eR

i 2 MRðoÞ ^ eR
j 2 ARðoÞ ^ o 2 OðcÞ ^ c 2 C

Method–Method Call Relation rR
C eR

i ; e
R
j

� �� �
: This type of relation

is present between a pair of method type elements of an object.
This form of relation comes into picture when a method calls an-
other method of the object o at run-time and this relation is known
as call dependency between methods. In this relation calling meth-
od depends on the method being called. This type of relation ac-
counts for polymorphism present in object-oriented programs as
method being invoked by other method may be inherited one. This
relation between a pair of elements of an object, o(o = hER,RRi),
where rR

R eR
i ; e

R
j

� �
2 RR ^ eR

i 2 ER ^ eR
j 2 ER

� �
is represented as:

rR
W eR

i ; e
R
j

� �
¼ 1 ^ eR

i 2 MRðoÞ ^ eR
j 2 MRðoÞ ^ o 2 OðcÞ ^ c 2 C

Attribute–Attribute Reference Relation rR
RF eR

i ; e
R
j

� �� �
: This kind of

relation exists between a pair of attribute type elements of an ob-
ject at run-time. The reference of a pair of attributes together in a
single method induces some dependency between them. An attri-
bute ai is said to be related to the other attribute aj of an object o, if
both are referred together in a method of an object and this rela-
tion is acknowledged as reference dependency between attributes.
This particular type of relation is not directional in nature, since
the relation between a pair of attributes is indirect in nature. Thus,

rR
RF eR

i ; e
R
j

� �
¼ rR

RF eR
j ; e

R
i

� �
. This type of relation between a pair of ele-

ments of an object (o = hER,RRi, where rR
RF eR

i ; e
R
j

� �
2 RR ^ eR

i 2
�

ER ^ eR
j 2 ER

�
is represented as:

rR
RF eR

i ; e
R
j

� �
¼ 1 ^ eR

i 2 ARðoÞ ^ eR
j 2 ARðoÞ ^ o 2 OðcÞ ^ c 2 C

Dependence Degrees of Relations: The above-defined four types
of relations between members of an object or class have different
degrees of dependency in terms of their importance towards mea-
surement of cohesion. The dependence degrees of relations are
characterized by weights shown in Table 1. Generally, the weigh-
tage of write dependency is greater than that of read dependency

[40]. Thus, Attribute–Method Write Relation, rR
W eR

i ; e
R
j

� �
has got

the more weightage than that of Method–Attribute Read Relation,

Table 1
Weightage of different relations.

Relation type Weightage

Attribute–Method Write Relation rR
W eR

i ; e
R
j

� �� �
w1

Method–Attribute Read Relation rR
R eR

i ; e
R
j

� �� �
w2

Method–Method Call Relation rR
C eR

i ; e
R
j

� �� �
w3

Attribute–Attribute Reference Relation rR
RF eR

i ; e
R
j

� �� �
w4

V. Gupta, J.K. Chhabra / Journal of Systems Architecture 57 (2011) 452–462 455
rR
R eR

i ; e
R
j

� �
, i.e. w1 > w2. The dependence relations between methods

and attributes are more important than that of dependence
relations among methods due to the fact that most of the cohesion
measures are defined in terms of degree of tightness among
methods and attributes [14,19,20,7,37,38]. Thus, Method–Attribute

Read Relation, rR
R eR

i ; e
R
j

� �
has got more weightage than that of Meth-

od–Method Call Relation, rR
C eR

i ; e
R
j

� �
, i.e. w2 > w3 and Attribute–

Attribute Reference Relation, rR
RF eR

i ; e
R
j

� �
has got the lowest weigh-

tage due to the fact that this type of relation is indirect in nature,
i.e. w1 > w2 > w3 > w4. The values of these weights can be assigned
based on opinions of software engineering experts having sufficient
(more than 10 years) analysis and design experience [27].

3.2. Definitions of measures

The mapping level of dynamic cohesion measurement can be
either object or class. Object-level dynamic cohesion quantifies
the extent of dependencies between the members of an object at
run-time. As object is an instance of a class created at run-time
during execution of a specific execution scenario x stimulated by
input data or event. Dynamic cohesion of an object is obtained
by averaging the measurements made for all scenarios of the appli-
cation. Class-level dynamic cohesion aggregates the object-level
cohesion values of all instances of a class created during all execu-
tion scenarios of the application. As defined above, there are four
kinds of relations among attributes and methods to be considered
for the measurement of dynamic cohesion of object or class. Thus,
the dynamic cohesion of an object or class should be measured
from the four facets.

The cohesion measurement of an object or class should consider
only two types of elements: normal methods and attributes. In the
following discussions, we assume that class c and so, the object o
(o 2 O(c)) has total number of attributes as m, i.e. jA(c)j = m &
jA(o)j = m and total number of normal methods as n, i.e. jMN(c)j = n
& jM(o)j = n.

(1) Dynamic Cohesion due to Write dependency of Attributes
on Methods (DC_AMX): This type of dynamic cohesion
exists between attributes and methods of an object
when a method of an object writes an attribute of the
object during execution of a specific scenario x. This
type of cohesion is due to the presence of relations of

the type Attribute–Method Write Relation, rR
W eR

i ; e
R
j

� �
as

defined above. This type of dynamic cohesion for an
object o is defined as the ratio of actual number of dis-

tinct dependence relations of the type rR
W eR

i ; e
R
j

� �
between all attributes and all methods during execution

of a specific scenario, i.e.
Pm

i¼1

Pn
j¼1rR

W eR
i ; e

R
j

� �
to the max-

imum possible number of relations of this type between
them (i.e. m � n). In case, if either number of attributes
or number of methods of an object is zero, then this
kind of cohesion is zero for that object. The dynamic
cohesion of an object due to write dependency of attri-
butes on methods execution of a specific scenario x is
given as follows:
DC AMXðoÞ ¼

0 m ¼ 0 or n ¼ 0Pm

i¼1

Pn

j¼1
rR

W eR
i
;eR

j

� �
m�n where eR

i 2 AðoÞ ^ eR
j

2 MNðoÞ ^ o 2 OðcÞ

8>><
>>:
(2) Dynamic Cohesion due to Read dependency of Methods on
Attributes (DC_MAX): This kind of cohesion exists between
methods and attributes of an object when a method of an
object reads an attribute during execution of a specific sce-
nario x. This type of cohesion exists due to the relations of
the type Method–Attribute Read Relation, rR

R eR
i ; e

R
j

� �
as

defined above. This type of dynamic cohesion for an object
o is defined as the ratio of actual number of distinct depen-
dence relations of the type rR

R eR
i ; e

R
j

� �
between all methods

and all attributes during execution of a specific scenario to
the maximum possible number of relations of this type
between them (i.e. n �m). In case, if either number of meth-
ods or number of attributes are zero for an object then this
type of cohesion is zero for that object. This kind of dynamic
cohesion for an object o during execution of a specific sce-
nario x is defined as follows:
DC MAXðoÞ ¼

0 n ¼ 0 or m ¼ 0Pn

i¼1

Pm

j¼1
rR

R eR
i
;eR

j

� �
n�m where eR

i 2 MNðoÞ ^ eR
j

2 AðoÞ ^ o 2 OðcÞ

8>><
>>:
(3) Dynamic Cohesion due to Call dependency between Methods
(DC_MMX): This type of cohesion exists between a pair of
methods of an object when a method mi calls other method
mj of the object during program execution. This kind of cohe-
sion is due to relations of the type, Method–Method Call
Relation, rR

C eR
i ; e

R
j

� �
as already defined above. This kind of

dynamic cohesion of an object o is defined as the ratio of
actual count of distinct dependence relations of the type
rR

C eR
i ; e

R
j

� �
between all ordered pairs of methods during exe-

cution of a specific scenario x to the maximum possible
number of relations of this type between them (i.e.
n � (n � 1)). In case, if number of methods of an object is
zero then this type of cohesion is also zero for that object
and if a single method exists for an object, then this type
of cohesion is maximum, i.e. 1 for that object. This form of
dynamic cohesion for an object o during execution of a spe-
cific scenario x is defined as follows:
DC MMXðoÞ ¼

0 n ¼ 0Pn

i¼1

Pn

j¼1^j–i
rR

C eR
i
;eR

j

� �
n�ðn�1Þ where eR

i 2 MNðoÞ ^ ejR

2 MNðoÞ ^ o 2 OðcÞ
1 n ¼ 1

8>>>>><
>>>>>:
(4) Dynamic Cohesion due to Reference dependency between attri-
butes (DC_AAX): This category of cohesion exists between
attributes of an object when these attributes are referred
together in a method of the object during program execu-
tion. The reference of a pair of attributes together in a single
method induces some dependency between them. This type
of cohesion is due to the presence of relations of the type,
Attribute–Attribute Reference Relation, rR

RF eR
i ; e

R
j

� �
as defined

above. This kind of dynamic cohesion of an object o is
obtained by dividing the actual number of distinct depen-
dence relations of the type rR

RF eR
i ; e

R
j

� �
between all pairs of

456 V. Gupta, J.K. Chhabra / Journal of Systems Architecture 57 (2011) 452–462
attributes during execution of a specific scenario x to the
maximum possible number of relations of this type between
them (i.e. n �m � (m � 1)/2). In case, if number of attributes
of an object is zero then this type of cohesion is also zero for
that object and if a single attribute exists for an object, then
this type of cohesion is maximum, i.e. 1 for that object. This
type of dynamic cohesion for an object o during execution of
a specific scenario x is defined as follows:
DC AAXðoÞ ¼

0 m¼ 0Pm�1

i¼1

Pm

j¼iþ1
rR

RF eR
i
;eR

j

� �
n�m�ðm�1Þ=2 where eR

i

2 AðoÞ ^ eR
j 2 AðoÞ^o2OðcÞ

1 m¼ 1

8>>>>><
>>>>>:
Object-level dynamic cohesion: After measuring the above four
aspects of dynamic cohesion for an object o separately during exe-
cution of a specific scenario x, overall dynamic cohesion of an ob-
ject during execution of a specific scenario x is defined as the
weighted summation of cohesion measures defined above. For this
purpose, unequally weighted linear combination model [27] has
been used since primitive metrics have unequal weights and there
is no conflict situation in metric combination. According to this
model, different weights are assigned to different primitive metrics
to combine them into a single metric. The weights for different
cohesion measures have been assigned as per the weightage given
to their respective types of relations as given above in Table 1. The
Dynamic Object Cohesion for an object o is defined as:

DOCXðoÞ ¼
w1 �DC AMXðoÞþw2 �DC MAXðoÞþw3 �DC MMXðoÞþw4 �DC AAXðoÞ

w1þw2þw3þw4

The values of the weights (w1, w2, w3 and w4) can be decided on the
basis of opinions of software engineering experts having sufficient
analysis and design experience [27]. An alternative approach for
selection of values of weights could be to use the four base metrics
in predictive models and estimate coefficients of those predictive
models, which could be used as weights. This alternative approach
could be explored in future work.

Dynamic cohesion of an object i in an application scope is the
average of the dynamic cohesion values measured during all exe-
cution scenarios of the application for the object.

DOCðoiÞ ¼
PjXj

i¼1DOCXðoiÞ
jXj

where X is the set of scenarios in an application.
Class-level dynamic cohesion: Dynamic Class Cohesion is de-

fined as the average of the values of Dynamic Object Cohesion
for all objects of a class created during all execution scenarios of
the application, i.e.

DCCðcÞ ¼
Pk

i¼1DOCðoiÞ
k

where oi 2 OðcÞ

where k is the number of objects of class c created during all execu-
tion scenarios of the application.

One problem with measuring the dynamic cohesion of a class
with application scope is to determine when the trace can stop
such that the obtained cohesion values represent the complete
application. One solution to this problem is to execute a new sce-
nario and look if any object of the class has been covered by the
scenario or there is any change in the value of dynamic cohesion
of the class as a result of running the execution scenario. Unfortu-
nately, this is not adequate to ensure that all scenarios in the appli-
cation have been executed at least once. Thus, the person doing the
trace needs to have a quite good knowledge of the application to
ensure collection of accurate dynamic cohesion data for the com-
putation of dynamic cohesion of a class (DCC).

Standard deviation is the most widely used measure of disper-
sion of values and is defined as the square-root of the average of
squares of deviations, when such deviations for the values of indi-
vidual items in a set of values are obtained from the arithmetic
average [26]. Since Dynamic Class Cohesion (DCC) is the arithmetic
average of the values of Dynamic Object Cohesion (DOC) of its ob-
jects, standard deviation can be used to measure dispersion in val-
ues of objects’ cohesions. In case value of standard deviation of
dynamic class cohesion of a class is beyond an acceptable limit,
then the calculated dynamic class cohesion (DCC) of a class can
be put under scanner and dynamic cohesion values of individual
objects can be examined. The difference of dynamic cohesion of
each object (DOC) from dynamic class cohesion (DCC) is calculated
and objects having large differences can be identified and may be
scrutinized further. The values of acceptable limits may be decided
by software engineers as per the context of the programming envi-
ronment. The standard deviation for a dynamic cohesion of a class
c is calculated as:

rDCCðcÞ ¼

ffiPk
i¼1ðDOCðoiÞ � DCCðcÞÞ2

k

s
; where oi 2 OðcÞ

where k is the number of objects of class c created at run-time,
DOC(oi) is the dynamic cohesion of object i and DCC(c) is the dy-
namic cohesion of class c as defined above.

3.3. Theoretic validation

The four cohesion properties defined by Briand characterize
cohesion in a reasonably intuitive and rigorous manner [8]. A
well-defined cohesion measure should have the following four
properties. These properties provide a guideline to develop a good
cohesion measure.

Property 1 (Non-negativity and Normalization). Normalization of a
cohesion measure makes it possible to carry out meaningful
comparisons between the cohesion values of classes or objects
having different number of elements, since they all belong to the
same interval [8]. As per the definitions of the above-defined
measures, the cohesion of an object or a class c lies within a
specified range, i.e. DOC 2 [0,1] and DCC 2 [0,1]. Thus, Property 1
holds for the proposed cohesion measures.
Property 2 (Null value). This property states that if there is no
relationship among the elements of an object or class, then the
cohesion of that object or class should be null. According to the
definitions of the above-defined measures, if there is no relation
exists between the elements of an object at run-time, then the val-
ues of all four types of cohesions for an object o, i.e. DC_AM(o),
DC_MA(o), DC_MM(o) and DC_AA(o) will be zero and as a result
cohesion of object o, DOC(o) will also be zero, since DOC(o) is the
weighted summation of these measures. Moreover, the cohesion
of a class c will also be null if cohesion values of all objects of
the class are null. Thus, the proposed measures satisfy Property 2.
Property 3 (Monotonicity). This property requires that by addition
of relationships among elements of an object or a class should not
decrease its cohesion.

Let object, o = hER,RRi, where RR represents the set of relations
among set of elements, ER of an object o at run-time. Let a
relationship is added to o to form a new object o0 ¼ hER;RR0 i, which
is identical to o except that RR � RR0 . Then, as per the above given
definition of the measure, dynamic cohesion value of new object
will only increase or will remain the same but will never decrease.

V. Gupta, J.K. Chhabra / Journal of Systems Architecture 57 (2011) 452–462 457
For objects, o = hER, RRi and o0 ¼ hER;RR0 i, if RR � RR0 then
DOC(o) 6 DOC(o0). Similarly, the property holds for a class also.
Thus, the proposed measures satisfy this property very well.
Property 4 (Merging of objects or classes). This property states that
the cohesion of an object or a class obtained by putting together two
unrelated objects or classes is not greater than the maximum cohe-
sion of the two original objects or classes. If two unrelated objects o1

and o2 are merged to form a new object o3 then the cohesion of o3 is
no larger than the maximum cohesion of o1 and o2 or if two unre-
lated classes c1 and c2 are merged to form a new class c3, then cohe-
sion of c3 is no larger than the maximum cohesion of c1 and c2.

For, o1 ¼ hER
1;R

R
1i and o2 ¼ hER

2;R
R
2i where RR

1 \ RR
2 ¼ / and

c1 = hE1, R1i and c2 = hE2, R2i where R1 \ R2 = /.

Two unrelated objects or classes have been combined to form a
new object or class; there is a proportionate increase in number
of relations as well as in number of elements. As per the definition
of cohesion measures which measure cohesion in terms of ratio of
actual number of relations existing at run-time divided by the
maximum possible number of relations among elements. There is
no net increase in the value of cohesion measure since numerator
values as well as denominator values have increased together. Thus,
the cohesion value of the combined object or class cannot be more
than the maximum of the two unrelated objects or classes, i.e.

MaxfDOCðo1Þ;DOCðo2ÞgP DOCðo3Þ or MaxfDCCðc1Þ;DCCðc2Þg
P DCCðc3Þ

Therefore, Property 4 also holds for the proposed cohesion measures.
Fig. 1. Main features of the dynamic analyser tool.
4. Dynamic analysis for computation of dynamic cohesion
metrics

Dynamic analysis of programs is a prerequisite for the calcula-
tion of dynamic metrics. Dynamic analysis of an application in-
volves the collection of run-time data from the run-time profiles
or from dynamic models of the software system. Dynamic analysis
is more precise specially in handling object-oriented features like
inheritance, polymorphism. Dynamic analysis of software can be
performed in many ways: using profilers [32], from dynamic mod-
els [42] and using aspect-oriented programming [18]. Some other
less popular techniques for dynamic analysis like AST rewriting
based, pre-processor based, method-wrappers based and hybrid
approaches also exist. After examination of all these methods, it
is found that aspect-oriented approach provides a more desirable
support for dynamic analysis of programs as compared to rest of
the methods [18]. Moreover, aspect-oriented approach is easier
to implement and at the same time, an efficient technique for dy-
namic analysis without any side effects.

4.1. AOP approach

Aspect-oriented programming (AOP) is a way of modularising
crosscutting concerns much like object-oriented programming is a
way of modularising common concerns. Aspect-oriented approach
can be used for dynamic analysis of applications written in many
languages by integrating the code with appropriate implementation
of aspect-oriented programming. A number of implementations of
AOP are available such as Aspectj for Java language, AspectC [44]
for C language, AspectC++ [45] for C++ language, Aspect.NET [46]
for C# and VB.NET languages. AspectJ [47] adds to Java a few new
constructs: join-points, pointcuts, advices, and aspects. A join-point
is just a name for an existing Java concept. It is any well-defined
point in the program flow. A pointcut picks out certain join-points
and values at these points. Advice is a piece of code that is executed
when a join-point is reached and aspects are like Java classes, but
may also include pointcuts, advices as its members. These aspects
can be used as the interceptive code for the dynamic analysis of an
application as they are written independently and merged with
the target Java application using a weaving tool provided by the lan-
guage environment. These aspects can be used for performing dy-
namic analysis of an application by tracing the application at run-
time. Tracing can be seen as a concern that crosscuts the entire sys-
tem and this concern is to be handled by encapsulating it into an as-
pect. Moreover, tracing is absolutely independent of what the
system is doing. Thus, tracing can be performed without having
any side effects on the basic functionality of the system and it can
be plugged and unplugged whenever required [18].
4.2. Dynamic analyser implementation

We used AspectJ [47] to develop the interceptive code for Java
applications as an aspect, which is an independent programming

458 V. Gupta, J.K. Chhabra / Journal of Systems Architecture 57 (2011) 452–462
unit and can be merged with the target Java program without dis-
turbing the basic functionality of the target program. Fig. 1 pro-
vides the key features of the dynamic analyser tool implemented
in AspectJ. This analyser code is an independent unit and does
not interfere with the target program and only interacts with the
target program at run-time without altering the behaviour of the
target program.

5. Case study

Consider a program written in Java [36] shown in Fig. 2. This
program consists of a class Stack. The class Stack consists of two
attributes and five methods: a constructor and four normal meth-
ods push, pop, topOfStack and isStackEmpty.

According to above given definitions, class Stack can be repre-
sented as Stack = hE, Ri, where

E(Stack) = {stck[], tos, Stack(int), push(int), pop(), isStackEmp-
ty(), topOfStack()}
A(Stack) = {stck[], tos}
Fig. 2. Example of a Java program.
M(Stack) = {Stack(int), push(int), pop(), isStackEmpty(),
topOfStack()}
MN(Stack) = {push(int), pop(), isStackEmpty(), topOfStack()}
MS(Stack) = {Stack(int)}

Here, m = 2 and n = 4
For the purpose of this case study, values of weights for differ-

ent relations as given in Table 1 are taken as follows:

w1 ¼ 4; w2 ¼ 3; w3 ¼ 2 and w4 ¼ 1

On the execution of the above program along with the dynamic
analyzer program, numbers of different types of relations recorded
are as follows:

Xm

i¼1

Xn

j¼1

rR
W eR

i ; e
R
j

� �
¼ 3;

Xn

i¼1

Xm

j¼1

rR
R eR

i ; e
R
j

� �
¼ 7;

Xn

i¼1

Xn

j¼1^j–i

rR
C eR

i ; e
R
j

� �
¼ 1 and

Xm�1

i¼1

Xm

j¼iþ1

rR
RF eR

i ; e
R
j

� �
¼ 1

As per the definitions of different cohesion measures, their dy-
namic cohesion values calculated are as follows:

DC_AM (s1) = 3/2 � 4 = 0.375
DC_MA (s1) = 7/4 � 2 = 0.875
DC_MM (s1) = 1/4 � 3 = 0.833
DC_AA (s1) = 1/4 � 2 � 1/2 = 0.25

Thus, dynamic cohesion values of object s1 and class Stack are cal-
culated as follows:DOC (s1) = (4 � 0.375 + 3 � 0.875 + 2 � 0.833 +
1 � 0.25)/10 = 0.60.DCC (Stack) = 0.60.
6. Experimental study

We conducted an experimental study for the proposed metrics
using 20 classes developed in Java. These classes were taken from
text-book [36] and web. We used the dynamic analyser tool to cal-
culate the above proposed dynamic cohesion measures for these
20 classes and results obtained are shown in Table 2. For the pur-
pose of this experiment, values of weights for different relations
are taken as: w1 = 4, w2 = 3, w3 = 2 and w4 = 1.

In Fig. 3, values of DCC metric for 20 classes are shown graphi-
cally. In this figure, Class Sr. Nos. as given in Table 2 are taken on
Table 2
Dynamic cohesion measurement.

Sr. No. Class DCC

1 Circle 0.40
2 Rectangle 0.20
3 Complex 0.90
4 Account 0.70
5 Manager 0.67
6 FixedStack 0.60
7 Balance 0.40
8 Triangle 0.40
9 RecTest 0.30
10 Box 0.40
11 Clicker 0.24
12 IceCream 0.60
13 BangBean 0.20
14 Atomicity 0.70
15 ChopStick 0.55
16 CompType 0.12
17 GeneratorsTest 0.30
18 InterestBearingAccount 0.45
19 Car 0.10
20 Employee 0.18

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Dynamic Class Cohesion (DCC)

Fig. 3. DCC values for 20 classes taken for study.

Table 4
Values of LCOM, RLCOM and DCC for classes.

Sr. No. Class LCOM RLCOM DCC

1 Circle 2 1 0.40
2 Rectangle 0 0 0.20
3 Complex 0 0 0.90
4 Account 0 0 0.70
5 Manager 4 2 0.67
6 FixedStack 0 0 0.60
7 Balance 0 0 0.40
8 Triangle 0 0 0.40
9 RecTest 0 0 0.30
10 Box 0 0 0.40

V. Gupta, J.K. Chhabra / Journal of Systems Architecture 57 (2011) 452–462 459
the X-axis and their corresponding DCC values are plotted on the Y-
axis.

Table 3 provides common descriptive statistics of the proposed
metric distributions across all the classes used in the experimental
study. This table shows that dynamic cohesion metric (DCC) values
have a good variance in the data set.

6.1. Comparison between dynamic cohesion measures, DCC and RLCOM

A correlation analysis using the standard Karl Pearson Product–
Moment method is performed to compare the proposed dynamic
cohesion metric (DCC) with the already existing dynamic cohesion
metric, RLCOM given by Mitchell et al. [30,31]. In this analysis, cor-
relation between the dynamic cohesion metric, RLCOM and widely
used static cohesion measure, Lack of Cohesion in Methods mea-
sure (LCOM) given by Chidamber and Kemerer [14] is calculated
and then, correlation between the proposed dynamic cohesion
metric, DCC and LCOM is found to determine usefulness of the pro-
posed measures. Correlation is a common research method used
for empirical validation of the metrics. For instance, Li and Henry
[29] examined correlations between various metrics in order to
determine their usefulness. Kabaili et al. [24] used this statistical
method to validate cohesion metrics as changeability indicators
and Mitchell et al. [32] used this method to examine the usefulness
of the run-time coupling metrics.

Correlation is measured using the standard Karl Pearson Prod-
uct–Moment correlation coefficient r, which measures the degree
and direction of the linear relationship between the two variables
[26]. Karl Pearson’s coefficient is the most widely used method of
measuring correlation. This method assumes that there is a linear
relationship between two variables and one of the variables is
independent while the other is dependent. Karl Pearson’s coeffi-
cient of correlation [26] is given by:

r ¼
P
ðXi � XÞðYi � YÞ

n � rx � ry

where Xi is the ith value of X variable; Yi the ith value of Y variable;
X mean of X; Y the mean of Y; n the number of pairs of observations
of X and Y; rx the standard deviation of X; and ry is the standard
deviation of Y.
Table 3
Descriptive statistics of dynamic cohesion metric (DCC).

Statistical parameter Dynamic cohesion metric (DCC)

Maximum value 0.90
Minimum value 0.10
Median 0.40
Mean 0.42
Standard deviation 0.18
The value of correlation coefficient (r) lies between �1 and +1
through 0, where 1 represents a perfect positive correlation be-
tween the variables; �1 denotes a perfect negative correlation;
and 0 indicates that there is no linear relationship between the
variables. The degree of the correlation is determined by the mag-
nitude of the coefficient. Adjective ratings of correlation strength
follow the definitions developed by Cohen [15]:

� <0.1 ‘‘Trivial”
� 0.1–0.3 ‘‘Minor”
� 0.3–0.5 ‘‘Moderate”
� 0.5–0.7 ‘‘Large”
� 0.7–0.9 ‘‘Very large”
� 0.9–1 ‘‘Almost perfect”

Any relationship between two variables should be assessed for
its strength as well as its significance. The significance of the corre-
lation results is assessed by the p-value. The p-value corresponds
to the probability that the measured correlation could be due to
purely random effects. The smaller the p-level, more significant is
the relationship between the variables.

Table 4 presents values of cohesion measures, LCOM, RLCOM and
DCC for all 20 classes undertaken for empirical study purpose. As
stated above, the Karl Pearson Product–Moment correlation meth-
od is used to calculate the correlation between the different pairs
of cohesion measures. The computed value of the correlation coef-
ficient (r) between RLCOM and LCOM comes out be 0.95 at the sig-
nificance level of 0.05. Also, the value of the correlation
coefficient (r) between the proposed metric, DCC and LCOM metric
comes out to be 0.02 at the significance level of 0.05. Table 5
depicts the corresponding values of correlation coefficient (r)
between different measures along with the significance level (p-
value) at which the correlation coefficient is obtained.

The high value of correlation coefficient (r) between RLCOM and
LCOM suggests that RLCOM is quite similar to the static measure,
LCOM and is not able to capture much dynamic information during
measurement. The value of correlation coefficient between the
proposed metric, DCC and LCOM metric is less than 0.1 which sug-
gests only trivial correlation exists between the proposed dynamic
cohesion metric, DCC and the static metric LCOM. This analysis
proves that the proposed dynamic cohesion metric, DCC is differ-
ent from LCOM metric and captures dynamic information in a bet-
ter way. Moreover, Table 4 shows that a large number of classes
11 Clicker 3 1 0.24
12 IceCream 0 0 0.60
13 BangBean 0 0 0.20
14 Atomicity 0 0 0.70
15 ChopStick 0 0 0.55
16 CompType 1 1 0.12
17 GeneratorsTest 0 0 0.30
18 InterestBearingAccount 0 0 0.45
19 Car 0 0 0.10
20 Employee 0 0 0.18

Table 5
Correlation among various measures.

Measures Correlation coefficient (r) Significance level (p-value)

RLCOM and LCOM 0.95 0.05
DCC and LCOM 0.02 0.05

460 V. Gupta, J.K. Chhabra / Journal of Systems Architecture 57 (2011) 452–462
under study get assigned a zero value for RLCOM metric. This hap-
pens due to the classes having a single method or when number
of method-pairs accessing no common attributes is less than the
number of method-pairs accessing common attributes. In compar-
ison to this, the proposed dynamic cohesion metric, DCC shows a
large variation of values for different classes as shown in Table 4.
Thus, enough variance in run-time cohesion is captured by the
DCC metric that is not accounted by RLCOM metric. In addition to
the above, the proposed dynamic cohesion metric, DCC also ad-
dresses the issues of access methods, constructors and impact of
inheritance on the cohesion measurement, whereas RLCOM metric
does not address such issues in its definition.

7. Empirical validation of the proposed measures

In this section, we would conduct an experimental study to
assess empirically whether the proposed dynamic cohesion mea-
sures are a useful predictor of external quality attribute such as
change-proneness. This would help us to validate the proposed dy-
namic cohesion metrics as software quality indicators.

7.1. Experiment goal

The goal of this study is to analyze experimentally whether the
proposed dynamic cohesion metrics are useful for predicting
change-proneness of classes or not. For this purpose, we used the
Goal/Question/Metric (GQM) paradigm [5,6,10,39] which provides
a template as well as guidelines to define measurement goals in a
systematic manner. The measurement goal of the experimental
study is defined as follows:

� Object of study: class
� Purpose: prediction
� Quality focus: change-proneness
� Viewpoint: software developer
� Environment: source code APIs of JDK

These five goal dimensions have a direct impact on the remain-
ing steps of the experimental validation of the proposed measures
[10]. The object of study helps in defining the hypotheses that may
be relevant as they are directly related to the object of study. The
purpose helps to determine the type and amount of data to be col-
lected. The quality focus facilitates in determining the dependent
attribute(s) against which the defined metric is going to be exper-
imentally validated. The viewpoint assists to determine the point
in time at which predictions should be carried out. The environ-
ment helps to determine the context in which the experimental
study is being carried out.

7.2. Empirical hypotheses

An empirical hypothesis is a statement believed to be true
about the relationship between one or more attributes of the ob-
ject of study and the quality focus [10]. In this case, the hypotheses
are about the relationship between dynamic cohesion of a class
(object of study) and change-proneness of the class (quality focus).
In this experiment, we use the number of changed lines as an indi-
cator of change-proneness.
The analysis is based on the hypotheses:
H0: p = 0 (Null hypothesis) – There is no significant correlation

between the proposed dynamic cohesion metrics and change-
proneness of classes.

H1: p – 0 (Alternative hypothesis) – There is significant correla-
tion between the proposed dynamic cohesion metrics and change-
proneness of classes.

7.3. Experimental environment

In order to experimentally validate the proposed metrics, we
conducted an experimental study with source code APIs included
in JDK which is a software development package from Sun Micro-
systems that implements the basic set of tools needed to write,
test, and debug Java applications and applets. This experimental
study has been performed with 15 packages having a total number
of 1183 classes. This type of similar study has been carried out by
Woo et al. [41] to show that the revised cohesion measures consid-
ering the impact of write interactions between class members have
stronger relations with change-proneness of classes than the origi-
nal cohesion measures.

7.4. Analysis methodology

A statistical analysis is performed to correlate the proposed
dynamic cohesion metrics with change-proneness. In this analysis,
the number of changed lines for a class is used as an indicator of
change-proneness. In the experimental study, correlation is mea-
sured using the standard Karl Pearson Product–Moment correla-
tion coefficient [26] which has already been explained in detail
in Section 6.1 above. The statistical significance level (p-value)
for the statistical test has been taken as 0.05 which corresponds
to the probability that the measured correlation could be due to
purely random effects. The smaller the p-level, more significant is
the relationship between the variables.

7.5. Analysis of experimental results

In the experiment, we have performed an empirical study of the
proposed dynamic cohesion measures with change-proneness.
This study tries to find the effectiveness of the proposed dynamic
cohesion measures on predicting the change-proneness of classes
in comparison to the static cohesion measures. For this purpose,
we first set JDK 1.3.10 as the baseline, and then count the number
of changed lines in each class compared with JDK1.4.12, then com-
pute the correlation coefficient between cohesion values and the
number of changed lines for each measure under study including
the static as well as the proposed dynamic cohesion measures.
We use the number of changed lines as an indicator of change-
proneness. Table 6 shows the total number of classes, the number
of changed lines and number of changed classes for all packages
between JDK 1.3.10 and JDK 1.4.12 [41]. We consider 1183 classes
in our experiment and 626 classes are changed among these
classes.

As stated above, the Karl Pearson Product–Moment correlation
method (explained in detail in Section 6.1) was used to quantify
the correlation between the cohesion metrics (proposed as well
as existing) values for classes and the number of changed lines in
classes. The number of changed lines in classes between above gi-
ven two versions of JDK is used as an indicator of change-prone-
ness of classes. Table 7 summarizes the results of the correlation
study. The table shows the computed correlation coefficients of
the cohesion metrics (including the proposed metric, DCC) with
the change-proneness along with the significance level (p-value)
at which the correlation coefficient is obtained.

Table 6
No. of changed classes and changed lines.

Package name Total no. of
classes

No. of changed
classes

No. of changed
lines

java.applet 1 1 4
java.awt 225 133 1448
java.beans 24 9 74
java.io 65 21 329
java.lang 93 39 329
java.math 5 3 32
java.net 33 21 329
java.rmi 48 12 75
java.security 82 26 186
java.sql 11 7 25
java.txt 50 23 315
java.util 48 33 386
javax.accessibility 9 4 17
javax.naming 63 9 24
javax.swing 426 285 4086

Total 1183 626 7729

Table 7
Results of correlation study.

Metric Correlation coefficient Significance level (p-value)

LCOM1w 0.534 0.05
LCOM2w 0.531 0.05
TCCw �0.088 0.05
DCC �0.63 0.05

V. Gupta, J.K. Chhabra / Journal of Systems Architecture 57 (2011) 452–462 461
Table 7 shows that the proposed metric, DCC has a strong neg-
ative correlation with change-proneness of classes, i.e. �0.63 at
significance level of 0.05. This negative correlation makes sense
since classes with stronger cohesion (high value of DCC) are ex-
pected to have less number of changes. The amount of correlation
between DCC and change-proneness is much higher than that of
other reported cohesion metrics in Table 7.

Woo et al. have already shown that the revised cohesion mea-
sures, LCOM1w, LCOM2w, and TCCw, have stronger relation with
the change-proneness of classes than LCOM1, LCOM2, and TCC in
[41]. The results of the correlation study conducted in this paper
show that the proposed measures have got much stronger relation
with change-proneness than the cohesion measures such as
LCOM1w, LCOM2w, and TCCw, which suggests that the proposed
measures may be better indicators than the existing measures
for predicating change-proneness. In other words, if a class under-
goes frequent changes between different versions of software, then
that class will have low dynamic cohesion as measured by the pro-
posed metrics and if a class has got high value of dynamic cohesion
(represents a single abstraction), then the class is less prone to
changes between different versions of the software. The results
show that the proposed metrics measure cohesion of a class more
accurately which may be due to the fact that the proposed metrics
measure cohesion of a class at run-time and take into account all
major types of relations between class-members during
measurement.

Since, the proposed measures have got strong correlation with
the change-proneness of classes. We reject the null hypothesis
and accept the alternative hypothesis (as stated above). The strong
correlation between the proposed dynamic cohesion metrics (DCC)
and change-proneness signify that the proposed metrics are a good
indicator of the external quality attributes such as change-prone-
ness of classes. Change proneness has been used as an indicator
of maintainability [29] as well it might also be useful to identify
maintenance ‘‘hot-spots” and unstable classes in software [2].
Moreover, number of lines changed can also be used to measure
reusability of a class in order to extend its functionality in a
prescribed way. The more lines required, the lower the reusability.
This appears to us to be a rough but reasonable measure of the
effort that would be required for a programmer to adapt a class
for use within a larger system [16]. Therefore, the proposed dy-
namic cohesion metrics might be useful indicators of the software
quality attributes such as change-proneness, maintainability and
reusability.
8. Conclusion and future work

This paper proposes new well-defined dynamic cohesion mea-
sures. In the definitions of the measures, the elements as well as
the relationships among the elements in a class are precisely char-
acterized and the special methods which do not contribute to the
cohesiveness of objects and classes are excluded in the measure-
ment. The proposed measures are well-defined cohesion measures
which satisfy the four cohesion properties defined by Briand et al.
[8] and in comparison with the existing cohesion measures, the
proposed measures have the following advantages:

� The proposed dynamic cohesion measures are more accurate as
they are defined at run-time and take into consideration the
actual interactions taking place rather than the potential inter-
actions which may or may not happen as is the case with static
cohesion metrics.
� The proposed cohesion metrics take inheritance and polymor-

phism into consideration as the actual targets of polymorphic
invocations can only be determined at run-time due to the pres-
ence of inherited members of a class.
� The scope of measurement of the proposed dynamic cohesion

metrics can be specific to a single object or even a scenario.
The limiting of scope of measurement might be useful in testing
and impact analysis [2]. Whereas, other existing cohesion met-
rics are able to measure cohesion up to class level only.
� The proposed dynamic cohesion measures are better indicators

of external software quality attributes such as change-prone-
ness than the existing static cohesion metrics as proved by
the experimental study.

In future work, relationships between the proposed dynamic
cohesion metrics and other quality attributes such as fault-prone-
ness could be explored. Moreover, in future work, an alternative
approach for selection of values of weights assigned to different
relations could be explored to use the four base metrics in predic-
tive models and estimate coefficients of the predictive models,
which could be used as weights.

References

[1] H. Aman, T. Yanaru, M. Nagamatsu, K. Miyamoto, A metric for class structure
complexity focusing on relationships among class members, IEICE
Transactions on Information and System E81-D (12) (1998) 1364–1373.

[2] E. Arisholm, Dynamic coupling measures for object-oriented software, in: Proc.
8th IEEE Symp. on Software Metrics (METRICS’02), Ottawa, Canada, 2002, pp.
33–42.

[3] E. Arisholm, L.C. Briand, A. Føyen, Dynamic coupling measurement for object-
oriented software, IEEE Transactions on Software Engineering 30 (8) (2004)
491–506.

[4] J. Bansiya, L.H. Etzkorn, C.G. Davis, W. Li, A class cohesion metric for object
oriented designs, Journal of Object-oriented Programming 11 (8) (1999) 47–
52.

[5] V.R. Basili, D. Weiss, A Methodology for collecting valid software engineering
data, IEEE Transactions of Software Engineering 10 (11) (1984) 728–738.

[6] V.R. Basili, D.H. Rombach, The Tame Project: towards improvement-oriented
software environments, IEEE Transactions of Software Engineering 14 (6)
(1988) 758–773.

[7] J. Bieman, B. Kang, Cohesion and reuse in an object-oriented system, in: Proc.
ACM Symp. Software Reusability (SSR’95), 1995, pp. 259–262 (reprinted in
ACM SIGSOFT Software Engineering Notes, 1995).

462 V. Gupta, J.K. Chhabra / Journal of Systems Architecture 57 (2011) 452–462
[8] L.C. Briand, S. Morasca, V.R. Basili, Property-based software engineering
measurement, IEEE Transactions on Software Engineering 22 (1) (1996) 68–85.

[9] L.C. Briand, J.W. Daly, J. Wust, A unified framework for cohesion measurement
in object-oriented systems, Empirical Software Engineering 3 (1) (1998) 65–
117.

[10] L. Briand, S. Morasca, V. Basili, An operational process for goal-driven
definition of measures, IEEE Transactions on Software Engineering 28 (12)
(2002) 1106–1125.

[11] H.S. Chae, Y.R. Kwon, A cohesion measure for classes in object-oriented
systems, in: Proc. Fifth International Software Metric Symposium
(METRICS’98), Bethesda, MD, USA, IEEE Computer Society Press, 1998, pp.
158–166.

[12] H.S. Chae, Y.R. Kwon, D.H. Bae, A cohesion measure for object oriented classes,
Software Practice and Experience 30 (12) (2000) 1405–1431.

[13] Z. Chen, Y. Zhou, B. Xu, J. Zhao, H. Yang, A novel approach to measuring class
cohesion based on dependence analysis, in: Proc. International Conference on
Software Maintenance, IEEE Computer Society Press, Montreal, Canada, 2002,
pp. 377–384.

[14] S.R. Chidamber, C.F. Kemerer, A metrics suite for object-oriented design, IEEE
Transactions on Software Engineering 20 (6) (1994) 476–493.

[15] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, second ed.,
Lawrence Erlbaum Publishing Co., N.J., Mahwah, 1988.

[16] G. Gui, Component reusability and cohesion measures in object-oriented
systems, in: Proc. Information and Communication Technologies, 2006, pp.
2878–2882.

[17] N. Gupta, P. Rao, Program execution based module cohesion measurement, in:
Proc. 16th International Conference on Automated on Software Engineering
(ASE ’01), San Diego, USA, 2001.

[18] V. Gupta, J.K. Chhabra, Measurement of dynamic metrics using dynamic
analysis of programs, in: Proc. WSEAS International Conference on Applied
Computing Conference, Istanbul, Turkey, 2008, pp. 81–86.

[19] B. Henderson-Sellers, Software Metrics, Prentice Hall, Hemel Hempstaed, UK,
1996.

[20] M. Hitz, B. Montazeri, Measuring coupling and cohesion in object oriented
systems, in: Proc. International Symposium on Applied Corporate Computing,
Monterrey, Mexico, 1995, pp. 25–27.

[21] Y. Hassoun, R. Johnson, S. Counsell, A dynamic runtime coupling metric for
meta-level architectures, in: Proc. Eur. Conf. On Software Maintenance and
Reengineering (CSMR’04), IEEE Computer Society Press, 2004, pp. 339–346.

[22] Y. Hassoun, R. Johnson, S. Counsell, Empirical Validation of a Dynamic
Coupling Metric, Technical Report BBKCS-04-03, School of Computer Science
and Information Systems, Birkbeck College, University of London, UK, March
2004.

[23] Y. Hassoun, S. Counsell, R. Johnson, Dynamic coupling metric-proof of concept,
IEE Proceedings Software 152 (6) (2005).

[24] H. Kabaili, R. Keller, F. Lustman, Cohesion as changeability indicator in object-
oriented systems, in: Proc. IEEE Conference on Software Maintenance and
Reengineering (CSRM), 2001, pp. 39–46.

[25] T.M. Khoshgoftaar, J.C. Munson, D.L. Lanning, Dynamic system complexity, in:
Proc. Software Metrics Symposium, Baltimore, MD, USA, 1993, pp. 129–140.

[26] C.R. Kothari, Research Methodology: Methods & Techniques, New Age
International Publishers, New Delhi, 2007.

[27] S.-T. Lai, A software metric combination model for software reuse, in: Proc.
Asia Pacific Software Engineering Conference, Taipei, 1998, pp. 70–77.

[28] Y.S. Lee, B.S. Liang, Measuring the coupling and cohesion of an object-oriented
program based on information flow, in: Proc. International Conference on
Software Quality, Maribor, Slovenia, 1995, pp. 81–90.

[29] W. Li, S. Henry, Object oriented metrics that predict maintainability, Journal of
Systems and Software 23 (2) (1993) 111–122.

[30] A. Mitchell, J.F. Power, Run-Time Cohesion Metrics for the Analysis of Java
Programs, Technical Report Series No. NUIM-CS-TR-2003-08, National
University of Ireland, Maynooth Co. Kildare, Ireland, 2003.

[31] A. Mitchell, J.F. Power, Run-time cohesion metrics: an empirical investigation,
in: Proc. the International Conference on Software Engineering Research and
Practice, 2004, pp. 532–537.

[32] A. Mitchell, J.F. Power, An empirical investigation into the dimensions of run
time coupling in Java programs, in: Proc. third International Conference on
Principles and Programming in Java (PPPJ’04), Las Vegas, Nevada, 2004, pp. 9–
14.

[33] S. Moser, V.B. Misic, Measuring class coupling and cohesion: a formal meta-
model approach, in: Proc. Asia Pacific Software Engineering Conference and
International Computer Science Conference, IEEE Computer Society Press,
Hong Kong, 1997, pp. 31–40.
[34] J.C. Munson, T.M. Khoshgoftaar, Measuring dynamic program complexity, IEEE
Software 9 (6) (1992) 48–55.

[35] J.C. Munson, T.M. Khoshgoftaar, Software metrics for reliability assessment, in:
Michael Lyu (Ed.), Handbook of Software Reliability Engineering, McGraw-Hill,
1996, pp. 493–529.

[36] P. Naughton, H. Schildt, Java 2: The Complete Reference, third revised ed.,
McGraw-Hill, 1999.

[37] L.M. Ott, J.M. Bieman, B.K. Kang, Developing measures of class cohesion for
object-oriented software, in: Proc. Seventh Annual Oregon Workshop on
Software Metrics, Oregon, Portland, 1995.

[38] L.M. Ott, J.M. Bieman, Program slices as an abstraction for cohesion
measurement, Journal of Information and Software Technology 40 (11–12)
(1998) 691–699.

[39] R. Van Solingen, The goal/question/metric approach, Encyclopedia of Software
Engineering—2 Volume Set, 2002, pp. 578–583.

[40] J. Wang, Y. Zhou, L. Wen, Y. Chen, H. Lu, B. Xu, DMC: a more precise cohesion
measure for classes, Information and Software Technology 47 (3) (2005) 167–
180.

[41] G. Woo, H.S. Chae, J.F. Cui, J.-H. Ji, Revising cohesion measures by considering
the impact of write interactions between class members, Information and
Software Technology 51 (2) (2009) 405–417.

[42] S. Yacoub, H. Ammar, T. Robinson, Dynamic metrics for object-oriented
designs, in: Proc. Int. Symp. on Software Metrics (Metrics’99), Boca Raton, FL,
USA, 1999, pp. 50–61.

[43] Y. Zhou, B. Xu, J. Zhao, H. Yang, ICBMC: an improved cohesion measure for
classes, in: Proc. International Conference on Software Maintenance, IEEE
Computer Society Press, Montreal, Canada, 2002, pp. 44–53.

[44] AspectC, <http://www.cs.ubc.ca/labs/spl/projects/aspectc.html>.
[45] AspectC++, <http://www.aspectc.org/>.
[46] Aspect.net, <http://www.facultyresourcecenter.com/curriculum/pfv.aspx?ID=

6801>.
[47] AspectJ, <http://www.eclipse.org/aspectj>.

Varun Gupta is pursuing his Ph.D. degree in the area of
Software Engineering from Department of Computer
Engineering, National Institute of Technology (Deemed
University), Kurukshetra 136 119, India. He obtained his
Bachelor of Technology degree in computer science and
engineering from Guru Nanak Dev University, Amritsar
in 1999 and Master of Engineering degree in software
engineering from Thapar Institute of Engineering and
Technology, Patiala (Deemed University) in 2003. He
worked as a lecturer in Department of Computer Sci-
ence and Engineering, RIMT Institute of Engineering and
Technology for 4 years. Presently, he is working as

Assistant Director in Directorate of Information Technology, PSEB, Patiala. His areas
of interest include Software Engineering, Object Oriented Design and Development,
and Data Mining.
Jitender Kumar Chhabra, Ph.D., is working as Assistant
Professor in Department of Computer Engineering,
National Institute of Technology (Deemed University),
Kurukshetra 136 119, India. He received his B.Tech. in
Computer Engineering as 2nd rank holder and M.Tech in
Computer Engineering as Gold Medalist, both from
Regional Engineering College, (now N.I.T.) Kurukshetra.
He completed his PhD degree on Software Metrics from
GGS Indraprastha University, Delhi, India. He is teaching
in N.I.T. Kurukshetra since last 13 years. He has also
worked in collaboration with companies like Hewellet-
Packard and Tata Consultacy Services. He has published

more than 50 research papers in various international and national journals and
conferences including IEEE, Elsevier, ACM. He is reviewer of many reputed research
journals like IEEE and Elsevier. He is adaptation author of Gottfried’s Schaum-Series

book on Programming with C from Tata McGraw Hill. His areas of interest include
software engineering, data base system, data structure, programming techniques.

http://www.cs.ubc.ca/labs/spl/projects/aspectc.html
http://www.aspectc.org/
http://www.facultyresourcecenter.com/curriculum/pfv.aspx?ID=6801
http://www.facultyresourcecenter.com/curriculum/pfv.aspx?ID=6801
http://www.eclipse.org/aspectj

	Dynamic cohesion measures for object-oriented software
	Introduction
	Related work
	Dynamic cohesion measurement
	Definitions and terminology
	Definitions of measures
	Theoretic validation

	Dynamic analysis for computation of dynamic cohesion metrics
	AOP approach
	Dynamic analyser implementation

	Case study
	Experimental study
	Comparison between dynamic cohesion measures, DCC and RLCOM

	Empirical validation of the proposed measures
	Experiment goal
	Empirical hypotheses
	Experimental environment
	Analysis methodology
	Analysis of experimental results

	Conclusion and future work
	References

