P. Embrechts, C. Klippelberg, T'. Mikosch

Modelling Extremal Events

for Insurance and Finance

February 12, 1997

Springer-Verlag

Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest



Voor Gerda, Krispijn, Eline en Frederik.
Na al dit werk blijft één vraag onbeantwoord:
“Hoe kan ik jullie ooit danken voor de opoffering en steun?”

Paul

Meinen Eltern

Thomas



Preface

Qui scribunt libros caveant a judice multo
Cum multus judex talibus immineat

Abelard (1121)

Writers of books should beware of the verdict of the crowd
For the verdict of the crowd is prejudiced against them

Translation by Christopher Platt

In a recent issue, The New Scientist ran a cover story under the title: “Mission
improbable. How to predict the unpredictable”; see Matthews [448]. In it, the
author describes a group of mathematicians who claim that extreme value
theory (EVT) is capable of doing just that: predicting the occurrence of rare
events, outside the range of available data. All members of this group, the
three of us included, would immediately react with: “Yes, but, ...”, or, “Be
aware ...”. Rather than at this point trying to explain what EVT can and
cannot do, we would like to quote two members of the group referred to in
[448]. Richard Smith said, “There is always going to be an element of doubt,
as one is extrapolating into areas one doesn’t know about. But what EVT
is doing is making the best use of whatever data you have about extreme
phenomena.” Quoting from Jonathan Tawn, “The key message is that EVT
cannot do magic — but it can do a whole lot better than empirical curve—
fitting and guesswork. My answer to the sceptics is that if people aren’t given
well-founded methods like EVT, they’ll just use dubious ones instead.”
These two quotes set the scene for the book you are holding. Over many
years we have been in contact with potential users of EVT, such as actuaries,
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risk managers, engineers, .... Whatever theory can or cannot predict about
extremal events, in practice the problems are there! As scientists, we cannot
duck the question of the height of a sea dyke to be built in Holland, claiming
that this is an inadmissible problem because, to solve it, we would have to
extrapolate beyond the available data. Likewise, reinsurers have for a long
time known a great deal about extremal events; in their case, premiums
have to be set which both cover the insured in case of a claim, and also are
calculated in such a way that in the event of a catastrophe, the company stays
solvent. Finally, recent developments in the financial markets create products
such as catastrophe-linked bonds where the repayment value is contingent
on the occurrence of some well-defined catastrophe. These and many more
examples benefit from a well-established body of theory which is now referred
to as EVT. Our book gives you an introduction to the mathematical and
statistical theory underlying EVT. It is written with a broad audience of
potential users in mind. From the subtitle however, it is clear that the main
target group is in the financial industry. A reason for this emphasis is that
the latter have been less exposed to EVT methodology. This is in contrast
to hydrologists and reliability engineers, for instance, where for a long time
EVT has belonged to the standard toolkit.

While our readership is expected to be broad, we do require a certain
mathematical level. Through the availability of standardised software, EVT
can be at the fingertips of many. However, a clear understanding of its capa-
bilities and limitations demands a fair amount of mathematical knowledge.
Basic courses in linear algebra, calculus, probability and statistics are essen-
tial. We have tried hard to keep the technical level minimal, stressing the
understanding of new concepts and results rather than their detailed discus-
sions and proofs. Plentiful examples and figures should make the introduction
of new methodology more digestible.

Those who have no time to read the book from cover to cover, and rather
want a fairly streamlined introduction to EVT in practice, could immediately
start with Chapter 6. Do however read the Guidelines first. From the applied
techniques presented in Chapter 6, you will eventually discover relevant ma-
terial from other chapters.

A long list of references, together with numerous sections of Notes and
Comments should guide the reader to a wealth of available material. Though
our list of references is long, as always it reflects our immediate interest. Many
important papers which do not fit our presentation have been omitted. Even
in more than 600 pages, one cannot achieve completeness; the biggest gap is
doubtless multivariate extreme value theory. This is definitely a shortcoming!
We feel that mathematical theory has to go hand in hand with statistical
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theory and computer software before it can safely be presented to the end-—
user, but for the multivariate case, despite important recent progress, we
do not feel that the theory has reached a stage as well-established as the
one—dimensional one.

As with any major project, we owe thanks to lots of people. First of all,
there are those colleagues and friends who have helped us in ways which go
far beyond what normally can be hoped for. Charles Goldie was a constant
source of inspiration and help, both on mathematical issues, as well as on
stylistic ones. He realised early on that three authors who are not native
English speakers, when left alone, will produce a Flemish-Dutch—German—
Swiss version of the English language which is bound to bemuse many. In
his typical diplomatic manner, Charles constructed confidence bands around
proper English which he hoped we would not overstep too often. The fine
tuning and final decisions were of course always in our hand, hence also the
full responsibility for the final outcome.

Gabriele Baltes, Jutta Gonska and Sigrid Hoffmann made an art out of
producing numerous versions in IATRX of half readable manuscripts at var-
ious stages. They went far beyond the support expected from a secretary.
The many computer graphs in the book show only the tip of the iceberg.
For each one produced, numerous were proposed, discussed, altered, .... We
owe many thanks, also for various other support throughout the project,
to Franco Bassi, Klemens Binswanger, Milan Borkovec, Hansjorg Furrer,
Natascha Jung, Anne Kampovsky, Alexander McNeil and Patricia Miiller.
For the software used we thank Alexander McNeil, John Nolan and Richard
Smith.

Many colleagues helped in proofreading parts of the book at various
stages: Gerd Christoph, Daryl Daley, Riudiger Frey, Jan Grandell, Maria
Kafetzakis, Marcin Kotulski, Frank Oertel, Sid Resnick, Chris Rogers, Gen-
nady Samorodnitsky, Hanspeter Schmidli and Josef Steinebach. Their crit-
ical remarks kept us on our toes! Obviously there has been an extensive
exchange with the finance industry as potential end—user, in the form of
informal discussions, seminars or lectures. Moreover, many were generous in
sharing their data with us. We hope that the final outcome will also help them
in their everyday handling of extremal events: Alois Gisler (Winterthur Ver-
sicherungen), René Held and Hans Fredo List (Swiss Reinsurance), Richard
Olsen (Olsen and Associates), Mette Rytgaard (Copenhagen Reinsurance)
and Wolfgang Schmidt (Deutsche Bank).

All three of us take pleasure in thanking our respective home institu-
tions and colleagues for their much appreciated support. One colleague means
something special to all three of us: Hans Biihlmann. His stimulating enthu-
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siasm for the beauty and importance of actuarial mathematics provided the
ideal environment for our project to grow. We have benefitted constantly
from his scholarly advice and warm friendship.

The subtitle of the book “For Insurance and Finance” hints at the poten-
tial financial applications. The “real thing”, be it either Swiss Francs, Ger-
man Marks or Dutch Guilders, was provided to us through various forms of
support. Both the Forschungsinstitut fiir Mathematik (ETH) and the Math-
ematisches Forschungsinstitut Oberwolfach provided opportunities for face—
to—face meetings at critical stages.

PE recalls fondly the most stimulating visit he had, as part of his sab-
batical in the autumn of 1996, at the School of ORIE at Cornell University.
The splendid social and academic environment facilitated the successful con-
clusion of the book. CK worked on this project partly at ETH Ziirich and
partly at the Johannes Gutenberg University of Mainz. During most of the
time she spent on the book in Ziirich she was generously supported by the
Schweizerische Lebensversicherungs— und Rentenanstalt, the Schweizerische
Riickversicherungs—Gesellschaft (Swiss Re), Winterthur—Versicherungen, and
the Union Riickversicherungs—Gesellschaft. Her sincere thanks go to these
companies. TM remembers with nostalgia his time in New Zealand where he
wrote his first parts of the book. The moral support of his colleagues at ISOR
of the Victoria University of Wellington allowed him to concentrate fully on
writing. He gratefully acknowledges the financial support of a New Zealand
FRST Grant.

Last but not least, we thank our students! One of the great joys of being
an academic is being able to transfer scientific knowledge to young people.
Their questions, projects and interest made us feel we were on the right
track. We hope that their eagerness to learn and enthusiasm to communicate
is felt throughout the pages of this book.

November, 1996 PE, Ziirich
CK, Mainz
TM, Groningen
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Reader Guidelines

The basic question each author should pose him/herself, preferably in the
future tense before starting, is

Why have we written this book?

In our case the motivation came from many discussions we had with mathe-
maticians, economists, engineers and physicists, mainly working in insurance
companies, banks or other financial institutions. Often, these people had as
students learnt the more classical theory of stochastics (probability theory,
stochastic processes and statistics) and were interested in its applications to
insurance and finance. In these discussions notions like extremes, Pareto, di-
vergent moments, leptokurtosis, tail events, Hill estimator and many, many
more would appear. Invariably, a question would follow, “Where can I read
more on this?” An answer would usually involve a relatively long list of books
and papers with instructions like “For this, look here, for that, perhaps you
may find those papers useful, concerning the other, why not read ...”. You
see the point! After years of frustration concerning the non—existence of a rel-
evant text we decided to write one ourselves. You now hold the fruit of our
efforts: a book on the modelling of extremal events with special emphasis on
applications to insurance and finance. The latter fields of application were
mainly motivated by our joint research and teaching at the ETH where var-
ious chapters have been used for many years as Capita Selecta in the ETH
programme on insurance mathematics. Parts of the book have also formed
the basis for a Summer School of the Swiss Society of Actuaries (1994) and
the Master’s Programme in Insurance and Finance at ESSEC, Paris (1995).
These trials have invariably led to an increase in the size of the book, due to
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questions like “Couldn’t you include this or that?”. Therefore, dear reader,
you are holding a rather hefty volume. However, as in insurance and finance
where everything is about “operational time” rather than real time, we hope
that you will judge the “operational volume” of this book, i.e. measure its
value not in physical weight but in “information” weight.

For whom have we written this book?

As already explained in the previous paragraph, in the first place for all
those working in the broader financial industry faced with questions con-
cerning extremal or rare events. We typically think of the actuarial student,
the professional actuary or finance expert having this book on a corner of
the desk ready for a quick freshen—up concerning a definition, technique, es-
timator or example when studying a particular problem involving extremal
events. At the same time, most of the chapters may be used in teaching
a special-topics course in insurance or mathematical finance. As such both
undergraduate as well as graduate students interested in insurance and/or
finance related subjects will find this text useful: the former because of its
development of specific techniques in analysing extremal events, the latter
because of its comprehensive review of recent research in the larger area of
extreme value theory. The extensive list of references will serve both. The
emphasis on economic applications does not imply that the intended read-
ership is restricted to those working on such problems. Indeed, most of the
material presented is of a much more general nature so that anyone with
a keen interest in extreme value theory, say, or more generally interested in
how classical probabilistic results change if the underlying assumptions allow
for larger shocks in the system, will find useful material in it. However, the
reader should have a good background in mathematics, including stochastics,
to benefit fully. This brings us to the key question

What is this book about?

Clearly about extremal events! But what do we mean by this?

In the introduction to their book on Outliers in Statistics, Barnett and
Lewis [51], the authors write: “When all is said and done, the major problem
in outlier study remains the one that faced the very earliest research workers
in the subject — what is an outlier?” One could safely repeat this sentence for
our project, replacing outlier by extremal event. In their case, they provide
methodology which allows for a possible description of outliers (influential
observations) in statistical data. The same will be true for our book: we will
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mainly present those models and techniques that allow a precise mathemat-
ical description of certain notions of extremal events. The key question to
what extent these theoretical notions correspond to specific events in prac-
tice is of a much more general (and indeed fundamental) nature, not just
restricted to the methodology we present here. Having said that, we will not
shy away from looking at data and presenting applied techniques designed
for the user. It is all too easy for the academic to hide constantly behind
the screen of theoretical research: the actuary or finance expert facing the
real problems has to take important decisions based on the data at hand. We
shall provide him or her with the necessary language, methods, techniques
and examples which will allow for a more consistent handling of questions in
the area of extremal events.

Whatever definition one takes, most will agree that Table 1, taken from
Sigma [582] contains extremal events. When looked upon as single events,
each of them exhibits some common features.

— Their (financial) impact on the (re)insurance industry is considerable. As
stated in Sigma [582], at $US 150 billion, the total estimated losses in
1995 amounted to ten times the cost of insured losses — an exceptionally
high amount, more than half of which was accounted for by the Kobe
earthquake. Natural catastrophes alone caused insured losses of $US 12.4
billion, more than half of which were accounted for by four single disasters
costing some billion dollars each; the Kobe earthquake, hurricane “Opal”,
a hailstorm in Texas and winter storms combined with floods in Northern
Europe. Natural catastrophes also claimed 20 000 of the 28 000 fatalities
in the year of the report.

— They are difficult to predict a long time ahead. It should be noted that 28
of the insurance losses reported in Table 1 are due to natural events and
only 2 are caused by man—made disasters.

— If looked at within the larger context of all insurance claims, they are rare
events.

Extremal events in insurance and finance have (from a mathematical point
of view) the advantage that they are mostly quantifiable in units of money.
However most such events have a non—quantifiable component which more
and more economists are trying to take into account. Going back to the data
presented in Table 1, extremal events may clearly correspond to individual (or
indeed grouped) claims which by far exceed the capacity of a single insurance
company; the insurance world’s reaction to this problem is the creation of
a reinsurance market. One does not however have to go to this grand scale.
Even looking at standard claim data within a given company one is typically
confronted with statements like “In this portfolio, 20% of the claims are
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| Losses | Date | Event | Country |
16 000 | 08/24/92 | Hurricane “Andrew” USA
11 838 | 01/17/94 | Northridge earthquake in California USA
5724 | 09/27/91 | Tornado “Mireille” Japan
4931 | 01/25/90 | Winterstorm “Daria” Europe
4749 | 09/15/89 | Hurricane “Hugo” P. Rico
4 528 | 10/17/89 | Loma Prieta earthquake USA
3427 | 02/26/90 | Winter storm “Vivian” Europe
2 373 | 07/06/88 | Explosion on “Piper Alpha” offshore oil rig | UK
2 282 | 01/17/95 | Hanshin earthquake in Kobe Japan
1938 | 10/04/95 | Hurricane “Opal” USA
1700 | 03/10/93 | Blizzard over eastern coast USA
1600 | 09/11/92 | Hurricane “Iniki” USA
1500 | 10/23/89 | Explosion at Philips Petroleum USA
1453 | 09/03/79 | Tornado “Frederic” USA
1422 | 09/18/74 | Tornado “Fifi” Honduras
1320 | 09/12/88 | Hurricane “Gilbert” Jamaica
1238 | 12/17/83 | Snowstorms, frost USA
1236 | 10/20/91 | Forest fire which spread to urban area USA
1224 | 04/02/74 | Tornados in 14 states USA
1172 | 08/04/70 | Tornado “Celia” USA
1168 | 04/25/73 | Flooding caused by Mississippi in Midwest | USA
1048 | 05/05/95 | Wind, hail and floods USA
1005 | 01/02/76 | Storms over northwestern Europe Europe
950 | 08/17/83 | Hurricane “Alicia” USA
923 | 01/21/95 | Storms and flooding in northern Europe Europe
923 | 10/26/93 | Forest fire which spread to urban area USA
894 | 02/03/90 | Tornado “Herta” Europe
870 | 09/03/93 | Typhoon “Yancy” Japan
865 | 08/18/91 | Hurricane “Bob” USA
851 | 02/16/80 | Floods in California and Arizona USA

Table 1 The 30 most costly insurance losses 1970-1995. Losses are in million $US
at 1992 prices. For a precise definition of the notion of catastrophic claim in this
contert see Sigma [582].

responsible for more than 80% of the total portfolio claim amount”. This is
an extremal event statement as we shall discuss more in detail in Section 8.2.

By stating above that the quantifiability of insurance claims in monetary
units makes the mathematical modelling more tractable, we do not want to
trivialise the enormous human suffering underlying such events. It is indeed
striking that, when looking at the 30 worst catastrophes, in terms of fatalities
over the same period in Table 2 only one event (the Kobe earthquake) figures
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| Fatalities | Date/start | Event | Country |
300 000 | 11/14/70 Hurricane Bangladesh
250 000 | 07/28/76 Earthquake in Tangshan China
140 000 | 04/29/91 Hurricane “Gorky” Bangladesh
60 000 | 05/31/70 Earthquake Peru
50 000 | 06/21/90 Earthquake Iran
25 000 | 12/07/88 Earthquake in Armenia former USSR
25 000 | 09/16/78 Earthquake Iran
23 000 | 11/13/85 Volcanic eruption “Nevado del Ruiz” | Columbia
22 000 | 02/04/76 Earthquake Guatemala
15 000 | 09/19/85 Earthquake in Mexico City Mexico
15 000 | 08/11/79 Damburst India
15 000 | 09/01/78 Flood India
10 800 | 10/31/71 | Flood India
10 000 | 05/25/85 Hurricane Bangladesh
10 000 | 11/20/77 Tornado India
9 500 | 09/30/93 Earthquake in Marashtra state India
8 000 | 08/16/76 Earthquake on Mindanao Philippines
6 304 | 11/05/91 Typhoons “Thelma” and “Uring” Philippines
6 000 | 01/17/95 Great Hanshin earthquake in Kobe Japan
5300 | 12/28/74 Earthquake Pakistan
5000 | 04/10/72 Earthquake in Fars Iran
5000 | 12/23/72 Earthquake in Managua Nicaragua
5000 | 06/30/76 Earthquake in Westirian Indonesia
4800 | 11/23/80 Earthquake Italy
4500 | 10/10/80 Earthquake Algeria
4000 | 02/15/72 Storm; snow Iran
4000 | 11/24/76 Earthquake in Van Turkey
3800 | 09/08/92 Floods in Punjab Pakistan
3200 | 04/16/78 Tornado Reunion
3000 | 08/01/88 Flood Bangladesh

Table 2 The 30 worst catastrophes in terms of fatalities 19701995, taken from
Sigma [582].

on both lists. Also, Table 1 mainly involves industrialised nations, whereas
Table 2 primarily concerns Third World countries.

Within the finance context, extremal events present themselves spectac-
ularly whenever major stock market crashes like the one in 1987 occur. Or
recent casualties within the realm of derivatives such as the collapse of Bar-
ings Bank, the losses of the Metallgesellschaft, Proctor & Gamble, Kashima
Oil, Orange County, or Sumitomo. The full analysis of events of such grand
scale again goes well beyond the prime content of this book, and any claim
that the managements of financial institutions will find the means of avoid-
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ing such disasters in our book would be absurd. In most of the above cases
the setting—up (both in structure as well as people) of a well-functioning
risk management and control system was called for. On a much smaller scale
however, questions related to the estimation of Profit—and—Loss distributions
or Value—at—Risk measures have to be answered with techniques presented
in some of the following chapters. Though not providing a risk manager in
a bank with the final product he or she can use for monitoring financial risk
on a global scale, we will provide that manager with stochastic methodology
needed for the construction of various components of such a global tool.

Events that concern both branches are to be found in credit insurance,
mortgage—backed securities, the recent developments around catastrophic in-
surance futures or indeed more generally the problem of securitisation of risk.
In all of these areas, there is an increasing need for modelling of events that
cause larger shocks to the underlying financial system. As an example of how
knowledge of basic underlying stochastic methodology may be used, consider
the problem of potential increases in both the frequency as well as (inflation—
adjusted) sizes of well-defined catastrophic claims. A simple, but at the same
time intuitively clear method, is to plot the successive records in the data.
In Figure 3 we have plotted such records for yearly frequency and insured
loss data both for man—made as well as natural catastrophes over the period
1970-1995. For a precise definition of the underlying data see Sigma [582]. If
the data were independent and identically distributed (iid), what sort of pic-
ture would one expect? An answer to this question is given in Section 6.2.4.
Intuition tells us that successive records for iid data should become more and
more rare as time goes by: it becomes more and more difficult to exceed all
past observations.

By now, the reader should have some idea of the type of problems we
are interested in. The next step would be to dig a bit deeper and explain
which mathematical models we plan to discuss and what methodology we
want to introduce. Before doing so, some general comments on the format of
the chapters is called for.

How is new material to be presented,
and indeed how should one read this book?

As stated before, we typically think of an actuary, a finance expert or a stu-
dent, working on a problem in which a technique related to rare though po-
tentially influential events is to be used. Take as an example a finance expert
in the area of risk management, concerned with Value—at—Risk estimation
for a specific portfolio. The Value—at—Risk may for instance be defined as
the left 5% quantile of the portfolio Profit—Loss distribution. The latter is
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Figure 3 Record years of catastrophic insurance claims 1970-1995: frequency and
insured losses (in 1992 prices) both for man—made and natural disasters, taken from
Sigma [582]. The graphs show a jump for each year in which a new record occurred.
For instance, one observes 8 records for the frequency of natural disasters and 6
records for the insured losses.

typically skewed with heavy tails both at left (losses) and right (gains); see
Figure 4. So we end up with questions that concern finding relevant classes of
Profit—Loss distributions, as well as statistical fitting and tail estimation. It
is exactly for this type of problems that our book will provide the necessary
background material or indeed specific techniques.

A typical chapter will introduce the new methodology in a rather intuitive
(though always mathematically correct) way, stressing more the understand-
ing of new techniques rather than following the usual theorem—proof path. We
do, however, usually state theorems in their most general form, provided that
this form is practically relevant. Proofs are usually given either as a sketch
of the main ideas, or as a way of showing how new methods can be used in
technical calculations. Sometimes we use them to highlight the instances in
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Figure 4 Profit-Loss (P&L) density function with related Value—at—Risk (VaR).

the argument where classical techniques break down (explaining why), and
how arguments relating to extremal events have to be handled. Each section
ends with Notes and Comments giving the reader further guidance towards
relevant literature on related topics. Various examples, tables and graphs
have been included for illustrative purposes, but at the same time for reasons
of making the text (at least optically) easier to digest. Few readers will want
to read the text from cover to cover; the ideal way would be to read those
sections that are necessary for the problems at hand.

Which basic models in insurance and finance do we consider?

Our main motivation comes from insurance, and consequently a bias towards
problems (and topics) from that field of applications is certainly to be found
in the text. On the other hand, except for Chapters 1 and 8, all chapters are
aimed at a much larger audience than workers in insurance.

Mathematical modelling in finance and insurance can be traced back many
centuries. For our purposes, however, history starts around the beginning of
the 20th century. In 1900, Louis Bachelier showed in his thesis [35] that
Brownian motion lies at the heart of any model for asset returns. Around
the same time, Filip Lundberg introduced in his thesis [431] the collective
risk model for insurance claim data. Lundberg showed that the homogeneous
Poisson process, after a suitable time transformation, is the key model for
insurance liability data. Of course, both Brownian motion and the homoge-
neous Poisson process are the prime examples of the wider class of stochastic
processes with stationary and independent increments. We shall treat both
examples more in detail and provide techniques concerning extremal events
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Figure 5 One realisation of the risk process (U(t)).

useful in either case. Embedded in these processes is the structure of a ran-
dom walk, i.e. the sum of iid random variables. So a more profound study of
extremal events in the iid case is called for. This forms the basis for classical
statistical theory and classical extreme value theory. More general models can
often be transformed to the iid case; this allows us for instance to analyse
general (linear) time series.

In Chapter 1 we study the classical model for insurance risk,

N(t)
Uty=u+ct—S(t), St)=> X, t>0, (1)

where u stands for initial capital, ¢ for loaded premium rate and the total
claim amount S(t) consists of a random sum of iid claims X;. Here N (¢) stands
for the number of claims until time ¢. It is common to simplify this model
further by assuming (as Lundberg did) that (N(t)) is a homogeneous Poisson
process, independent of (X;). For a realisation of (U(t)) see Figure 5. The
process (S(t)) and its ramifications have been recognised as a very tractable
(and reasonably realistic) model and a vast amount of literature in risk theory
has been devoted to it. An important question concerns the influence of in-
dividual extremal events, i.e. large claims, on the global behaviour of (U(t)).
In Chapter 1 the latter question will be answered via a detailed analysis
of ruin probabilities associated with the process (U(¢)). Under a condition
of “small claims” (see for instance Theorem 1.2.2), the traditional Cramér—
Lundberg estimate for the ruin probability yields bounds which are exponen-
tial in the initial capital u. However, in reality claims are mostly modelled by
heavy-tailed distributions like Pareto, loggamma, lognormal, or heavy—-tailed
Weibull. See for instance Figure 6, where the left—-hand picture shows those
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Figure 6 Fire insurance data and corresponding exponential QQ-plot. The claim
sizes are in 1000 SFr.

claim sizes of a portfolio of fire insurance that are larger than a given fran-
chise (1 000 SFr). In the right-hand picture one finds a so—called QQ-plot of
the data, measuring the fit achieved by an exponential distribution function
(df). The curvature (i.e. departure from a straight line) present in the QQ-
plot implies that the tails of the df of the fire data are much heavier than
exponential. For a detailed discussion of these and related plotting techniques
see Section 6.2.1.

Chapter 1 mainly deals with the mathematical analysis of ruin estimation
under precise heavy—tailed model assumptions. Whereas Poisson processes
form the basic building block underlying insurance liability processes, within
finance the basic models can be transformed back to simple random walks.
This is certainly true for the Cox—Ross—Rubinstein and the Black—Scholes
models; see for instance Follmer and Schweizer [242] for a nice account of the
economic whys and wherefores concerning these processes.

The skeleton model in finance, corresponding to the homogeneous Poisson
process in insurance, is without doubt geometric Brownian motion, i.e. the
stochastic process

exp{(c—a2/2)t+aBt} , t>0,

with (B;) Brownian motion. Here ¢ stands for the mean rate of return and
o for the volatility (riskiness). It is the solution to an It6 stochastic differ-
ential equation and provides the basis of the Black—Scholes option pricing
formula and many other parts of financial theory. One of the attractions of
the above model is its simplicity; indeed, as a consequence it follows that log-
arithmic returns are iid, normally distributed. At this point, as in insurance,
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Figure 7 Daily IBM common stock closing prices: May 17, 1961-Nov. 2, 1962.

one should ask the question “what do the data tell us?” An answer to this
question would, and indeed does, fill a book. A summary answer, fit for this
introduction, is that, on the whole, geometric Brownian motion is a good first
model. If however one looks more closely at data, one often finds situations
as in Figure 7. In it we observe a clear change in volatility possibly trig-
gered by some extreme returns. A multitude of models for such phenomena
has been introduced including a—stable processes (as heavy—tailed alterna-
tives to Brownian motion), and heavy—tailed time series models, for instance
ARCH and GARCH models. The basic characteristics of such models will be
discussed in later chapters, for instance Chapter 7, Sections 8.4 and 8.8.

From a naive point of view both fields, insurance and finance, have in
common that we can observe certain financial or actuarial phenomena such
as prices, exchange rates, interest rates, insurance claims, claim arrival times
etc. We will later classify these observations or data, but we first want to
consider them simply as a time series or a continuous—time stochastic process,
i.e. we assign to each instant of time ¢ a real random variable X;. One of
our usual requirements is that (X;) itself or a transformed version of it (for
instance the first—order differences or the log—differences) forms a stationary
process (strictly stationary or stationary in the wide sense). In particular,
this includes the important case of iid observations which provides the basis
for classical fluctuation and extreme value theory, as well as for statistical
estimation.

In Chapter 2 we give a general asymptotic theory for sums of iid random
variables (random walk), and in Sections 2.5.1 and 2.5.3 we especially empha-
size random sums like S(¢) in (1). This theory includes classical results such
as the central limit theorem, the law of large numbers, the law of the iterated
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logarithm, the functional central limit theorem and their ramifications and
refinements. They are important building blocks for the asymptotic theory
which is a basic tool of this book. We also introduce two important classes
of continuous—time stochastic processes: Brownian motion and a-stable mo-
tion. Both are continuous—time limits of appropriate partial sum processes.
As such, they can be understood as random walks in continuous time.

After having recalled the basic partial sum theory, in Chapters 3 and
4 we turn to the analogous theory for partial maxima and order statistics.
These chapters are conceived in such a way that the reader can compare and
contrast results for maxima with similar ones for sums. Special attention will
also be given to those questions where both theories complement one another.
As a start we first present extreme value theory for iid sequences, thereby
paving the way for similar results in the case of stationary sequences (X).
In particular, we will describe and study mazima, minima, records, record
times, excesses over thresholds, the frequency of exceedances and many other
features of such sequences which are related to their extremal behaviour.

Though most of the material of this book can be found scattered over
various textbooks and/or research papers, some material is presented here
for the first time in textbook form. One such example is the study of linear
processes

o0
Xe= > ¢jZi;, tel, (2)
Jj=—00
for iid innovations Z; with infinite variance. Over the past 20 years meth-
ods have been developed to deal with these objects, and Chapter 7 contains
a survey of the relevant results. The proofs are mostly very technical and
accessible only to the specialist. This is the reason why we omitted them,
but we give a very detailed reference list where the interested reader will find
a wealth of extra reading material. The extreme value theory for the process
(2) is dealt with in Section 5.5 under different assumptions on the innovations
which include the heavy—tailed case. The extremes of more general stationary
sequences are treated in Sections 4.4 and 5.3.2.
In summary, the stochastic processes of main interest can be roughly
classified as follows:

— Discrete time sequences (X;);ez, in particular stationary and iid sequences
as models for log—returns of prices, for exchange rates, for individual claim
sizes, for inter—arrival times of claims.

— Random walk models, i.e. sums of the X; or continuous—time models such
as Brownian motion (B;);>o and a—stable motion, as models for the total
claim amount, aggregated returns or building blocks for price processes
etc.
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— Random sum processes (S(t))¢>0 (see (1)) as models for the total claim
amount in an insurance portfolio.

— The risk process (U(t))¢>0; see (1).

— Poisson processes and Poisson random measures as means to describe rare
events in space and time. The homogeneous Poisson process also serves as
a basic model for claim arrival times.

After having introduced our basic models we may ask

Which distributions and stochastic processes
typically describe extremal events in these models?

When we are interested in the extremal behaviour of the models described
above we have to ask how extremal events occur. This means we have to find
appropriate mathematical methods in order to explain events that occur with
relatively small probability but have a significant influence on the behaviour
of the whole model. For example, we may ask about the inter—relation be-
tween the iid individual claim sizes X; and the total claim amount S(¢) in (1).
In particular, under what assumptions and how do the values of the largest
claims determine the value S(¢)? A natural class of large claim distributions
is given by the subexponential distributions. They are extensively treated in
Chapter 1 and Appendix A3.2. Their defining property is:
lim P(Xi+--+X,>x) -1

z—oco P (max (X1,...,X,) > x)

for every n > 2. Thus the tails of the distribution of the sum and of the
maximum of the first n claims are asymptotically of the same order. This
clearly indicates the strong influence of the largest claim on the total claim
amount.

Whereas in insurance heavy—tailed (i.e. subexponential) distributions are
well recognised as standard models for individual claim sizes, the situation in
finance is much more complicated. The latter is partly due to the fact that
one often works with near continuous—time observed (so—called high—density)
data. At the same time, marginal distributions are heavy—-tailed and return
data exhibit clustering of extremes and long—range dependence. There is no
universally accepted nor indeed easy model that explains all these phenom-
ena. In Section 2.4, for instance, we introduce a—stable motion (0 < a < 2)
as a limit of partial sum processes with infinite variance. For a realisation of
a 1.5—stable motion see Figure 8, where also a plot of Brownian motion is
given. The a—stable processes form fundamental building blocks within more
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Figure 8 Paths of Brownian motion and of a 1.5—stable motion.

general model constructions and anyone interested in rare events ought to
know them.

Many distributions of interest in extreme value theory turn out to be
closely related to a—stable distributions. The a—stable laws are the only pos-
sible limit distributions for properly normalised and centred sums of iid ran-
dom variables. The case a = 2 corresponds to the normal limit; we know that
a finite second moment is sufficient for the application of the central limit the-
orem. The case a < 2 arises for infinite—variance iid summands. The infinite
variance property has not prevented practitioners in insurance from working
with such models. A quick simulation of a scenario of the total claim amount
under these heavy—tailed assumptions is helpful for making a decision about
the insurability of such claims. In that sense, a—stable or other heavy—tailed
distributions often can be used as a worst—case scenario.

Extreme value theory is one of the main objectives of this book, and
so when talking about relevant distributions in that context, we have to
mention the extreme value distributions, the Gumbel law A, the Fréchet
law @, and the Weibull law ¥,,. They are the only possible limit distributions
for maxima of properly normalised and centred iid random variables. As such
they essentially play the same role as the a—stable distributions for sums
of iid random variables. Sections 3.2 and 3.3 are devoted to their study.
Furthermore, in Sections 4.1 and 4.2 the theory is extended from maxima to
upper order statistics.

There are of course many more distributions of interest which are some-
how related to extremes. Above we have mentioned the essential ones and
the way they enter applied modelling in the presence of extremal events. We
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will provide lists and examples of particular distributions, densities and tails
in the corresponding sections.

We have already encountered the Poisson distribution in the context of
risk theory. Both the Poisson distribution as well as the Poisson process
are key tools in the analysis of extremal events, as we shall see on various
occasions.

In sum, the following classes of distributions are of main importance in
the context of extremal events:

— the subexponential distributions as realistic models for heavy—tailed ran-
dom variables,

— the a—stable distributions for a@ < 2 as the limit laws for sums of infinite—
variance iid random variables,

— the Fréchet, the Weibull, and the Gumbel distributions, as limit laws for
maxima of iid random variables,

— the normal distribution as limit law for sums of iid, finite—variance random
variables,

— the Poisson distribution as limit law of binomial distributions which rep-
resent a counting measure of rare events.

As important stochastic processes we would like to mention:

— Poisson processes,
— a-stable processes (0 < a < 2) and Brownian motion,
— more general processes using the above as input.

What are the main probabilistic tools?

Besides standard introductory probability theory and the theory of stochastic
processes, many results presented will be based upon a deeper understand-
ing of relevant asymptotic methods. One of the main tools falling into the
latter category is the theory of weak convergence of probability distributions,
both on the real line and in certain function spaces. A short summary of
the methodological background is given in Appendices A1l and A2. Abstract
weak—convergence techniques are needed in order to prove that suitable par-
tial sum processes converge towards Brownian motion or a—stable processes.
The strength of this process convergence is illustrated by various examples
in Chapter 2. This theory allows us to characterise those distributions and
processes that may arise as useful stochastic models for certain insurance and
finance data.

The analysis of extremes further requires the framework of point processes.
The general theory for the latter is rather involved, though the benefit for
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applications, especially those towards extremal event modelling, is consider-
able once the whole machinery has been set up. In Chapter 5 we give an
ample number of examples of this. We have tried hard to avoid unnecessary
technical details. Point process techniques are by now an unavoidable tool in
modern extreme value theory, and the results are convincing and give a deep
insight into the structure and occurrence of extremes.

The basic idea of weak convergence of point processes is analogous to
Poisson’s classical limit theorem. Weak limits of the point processes under
consideration (as analogues of binomial random variables) are quite often
(general) Poisson processes or Poisson random measures (as analogues to
the Poisson distribution). These notions will be made precise in Sections 5.1
and 5.2.

Limit theory for sums, maxima or point processes is closely related to
the power law behaviour of tails, of normalising constants, of characteristic
functions in the neighbourhood of the origin etc. Exact power laws mainly
occur in the very limit, but if, for instance, we discuss domains of attraction
of stable laws or of extreme value distributions, power laws do not appear
in “pure” form, but slightly disturbed by slowly varying functions. A power
law times a slowly varying function is called regularly varying. The theory
of regularly varying functions and their generalisations and extensions are
important analytical tools throughout this book. Their basic properties are
given in Appendix A3.1.

In Chapter 7 we provide an analysis of time series with heavy tails. A lean
introduction to the relevant notions of time series analysis is given, but the
reader without the necessary background will certainly have to consult some
of the standard textbooks. The main objects in Chapter 7 are linear processes
with heavy—tailed innovations. That chapter and Section 5.5, where extreme
value theory for linear processes is treated, give quite a complete picture
about this kind of process with heavy—tailed innovations.

To sum up, besides the basic classical techniques and facts from proba-
bility theory our main probabilistic tools are the following:

— weak convergence of distributions of random variables such as sums, ran-
dom sums and maxima of random variables,

— weak convergence of sum processes and maximum processes to their limits
in appropriate function spaces,

— point processes for describing the random distribution of points in space
and time with applications to extreme value theory.

What are the appropriate statistical tools?
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Insurers and bankers are interested in assessing, pricing and hedging their
risks. They calculate premiums and price financial instruments including cov-
erage against major risks. The probable maximal loss of a risk or investment
portfolio is determined by extremal events. The problem we want to solve
may therefore be described in its broadest terms as how to make statisti-
cal inference about the extreme values in a population or a random process.
Quantities like the following may serve as indicators:

— the distribution of the annual extremes,

— the distribution of the largest values in a portfolio,
— the return period of some rare event,

— the frequency of extremal events,

— the mean excess over a given threshold,

— the distribution of the excesses,

— the time development of records.

Every piece of knowledge we can acquire about these quantities from our data
helps us to predict extremal events, and hence potentially protect ourselves
against adverse effects caused by them. In Chapter 6 we present a collection
of methods for statistical inference based on extreme values in a sample.

Some simple exploratory data—analytical methods can be extremely useful
at a descriptive stage. An example has been given in Figure 3 where a plot of
the records manifests a trend in the frequency of natural disasters. Methods
based on probability plots, estimated return periods or empirical mean excess
functions provide first information about the extremes of a data set.

For iid data the classical extreme value distributions, the Gumbel A, the
Fréchet @, and the Weibull distribution ¥, are the obvious candidates to
model the largest values of a sample. We review parameter estimation meth-
ods for extreme value distributions, investigate their asymptotic properties
and discuss their different merits and weaknesses. Extensions to upper order
statistics of a sample are also treated.

Our interest focusses on extremal events of the form {X > z} for some
random variable X and large z, i.e. we want to estimate tails in their far
regions and, also, high quantiles. We survey various tail and quantile estima-
tors which are only to be found rather scattered through the literature. We
also describe a variety of statistical methods based on upper order statistics
and on so—called threshold methods.

Before you start!

We think it a bad idea for a methodological book like this one to distinguish
too strongly between those readers working in insurance and those working
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more in finance. It would be especially bad to do so at the present time, when
experts from both fields are increasingly collaborating either on questions
of related interest (risk management say) or on new product development
involving both insurance and finance features (for instance index—linked life
insurance, catastrophe futures and options, securitisation of insurance risk).
It is important for both sides to learn more about each other’s basic models
and tools. We therefore hope that a broad spectrum of readers will find
various interesting facts in this book.

We start with a somewhat specialised chapter on risk theory; however,
the basic model treated in it reappears in many fields of applications as
for instance queueing theory, dam theory, inventory systems, shock models
etc. Its main purpose is that it provides an ideal vehicle for the introduc-
tion of the important class of subexponential distributions. At the same time,
the liability model that is fundamental to insurance is also discussed. From
Chapter 2 onwards, standard theory is first of all reviewed (Chapter 2 on
sums) before the core material on probabilistic modelling of extremes together
with their statistical analysis are treated in Chapters 3—6. A mathematically
more demanding, though with respect to applications rewarding, excursion
to point process methods is presented in Chapter 5. Typically you would
start with Chapters 2 and 3 and embark first on the statistical methods in
Chapter 6 before coming back for a more detailed analysis of some of the
techniques from Chapter 5. Chapter 7 treats the more specialised topic of
heavy—tailed time series models. It fits into the framework of extremes for
dependent data which earlier appears in Sections 4.4, 5.3 and 5.5. Together,
Chapters 1 through 7 give a sound introduction to one-dimensional extremal
event modelling. Having this methodology at our finger tips, we may start
using it for understanding and solving various related problems. This is ex-
actly what is presented in Chapter 8 on special topics. In it, we have brought
together various problems, all of which use the foregoing theory in some form
or another. Take for instance Section 8.2 where a large claim indez is dis-
cussed, describing mathematically the 20-80 rule of thumb used by actuaries
to specify the dangerousness of certain portfolios. Chapter 8 is also used to
discuss briefly those extensions of the theory which should come next, such
as for instance Sections 8.1 (on the extremal indezx), 8.4 (on perpetuities and
ARCH processes) and 8.7 (on reinsurance treaties). This chapter could have
grown considerably; somewhere however we had to stop. Therefore, most of
the sections presented reflect somehow our own teaching, research and/or
consulting experience. We have based an extreme value theory course for
mathematics students specialising in actuarial mathematics on most of the
material presented in Chapters 3 to 6, together with some sections in Chap-
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ter 8. Naturally, the Appendix is there for reviewing those tools from math-
ematics used most often throughout the text and which may not belong to
everybody’s basic toolkit.

Epilogue

You are now ready to start: good luck!
PE., C.K. and T.M.
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Risk Theory

For most of the problems treated in insurance mathematics, risk theory still
provides the quintessential mathematical basis. The present chapter will serve
a similar purpose for the rest of this book. The basic risk theory models
will be introduced, stressing the instances where a division between small
and large claims is relevant. Nowadays, there is a multitude of textbooks
available treating risk theory at various mathematical levels. Consequently,
our treatment will not be encyclopaedic, but will focus more on those aspects
of the theory where we feel that, for modelling extremal events, the existing
literature needs complementing. Readers with a background in finance rather
than insurance may use this chapter as a first introduction to the stochastic
modelling of claim processes.

After the introduction of the basic risk model in Section 1.1, we derive in
Section 1.2 the classical Cramér—Lundberg estimate for ruin probabilities in
the infinite horizon case based on a small claim condition. Using the Cramér—
Lundberg approach, a first estimation of asymptotic ruin probabilities in the
case of regularly varying claim size distributions is obtained in Section 1.3.1.
The natural generalisation to subexponentially distributed claim sizes is given
in Sections 1.3.2, 1.3.3 and further discussed in Section 1.4. The latter section,
together with Appendix A3, contains the basic results on regular variation
and subexponentiality needed further in the text.
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1.1 The Ruin Problem

The basic insurance risk model goes back to the early work by Filip Lund-
berg [431] who in his famous Uppsala thesis of 1903 laid the foundation of
actuarial risk theory. Lundberg realised that Poisson processes lie at the heart
of non-life insurance models. Via a suitable time transformation (so—called
operational time) he was able to restrict his analysis to the homogeneous
Poisson process. This “discovery” is similar to the recognition by Bachelier
in 1900 that Brownian motion is the key building block for financial models.
It was then left to Harald Cramér and his Stockholm School to incorporate
Lundberg’s ideas into the emerging theory of stochastic processes. In doing
so, Cramér contributed considerably to laying the foundation of both non-life
insurance mathematics as well as probability theory. The basic model coming
out of these first contributions, referred to in the sequel as the Cramér-Lund-
berg model, has the following structure:

Definition 1.1.1 (The Cramér—Lundberg model, the renewal model)
The Cramér—Lundberg model is given by conditions (a)—(e):

(a) The claim size process:
the claim sizes (Xi)ken are positive iid rvs having common non-lattice
df F, finite mean p = EXy, and variance o = var(X;) < oo.

(b) The claim times:
the claims occur at the random instants of time

O0<Ty<Ty <+ as.

(¢) The claim arrival process:
the number of claims in the interval [0,t] is denoted by

N@)=sup{n>1:T,<t}, t>0,

where, by convention, sup ) = 0.
(d) The inter—arrival times

Vi=Ty, Vi=Ti—Te., k=203,..., (1.1)

are @d exponentially distributed with finite mean EYy = 1/A.
(e) The sequences (Xy) and (Yy) are independent of each other.

The renewal model is given by (a)—(c), (e) and

(d") the inter—arrival times Yy given in (1.1) are iid with finite mean EY; =
1/X. O
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Remarks. 1) A consequence of the above definition is that (N(t)) is a ho-
mogeneous Poisson process with intensity A > 0 (for a definition we refer to
Example 2.5.2). Hence

k
P(N(t) = k) = e~ ()\]:')  k=0,1,2,....

2) The renewal model is a slight generalisation of the Cramér-Lundberg
model which allows for renewal counting processes (see Section 2.5.2). The
latter are more general than the Poisson process for the claim arrivals. O

The total claim amount process (S(t))¢>o of the underlying portfolio is defined
as NG
7 X;, N()>0,

0, N(t)=0.
The general theory of random sums will be discussed in Section 2.5. It is
clear that in the important case of the Cramér—Lundberg model more detailed
information about (S(¢)) can be obtained. We shall henceforth treat this case
as a basic example on which newly introduced methodology can be tested.
An important quantity in this context is the total claim amount distribution
(or aggregate claim (size) distribution)
— Xt (At)n nx
Gi(x)=P(S(t)<a)=> e - F™(z), x>0, t>0, (1.3)

n!
n=0

where F™*(z) = P(}._, X; < z) is the n—fold convolution of F'. Throughout
the text, for a general df H on (—o0, 00),

, 1 z>0,
H(2) =
0 =<0.

The resulting risk process (U(t))¢>o is now defined as
U(t) =u+ct - S(t), t>0. (1.4)

In (1.4), u > 0 denotes the initial capital and ¢ > 0 stands for the premium
income rate. The choice of ¢ is discussed below; see (1.7). For an explanation
on why in this case a deterministic (linear) income rate makes sense from an
actuarial point of view; see for instance Biihlmann [98]. In Figure 1.1.2 some
realisations of (U(t)) are given in the case of exponentially distributed claim
sizes.

In the classical Cramér—Lundberg set—up, the following quantities are
relevant for various insurance—related problems.
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Figure 1.1.2 Some realisations of (U(t)) for exponential claim sizes.

Definition 1.1.3 (Ruin)
The ruin probability in finite time (or with finite horizon) :

Y(u, T)=PU(@[) <0 forsomet<T), 0<T<oo, u>0.
The ruin probability in infinite time (or with infinite horizon) :
Y(u) =¢Y(u,00), u©w>0.
The ruin times:

T(T)=inf{t:0<t<T, U(t) <0}, 0<T <00,

where, by convention, inf § = co. We usually write 7 = 7(c0) for the ruin

time with infinite horizon.
The following result is elementary.

Lemma 1.1.4 For the renewal model,

EU(t) = u + ct — uEN(t). (1.5)

For the Cramér—Lundberg model,

EU(t) =u+ct — \ut. (1.6)
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Proof. Since EU(t) = u + ct — ES(t), and

ES(t) = Y E(S(t)|N(t)=k) P(N(t) = k)
k=0

oo N(t)

= Y E| > Xi|N@#)=k| P(N(t) =k)
k=1 =1

k=1

[>S) k
= Y E (ZX) P(N(t) = k)

= puY kP(N(t)=k)
k=1

= pEN(),

relation (1.5) follows. Because EN(t) = At for the homogeneous Poisson
process, (1.6) follows immediately. O

This elementary lemma yields a first guess of the premium rate ¢ in (1.1).
The latter is a major problem in insurance to which, at least for more general
models, a vast amount of literature has been devoted; see for instance Goo-
vaerts, De Vylder and Haezendonck [279]. We shall restrict our discussion to
the above models. The determination of a suitable insurance premium rate
obviously depends on the criteria used in order to define “suitable”. It all
depends on the measure of solvency we want to optimise over a given time
period. The obvious (but by no means the only) measures available to us
are the ruin probabilities ¢ (u,T) for T' < co. The premium rate ¢ should
be chosen so that a small ¥ (u,T) results for given u and T'. A first step
in this direction would be to require that ¥ (u) < 1, for all u > 0. However,
since ¥ (u) = P(7 < 00), this is equivalent to P(7 = c0) > 0: the company is
given a strictly positive probability of infinitely long survival. Clearly, adjust-
ments to this strategy have to be made before real premiums can be cashed.
Anyhow, to set the stage, the above criterion is a useful one.

It follows immediately from (1.5) and Proposition 2.5.12 that in the re-
newal model, for t — oo,

EU@l) = u+(c—Au)t(l+0(1))
= u-{—(ﬁ—l)/\ut(l—ko(l)).

Therefore, EU(t)/t — ¢ — A, and an obvious condition towards solvency is
¢ — Ap > 0, implying that (U(t)) has a positive drift for large ¢. This leads
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to the basic net profit condition in the renewal model:

C
=——1>0. 1.7
b vinkEe (1.7)

The constant p is called the safety loading, which can be interpreted as a risk
premium rate; indeed, the premium income over the period [0, t] equals ct =
(14 p)Aut.

By definition of the risk process, ruin can occur only at the claim times 77},
hence for v > 0,

Y(u) = P(u+ct—S(t) <0 for somet>0)

= P(u+cl,—S(T,) <0 forsomen >1)

= P <u+z:(cY;C — Xi) <0 for some n > 1)
k=1

= P(sup zn:(Xk—cYk)>u>.

gyt
Therefore, ¢(u) < 1 is equivalent to the condition
1—¢(u):P<sup Z(Xk—cYk)§u>>0, u>0. (1.8)
nz1 k=1

From (1.8) it follows that, in the renewal model, the determination of the non—
ruin probability 1 — ¢ (u) is reduced to the study of the df of the ultimate
maximum of a random walk. Indeed, consider the iid sequence

Zk:Xk—CYk7 k217

and the corresponding random walk
Ry=0, R,=)» Zx, n>1. (1.9)
k=1

Notice that EZ; = u— ¢/A < 0 is just the net profit condition (1.7). Then
the non—ruin probability is given by

1—¢u)=P <supRn < u) .
n>1
This probability can for instance be determined via Spitzer’s identity (cf.
Feller [235], p. 613), which, for a general random walk, gives the distribution
of its ultimate supremum. An application of the latter result allows us to
express the non—ruin probability as a compound geometric df, i.e.
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1-¢(u)=(1-a) Y o"H"(u) (1.10)
n=0

for some constant a € (0,1) and a df H. As before, H™ denotes the nth
convolution of H. Both o and H can in general be determined via the classical
Wiener—Hopf theory; see again Feller [235], Sections XII.3 and XVIIL.3, and
Resnick [531].

Estimation of ¢ (u) can be worked out for a large category of models by
applying a variety of (mostly analytic) techniques to functional relationships
like (1.10). It is beyond the scope of this text to review these methods in
detail. Besides the Wiener—-Hopf methodology for the calculation of ¥(u),
renewal theory also yields relevant estimates, as we shall show in the next
section. In doing so we shall concentrate on the Cramér—Lundberg model,
first showing what typical estimates in a “small claim regime” look like. We
then discuss what theory may be used to yield estimates for “large claims”.

Notes and Comments

In recent years a multitude of textbooks on risk theory has been published.
The interested reader may consult for instance Bowers et al. [85], Biihlmann
[97], Gerber [256], Grandell [282], Straub [609], or Beard, Pentikdinen and
Pesonen [54]. The latter book has recently appeared in a much updated form
as Daykin, Pentikidinen and Pesonen [167]. In the review paper Embrechts
and Kliippelberg [211] further references are to be found. A summary of Cra-
mér’s work on risk theory is presented in Cramér [140]; see also the recently
published collected works of Cramér [141, 142] edited by Anders Martin—
Lof. For more references on the historical background to this earlier work,
together with a discussion on “where risk theory is evolving to” see Embrechts
[202]. A proof of Spitzer’s identity, which can be used in order to calculate
the probability in (1.8), can be found in any basic textbook on stochastic
processes; see for instance Chung [120], Karlin and Taylor [371], Prabhu [505],
Resnick [531]. A classical source on Wiener—Hopf techniques is Feller [235], see
also Asmussen [27]. An elementary proof of the Wiener—Hopf factorisation,
relating the so—called ladder—height distributions of a simple random walk to
the step distribution, is to be found in Kennedy [376]. A detailed discussion,
including the estimation of ruin probabilities as an application, is given in
Prabhu [507]; see also Prabhu [506, 508]. A comment on the relationship
between the net profit condition and the asymptotic behaviour of the random
walk (1.9) is to be found in Rogozin [548]. For a summary of the Wiener—Hopf
theory relevant for risk theory see for instance Asmussen [28], Bithlmann [97]
or Embrechts and Veraverbeke [218].
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In Section 8.3 we come back to ruin probabilities. There we describe 1 (u)
via the distribution of the ultimate supremum of a random walk. Moreover,
we characterise a sample path of the risk process leading to ruin.

1.2 The Cramér—Lundberg Estimate

In the previous section we mentioned a general method for obtaining esti-
mates of the ruin probability ¢ («) in the renewal model. If we further restrict
ourselves to the Cramér-Lundberg model we can obtain a formula for v (u)
involving the claim size df F explicitly. Indeed, for the Cramér—Lundberg
model under the net profit condition p = ¢/(Ap) — 1 > 0 one can show that

oo

1—wmr=;§;§ju+prnnww» (1.11)
where
F@ =1 [ Fwa. 0. (1.12)

denotes the integrated tail distribution and
F(x)=1-F(x), x>0,

denotes the tail of the df F. Later we shall show that formula (1.11) is the key
tool for estimating ruin probabilities under the assumption of large claims.
Also a proof of (1.11) will be given in Theorem 1.2.2 below.

In the sequel, the notion of Laplace—Stieltjes transform plays a crucial
role.

Definition 1.2.1 (Laplace—Stieltjes transform)
Let H be a df concentrated on (0,00), then

Mﬂz/eﬂWHm7sem
0

denotes the Laplace—Stieltjes transform of H. O

Remark. 1) Depending on the behaviour of H(z) for z large, h(s) may be
finite for a larger set of s—values than s > 0. In general, h(s) < oo for s > —v
say, where 0 < v < oo is the abscissa of convergence for h(s). a

The following Cramér-Lundberg estimates of the ruin probability ¢ (u) are
fundamental in risk theory.
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Theorem 1.2.2 (Cramér—Lundberg theorem)
Consider the Cramér—Lundberg model including the net profit condition
p > 0. Assume that there exists a v > 0 such that

Fr(—v) = /OOO " dFy (z) = i =1+p. (1.13)

Then the following relations hold.
(a) For allu >0,

Pu) <e . (1.14)
(b) If, moreover,
/ e’ F(x)dr < oo, (1.15)
0
then
li_)m e YPlu) =C < 0, (1.16)
where )
C = {L / z e’ F(z) dx] . (1.17)
PR Jo
(¢) In the case of an exponential df F(x) =1 —e */#, (1.11) reduces to
P(u) ! e p{ P u} u>0 (1.18)
=—— exp{ ———— ) >0. .
L+p n(1+ p)

Remarks. 2) The fundamental, so—called Cramér—Lundberg condition (1.13),

can also be written as -

YF(z)dr = —.
; e""F(z)dx 3

3) It follows immediately from the definition of Laplace-Stieltjes transform

that, whenever v in (1.13) exists, it is uniquely determined; see also Grandell
[282], p. 58.

4) Although the above results can be found in any basic textbook on risk
theory, it is useful to discuss the proof of (b) in order to indicate how renewal—
theoretic arguments enter (we have summarised the necessary renewal theory
in Appendix A4). More importantly, we want to explain why the condition
(1.13) has to be imposed. Very readable accounts of the relevant arguments
are Feller [235], Sections VI.5, XI.7a, and Grandell [282]. O

Proof of (b). Denote §(u) = 1 — ¢(u). Recall from (1.8) that §(u) can be
expressed via the random walk generated by (X; — ¢Y;). Then
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= P(S(t) —ct <uforallt>0)

= P (Z(Xk —cYy) < wufor alln > 1)

k=1

= P Z(Xk—cYk)gu—chl—Xl foralln >2, X; —cl Su)
k=2

= P(S'(t)—ct<u+cY;— X forallt>0, X; —cY; <u),

where S’ is an independent copy of S. Hence

= EPS't)—ct<u+cY; —Xyforallt >0, X3 —c¥V; <u|Yp, X1))

[e’e] u+tcs
= / / P (S'(t) — ct <u+cs—x for all t > 0) dF (x)\e™*ds
o Jo

u+cs
= / e / 0(u+ cs — x)dF (z)ds
0 0

c

_ A e /:o e Aele M 5(= — ) dF(x)] dz, (1.19)

where we used the substitution u + c¢s = z. The reader is urged to show ex-
plicitly where the various conditions in the Cramér-Lundberg model were
used in the above calculations! This shows that ¢ is absolutely continuous

with density
5 () = 2 6(u) - % /0 S(u— ) dF(z). (1.20)

c

From this equation for 1 — 4 (u) the whole theory concerning ruin in the
classical Cramér—Lundberg model can be developed. A key point is that the
integral in (1.20) is of convolution type; this opens the door to renewal theory.
Integrate (1.20) from O to ¢ with respect to Lebesgue measure to find

5ty = 6(0)+ % /Ot(5(u) du — % /Ot/oua(u _ ) dF(z) du

6(0)+%/06(t—u)du—%/06(t—x)F(x)dx.

We finally arrive at the solution,
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5(t) = 6(0) + A /t §(t —2)F(x)dx. (1.21)
¢ Jo

Note that §(0) is still unknown. However, letting ¢ 1 oo in (1.21) and using
the net profit condition (yielding §(o0) = 1 — ¥(00) = 1) one finds 1 = §(0) +
puA/e, hence §(0) =1 — uA/c = p/(1 + p). Consequently,

5(t) = 1+p 1+p/6t—x ) dF; (), (1.22)

where the integrated tail distribution Fj is defined in (1.12). Note that from
(1.22), using Laplace—Stieltjes transforms, formula (1.11) immediately fol-
lows. The reader is advised to perform this easy calculation as an exercise
and also to derive at this point formula (1.18). Equation (1.22) looks like
a renewal equation; there is however one crucial difference and this is exactly
the point in the proof where a small claim condition of the type (1.13) enters.

First, rewrite (1.22) as follows in terms of ¢¥(u) =1 — 0(u), setting a =
1/(1+p) <1,

Y(u) = aFr(u / Y(u—x) d(aFr(z)) . (1.23)

Because 0 < a < 1, this is a so—called defective renewal equation (for instance
Feller [235], Section XI.7). In order to cast it into the standard renewal set—
up of Appendix A4, we define the following exponentially tilted or Esscher
transformed df Fy ,:

dFr,(z) = e"*d(aF;(z)) ,

where v is the exponent appearing in the condition (1.13). Using this notation,
(1.23) becomes

" wu) =ae” Frlu) + [ " — 2) dF (o)
0

which, by condition (1.13), is a standard renewal equation. A straightforward
application of the key renewal theorem (Theorem A4.3(b)) yields

lim e”“y(u) = {i /0 " e F(a) dx]l

which is exactly (1.16)—(1.17). The conditions needed for applying Theo-
rem A4.3 are easily checked. By partial integration and using (1.15),

e Fy () = A e (aFy (2)) — v /u " aF (@) d
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Hence ae’“F(u) is the difference of two non-increasing Riemann integrable
functions, and therefore it is directly Riemann integrable. Moreover,

= = 1- fi(=v) P
VuF = =
/0 ae’Fr(u)du =« —, V(1+p)<oo,
and - ) -
zdFr ,(x :7/ ze’"F(z)dr < 0o,
/0 T (@) w(L+p) Jo (=)
by (1.15). O

Because of the considerable importance for insurance the solution v of (1.13)
gained a special name:

Definition 1.2.3 (Lundberg exponent)
Given a claim size df F', the constant v > 0 satisfying

1s called the Lundberg exponent or adjustment coefficient of the underlying
risk process. O

Returning to (1.13), clearly the existence of v implies that f](s) has to exist in
a non—empty neighbourhood of 0, implying that the tail F; of the integrated
claim size df, and hence also the tail F, is exponentially bounded. Indeed, it
follows from Markov’s inequality that

Fz)<e " Ee’ | z>0.

This inequality means that large claims are very unlikely (exponentially small
probabilities!) to occur. For this reason (1.13) is often called a small claim
condition.

The Cramér—Lundberg condition can easily be discussed graphically. The
existence of v in (1.13) crucially depends on the left abscissa of conver-
gence —v of f[ Various situations can occur as indicated in Figure 1.2.4.
The most common case, and indeed the one fully covered by Theorem 1.2.2,
corresponds to Figure 1.2.4(1). Typical claim size dfs and densities (denoted
by f) covered by this regime are given in Table 1.2.5. We shall not discuss in
detail the intermediate cases, unimportant for applications, of Figure 1.2.4(2)
and (3).

If one scans the literature with the following question in mind:

Which distributions do actually fit claim size data?
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Figure 1.2.4 Special cases in the Cramér—Lundberg condition.

then most often one will find one of the dfs listed in Table 1.2.6. All the dfs
in Table 1.2.5 allow for the construction of the Lundberg exponent. For the
ones in Table 1.2.6 however, this exponent does not exist. Indeed, the case
(4) in Figure 1.2.4 applies. For that reason we have labelled the two tables
with “small claims”, respectively “large claims”. A more precise discussion of
these distributions follows in Section 1.4. A detailed study of the properties
of the distributions listed in Table 1.2.6 with special emphasis on insurance
is to be found in Hogg and Klugman [330]. A wealth of material on these and
related classes of dfs is presented in Johnson and Kotz [358, 359, 360].

For the sake of argument, assume that we have a portfolio following the
Cramér—Lundberg model for which individual claim sizes can be modelled by
a Pareto df .

Flz)=(01+4z)"“, x>0, a>1.
It then follows that EX; = [;°(1 4+ 2)~*dz = (a —1)~! and the net profit
condition amounts to p = ¢(a — 1)/\ — 1 > 0. Question:

Can we work out the exponential Cramér—Lundberg estimate in this case,
for a given premium rate c satisfying the above condition?

The answer to this question is no. Indeed, in this case, for every v > 0

/ e’ (1+z)"%de =0,
0
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Name Tail F or density f Parameters
Exponential F(z)=e?® A>0
Gamma f(z) = i e P a, 3>0
I(e) ’
Weibull F(z) =e c>0,7>1
Truncated normal | f(z) = \/g e=="/2 —

Any distribution with bounded support

Table 1.2.5 Claim size dfs: “small claims”. All dfs have support (0,00).

i.e. there is no exponential Cramér—Lundberg estimate in this case. We are
in the regime of Figure 1.2.4(4): zero is an essential singularity of fb this
means that f(—¢) = oo for every e > 0.

However, it turns out that most individual claim size data are modelled
by such dfs; see for instance Hogg and Klugman [330] and Ramlau—Hansen
[522, 523] for very convincing empirical evidence on this. In Chapter 6 we
shall analyse insurance data and come to the conclusion that also in these
cases (1.13) is violated. So clearly, classical risk theory has to be adjusted to
take this observation into account. In the next section we discuss in detail
the class of subexponential distributions which will be the candidates for loss
distributions in the heavy—tailed case. A detailed discussion of the theory of
subexponential distributions is rather technical, so we content ourselves with
an overview of that part of the theory which is most easily applicable within
risk theory in particular and insurance and finance in general. In Section 1.3
we present the large—claims equivalent of the Cramér—Lundberg estimate; see
for instance Theorem 1.3.6.

Notes and Comments

The reader interested in the various mathematical approaches to calculating
ruin probabilities should consult any of the standard textbooks on risk the-
ory; see the Notes and Comments of Section 1.1. A short proof of (1.14) based
on martingale techniques is for instance discussed in Grandell [283]; see also
Gerber [255, 256]. An excellent review on the subject is Grandell [283]. Theo-
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Name Tail F or density f Parameters
1 2 2
Lognormal z) = —— ¢ Une—w)7/(27) ER, 0>0
g /() o neER,

Pareto F(z) = ( ~ ) a, k>0
K+

Burr F(z) = ( l ) a,k, T>0
K+ x7

Benktander— | F(z) = (1 + 2(3/a)Inz) a,3>0

typ671 e—ﬁ(lnz)z—(a-‘rl) Inz

Benktander— | F(z) = e*/Az~(1=8)¢@ =/8 a>0

type-II 0<p<1

Weibull F(z)=e c>0

0<r<1
Loggamma f(z) = OC—B(ln:c)ﬁ_1 et a,3>0
) 7
Truncated F(z) = P(|X]| > =) l<a<?2
a—stable where X is an a—stable rv

(see Definition 2.2.1)

Table 1.2.6 Claim size dfs: “large claims”. All dfs have support (0,00) except for
the Benktander cases and the loggamma with (1,00).

rem 1.2.2 can also be formulated for the renewal model; a detailed analysis of
the Wiener—Hopf technique together with relevant renewal-type arguments
can be worked out; see for instance Embrechts and Veraverbeke [218] for de-
tails and further references. Useful textbooks containing a discussion on the
link between the asymptotic behaviour of the tail of a measure to properties
of its Laplace—Stieltjes transform in a neighbourhood of zero are Bingham,
Goldie and Teugels [72] (see for instance Section 1.7 in the latter), Feller
[235], Section XIII.5, and Widder [642].

Using Wiener—Hopf theory, a theorem similar to Theorem 1.2.2 can be
proved in the renewal model with F' supported by (—o0, +00). For details see
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Embrechts and Veraverbeke [218] and Thorin [622]. An interesting survey
paper is Thorin [624].

Exponential-type ruin estimates hold for much wider classes of risk
processes; see for instance Embrechts, Grandell and Schmidli [208], Gran-
dell [282] and the references therein. The latter references also concentrate in
detail on ruin estimation in finite time. For an approach based on diffusion
approximations see Example 2.5.18.

A detailed discussion of ruin estimation under the various regimes given
in Figure 1.2.4 is to be found in Embrechts and Veraverbeke [218]; see also
Embrechts [201] for an example based on the generalised inverse Gaussian
distribution. A useful review of the various claim size models used in non—
life insurance is Hogg and Klugman [330]. The reader should be aware that
for most models there is no standard notation or indeed parametrisation.
We shall on some occasions say that “under the assumption of a Pareto
distribution”, meaning that the exact parametrisation is not important for
that particular discussion. If however the specific parameter values are of
interest, we will always make this clear, in many cases by explicitly stating
which functional form of the density f or the df F' is used.

1.3 Ruin Theory for Heavy—Tailed Distributions

Throughout this section, all rvs are positive with infinite support, i.e.
F(x) <1 for all x > 0. We have already seen that Pareto distributions vi-
olate the Cramér-Lundberg condition (1.13) so that Theorem 1.2.2 is not
applicable for such claim size distributions. What alternative methodology
can be used? The answer lies in the representation (1.11), together with
Lemma 1.3.1 below. As from Section 1.3.1 onwards, we shall extensively use
the theory of regular variation. The reader unfamiliar with the latter theory
is urged first to read Appendix A3.1 before proceeding. We denote by R,
the class of regularly varying functions with index a € R. The case a =0
corresponds to the so—called slowly varying functions.

From Section 1.3.2 onwards, the class of subexponential distributions will
play a fundamental role. For the latter, no complete textbook treatment
exists. Because of their importance for the modelling of large claims, we have
included a more detailed analysis of their properties. The results immediately
needed for proving ruin estimates in the heavy—tailed case are presented in
this chapter. For some of the more technical theorems, the reader is referred to
Appendix A3.2. The main ideas underlying subexponentiality are presented
in Section 1.3.2; Section 1.4 may be skipped upon first reading.
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1.3.1 Some Preliminary Results

We start our discussion with a convolution closure property for regularly
varying dfs. From Appendix A3.1, recall that L belongs to Ro, i.e. L is slowly
varying, whenever for all ¢ > 0

i
oo L(2)

The following result is to be found in Feller [235], p. 278.

Lemma 1.3.1 (Convolution closure of dfs with regularly varying tails)
If Fy, Fy are two dfs such that F;(z) = x~*L;(x) for a >0 and L; € Ry,
i = 1,2, then the convolution G = Fy x Fy has a reqularly varying tail such
that

G(x) ~ 2% (Li(z) + La(2)) , T —00.

Proof. Let X;, X5 be independent rvs with dfs Fy, respectively F3. Using
{X1+ X2 >z} D {X: >z}U{Xs >z} one easily checks that

G(z) > (Fi(z) + Fa(z)) (1 —o(1)) .
If 0 < 6 <1/2, then from
{Xi1+Xo >z} C{X1 >0 -0)z}u{Xe > (1 - )a}U{X; > bz, X2 > oz},

it follows that

G(x) < Fi((1=8)x)+ Fa((1 — 0)x) + Fi(6x) Fo(dx)
= (Fi((1=6)2) + Fa((1 = 0)2) ) (1 + 0(1)).
Hence
1 < liminf % < lim sup % <(1-=96)"7,
which proves the result upon letting § | 0. a

An alternative proof of this result can be based upon Karamata’s Tauberian
theorem (Theorem A3.9). An important corollary obtained via induction on n
is the following:

Corollary 1.3.2 If F(z) =2 “L(x) for a >0 and L € Ry, then for all
n>1,
Fr(z) ~nF(x), x— . O
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Suppose now that Xi,...,X, are iid with df F as in the above corollary.
Denote the partial sum of Xy,..., X, by S, = X7 +---+ X, and their max-
imum by M,, = max(Xy,...,X,). Then for all n > 2,

P(S,>xz) = F"(a),
P(M,>z) = Fn(x)
= F(x) 2_: F*(z)
k=0
~ nF(z), z—=o00. (1.24)

Therefore, with the above notation, Corollary 1.3.2 can be reformulated as

FeR_,, a>0,
implies

P(S, >z)~P(M, >z), x— 0.

This implies that for dfs with regularly varying tails, the tail of the df of the
sum S, is mainly determined by the tail of the df of the maximum M, This
is exactly one of the intuitive notions of heavy—tailed distribution or large
claims. Hence, stated in a somewhat vague way:

Under the assumption of regular variation, the tail
of the maximum determines the tail of the sum.

Recall that in the Cramér—Lundberg model the following relation holds; see
(L.11):

v = T S+ M F (), w20,
n=0

where Fi(z) = p=" [ F(y) dy is the integrated tail distribution. Under the
condition F; € R_, for some a > 0, we might hope that the following as-
ymptotic estimate holds:

v  _ p & _n FF(w)
Tiw)  1+p ;(1 S - (1.25)
- ﬁ Z(1+p)*”n = pt', wu—oo. (1.26)
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The key problem left open in the above calculation is the step from (1.25) to
(1.26).

Can one safely interchange limits and sums?

The answer is yes; see Theorem 1.3.6. Consequently, (1.26) is the natural
ruin estimate whenever F; is regularly varying. Below we shall show that
a similar estimate holds true for a much wider class of dfs. In its turn, (1.26)
can be reformulated as follows.

For claim size distributions with regularly varying tails, ultimate
ruin ¢ (u) for large initial capital v is essentially determined by
the tail F(y) of the claim size distribution for large values of y,
ie.

1 o _
w<u>~ﬁl Fly)dy, u— .

From Table 1.2.6 we obtain the following typical claim size distributions
covered by the above result:

— Pareto

— Burr

— loggamma

— truncated stable distributions.

1.3.2 Cramér—Lundberg Theory for Subexponential Distributions

As stated above, the crucial step in obtaining (1.26) was the property
Fr¥(z) ~nF(z) for £ — oo and n > 2. This naturally leads us to a class
of dfs which allows for a very general theory of ruin estimation for large
claims. The main result in this set—up is Theorem 1.3.6 below.

Definition 1.3.3 (Subexponential distribution function)
A df F with support (0,00) is subexponential, if for all n > 2,

Foe
im _7@) =n. (1.27)
The class of subexponential dfs will be denoted by S. O

Remark. 1) Relation (1.27) yields the following intuitive characterisation of
subexponentiality; see (1.24).
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Foralln >2, P(S,>x)~PM,>z), x—o00. (1.28)

O

In order to check for subexponentiality, one does not need to show (1.27) for
all n > 2.

Lemma 1.3.4 (A sufficient condition for subexponentiality)
If limsup, . F?*(x)/F(z) <2, then F € S.

Proof. As F stands b_rthe df o_f a positive rv, it follows immediately that
F?*(z) < F%(2), i.e. F2*(x) > F2(z) for all x > 0. Therefore (1.27) holds
with n = 2. The proof is then by induction on n. For z > y > 0,

FODi@) . F(a) = PO ()

TFw - T T (1.29)
_ WERCEY)
= 1+ /0 ) dF (t)

- (L) () e

By inserting —n + n in I; and noting that (F™*(x — t)/F(x — t) — n) can be
made arbitrarily small for 0 <t < x —y and y sufficiently large, it follows
that

L(z) = (HH(I))/:_y % dF(t).

" Flz—t) F(z) - F**(@) [ Fla—1)
LoFm e - S e e

= (1+0(1) = J(z,y),

where J(z,y) < (F(z) — F(x —y))/F(x) = 0 as x — oo by Lemma 1.3.5 (a)
below. Therefore lim,_, o I1 () = n.
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Finally, since F"*(x — t)/F(z — t) is bounded for # —y < t < x and
li_>m J(z,y) =0, 1i_>m I (z) = 0, completing the proof. O

Remarks. 2) The condition in Lemma 1.3.4 is trivially necessary for F' € S.

3) In the beginning of the above proof we used that for the df F' of a pos-
itive rv, always liminf, o, F2*(z)/F(x) > 2. One easily shows in this case
that, for all n > 2,

liminf F™*(2)/F(x) > n.

T—r 00
Indeed S,, > M, hence F"*(z) = P(S, > x) > P(M, > z) = Fn(x).
Therefore _ —
Fn* Fn
liminf — () > lim (2) =n. O

= F@) e F)

The following lemma is crucial if we want to derive (1.26) from (1.25) for
subexponential F7.

Lemma 1.3.5 (Some basic properties of subexponential distributions)

(a) If F € S, then uniformly on compact y-sets of (0,00),

im ZE=Y) (1.30)
(b) If (1.30) holds then, for all e > 0,
e“F(z) =00, = —00.

(¢) If F € S then, given € > 0, there exists a finite constant K so that for
alln > 2,

FFRZ(T) <K(l+e)", z>0. (1.31)
Proof. (a) For x >y > 0, by (1.29),
F;(S) _ 1+/0y% dF (1) +/z % dF (1)
> 145+ 2 (P - F).

Thus, for z large enough so that F'(z) — F(y) # 0,

F(z—y) F2(x) 1
) < ( T 1 —F(y)> (F(x) = F(y)™ .

1<
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In the latter estimate, the rhs tends to 1 as  — 0o. The property (1.30) can
be reformulated as F o In € Ry so that uniform convergence follows from the
uniform convergence theorem for slowly varying functions; see Theorem A3.2.

(b) By (a), Foln € Ry. But then the conclusion that 2°F(lnx) — oo as
x — oo follows immediately from the representation theorem for Rg; see The-
orem A3.3.

(c) Let ap = sup,>q Fn#(x)/F(x). Using (1.29) we obtain, for every T' < oo,

» T (g —
any1 < 14 sup / MdF(y)
o<e<tJo  F(2)

CFY(x—y) Fz —y)
) Fa—y F@ W

F(x) — F?*(x)
< 14+ Ar+a, sup —— "~
SRR R 7
where A7 = (F(T))™! < co. Now since F' € S we can, given any ¢ > 0,
choose T such that
ant1 <14+ Ar+a,(l1+¢).

Hence
an <(1+Ar) et (14+2)",

implying (1.31). O

Remark. 4) Lemma 1.3.5(b) justifies the name subexponential for F € S;
indeed F(z) decays to 0 slower than any exponential e =% for ¢ > 0. Further-
more, since for any € > 0:

/ T dF(x) > e F(y), y>0,

y

it follows from Lemma 1.3.5(b) that for F € S, f(—¢) = oo for all £ > 0.
Therefore the Laplace—Stieltjes transform of a subexponential df has an es-
sential singularity at 0. This result was first proved by Chistyakov [115],
Theorem 2. As follows from the proof of Lemma 1.3.5(b) the latter property
holds true for the larger class of dfs satisfying (1.30). For a further discussion
on these classes see Section 1.4. O

Recall that for a df F' with finite mean y, Fi(z) = p~* [ F(y) dy. An imme-
diate, important consequence from the above result is the following.
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Theorem 1.3.6 (The Cramér—Lundberg theorem for large claims, I)
Consider the Cramér—Lundberg model with net profit condition p >0 and
Fr €S, then

Y(u) ~ p~ Fr(u), U — 00 . (1.32)

Proof. Since (1 + p)~! < 1, there exists an € > 0 such that (1+p)"!(1+¢) <
1. Hence because of (1.31),
7 (u)

(I+p) " ZE—<(U+p) "K1+2)", u>0,
F](u)

which allows by dominated convergence the interchange of limit and sum in
(1.25), yielding the desired result. O

In Figure 1.3.7 realisations of the risk process (U(t)) are given in the case
of lognormal and Pareto claims. These realisations should be compared with
the ones in Figure 1.1.2 (exponential claims).

This essentially finishes our task of finding a Cramér—Lundberg type es-
timate in the heavy—tailed case.

For claim size distributions with subexponential integrated tail
distribution, ultimate ruin ¢ (u) is given by (1.32).

In addition to dfs with regularly varying tails, the following examples from
Table 1.2.6 yield the estimate (1.32). This will be shown in Section 1.4.

— lognormal

— Benktander—type-I

— Benktander—type-II
— Weibull (0 <7< 1).

From a mathematical point of view, the result in Theorem 1.3.6 can be sub-
stantially improved. Indeed, Corollary A3.21 yields the following result.

Theorem 1.3.8 (The Cramér-Lundberg theorem for large claims, IT)
Consider the Cramér—Lundberg model with net profit condition p > 0. Then
the following assertions are equivalent:

(a) Fres,
(b) 1—v(u) €S,
(¢) limy oo ¥(u)/Fr(u) =p~'. O

Consequently, the estimate (1.32) is only possible under the condition F; € S.
In the case of the Cramér—Lundberg theory, S is therefore the natural class
when it comes to ruin estimates whenever the Cramér—Lundberg condition
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Figure 1.3.7 Some realisations of the risk process (U(t)) for lognormal (top) and
Pareto (bottom) claim sizes.

(1.13) is violated. In Section 1.4 we shall come back to the condition F; € S,
relating it to conditions on F itself.

1.3.3 The Total Claim Amount in the Subexponential Case

In Section 1.3.2 we have stressed the importance of S for the estimation of
ruin probabilities for large claims. From a mathematical point of view it is
important that in the Cramér—Lundberg model, 1 — ¢ (u) can be expressed as
a compound geometric sum; see (1.11). The same methods used for proving
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Theorem 1.3.6 yield an estimate of the total claim amount distribution for
large claims. Indeed, in Section 1.1 we observed that, within the Cramér—
Lundberg model, for all ¢ > 0,

Gi(x) = P(S(t) <z) = ie‘” % F"(z), x>0, (1.33)

where S(t) = E,]j:(tl) X}, is the total (or aggregate) claim amount up to time ¢.
The claim arrival process (N(t));>0 in (1.33) is a homogeneous Poisson
process with intensity A > 0, hence

. n>0. (1.34)

The same calculation leading up to (1.33) would, for a general claim arrival
process (still assumed to be independent of the claim size process (X)), yield
the formula

Gi(r) = S piln) F™*(z), 220, (1.35)
n=0

where
pi(n) =P(N(t)=n), neNy,

defines a probability measure on Ny. In the case of a subexponential df F' the
same argument as given for the proof of Theorem 1.3.6 yields the following
result.

Theorem 1.3.9 (The total claim amount in the subexponential case)
Consider (1.35) with F € S, fiz t > 0, and suppose that (p;(n)) satisfies

(e}

D> (1+e)" pin) < o0 (1.36)
n=0

for some e > 0. Then G, € S and
Gi(x) ~EN(t)F(z), = — o0. (1.37)
O

Remarks: 1) Condition (1.36) is equivalent to the fact that the probability

generating function Y~ p;(n)s™ is analytic in a neighbourhood of s = 1.

2) The most general formulation of Theorem 1.3.9 is to be found in Cline
[124], Theorem 2.13. O

Example 1.3.10 (The total claim amount in the Cramér-Lundberg model)
Suppose (N(t)) is a homogeneous Poisson process with individual probabili-
ties (1.34) so that trivially p;(n) satisfies (1.36). Then, for F' € S,

Gi(z) ~ MF(x), x— 00. O
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Example 1.3.11 (The total claim amount in the negative binomial case)
The negative binomial process is a claim arrival process satisfying

pt(n):<7+2_1) (%) <ﬁ> , n€Ny, (,v>0. (1.38)

Seal [572, 573] stresses that, apart from the homogeneous Poisson process,

this process is the main realistic model for the claim number distribution in
insurance applications. One easily verifies that

EN(t) =~t/B, var(N(t)) =~t(1+1t/5)/5.

Denoting ¢ = 3/(8 + t) and p = t/(3 + t), one obtains from (1.38), by using
Stirling’s formula I'(z + 1) ~ 27z (z/e)* as x — oo, that

pe(n) ~p" "t /T(y), n—oo.

Therefore the condition (1.36) is fulfilled, so that for F' € S,

t—
Gi(z) ~ %F(l‘), r— 0.
Recall that in the homogeneous Poisson case, EN (t) = At = var(N(t)). For
the negative binomial process,

t
var(N(t)) = <1 + 3) EN(t) > EN(t), t>0. (1.39)
The condition (1.39) is referred to as over—dispersion of the process (N (t));
see for instance Cox and Isham [134], p. 12. As discussed in McCullagh and
Nelder [449], p. 131, over—dispersion may arise in a number of different ways,
for instance

(a) by observing a homogeneous Poisson process over an interval whose
length is random rather than fixed,

(b) when the data are produced by a clustered Poisson process, or

(¢) in behavioural studies and in accident—proneness when there is inter—
subject variability.

It is mainly (c) which is often encountered in the analysis of insurance
data. The features mentioned under (c) can be modelled by mized Poisson
processes. Their precise definition given below is motivated by the following
example. Suppose A is a rv which is I'(v, 8) distributed with density

falz) = % " le P 2> 0.

Then
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Figure 1.3.12 Realisations of the risk process (U(t)) with linear premium income
and total claim amount process S(t) = vaz(lt) X;, where (N(t)) is a negative bi-
nomial process. The claim size distribution is either exponential (top) or lognor-
mal (bottom). Compared with Figure 1.1.2, the top figure clearly shows the over—
dispersion effect. If we compare the bottom graph with the corresponding Figure 1.3.7
we notice the accumulation of many small claims.

B € _ Lty (B N[t \" _
/0 © T e =S <ﬁ+t) <6+t> TR

The latter formula equals p;(n) in (1.38). Hence we have obtained the negative
binomial probabilities by randomising the Poisson parameter A over a gamma
distribution. This is exactly an example of what is meant by a mixed Poisson
process. O

Definition 1.3.13 (Mixed Poisson process)
Suppose A is a v with P(A>0) =1, and suppose N = (N(t))i>0 is a ho-
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mogeneous Poisson process with intensity 1, independent of A. The process
(N(At))¢>0 is called mixed Poisson. O

The rv A in the definition above can be interpreted as a random time change.
Processes more general than mixed Poisson, for instance Cox processes, have
belonged to the toolkit of actuaries for a long time. Mixed Poisson processes
are treated in every standard text on risk theory. Recent textbook treat-
ments are Grandell [284] and Panjer and Willmot [489]. The homogeneous
Poisson process with intensity A > 0 is obtained for A degenerate at A, i.e.
P(A=)) =1

Notes and Comments

The class of subexponential distributions was independently introduced by
Chistyakov [115] and Chover, Ney and Wainger [116], mainly in the context
of branching processes. An early textbook treatment is given in Athreya and
Ney [34], from which the proof of Lemma 1.3.5 is taken. Lemma 1.3.5(c) is
attributed to Kesten. An independent introduction of S through questions
in queueing theory is to be found in Borovkov [83, 84]; see also Pakes [488].
The importance of S as a useful class of heavy—tailed dfs in the context
of applied probability in general, and insurance mathematics in particular,
was realised early on by Teugels [617]. A recent survey paper is Goldie and
Kliippelberg [274].

In the next section we shall prove that the condition F; € S is also sat-
isfied for F' lognormal. Whenever F' is Pareto, it immediately follows that
F; € S. In these forms (i.e. Pareto, lognormal F'), Theorem 1.3.6 has an in-
teresting history, kindly communicated to us by Olof Thorin. In Thorin [623]
the estimate

w(u)Nk/oof(av)dyv7 u— 00,

for some constant k was obtained for a wide class of distributions F' assuming
certain regularity conditions:

F(y) = / (1—e™) V'(tydt, y>0,
0
with V'’ continuous, positive for ¢ > 0, and having
V'(0) =0 and / V'(t)ydt =1.
0

An interesting special case is obtained by choosing V'(t) as a gamma density
with shape parameter greater than 1, giving the Pareto case. It was pointed
out in Thorin and Wikstad [625] that the same method also works for the
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lognormal distribution. The Pareto case was obtained independently by von
Bahr [633] and early versions of these results were previously discussed by
Thorin at the 19th International Congress of Actuaries in Oslo (1972) and
at the Wisconsin Actuarial Conference in 1971. Thorin also deals with the
renewal case. Embrechts and Veraverbeke [218] obtained the full answer as
presented in Theorem 1.3.8. In the latter paper these results were also for-
mulated in the most general form for the renewal model allowing for real-
valued, not necessarily positive claims. It turns out that also in that case,
under the assumption F; € S, the estimate ¢ (u) ~ p~1F(u) holds. In the
renewal model however, we do not have the full equivalence relationships as
in the Cramér—Lundberg case.

A recent overview concerning approximation methods for G;(x) is given
in Buchwalder, Chevallier and Kliippelberg [95]. The use of the fast Fou-
rier transform method with special emphasis on heavy tails is highlighted
in Embrechts, Griibel and Pitts [209]. A particularly important methodology
for application is the so—called Panjer recursion method. For a discussion and
further references on this topic; see Dickson [180] or Panjer and Willmot [489].
A light—tailed version of Example 1.3.11 is to be found in Embrechts, Maeji-
ma and Teugels [214]. An especially useful method in the light—tailed case is
the so—called saddlepoint approximation; see Jensen [356] for an introduction
including applications to risk theory. A very readable textbook treatment
on approximation methods is Hipp and Michel [328]; see also Feilmeier and
Bertram [232].

There are much fewer papers on statistical estimation of G; than there
are on asymptotic expansions. Clearly, one could work out a parametric esti-
mation procedure or use non—parametric methods. The latter approach looks
especially promising, as can be seen from Pitts [502, 503] and references
therein.

1.4 Cramér-Lundberg Theory for Large Claims:
a Discussion

1.4.1 Some Related Classes of Heavy—Tailed Distributions

In order to get direct conditions on F' so that the heavy—tailed Cramér—Lund-
berg estimate in Theorem 1.3.6 holds, we first study some related classes of
heavy—tailed dfs.

The class of dominatedly varying distributions is defined as

D= {F df on (0, 00) : limsup F(z/2)/F(x) < oo} .

Tr—r00
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Figure 1.4.1 Classes of heavy—tailed distributions.

We have already encountered members of the following three families:

L = {Fdfon (0,00) : li_)m F(r—y)/F(z) =1 f01r3ully>0}7
R = {Fdfon(0,00):F € R_, forsomea >0},

~

K {F df on (0,00) : f(—¢) = / e*dF(x) =00 for all ¢ > 0} .
0

From the definition of slowly varying functions, it follows that F' € £ if and
only if F oln € Ry. The following relations hold:

(a) RcScLcCcK and RCD,
(by LNDCS,
(c) DgS and S¢D.

The situation is summarised in Figure 1.4.1. A detailed discussion of these
interrelationships is to be found in Embrechts and Omey [216]; see also Kliip-
pelberg [387]. Most of the implications are easy, and indeed some of them we
have already proved (R C S in Corollary 1.3.2, £ C K in Remark 4 after the
proof of Lemma 1.3.5). A mistake often encountered in the literature is the
claim that D C S; the following df provides a counterexample.

Example 1.4.2 (The Peter and Paul distribution)
Consider a game where the first player (Peter) tosses a fair coin until it falls
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head for the first time, receiving from the second player (Paul) 2* Roubles,
if this happens at trial k. The df of Peter’s gain is

F(z) = Z 27k, 2>0.

k:2k <z

The problem underlying this game is the famous St. Petersburg paradox;
see for instance Feller [234], Section X.4. It immediately follows that for all
k€N, F(2* —1)/F(2*) = 2so that F ¢ £ and a fortiori F' ¢ S. On the other
hand, one easily shows that F' € D. For a full analysis see Goldie [271]. O

The result S # £ is non—trivial; relevant examples are to be found in Em-
brechts and Goldie [204] and Pitman [501]. Concerning the relationship be-
tween £ and S, consider for x > 0,

) [ Fa—y)
el A TE Ul

By definition, F' € £ implies that for every y fixed the integrand above con-
verges to 1. By the uniform convergence theorem for slowly varying func-
tions (Theorem A3.2), this convergence holds also uniformly on compact y—
intervals. In order however to interchange limits and integrals one needs some
sort of uniform integrability condition (dominated convergence, monotonicity
in ,...). In general (i.e. for F' € L) these conditions fail.

Let us first look at S—membership in general. We have already established
R CS and § C £ (Lemma 1.3.5(a)), the latter implying that for all € > 0,
exp{exr}F(z) — oo as z — oo. From this it immediately follows that the ex-
ponential df F'(z) = 1 — exp{—Axz} does not belong to S. One could of course
easily verify this directly, or use the fact that S C £ and immediately note
that F' & L.

So by now we know that the dfs with power law tail behaviour (i.e. F' € R)
belong to S. On the other hand, exponential distributions (and indeed dfs F
with faster than exponential tail behaviour) do not belong to S. What can
be said about classes “in between”, such as for example the important class
of Weibull type variables where F(x) ~ exp{—2"} with 0 < 7 < 1?7 Proposi-
tion A3.16, formulated in terms of the density f of F, the hazard rate ¢ = f/F
and the hazard function Q(z) = foz q(y)dy, immediately yields the following
examples in S. Note that, using the above notation, F'(z) = exp{—Q(x)}.

Example 1.4.3 (Examples of subexponential distributions)

(a) Take F' a Weibull distribution with parameters 0 < 7 < 1 and ¢ > 0, i.e.
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Then f(z)=cra”™ te ", Q(z) = cax™ and ¢(x) =crz™! which de-
creases to 0 if 7 < 1. We can immediately apply Proposition A3.16(b)

since
T e’ q(“”)f(x) =t (T2 o g1

is integrable on (0,00) for 0 < 7 < 1. Therefore F' € S.
(b) Using Proposition A3.16, one can also prove for

F(x) ~ e~on2)™’ , x—=>00, (>0,
that F' € §. This example shows that one can come fairly close to expo-
nential tail behaviour while staying in S.

(c) At this point one could hope that for

F(m)we*xm(x), r—o00, 0<7<1, LeR,,

F would belong to §. Again, in this generality the answer to this question
is no. One can construct examples of L € R so that the corresponding F’
does not even belong to £! An example for 7 = 0 was communicated to
us by Charles Goldie; see also Cline [123] where counterexamples for
0 < 7 <1 are given. O

A particularly useful result is the following.
Proposition 1.4.4 (Dominated variation and subexponentiality)

(a) If F € LND, then F € S.
(b) If F has finite mean p and F € D, then F; € LN D. Consequently, be-
cause of (a), Fj € S.

Proof. (a) Because of (A.17), for x > 0,

) [P Fa-y) (F(x/2)
el s PR
N 2 F(x—y)
= 2/0 7?(110) dF(y) +o(1),

where the o(1) is a consequence of F' € D. Now for all 0 < y < x/2,

F(ic —y) < F_(x/Q)
Fle) = Fx)

b

so that because F' € D, we can apply dominated convergence, yielding for
F € L the convergence of the integral to 1. Hence F' € S.

(b) For ease of notation, and without loss of generality, we put u = 1. Since,
for all x > 0,
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oo 2z
Fitw) = [ Fydyz [ Fl)dy 2 aFza), (1.40)
it follows from F' € D that
lim sup iF(x) < lim sup f‘(x) < o0
Moreover,
F(y)dy F(y)dy -
Fi(z/2) /xz _ g der < 14 F/2)z/2
Fi(e) / F(y)dy / F(y)dy Fi()
- 1 +2_1F_(x/2) aiF(JU)7
whence
lim sup F_I(x/Q) ,

hence, by (1.40),

1< yF(z)  Fi(w+y) < yF@)  Filw+y)
F(z) Fi(z) zF(2x) Fi(z)

The first term in the latter sum is o(1) as z — oo, since F' € D. Therefore,

F F
1 <liminf M < limsup M <1,
T—00 Fr(x) T—00 ](1‘)

ie. FeL. O

1.4.2 The Heavy—Tailed Cramér—Lundberg Case Revisited

So far we have seen that, from an analytic point of view, the classes R and S
yield natural models of claim size distributions for which the Cramér—Lund-
berg condition (1.13) is violated.

In Seal [573], for instance, the numerical calculation of ¢ (u) is discussed
for various classes of claim size dfs. After stressing the fact that the mixed
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Poisson process in general, and the homogeeous Poisson process and the nega-
tive binomial process in particular, are the only claim arrival processes which
fit real insurance data, Seal continues by saying

Types of distributions of independent claim sizes are just as limited, for apart
from the Pareto and lognormal distributions, we are not aware that any has
been fitted successfully to actual claim sizes in actuarial history.

Although perhaps formulated in a rather extreme form, more than ten years
later the main point of this sentence still stands; see for instance Schnieper
[568], Benabbou and Partrat [59] and Ramlau-Hansen [522, 523] for a more
recent account on this theme. Some examples of insurance data will be dis-
cussed in Chapter 6.

In this section we discuss S—membership with respect to standard classes
of dfs as given above. We stick to the Cramér—Lundberg model for purposes
of illustration on how the new methodology works. Recall in the Cramér—
Lundberg set—up the main result of Section 1.3, i.e. Theorem 1.3.6:

If F; € S then ¢(u) ~ p L Fr(u), u — c0.

The exponential Cramér-Lundberg estimates (1.14), (1.16) under the small
claim condition (1.13) yield surprisingly good estimates for #(u), even for
moderate to small u. The large claim estimate ¢(u) ~ p~'F(u) is however
mainly of theoretical value and can indeed be further improved; see the Notes
and Comments. A first problem with respect to applicability concerns the
condition F7 € §. A natural question at this point is:

(1) Does F' € S imply that F; € S?
And, though less important for our purposes:
(2) Does Fr € S imply that F € S?

It will turn out that, in general, the answer to both questions (unfortunately)
is no. This leads us immediately to the following task:

Give sufficient conditions for F' such that F1 € S.

Concerning the latter problem, there are numerous answers to be found in
the literature. We shall discuss some of them. The various classes of dfs
introduced in the previous section play an important role here.

An immediate consequence of Proposition 1.4.4 is the following result.

Corollary 1.4.5 (The Cramér-Lundberg theorem for large claims, I1T)
Consider the Cramér—Lundberg model with net profit condition p > 0 and
F €D, then

Y(u) ~p 'Fr(u), u-—oo0. O
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The condition F' € D is readily verified for all relevant examples; this is in
contrast to the non—trivial task of checking F; € S. It is shown in Seneta [575],
Appendix A3, that any F' € D has the property that there exists a £ € N so
that fooo 2* dF () = oo, i.e. there always exist divergent (higher) moments. It
immediately follows from Karamata’s theorem (Theorem A3.6) that F' € R
implies F; € R and hence F; € §. For detailed estimates in the heavy-tailed
Cramér-Lundberg model see Kliippelberg [388]. In the latter paper, also,
various sufficient conditions for F; € S are given in terms of the hazard rate
q(x) = f(x)/F(z) for F with density f or the hazard function Q = —In F};
see also Cline [123].

Lemma 1.4.6 (Sufficient conditions for F; € S)
If one of the following conditions holds, then Fr € S.

(a) limsup,_, . zq(x) < o0,

(b) lim, 00 q(z) =0, lim, 0o x ¢(x) = 00, and one of the following condi-
tions holds:
(1) limsup,_,., zg(z)/Q(x) <1,

(2) ¢eRs, —1<6<0,

(3) Q €Rs,0<6<1, and q is eventually decreasing,

(4) q is eventually decreasing to 0, ¢ € Ry and Q(z) —zq(z) € Ry. O

In Kliippelberg [387], Theorem 3.6, a Pitman—type result (see Proposition
A3.16) is presented, characterising F7 € S for certain absolutely continuous F
with hazard rate ¢ decreasing to zero.

Example 1.4.7 (Examples of F; € S)
Using Lemma 1.4.6(b)(2), it is not difficult to see that F; € S in the following
cases:

— Weibull with parameter 7 € (0,1)
— Benktander—type—-I and —II
— lognormal. O

Corollary 1.4.8 (The Cramér-Lundberg theorem for large claims, IV)
Consider the Cramér—Lundberg model with net profit condition p > 0 and F
satisfying one of the conditions (a), (b) of Lemma 1.4.6, then

U(u) ~p~ Fr(u), u—oo. O

We still have left the questions (1) and (2) above unanswered. Concerning
question (2) (does F; € § imply that F' € S 7), on using Proposition 1.4.4(b)
we find that a straightforward modification of the Peter and Paul distribution
yields an example of a df F' with finite mean such that Fr € S but F ¢ S.
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For details see Kliippelberg [387]. The latter paper also contains a discussion
of question (1) (does F' € S with finite mean imply that F; € S 7).

At this point, the reader may have become rather bewildered concerning
the properties of S. On the one hand, we have shown that it is the right class of
dfs to consider in risk theory under large claim conditions; see Theorem 1.3.8,
(c) implies (a). On the other hand, one has to be extremely careful in making
general statements concerning S and its relationship to other classes of dfs.

For our immediate purposes it suffices to notice that for distributions F
with finite mean belonging to the families: Pareto, Weibull (7 < 1), lognor-
mal, Benktander—type—I and —II, Burr, loggamma,

FeS and Fres.

For further discussions on the applied nature of classes of heavy—tailed
distributions, we also refer to Benabbou and Partrat [59], Conti [132], Hogg
and Klugman [330] and Schnieper [568]. In the latter paper the reader will
find some critical remarks on the existing gap between theoretical and ap-
plied usefulness of families of claim size distributions. It also contains some
examples of relevant software for the actuary.

Notes and Comments

The results presented so far only give a first, though representative, account
of ruin estimation in the heavy-tailed case. The reader should view them
also as examples of how the class S, and its various related classes, offer an
appropriate tool towards a “heavy-tailed calculus”.

Nearly all of the results can be extended. For instance Veraverbeke [630]
considers the following model, first introduced by Gerber:

Ug(t)=u+ct—S(t)+B;, t>0,

where u, ¢ and S(t) are defined within the Cramér—Lundberg model, and B is
a Wiener process (see Section 2.4), independent of the process S. The process
B can be viewed as describing small perturbations (i.e. B; is distributed as
anormal rv with mean 0 and variance o4t ) around the risk process U in (1.4).
In [630], Theorem 1, it is shown that an estimate similar to the one obtained
in the Cramér—Lundberg model for subexponential claim size distributions
holds. These results can also be generalised to the renewal model set—up, as
noted by Furrer and Schmidli [248]. Subexponentiality is also useful beyond
these models as for instance shown by Asmussen, Flge Henriksen and Kliip-
pelberg [31]. In the latter paper, a risk process, evolving in an environment
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given by a Markov process with a finite state space, is studied. An appealing
example of this type of process with exponential claim sizes is given in Rein-
hard [524].

Asymptotic estimates for the ruin probability change when the company
receives interest on its reserves. For F' € R and a positive force of interest §
the corresponding ruin probability satisfies

Ys(u) ~ kgf(u) ,  u— 00,

i.e. it is tail-equivalent to the claim size df itself. This has been proved in
Klippelberg and Stadtmiiller [399]. The case of subexponential claims has
been treated in Asmussen [29].

Concerning the definition of S, there is no a priori reason for assuming
that the limit of F2*(2)/F(x) equals 2; an interesting class of distributions
results from allowing this limit to be any value greater than 2.

Definition 1.4.9 A df F on (0,00) belongs to the class S(y), v > 0, if
(a) lim, o F2*(z)/F(x) = 2d < 00,
(b) lim, 4o F(z —y)/F(z) =€, yeR O

One can show that d= [/~ e dF(y) = F(=7), so that S = S(0). These
classes of dfs turn out to cover exactly the situations illustrated in Fig-
ures 1.2.4(2) and (3), in between the light—tailed Cramér-Lundberg case
and the heavy—tailed (subexponential) case. A nice illustration of this, us-
ing the class of generalised inverse Gaussian distributions, is to be found in
Embrechts [201]; see also Kliippelberg [389] and references therein.

For a critical assessment of the approximation ¢ (u) ~ kF(u) for some
constant k and u — oo see De Vylder and Goovaerts [179]. Further improve-
ments can be obtained only if conditions beyond F; € S are imposed. One
such set of conditions is higher—order subexponentiality, or indeed higher—
order regular variation. In general G € S means that G2*(x) ~ 2G(z) for
x — 00; higher—order versions of S involve conditions on the asymptotic
behaviour of G2*(z) — 2G(z) for # — oo. For details on these techniques
the reader is referred to Omey and Willekens [486, 487], and also Bing-
ham et al. [72], p. 185. With respect to the heavy-tailed ruin estimate
Y(u) ~ p~'Fr(u), second—order assumptions on F lead to asymptotic es-
timates for ¢(u) — p~'Fr(u) for u — co. A numerical comparison of such
results, together with a detailed simulation study of rare events in insurance,
is to be found in Asmussen and Binswanger [30] and Binswanger [74].
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Fluctuations of Sums

In this chapter we consider some basic theory for sums of independent rvs.
This includes classical results such as the strong law of large numbers (SLLN)
in Section 2.1 and the central limit theorem (CLT) in Section 2.2, but also re-
finements on these theorems. In Section 2.3 refinements on the CLT are given
(asymptotic expansions, large deviations, rates of convergence). Brownian
and a—stable motion are introduced in Section 2.4 as weak limits of partial
sum processes. They are fundamental stochastic processes which are used
throughout this book. This is also the case for the homogeneous Poisson
process which occurs as a special renewal counting process in Section 2.5.2.
In Sections 2.5.2 and 2.5.3 we study the fluctuations of renewal counting
processes and of random sums indexed by a renewal counting process. As we
saw in Chapter 1, random sums are of particular interest in insurance; for
example, the compound Poisson process is one of the fundamental notions in
the field.

The present chapter is the basis for many other results provided in this
book. Poisson random measures occur as generalisations of the homogeneous
Poisson process in Chapter 5. Since most of the theory given below is classical
we only sketch the main ideas of the proofs and refer to some of the relevant
literature for details. We also consider extensions and generalisations of the
theory for sums in Sections 8.5 and 8.6. There we look at the fine structure of
a random walk, in particular at the longest success—run and large deviation
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results. The latter will find some natural applications in reinsurance (Sec-
tion 8.7). An introduction to general stable processes is given in Section 8.8.

2.1 The Laws of Large Numbers

Throughout this chapter X, X1, Xs, ... is a sequence of iid non—degenerate rvs
defined on a probability space [{2, F, P] with common df F. If we want to get
a rough idea about the fluctuations of the X,, we might ask for convergence
of the sequence (X,,). Unfortunately, for almost all w € 2 this sequence does
not converge. However, we can obtain some information about how the X,
“behave in the mean”. This leads us to the consideration of the cumulative

sums
50:07 Sn:X1++Xn7 n>1,

and of the arithmetic (or sample) means

Yn:nflsn, n>1.
Mean values accompany our daily life. For instance, in the newspapers we
are often confronted with average values in articles on statistical, actuarial or
financial topics. Sometimes they occur in hidden form such as the NIKKEI,
DAX, Dow Jones or other indices.

Intuitively, it is clear that an arithmetic mean should possess some sort
of “stability” in n. So we expect that for large n the individual values X;
will have less influence on the order of X,,, i.e. the sequence (X,) stabilises
around a fixed value (converges) as n — oo. This well-known effect is called
a law of large numbers.

Suppose for the moment that o = var(X) is finite. Write 4 = EX. From
Chebyshev’s inequality we conclude that for € > 0,

P (|Yn - ,u| >e) < e Pvar(X,) =(ne?) 0?50, n—oo.
Hence
X, 50, no.

This relation is called the weak law of large numbers (WLLN) or simply the
law of large numbers (LLN) for the sequence (X,,). If we interpret the index
of X, as time n then X, is an average over time. On the other hand, the
expectation

EX:/QX(w) dP(w)

is a weighted average over the probability space (2. Hence the LLN tells us
that, over long periods of time, the time average X, converges to the space
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average EX. This is the physical interpretation of the LLN which gained it
the special name ergodic theorem.

We saw that (X,,) obeys the WLLN if the variance o2 is finite. This
condition can be weakened substantially:

Theorem 2.1.1 (Criterion for the WLLN)
The WLLN
X, 50
holds if and only if the following two conditions are satisfied:
nP(|X|>n) — 0,
EXI{|X\§n} — 0. O
Here and throughout we use the notation

@) 1 fweA,
IA w) =
0 otherwise,

for the indicator function of the event (of the set) A.

The assumptions of Theorem 2.1.1 are easily checked for the centred se-
quence (X,, — u). Thus we conclude that the WLLN X, E) 1 holds provided
the expectation of X is finite. But we also see that the existence of a first
moment is not necessary for the WLLN in the form X, Z o

Example 2.1.2 Let X be symmetric with tail

P(X|>z) ~ r =00,

xzlnz’

for some constant ¢ > 0. The conditions of Theorem 2.1.1 are easily checked.
—~ P
Hence X,, — 0. However,

E|X|:/ P(X|>z)de =00. O
0

Next we ask what conditions are needed to ensure that X, does not only
converge in probability but also with probability 1 or almost surely (a.s.).
Such a result is then called a strong law of large numbers (SLLN) for the
sequence (X,,). The existence of the first moment is a necessary condition for
the SLLN: given that X,, 3" a for some finite constant a we have that

n X, =n"1(S, - S, 1) S a—-a=0.

Hence, for € > 0,
P(n'|X,|>e io0.)=0.
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This and the Borel-Cantelli lemma (see Section 3.5) imply that for € > 0,

ZP(|n*1Xn| >e€) = ZP(|X| > en) < 00,
n=1 n=1

which means that E|X| < oo. This condition is also sufficient for the SLLN:

Theorem 2.1.3 (Kolmogorov’s SLLN)
The SLLN

a.s.

X, % a

holds for the sequence (X,,) and some real constant a if and only if E|X| < oco.
Moreover, if (X,) obeys the SLLN then a = p. O

Formally, Kolmogorov’s SLLN remains valid for positive (negative) rvs with
infinite mean, i.e. in that case we have

X, B EX=x (=-x).

Example 2.1.4 (Glivenko—Cantelli theorem)
Denote by

1 n
F"(I)ZEZI{XiSz}’ r €R,
=1

the empirical df of the iid sample Xi,..., X,. An application of the SLLN
yields that
Fo(z) 3 El{x <,y = F(2)

for every x € R. The latter can be strengthened (and is indeed equivalent) to

A, =sup |[F,(z) — F(x)] 23 0. (2.1)
z€ER
The latter is known as the Glivenko-Cantelli theorem. It is one of the funda-
mental results in non—parametric statistics. In what follows we will frequently
make use of it.
We give a proof of (2.1) for a continuous df F'. For general F' see Theorem 20.6
in Billingsley [70]. Let

— 0 =09 <21 < < T < Tgy1 =0

be points such that F(x;11) — F(z;) < ¢ for a given e > 0, ¢ = 0,...,k.
F(+£00) are interpreted in the natural way as limits. By the monotonicity of
F' and F,, we obtain

Ay = max s |Fu(2) - F(2)

1=0,...,k z€(zi,ziq1]

< izflgf}.)ik (Fo(ig1) — F(xs), F(zig1) — Ful(zi)) -
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An application of the SLLN to the rhs yields

limsup A, < max (F(z;41)— F(z;)) <e as.
n—o00 1=0,...,k

This concludes the proof of (2.1). The latter remains valid for stationary

ergodic sequences (X,,). This is a consequence of Birkhoff’s ergodic theorem

a.s.

(for instance Billingsley [68]) which implies that F,,(x) = F(z) for every
fixed x. O

The SLLN yields an a.s. first—order approximation of the rv X, by the de-
terministic quantity u:

X, =u+o(l) as.
The natural question that arises is:
What is the quality of this approximation?

Refinements of the SLLN are the aim of some of our future considerations.
We pose a further question:

What can we conclude about the a.s. fluctuations of the sums S, if we
choose another normalising sequence?

A natural choice of normalising constants is given by the powers of n.
Theorem 2.1.5 (Marcinkiewicz—Zygmund SLLNS)
Suppose that p € (0,2). The SLLN

n~P (S, —an)*3 0 (2.2)

holds for some real constant a if and only if E|X|F < co. If (X,,) obeys the
SLLN (2.2) then we can choose

0 i p<1,
a= ‘
noif pell,2).
Moreover, if E|X|P = oo for some p € (0,2) then for every real a,

limsup n /?|S, —an| =00 as. O
n— oo
This theorem gives a complete characterisation of the SLLN with normalising
power functions of n. Under the conditions of Theorem 2.1.5 we obtain the
following refined a.s. first-order approximation of X, :

X, =p+om/P) as., (2.3)

which is valid if F|X|? < oo for some p € [1,2).
Theorem 2.1.5 allows us to derive an elementary relationship between the
large fluctuations of the sums S,,, the summands X,, and the maxima

M, =1X4|, M, =max(|Xy|,...,|Xn]), n>2.
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Figure 2.1.6 Visualisation of the convergence in the SLLN: five sample paths of
the process (Sn/n) for iid standard ezponential X, .
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n

Figure 2.1.7 Failure of the SLLN: five sample paths of the process (Sn/n) for iid
standard symmetric Cauchy rvs X,, with E|X| = oo, hence the wild oscillations of
the sample paths.
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Figure 2.1.8 The SLLN for daily log—returns of the NIKKEI index February 22,
1990 — October 8, 1993. The solid straight line shows the mean —0.000501 of these
910 walues.
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o 200 400 600 800 1000

Figure 2.1.9 Visualisation of the LIL: five sample paths of the process
((2nInlnn)~Y%(S, —n)) for iid standard exponential rvs X,.
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Figure 2.1.10 Fuailure of the LIL: five sample paths of the process
((2nInlnn)~Y2S,) for iid standard symmetric Cauchy rvs X,. Notice the differ-
ence in the vertical scale!

iM/WW
I

o 200 400 600 800

Figure 2.1.11 The LIL for daily log—returns of the NIKKEI index February 22,
1990 — October 8, 1993.



66 2. Fluctuations of Sums

Corollary 2.1.12 Suppose that p € (0,2). Then

E|X|P <o (= 0) (2.4)
according as
limsup n /7| X,| =0 (=00) as. (2.5)
n— oo
according as
limsup n~'/? M, =0 (=00) as. (2.6)
n— oo
according as
limsupn~/?|S, —an| =0 (=00) as. (2.7)
n—oo

Here a has to be chosen as in Theorem 2.1.5.

Proof. It is not difficult to see that (2.4) holds if and only if
ZP(|X|>enl/p)<oo (=) Ve>0.
n=1

A Borel-Cantelli argument yields that this is equivalent to
P (|Xn| > en!/? i.o.) —0 (=1) VYe>o0.

Combining this and Theorem 2.1.5 we see that (2.4), (2.5) and (2.7) are
equivalent.
The equivalence of (2.5) and (2.6) is a consequence of the elementary relation

nVPIX, < n7YPM,
SN 00 <T > R RV b W R b o}
- nl/p nl/p (n0+1)1/p (n0+2)1/l’ nl/P
for every fixed ng < n. O

This means that the asymptotic order of magnitude of the sums S,,, of the
summands X, and of the maxima M, is roughly the same.
Another question arises from Theorem 2.1.5:

Can we choose p =2 or even p > 2 in (2.2) ¢
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The answer is unfortunately no. More precisely, for all non—degenerate rvs X
and deterministic sequences (a,,),
limsup n /2 (S, —a,| =00 a.s.
n— oo

This is somewhat surprising because we might have expected that the more
moments of X exist the smaller the fluctuations of the sums S,. This is
not the case by virtue of the central limit theorem (CLT) which we will
consider in more detail in Sections 2.2 and 2.3. Indeed, the CLT requires
the normalisation n'/? which makes a result like (2.3) for p = 2 impossible.
However, a last a.s. refinement can still be done if the second moment of X
exists:

Theorem 2.1.13 (Hartman—Wintner law of the iterated logarithm)
If 02 = var(X) < oo then

lim sup (2n Inln n)_l/2 (Sp —pn) = —liminf (2n lnlnn)_l/2 (Sn — pun)
n—o0o n—oo
= o0 as.

If 02 = oo then for every real sequence (a.,)

lim sup (2n1nln n)fl/2 |Sn —an| =00 as. O
n— o0
Hence the law of the iterated logarithm (LIL) as stated by Theorem 2.1.13
gives us the a.s. first—order approximation

X,=pu+0 ((lnlnn/n)71/2) a.s.,

which is the best possible a.s. approximation of X, by its expectation ;. We
will see in the next section that we have to change the mode of convergence
if we want to derive more information about the fluctuations of the sums .S,,.
There we will commence with their distributional behaviour.

Notes and Comments

The WLLN for iid sequences (Theorem 2.1.1) can be found in any stan-
dard textbook on probability theory; see for instance Breiman [90], Chow
and Teicher [118], Feller [235], Loeve [427]. The WLLN with other normali-
sations and for the non—iid case has been treated for instance in Feller [235],
Petrov [495, 496], or in the martingale case in Hall and Heyde [312].

More insight into the weak limit behaviour of sums is given by so—called
rates of convergence in the LLN, i.e. by statements about the order of the
probabilities
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P(|S, —an| >by), n— o0,

for appropriate normalising and centring sequences (b,,), (a,). We refer to
Petrov [495, 496] and the literature cited therein.

The classical Kolmogorov SLLN (Theorem 2.1.3) is part of every standard
textbook on probability theory, and the Marcinkiewicz—Zygmund SLLNs can
be found for instance in Stout [608]. Necessary and sufficient conditions under
non-standard normalisations and for the non—iid case are given for instance
in Petrov [495, 496] or in Stout [608]. In Révész [538] and Stout [608] vari-
ous SLLNSs are proved for sequences of dependent rvs. Some remarks on the
convergence rate in the SLLN, i.e. on the order of the probabilities

P<sup|Sk—ak| >bn>7 n— 00,
k>n

can be found in Petrov [495, 496].

The ergodic theorem as mentioned above is a classical result which holds
for stationary ergodic (X,,); see for instance Billingsley [68] or Stout [608].

The limit in the SLLN for a sequence (X,,) of independent rvs is necessar-
ily a constant. This is due to the so—called 0-1 law; for different versions see
for instance Stout [608]. The limit in the SLLN for a sequence of dependent
rvs can be a genuine rv.

The Marcinkiewicz—Zygmund SLLNs for an iid sequence exhibit another
kind of 0-1 behaviour: either the SLLN holds with a constant limit for the
normalisation n!/? or, with the same normalisation, the sums fluctuate wildly
with upper or lower limit equal to £o00. This behaviour is typical for a large
class of normalisations (cf. Feller’s SLLN; see Feller [233], Petrov [495, 496],
Stout [608]). Similar behaviour can be observed for a large class of rvs with
infinite variance which includes the class of a—stable rvs, a < 2, and their
domains of attraction; see Section 2.2. To be precise, suppose that for some
constant ¢ > 0,

xszX2I{‘X|§Z} <cP(X|>z), x=>0. (2.8)

Let (b,) be any real sequence such that b, 1 oo and if E|X| < oo suppose
that © = 0. Then

limsup b, |S,| =0 (=00) as.

n— oo

according as

ZP(|X|>bn)<oo (= 00).
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The latter relation is a moment condition. Moreover, the relations be-
tween S,, X, and M, (with normalisation b,) corresponding to Corol-
lary 2.1.12 hold. This SLLN is basically due to Heyde [323]; see Stout [608].

The SLLN can also be extended to sums S, of independent but not iden-
tically distributed rvs. There exist results under the condition of finiteness of
the second moments of the X,,. The results are typically of the form

b, (Sn — ES,) 30,

n

where b,, is the variance of S,; see for instance Petrov [495, 496]. However, it
seems difficult to use such a model for statistical inference as long as the class
of distributions of the X, is not specified. A more sensitive study is possible
for sequences of iid rvs with given deterministic weights. Weighted sums

To =Y wn(k) X
k

are standard models in the statistical literature. For example, in time se-
ries analysis the linear processes, including the important class of ARMA
processes, are weighted sums of iid rvs; see Chapter 7. The rvs T, can be
considered as a mean which, in contrast to X, gives different weight to the
observations X;. Examples are the discounted sums ) £>0 2* X, whose as-
ymptotic behaviour (as z 1 1) is well studied (so—called Abel summation).
There is quite a mass of literature on the a.s. behaviour of the weighted
sums T,. Results of SLLN—type can be found for instance in Mikosch and
Norvaisa [461] or in Stout [608]. Overviews of summability methods have been
given in Bingham and Maejima [71], Maejima [433], Mikosch and Norvaisa
[459, 460].

The Hartman-Wintner LIL (Theorem 2.1.13) is included in standard text-
books; see for instance Feller [235]. Different proofs and ramifications for
non-identically distributed rvs and dependent observations can be found in
Csorgd and Révész [145], Hall and Heyde [312], Petrov [495, 496], Stout [608].

There exists a well developed theory about fluctuations of sums of iid rvs
with or without normalisation. The latter is also called a random walk. For
example, necessary and sufficient conditions have been derived for relations
of type

limsup b,'|S, —an] = c1 € (0,00) a.s.,
n— oo

limsup b, (S, —a,) = ¢z € (—00,00) a.s.
n— oo

(generalised LIL, one-sided LIL) for given (a,), (b,) and constants ¢, ¢2, and
also results about the existence of such normalising or centring constants; see
for instance Kesten [378], Klass [381, 382], Martikainen [441, 442], Pruitt
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[515, 517]. These results give some insight into the complicated nature of the
fluctuations of sums. However, they are very difficult to apply: the sequence
(b,) is usually constructed in such a way that one has to know the whole
distribution tail of X. Thus these results are very sensitive to changes in the
distribution.

A further topic of research has been concentrated around cluster phe-
nomena of the sums S, (normalised or non—normalised) and the general
properties of random walks. We refer to Cohen [130], Erickson [222, 223],
Kesten [378], Révész [540], Spitzer [604], Stout [608]. The set of a.s. limit
points of the sequence of normalised sums can be very complicated. However,
in many situations the set of a.s. limit points coincides with a closed interval
(finite or infinite). The following basic idea from elementary calculus is help-
ful: let (a,) be a sequence of real numbers such that a,, — an,—1 — 0. Then
every point in the interval [liminf, _ o ayn,limsup,_, . a,] is a limit point
of (a,). Applying this to the Hartman—-Wintner LIL with FX? < co and
A, =(2nlnln n)_l/Q(Sn —pn) we see that A, — A, 23 0 and hence every
point in [—o,0] is a limit point of (A4,) for almost every sample path. This
remarkable property means that the points Ay, Ao, ... fill the interval [—0, o]
densely for almost every sample path. This is somehow counter—intuitive since
at the same time A4,, Eo.

2.2 The Central Limit Problem

In the preceding section we saw that the sums S, of the iid sequence (X,,)
diverge a.s. when normalised with n'/2. However, we can still get information
about the growth of n=1/28,, if we change to convergence in distribution (weak
convergence).

We will approach the problem from a more general point of view. We ask:

What are the possible (non-degenerate) limit laws for the sums S,
when properly normalised and centred?

This is a classical question in probability theory. Many famous probabilists
of this century have contributed to its complete solution: Khinchin, Lévy,
Kolmogorov, Gnedenko, Feller,. ... It turns out that this question is closely
related to another one:

Which distributions satisfy the identity in law
Cle + 02X2 g b(Cl, CQ)X + G(Cl, 02) (29)

for all non-negative numbers c1, co and appropriate real numbers
b(c1,c2) > 0 and a(cy,c2)?
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In other words, which classes of distributions are closed (up to changes of
location and scale) under convolution and multiplication with real numbers?
The possible limit laws for sums of iid rvs are just the distributions which
satisfy (2.9) for all non—negative ¢;, co. Many classes of distributions are
closed with respect to convolution but the requirement (2.9) is more strin-
gent. For example, the convolution of two Poisson distributions is a Poisson
distribution. However, the Poisson distributions do not satisfy (2.9).

Definition 2.2.1 (Stable distribution and rv)

A v (a distribution, o df) is called stable if it satisfies (2.9) for iid X,
X1, Xo, for all non—negative numbers ci, co and appropriate real numbers
b(cy,c2) >0 and a(cy, ca). O

Now consider the sum S, of iid stable rvs. By (2.9) we have for some real
constants a,, and b, > 0 and X = X1,

Sp=Xi 4+ Xy L0, X +an, n>1,
which we can rewrite as

bt (S, —an) £ X.

n

We conclude that, if a distribution is stable, then it is a limit distribution for
sums of iid rvs. Are there any other possible limit distributions? The answer
is NO:

Theorem 2.2.2 (Limit property of a stable law)

The class of the stable (non—degenerate) distributions coincides with the class
of all possible (non—degenerate) limit laws for (properly normalised and cen-
tred) sums of id rvs. O

Because of the importance of the class of stable distributions it is necessary
to describe them analytically. The most common way is to determine their
characteristic functions (chfs):

Theorem 2.2.3 (Spectral representation of a stable law)
A stable distribution has chf

ox(t) = Eexp{iXt} = exp {iyt — c|t|*(1 —ifBsign(t) z(t,a))}, tER,
(2.10)
where v is a real constant, ¢ >0, a € (0,2], B € [-1,1], and

tan(%) if a#l,

Z(tva): 2
—=Inlt| i a=1.
i
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Remarks. 1) We note that we can formally include the case ¢ = 0 which
corresponds to a degenerate distribution. Every sequence (S,) can be nor-
malised and centred in such a way that it converges to a constant (for instance
zero) in probability. Thus this trivial limit belongs to the class of the possible
limit rvs. However, it is not of interest in the context of weak convergence
and therefore excluded from our considerations.

2) The quantity = is just a location parameter. For the rest of this section we
assume v = 0.

3) The most important parameter in this representation is a. It determines
the basic properties of this class of distributions (moments, tails, asymptotic
behaviour of sums, normalisation etc.). O

Definition 2.2.4 The number « in the chf (2.10) is called the characteristic
exponent, the corresponding distribution a—stable. a

Remarks. 4) For a = 2 we obtain the normal or Gaussian distributions. In
this case, we derive from (2.10) the well known chf

ox(t) = exp {—ct?)

of a Gaussian rv with mean zero and variance 2c. Thus one of the most
important distributions in probability theory and mathematical statistics is
a stable law. We also see that the normal law is determined just by two
parameters (mean and variance) whereas the other a—stable distributions
depend on four parameters. This is due to the fact that a normal distribution
is always symmetric (around its expectation) whereas a stable law for a < 2
can be asymmetric and even be concentrated on a half-axis (for a < 1).

5) Another well-known class of stable distributions corresponds to a = 1:
the Cauchy laws with chf

ox (t) = exp {—c|t| (1 + zﬂ% sign (¢) In |t|) } :

6) For fixed «, the parameters ¢ and 3 determine the nature of the distrib-
ution. The parameter c is a scaling constant which corresponds to ¢ = 02 /2
in the Gaussian case and has a similar function as the variance in the non—
Gaussian case (where the variance is infinite). The parameter 3 describes the
skewness of the distribution. We see that the chf ¢x (¢) is real-valued if and
only if 8 = 0. The chf

bx (1) = exp {—clt|*} (2.11)

corresponds to a symmetric rv X. We will sometimes use the notation sas
for symmetric a-stable. If 3 =1 and a <1 the rv X is positive, and for
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Figure 2.2.6 Densities of 1- and of 1.5-stable rvs (top, bottom) with c = 1.
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B =—1and a < 11it is negative. In the cases |5] < 1, « < 1, or « € [1,2], the
rv X has the whole real axis as support. However, if § =1, a € [1,2) then
P(X < —z) =0o(P(X > x)) as ¢ — oo. From the chf (2.10) we also deduce
that —X is a—stable with parameters ¢ and —f3. It can be shown that every
a—stable rv X with |8] < 1 is equal in law to X' — X" + ¢¢ for independent
a-stable rvs X', X" both with parameter 8 = 1 and a certain constant cg.

7) We might ask why we used the inconvenient (from a practical point of view)
representation of a—stable rvs via their chf. The answer is simple: it is the
best analytic way of characterising all members of this class. Although the a—
stable laws are absolutely continuous, their densities can be expressed only by
complicated special functions; see Hoffmann—Jgrgensen [329] and Zolotarev
[646]. Only in a few cases which include the Gaussian (a = 2), the symmetric
Cauchy (= 1,8 = 0) and the stable inverse Gaussian (o« = 1/2, 8 = 1), are
these densities expressible explicitly via elementary functions. But there exist
asymptotic expansions of the a—stable densities in a neighbourhood of the
origin or of infinity; see Ibragimov and Linnik [350] and Zolotarev [645].
Therefore the a—stable distributions (with a few exceptions) are not easy to
handle. In particular, they are difficult to simulate; see for instance Janicki
and Weron [354]. O

Next we ask:

Given an a-stable distribution G, what conditions imply that the
normalised and centred sums S, converge weakly to G4 ?

This question induces some further problems:

How must we choose constants a, € R and b, > 0 such that

bt (Sh —an) S Ga? (2.12)

n

Can it happen that different normalising or centring constants imply
convergence to different limit laws?

The last question can be answered immediately: the convergence to types
theorem (Theorem A1.5) ensures that the limit law is uniquely determined
up to positive affine transformations.

Before we answer the other questions we introduce some further notions:

Definition 2.2.7 (Domain of attraction)

We say that the rv X (the df F' of X, the distribution of X) belongs to the
domain of attraction of the a—stable distribution G, if there exist constants
an € R, by, > 0 such that (2.12) holds. We write X € DA(G,) (F € DA(G.))
and say that (X,,) satisfies the central limit theorem (CLT) with limit G,. O
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If we are interested only in the fact that X (or F) is attracted by some
a—stable law whose concrete form is not of interest we will simply write
X € DA(a) (or F € DA(«)).

The following result characterises the domain of attraction of a stable
law completely. Here and in the remainder of this section we will need some
facts about slowly and regularly varying functions which are given in Ap-
pendix A3.1. We recall that a (measurable) function L is slowly varying if
lim, oo L(tz)/L(xz) =1 for all t > 0.

Theorem 2.2.8 (Characterisation of domain of attraction)

(a) The df F belongs to the domain of attraction of a normal law if and only

if
| varw
ly|<=z
18 slowly varying.

(b) The df F belongs to the domain of attraction of an a—stable law for some
a < 2 if and only if
co + 0(1)

L(z), 1—F(x):TL(x), xr = 00,

c1 + 0(1)
1-0[

F(—z)=

where L is slowly varying and c1, ce2 are non—negative constants such that
c1 +cy > 0. O

First we study the case o = 2 more in detail. If EX? < oo then

/ y>dF(y) = EX?, z— o0,
ly|<=z

hence X € DA(2). Moreover, by Proposition A3.8(f) we conclude that slow
variation of flyl <, y?dF(y) is equivalent to the tail condition

G)=P(X|>z)=0 (:r_Q/

y|<z

y? dF(y)) , T —00. (2.13)

Thus we derived

Corollary 2.2.9 (Domain of attraction of a normal distribution)
A rv X is in the domain of attraction of a normal law if and only if one of
the following conditions holds:

a) EX? < 0
(a) :
() EX? = o0 and (2.13). O
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The situation is completely different for a < 2: X € DA(«) implies that
Gx)y=z"%L(z), x>0, (2.14)

for a slowly varying function L and

xQG(x)//le y>dF(y) —

2 —
(0%

2 s . (2.15)

The latter follows from Proposition A3.8(e). Hence the second moment of X
is infinite. Relation (2.14) and Corollary 2.2.9 show that the domain of at-
traction of the normal distribution is much more general than the domain
of attraction of an a—stable law with exponent a < 2. We see that DA(2)
contains at least all distributions that have a second finite moment.

From Corollary 2.2.9 and from (2.14) we conclude the following about the
moments of distributions in DA (a):

Corollary 2.2.10 (Moments of distributions in DA(«))
If X € DA(«) then

E|X]® < oo foré<a,

E|X]° = oo ford>aanda<2.

In particular,

var(X) = oo fora<2,

EX| < o fora>1,

ElX| = o fora<l.
O
Note that E|X|* = [;° P(|X|* > z)dz < co is possible for certain X €
DA(a), but E|X|* = co for an a-stable X for a < 2. Recalling the results
of the preceding section we can apply the Marcinkiewicz—Zygmund SLLNs
(Theorem 2.1.5) as well as Heyde’s SLLN ((2.8) is satisfied in view of (2.15))
to a—stable rvs with a < 2, and these theorems show that the sample paths
of (S,) fluctuate wildly because of the non—existence of the second moment.
Next we want to find appropriate normalising and centring constants for

the CLT (2.12). Suppose for the moment that X is sas with chf ¢x(t) =
exp{—c|t|*}; cf. (2.11). We see that

Eexp {itnil/o‘Sn} = (exp{—c|n*1/at|a})n (2.16)

exp {—clt|*}

= FEexp{itX}.
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Thus
nteg, 4x

which gives us a rough impression of the order of the normalising constants.
For symmetric X € DA(a) one can show that the relation

Eexp{itX} = exp {—[t|*Li(1/t)}

holds in a neighbourhood of the origin, with a slowly varying function L,
which is closely related to the slowly varying functions which occur in The-
orem 2.2.8; see Theorem 2.6.5 in Ibragimov and Linnik [350]. Now we can
apply the same idea as in (2.16) although this time we will have to compen-
sate for the slowly varying function L;. Thus it is not surprising that the
normalising constants in the CLT (2.12) are of the form

bp = nt/*Ly(n)

for a slowly varying function L. To be more precise, introduce the quantities
K(x) = x72/ y*dF(y), x>0,
ly|<z

Qz) = G@)+K(@)=P(X|>z)+K(z), z>0.

Note that Q(z) is continuous and decreasing on [z, 00) where 2o denotes the
infimum of the support of |X]|.

Proposition 2.2.13 (Normalising constants in the CLT)
The normalising constants in the CLT for F € DA(a) can be chosen as the
unique solution of the equation

Q) =n"", n>1. (2.17)
In particular, if 0® = var(X) < oo and EX = 0 then
b ~n1/2a, n— 0.
If a < 2 we can alternatively choose (by,) such that
b, =inf{y:G(y) <n™ '}, n>1. (2.18)

We note that (2.18) implies that

and that, in view of (2.14),

by :nl/aLg(n), n>1,
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for an appropriate slowly varying function Ls.

Sketch of the proof. We omit the calculations leading to (2.17) and restrict
ourselves to the particular cases. For a proof we refer to Ibragimov and Linnik
[350], Section II.6.
If EX? < oo then
G(x)=o0(27?), K(z)=22EX*(1+0(1), z— .
Hence, if EX =0,
nt =Q (b,) ~b,%0”.

If @ < 2 then, using (2.15), we see immediately that (2.17) and (2.18) yield
asymptotically equivalent sequences (b,) and (b)), say, which means that
b, ~ c b, for a positive constant c. O

Proposition 2.2.14 (Centring constants in the CLT)
The centring constants a, in the CLT (2.12) can be chosen as

an, = n/ ydF(y), (2.19)
ly|<bn

where b, is given in Proposition 2.2.13. In particular, we can take a, = an,

where
woif  a€(1,2],

a=1¢ 0 if a€(0,1), (2.20)
0 if a=1andF is symmetric.
O

For a proof we refer to Ibragimov and Linnik [350], Section II.6. Now we
formulate a general version of the CLT.

Theorem 2.2.15 (General CLT)
Suppose that F € DA(«a) for some a € (0,2].

(a) If EX? < o then
—1
(an1/2) (S, — un) 4o

for the standard normal distribution @ with mean zero and variance 1.
(b) If EX? =00 and a =2 or if a < 2 then

(nl/O‘L4(n)>_1 (Sn — an) % Ga

for an a-stable distribution G, an appropriate slowly varying func-
tion Ly and centring constants as in (2.19).
In particular,
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(111/"L4(11))71 (S, —an) 4G,

where @ is defined in (2.20). O

We notice that it is possible for the normalising constants in the CLT to be of
the special form b,, = c¢n!/® for some constant c. This happens for instance
if EX? < oo or if X is a—stable. There is a special name for this situation:

Definition 2.2.16 (Domain of normal attraction)

We say that X (or F) belongs to the domain of normal attraction of an a—
stable distribution G, (X € DNA(G,) or F € DNA(G,)) if X € DA(G,)
and if in the CLT we can choose the normalisation b, = cn'/® for some
positive constant c. O

If we are interested only in the fact that X (or F') belongs to the DNA of some
a—stable distribution we write X € DNA(«) (or F' € DNA(«)). We recall the
characterisation of the domains of attraction via tails; see Theorem 2.2.8.
Then (2.17) implies the following:

Corollary 2.2.17 (Characterisation of DNA)

(a) The relation F € DNA(2) holds if and only if EX? < .
(b) For a <2, F € DNA(«a) if and only if

F(—z) ~cx™® and 1-F(z)~cz™®, x— 00,
for non—negative constants ¢y, ¢ such that ¢y + co > 0.

In particular, every a—stable distribution is in its own DNA. a

So we see that F' € DNA(a), a < 2, actually means that the corresponding
tail G(z) has power law or Pareto-like behaviour. Note that a df F' with
Pareto-like tail G(x) ~ cx~® for some « > 2 is in DA(2), and if @ > 2, then
F € DNA(2).

Notes and Comments

The theory above is classical and can be found in detail in Araujo and Giné
[19], Bingham, Goldie and Teugels [72], Feller [235], Gnedenko and Kol-
mogorov [267], Ibragimov and Linnik [350], Loeve [427] and many other text-
books. For applications of the CLT and related weak convergence results to
asymptotic inference in statistics we refer to Ferguson [236] or Serfling [576].

There exists some more specialised literature on stable distributions and
stable processes. Mijnheer [456] is one of the first monographs on the topic.
Zolotarev [645] covers a wide range of interesting properties of stable distri-
butions, including asymptotic expansions of the stable densities and many
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useful representations and transformation formulae. Some limit theory for
distributions in the domain of attraction of a stable law is given in Christoph
and Wolf [119]. An encyclopaedic treatment of stable laws, multivariate stable
distributions and stable processes can be found in Samorodnitsky and Taqqu
[565]; see also Kwapielh and Woyczyriski [411] and Janicki and Weron [354].
The latter book also deals with numerical aspects, in particular the simula-
tion of stable rvs and processes. An introduction to stable random vectors
and processes will be provided in Section 8.8.

Recently there have been some efforts to obtain efficient methods for the
numerical calculation of stable densities. This has been a problem for many
years and was one of the reasons that practitioners expressed doubts about
the applicability of stable distributions for modelling purposes. McCulloch
and Panton [451] and Nolan [480, 481] provided tables and software for cal-
culating stable densities for a large variety of parameters o and (3. Their
methods allow one to determine those densities for small and moderate ar-
guments with high accuracy; the determination of the densities in their tails
needs further investigation. Figures 2.2.5 and 2.2.6 were obtained using soft-
ware kindly provided to us by John Nolan.

The central limit problem has also been solved for independent non—iid
rvs; see for instance Feller [235], Gnedenko and Kolmogorov [267], Ibragi-
mov and Linnik [350], Petrov [495, 496]. To be precise, let (X,k)k=1,.. n,
n=1,2,... be a triangular scheme of row—wise independent rvs satisfying
the condition of infinitesimality:

kirllaXanXnH >e) =0, n—=oo, €>0.
The class of possible limit laws for the sums > ,_; X,x consists of the infi-
nitely divisible distributions including most distributions of interest in statis-
tics. For example, the stable distributions and the Poisson distribution belong
to this class. A rv Y (and its distribution) is infinitely divisible if and only if
we can decompose it in law:

for every n, where (Yx)k=1,....n are iid rvs with possibly different common
distribution for different n. There exist representations of the chf of an infi-
nitely divisible law. Theorem 2.2.3 is a particular case for stable laws.

As in the case of a.s. convergence, see Section 2.1, weighted sums are
particularly important for applications in statistics. The general limit theory
for non—iid rvs can sometimes be applied to weighted sums. However, there
exist quite a few results for special summability methods; for references see
the Notes and Comments of Section 2.1.
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2.3 Refinements of the CLT

In this section we consider some refinements of the results of the previous
section. We will basically restrict ourselves to the case when EX? < oo and
briefly comment on the other ones. It is natural to ask:

How can we determine and improve the quality of the approximation
in the CLT?

Berry—Esséen Theorem

Let & denote the df of the standard normal distribution and write

Sn — N
Gulz)=P| ———< , R.
(x) ( om S x) x €
From the previous section we know that
A, =sup|G,(z) — &(z)| = 0. (2.21)

TER

There we formulated only a weak convergence result, i.e. convergence of G,
at every continuity point of . However, @ is continuous and therefore (2.21)
holds; see Appendix Al.1.

One can show that the rate at which A,, converges to zero can be arbitrar-
ily slow if we require no more than a finite second moment of X. The typical
rate of convergence is 1/y/n provided the third moment of X exists. We give
here a non-uniform version of the well-known Berry—Esséen theorem:

Theorem 2.3.1 (Berry-Esséen theorem)
Suppose that E|X|* < co. Then

c E|X — p?
Gn(x) — < 2.22
Gula) = 00)| € s =g (222)
for all x, where c is a universal constant. In particular,
_ 13
A, < % M (2.23)
n o
O

From (2.22) we have learnt that the quality of the approximation can be
improved substantially for large . Moreover, the rate in (2.22) and (2.23) is
influenced by the order of magnitude of the ratio E|X — u|?/0® and of the
constant c¢. This is of crucial importance if n is small.

The rates in (2.22) and (2.23) are optimal in the sense that there exist se-
quences (X,,) such that A,, < (1//n). For example, this is true for symmetric
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Bernoulli rvs assuming the values +1 and —1 with equal probability. On the
other hand, the Berry—Esséen estimate is rather pessimistic and can be im-
proved when special conditions on X are satisfied, for instance the existence
of a smooth density, moment generating function etc.

Results of Berry—Esséen type have been studied for X € DNA(a) and
X € DA(a) with a < 2 as well. A unifying result such as Theorem 2.3.1 does
not exist and cannot be expected. The results require very special knowledge
about the structure of the df in DNA and DA and are difficult to apply.

Notes and Comments

References for the speed of convergence in the CLT are Petrov [495, 496] and
Rachev [520].

A proof of the classical Berry—Esséen theorem and its non—uniform version
using Fourier methods can be found in Petrov [495, 496]. Also given there are
results of Berry—Esséen type in the non—iid situation and for iid rvs under the
existence of the (2 4+ §)th moment for some ¢ € (0, 1]. The rate of convergence
is the slower, the less ¢ is. In the iid situation the speed is just n=%/2. The
rate can be improved under special conditions on the rv X, although, as
mentioned before, an increase of the power of the moments is not sufficient
for this.

Attempts have been made to calculate the best constants in the Berry—
Esséen theorem; see Petrov [495, 496]. One can take 0.7655 in (2.23) and
0.7655 + 8(1 + e) in (2.22).

Studies of the rate of convergence in DA(a) for a < 2 can be found in
Christoph and Wolf [119] or in Rachev [520]. The former concentrates more
on classical methods whereas the latter proposes other techniques for esti-
mating the rate of convergence. For example, appropriate metrics (LP, Lévy
and Lévy-Prokhorov metrics) for weak convergence are introduced and then
applied to sums of iid rvs. We also refer to results by de Haan and Peng [298]
and Hall [308] who study rates of convergence under second—order regular
variation conditions on the tail F.

The approximation of the df of the cumulative sum by a stable limit
distribution and its refinements is not always optimal. There exist powerful
direct estimates for these probabilities assuming conditions on the tails, the
moments or the bounds of the support of these rvs; see for instance Petrov
[495, 496], Shorack and Wellner [579].

Asymptotic Expansions

As mentioned above, the Berry—Esséen estimate (2.23) is optimal for certain
dfs F'. However, in some cases one can approximate the df G,, by the standard
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normal df @ and some additional terms. The approximating function is then
not a df. A common approximation method is called Edgeworth or asymptotic
expansion: formally we write

(o]
Gn(x) =B(x) + > n *2Qu(z), z€R, (2.24)
k=1
where the Q) are expressions involving the Hermite polynomials, the precise
form of the expression depending on the moments of X. The expansion (2.24)
is derived from a formal Taylor expansion of the logarithm of the correspond-
ing chf. To the latter is then applied a Fourier inversion. This approach does
not depend on the specific form of the df G,, and is applicable to much wider
classes of distributions, but here we restrict ourselves to G,, for illustrational
purposes.
In practice one can take only a finite number of terms @ into account.
To get an impression we consider the first two terms: let

o(z) = (2m)~ % exp {-2?/2}, z€R,
denote the density function of the standard normal df é. Then, for z € R,
Hy(2) B(X - p)?

Q) = —plo) 5 S
(2.25)
e = o [P0 (BUZ1Y ) (B2t ),
where H; denotes the Hermite polynomial of degree ¢:
Hy(z) = 22-1,
H3(x) = 2*-3x,
Hs(x) = 2°—102% + 15z.

Notice that the Q in (2.25) vanish if X is Gaussian, and the quantities
E(X—p)P/o®,  E(X — /ot

are the skewness and kurtosis of X, respectively. They measure the “close-
ness” of the df F' to &.

If we want to expand G, with an asymptotically negligible remainder
term special conditions on the df F' must be satisfied. For example, F' must
be absolutely continuous or distributed on a lattice. We provide here just one
example to illustrate the power of the method.
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Theorem 2.3.2 (Asymptotic expansion in the absolutely continuous case)
Suppose that E|X|* < co for some integer k > 3. If F' is absolutely continuous

then

_ 1

o\ L2z )
uniformly in x. In particular,

k—2 : 1
Gn(z) =B(x)+ ) Cii(/z) to (n(k2)/2> ’
1=1

uniformly in x. O

k—2
(1+ |z)* |Golz) — J(z) — Z Ci(/a;“)

Asymptotic expansions can also be applied to the derivatives of G,,. In partic-
ular, if F' is absolutely continuous then one can obtain asymptotic expansions
for the density of G,,.

Notes and Comments

Results on asymptotic expansions for the iid and non—iid case can be found in
Hall [311] or in Petrov [495, 496]. Asymptotic expansions for an arbitrary df
have been treated in Field and Ronchetti [239] and Jensen [356]. In Christoph
and Wolf [119], Ibragimov and Linnik [350] and Zolotarev [645] one can find
some ideas about the construction of asymptotic expansions in the a—stable
case.

Large Deviations

The CLT can be further refined if one starts looking at G,, for x taken from
certain regions (depending on n) or if x = z,, — oo at a given rate. This is the
objective of the so—called large deviation techniques. Nowadays the theory
of large deviations has been developed quite rapidly in different directions
with applications in mathematics, statistics, engineering and physics. We
will restrict ourselves to large deviations in the classical framework of Cra-
mér [139].

Theorem 2.3.3 (Cramér’s theorem on large deviations)
Suppose that the moment generating function M (h) = Eexp{hX} ezists in
a neighbourhood of the origin. Then

5 - e {i ) o (Sin)].

G0 {(2)) o (S50)]
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uniformly for positive x = o(y/n). Here \(z) is a power series which converges
in a certain neighbourhood of the origin and whose coefficients depend only
on the moments of X. O

The power series \(z) is called Cramér’s series. Instead of determining the
general coefficients of this series we consider a particular case of Theo-
rem 2.3.3.

Corollary 2.3.4 Suppose that the conditions of Theorem 2.5.3 are satisfied.
Then

=G = a-sen {20 o (Lpw) |

Gol=s) = al-aenp {ZEEEZ Y L0 (L) |

for x>0, x = O(n'/%). In particular, if E(X — p)®> =0 then
1
Gn(z) —®(x) =0 (ﬁcp(x)> , =€R. O
Large deviation results can be interpreted as refinements of the convergence

rates in the CLT. Indeed, let z = z,, — oo in such a way that z,, = o(n'/®).
Then we conclude from Corollary 2.3.4 that

S, —pun 1 22
P|l|l——— n) =2((1—-&(z, o — _In )
(P> ) =2 - s o (Jz e{-3})

Note that the z,, are chosen such that
SnZ MM B (2.26)
ovnw,

In an analogous way we can also consider large deviation results for
X € DA(a), a < 2. These must be of a completely different nature since the
moment generating function M (h) does not exist in any neighbourhood of
the origin. However, one can get an impression of the order of decrease for
the tail probabilities of S,,. For simplicity we restrict ourselves to symmetric
rvs.

Theorem 2.3.5 (Heyde’s theorem on large deviations)
Let X € DA(«) be symmetric and « € (0,2). Let (by,) be any sequence such
that b, T 0o and P(X > b,) ~ 1/n, and denote by

M1:X1, Mn:max(Xl,...,Xn), 7122,

the sample mazima. Then
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lim —on >0 Tn) oy L0n 2 On ) g
oo NP (X > by an)  notoo P (My > bnan)
for every sequence x,, — 0o. O

In view of Theorem 2.2.15, the conditions of Theorem 2.3.5 ensure that
b1S, % G, for an a-stable law G,. Thus the relation

Sh
o

by, T,

is directly comparable with (2.26). Similar results can be established for rvs
with regularly varying tails 1 — F'(z) ~ 2~ “L(z), where a > 2, as x — 00; see
Section 8.6. This kind of result is another example of the interplay between
sums and maxima of a sample Xi,...,X, as n — oco. Notice that Theo-
rem 2.3.5 can be understood as a supplementary result to the limit relation

lim P (S, > x)

—_— < = =1,2,...
Z—>00P(Mn>l') ’ n )& ’

which is a defining property of subexponentiality and is studied in detail in
Section 1.3.2 and Appendix A3.

Notes and Comments

Cramér’s theorem and other versions of large deviation results (including the
non-iid case) can be found in Petrov [495, 496]. Theorem 2.3.5 is due to
Heyde [321, 322].

The general theory of large deviations has become an important part
of probability theory with applications in different fields, including insurance
and finance. By now it has become a theory which can be applied to sequences
of arbitrary rvs which do not necessarily have sum structure and which can
satisfy very general dependence conditions; see for instance the monographs
by Bucklew [96], Dembo and Zeitouni [177], Deuschel and Strook [178], or
Ellis [200]. We also mention that large deviation results are closely related to
saddlepoint approzimations in statistics, for instance Barndorff-Nielsen and
Cox [48], Field and Ronchetti [239], Jensen [356]. The latter contains vari-
ous applications to insurance risk theory. It should also be mentioned that,
whereas Edgeworth expansions yield good approximations around the mean,
they become unreliable in the tails. Saddlepoint approximations remedy this
problem.

We give some more specific results on large deviations in Section 8.6. They
find immediate applications for the valuation of certain quantities which are
closely related to reinsurance problems; see Section 8.7.
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2.4 The Functional CLT: Brownian Motion Appears

Let (X,,) be an iid sequence with 0 < 0% < co. In this section we embed the
sequence of partial sums (S,) in a process on [0,1] and consider the limit
process which turns out to be Brownian motion. First consider the process
S, (+) on [0,1] such that

Sh (nilk) = 1 (S, —pk), k=0,...,n,
av/n

and define the graph of the process S, (-) at every point of [0, 1] by linear
interpolation between the points (k/n, S, (k/n)). This graph is just a “broken
line” and the sample paths are continuous (polygonal) functions. Suppose for
the moment that (X,,) is a sequence of iid standard normal rvs. Then the
increments S, (k/n) — S,(I/n) for | < k are Gaussian with mean zero and
variance (k — [)/n. Moreover, the process has independent increments when
restricted to the points (k/n)k=o, .. n. These properties remind us of one of
the most important processes which is used in probability theory, Brownian
motion, the definition of which follows:

Definition 2.4.1 (Brownian motion)
Let (Bt)eo,1] be a stochastic process which satisfies the following conditions:

(a) It starts at zero: By = 0 a.s.

(b) It has independent increments: for any partition 0 < to < t; < -+ <
tm <1 and any m the rvs By, — By, ..., By, — By are independent.

(c) For every t € [0,1], B; has a Gaussian distribution with mean zero and
variance t.

(d) The sample paths are continuous with probability 1.

m m—1

This process is called (standard) Brownian motion or Wiener process on [0, 1].
d

A consequence of this definition is that the increments B; — Bg, t > s, have
a N(0,t — s) distribution. Brownian motion on [0, 7] and on [0, o00) is defined
in a straightforward way by suitably modifying Definition 2.4.1. We mention
that one can give a “minimal” definition of Brownian motion as a process
with stationary, independent increments and a.s. continuous sample paths. It
can be shown that from these properties alone it follows that the increments
must be normally distributed.

We write C[0,1] for the vector space of continuous functions which is
equipped with the supremum norm; see Appendix A2.2: for x € C|[0, 1]

|l = sup |z(t)].
0<t<1
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Figure 2.4.2 Visualisation of Brownian motion: five sample paths of standard
Brownian motion on [0, 1].

Notice that the processes S, () and B. assume values in C [0, 1].

We introduce still another process on [0, 1] which coincides with S,,(+) at
the points k/n, k =0,1,...,n. It is easier to construct but more difficult to
deal with theoretically:

Sn(t) (Stng —m[nt]) , 0<t<T,

1
S oV
where [y] denotes the integer part of the real number y. This process has
independent increments which are Gaussian (possibly degenerate) if X is
Gaussian. Its sample paths are not continuous but have possible jumps at
the points k/n. At each point of [0, 1) they are continuous from the right and
at each point of (0, 1] the limit from the left exists. Thus the process S, (-) has
cadlag sample paths, see Appendix A2.2, i.e. they belong to the space D [0, 1].
The space D [0, 1] of cadlag functions can be equipped with different metrics
in order to define weak convergence on it. However, our limit process will be
Brownian motion which assumes values in C[0, 1] so that we are allowed to
take the sup—norm as an appropriate metric in D [0, 1]; see Theorem A2.5.
The following result is known as the Donsker invariance principle or func-
tional CLT (FCLT ). In this context it is worthwhile to recall the continuous
mapping theorem (Theorem A2.6) and the notion of weak convergence in the
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0.5

-1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.4.3 Visualisation of the Donsker invariance principle: sample paths of
the process Sn(-) for the same realisation of (X, ) for n = 5,10, 20, 50.

function spaces C[0, 1] and in D [0, 1] from Appendix A2.4. To those of you
not familiar with this abstract terminology we simply recommend a glance at
Figure 2.4.3 which explains how a sample path of Brownian motion is built
up from sums of iid rvs.

Theorem 2.4.4 (FCLT, Donsker invariance principle)
Suppose that EX? < co. Then

(@) Sn(:) 4 B. in CI0,1] (equipped with the sup-norm and the o-algebra
generated by the open subsets),

(b) Sn(-) 4 B. in D0,1] (equipped with the sup—norm and the o—algebra
generated by the open balls).

In particular, if fi (f2) is continuous except possibly on a subset A C C[0,1]

(A C D[0,1]) for which P(B. € A) = 0, then f1(Sn(-)) = fi(B.) and
> d

f2(Sa()) = f2(B.). O

Remarks. 1) The Donsker invariance principle is a very powerful result. It

explains why Brownian motion can be taken as a reasonable approximation

to many real processes which are in some way related to sums of independent
rvs. In finance, the celebrated Black—Scholes model is based on geometric
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Brownian motion X; = exp{ct + oB;} for constants ¢ and o > 0. The ra-
tionale of such an approach is that the logarithmic price In X; of a risky
asset can be understood as the result of actions and interactions caused by
a large number of different independent activities in economy and politics,
or indeed individual traders, i.e. it can be understood as a sum process. And
indeed, geometric Brownian motion can be viewed as a weak limit of the
binomial pricing model of Cox—Ross—Rubinstein; see for instance Lamberton
and Lapeyre [412]. In physics a sample path of Brownian motion is often
interpreted as the movement of a small particle which is pushed by small
independent forces from different directions. Here again the interpretation
as a sum process is applicable. As a limit process of normalised and centred
random walks, we can consider Brownian motion as a random walk in con-
tinuous time.

2) The Donsker invariance principle suggests an easy way of simulating
Brownian sample paths by the approximating processes S, () or S, (-). They
can easily be simulated, for example, if (X,,) is iid Gaussian noise or if (X, ) is
a sequence of iid Bernoulli rvs assuming the two values +1 and —1 with equal
probability. Again, back to the finance world: Donsker explains how to gen-
erate from one fair coin the basic process underlying modern mathematical
finance. |

The power of a functional limit theorem is considerably increased by the
continuous mapping theorem (Theorem A2.6):

Example 2.4.5 (Donsker and continuous mapping theorem)

We may conclude from Theorem 2.4.4 that the finite-dimensional distribu-
tions of the processes Sy, (-) and §n() converge. Indeed, consider the mapping
f:D[0,1] - R™ defined by

f@) = (x4, ., xe,,)

for any 0 <t; < --- <t < 1. It is continuous at elements x € C[0, 1]. Then

F(Su()) = (Salt)s--,Sultm)) % f(B) = (Bu,...,Bs,),
F5.() = (Saltr)s--,Sultm)) = f(B) = (Buy,-- B,

Hence weak convergence of the processes S, (+) and §n() implies convergence
of the finite-dimensional distributions.

Moreover, the following functionals are continuous on both spaces C[0, 1] and
D [0,1] when endowed with the sup—norm:

h@)=2(1), fo(r) = sup x(t), fs(z)= inf w(t).

0<t<1 0<t<1
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In particular,

S = A = = (S =)
S = RE) = o= max (Se—ku)
) = BEO) = o= i (Se—kw)

Moreover, the multivariate function (fi, f2, f3) is continuous on both spaces
CJ[0,1] and D [0, 1]. From Theorem 2.4.4 and the continuous mapping theorem
we immediately obtain
1
— (S, - Sy —k in (S, —k
e~ ( n=nu, max (Sk—ku), min (S M>)

i) <B1, max B;, min Bt) .
0<t<1 0<t<1
The joint distribution of By, the minimum and maximum of Brownian motion
on [0, 1] is well known. A derivation is given in Billingsley [69], Chapter 2.11.

At this point it is still worth stressing that, whereas Donsker in conjunction
with the continuous mapping theorem offers indeed a very powerful tool, in
many applications actually proving that certain functionals on either C or D
are continuous may be the hard part. Also, once we have a weak convergence
result, we may want to use it in two ways. First, in some cases we may derive
distributional properties of the limit process through known properties of the
approximating process; the latter can for instance be taken to be based on iid
Bernoulli rvs. For several examples see Billingsley [69]. However, we may also
use the limit process as a useful approximation of a less tangible underlying
process; a typical example will be discussed in the diffusion approximation
for risk processes, see Example 2.5.18. |

As already stated, Brownian motion is a particular process with independent,
stationary increments:

Definition 2.4.6 (Process with independent, stationary increments)
Let & = (& )o<t<1 be a stochastic process. Then & has independent increments
if for any 0 <tp < -+ <t,, <1 and any m > 1 the rvs

€t1 - ftov v 7€t7n - gtm—l )

are independent. This process is said to have stationary increments if for any
0<s<t<1thervs& — & and & s have the same distribution.

A process with independent, stationary increments and sample paths inD [0, 1]
18 also called a Lévy process. O
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By a straightforward modification of this definition we can also define
processes with independent, stationary increments on [0,7] or on [0, c0).

We introduce another class of stochastic processes which contains Brown-
ian motion as a special case. Recall from Section 2.2 the definition of an
a—stable rv.

Definition 2.4.7 (a—stable motion)
A stochastic process (& )o<i<1 with sample paths in D[0,1] is said to be a—
stable motion if the following properties hold:

(a) It starts at zero: & =0 a.s.

(b) It has independent, stationary increments.

(c) For everyt € [0,1], & has an a-stable distribution with fized parameters
B € [-1,1] and v = 0 in the spectral representation (2.10). O

It is straightforward that we can extend this definition to processes on [0, T'] or
on [0, 00). We see that Brownian motion (cf. Definition 2.4.1) is just a 2—stable
motion. For simplicity, a—stable motions are often called stable processes al-
though this might be confusing since in the specialised literature more general
stable processes (with dependent or non—stationary stable increments) occur.
In Section 8.8 we give an introduction to the world of multivariate stable ran-
dom vectors and of stable processes.
We need the following elementary relation:

Lemma 2.4.8 For an a-stable motion (£ )o<i<1 we have
G- L(t—s)/"¢, 0<s<t<l.

Proof. Using the spectral representation (2.10) and the stationary, indepen-
dent a—stable increments we conclude that

Eexp{iré} = exp{—c\* (1 —ifsign(A)z(\, a))}
Eexp {l)\gs} EeXp {l)\ (ft - gs)}
= FEexp{i\} Eexp {iNg_s}

= exp{= (¢ + i) A" (1 = ifsign(A)z(A, )},

for A € R and positive constants cs, ¢; and ¢;—s which satisfy the relation

cs+cs=c, =0, 0<s<t<1.

The well known measurable solution to this Cauchy functional equation
is ¢s = ¢s for a constant ¢ (see Bingham, Goldie and Teugels [72], Theo-
rem 1.1.7), and ¢ must be positive because of the properties of chfs. This
proves the lemma. O
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1.8-stable motion

1-stable motion

0.0 0.2 0.4 0.6 0.8 1.0

0.5-stable motion

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.4.9 Visualisation of symmetric 1.8—, 1- and 0.5-stable motion (top, mid-
dle and bottom): three sample paths of (§) on [0,1]. The lower two graphs suggest
that the sample paths are piecewise constant. This is by no means the case; the set
of jumps of almost every sample path is a dense set in [0,1]. However, the jump
heights are in general so tiny that we cannot see them, we only see the large ones.
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From Lemma 2.4.8 we can easily derive the finite—dimensional distributions
of an a—stable motion:

(€t1 7£t2 s 7515,,,.)
= (fh 7€t1 + (ftz - £t1) PR 75151 + (ftz - €t1) ++ (gtm - ft,,,,71))

1N

(67" v 0V + (2 = 0) V2

£V (b — ) Yo o (b — 1) Ym)

for any real numbers 0 <t; < --- < t,,, <1 and iid a—stable rvs Y7,...,Y,,

such that Y3 4 &.
Analogously to the Donsker invariance principle we might ask:

Can every a—stable motion be derived as the weak limit of an appropriate
sum process?

The answer is YES as the following theorem shows. We refer to Section 2.2 for
the definition of domains of attraction and to Appendix A2.4 for the notion
of weak convergence of processes.

Theorem 2.4.10 (Stable FCLT)
Let (X,,) be iid rvs in the domain of attraction of an a-stable rv Z, with
parameter v = 0 in (2.10). Suppose that

-1
(nl/o‘L(n)) (Sn —an) 4 Zoy N —00,
for an appropriate slowly varying function L. Then the process

-1
(nl/aL(n)> (S[nt] — a[nt]) , 0<t<1,

converges weakly to an a—-stable motion (ft)ogtgh and & 2 Z.. Here con-
vergence is understood as weak convergence in D[0,1] equipped with the Jy—
metric and the o—algebra generated by the open sets. a

We know that Brownian motion has a.s. continuous sample paths. This is not
the case for a—stable motions with a < 2. Apart from a drift, their sample
paths are pure jump processes, and all jumps occur at random instants of
time. If we restrict the sample paths of £ to the interval [0, 1] then £ is a sto-
chastic process which assumes values in D [0, 1], i.e. these sample paths are
cadlag. Again we can apply the continuous mapping theorem. For example,
the results of Example 2.4.5 remain valid with Brownian motion replaced by
a general a—stable motion as limit process.
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Notes and Comments

Proofs of the Donsker invariance principle (Theorem 2.4.4) can be found
in Billingsley [69] and Pollard [504]. Generalisations to martingales are
given in Hall and Heyde [312] and to more general processes in Jacod and
Shiryaev [352].

Monographs on Brownian motion and its properties are Hida [325], Kara-
tzas and Shreve [368], Revuz and Yor [541]. An encyclopaedic compendium
of facts and formulae for Brownian motion is Borodin and Salminen [82].

FCLTs are applied in insurance mathematics for determining the prob-
ability of ruin via the so—called diffusion approximation; see Grandell [282].
The idea is due to Iglehart [351]. We explain this method in Example 2.5.18.

Methods for simulating Brownian motion are given for instance in Janicki
and Weron [354], Kloeden and Platen [385] and the companion book by
Kloeden, Platen and Schurz [386].

Definitions of a—stable motion and more general a—stable processes can
be found in the literature cited below. A proof of the FCLT in the form
of Theorem 2.4.10 follows from the general theory of processes with inde-
pendent increments; see for instance Gikhman and Skorokhod [262], Jacod
and Shiryaev [352], Chapter VII, see also Resnick [529]. Stable motions and
processes are treated in various books: Mijnheer [456] concentrates on a.s.
properties of the sample paths of a—stable motions. Janicki and Weron [354]
discuss various methods for simulating a—stable processes and consider ap-
plications. Samorodnitsky and Taqqu [565] give a general theory for a—stable
processes including several representations of stable rvs, stable processes and
stable integrals. They also develop a theory of stochastic integration with re-
spect to a—stable processes. Kwapieri and Woyczyiiski [411] consider the case
of single and multiple stochastic integrals with respect to a—stable processes.
Lévy processes are considered in Bertoin [63], Jacod and Shiryaev [352] and
Sato [566].

In Section 8.8 we give an introduction to stable processes more general
than stable motion.

2.5 Random Sums

2.5.1 General Randomly Indexed Sequences

Random (i.e. randomly indexed) sums are the bread and butter of insurance
mathematics. The total claim amount of an insurance portfolio is classically
modelled by random sums
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Poisson process
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t

Figure 2.5.1 Visualisation of a Poisson process with intensity 1: five sample paths

of (N(t)).

0 if N(t)=0,
S(t):SN(t): tZOa
X1+ -+ Xy if N(t)>1,
where (N (t)):>0 is a stochastic process on [0, 00) such that the rvs N(t) are
non-negative integer—valued. Usually, (N(¢)) is assumed to be generated by
a sequence (T,)n>1 of non—negative rvs such that

OSTISTQS a.s.

and

N(t)=sup{n>1:T,<t}, t>0. (2.27)
As usual, sup A = 0if A = (. This is then called a counting process. The rv X,
can be interpreted as an individual claim which arrives at the random time T,
N(t) counts the total number of individual claims and S(t) is the total claim
amount in the portfolio up to time ¢. In the context of finance, N(t) could
for instance represent the (random) number of position changes in a foreign
exchange portfolio based on tick—by-tick (high frequency) observations. The
quantity S(¢) then represents the total return over [0, ¢].

Example 2.5.2 (Homogeneous Poisson process and compound Poisson pro-
cess)

In the Cramér-Lundberg model (Definition 1.1.1) it is assumed that (X,,) and
(N(t)) are independent and that (N(¢)) is a homogeneous Poisson process
with intensity parameter X > 0, i.e. it is a counting process (2.27) with
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Tn:Y1++Yn7 nzlv

and (Y;,) (the inter—arrival times of the claims) are iid exponential rvs with
expectation 1/A. Any counting process which is generated by an iid sum
process (T),) is also called a renewal counting process.

Alternatively, a (homogeneous) Poisson process is defined by the following
three properties:

(a) It starts at zero: N(0) = 0.
(b) Tt has independent, stationary increments.
(¢) For every ¢t > 0, N(t) is a Poisson rv with parameter \¢:

P(N(t)=n) = ():z,) e M n=01,2,....

The Poisson process (N(t)) is a pure jump process with sample paths in
D [0, 00) which increase to 0o as t — 0o and have jumps of height 1 at the
random times 7). It is also a Lévy process; see Definition 2.4.6. A homo-
geneous Poisson process can be interpreted as a special point process; see
Section 5.1.3.

If (N(t)) and (X,,) are independent then the process (S(t))¢>o is called a com-
pound Poisson process.

The Poisson process and Brownian motion and their modifications and gen-
eralisations are the most important stochastic processes in probability theory
and mathematical statistics. O

The fluctuations of the random sums S(t) for large ¢ can again be described
via limit theorems. In what follows we provide some basic tools which show
that the asymptotic behaviour of (S,) and (S(t)) is closely linked.

In this section, (Z,)n>0 is a general sequence of rvs and (N(¢))¢>o is
a process of non—negative integer—valued rvs N ().

Lemma 2.5.3 Suppose that Z, 3 Z as n — oo and N(t) 3 oo (N(t) 5
) ast — oo. Then

ZN(t) st>.Z7 (ZN(t)EZ) , t—=o00.

a.s.

Proof. Suppose N(t) = oo. Set
Ay ={w:N({)(w) 20, t—oo}, Ar={{w:Z,(w)—= Z(w), n—> o},
and note that P(A4;) = P(A2) = 1. Then

P({W:ZN(t)(w)(w)—)Z(w), t—)oo}) >P(AiNA)=1,
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t

Figure 2.5.4 One sample path of (Sn) and one sample path of the compound Pois-
son process (S(t)) (A =1) for the same realisation of itd standard exponential X, .

i.e. ZN(t) X Z.

Now suppose that N(t) B ast — oo For every sequence tj — 00,
N(tg) B as k- oo, and there exists a subsequence t;; 1 oo such that
N(ty,;) 3 0 as j — o00; see Appendix A1.3. From the first part of the proof,
ZN () 22 Z, hence ZN(u,) £ Z. Thus every sequence (Zn(ty,)) contains
a subsequence which converges in probability to Z. Since convergence in

probability is metrizable (see Appendix A1.2) this means that Zy =z

O
Combining Theorem 2.1.5 and Lemma 2.5.3 we immediately obtain
Theorem 2.5.5 (Marcinkiewicz—Zygmund SLLNs for random sums)
Suppose that E|X|P < oo for some p € (0,2) and N(t) ¥ co. Then
(N(@) ™7 (S(t) = aN(1) 50, (2.28)
where
0 if p<1,
a =
w=EX if pell,2).
O

We will see in Section 2.5.3 that, if we restrict ourselves to renewal count-
ing processes (N(t)), we can replace the random normalising and centring
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processes in (2.28) by deterministic functions. Moreover, (2.28) can be ex-
tended to a LIL.

Now we turn to the case of weak convergence. In particular, we wish to
derive the CLT for random sums. The following lemma covers many cases of
practical interest, for example, the compound Poisson case as considered in
Example 2.5.2.

Lemma 2.5.6 Suppose that (Z,,) and (N(t)) are independent and N (t) LN
ast — 00, Ioni)Z as n — 0o thenZN(t)iZ as t — 00.
Proof. Write ¢4 (s) = Eexp{isA} for the chf of any rv A and f,,(s) = ¢z, (s)
for real s. By independence,

E (exp {iSZN(t) }| N(t)) = fN(t)(S) a.s.
Note that f,(s) = ¢z(s) as n — oo and N(t) L . By Lemma 2.5.3,

Frm(s) B oz(s), t— o0,

and since (fx () is uniformly integrable,
Eexp{isZnw} = Eng) (fnw(s) = E(9z(s)) = ¢z(s), s€R.

This proves that Zy 4 7. O

As an immediate consequence we derive an analogue of Theorem 2.2.15 for
random sums:

Theorem 2.5.7 (CLT for random sums)

Suppose that (X,,) and (N(t)) are independent and that N (t) L 0. Assume
that F € DA(a) for some a € (0,2]. Then Theorem 2.2.15 remains valid if
n is everywhere replaced by N(t), i.e. there exist appropriate centring con-
stants a, and a slowly varying function L such that

(VLN ®) ™ (50) —any) b Ga, 100, (229

for an a-stable distribution G . O

In Section 2.5.3 we will specify conditions which ensure that the random
normalising and centring processes in (2.29) can be replaced by deterministic
functions.

The condition that the processes (Z,,) and (N (t)) are independent can be
relaxed substantially:
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Lemma 2.5.8 (Anscombe’s theorem)
Suppose that there exists a function b(t) 1 oo such that
N(@) p

— 1 2.
0] -1, t— oo, (2.30)

and that the following, so—called Anscombe condition holds:

Ve >0Vn>030 >03Ing such that

P< max |Zm—Zn|>e)<n7 n>ng. (2.31)

m:m—n|<né

IongZasn—)oothenZN(t)gZast—)oo. |

Roughly speaking, condition (2.30) ensures that the random index N (t) can
be replaced by the deterministic function b(t), and if we do so with Zy ), i.e. if
we replace Zy ;) by Zy(), then (2.31) guarantees that the error | Zy ) — Zy ()|
is negligible. In other words, Anscombe’s condition is a specific stochastic
continuity property of the sequence (Z,).

We note that (2.30) is satisfied for wide classes of renewal counting
processes (see Section 2.5.3), including the homogeneous Poisson process.
Moreover, (2.31) holds for the (properly normalised and centred) sums .S,,.
This is the content of the following result which is analogous to Theo-
rems 2.2.15 and 2.5.7. The use of the Anscombe condition in the proof below
is not obvious; it is hidden by Kolmogorov’s inequality.

Theorem 2.5.9 (Anscombe-type CLT for random sums)

Suppose that
N(t
¥f>)\7 t— o0, (2.32)

for some positive X and that F € DA(«) for some a € (0, 2] with
1 - ~ d,
(n /O‘L(n)) (S, —an) = Ga, (2.33)
for an a—stable distribution G, and a slowly varying function L. Here
0 if a<l,
0=
woif a€e(l,2].
Then

(N VeLv@)  (S@-an@) b G, (@239

((At)l/aL(t))*1 (SO —aN{t) S G (2.35)
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In particular, if 0% < oo then
(\o2t) % (S(t) — uN (1)) S B,
where @ is the standard normal distribution.

In view of Theorem 2.2.15, (2.33) is only a restriction on the distribution of X
in the case a = 1. It is satisfied for instance for symmetric F. In Section 2.5.3
we will find conditions which ensure that the random centring process in
Theorem 2.5.9 can be replaced by a deterministic function.

Sketch of the proof. We restrict ourselves to the case a =2 and 02 =
var(X) < oco. Without loss of generality we may and do assume that o2 = 1
and p = 0. We write

S _ (Spa_, Svw = Spa) (A )
(N2~ \ ()12 (At)1/2 N(t) '
By (2.32), the term (At/N(t))'/? converges to 1 in probability and the clas-
sical CLT yields that

Sixg
(At) 1/2
By virtue of the continuous mapping theorem (Theorem A2.6) it suffices to
show that

Lp

Sn(t) = Siag P
7(/\)5)1/2 = 0.
For every € > 0 and § > 0 we have that
_ [ 1Sve = S
Ce — { ()\t)l/2 > €
N(t) N(#) S — Spag]
ST BTN | P 1=y AT
< {5 >‘5}U{‘ N S UE

= A UA,.

By (2.32), P(A1) — 0 as t — oo. By Kolmogorov’s inequality,

P (Asz)

IN

P =S At)/2
<n/rtnaf|(<5 1= Siaa] > €3

2
< =g Var (Sioayg = Si)

c —
€2
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for a positive constant c. Thus letting first ¢ tend to co and then § to 0 we
see that P(C.) — 0 for every fixed € > 0. This proves (2.34) for a = 2.

For a < 2 the proof is analogous. Instead of Kolmogorov’s inequality one can
apply Skorokhod—Ottaviani-type inequalities; see for instance Petrov [496],
Theorem 2.3. The details are technical in nature and therefore omitted.
The equivalence of (2.34) and (2.35) is a consequence of (2.32) and of the
slow variation of L. O

2.5.2 Renewal Counting Processes

We consider a renewal counting process (N (t))¢>o0, i.e.

N(t)=sup{n>1:T,<t}, t>0, (2.36)
and
Tn:Y1++Yn7 77‘217
for iid non—negative (non—zero) rvs Y, Y1, Y5, .. .. For applications of this kind

of processes to risk theory see Chapter 1. The homogeneous Poisson process
(see Example 2.5.2) is such a renewal counting process where Y is exponential
with expectation 1/A.

In this section we answer the question:

What is the order of magnitude of N(t) ast — co?

Observe that
{Tn <t} = {N(t) > n} .

Kolmogorov’s SLLN implies that T}, 3" oo and therefore N(t) %3 co. How-
ever, we can derive much more precise information:

Theorem 2.5.10 (Marcinkiewicz—Zygmund SLLNs/LIL for renewal count-
ing processes)
Suppose that EY =1/A < oo (if EY = 0o set A =0). Then

tTIN() 23N, (2.37)
If EY? < 0o for some p € (1,2) then
VP (N@E) = At 0. (2.38)
If 0% = var(Y) < oo then

lim sup (2¢1nln 15)71/2 (N(t) — At)

t—o0

= —liminf (2¢Inln V2 (N(t) = At)
—00

= O’y)\3/2 a.s.
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Figure 2.5.11 Visualisation of the SLLN (left) and of the LIL (right) for the

homogeneous Poisson process with intensity 1: five sample paths.

Sketch of the proof. We restrict ourselves to show the SLLNs (2.37) and
(2.38). Kolmogorov’s SLLN for random sums yields that
TN(t) as. 1

No) O n

By this and a sandwich argument applied to

~N({) T Nt +1 N(@)

we prove (2.37).
Now suppose that EY? < oo for some p € (1,2). Notice that

nYP(Thpy —Tp) =n YPY, 0 30,

This, the Marcinkiewicz Zygmund SLLNs of Theorem 2.5.5, and (2.37) imply
that
o (TN(t)+1 - TN(t)) = fl/pyN(t)+1 as g

This, Theorem 2.5.5 and a sandwich argument applied to

At — N(t) < ATy (ty+1 — N(t) <M N(t)  AYnis
1/p = ti/p = ti/p ti/p

gives us (2.38). O

(2.39)

Theorem 2.5.10 suggests that EN(t) ~ At and var(N(t)) ~ o2 A3t. In the case
of the Poisson process we even have that EN (t) = At and var(N(t)) = 02 \3t
since EY = 1/X and 02 = 1/A%. For the following results see Gut [291], The-
orems 5.1 and 5.2.
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Proposition 2.5.12 (Moments of renewal counting process)
The following relations hold:

(@) EN() = (A4 o0(1))t as t — 0.
(b) Suppose that o3 = var(Y') < oo. Then

EN() = M+0(1), t o0,
var(N(t)) = oiXt+o(t), t— 00.
(|

From Theorem 2.5.10 and Proposition 2.5.12 we have gained a first impres-
sion on the growth of a renewal counting process. Next we study the weak
convergence of (N (t)).

Theorem 2.5.13 (CLT for renewal counting process)
Suppose that o3 < co. Then

(022372 (N(t) —at) S &, (2.40)
where @ is the standard normal distribution.

Recall from Proposition 2.5.12 that EN(t) ~ At and var(N(t)) ~ o2 \3t.
Thus Theorem 2.5.13 is similar to the classical CLT for iid sums. We note
that one can prove an analogous result for (N (¢)) with an a—stable limit.
Proof. We proceed as in (2.39):

At — N(t) < ATn@y+1 — N(@) _ M= N(t) AYN (1)1
@2X30)2 T (02x3)' 2 T (o2 (02 a3t/

We have, by independence,
P (Y >et'/?) = E(P(Ynwpe > et'?|N@))

- P(Y>et1/2), Ve>0.

Hence
M—N(t) Mg - N()
(@2N31)' 7 (o2a3p)!/?

In view of Theorem 2.5.9 and by the continuous mapping theorem the rhs

+op(1). (2.41)

converges weakly to @. This proves the theorem. O
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2.5.3 Random Sums Driven by Renewal Counting Processes

In this section we consider one of the most important models in insurance
mathematics. Throughout, we assume that the random sums S(t) = Sy ;) are
driven by a renewal counting process as defined in (2.36). The process (S(t)) is
a model for the total claim amount of an insurance portfolio. The renewal and
the Cramér-Lundberg models (Definition 1.1.1) are included in this setting as
particular cases when (N (t)) and (X,,) are independent. In general, we do not
require this assumption. In what follows we are interested in the asymptotic
properties of the process (S(t)).

Recall from Section 2.5.2 that N(t) %3 co. Hence we may apply the
Marcinkiewicz—Zygmund SLLNs for random sums (Theorem 2.5.5),

(N(#)~Y? (S(t) —aN(t)) 30, (2.42)

provided E|X|P < oo for some p € (0,2) and
0 if p<l,
a= (2.43)
{ p=EX if pell,2).
The following question arises naturally:
May we replace N(t) in (2.42) by a deterministic function, for instance \t?
The answer is
In general: NO.

However, by Theorem 2.5.10, N (t)/t 3 X provided EY < co. Hence we may
replace the normalising process (N(t))'/? by (At)Y/?. The centring process
causes some problems. To proceed, suppose E|X|? < oo for some p € [1,2).
We write

t=HP(S(t) — Aut) = t7P (S(t) — N (1) + pt=" P (N(t) = At) .

In view of (2.42), the first term on the rhs converges to zero a.s. provided the
first moment of Y is finite. On the other hand,

put=YP (N(t) = At) 0 (2.44)

does not hold in general. But if EY? < co we conclude from Theorem 2.5.10
that (2.44) is satisfied. In summary we obtain:

Theorem 2.5.14 (Marcinkiewicz—Zygmund SLLNs for random sums)
Suppose that E|X|P < 0o for some p € (0,2).
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(a) If EY < oo then
VP (S(t) —aN(t) 230,

where a is defined by (2.43).
() If p>1 and EY? < co then

t7YP (S(t) — pAt) 0. 0

In the weak convergence case we can proceed analogously. Since N(t) — oo
a.s. for a renewal counting process, the CLT for random sums applies under
mild conditions:

Theorem 2.5.15 (Anscombe-type CLT for random sums)
Assume that F' € DA(a) for some a € (0,2] and that

(nl/o‘L(n))71 (S, —an) 4G, ,

for some a—stable distribution G, and a slowly varying function L. Here

N 0 if a<i,
a_{u if a€(1,2].

(a) If EY < oo then
((At)l/%(t)f1 (S(t) —aN () % G . (2.45)
In particular, if 02 = var(X) < oo then
(Ao2t) ™ (S(t) — uN (1) S &, (2.46)

where @ is the standard normal distribution.
(0) If « € (1,2) and EYP < oo for some p > « then

(()\t)l/aL(t)>_1 (S(t) — Aut) % G . (2.47)

Proof. If EY < oo then, by Theorem 2.5.10, N(t)/t *3' A, and Theorem 2.5.9
applies immediately. This yields (2.45) and (2.46).
If EY? < oo and p € [1,2) then, by Theorem 2.5.10,

=P (N(H) = Mt) 0. (2.48)

Hence
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(0L (560) Aty

= (L) (S~ uN®) + 1 (V) — A8)

= ()\t)l/aL(t)) (S(t) — uN(t)) + o(1) as. (2.49)
Here we used (2.48) and the fact that, for p > «,

tY/oL(t
lim (*)

7V —
t—00 tl/p

which is a consequence of the slow variation of L. Relation (2.47) is now
immediate from (2.45) and (2.49) by the continuous mapping theorem (The-
orem A2.6). O

Note that we excluded the case a = 2 from (2.47). In that case the method
of proof fails. Indeed, (2.49) is no longer applicable if > < co. This follows
from the CLT in Theorem 2.5.13.

Now we try to combine the CLT for (S(t)) and for (N(t)). Assume that
0? < 00 and 0% < co. Using (2.41), we obtain

t(S(t) = aut) = £ VE((S() — pN(1) + u(N(t) = At))
t 2 ((S(t) — uN () + 1 (N(t) — Mny)) +op(1)
N(t)
7123 " (Xi = pAYi) + op(1) (2.50)

Notice that the rvs X! = X; — uAY; have mean zero. Moreover, the sequence
(X7) is iid if ((X,,Y5)) is iid. Under the latter condition, Theorem 2.5.9

(2

applies immediately to (2.50) and yields the following result:

Theorem 2.5.16 Suppose that ((X,,Yn)) is a sequence of iid random vec-
tors and that 0® < co and o3 < 0o. Then

(var(X — pAY)A) T2 (S(8) — pht) S &,

where @ denotes the standard normal distribution.
In particular, if (X,) and (Y,) are independent then

((02 + (,u)\(fy)2) )\t)_l/2 (S(t) — urt) % &. O
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Following the idea of proof of Theorem 2.5.16, one can derive results if 02 = oo
or 0% = oo with appropriate stable limit distributions; see for instance Ko-
tulski [405].

It is also possible to derive different versions of FCLTs with Gaussian
or a-stable limit processes for (S(t)). We state here one standard result,
versions of which can be found in Billingsley [69], Section 17, and in Gut [291],
Theorem 2.1 in Chapter V. In our presentation we follow Grandell [281], p. 47.
Recall the notion of weak convergence from Appendix A2.4 and compare the
following result with the Donsker invariance principle (Theorem 2.4.4).

Theorem 2.5.17 (FCLT for random sum process)

Let (X,,) be a sequence of iid rvs such that 0? < co. Assume that the renewal
counting process (N(t)) and (X,) are independent and that EY = 1/\ and
02 < co. Let B. be standard Brownian motion on [0,00). Then

((02 n (,u)\(fy)Q) )\n)_l/2 (Sx(ny = Aun-) % B.

in D[0,00) equipped with the J—-metric and the corresponding o—-algebra of
the open sets. a

This theorem has quite an interesting application in insurance mathematics:

Example 2.5.18 (Diffusion approximation of the risk process)

Consider the Cramér-Lundberg model (Definition 1.1.1), i.e. (S(t)) is com-
pound Poisson with positive iid claims (X,,) independent of the homogeneous
Poisson process (N(t)) with intensity A > 0. The corresponding risk process
with initial capital u and premium income rate ¢ = (14 p)Au > 0 (with safety
loading p > 0) is given in (1.4) as

Ult)=u+ct—S(t), t>0.

In Chapter 1 we mainly studied the ruin probability in infinite time. One
method to obtain approximations to the ruin probability ¢ (u,T) in finite
time 7', i.e.

Y(u,T) = P(U(t) <O0for somet <T)

P ( inf (ct —S(t)) < —u) ,

0<t<T

is the so—called diffusion approximation which was introduced in insurance
mathematics by Iglehart [351]; see also Grandell [282], Appendix A.4, for an
extensive discussion of the method. Define

5 = (02 + (,u/\ay)2) A= (0 + %)\
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Then
Y(u, T

)
= P <0<irtl£T((1 +p)Aut — S(t)) < —u)

= P (ogtigg“/n((l + p)Autn — S(tn)) < —u)

. <0<ting/n (20) "/ (1 + p)Autn — S(tn)) < —u (5211)1/2) .

Now assume that To = T'/n, po = pAuo—'/n and uo = u (72n) /2
stants, i.e. we increase 7" and u with n, and decrease at the same time the

are con-

safety loading p with n. This means that a small safety loading is compen-
sated by a large initial capital. Then we obtain

_ . ~9 —-1/2 _ ) .
Y(u,T)=P <0<1tn<ng ((a n) (Autn — S(tn)) + pot ) < uo) .
The functional 2(f) = info<s<7, f(¢) is continuous on D [0, Ty]. Thus we may
conclude from Theorem 2.5.17 by the continuous mapping theorem (note
that u, p and T depend on n) that

Y, T) — P <0§1?SfT0 (pot — B:) < —uo)

= P < sup (Bt — pot) > uo) . (2.51)
0<t<To

The latter approach is called a diffusion approrimation since Brownian mo-

tion is a special diffusion process. The distribution of the supremum func-

tional of Brownian motion with linear drift is well known; see for instance

Lerche [421], Example 1 on p. 27:

— (poTo + Uo) o (poTo - Uo)
P sup (B —pot) >ug) =P | ——=———) +e PP ———— ] .
<0<t<pTo( £ pol) 0) < V1o VI

The diffusion approximation has many disadvantages, but also some good
aspects. We refer to Grandell [282], Appendix A.4, and Asmussen [28] for
a discussion and some recent literature; see also Schmidli [567] and Furrer,
Michna and Weron [247]. The latter look at weak approximations of the risk
process by a-stable processes. Among the positive aspects of the diffusion
approximation is that it is applicable to a wide range of risk processes which
deviate from the Cramér—Lundberg model. In that case, the classical methods
from renewal theory as developed in Chapter 1 will usually break down, and
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the diffusion approach is then one of the few tools which work. In such more
general models it is usually not possible to choose the premiums as a linear
function in time; see for example Kliippelberg and Mikosch [392, 393] for a
shot noise risk model. As a contra one might mention that the choice of Tp,
po and wug is perhaps not the most natural one. On the other hand, “large”
values of T" and u and small values of p are relative and down to individual
judgement. Notice that in Chapter 1 the probability of ruin in infinite time
was approximated for “large” initial capital u. Nevertheless, if one wants to
use the diffusion approximation for practical purposes a study of the values
of T', p and u for which the method yields reasonable results is unavoidable.
For example, Grandell [282], Appendix A.4, gives a simulation study. a

Notes and Comments

There are several texts on random sums, renewal counting processes and
related questions. They are mainly motivated by renewal theory. A more ad-
vanced limit theory, but also the proofs of the standard results above can
be found in Gut [291]. The classical theory of random sums relevant for
risk theory was reviewed in Panjer and Willmot [489]. Other relevant liter-
ature is Asmussen [27] and Grandell [282]. The latter deals with the total
claim amount process and related questions of risk and ruin for very general
processes. Grandell [284] gives an overview of the corresponding theory for
mixed Poisson processes and related risk models. A recent textbook treat-
ment of random sums is Gnedenko and Korolev [268].
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3

Fluctuations of Maxima

This chapter is concerned with classical extreme value theory and conse-
quently it is fundamental for many results in this book. The central result is
the Fisher—Tippett theorem which specifies the form of the limit distribution
for centred and normalised maxima. The three families of possible limit laws
are known as extreme value distributions. In Section 3.3 we describe their
maximum domains of attraction and derive centring and normalising con-
stants. A short summary is provided in Tables 3.4.2-3.4.4 where numerous
examples are to be found.

The basic tool for studying rare events related to the extremes of a sample
is the Poisson approximation: a first glimpse is given in Section 3.1. Poisson
approximation is also the key to the weak limit theory of upper order sta-
tistics (see Section 4.2) and for the weak convergence of point processes (see
Chapter 5).

The asymptotic theories for maxima and sums complement and contrast
each other. Corresponding results exist for affinely transformed sums and
maxima: stable distributions correspond to max—stable distributions, do-
mains of attraction to maximum domains of attraction; see Chapter 2. Limit
theorems for maxima and sums require appropriate normalising and centring
constants. For maxima the latter are chosen as some quantile (or a closely
related quantity) of the underlying marginal distribution. Empirical quan-
tiles open the way for tail estimation. Chapter 6 is devoted to this important
statistical problem. In Section 3.4 the mean excess function is introduced.
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It will prove to be a useful tool for distinguishing dfs in their right tail and
plays an important role in tail estimation; see Chapter 6.

As in Chapters 1 and 2, regular variation continues to play a fundamental
role. The maximum domain of attraction of an extreme value distribution can
be characterised via regular variation and its extensions; see Section 3.3. We
also study the relationship between subexponentiality and maximum domains
of attraction. This will have consequences in Section 8.3, where the path of
a risk process leading to ruin is characterised.

The theory of Section 3.4 allows us to present various results of the pre-
vious sections in a compact way. The key is the generalised extreme value
distribution which also leads to the generalised Pareto distribution. These
are two crucial notions which turn out to be very important for the statistics
of rare events treated in Chapter 6.

The almost sure behaviour of maxima is considered in Section 3.5. These
results find applications in Section 8.5, where we study the longest success—
run in a random walk.

3.1 Limit Probabilities for Maxima

Throughout this chapter X, Xy, Xa,... is a sequence of iid non—degenerate
rvs with common df F. Whereas in Chapter 2 we focussed on cumulative
sums, in this chapter we investigate the fluctuations of the sample mazima

M1:X1, Mn:maX(Xl,...,Xn), 7122

Corresponding results for minima can easily be obtained from those for max-
ima by using the identity

min (Xy,...,X,) = —max(—Xy,...,-X,) .

In Chapter 4 we continue with the analysis of the upper order statistics of
the sample X1,..., X,.

There is of course no difficulty in writing down the exact df of the maxi-
mum M,,:

PM,<z)=P(X;<=z,...,. X, <z)=F"(z), z€R, neN.

Extremes happen “near” the upper end of the support of the distribution,
hence intuitively the asymptotic behaviour of M, must be related to the df F’
in its right tail near the right endpoint. We denote by

zp =sup{r € R: F(z) <1}
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the right endpoint of F'. We immediately obtain, for all z < zp,
P(M,<z)=F%z)—=0, n— oo,
and, in the case zp < 0o, we have for x > zp that
P(M,<z)=F"(z)=1.

P . .
Thus M,, = xr as n — 0o, where xp < oo. Since the sequence (M,,) is non—
decreasing in n, it converges a.s., and hence we conclude that

M, 2p, n— . (3.1)
This fact does not provide a lot of information. More insight into the order
of magnitude of maxima is given by weak convergence results for centred
and normalised maxima. This is one of the main topics in classical extreme
value theory. For instance, the fundamental Fisher—Tippett theorem (The-
orem 3.2.3) has the following content: if there exist constants ¢, > 0 and
d,, € R such that
N (My—dy) S H, n- oo, (3.2)

n
for some non—degenerate distribution H, then H must be of the type of one
of the three so-called standard extreme value distributions. This is similar to
the CLT, where the stable distributions are the only possible non—degenerate
limit laws. Consequently, one has to consider probabilities of the form
P (c_1 (M, —d,) < x) ,

n

which can be rewritten as
P (M, <uy), (3.3)

where u,, = u,(z) = c,x + d,,. We first investigate (3.3) for general sequences
(un), and afterwards come back to affine transformations as in (3.2). We ask:

Which conditions on F' ensure that the limit of P (M,, < u,) for n — o0
exists for appropriate constants ., ?

It turns out that one needs certain continuity conditions on F' at its right
endpoint. This rules out many important distributions. For instance, if F has
a Poisson distribution, then P(M,, < u,) never has a limit in (0, 1), whatever
the sequence (u,). This implies that the normalised maxima of iid Poisson
distributed rvs do not have a non—degenerate limit distribution. This remark
might be slightly disappointing, but it shows the crucial difference between
sums and maxima. In the former case, the CLT yields the normal distribution
as limit under the very general moment condition EX? < co. If EX? = 00
the relatively small class of a—stable limit distributions enters. Only in that
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very heavy-tailed case do conditions on the tail F =1 — F guarantee the
existence of a limit distribution. In contrast to sums, we always need rather
delicate conditions on the tail F to ensure that P(M, < u,) converges to
a non—trivial limit, i.e. a number in (0, 1).

In what follows we answer the question above. We commence with an
elementary result which is crucial for the understanding of the weak limit
theory of sample maxima. It will become a standard tool throughout this
book.

Proposition 3.1.1 (Poisson approximation)
For given T € [0,00] and a sequence (u,) of real numbers the following are
equivalent

nF (u,) — T, (3.4)
P(M, <up,) — e . (3.5)

Proof. Consider first 0 < 7 < co. If (3.4) holds, then

n

P (M, <un) = F"(u,) = (1= F (u,))" = (1—%+o<%)> :

which implies (3.5). Conversely, if (3.5) holds, then F(u,) — 0. (Otherwise,

F(uy,) would be bounded away from 0 for some subsequence (nj). Then

P(M,, < un,)=(1—-F(un,))™ would imply P(M,, < up,) — 0.) Taking
logarithms in (3.5) we have

—nln (1= F (u,)) = 7.

Since —In(1 — ) ~ & for x — 0 this implies that nF(u,) = 7 + o(1), giving
(3.4).

If 7 =00 and (3.4) holds, but (3.5) does not, there must be a subsequence
(nk) such that P(M,, <up,) — exp{—7'} as k — oo for some 7" < co. But
then (3.5) implies (3.4), so that ng F(u,,) — 7' < oo, contradicting (3.4) with
7 = oo. Similarly, (3.5) implies (3.4) for 7 = oc. O

Remarks. 1) Clearly, Poisson’s limit theorem is the key behind the
above proof. Indeed, assume for simplicity 0<7 < oo and define
B, = Y Iix,5u,}- This quantity has a binomial distribution with
parameters (n, F(u,)). An application of Poisson’s limit theorem yields
B, 5 Poi(r) if and only if EB, = nF(u,) — 7 which is nothing but (3.4).
Also notice that P(M,, < u,) = P(B,, = 0) = exp{—7}. This explains why
(3.5) is sometimes referred to as Poisson approzimation to the probability
P(M,, < uy).
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2) Evidently, if there exists a sequence (u,(f)) satisfying (3.4) for some fixed

7 > 0, then we can find such a sequence for any 7 > 0. For instance, if (%(11))
satisfies (3.4) with 7 =1, ul) = ufi)ﬁ] obeys (3.4) for an arbitrary 7 > 0. O

By (3.1), (M,,) converges a.s. to the right endpoint z of the df F, hence

0 if z<uaop,

P(M, <z)—
1 if z>aF.

The following result extends this kind of 0-1 behaviour.

Corollary 3.1.2 Suppose that xp < 0o and

Flzp—)=F(zp) = F(zp—) > 0.
Then for every sequence (uy) such that
P(My <un) = p,
either p=0 or p = 1.

Proof. Since 0 < p <1, we may write p = exp{—7} with 0 <7 < 0. By
Proposition 3.1.1 we have nF(u,) — 7 as n — oo. If u, < zp for infinitely
many n we have F(u,) > F(vp-) > 0 for those n and hence 7 = co. The
other possibility is that u, > xr for all sufficiently large n, giving nF (u,) = 0,
and hence 7 = 0. Thus 7 = oo or 0, giving p =0 or 1. O

This result shows in particular that for a df with a jump at its finite right
endpoint no non—degenerate limit distribution for M, exists, whatever the
normalisation.

A similar result is true for certain distributions with infinite right endpoint
as we see from the following characterisation, given in Leadbetter, Lindgren
and Rootzén [418], Theorem 1.7.13.

Theorem 3.1.3 Let F be a df with right endpoint zp < oo and let
7 € (0,00). There exists a sequence (u,) satisfying nF(u,) — 7 if and

only if a)
F(x

1m —
Ttz R F(CC—)

~1. (3.6)

O

The result applies in particular to discrete distributions with infinite right
endpoint. If the jump heights of the df do not decay sufficiently fast, then
a non—degenerate limit distribution for maxima does not exist. For instance, if
X is integer—valued and x = oo, then (3.6) translates into F(n)/F(n—1) —
1 asn — oo.
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These considerations show that some intricate asymptotic behaviour of
(M,,) exists. The discreteness of a distribution can prevent the maxima from
converging and instead forces “oscillatory” behaviour. Nonetheless, in this
situation it is often possible to find a sequence (c,) of integers such that
(M, — cy,) is tight; i.e. every subsequence of (M, — c,) contains a weakly
convergent subsequence. This is true for the examples to follow; see Aldous

[7], Section C2, Leadbetter et al. [418], Section 1.7.
Example 3.1.4 (Poisson distribution)
P(X=k)=e*\/k!, keNy, A>0.

Then
F() _ | _F(k)-Fk-1)
F(k—1) F(k—-1)
AN
(57

r=k+1
The latter sum can be estimated as

- A® = (A\" Nk
Z(k+1)(k+2).-.(k+s)52<ﬁ) T 1Mk

s=1 s=1

—1
o !
1—<1+Z %A”“) .

k> A,

which tends to 0 as k — oo, so that F(k)/F(k — 1) — 0. Theorem 3.1.3 shows
that no non—degenerate limit distribution for maxima exists and, further-
more, that no limit of the form P(M,, < u,) — p € (0,1) exists, whatever

the sequence of constants (u,,).

Example 3.1.5 (Geometric distribution)

PX=k)=p(l-p)* ', keN, 0<p<l1.

In this case we have

oo

O

_7F(k) )= 1—(1—p)rt (Z(l —p)”) =1-p€(0,1).

Flk—1 <

Hence again no limit P(M,, < u,) — p exists except for p = 0 or 1.

Maxima of iid geometrically distributed rvs play a prominent role in the
study of the length of the longest success—run in a random walk. We refer to

Section 8.5, in particular to Theorem 8.5.13.

O
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Example 3.1.6 (Negative binomial distribution)

E—1
P(X:k):(“j;_l )pv(l—p)k_l, keNy, 0<p<l,v>0.

For v € N the negative binomial distribution generalises the geometric distri-
bution in the following sense: the geometric distribution models the waiting
time for the first success in a sequence of independent trials, whereas the
negative binomial distribution models the waiting time for the vth success.

Using properties of the binomial coefficients we obtain

F(k)
Y <1 pe(0,1);
Fk-1) pe @1
i.e. no limit P(M,, < u,) — p exists except for p =0 or 1. O

Notes and Comments

Extreme value theory is a classical topic in probability theory and mathemati-
cal statistics. Its origins go back to Fisher and Tippett [240]. Since then a large
number of books and articles on extreme value theory has appeared. The in-
terested reader may, for instance, consult the following textbooks: Adler [4],
Aldous [7], Beirlant, Teugels and Vynckier [57], Berman [62], Falk, Hiisler
and Reiss [225], Galambos [249], Gumbel [290], Leadbetter, Lindgren and
Rootzén [418], Pfeifer [497], Reiss [526] and Resnick [530].

Some historical notes concerning the development of extreme value theory
starting with Nicolas Bernoulli (1709) can be found in Reiss [526].

Our presentation is close in spirit to Leadbetter, Lindgren and Rootzén
[418] and Resnick [530]. The latter book is primarily concerned with extreme
value theory of iid observations. Two subjects are central: the main analytic
tool of extreme value theory is the theory of regularly varying functions (see
Appendix A3.1), and the basic probabilistic tool is point process theory (see
Chapter 5). After a brief summary of results for iid observations, Leadbet-
ter et al. [418] focus on extremes of stationary sequences and processes; see
Sections 4.4, 5.3 and 5.5. Galambos [249] studies the weak and strong limit
theory for extremes of iid observations. Moreover, Galambos [249] and also
Resnick [530] include results on multivariate extremes. Beirlant et al. [57],
Gumbel [290], Pfeifer [497] and Reiss [526] concentrate more on the statisti-
cal aspects; see Chapter 6 for more detailed information concerning statistical
methods based on extreme value theory.

Extreme value theory for discrete distributions is treated, for instance,
in Anderson [11, 12], Arnold, Balakrishnan and Nagaraja [20] and Gordon,
Schilling and Waterman [280].
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Adler [4], Berman [62] and Leadbetter et al. [418] study extremes of
continuous—time (in particular Gaussian) processes.

3.2 Weak Convergence of Maxima Under Affine
Transformations

We come back to the main topic of this chapter, namely to the characterisa-
tion of the possible limit laws for the maxima M, of the iid sequence (X,,)
under positive affine transformations; see (3.2). This extreme value problem
can be considered as an analogue to the central limit problem. Consequently,
the main parts of Sections 3.2 and 3.3 bear some resemblance to Section 2.2
and it is instructive to compare and contrast the corresponding results.

In this section we answer the question:

What are the possible (non-degenerate) limit laws for the mazima M,
when properly normalised and centred ¢

This question turns out to be closely related to the following:

Which distributions satisfy for all n > 2 the identity in law
max (X1,...,X,) £ cn X +dy (3.7)
for appropriate constants ¢, > 0 and d, € R ?

The question is, in other words, which classes of distributions F' are closed
(up to affine transformations) for maxima. Relation (3.7) reminds us of the
defining properties of a stable distribution; see (2.9) in Chapter 2. Those
distributions are the only possible limit laws for sums of normalised and
centred iid rvs. A similar notion exists for maxima.

Definition 3.2.1 (Max-stable distribution)

A non—degenerate rv X (the corresponding distribution or df) is called max—
stable if it satisfies (3.7) for iid X, X1, ..., X,, appropriate constants ¢, > 0,
d, € R and every n > 2. O

Remark. 1) From now on we refer to the centring constants d, and the
normalising constants c,, jointly as norming constants. O

Assume for the moment that (X,,) is a sequence of iid max—stable rvs. Then
(3.7) may be rewritten as follows

et (M, —dy) £ X. (3.8)

n

We conclude that every max—stable distribution is a limit distribution for
maxima of iid rvs. Moreover, max—stable distributions are the only limit
laws for normalised maxima.
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Theorem 3.2.2 (Limit property of max—stable laws)
The class of maz—stable distributions coincides with the class of all possible
(non—degenerate) limit laws for (properly normalised) mazima of iid rvs.

Proof. It remains to prove that the limit distribution of affinely transformed
maxima is max—stable. Assume that for appropriate norming constants,

lim F"(c,z+d,)=H(z), z€R,

n—oo

for some non—degenerate df H. We anticipate here (and indeed state precisely
in Theorem 3.2.3) that the possible limit dfs H are continuous functions on
the whole of R.

Then for every k € N
k
: nk _ : n _ k
nlgréo F" (cpx +dy) = (nlgrolo F" (chx + dn)) =H"(x), z=€R.

Furthermore,

lim F™ (copx +dnp) = H(z), =z €R.

n—oo
By the convergence to types theorem (Theorem A1.5) there exist constants
¢k > 0 and di, € R such that

Cnk ~

dpi, — d

lim — =7¢, and lim n:Jk,
n—oo  Cp n—o0o Cn,
and for iid rvs Y7,...,Y, with df H,
maX(H,...,Yk)éEkY1+£ivk. O

The following result is the basis of classical extreme value theory.

Theorem 3.2.3 (Fisher-Tippett theorem, limit laws for maxima)
Let (X,) be a sequence of iid rvs. If there exist norming constants ¢, > 0,
d, € R and some non—degenerate df H such that

(M, —d,) S H, (3.9)
then H belongs to the type of one of the following three dfs:
3 0, <0
Fréchet: S,(xr) = a> 0.
exp{—z~%}, >0
—(—2)® <0
Weibull:  wox) = 4 PRS0 o
1, x>0

Gumbel: Alz) = exp{—-e*}, zeR.
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Figure 3.2.4 Densities of the standard extreme value distributions. We chose
a =1 for the Fréchet and the Weibull distribution.

Sketch of the proof. Though a full proof is rather technical, we would like
to show how the three limit—types appear; the main ingredient is again the
convergence to types theorem, Theorem A1.5. Indeed, (3.9) implies that for
allt >0,

Flnl (c[nt]x + d[nt]) — H(x) , x€R,

where [-] denotes the integer part. However,
FI') (e + dy) = (F" (cpr + dn)™/™ — H(2),

so that by Theorem A1.5 there exist functions y(t) > 0, §(¢) € R satisfying

d, — ds,
lim —% =), lim =1 —5@4), t>0,
n—oo C[nt] n—oo C[nt]
and
H'(z) = H(y(t)r +6(t)) . (3.10)
It is not difficult to deduce from (3.10) that for s,¢ > 0
V(st) =v(s)y(t), 6(st) =~(t)d(s) +0(t). (3.11)

The solution of the functional equations (3.10) and (3.11) leads to the three
types A, &, ¥,. Details of the proof are for instance to be found in Resnick
[530], Proposition 0.3. O
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Remarks. 2) The limit law in (3.9) is unique only up to affine transforma-
tions. If the limit appears as H(cz + d), i.e.
lim P (c;' (M, —d,) <) =H(cx+d),

n—oo

then H(z) is also a limit under a simple change of norming constants:

lim P (5;1 (Mn - Jn) < x) = H(x)
n— oo

with &, = ¢,/c and d,, = d,, — dc,/c. The convergence to types theorem
shows precisely how affine transformations, weak convergence and types are
related.

3) In Tables 1.2.5 and 1.2.6 we defined a Weibull df for ¢,a > 0. For ¢ =1 it
is given by
Fo(z)=1—¢"", >0,

which is the df of a positive rv. The Weibull distribution ¥,, as a limit
distribution for maxima, is concentrated on (—o0,0):

Uy(x)=1—-F,(—x), x<0.

In the context of extreme value theory we follow the convention and refer to
¥, as the Weibull distribution. We hope to avoid any confusion by a clear
distinction between the two distributions whose extremal behaviour is com-
pletely different. Example 3.3.20 and Proposition 3.3.25 below show that F,
belongs to the maximum domain of attraction of the Gumbel distribution A.

4) The proof of Theorem 3.2.3 uses similar techniques as the proof of The-
orems 2.2.2 and 2.2.3. Indeed, in the case S, = X1 +--- + X,, we use the
characteristic function ¢g, (t) = (¢x (t))™, whereas for partial maxima we di-
rectly work with the df Fy;, (z) = (Fx(x))™. So not suprisingly do we obtain
functions like exp {—c|t|*} as possible limit chfs in the partial sum case,
whereas such functions appear as limits for the dfs of normalised maxima.

5) Though, for modelling purposes, the types of A, &, and ¥, are very differ-
ent, from a mathematical point of view they are closely linked. Indeed, one
immediately verifies the following properties. Suppose X > 0, then

X hasdf ¢, <= InX%hasdfA <= —Xlhasdf?,.

These relationships will appear again and again in various disguises through-
out the book. O
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Figure 3.2.5 FEvolution of the mazima M, of standard ezponential (top) and
Cauchy (bottom) samples. A sample path of (My) has a jump whenever X, > Mp_1
(we say that M, is a record). The graph seems to suggest that there occur more
records for the exponential than for the Cauchy rvs. However, the distribution of
the number of record times s approximately the same in both cases; see Theo-
rem 5.4.7. The qualitative differences in the two graphs are due to a few large
qumps for Cauchy distributed variables. Compared with those the smaller jumps are
so tiny that they “disappear” from the computer graph; notice the difference between
the vertical scales.

Definition 3.2.6 (Extreme value distribution and extremal rv)

The dfs @o, Yo and A as presented in Theorem 3.2.3 are called standard ex-
treme value distributions, the corresponding rvs standard extremal rvs. Dfs of
the types of P, ¥, and A are extreme value distributions; the corresponding
rvs extremal rvs. |

By Theorem 3.2.2, the extreme value distributions are precisely the max—
stable distributions. Hence if X is an extremal rv it satisfies (3.8). In partic-
ular, the three cases in Theorem 3.2.3 correspond to

Il

Fréchet: M, =nl/* X

Il

Weibull: M, =n Yo X

Gumbel: M, < X +1Inn.
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Example 3.2.7 (Maxima of exponential rvs)
See also Figures 3.2.5 and 3.2.9. Let (X;) be a sequence of iid standard
exponential rvs. Then

P(M,-Inn<z) = (P(X<z+Ilnn))"
= (1- nt e_z)n
— exp{—-e*} = A), z€eR.
For comparison recall that for iid Gumbel rvs X;,
P(M, —1lnn <z)=A(z), zeR. O

Example 3.2.8 (Maxima of Cauchy rvs)
See also Figures 3.2.5 and 3.2.10. Let (X;) be a sequence of iid standard
Cauchy rvs. The standard Cauchy distribution is absolutely continuous with
density

flx)= (7 (1 +x2))_1 , z€R.

By I'Hospital’s rule we obtain

) F(r) L fle) w2 B
e e R M ey Rl

giving F(x) ~ (mz)~!. This implies

(<) - (- ()
= (1_n1_x+0(1)>n
— exp{—x_l} = &(z), x>0. O

Notes and Comments

Theorem 3.2.3 marked the beginning of extreme value theory as one of the
central topics in probability theory and statistics. The limit laws for maxima
were derived by Fisher and Tippett [240]. A first rigorous proof is due to
Gnedenko [266]. De Haan [292] subsequently applied regular variation as an
analytical tool. His work has been of great importance for the development
of modern extreme value theory. Weissman [636] provided a simpler version
of de Haan’s proof, variations of which are now given in most textbooks on
extreme value theory.
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Figure 3.2.9 The df P(M, —Inn < z) for n ud standard ezponential rvs and the
Gumbel df (top). In the bottom figure the relative error (P(My,—Inn > z)/A(x))—1
of this approrimation is illustrated.
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Figure 8.2.10 The df P(nn ‘M, < ) of n iid standard Cauchy rvs

and the Fréchet df &1 (top). In the bottom figure the relative error
(P(nn~'M, > x)/®1(x)) — 1 of this approzimation is illustrated.
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3.3 Maximum Domains of Attraction and Norming
Constants

In the preceding section we identified the extreme value distributions as the
limit laws for normalised maxima of iid rvs; see Theorem 3.2.3. This section
is devoted to the question:

Given an extreme value distribution H, what conditions on the df F imply
that the normalised mazima M, converge weakly to H?

Closely related to this question is the following:
How may we choose the norming constants ¢, > 0 and d,, € R such that

ot (M, —dy) S H? (3.12)

n

Can it happen that different norming constants imply convergence to
different limit laws?

The last question can be answered immediately: the convergence to types
theorem (Theorem A1.5) ensures that the limit law is uniquely determined
up to affine transformations.

Before we answer the other questions recall from Section 2.2 how we
proceeded with the sums S,, = X; + -+ - + X, of iid rvs: we collected all those
dfs F' in a common class for which the normalised sums S,, had the same
stable limit distribution. Such a class is then called a domain of attraction
(Definition 2.2.7). For maxima we proceed analogously.

Definition 3.3.1 (Maximum domain of attraction)

We say that the rv X (the df F of X, the distribution of X ) belongs to the
maximum domain of attraction of the extreme value distribution H if there
exist constants ¢, > 0, d,, € R such that (3.12) holds. We write X € MDA (H)
(F € MDA(H)). O

Remark. Notice that the extreme value dfs are continuous on R, hence

e, (M, —dy) L His equivalent to

n

lim P(M, <cpx+d,) = lim F"(c,x+d,) =H(z), x€R. O

n—oco n—roo
The following result is an immediate consequence of Proposition 3.1.1 and
will be used throughout the following sections.

Proposition 3.3.2 (Characterisation of MDA (H))
The df F belongs to the mazimum domain of attraction of the extreme value
distribution H with norming constants ¢, > 0, d,, € R if and only if

lim nF(c,v+d,) =—-InH(z), z€R.
n—oo

When H(x) = 0 the limit is interpreted as co. O
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For every standard extreme value distribution we characterise its maximum
domain of attraction. Using the concept of regular variation this is not too
difficult for the Fréchet distribution @, and the Weibull distribution ¥, ; see
Sections 3.3.1 and 3.3.2. Recall that a distribution tail F is regularly varying
with index —a for some a > 0, we write F' € R_,, if

F(xt
lim 2@ e 45,
T—00 IF(I)

The definition of regularly varying functions and those of their properties
most important for our purposes can be found in Appendix A3.1. The inter-
ested reader may consult the monograph by Bingham, Goldie and Teugels [72]
for an encyclopaedic treatment of regular variation. The maximum domain of
attraction of the Gumbel distribution A is not so easily characterised; it con-
sists of dfs whose right tail decreases to zero faster than any power function.
This will be made precise in Section 3.3.3. If F" has a density, simple sufficient
conditions for F to be in the maximum domain of attraction of some extreme
value distribution are due to von Mises. We present them below for practical
(and historical) reasons.

The following concept defines an equivalence relation on the set of all dfs.

Definition 3.3.3 (Tail-equivalence)
Two dfs F and G are called tail-equivalent if they have the same right end-
point, i.e. if tp = xg, and

lim F(r)/G(z) =c

zte g

for some constant 0 < ¢ < oco. O

We show that every maximum domain of attraction is closed with respect to
tail-equivalence, i.e. for tail-equivalent F' and G, F' € MDA(H) if and only
if G € MDA(H). Moreover, for any two tail-equivalent distributions one can
take the same norming constants. This will prove to be of great help for
calculating norming constants which, in general, can become a rather tedious
procedure.

Theorem 3.2.2 identifies the max—stable distributions as limit laws for
affinely transformed maxima of iid rvs. The corresponding Theorem 2.2.2
for sums identifies the stable distributions as limit laws for centred and nor-
malised sums. Sums are centred by their medians or by truncated means;
see Proposition 2.2.14. The sample maximum M, is the empirical version
of the (1 — n~!)—quantile of the underlying df F. Therefore the latter is an
appropriate centring constant. Quantiles correspond to the “inverse” of a df,
which is not always well-defined (dfs are not necessarily strictly increasing).
In the following definition we fix upon a left—continuous version.
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Definition 3.3.4 (Generalised inverse of a monotone function)
Suppose h is a non—decreasing function on R. The generalised inverse of h is
defined as

K (t) = inf{z € R: h(z) > t}.

(We use the convention that the infimum of an empty set is 00.) O

Definition 3.3.5 (Quantile function)
The generalised inverse of the df F

Fe@)=inf{z eR: F(z) >t}, 0<t<1,

is called the quantile function of the df F. The quantity x; = F* (t) defines
the t—quantile of F. O

We have summarised some properties of generalised inverse functions in Ap-
pendix A1.6.

Figure 3.3.6 An “interesting” df F', its quantile function F*~ (left) and the cor-
responding function F< (1 —z~Y) (right).

3.3.1 The Maximum Domain of Attraction of the Fréchet
Distribution &,(x) = exp {—m_o‘}

In this section we characterise the maximum domain of attraction of &, for
a > 0. By Taylor expansion,
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1—&,(z) :1—exp{—x_o‘} ~x7Y, x— 00,
hence the tail of @, decreases like a power law. We ask:

How far away can we move from a power tail
and still remain in MDA(®,) ?

We show that the maximum domain of attraction of &, consists of dfs F
whose right tail is regularly varying with index —a. For F' € MDA(®,,) the
constants d, can be chosen as 0 (centring is not necessary) and the ¢, by
means of the quantile function, more precisely by

cn=F"(1-n"") = inf{zeR:F(z)>1-n""}

inf {z € R: (1/F) (z) > n} (3.13)
= (1/F)" ().

Theorem 3.3.7 (Maximum domain of attraction of @)
The df F belongs to the mazimum domain of attraction of ., a > 0, if and
only if F(x) = x=*L(x) for some slowly varying function L.
If F € MDA(®,,), then
M, S b, (3.14)

where the norming constants ¢, can be chosen according to (3.13).

Notice that this result implies in particular that every F € MDA(®,,) has an
infinite right endpoint £y = co. Furthermore, the norming constants ¢,, form
a regularly varying sequence, more precisely, ¢, = n'/“L; (n) for some slowly
varying function Lj.

Proof. Let F € R_, for a > 0. By the choice of ¢, and regular variation,
F(cn) ~n~t, n— 0o, (3.15)
and hence F(c,) — 0 giving ¢, — oc. For 2 > 0,

_ F(c,
nF (cpx) ~ _(c ?) —x7%, n—oo.

F (cn)

For z <0, immediately F™(c,x) < F™(0) — 0, since regular variation re-
quires F'(0) < 1. By Proposition 3.3.2, F € MDA(®,,).

Conversely, assume that lim, ., F™(chz + d,) = () for all z >0 and
appropriate ¢, > 0, d,, € R. This leads to

Hm F™(ciq@ + djng) = 0L/ °(2) = o (s'/°2), s>0,2>0.

n—oo
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By the convergence to types theorem (Theorem A1.5)
Clns)/Cn — st/ and (d[ns] — dn) Jcn — 0.

Hence (c,) is a regularly varying sequence in the sense of Definition A3.13, in
particular ¢, — co. Assume first that d,, = 0, then nf(cnx) — £~ % so that
F € R_,, because of Proposition A3.8(a). The case d,, # 0 is more involved,
indeed one has to show that d,/c, — 0. If the latter holds one can repeat
the above argument by replacing d,, by 0. For details on this, see Bingham
et al. [72], Theorem 8.13.2, or de Haan [292], Theorem 2.3.1. Resnick [530],
Proposition 1.11 contains an alternative argument. (|

We have found the answer to the above question:

FeMDA(®,) < FeR_,

Thus we have a simple characterisation of MDA (®,,). Notice that this class of
dfs contains “very heavy-tailed distributions” in the sense that E(X+)? = oo
for 6 > a. Thus they may be appropriate distributions for modelling large
insurance claims and large fluctuations of prices, log—returns etc.

Von Mises found some easily verifiable conditions on the density of a
distribution for it to belong to some maximum domain of attraction. The
following is a consequence of Proposition A3.8(b).

Corollary 3.3.8 (Von Mises condition)
Let F be an absolutely continuous df with density f satisfying

Jim a%f(;cc)) =a>0, (3.16)

then F € MDA(®,,). O

The class of dfs F with regularly varying tail F is obviously closed with
respect to tail-equivalence (Definition 3.3.3). The following result gives us
some insight into the structure of MDA(®,,). Besides this theoretical aspect,
it will turn out to be a useful tool for calculating norming constants.

Proposition 3.3.9 (Closure property of MDA(®,,))
Let F' and G be dfs and assume that F' € MDA(®,,) with norming constants
cn >0, i.e.

lim F"(cpz) = Po(x), >0. (3.17)

n—oo

Then
lim G" (cpz) = Po(cx), x>0,

n—roo

for some ¢ > 0 if and only if F and G are tail-equivalent with
zll)rgo F(z)/G(z) = c*.
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Proof of the sufficiency. For the necessity part see Resnick [530], Proposi-
tion 1.19. Suppose that F(x) ~ ¢G(x) as x — oo for some ¢ > 0. By Propo-
sition 3.3.2 the limit relation (3.17) is equivalent to

lim nF (c,x) =2~

n— oo
for all > 0. For such z, ¢, — 00 as n — oo and hence, by tail-equivalence,

1, —«

nG (coz) ~ng ' F (cpz) = ¢ o™,

i.e. again by Proposition 3.3.2,

nh_}rr;o G" (chx) = exp {— (ql/"x) a} =, (ql/"x) .
Now set ¢ = ¢/. O

By Theorem 3.3.7, F € MDA(®,,) if and only if F' € R_,,. The representation
theorem for regularly varying functions (Theorem A3.3) implies that every
F € MDA(®,) is tail-equivalent to an absolutely continuous df satisfying
(3.16). We can summarize this as follows:

MDA (&,) consists of dfs satisfying the von Mises
condition (3.16) and their tail-equivalent dfs.

We conclude this section with some examples.

Example 3.3.10 (Pareto-like distributions)
— Pareto
— Cauchy
— Burr
— Stable with exponent o < 2.

The respective densities or dfs are given in Table 1.2.6; for stable distributions
see Definition 2.2.1. All these distributions are Pareto—like in the sense that
their right tails are of the form

F(r) ~Kz™, x— o0,

for some K, a > 0. Obviously F € R_,, which implies that F' € MDA(&,)
and as norming constants we can choose ¢, = (Kn)'/®; see Theorem 3.3.7.
Then

(Kn)"Y/*M, % &, .

The Cauchy distribution was treated in detail in Example 3.2.8. O
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Example 3.3.11 (Loggamma distribution)
The loggamma distribution has tail
af—1

')

Hence F € R_, which is equivalent to ' € MDA(®,,). According to Propo-
sition 3.3.9 we choose ¢,, by means of the tail-equivalent right—hand side of
(3.18). On applying (3.13) and taking logarithms we find we have to solve

F(z) ~

(Inz)’~'z=> = =00, a,f>0. (3.18)

alne, — (B —1)Inlnc, —In(a”~1/T(B)) =Inn. (3.19)
The solution satisfies
Inc, =a ! (Inn+Inr,),

where Inr, = o(lnn) as n — co. We substitute this into equation (3.19) and
obtain

Inr, = (8- 1)In(e 'Inn(l+0(1))) +1n (e’ /T (3)) .

This gives the norming constants

1/a

Cp ~ ((1"(6))*1 (In n)ﬂfln)

Hence
e, 4 0

((F(B))*l(lnn)’ﬁ*ln)
3.3.2 The Maximum Domain of Attraction of the Weibull
Distribution ¥, (z) = exp {—(—x)*}

In this section we characterise the maximum domain of attraction of ¥, for
a > 0. An important, though not at all obvious fact is that all dfs F' in
MDA(¥,) have finite right endpoint zr. As was already indicated in Re-
mark 5 of Section 3.2, ¥, and &, are closely related, indeed

P, (—27) =Pu(z), x>0.

Therefore we may expect that also MDA (?%,) and MDA(®,,) will be closely
related. The following theorem confirms this.
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Theorem 3.3.12 (Maximum domain of attraction of ¥, )

The df F belongs to the mazimum domain of attraction of ¥, a >0, if
and only if xp < 0o and F(xp —a~ ') = 27*L(x) for some slowly varying
function L.

If F € MDA(¥,), then

(M, —ap) S0, (3.20)

n

where the norming constants ¢, can be chosen as ¢, =xp — F (1 — nil)
and d,, = xF.

Sketch of the proof. The necessity part is difficult; see Resnick [530],
Proposition 1.13. Sufficiency can be shown easily by exploiting the link be-
tween @, and ¥,; see Remark 5 in Section 3.2. So suppose xp < oo and
F(rp —27 ') =27 “L(x) and define

F(z)=F(zp—2'), >0, (3.21)

then F, € R_, so that by Theorem 3.3.7, F, € MDA(®,,) with norming con-
stants ¢t = F7(1 —n~!) and d’ = 0. The remaining part of the proof of
sufficiency is now straightforward. Indeed, F, € MDA(®,) implies that for
x>0,

FI' (cpx) = Pa(x),

- F" (zp — (c} )™ —exp{—z7"}.

Substitute # = —y !, then
F" (zp +y/c,) = exp{—(-y)*}, y<0. (3:22)
Finally,

¢, = FF(1-n7")

inf{z e R: Flap —2z7")>1-n""}

inf{(xp —u) ' Fu)>1 —nil}

(zp —inf {u: F(u) > 1—n_1})71
= (zp—F*(1-n"")"",

completing the proof because of (3.22). O
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Consequently,

FeMDA (¥, <= zp<oo, F(zp—z')eR ,.

Thus MDA (?,,) consists of dfs F' with support bounded to the right. They
may not be the best choice for modelling extremal events in insurance and
finance, precisely because xr < 0o. Though clearly in all circumstances in
practice there is a (perhaps ridiculously high) upper limit, we may not want
to incorporate this extra parameter z in our model. Often distributions with
xp = oo should be preferred since they allow for arbitrarily large values in
a sample. Such distributions typically belong to MDA (®,) or MDA(A). In
Chapter 6 we shall discuss various such examples.

In the previous section we found it convenient to characterise membership
in MDA(®,,) via the density of a df; see Corollary 3.3.8. Having in mind the
transformation (3.21), Corollary 3.3.8 can be translated for F' € MDA (%,).

Corollary 3.3.13 (Von Mises condition)
Let F be an absolutely continuous df with density f which is positive on some
finite interval (z,zp). If

(zp — ) f(2)

lim _7:a>07 3.23
ztzp f?($) ( )

then F € MDA(%,). O

Applying the transformation (3.21), Proposition 3.3.9 can be reformulated as
follows.

Proposition 3.3.14 (Closure property of MDA (¥,,))
Let F' and G be dfs with right endpoints xp = x¢ < 0o and assume that F' €
MDA (¥,,) with norming constants ¢, > 0; i.e.

lim F" (chx+axp) =P, (z), x<0.

n—r 00

Then
lim G" (chz+xp) =¥u(cx), <0,

n—oo
for some ¢ > 0 if and only if F and G are tail-equivalent with
lim F(r)/G(z) =c“. O

ztep

Notice that the representation theorem for regularly varying functions (Theo-
rem A3.3) implies that every F' € MDA (¥,,) is tail-equivalent to an absolutely
continuous df satisfying (3.23). We summarize this as follows:
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MDA(¥,,) consists of dfs satisfying the von Mises
condition (3.23) and their tail-equivalent dfs.

We conclude this section with some examples of prominent MDA(¥%,)—
members.

Example 3.3.15 (Uniform distribution on (0, 1))
Obviously, zr =1 and F(1 —2~') =2~' € R_;. Then by Theorem 3.3.12
we obtain F' € MDA (%;). Since F(1 —n~1) =n~!, we choose c,, = n~!. This
implies in particular

n(M, —1) 5w . O

Example 3.3.16 (Power law behaviour at the finite right endpoint)
Let F be a df with finite right endpoint xr and distribution tail

F(z) = K (zp — )", zp—K'/*<z<zp, K,a>0.

By Theorem 3.3.12 this ensures that F' € MDA(%, ). The norming constants
¢, can be chosen such that F(xp —c,) =n""', ie. ¢, = (nK)_l/" and, in
particular,

(K™ (M, — 2p) S @, . 0

Example 3.3.17 (Beta distribution)
The beta distribution is absolutely continuous with density

I'(a+10)

L el —2)bt 0 1 b>0.
F(a)F(b)x ( x) , <zx<l, a,b>

flx) =
Notice that f(1 —z~1) is regularly varying with index —(b— 1) and hence,
by Karamata’s theorem (Theorem A3.6),

F(1—x*1):/1 1f(y)dy:/Oof(l—zfl)zfr"dyﬂvﬂflf(l—ffl)-

-
Hence F(1 —x™') is regularly varying with index —b and

I'(a+b)

F(a) ~ Ta)I(b+1)

(1—-2), x11.

Thus the beta df is tail-equivalent to a df with power law behaviour at
xr = 1. By Proposition 3.3.14 the norming constants can be determined by
this power law tail which fits into the framework of Example 3.3.16 above. O
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3.3.3 The Maximum Domain of Attraction of the Gumbel
Distribution A(x) = exp {— exp{—=}}

Von Mises Functions

The maximum domain of attraction of the Gumbel distribution A covers
a wide range of dfs F'. Although there is no direct link with regular variation
as in the maximum domains of attraction of the Fréchet and Weibull distrib-
ution, we will find extensions of regular variation which allow for a complete
characterisation of MDA (A).

A Taylor expansion argument yields

1—Alx)~e ™, x— o0,

hence A(z) decreases to zero at an exponential rate. Again the following
question naturally arises:

How far away can we move from an exponential tail
and still remain in MDA(A)?

We will see in the present and the next section that MDA (A) contains dfs with
very different tails, ranging from moderately heavy (such as the lognormal dis-
tribution) to light (such as the normal distribution). Also both cases zp < 00
and xp = oo are possible. Before we give a general answer to the above ques-
tion, we restrict ourselves to some absolutely continuous F' € MDA (A) which
have a simple representation, proposed by von Mises. These distributions
provide an important building block of this maximum domain of attraction,
and therefore we study them in detail. We will see later (Theorem 3.3.26 and
Remark 4) that one only has to consider a slight modification of the von
Mises functions in order to characterise MDA (A) completely.

Definition 3.3.18 (Von Mises function)
Let F be a df with right endpoint xp < 0o. Suppose there exists some z < Tf
such that F has representation

_ z 9
F(x):cexp{—/ —dt} , z<zr<zR, (3.24)
- alt)

where ¢ is some positive constant, a(-) is a positive and absolutely con-
tinuous function (with respect to Lebesgue measure) with density a' and
limgt,, a'(z) = 0.

Then F is called a von Mises function, the function a(-) the auxiliary function
of F. O
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Remark. 1) Relation (3.24) should be compared with the Karamata rep-
resentation of a regularly varying function; see Theorem A3.3. Substituting
into (3.24) the function a(x) = x/§(x) such that 6(z) — « € [0, 0) as z — o0,
(3.24) becomes a regularly varying tail with index —a. We will see later (see
Remark 2 below) that the auxiliary function of a von Mises function with
rp = oo satisfies a(z)/r — 0. It immediately follows that F(z) decreases to
zero much faster than any power law z~<. O

We give some examples of von Mises functions.

Example 3.3.19 (Exponential distribution)

Fx)y=e, 2>0, A>0.
F is a von Mises function with auxiliary function a(z) = A1, O
Example 3.3.20 (Weibull distribution)

F(r) =exp{—c2™}, >0, c,7>0.

F is a von Mises function with auxiliary function

1_—-1,.1-7

alz)=c 't 'z, x>0. O

Example 3.3.21 (Erlang distribution)
n—1
— PV AL
F(x):efmz(x) >0, A>0,neN.

k!
k=0

F' is a von Mises function with auxiliary function

- (n—1)! —(k+1) .~k
k=0
Notice that F is the I'(n, \) df. O

Example 3.3.22 (Exponential behaviour at the finite right endpoint)
Let F' be a df with finite right endpoint zr and distribution tail

«Q

F(CD):KGXP{— }7 r<zp, a,K>0.

Tp — 2
F' is a von Mises function with auxiliary function

(xp —2)°
a(aj)zi7 T <TF.
«

For zr =1, a =1 and K = e we obtain for example

F(z) = exp{—l z

— T

}, 0<z<l. O
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Example 3.3.23 (Differentiability at the right endpoint)
Let F be a df with right endpoint xr < co and assume there exists some
z < xp such that F is twice differentiable on (z,2r) with positive density
f=F"and F'"(z) <0 for z <z < zp. Then it is not difficult to see that F
is a von Mises function with auxiliary function a = F/f if and only if
I%m F(x)F"(2)/f*(z) = —1. (3.25)
zlzp
Indeed, let z < < zp and set Q(z) = —InF(z) and a(z) = 1/Q'(z) =
F(x)/f(z) > 0. Hence F has representation (3.24). Furthermore,

F(x) F"(2)
f*(x)

and (3.25) is equivalent to a'(x) - 0 as = T zp.

a'(z) = — -1

Condition (3.25) applies to many distributions of interest, including the nor-
mal distribution; see Example 3.3.29. a

In Remark 1 above we gained some indication that regular variation does not
seem to be the right tool for describing von Mises functions. Recall the notion
of rapidly varying function from Definition A3.11. In particular, F € R_
means that

F(at) {0 if t>1,

lim — =
z—oo F(x) o if 0<t<1.

It is mentioned in Appendix A3 that some of the important results for regu-
larly varying functions can be extended to R_, in a natural way; see Theo-
rem A3.12.

Proposition 3.3.24 (Properties of von Mises functions)

Every von Mises function F is absolutely continuous on (z,xr) with posi-
tive densitiy f. The auziliary function can be chosen as a(zx) = F(x)/f(x).
Moreover, the following properties hold.

(a) If vy = 00, then F € R_o and

11m 1._][(:[;)

- . (3.26)

(b) If xp < 00, then F(zp —27') € R_o and

lim EFZ D@ _ (3.27)
zteF F(x)
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Remarks. 2) It follows from (3.26) that lim,_ ., * la(z) = 0, and from
(3.27) that a(x) = o(xr —x) = 0(1) as x T xp.
3) Note that a='(x) = f(x)/F(z) is the hazard rate of F. O

Proof. From representation (3.24) we obtain

= —— z<r<TF.

ar O = Fe) = A

(a) Since a’'(z) — 0 as * — oo the Cesaro mean of a' also converges:

1 xT

lim a(z) = lim —/ a'(t)ydt =0. (3.28)

r—oo I Tr—o0 I 2
This implies (3.26). F € R_, follows from an application of Theorem
A3.12(b).
(b) We have

TR !
lim a() = lim —/ @(t) dt

1 s
= lim —/a'(xp—t)dt
0

s]0 S

by change of variables. Since a/(zp — t) — 0 as t | 0, the last limit tends to 0.
This implies (3.27). F(zr —27!) € R_ follows as above. O

Now we can show that von Mises functions belong to the maximum domain
of attraction of the Gumbel distribution. Moreover, the specific form of F
allows to calculate the norming constants ¢, from the auxiliary function.

Proposition 3.3.25 (Von Mises functions and MDA(A))
Suppose the df F is a von Mises function. Then F € MDA(A). A possible
choice of norming constants is

dy =F“(1—=n"") and ¢, =ald,), (3.29)
where a is the auziliary function of F.

Proof. Representation (3.24) implies for ¢ € R and « sufficiently close to xp
that

F(r+ta(x)) etta®)
T—exp{—/z —du}.

We set v = (u — x)/a(z) and obtain

w:exp{_f%@}. (3:30)
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We show that the integrand converges locally uniformly to 1. For given ¢ > 0
and x > xo(e),

la(x + va(x)) — a(x)| = < glvla(z) < elt]a(z),

z—i—ua(z)
/ a'(s) ds

where we used a'(z) — 0 as x T xp. This implies for x > () that

a(x 4+ va(x))
a(x)

The right-hand side can be made arbitrarily small, hence

—1‘ < elt].

: alr)  _
xl%rxr; a(r +va(z)) 1 (3:31)

uniformly on bounded v-intervals. This together with (3.30) yields

i Pt ta@) _

eter  F(2) (3-32)

uniformly on bounded ¢—intervals. Now choose the norming constants d,, =
(1/F)*(n) and ¢, = a(d,,). Then (3.32) implies

lim nF(d,+tc,) =e '=—InA(t), teR.

n—oo
An application of Proposition 3.3.2 shows that ' € MDA(A). O

This result finishes our study of von Mises functions.

Characterisations of MDA (A)

Von Mises functions do not completely characterise the maximum domain of
attraction of A. However, a slight modification of the defining relation (3.24)
of a von Mises function yields a complete characterisation of MDA(A).

For a proof of the following result we refer to Resnick [530], Corollary 1.7
and Proposition 1.9.

Theorem 3.3.26 (Characterisation I of MDA(A))

The df F with right endpoint xp < oo belongs to the mazimum domain of
attraction of A if and only if there exists some z < xp such that F has rep-
resentation

F(r) = c(z) exp{—/: % dt} , z<zx<zF, (3.33)

where ¢ and g are measurable functions satisfying c(x) — ¢ >0, g(x) — 1 as
x T xp, and a(x) is a positive, absolutely continuous function (with respect to
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Lebesgue measure) with density a'(x) having limgty, o' (z) = 0.

For F with representation (3.33) we can choose
dp=F~(1=n"") and c,=a(d,)

as norming constants.

A possible choice for the function a is

dt, z<zp, (3.34)

O

Motivated by von Mises functions, we call the function @ in (3.33) an auziliary
function for F.

Remarks. 4) Representation (3.33) is not unique, there being some trade—off
possible between the functions ¢ and g. The following representation can be
employed alternatively; see Resnick [530], Proposition 1.4:

F(z) = cx) exp {_ / ﬁ dt} . z<w<ar, (3.35)

for functions ¢ and a with properties as in Theorem 3.3.26.

5) For a rv X the function a(x) as defined in (3.34) is nothing but the mean
excess function

az)=EX —-z|X >z), z<zp;

see also Section 3.4 for a discussion on the use of this function. In Chapter 6
the mean excess function will turn out to be an important tool for statistical
fitting of extremal event data. O

Another characterisation of MDA (A) was suggested in the proof of Proposi-
tion 3.3.25. There it was shown that every von Mises function satisfies (3.32),
i.e. there exists a positive function @ such that

F(z +ta
lim ZEXE@) e eg, (3.36)
ztep F(l‘)
Theorem 3.3.27 (Characterisation IT of MDA (A))
The df F belongs to the mazimum domain of attraction of A if and only if
there exists some positive function @ such that (3.36) holds. A possible choice

is @ = a as given in (3.34). O
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The proof of this result is for instance to be found in de Haan [292], Theo-
rem 2.5.1.

Now recall the notion of tail-equivalence (Definition 3.3.3). Similarly to
the maximum domains of attraction of the Weibull and Fréchet distribution,
tail-equivalence is an auxiliary tool to decide whether a particular distrib-
ution belongs to the maximum domain of attraction of A and to calculate
the norming constants. In MDA(A) it is even more important because of the
large variety of tails F.

Proposition 3.3.28 (Closure property of MDA (A) under tail-equivalence)
Let F and G be dfs with the same right endpoint xp = xg and assume that
F € MDA(A) with norming constants ¢,, > 0 and d,, € R; i.e.

lim F" (c,z+d,) = Alx), z€eR. (3.37)

n—roo

Then
lim G" (cphx+d,) =Alx+0b), zeR,

n—roo

if and only if F' and G are tail-equivalent with

lim F(z)/G(z) =e’.

ztep

Proof of the sufficiency. For a proof of the necessity see Resnick [530],
Proposition 1.19. Suppose that F(z) ~ c¢G(z) as = 1 2y for some ¢ > 0. By
Proposition 3.3.2 the limit relation (3.37) is equivalent to

lim nF(c,v+d,) =e ", x€R.

n—oo
For such z, c,x + d,, — xF and hence, by tail-equivalence,

nG (cpx +dy) ~nc 'F(cpz +dy) = c e, x€eR.

Therefore by Proposition 3.3.2,

lim G" (cpz +d,) = exp {—e_(z"'lnc)} =A(z+1nc), zeR.

n—oo
Now set Inc = b. O

The results of this section yield a further complete characterisation of
MDA (A).

MDA (A) consists of von Mises functions
and their tail-equivalent dfs.
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This statement and the examples discussed throughout this section show
that MDA(A) consists of a large variety of distributions whose tails can be
very different. Tails may range from moderately heavy (lognormal, heavy—
tailed Weibull) to very light (exponential, dfs with support bounded to the
right). Because of this, MDA(A) is perhaps the most interesting among all
maximum domains of attraction. As a natural consequence of the variety of
tails in MDA(A), the norming constants also vary considerably. Whereas in
MDA (®,) and MDA(¥,) the norming constants are calculated by straight-
forward application of regular variation theory, more advanced results are
needed for MDA(A). A complete theory has been developed by de Haan in-
volving certain subclasses of R_, and Rg; see de Haan [292] or Bingham
et al. [72], Chapter 3. Various examples below will illustrate the usefulness
of results like Proposition 3.3.28.

Example 3.3.29 (Normal distribution)

See also Figure 3.3.30. Denote by @ the df and by ¢ the density of the standard
normal distribution. We first show that @ is a von Mises function and check
condition (3.25). An application of 'Hospital’s rule to ®(x)/(z 1 ¢(x)) yields
Mill’s ratio, (x) ~ ¢(z)/x. Furthermore ¢'(z) = —zp(x) < 0 and

i 2@ @)
emoo ()

Thus ¢ € MDA(A) by Example 3.3.23 and Proposition 3.3.25. We now cal-
culate the norming constants. Use Mill’s ratio again:

= (70(1‘) 1 —z2/2
&(x) ~ —= = e , T — 00, 3.38
@)~ T8 = (3.39)
and interpret the right—hand side as the tail of some df G. Then by Proposi-
tion 3.3.28, ® and G have the same norming constants ¢, and d,. According
to (3.29), d, = G (1 —n~1). Hence look for a solution of —InG(d,) = Inn;
ie.

1 1
§di+lndn+§ln27r:1nn. (3.39)
Then a Taylor expansion in (3.39) yields

Inlnn + Indr

d, = (2lnp)t/2 - LT HAT
(2Inn) 2(21nn)1/?

+o ((lnn)*lﬂ)

as a possible choice for d,,. Since we can take a(zr) = ®(x)/¢(x) we have that
a(z) ~ 2z~ and therefore

cn =a(dy) ~ (2lnn)~/2,

As the ¢, are unique up to asymptotic equivalence, we choose
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-5 0] 5 10
Figure 3.3.30 Dfs of the normalised mazima of n standard normal rvs and the

Gumbel df (top). In the bottom figure the relative error of this approzimation for
the tail is illustrated. The rate of convergence appears to be very slow.



3.3 Maximum Domains of Attraction and Norming Constants 147

cn = (2lnn)~1/2,
We conclude that
Inl In4
Valan (M, —V2lnn 4+ —cintnin) 4 (3.40)
2(21lnn)t/2
Note that ¢, — 0, i.e. the distribution of M, becomes less spread around d,
as n increases. O

Similarly, it can be proved that the gamma distribution also belongs to
MDA (A). The norming constants are given in Table 3.4.4.

Another useful trick to calculate the norming constants is via monotone
transformations. If g is an increasing function and = g(z), then obviously

M,, = max ()?17...7)?n) =g(M,) .
If X € MDA(A) with
lim P (M, <c,x+d,) =A(x), z€R,

n—r 00

then .
lim P (Mn < gl(epz +dn)) =Az), zeR.

n—oo
In some cases, ¢ may be expanded in a Taylor series about d,, and just

linear terms suffice to give the limit law for ]Tim with changed constants
én = cng'(d,) and d,, = g(d,). We apply this method to the lognormal dis-
tribution.

Example 3.3.31 (Lognormal distribution)
Let X be a standard normal rv and g(x) = e**t7% € R, ¢ > 0. Then

X = g(X) = ettoX
defines a lognormal rv. Since X € MDA (A) we obtain
lim P (1\7” < eﬂ+0<6nw+dn>) = Ax), z€R,

n—roo

where ¢, d, are the norming constants of the standard normal distribution
as calculated in Example 3.3.29. This implies

lim P (e_“_"d" M, <1+ ocox+ o(cn)) = A(z), =z €R.

n— oo

Since ¢,, — 0 it follows that

—u—od
e H—00n — d
oc ( n_eu-i-frdn) 4,
n

so that X € MDA(A) with norming constants
Cp = ocpel Tl d, = ettodn

Explicit expressions for the norming constants of the lognormal distribution
can be found in Table 3.4.4. O
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Further Properties of Distributions in MDA (A)

In the remainder of this section we collect some further useful facts about
distributions in MDA (A).

Corollary 3.3.32 (Existence of moments)

Assume that the rv X has df F € MDA(A) with infinite right endpoint.
Then F € R_o. In particular, BE(X1)® < 0o for every a > 0, where Xt =
max (0, X).

Proof. Every F € MDA(A) is tail-equivalent to a von Mises function. If
xp = oo, the latter have rapidly varying tails; see Proposition 3.3.24(a),
which also implies the statement about the moments; see Theorem A3.12(a).

(|

In Section 3.3.2 we showed that the maximum domains of attraction of ¥,
and @, are linked in a natural way. Now we show that MDA(®,) can be
embedded in MDA (A).

Example 3.3.33 (Embedding MDA(®,,) in MDA(A))
Let X have df F € MDA(®,,) with norming constants ¢,. Define

X*=In(1VX)

with df F*. By Proposition 3.3.2 and Theorem 3.3.7, F' € MDA(9®,,) if and
only if .
_ F(c,
lim nF(c,z) = lim _(C 2) =z, x>0.
n—oo n—oo [ (Cn)

This implies that

T —1 al _1
i Lo letlne) o Fleexpia x}):e*“”, z €R.

n—oo W (ln Cn) n—oo F (Cn)

Hence F* € MDA(A) with norming constants ¢, = a™! and di, =Inc,. As
auxiliary function one can take

> F'(y)

— O
. Fr(x)

a*(x) =

Example 3.3.34 (Closure of MDA(A) under logarithmic transformations)

Let X have df F € MDA(A) with zp = 0o and norming constants c¢,, dy,
chosen according to Theorem 3.3.26. Define X* and F™* as above. We intend to
show that F* € MDA (A) with norming constants d}, = Ind,, and ¢ = ¢,,/d,,.
Since a'(z) — 0, (3.28) holds, and since d,, = F* (1 —n~!) = oo, it follows
that
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Moreover,

Fe(cx+d;) = F(exp{;—"x} dn>

(1 (2o 0(2)))

w4+ dn +0(cn))

Il
=l

F(c
Flepr+d,) ~ nlte™, n—oo.

~

where we applied the uniformity of weak convergence to a continuous limit.
The result follows from Proposition 3.3.2. O

Example 3.3.35 (Subexponential distributions and MDA (A))

Goldie and Resnick [276] characterise the dfs F' that are both subexponen-
tial (we write F' € S; see Definition 1.3.3) and in MDA(A). Starting from the
representation (3.33) for F' € MDA (A), they give necessary and sufficient con-
ditions for F' € S. In particular, lim, o, a(x) = oo is necessary but not suffi-
cient for F' € MDA (A)NS. A simple sufficient condition for F' € MDA(A) NS
is that a is eventually non-decreasing and that there exists some ¢ > 1 such

that
a(tx)

lim inf >1. (3.41)
T—>00 a,(x)

This condition is easily checked for the following distributions which are all
von Mises functions and hence in MDA (A):

— Benktander—type-I
F(r) = (1+2(8/a) Inz) exp{—(B(Inz)*+(a+1)Inz)}, =>1, «a,3>0.
Here one can choose

x

= >1.
a(2) a+28nz’ v

— Benktander—type—II

F(ar:):eo‘/ﬁcc“mexp{—%xﬁ}7 xr>1, a>0,0<p8<1,

with auxiliary function
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— Weibull

Flx)=e", >0, 0<7<1,¢>0,

with auxiliary function

— Lognormal
with auxiliary function

_ ®(o7 (Inz — p))ox o’z

ale) = o t(nz —p))  Inz—p

, T — 0.

The critical cases occur when F'is in the tail close to an exponential distrib-
ution. For example, let

F(z) ~exp{—z(lnz)*}, - co.

For o < 0 we have F' € MDA(A) NS in view of Theorem 2.7 in Goldie and
Resnick [276], whereas for a > 0, F' € MDA(A) but F' ¢ S; see Example 1.4.3.
O

Notes and Comments

There exist many results on the quality of convergence in extreme value limit
theory. Topics include the convergence of moments, local limit theory and the
convergence of densities, large deviations and uniform rates of convergence.
We refer to Chapter 2 of Resnick [530] for a collection of such results.

Statistical methods based on extreme value theory are discussed in detail
in Chapter 6. Various estimation methods will depend on an application of
the Fisher—Tippett theorem and related results. The quality of those approx-
imations will be crucial.

Figure 3.2.9 suggests a fast rate of convergence in the case of the exponen-
tial distribution: already for n = 5 the distribution of the normalised maxi-
mum is quite close to A, while for n = 50 they are almost indistinguishable.
Indeed, it has been shown by Hall and Wellner [313] that for F'(z) =1 —e™%,
x>0,

sup [P (M, —Inn <z) —exp{—e *}| <n ' (2+n7") 2.

z€R
In contrast to this rapid rate of convergence, the distribution of the nor-
malised maximum of a sample of normal rvs converges extremely slowly to
its limit distribution A; see Figure 3.3.30. This slow rate of convergence also
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depends on the particular choice of ¢,, and d,,. Hall [307] obtained an optimal
rate by choosing ¢, and d,, as solutions to

ncngo(c;l) =1 and d, = C;I ,

where ¢ denotes the standard normal density. Then there exist constants
0 < ¢ < C < 3 such that

C
£ Ssup|P(Mn Scnx+dn)—exp{—e’x}| <—, n>2.

nn = cep Inn’

Leadbetter, Lindgren and Rootzén [418] and Resnick [530] derive various
rates for F' € MDA(®,) and F' € MDA(A). They also give numerical values
for some explicit examples. See also Balkema and de Haan [38], Beirlant and
Willekens [58], de Haan and Resnick [301], Goldie and Smith [278], Smith
[587] and references therein.

In order to discuss the next point, we introduce a parametric family
(H¢)eep of dfs containing the standard extreme value distributions, namely

@1/5 if £>0,
He={ A if £=0,
W—1/5 if ¢£<0.

The df H¢ above is referred to as the generalised extreme value distribution
with parameter &; a detailed discussion is given in Section 3.4. The condition
F € MDA(H) then yields the so-called ultimate approzimation

F" (cpx + dp) ~ He ()

for appropriate norming constants ¢, > 0 and d,, € R. One method for
improving the rate of convergence in the latter limit relation was already
discussed in the classical Fisher—Tippett paper [240]. The basic idea is the
following: the parameter £ can be obtained as a limit. For instance in the
Gumbel case £ = 0, F has representation (3.33) with a’(x) = 0 as ¢ — 0.
The penultimate approzimation now consists of replacing £ by &, = d'(d,)
leading to the relation

F" (cpx +dp) ~ He, (7).

Typically &, # 0 so that in the Gumbel case, the penultimate approximation
is based on a suitable Weibull (&, < 0) or Fréchet (&, > 0) approximation.
The optimal rate of convergence O ((Inn)~") for maxima of iid normal rvs in
the ultimate approximation is improved to O ((Inn)~?) in the penultimate
case, as shown in Cohen [128]. In special cases, further improvements can
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be given. For instance, using expansions of the df of normal maxima, Cohen
[129] suggests

T 1 x?
" (L 4, —— ) mA@) (146" :
(bn+b bn> (x)( e 4lnn>
where b2 ~ Inn. Further information is to be found in Joe [357] and Reiss
[526].

3.4 The Generalised Extreme Value Distribution and
the Generalised Pareto Distribution

In Section 3.2 we have shown that the standard extreme value distributions,
together with their types, provide the only non-degenerate limit laws for
affinely transformed maxima of iid rvs. As already mentioned in the Notes
and Comments of the previous section, a one—parameter representation of
the three standard cases in one family of dfs will turn out to be useful. They
can be represented by introducing a parameter ¢ so that

E=a'>0 corresponds to the Fréchet distribution &, ,
E=0 corresponds to the Gumbel distribution A,
3

=—a~! <0 corresponds to the Weibull distribution ¥, .

The following choice is by now widely accepted as the standard representation.

Definition 3.4.1 (Jenkinson—-von Mises representation of the extreme value
distributions: the generalised extreme value distribution (GEV))

Define the df He by

ep{-(+en)™}if € # 0,

exp {—exp{-z}} if & =0,

He(z) =

where 1 +&x > 0.
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Hence the support of He corresponds to
x> for £€>0,
r< =&Y for £<0,
reR for £€=0.

H¢ is called o standard generalised extreme value distribution (GEV). One
can introduce the related location—scale family He,, ., by replacing the argu-
ment x above by (x — u) /¢ for p € R,y > 0. The support has to be adjusted
accordingly. We also refer to He,, . as GEV. O

We consider the df Hy as the limit of He for { — 0. With this interpretation
He () :exp{—(1+§x)‘1/5} L 1+€x>0,

serves as a representation for all £ € R. The densities of the standard GEV
for £ = —1,0,1 are shown in Figure 3.2.4.

The GEV provides a convenient unifying representation of the three ex-
treme value types Gumbel, Fréchet and Weibull. Its introduction is mainly
motivated by statistical applications; we refer to Chapter 6 where this will
become transparent. There GEV fitting will turn out to be one of the funda-
mental concepts.

The following theorem is one of the basic results in extreme value theory.
In a concise analytical way, it gives the essential information collected in the
previous section on maximum domains of attraction. Moreover, it constitutes
the basis for numerous statistical techniques to be discussed in Chapter 6.
First recall the notion of the quantile function F* of a df F and define

Ut)y=F~(1-t"", t>0.
Theorem 3.4.5 (Characterisation of MDA (H))

For & € R the following assertions are equivalent:
(a) F € MDA(H;).
(b) There exists a positive, measurable function a(-) such that for 1+&x > 0,

o Ftsa) [ Qe af a2 00
wter F(u) e~ ¢ of &€ = 0.
(¢) Forz,y>0,y#1,
¢ —1 )
lim M: ye -1 very (3.43)
s—oo Ulsy) — U(s) ln_l' if &€ = 0.



3.4 GEV and GPD 159

Sketch of the proof. Below we give only the main ideas in order to show
that the various conditions enter very naturally. Further details are to be
found in the literature, for instance in de Haan [293].

(a)&(b) For £ = 0 this is Theorem 3.3.27.

For £ > 0 we have H¢(z) = 4 (a™! (z + )) for a = 1/£. By Theorem 3.3.7,
(a) is then equivalent to F € R_,. By the representation theorem for regu-
larly varying functions (Theorem A3.3), for some z > 0,

F(x):c(x)eXp{_/jidt}, s<a<oo,

a(t)

where c(z) — ¢ > 0 and a(z)/z — o~ as * — oo locally uniformly. Hence

sy, oo oy

which is (3.42). If (b) holds, choose d,, = (1/F)*(n) = U(n), then

1/F (d,) ~n,
and with u = d, in (3.42),
z\=> - F(d,+za(dy)) —

whence by Proposition 3.3.2, F € MDA (Hg) for £ = a™'.
The case £ < 0 can be treated similarly.

(b)<(c) We restrict ourselves to the case £ # 0, the proof for £ = 0 being
analogous. For simplicity, we assume that F' is continuous and increasing on
(=00, zr). Set s = 1/F(u), then (3.42) translates into

A(x) = (sF(U(s) + 2a(U(s))) " = 1+ &)/, s 0.

Now for every s > 0, As(x) is decreasing and for s — oo converges to a con-
tinuous function. Then because of Proposition A1.7, also A{ (t) converges
pointwise to the inverse of the corresponding limit function, i.e.

i U(st)—U(s) t*—1
e a(U(s) €

(3.44)

Now (3.43) is obtained by using (3.44) for ¢t = x and ¢ = y and taking the
quotient. The proof of the converse can be given along the same lines. O

Remarks. 1) Condition (3.42) has an interesting probabilistic interpretation.
Indeed, let X be a rv with df F' € MDA(Hg), then (3.42) reformulates as
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(L+&x)™Ve if ¢ # o0,
X>u):{ (3.45)

lim P<u>x
a(u) e it ¢ = 0.

ultzp

Hence (3.45) gives a distributional approximation for the scaled excesses over
the (high) threshold u. The appropriate scaling factor is a(u). This inter-
pretation will turn out to be crucial in many applications; see for instance
Section 6.5.

2) In Section 6.4.4 we show how a reformulation of relation (3.43) immedi-
ately leads to an estimation procedure for quantiles outside the range of the
data. A special case of (3.43) is also used to motivate the Pickands estimator
of £; see Section 6.4.2.

3) In the proof of Theorem 3.4.5 there is implicitly given the result that
F € MDA(H;) for some { € R if and only if there exists some positive
function aq () such that

lim U(st)—U(s) t*—1

sveoan(s) €

, t>0. (3.46)

If £ =0, the rhs of (3.46) has to be interpreted as Int. Moreover, for £ > 0,
(3.46) is equivalent to

li =t5, t>0
TE oY

ie. U € R¢ and hence ai(s) ~ U(s), s — oo. For £ < 0, F has finite right
endpoint 2, hence U(o0) = 2p < oo, and (3.46) is equivalent to

U(OO)—UERg.

In this case, a1(s) ~ —=§(U(o0) — U(s)), s = 0o. The above formulations are
for instance to be found as Lemmas 2.1 and 2.2 in Dekkers and de Haan [174];
see de Haan [293] for proofs. The case £ = 0 in (3.46) gives rise to the so—
called class of IT-varying functions, a strict subclass of Ry. The recognition
of the importance of IT-variation for the description of MDA (Hp) was one of
the fundamental contributions to extreme value theory by de Haan [293]. O

In Remark 1 above we used the notion of excess. The following definition
makes this precise.

Definition 3.4.6 (Excess distribution function, mean excess function)
Let X be a rv with df F and right endpoint xr. For a fired u < T,

F,(zx)=P(X—u<z|X>u), x>0, (3.47)

is the excess df of the rv X (of the df F) over the threshold u. The function
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Pareto /e—i—u, a>1
a—1
u
Burr p— (1+0(1), ar>1
Loggamma v 1 (1+4+0(1), a>1
a’u
Lognormal (14 0(1))
Inu—p
Benktander—type-T -
enktander—type Y
ul=?
Benktander—type-II
o
ulf'r
Weibull 1 1
eibu - (1 +0(1))
Exponential ATt
Gamma B! 1+a_1+o(l)
Bu u
Truncated normal u™t (14 0(1))

Table 3.4.7 Mean excess functions for some standard distributions. The para-
metrisation is taken from Tables 1.2.5 and 1.2.6. The asymptotic relations are to
be understood for u — co.

e(u)=E(X —u|X >u)
18 called the mean excess function of X. O

Excesses over thresholds play a fundamental role in many fields. Different
names arise from specific applications. For instance, F, is known as the
excess—life or residual lifetime df in reliability theory and medical statistics.
In an insurance context, F, is usually referred to as the excess—of-loss df. For
a detailed discusssion of some basic properties and statistical applications of
the mean excess function and the excess df, we refer to Sections 6.2.2 and 6.5.

Example 3.4.8 (Calculation of the mean excess function)
Using the definition of e(u) and partial integration, the following formulae
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are easily checked. They are useful for calculating the mean excess function
in special cases. Suppose for ease of representation that X is a positive rv
with df F' and finite expectation; trivial changes allow for support (zg,o0)
for some g > 0. Then

e(w) = / @ — W dF (@) [F ()

= / F(r)dr, 0<u<azp. (3.48)

Whenever F' is continuous,

F(x) = %exp{—/jﬁdu}, x>0, (3.49)

It immediately follows from (3.49) that a continuous df is uniquely determined
by its mean excess function. If, as in many cases of practical interest, F €
R_, for some a > 1, then an immediate application of Karamata’s theorem
(Theorem A3.6) yields e(u) ~ u/(a—1) as u — oo. In Table 3.4.7 the mean
excess functions of some standard distributions are summarised. O

The appearance of the rhs limit in (3.45) motivates the following definition.
Definition 3.4.9 (The generalised Pareto distribution (GPD))
Define the df G¢ by
L-(1+&)™¢if 0,
Ge(z) = .
1—e " if £€=0,

(3.50)

where
z >0 if £€>0,

0<z< -1/ if £<O0.

Gy is called o standard generalised Pareto distribution (GPD). One can in-
troduce the related location—scale family Ge,, 5 by replacing the argument x
above by (x —v)/B3 forv € R, B > 0. The support has to be adjusted accord-
ingly. We also refer to Ge,, 3 as GPD. O

As in the case of Hy, G can also be interpreted as the limit of G¢ as £ — 0.
The df G¢,0,5 plays an important role in Section 6.5. To economise on nota-
tion, we will denote

—1/¢
Geple) =1 (1 +€%> . 2eD(EB), (3.51)

where
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Figure 3.4.10 Densities of the GPD for different parameters £ and 5 = 1.
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Figure 3.4.11 Densities of the GPD for £ < 0 and 3 = 1. Recall that they have
compact support [0, —1/¢&].
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[0, 00) if €20,

[0,-8/§ if £<0.
Whenever we say that X has a GPD with parameters ¢ and g, it is understood
that X has df G¢ 3.

Time to summarise:

The GEV
Hg, gE]R7

describes the limit distributions of normalised maxima.

The GPD
Gep, E€R, >0,

appears as the limit distribution of scaled excesses over
high thresholds.

GPD fitting is one of the most useful concepts in the statistics of extremal
events; see Section 6.5. Here we collect some basic probabilistic properties of
the GPD.

1.0

0.6

0.4

0.2

0.0

Figure 3.4.12 GPD for different parameters £ and = 1.
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Theorem 3.4.13 (Properties of GPD)

(a) Suppose X has a GPD with parameters £ and 3. Then EX < oo if and
only if £ < 1. In the latter case

€ —r
E<1+EX> 1+§7", 7’>—1/f,
5 k
E(ln(ugx» = ¢k, keN,
BX (Gep(X)) = & (r+1)/I€] > 0.

r+1-9(r+1)’
If ¢ < 1/r with r € N, then

Bt -n)

EX" = el F(l + 5,1)

(b) For every £ € R, F € MDA(H¢) if and only if

lim  sup |Fu(2) — Ge gy (@) =0 (3.52)

utzF O<e<zprp—u
for some positive function (.
(¢) Suppose x; € D(£,3),i=1,2, then
Gep(a1 + 2)
Gep(z1)

(d) Assume that N is Poi()), independent of the iid sequence (X,) with a
GPD with parameters & and 3. Write My = max(Xy,...,Xy). Then

= Ge,ptea (12). (3.53)

T

-1/
P(MNSGC)ZGXD{—/\ <1+§B) } = Hey (1),

where p = BETL(AE = 1) and o = BAE.
(e) Suppose X has GPD with parameters € < 1 and 3. Then for u < xp,
B+ &u
1-¢7
Proof. (a) and (c) follow by direct verification.

(b) In Theorem 3.4.5 (see Remark 1) we have already proved that F €
MDA (H) if and only if

e(u)=EB(X —u|X >u) = B+ué>0.

lim |F,(z) — G¢ gy (2)| =0

ute g
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where 3(u) = a(u). Because the GPD is continuous, the uniformity of the
convergence follows; see Appendix Al.1.

(d) One immediately obtains

o]

P(My <z) = Ze

n=0

= exp{-AGeps(2)}

-1/¢
= exp{—)\ <1+£%> }

_ 1800 — 1)\ V¢
_ eXp{—(l-l—fx fﬁi(? ”) } €40,

A’I’L
- n

The case £ = 0 reduces to
P(My <x) = exp {—e_(z_mnk)/’e} .

(e) This result immediately follows from the representation (3.48). O

Remarks. 4) Theorem 3.4.13 summarises various properties which are es-
sential for the special role of the GPD in the statistical analysis of extremes.
This will be made clear in Section 6.5.

5) The property (c) above is often reformulated as follows: the class of GPDs
is closed with respect to changes of the threshold. Indeed the lhs in (3.53) is
the conditional probability that, given our underlying rv exceeds 1, it also
exceeds the threshold x; + z5. The rhs states that this probability is again
of the generalised Pareto type. This closure property is important in reinsur-
ance, where the GPDs are basic when treating excess—of-loss contracts; see
for instance Conti [132]. In combination with property (d) it is also crucial for
stop—loss treaties. For a discussion on different types of reinsurance treaties,
see Section 8.7.

6) Property (b) above suggests a GPD as appropriate approximation of the
excess df F,, for large w. This result goes back to Pickands [498] and is often
formulated as follows. For some function 3 to be estimated from the data,

Fu()=P(X —u>z|X >u) m G puy(z), z>0.
Alternatively one considers for = > u,

P(X > | X >u) = Gepu () -
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In both cases u has to be taken sufficiently large. See Section 6.5 for more
details. Together (b) and (e) give us a nice graphical technique for choosing
the threshold w so high that an approximation of the excess df F, by a GPD
is justified: given an iid sample X,...,X,, construct the empirical mean
excess function e, (u) as sample version of the mean excess function e(u).
From (e) we have that the mean excess function of a GPD is linear, hence
check for a u-region where the graph of e, (u) becomes roughly linear. For
such v an approximation of F,, by a GPD seems reasonable. In Section 6.5
we will use this approach for fitting excesses over high thresholds.

7) From Proposition 3.1.1 (see also the succeeding Remark 1) we have learnt
that the number of the exceedances of a high threshold is roughly Poisson.
From Remark 6 we conclude that an approximation of the excess df F, by
a GPD may be justified. Moreover, it can be shown that the number of
exceedances and the excesses are independent in an asymptotic sense; see
Leadbetter [417].

8) Property (d) now says that in a model, where the number of exceedances
is exactly Poisson and the excess df is an exact GDP, the maximum of these
excesses has an exact GEV. O

The above remarks suggest the following approximate model for the ex-
ceedance times and the excesses of an iid sample:

— The number of exceedances of a high threshold follows a Poisson
process.

— Excesses over high thresholds can be modelled by a GPD.

— An appropriate value of the high threshold can be found by
plotting the empirical mean excess function.

— The distribution of the maximum of a Poisson number of iid
excesses over a high threshold is a GEV.

In interpreting the above summary, do look at the precise formulation of
the underlying theorems. If at this point you want to see some of the above
in action; see for instance Smith [595], p. 461. Alternatively, consult the
examples in Section 6.5

Notes and Comments

In this section we summarised some of the probabilistic properties of the GEV
and the GPD. They are crucial for the statistical analysis of extremal events
as provided in Chapter 6. The GEV will be used for statistical inference of
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data which occur as iid maxima of certain time series, for instance annual
maxima of rainfall, windspeed etc. Theorem 3.4.5 opens the way to tail and
high quantile estimation. Part (b) of this theorem leads immediately to the
definition of the GPD, which goes back to Pickands [498]. An approximation
of the excess df by the GPD has been suggested by hydrologists under the
name peaks over threshold method; see Section 6.5 for a detailed discussion.
Weak limit theory for excess dfs originates from Balkema and de Haan[37].
Richard Smith and his collaborators have further developed the theory and
applications of the GPD in various fields. Basic properties of the GPD can
for instance be found in Smith [591]. Detailed discussions on the use of the
mean excess function in insurance are to be found in Beirlant et al. [57] and
Hogg and Klugman [330].

3.5 Almost Sure Behaviour of Maxima

In this section we study the a.s. behaviour of the maxima
M1:X1, Mn:maX(Xl,...,Xn), 7122,

for an iid sequence X, X7, X5, ... with common non—degenerate df F'.
At the beginning we might ask:

What kind of results can we expect?
Is there, for example, a general theorem like the SLLN for iid sums?

The answer to the latter question is, unfortunately, negative. We have already
found in the previous sections that the weak limit theory for (M,) is very
sensitive with respect to the tails F((z) = P(X > z). The same applies to the
a.s. behaviour.

We first study the probabilities (i.o. stands for “infinitely often”)

P (M, >u, io.) and P (M, <u, io.)

for a non—decreasing sequence (u, ) of real numbers. We will fully characterise
these probabilities in terms of the tails F(u,).

We start with P(M,, > uy, i.0.) which is not difficult to handle with the
classical Borel-Cantelli lemmas. Recall from any textbook on probability

theory that, for a sequence of events (A,), {A, i.0.} stands for

limsup A, = ﬁ U A, .

nreo k=1 n>k

The standard Borel-Cantelli lemma states that
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Z P(A,) < oo implies P (A4, io0.)=0.
n=1
Its partial converse for independent A, tells us that

Z P(A,) =00 implies P (A, io0.)=1.

n=1
A version of the following result for general independent rvs can be found in
Galambos [249], Theorem 4.2.1.

Theorem 3.5.1 (Characterisation of the maximal a.s. growth of partial
maxima)
Suppose that (u,) is non—decreasing. Then

P (M, >u, io.)=P(X,>u, io.). (3.54)
In particular,
P(M, >u, io)=0 or =1
according as

ZP(X>un)<oo or =o00. (3.55)
n=1
Notice that the second statement of the theorem is an immediate consequence
of (3.54). Indeed, by the Borel-Cantelli lemma and its partial converse for
independent events, P(X,, > u, i.0.) =0 or = 1 according as (3.55) holds.

Proof. It suffices to show that (3.54) holds. Since M,, > X, for all n we need
only to show that

P (M, >u, io)<P((X,>u, io.). (3.56)

Let xr denote the right endpoint of the distribution F' and suppose that
w, > rp for some n. Then

P (M, >u,) =P(X,>u, =0

for all large n, hence (3.56) is satisfied. Therefore assume that u, < xp for
all n. Then
F(uy) <1 forall n.

If u, T xFr and M,, > u,, for infinitely many n then it is not difficult to see
that there exist infinitely many n with the property X,, > uy.
Now suppose that u, T b < zr. But then

F (un) > F(b) > 0.
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By the converse Borel-Cantelli lemma, 1 = P(X,, > u,, i.0.), and then (3.54)
necessarily holds. O

The determination of the probabilities P(M,, < u, i.0.) is quite tricky. The
following is a final improvement, due to Klass [383, 384], of a result of Barn-
dorft-Nielsen [44, 45]. For the history of this problem see Galambos [249] and
Klass [383].

Theorem 3.5.2 (Characterisation of the minimal a.s. growth of partial max-
ima)
Suppose that (u,) is non-decreasing and that the following conditions hold:

F(u,) — 0, (3.57)

nF(u,) — o0. (3.58)

Then
P(M,<u, io)=0 or =1

according as
Zf(un) exp{—nF (u,)} <oco or =o0. (3.59)
n=1

Moreover, if

F(up) —¢>0, then P(M,<wu, io.)=0,
while if

liminf nF (u,) < 0o, then P(M, <wu, io.)=1.

n—roo

Remarks. 1) Conditions (3.57) and (3.58) are natural; (3.57) just means
that one of the following conditions holds: u, 1 oo or u, T xp for a df F
continuous at its right endpoint zr or u, T b > xp. From Proposition 3.1.1
we know that (3.58) is equivalent to P(M,, < u,) — 0.

2) Condition (3.59) is, at a first glance, a little bit mysterious, but from the
proof below its meaning becomes more transparent. But already notice that
F(uy)exp{—nF(u,)} is close to the probability

P(M,, < Un,Xnt1 > un) = P(My, < tp, Mpi1 > up) .- O

Sketch of the proof. We first deal with the case that F(u,) — ¢ > 0. Then
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oo

P(M,<u, io) = P|[]|J{M.<u,}

i=1n>i

= lim P | | J{M, <u,}

1—+00 i
n>t

IN

i <
7.ll>r£lo Z P (Mn < un)

n>t
= i n
Jim 2 P (un)
n>t
= 0,
since F(u,) <1 —c+e <1 for a small € and sufficiently large n .

Next suppose that liminf,, nF(un) < 00. Then

P(M, <u, io) = lim P |J{My <un}
12— 00
n>t
> limsup P (M; < ;)

= lir.ri}sup exp {iln (1 —F (u;))}
= limsup exp {—iF (us) (1+ 0(1))}

1—» 00

= exp {— lim inf i F (ui)}

1—> 00

> 0.

This and an application of the Hewitt—Savage 0-1 law prove that P(M,, <
Up 1.0.) = 1.
Now we come to the main part of the theorem. We restrict ourselves to
showing that the condition

F (un) exp {—nF (u,)} < (3.60)

n=1

implies that

P(M, <wu, i0.)=0.
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Suppose that (3.60), (3.57) and (3.58) hold. We use a standard blocking
technique for proving a.s. convergence results. Define the subsequence (ny)
as follows

ni =1, nppr =min{j >np: (G —np) F (un,) > 1} .
This implies in particular that
(g1 —ng) F (un,) — 1. (3.61)
Moreover, by (3.61), ng41/n; — 1. Hence there exists kg such that

niF(un,,,) >1 for j>ko.

Note also that the function f(y) = yexp{—jy} decreases for y > j~!. Hence,
for all k > ko,

> F(uj)exp{—jF (u;)}

n <j<np41
> > F(un,)exp {—jF (un,)}
ng <Jj<Ni41
> e gy —nk) F (un,) exp {—nkF (unk)}

> e lexp {—niF (un,)} -
Thus (3.60) implies that
> exp {—niF (un,)} < oo (3.62)
k=1

(It can as it happens be shown that (3.60) is equivalent to (3.62).) Notice
that

k=1n>k

P (M, <u, io.)

= lim P | |J{Mn < un}

k—o0
n>k

lim P ) | AM;<u}

l—o0 )
k>lng<j<npt1
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< lim >y Pl {M;<u}
oist \m<iznim
<  lim ZP (Mnk < Unk+1)
l—oco k>l
P (M, <tng,,)
< lim e 3.63
- l—>ook22:l P (Mnk_'_l*nk < Unk+1) ( )

By construction of the nj and by property (3.61),
P (Mnk+1*nk < unk+1) = exp {_(nkJrl - nk)F (U’nk+1) (1 + 0(1))}
> exp {~(nks1 — ) (uny) (1+0(1))}

- e L.

This together with (3.63) and (3.62) yields P(M,, < uy, i.0.) =0.

The proof of the remaining part of the theorem is very technical. We refer to
Klass [383, 384] for details. O

Recall (e.g. from Petrov [495, 496]) that the relation

limsupc,' (M, —d,) =1 as.

n— oo
for ¢, > 0 and d,, € R just means that
P(M, >c,(l+€)+d, i0)=0 or =1
according as € > 0 or € < 0 for small |e|. Similarly,
liminf ;' (M, —d,) =1 as.
n— oo
holds if and only if
P(M,<cy(l+€)+d, i0)=0 or =1

according as € < 0 or € > 0 for small |¢|]. Then the following is immediate
from Theorems 3.5.1 and 3.5.2.

Corollary 3.5.3 (Characterisation of the upper and lower limits of maxima)

(a) Assume that the sequences un(€) = cn(l+¢€) +d,, n €N, are non—
decreasing for every € € (—e€o, €0). Then the relation

Zﬁ(un(e))<oo or =00
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according as € € (0,€g) or € € (—ep,0) implies that

limsupc, ' (M, —d,) =1 as.

n—r00

(b) Assume that the sequences uy(€) = cn(1+€) +dy,n €N, are non—de-
creasing and satisfy (3.57), (3.58) for every € € (—eo,€0). Then the rela-
tion

ZF(un(e))exp {—nF (un(€))} <0 or =00
n=1
according as € € (—€g,0) or € € (0,€0) tmplies that

liminfe, ' (M, —d,) =1 as. O

n—roo

We continue with several examples in order to illustrate the different options
for the a.s. behaviour of the maxima M,,. Throughout we will use the following
notation

Inpzr =2, In;jx=max(0,lnz), Ingpzr=max(0,lnp_12), k>2,
i.e. Ing x is the kth iterated logarithm of x.

Example 3.5.4 (Normal distribution, continuation of Example 3.3.29)
Assume that F' = @ is the standard normal distribution. Then

&(x) ~ exp{—2?/2}. (3.64)

14

12

10

06

o 20000 40000 60000 80000 100000
n

Figure 3.5.5 Five sample paths of (M,/v/2Inn) for 100000 realisations of iid
standard normal rvs. The rate of a.s. convergence to 1 appears to be very slow.
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From (3.40) we conclude
M B
V2Inn

We are interested in a.s. refinements of this result.

Choose
(ln0n~-~lnrn)lnen>
un(€) = 4/21n T , r>0.
(© J (Lo >

An application of Theorem 3.5.1 together with (3.64) yields

n— 00. (3.65)

P (M, > un(e) i0)=0 or =1

according as € > 0 or € < 0 for small |¢|] and hence, by Corollary 3.5.3,

lim sup

=1 as. (3.66)
n—o00 2Ilnn

This result can further be refined. For example, notice that

nln

1+en
P|M,>2ln| —— i.o.
( Vinn )

P(Mn— 21n(\/l7;‘1_n>

= 0 or =1

according as € > 0 or € < 0. By the mean value theorem, for small |¢| and
certain 6,, € (0,1),

B . n 1 2(14+¢€)lnan o
P<M” \/21 <M) 73 (21n(n/\/M)+0n2(1+6)ln2n)1/2

=0 or =1

according as € > 0 or € < 0. In view of Corollary 3.5.3 this just means that

lirnsupM M, — 2ln< n ) =1 as.
n—oo IN2M Vinn
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By the same arguments,

V21 | R
lim sup nn (Mn—\/21n<M)> =1 as., r>1.

n—soco IMpp1m Vinn

Now choose

ul, (e) = 21n< n ), r>1.
© \/ Varlnnln((ln; n---Iln, n)In; n) -
An application of Theorem 3.5.2 yields that

P(M, <ul(e) i0.)=0 or =1

according as € > 0 or € < 0 for small |¢|. In particular, we may conclude that

lim inf =1 as. (3.67)
n—oo y/2Inn
which, together with (3.66), yields the a.s. analogue to (3.65):

M,

im
n—oo \/2]1nn

=1 a.s.

Refinements of relation (3.67) are possible in the same way as for lim sup. O

Example 3.5.6 (Exponential tails)
Let X be a rv with tail

F(r) ~Ke ™™, x - 00,

for some a, K > 0. From Example 3.2.7 we conclude that
M, 1
“r B no . (3.68)
Inn a

We are interested in a.s. refinements of this result.
Choose 1
tun(€) = = In(K (Ingnlnyn---ln,.n)nf), r>0.
a

Then, for large n and small |e],

F (un(e)) ~ !

(Ingn--+In,n)lnén "
An application of Theorem 3.5.1 yields that
P (M, > un(e) i0)=0 or =1

according as € > 0 or € < 0 for small |e| and hence
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) M, 1
limsup — = — a.s.
nooo NN a

Now choose

o (€) 1 I nk r>1
€) = — .
" a In(lngn(lnyn--In,.n)lnin) )’ -

Then, by Theorem 3.5.2,

P(M, <u!(¢) i0)=0 or =1

(3.69)

(3.70)

according as € > 0 or € < 0 for small |e|. In particular, we may conclude that

1

. . n

liminf — = — a.s.
n—oo Inn a

which, together with (3.69), yields an a.s. analogue of (3.68).

Refinements of (3.71) are possible. For example, for fixed r > 1,
P(M, <ul(e) io0.)

1
= P(Mn < - <ln(nK) —In(lngn + (lngn +Ingn + - -
a

(3.71)

2.0

15

1.0

0.5

0.0

6 20600 40600 60600 80600
n

106000

Figure 3.5.7 Five sample paths of (My/Inn) for 100000 realisations of iid stan-
dard exponential rvs. The rate of a.s. convergence to 1 appears to be very slow.
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+In,p1n+ (1+¢€)ln,4o n))> i.0.>

1
P(Mn - (ln(nK) —In(Ingn+ (Ingn+ -+ +1In,44 n))>

1
< ——1In

<1n3n+(1n2n+...+lnr+1n+(1+6)1n7\+2n)> io)
a .0.

Ingn+ (Ingn+---+1n,41n)

= P(Mn 1 <1n(nK) —In(Ingn+ (lngn + -+ ln,4q n)))
a

1 lnT+2n .
< —=1 1 1 .0.].
- a n( +( +6)1n3n+(1n2n+-~-+lnr+1n)> 10)

This together with (3.70), a mean value theorem argument and Corol-
lary 3.5.3 imply that, for r > 1,

lIlQ n

lim inf
n—oo In,4omn

(Mn - é <1n(nK) —In(nsn+ (Ingn+ - + I,y n))))

1
= —— a.s. O
a

Example 3.5.8 (Uniform distribution, continuation of Example 3.3.15)
Let F be uniform on (0,1). From Example 3.3.15 we know that

a.s.

M, =1.

106 110 115

1.00

e ——————————————

095

0.90

085

o] 100 200 300 400
n

Figure 3.5.9 Five sample paths of M, for 400 realisations of 1d U(0,1) rvs. The
rate of a.s. convergence to 1 is very fast.
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We derive some a.s. refinements of this limit result.

Choose
() =1- ! r>0
Unl€) = (Inpnlnyn---In,n)Ilntn’ = =

Then, by Theorem 3.5.1,

P (M, > un(e) i0)=0 or =1

according as € > 0 or € < 0 for small |e|.
Now choose

!

2%

1
() =1- Eln(lngn(lnln-~-lnrn)lnin) , r>1.
Then, by Theorem 3.5.2,
P(M, <ul(¢e) i0)=0 or =1

according as € > 0 or € < 0 for small |e|. O

Notes and Comments

There does not exist very much literature on the a.s. behaviour of maxima of
iid rvs. An extensive account can be found in Galambos [249]. The treatment
of results about the normalised lim inf of maxima started with work by Barn-
dorff-Nielsen [44, 45] who proved necessary and sufficient conditions under
certain restrictions. A result in the same spirit was obtained by Robbins and
Siegmund [544]. Klass [383, 384] finally proved the criterion of Theorem 3.5.2
under minimal restrictions on the df F' and on the behaviour of (u,). Goldie
and Maller [275] use point process techniques to derive a.s. convergence re-
sults for order statistics and records.
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4

Fluctuations of Upper Order Statistics

After having investigated in Chapter 3 the behaviour of the maximum, i.e.
the largest value of a sample, we now consider the joint behaviour of several
upper order statistics. They provide information on the right tail of a df.

In Section 4.1, after some basic results on the ordered sample, we present
various examples in connection with uniform and exponential order statis-
tics and spacings. Just to mention two items, we touch on the subject of
simulation of general upper order statistics (working from uniform random
numbers) and prove the order statistics property of a homogeneous Pois-
son process. Here also Hill’s estimator appears for the first time: we prove
that it is a consistent estimator for the index of a regularly varying tail. Its
importance will be made clear in Chapter 6.

In Section 4.2 we exploit the Poisson approximation, already used to
derive limit laws of normalised maxima, in a more advanced way. This leads
to the multivariate limit distribution of several upper order statistics. Such
results provide the theoretical background when deriving limit properties for
tail estimators, as we shall see in Chapter 6. Extensions to randomly indexed
samples will be given in Section 4.3.

In Section 4.4 we show under what conditions the previous results can be
extended to stationary sequences.
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4.1 Order Statistics

Let X, X1, X5, ... denote a sequence of iid non—degenerate rvs with common
df F. In this section we summarise some important properties of the upper
order statistics of a finite sample X7, ..., X,. To this end we define the ordered

sample
Xn,n S SX17n~

Hence X,, , = min(Xy,...,X,) and Xy ,, = M, = max(Xy,...,X,). Therv
Xy n is called the kth upper order statistic. The notation for order statistics
varies; some authors denote by X ,, the minimum and by X,, , the maximum
of a sample. This leads to different representations of quantities involving
order statistics.

The relationship between the order statistics and the empirical df of a
sample is immediate: for x € R we introduce the empirical df or sample df

1 1 «
Fn(x):Ecard{izlgign,Xigx}:E ZI{&SZ}, rz €eR,
i=1

where I, denotes the indicator function of the set A. Now

0

X(ld,‘lO) - ‘X(3‘,10) X(2;10) X(l;lO)

X(1,10)

jj

0 01 02 03 04 05 06 07 08 09 1

X(10,10)

Figure 4.1.1 Empirical df F,, (top) and empirical quantile function F,~ (bottom)
of a sample of 10 standard erponential rvs.
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Xin <z if and only if ZI{Xi>Z} <k, (4.1)

=1

which implies that

k
P(Xgn<z)=P <Fn(x) >1-— —) .
n
Upper order statistics estimate tails and quantiles, and also excess probabil-
ities over certain thresholds. Recall the definition of the quantile function of
the df F/
Fo@)=mnf{z eR: F(z) >t}, 0<t<1.

For a sample Xi,...,X,, we denote the empirical quantile function by F;".
If F'is a continuous function, then ties in the sample occur only with probabil-
ity 0 and may thus be neglected, i.e. we may assume that X, , <--- < Xy 5.
In this case F{~ is a simple function of the order statistics, namely

k-1

k
Frt)=Xg, forl——<t<1- ) (4.2)
n n

fork=1,...,n.
Next we calculate the df Fj, ,, of the kth upper order statistic explicitly.

Proposition 4.1.2 (Distribution function of the kth upper order statistic)
Fork=1,...,n let Fy , denote the df of Xy, . Then

(@) Fnla) = ; () 7w,

(b) If F is continuous, then

Feat) = [ " fen()dF(2),

where

e P @) T )

frn(z) = [CEDCED

i.e. fi,n 15 a density of Fy, ,, with respect to F.
Proof. (a) For n € N define

Bn=> Iix,>s}-
=1
Then B, is a sum of n iid Bernoulli variables with success probability

EI{X>z} = P(X > x) = F(l‘) .
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Hence B, is a binomial rv with parameters n and F(z). An application of
(4.1) gives for z € R

Fpn(r) = P(B,<k)

r=0

(b) Using the continuity of F', we calculate

" 1)?én — k)] / ) T @) AR ()

— 00

_ n! !  p\n—k gk—1
(k= 1D!'(n—k)! /f(z)(l 2 o dt

k—1
n\ —<r _r
> (1) Fw P = R,
r=0 r

The latter follows from a representation of the incomplete beta function;
it can be proved by multiple partial integration. See also Abramowitz and
Stegun [3], formula 6.6.4. O

Similar arguments lead to the joint distribution of a finite number of different
order statistics. If for instance F' is absolutely continuous with density f, then
the joint density of (Xi,...,X,) is

n

Fxvx, @ur) = [ f@) ., (21,...,2) €R™.
i=1

Since the n values of (Xi,...,X,) can be rearranged in n! ways (by ab-
solute continuity there are a.s. no ties), every specific ordered collection
(X&,n)k=1,...,n could have come from n! different samples. This heuristic ar-
gument can be made precise; see for instance Reiss [526], Theorem 1.4.1, or
alternatively use the transformation theorem for densities. The joint density
of the ordered sample becomes:

le‘n_p--,Xn‘n (.’L‘l, ot ,SCn) = TL' H f (.’L‘Z) ’ Tn, <0 < Xt . (43)
=1

The following result on marginal densities is an immediate consequence of
equation (4.3).
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Theorem 4.1.3 (Joint density of k& upper order statistics)
If F is absolutely continuous with density f, then

n!

Tt (@00 ) =

k
F”_k(cck)l—[f(avl)7 T <o < @
=1

O

Further quantities which arise in a natural way are the spacings, i.e. the differ-
ences between successive order statistics. They are for instance the building
blocks of Hill’s estimator; see Example 4.1.12 and Section 6.4.2.

Definition 4.1.4 (Spacings of a sample)
For a sample X1, ..., X, the spacings are defined by

Xin = Xbt1n, k=1,...,n—1.

For rus with finite left (right) endpoint Tr (xr) we define the nth (0th) spacing
as Xn,n - Xn+1,n = Xn,n - 5F (XO,n - Xl,n =TF — Xl,n)- O

Example 4.1.5 (Order statistics and spacings of exponential rvs)

Let (E,) denote a sequence of iid standard exponential rvs. An immediate
consequence of (4.3) is the joint density of an ordered exponential sample
(El,na ceey En’n)l

n
fEl.ny"'yEn.n (Ilv"'vxn) =n! eXp{—in} ) 0< Ty << Tp.
=1

From this we derive the joint distribution of exponential spacings by an appli-
cation of the transformation theorem for densities. Define the transformation

T(x1,...,2,) = (21 — 22,2(x2 — 23),...,nTp), 0<z, < - <u21.
Then det(9T'(x)/9x) = n! and

n n
x; x; x
-1 _ j J n
T (1, ,xy) = E—,, .., — |, z,x2,...,2,>0.
= J n

Jj=2

Then the density g of (E1,, — E2 n,2(Esn — Es.4),...,nEy ) is of the form

1 LIy T T
g(xl""7x") = _fEl.ny---yEn.n Z -72_.]7”',_71

=/ "
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This gives for i = 1,...,n that the rvs i(E; , — E;jt1,,) have joint density

n
g(xl,...,xn):exp{—z:xi}, T1y.eeo, Ty >0.
=1

This implies that the spacings
El,n - E2,n B E2,n - E3,n g 7En,n

are independent and exponentially distributed, and Ej, ,, — Ejx41,, has mean
1/k for k =1,...,n, where we recall that E, 1, = 0. O

Example 4.1.6 (Markov property of order statistics)
When working with spacings from absolutely continuous dfs one can often
make use of the fact that their order statistics form a Markov process, i.e.

P(Xk,n S y|Xn,n =Tn,-- ~7Xk+1,n = xk—‘,—l)

= P(Xk,n < y|Xk+1,n = Thy1)-

To be precise, (X, 5, ..., X1,,) is a non-homogeneous, discrete-time Markov
process whose initial df is
=

PXyn<z)=1—-F (2),

minimum of k iid observations from the df F truncated at xyy;. For
k=1,....,n—1,

and whose transition df P(Xy, < y|Xgt1,n = ZTgt1) is the df of the

Fiy) \"
P(Xpn >y Xpt1n = Tt1) = <—7) s YD Tpgr -
F(p41)

A proof of the Markov property is straightforward; see for instance Arnold,
Balakrishnan and Nagaraja [20], Theorem 2.4.3. They also provide an exam-
ple showing that the Markov property does not hold for general F'; see their
Section 3.4. O

Example 4.1.7 (Order statistics property of the Poisson process)

Let N = (N(t)):>0 be a homogeneous Poisson process with intensity A > 0;
for a definition see Example 2.5.2. Then the arrival times T; of N in (0,t],
conditionally on { N (¢) = n}, have the same distribution as the order statistics
of a uniform sample on (0,t) of size n; i.e.

P((T17T2,. . ~7TN(t)) € A|N(t) = TL) = P((Un7n7 .. ~7U1,n) € A)

for all Borel sets A in Ry . This property is called the order statistics property
of the Poisson process. It gives an intuitive description of the distribution of
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Figure 4.1.8 Five realisations of the arrival-times of a Poisson process N with
intensity 1, conditionally on {N(12) = 10}. They illustrate the order statistics
property (Ezample 4.1.7).

the arrival times of a Poisson process.

For a proof we assume that 0 < t; < --- <t, <t and hy,...,h, are all pos-
itive, but small enough such that the intervals J; = (¢;,¢; + h],i=1,...,n,
are disjoint. Then

P(Ty € Jy,...., Ty € Jo|N(t) =n)
= P €,....,Tn € Jo,N(t) =n)/ P(N(t) =n).

Writing N(J;) = N(¢t;+h;)—N(t;),i = 1,...,n, and using the independence
and stationarity of the increments of the Poisson process we obtain for the
numerator that

P(N(t1) =0,N(J1) =1,N(tz) = N(t, + 1) =0,
-y N(tn) — N(tn—1 + hpn—1) =0,N(J,) =1,N(t) — N(t,, + h,) = 0)
= P(N(t1) = 0)P(N(J1) = 1)P(N(t2) — N(t1 + h) = 0) x

- x P(N(J,) = )P(N(t) = N(t, + hy) = 0)
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= P(N(tl):O)P(N(hl):].)P(N(tQ—tl—hl)ZO) X
-+ X P(N(hy) = 1)P(N(t — (tn, + hn)) =0)
= e M x e MR x e~ Alt2=(t1+h1)] o

cx e M= (tmiha )] oM\ s oMt (tntha)

= eV ﬁh
=1

This implies
P(Tl e J,....,T, € Jn|N(t) :n): _nth

The conditional densities are obtained by dividing both sides by [];"_, h; and
taking the limit for max;<;<, h; — 0, yielding
n!
ler---an|N(t)(t17""tn|n):t_n’ O<t1 <--<t, <t. (44)

It follows from (4.3) that (4.4) is the density of the order statistics of n iid
uniform rvs on (0, t). O

The following concept is called quantile transformation. It is extremely useful
since it often reduces a problem concerning order statistics to one concerning
the corresponding order statistics from a uniform sample. The proof follows
immediately from the definition of the uniform distribution.

Lemma 4.1.9 (Quantile transformation)

Let Xq,...,X, be iid with df F. Furthermore, let Uy,...,U, be iid rvs uni-
formly distributed on (0,1) and denote by Uy, », < --- < Uy p, the corresponding
order statistics. Then the following results hold:

(a) F<_(U1) g Xl.
(b) For everyn € N,

(Xims oo Xnm) 2 (F (Urn) s F (Un)) -

(¢) The rv F(Xy) has a uniform distribution on (0,1) if and only if F is
a continuous function. O
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Example 4.1.10 (Simulation of upper order statistics)
The quantile transformation above links the uniform distribution to some gen-
eral distribution F'. An immediate application of this result is random number
generation. For instance, exponential random numbers can be obtained from
uniform random numbers by the transformation Ey = —In(1 — U;). Simula-
tion studies are widely used in an increasing number of applications. A simple
algorithm for simulating order statistics of exponentials can be based on Ex-
ample 4.1.5, which says that

(Ein — Eixin)i=1,..n L (iT'Ei)iz1,m s
with E,41,, = 0. This implies for the order statistics of an exponential sample
that

i [~ _
(Eln)7.:1n = Z] LB
j=i i=1,...,n
Order statistics and spacings of iid rvs U; uniformly distributed on (0, 1) and
standard exponential rvs F; are linked by the following representations; see
e.g. Reiss [526], Theorem 1.6.7 and Corollary 1.6.9. We write I, = Ey +-- -+
E,, then

d Fn Fn—l Fl >
UinsUsns oo Upn) = , . ,
( b > ) <Fn+1 Fn+1 FnJrl
and £ g
d n+1 1
L= Ui Uin—Usnyn Unn) = .
( 1n, UL, 2, n) (FnJrl Fn+1)

The four distributional identities above provide simple methods for generat-
ing upper order statistics or spacings of the exponential or uniform distrib-
ution. A statement for general F' is given in (4.6) below. For more sophisti-
cated methods based on related ideas we refer to Gerontidis and Smith [259]
or Ripley [542], Section 4.1, and references therein. O

Example 4.1.11 (The limit of the ratio of two successive order statistics)

Consider F' € MDA(®,,), equivalently F' € R_,,, for some a > 0. We want to
show that

X P

— = 1, k=k(n)—> o, k/n—=0. (4.5)

XkJrl,n

The latter fact will frequently be used in Chapter 6.

For the proof we conclude from Lemma 4.1.9(b) and Example 4.1.10 that

Kimso s Xnn) 2 (FS(Uin),e o FS(Un)

)

I=

(Fe(Fn/FnJrl)v7FH(F1/F7L+1)) ) (46)
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where I',, = Ey +-- -+ E,, and the E; are iid standard exponential rvs. Notice
that (4.6) holds only for every fixed n. However, we are interested in the weak
convergence result (4.5), and therefore it suffices to show (4.5) for one special
version of

((Xk,n)k:L...,n)nZI .

In particular, we may choose this sequence by identifying the lhs and the rhs
in (4.6) not only in distribution, but pathwise. Hence we get

Xk,n — FH(ank:+1/Fn+l)
Xk—‘,—l,n FP(Fn—k/Fn—i-l) '

(4.7)

Since F € R_,,
Fo(l—tY =¢/2L(t), t>0, (4.8)

for some L € Ro; see Bingham, Goldie and Teugels [72], Corollary 2.3.4. By
the SLLN and since k/n — 0, I}, /i1 =3 1. Hence, by (4.7) and (4.8) for
sufficiently large n,

Xim  _ ( Lot = Do )” RECHEVICE s AESY) B
Xk—‘,—l,n Fn+1 - Fn—kz+1 L(Fn+1/(Fn+1 - Fn—k)) . .
Again using the SLLN, k — oo and k/n — 0,
FnJrl - ank d FkJrl a.s.

Fn+1 - Fn—k—‘,—l Fk ( )

Ly1 — 1o Loy — I a.s.
1 L = ot Fl+4o(l) W 0 (4.11)

Fn+1 Fn+1

Relations (4.9)—(4.11) and the uniform convergence theorem for L € R (see
Theorem A3.2) prove (4.5). O

Example 4.1.12 (Asymptotic properties of the Hill estimator)

Assume X is a positive rv with regularly varying tail F(z) = 2~%Lo(z) for
some a > 0 and Lo € Rg. For applications it is important to know «. In Sec-
tion 6.4.2 several estimators of a are derived and their statistical properties
are studied. The most popular estimator of o was proposed by Hill [326]. It
is based on the k upper order statistics of an iid sample:

1 k—1 X, 1 k—1
ale — S (22) = — ST InXi, —InXen 4.12
On k—lgn Xom k—lgn m = Xn, o (412)

for k£ > 2. We suppress the dependence on £ in the notation.

There exist many variations on the theme “Hill” with k — 1 replaced by k
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(and vice versa) at different placesin (4.12). By (4.5) all these estimators have

the same asymptotic properties provided k = k(n) — oo and k/n — 0. We

—1
n

are interested in the asymptotic properties of &
normality).

(consistency, asymptotic

By Lemma 4.1.9(b) we may and do assume that @, ! has representation

k—1
1
~—1 _ —(TT. _ —
Gyl =1 ; In F(Us,) — In F<(Uy,,) (4.13)
for an ordered sample U, , < --- < U;, from a uniform distribution on

(0,1). We are interested only in asymptotic distributional properties of a;!.
For this it suffices to study the distribution of @, at every fixed n. If one
wants to study a.s. convergence results one has to consider the distribution of
the whole sequence (@,,). Then representation (4.13) is not useful. (Lemma
4.1.9(b) is applicable only for a finite vector of order statistics.) Regular
variation of F implies that

Fo(y)=1-y) Y L(1-y»7"), ye(0,1),

for some L € Ro; see Bingham et al. [72], Corollary 2.3.4. Combining (4.13)
with the representation of (Uy,,) via iid standard exponential rvs E; (see
Example 4.1.10) and writing

[=FEi+-+E,, n>1

we obtain the representation

— l 1 In FnJrl ankJrl
ak-—1 =1 Fn+1 Fn—7.+1
k—1
+ 1 S In L(Lpy1 /(g1 = Tneigr))
k=1 " L(Lh1/(Int1 = Tueitr))
= BV +P. (4.14)

The leading term in this decomposition is ﬂ,(bl). It determines the asymptotic
properties of the estimator @,!. Thus we first study B,(ll). Again applying
Example 4.1.10 we see that for every k > 2,
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(Fn+1_Fn—i+1) d (Fl> i(U )
T — I .. =\ = (Uk—ih—1),_ L
Fn+1 — ankﬂ»l =1, k-1 I =1kl i=1,...,k—1

Hence, for iid (U;) uniform on (0, 1),

k—1

k—1
ma 1 5y sl g
& ak—lizln ' ak—lg v

We immediately conclude from the SLLN and the CLT for iid rvs that

(IVE(ﬂS)—~£> 4 g
(8%

where @ is the standard normal distribution, provided that k£ = k(n) — oo.
Notice that ﬂ,(f) vanishes if the relation F(z) = cx~® holds for large = and
constant ¢ > 0, and then the limit theory for ﬁ,(Ll) and for a,;! is the same.
However, for real data one can never assume that the tail F has exact power
law behaviour. Therefore one also has to understand the limit behaviour of the
second term Br(f) in the decomposition (4.14). Recall from the representation
theorem (Theorem A3.3) that the slowly varying function L can be written

e s =corem{ [ auf w2z "

for some z > 0, functions c¢(z) = ¢p > 0 and é(x) — 0 as x — oo. With this
representation we obtain

1
(2) = -
B -

c

Fn+1/(Fn+1 - ank:+1))

=1

Flonqnﬁmumd—ﬂwwﬂ>
(

(1=Tp—ig1/Tuy1) ™" 5
+/ M du)
(

1-Ly g1 /Tny)™t U
= B +8Y.

If we assume that & = k(n) — oo and k/n — 0 then, by the SLLN, uniformly
fori <k,

Fn—i 71Fn—i a.s

+1 _ n +1 8-

= 1.
Fn+1 n71Fn+1

a.s.

This immediately implies that Br(?) = 0. Set

C, = sup{|6(u)| cu> (1 - Fn_k_i_l/FnH)*l}
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and notice that, by the remark above, C,, “3 0. Thus

k=1 (1—=Tp_iy1/Tng1) "t
1 +1/Tn+ 1
(4) T 1
Bn S an 1 / - du
i=1 Y (=T pq1/Tny1)
= Cha ﬂ,(Ll) .

This shows that 82 5 0 provided k& = k(n) — oo and k/n — 0. This,

together with 35" 5 a~1, proves the consistency of Hill's estimator a;t

whatever the slowly varying function Lg in the tail F(z) = 2~%Lo(x). Under
conditions on the growth of k(n) (e.g. k(n) = [n7] for some v € (0,1)) it can
even be shown that a,' 3 a. We refer to Mason [445], whose arguments
we followed closely in the discussion above, and to Deheuvels, Hausler and
Mason [170].

From the course of the proof it is clear that, in order to show a CLT for

~—1
aTL )

one has to prove \/Eﬂ,(f) £ 0. This means one has to impose some
condition on the decay to zero of the function §(-) in the representation (4.15).
Alternatively, one needs some regular variation condition with remainder
term which has to be specified. We do not intend to go into detail here, but
we refer to the discussion in Section 6.4.2 on the Hill estimator and related
topics where sufficient conditions for the asymptotic normality (also under
dependence of the X,,) are given.

Finally, we want to illustrate that the Hill estimator can perform very poorly
if the slowly varying function in the tail is far away from a constant. For the
sake of argument, assume that

Fo(y)=1-y)/*(-In(1-y), ye(01). (4.16)

Observe that

<Fn+1_Fn—i+1> g( I; >
o i=1,...,k—1 Ihn i=1,...,k—1

=1,..., N

Then
k—1
5(2) _ 1 Z ln ln (]. — Fn,iJrl/FnJrl)
" k_li: ln(l—Fn,k+1/Fn+1)
k—1
é 1 Zln ln(Fi/Fn+1)
k?—l =1 ln(Fk/Fn+1)
k—1

1 Z 1—1nFl/1nFn+1
= n .
k-1 1—Inly/Inlhg

=1
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Figure 4.1.13 A “Hill horror plot”: the Hill estimator &, from n iid realisations
with distribution tail F1(z) = 1/x (top line) and Fa(x) = 1/(x1nxz) (bottom line).
The solid line corresponds to o = 1. The performance of the Hill estimate for
F5 s very poor. The value k is the number of upper order statistics used for the
construction of the Hill estimator (4.12).

The SLLN and a Taylor-expansion argument applied to the last relation show
that, with probability 1, the rhs can be estimated as follows

k—1
11 r
— (4 o(1)—m—— S
(1+of ))lnFnHk—l;an

k—1
d 1 1
L _(4o(1)——— S,
(1+0f ))lnnk—lgnU

L (14o0(1)(Inn) " (k—1)"Th_1 = O((Inn)™").

This means that Br(?) E) 0 at a logarithmic rate. Moreover, if we wanted
to construct asymptotic confidence bands via a CLT for the Hill estimator,
we would have to compensate for the (essentially (1/1nn)—term) ?) in the
centring constants. Thus the centring constants in the CLT would depend on
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the (usually unknown) slowly varying function L. In other words, there is no
standard CLT for a;' in the class of regularly varying tails. These two facts
concerning the quality of the Hill estimator should be a warning to everybody
applying tail estimates. We also include a “Hill horror plot” (Figure 4.1.13)
for the situation as in (4.16). For a further discussion of the Hill estimator
we refer to Section 6.4.2. O

The asymptotic properties of the upper order statistic X, naturally enter
when one studies tail and quantile estimators; see Chapter 6.

Proposition 4.1.14 (Almost sure convergence of order statistics)
Let F be a df with right (left) endpoint xp < oo (Tp > —o0) and (k(n)) a
non—decreasing integer sequence such that

lim n~'k(n) =c€0,1].

n— oo

(a) Then Xynyn =3 xp (Tr) according as ¢ =0 (c=1).

(b) Assume that c € (0,1) is such that there is a unique solution x(c) of the
equation F(z) = c. Then

Xk:(n),n B x(c)

Proof. We restrict ourselves to showing (b), the proof for (a) goes along the
same lines. By (4.1) and the SLLN,

n 1<& .
d (ME ;I{Xi%c} <1 1.0.)

= P(F(z)(14o0(1)) <c io.).

P(Xk:(n),n <z io0.)

The latter probability is 0 or 1 according as z < z(c) or x > z(c). Hence
liminf,, o0 Xpn)n = z(c) a.s. In an analogous way one can show that the
relation limsup,, , , Xj(n),n» = (c) a.s. holds. This proves the proposition.[]

Notes and Comments

A standard book on order statistics is David [156], while a more recent
one is Arnold, Balakrishnan and Nagaraja [20]. Empirical distributions and
processes are basic to all this material. Hence books such as Pollard [504],
Shorack and Wellner [579], and van der Vaart and Wellner [628] provide the
fundamentals for this section as well as others, and indeed go far beyond. Reiss
[526] investigates in particular the link with statistical procedures based on
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extreme value theory in much greater detail. The latter reference also con-
tains a wealth of interesting bibliographical notes. Two seminal papers on
spacings were written by Pyke [518, 519]. They had a great impact on the
field and are still worth reading.

4.2 The Limit Distribution of Upper Order Statistics

Let X1,...,X, be iid with df F. Recall from Proposition 3.1.1 that for a
sequence (u,) of thresholds and 0 < 7 < oo,

lim P(X;, <u,)=e 7 <& lim nF(u,)=r1. (4.17)

n—r 00 n— oo

In this section we ask:

Can we extend relation (4.17) to any upper order statistic Xy,
for a fived k € N?

Or even

Can we obtain joint limit probabilities for a fized number k
of upper order statistics Xy n,..., X117

Consider for n € N the number of exceedances of the threshold wu, by
X17...7Xn2

By=> Iix,>u,}-
=1

Then B, is a binomial rv with parameters n and F(u,,). In Proposition 4.1.2
we used this quantity for finite n to calculate the df of the kth upper order
statistic. Basic to the following result is the fact that exceedances {X; > wu,}
tend to become rarer when we raise the threshold. On the other hand, we
raise the sample size. We balance two effects so that EB,, = nf(un) - T
as n — oo, and hence immediately the classical theorem of Poisson applies:
B, % Poi(r). The thresholds u,, are chosen such that the expected number
of exceedances converges. The following result shows that nF(u,) — 7 is also
necessary for the Poisson approximation to hold.

Theorem 4.2.1 (Limit law for the number of exceedances)
Suppose (u,) is a sequence in R such that nF(u,) — 7 for some T € [0, 0]
asn — 0o. Then

T

k
. N T
nh_}rrgo P(B,<k)=e E_O T kel . (4.18)
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Figure 4.2.2 Visualisation of the Poisson approzimation for extremes of
ud standard exponential rvs. The threshold increases with the sample size
n = 100, 500, 1000. Notice that the first sample also appears at the beginning of
the second and the second at the beginning of the third.

For 7 = 0 we interpret the rhs as 1, for 7 = o0 as 0.

If (4.18) holds for some k € Ny, then nF (u,) — T asn — 00, and thus (4.18)
holds for all k € Ny.

Proof. For 7 € (0,00), sufficiency is simply the Poisson limit theorem as
indicated above. For 7 = 0, we have

P(B,<k)>P(B,=0)=(1-F(u,)" = (1+0(%>>n—>1.

For 7 = oo we have for arbitrary 6 > 0 that nF(u,) > 6 for large n. Since
the binomial df is decreasing in 6, we obtain

s S0 0 09
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Thus for & fixed,

97‘
: —0
117r1n_>so1<1>pP(Bn§k)§e E F—)O, 0 — oco.

Hence P(B,, < k) — 0 as n — oo.

For the converse assume that (4.18) holds for some & € Ny, but nF (u,) 4 7.
Then there exists some 7" # 7 in [0,00] and a subsequence (ny) such that
nLF(u,,) — 7' as k — oo, and thus B,, converges weakly to a Poisson rv
with parameter 7/, contradicting (4.18). O

The Poisson approximation (4.18) allows us to derive asymptotics for the
kth order statistic. The definition of B, and (4.1) imply

P(B,<k)=P(Xgn<u,), 1<k<n, (4.19)
which by (4.18) gives immediately the following result.

Theorem 4.2.3 (Limit probabilities for an upper order statistic)
Suppose (u,) is a sequence in R such that nF(u,) — 7 € [0,00] as n — oo.
Then

k=1 _,
Jim P (Xpn <un) =e 2::0 5 keN (4.20)

For 7 = 0 we interpret the rhs as 1 and for T = oo as 0.

If (4.20) holds for some k € N, then nF(u,) — T as n — oo, and thus (4.20)
holds for all k € N. O

For u, = cpx +d, and 7 = 7(z) = —InH(z) as in Proposition 3.3.2 we
obtain the following corollary:

Corollary 4.2.4 (Limit distribution of an upper order statistic)
Suppose F' € MDA(H) with norming constants ¢, > 0 and d,, € R.

Define
k—1

k _ (=InH(x))
@) = H@) Y CH@) - g,
r=0
For  such that H(x) = 0 we interpret H*®) (x) = 0. Then for each k € N,
lim P (c,! (Xpn —dn) <) = H¥ (). (4.21)

n—roo

On the other hand, if for some k € N

lim P (c,! (Xpn—dy) <) =G(z), z€R,

n—roo

for a non—degenerate df G, then G = H®) for some extreme value distribu-
tion H and (4.21) holds for all k € N. O



4.2 The Limit Distribution of Upper Order Statistics 199

Example 4.2.5 (Upper order statistics of the Gumbel distribution)
By partial integration,

1 > ik
H(k)(x):m -/lnH(ac)e tldt =Ty (-InH(z)), z€R,

where I, denotes the incomplete gamma function. In particular, if H is the
Gumbel distribution A, then

oo k
AP () = ﬁ / ettt ldt =P <Z E; > ex>
Cve =1

—x

for Eq,..., E; iid standard exponential rvs, where we used the well-known
fact that S.°_ E; is I'(k,1)-distributed. Hence, if Y*) has df A®), then
Yy L _mmy* B, m

The limit distribution of the kth upper order statistic was obtained by con-
sidering the number of exceedances of a level u,, by Xy, ..., X,,. Similar argu-
ments can be adapted to prove convergence of the joint distribution of several
upper order statistics.
To this end let for k € N the levels u%k) <. < uS) satisfy
lim nF(u) =7, i=1,... k, (4.22)

n— oo

where 0 <7 <75 <+ <7 <00, and define

BY =3 sy J=1eoky
=1

ie. Br(bj) is the number of exceedances of u%j) by X1,..., X,.

Theorem 4.2.6 (Multivariate limit law for the number of exceedances)

Suppose that the sequences (ug)) satisfy (4.22) for j=1,... k. Then for
li,..., 0l € Ny,

lim P(BgU =01,B® =1, +1y,...,BW :l1+~~-+lk)

n—roo

(4.23)

l2

B i (o —71) (1, — Tk—l)lk .

A Ll A

The rhs is interpreted as 0 if T, = 0.
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Proof. We write p,, ; = F(ugj)). Using the defining properties of the multino-
mial distribution, we find that the lhs probability of (4.23) equals

n n—1 .
Py Y) Pne —pan)®
l1 ? l2

n—ly = — S,
< ! lk b 1) (pn,k _pn,kfl)llc (]- _pn,k) h t .

If 71, < oo then we obtain from (4.22) that

1 1
n n T
( >p’;§71 ~ (npna) N

h Iq! ll!’
nohm el ' NP — NPnie1)’
' ! (pn,l_pn,i—l)lZ ~ (p7 Pn, 1)
i B
- I
- w, for2<i <k,

n
(1 _pn,k)n_ll_m_lk ~ (1 _ NPn,k) — e Tk,
n

giving (4.23).
If 7, = oo, the probability in (4.23) does not exceed P(B,(lk) = Zle l;). By
Theorem 4.2.1, the latter converges to 0. O

Clearly, as in (4.19),

P (le <ul) . Xpn < u,@)

- P (Bf}) —0,B® <1,...,B® < - 1) , (4.24)

and thus the joint asymptotic distribution of the k& upper order statistics
can be obtained directly from Theorem 4.2.6. In particular, if ¢, (X1, — d,,)
converges weakly, then so does the vector

(C;l (Xl,n — dn) e ,C;I (ka — dn)) .

Although for small £ the joint limit distribution of the k upper order statistics
can easily be derived from (4.24) and Theorem 4.2.6, the general case is rather
complicated. If the df F' is absolutely continuous with density f satisfying
certain regularity conditions the following heuristic argument can be made
precise (for details see Reiss [526], Theorem 5.3.4): suppose F' € MDA (H)
with density f, then the df of the maximum F"(c,z + d,,) = P(c;' (X1, —
dy) < x) has also a density such that for almost all z € R,
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nen f (enx + dy,) Fnl (cnz +dy) ~ ne,f (epz +dy,) H(z) = h(x),

where h is the density of the extreme value distribution H. Furthermore, for
k € N the weak limit of the random vector (c,*(X;n — dpn))j=1,...x has, by
Theorem 4.1.3, the density

k
T F™ (e + d, Jl;[l(n—]—i—l cnf(cnxj+dn)>

k
= H(xk)H h(le), zp <<y (4.25)

Definition 4.2.7 (k—dimensional H-extremal variate)
For any extreme value distribution H with density h define for x, < --- < 11
in the support of H

T b))
h(k) (xlv"'vxk):H(xk)H .
e} H (x

A wvector (Y(l), e Y(k)) of rvs with joint density h'®) is called a k—dimensi-
onal H-extremal variate. O

The heuristic argument (4.25) can be made precise and formulated as follows:

Theorem 4.2.8 (Joint limit distribution of k upper order statistics)
Assume that F € MDA (H ) with norming constants ¢, > 0 and d,, € R. Then,
for every fized k € N,

(! (Xin — Uln))i:1 ok 4 Yici ks n— 00,
where (Y, ... Y)Y is a k-dimensional H-extremal variate. O

Example 4.2.9 (Density of a k—dimensional H—extremal variate)

k
H=%o,: ooz, - z) = akexp{—x;“—(a—kl)zmx]},
0<zp < - <1,

k
H=0,: Yo(x1, - ,78) = akexp{ —(—xp)* + (o — 1)Zln(—x]—)}7

Tp < <x <0,

k
H=A: Xax1,...,2) :exp{—e‘“’—X:xj}7 rp << xp .
j=1

O
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In Example 4.1.5 we investigated the spacings of an exponential sample. Now
we may ask

What is the joint limit df of the spacings of a sample of extremal Tvs?

Example 4.2.10 (Spacings of Gumbel variables)
The exponential distribution is in MDA(A) (see Example 3.2.7) and hence

for iid standard exponential rvs Ey, ..., E, we obtain
d i
(Bin —Inn)i=1 _py1 — (y® im1,o k1 s n— oo,
where (Y1) Y(#+1) is the (k + 1)-dimensional A-extremal variate with
density
k1
pk+1) (T1,...,TEy1) = €Xp {—e“‘“ — sz} , Tpgr <o < 27
i=1

(4.26)
The continuous mapping theorem (Theorem A2.6) implies for exponential
spacings that

(Ei,n - Ei+1,n)i:17___7k = ((E'L,n —1In TL) - (Ei—‘,-l,n —In n))i:L...,kz
4 (Y(i) - Y“H)) n— 00.
=1,k
By Example 4.1.5 we obtain the representation
(Y@ - Y<i+1>) 4 (rl E) (4.27)
i=1,....k i=1,...,k
for iid standard exponential rvs Eq, ..., Ey. a

Corollary 4.2.11 (Joint limit distribution of upper spacings in MDA (A))
Suppose F' € MDA(A) with norming constants ¢, > 0, then

(a) (' (Xim — Xi+1,n))i:1w’,C 4 (7! Ei)izlwyk fork>1,

k k
b)) (Z Xin — kaH,n) 4 > E fork>2,
=1

=1
where Fy, ..., Ey are iid standard exponential rvs.
Proof. (a) This follows by the same argument as for the exponential rvs in

Example 4.2.10.
(b) We apply the continuous mapping theorem (Theorem A2.6):
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1=
M~
—
=
R
=
x
—
|
M-
[

O

Example 4.2.12 (Spacings of Fréchet variables)

The joint density of the spacings of the (k + 1)—dimensional Fréchet variate
(Y Y +D) can also be calculated. We start with the joint density of
YW —y@ L y®) —y )y (D | Define the transformation

T(x1,...,2p41) = (T1 — T2, T2 — XT3, , T — Tht1, Thp1) »

for zp41 < -+- < x1. Then det(9T(x)/0x) = 1 and for x1,23,..., 2541 € R
we obtain

k+1 k+1
T ( = ; ;
5017~~~73?k+1)— Ly, Tjyeony T + Tht1, Tt
j=1 j=2

For the spacings of the (k + 1)-dimensional Fréchet variate (Y (1), ... yV(#+1)
this yields the density

gy )y (@) . Yk _y(k+1) Y (k+1) (w1, Thgr)

= oft

Yexp {—ap ) b ot (g +20) T (g o @) T

for z1,..., 2541 > 0.

From this density it is obvious that the spacings of the (k¥ + 1)-dimensional
Fréchet variate are dependent. Hence such an elegant result as (4.27) cannot
be expected for F' € MDA(®,,). O

By analogous calculations as above we find the joint limit density of the
spacings of the upper order statistics of a sample from a df F' € MDA(®,,).

Corollary 4.2.13 (Joint limit distribution of upper spacings in MDA(®,,))
Suppose F' € MDA(®,,) with norming constants ¢, > 0. Let (Y1) ... Y (k+1))
be the (k + 1)-dimensional Fréchet variate. Then
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(a/) (071 (Xz,n - Xi+1’n))i:1 i} (Y(Z) _ Y(71+1))

" sk

) k217

i=1,....k

k
®) et (ZXM - kaH,n) 45 (Y“) —Y““)) . k>2.

=1 =1

The limit variables in (a) and (b) are defined by the spacings YN —Y ()
Y ) — y (D which have joint density

gy () —y @,y (k) —y (k+1) (X1, T)
e —a —a—1
= ak+1/ exp{-y *} (yly+ap) - (y+a+ - +z1)) dy
0
forxy,...,xi >0. O

Notes and Comments

The Poisson approximation which we applied in this section in order to prove
weak limit laws for upper order statistics is a very powerful tool. Its impor-
tance in this field, particularly for the investigation of extremes of depen-
dent sequences and stochastic processes, is uncontested. More generally, ex-
ceedances of a threshold can be modelled by a point process in the plane. This
yields limit laws for maxima of stochastic sequences, allowing us to explain
cluster effects in extremes of certain processes. The principle tool is weak con-
vergence of point processes. In Chapter 5 an introduction to this important
subject can be found. There also the extremal behaviour of special processes
is treated.

There are many other applications of the Poisson approximation in various
fields. Recent books are Aldous [7] and Barbour, Holst and Janson [43]; see
also the review paper by Arratia, Goldstein and Gordon [22].

4.3 The Limit Distribution of Randomly Indexed Upper
Order Statistics

In this section we compare the weak limit behaviour of a finite number of up-
per order statistics and of randomly indexed maxima for an iid sequence (X,)
of rvs with common df F'. As usual, (N (t))¢>o0 is a process of integer—valued
rvs which we also suppose to be independent of (X,,). We write

X << X1 and Xygyve < <X v
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for the order statistics of the samples Xi,..., X, and Xy, ..., Xy, respec-
tively, and we also use

M, =X1,, and My = X1 N

for the corresponding sample maxima.

If F belongs to the maximum domain of attraction of the extreme value
distribution H (F € MDA (H)), there exist constants ¢,, > 0 and d,, € R such
that

et (My —dn) S H. (4.28)
It is a natural question to ask:
Does relation (4.28) remain valid along the random index set (N(t))?

From Lemma 2.5.6 we already know that (4.28) implies
-1 d
enty (M = dvw) = H

provided N(t) LS 00, but we want to keep the old norming sequences (c,),
(dy) instead of the random processes (cy (1)), (dn(¢)). This can be done under
quite general conditions as we will soon see. However, the limit distribution
will also then change.

We proceed as in Section 4.2. We introduce the variables

N{(t)
(i)_z —
Bt = [{X]_>u£i)}, ’L—L...,k7
j=1

which count the number of exceedances of the (non—random) thresholds
W <o<aM ) >0, (4.29)
by Xi,..., Xy(). We also suppose that there exist numbers
0<7m <-- <7 <00
such that fori =1,...,k,
tps = tFW") = 7, t—o0. (4.30)

The following result is analogous to Theorem 4.2.6:
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Theorem 4.3.1 (Multivariate limit law for the number of exceedances)
Suppose that (ugi))tzo, i=1,...,k, satisfy (4.29) and (4.30). Assume there
exists a non-negative Tv Z such that

Then, for all integers l; > 0,1 =1,...,k,

Z, t—oo. (4.31)

lim P(Bt(l):l17B£z)Zl1+127.-.,Bt(k)=l1+---+lk)

t—oco

= FE

(Zr)" (Z(ry =)™ (2 (=) e—sz]
[! I5! Ui! ’

The rhs is interpreted as 0 if T, = 0.

Proof. We proceed in a similar way as for the proof of Theorem 4.2.6. For
the sake of simplicity we restrict ourselves to the case k = 2. We condition
on N(t), use the independence of (N(t)) and (X,) and apply (4.30) and
(4.31):

P(BY =1, BY =1 +1, ‘ N() (4.32)
- <Nlit)>19[ifl (N(tl)z_ ll) (Pra = pe1)? (1= pro) N0t
I _ l2
— (1t op(1) (N(tl)lp!t,l) (N(t) (pt,lz! Pe1)) (1= pua)¥®
N0 (1, 1)) (YD (¢ (s — pon)) )
— (14 o0p(1) ( x ) ( x ) x

p 2 (Z(m-n))? .
— e 2
I! l!
Notice that the expressions in (4.32) are uniformly integrable and that (4.33)

is integrable. Hence we may conclude (see for instance Karr [373], Theo-
rem 5.17) that

., t—o0. (4.33)

P(BY =1,BP =ti+1) = E[P(BY =1, =t +1:| N))]

— FE

[y! l5!

(ZT1)Z1 (Z (m2 — Tl))lz 6—272]
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as t — oo, which concludes the proof. |

Now one could use the identity

P (Xl,N(t) < U§1)7 s XN < ng))

:P(Bt(”za B® <1,...,BW gk—l)

and Theorem 4.3.1 to derive the limit distribution of the vector of upper order
statistics (X1 n(z),-- -, Xk,n(z)). This, however, leads to quite complicated
formulae, and so we restrict ourselves to some particular cases.

First we study the limit distribution of a single order statistic X n (¢
for fixed k € N. For this reason we suppose that F' € MDA(H), i.e. (4.28) is
satisfied for appropriate constants ¢,, > 0 and d,, € R. From Proposition 3.3.2
we know that (4.28) is equivalent to

lim nF (c,z +d,) = —InH(z), =z€R. (4.34)

n—roo

Under (4.34) it follows for every k € N that the relation

lim P(c,! (Xpn —dy) <z) = IW(—InH(2)), r€R,

n—oo

holds, where I';, denotes the incomplete gamma function; see Corollary 4.2.4
and Example 4.2.5. A similar statement is true for randomly indexed upper
order statistics.

Theorem 4.3.2 (Limit distribution of the kth upper order statistic in a ran-
domly indexed sample)

Suppose that N (t)/t £ Z holds for a non—negative rv Z with df Fz and that
(4.34) is satisfied. Then

lim P (C;l (Xk,N(n) — dn) S l‘)

n—r 00

= E[I(-lmH?(2))], =€k

Proof. We use the same ideas as in the proof of Theorem 4.3.1. Write

N(n)
Bn = Z [{Xj>cnx+dn}~

j=1

Conditioning on N(n), we find that
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P (e (Xp,n(m) —dn) <7 | N(n))

— P(B,<k-1|N(n)

k—1

= Z (NEn)) (F (chw + dn))N(n)_i (F (chz + dn))i

=l

k-1 i
= (1—%013(1))2:.l (N(n) (nf(cnx+dn))> X

£ q! n
=0

xexp{NﬁLn) (nin (1 _F(cnx+dn)))}

v

Taking expectations in the limit relation above, we arrive at (4.35). O

Example 4.3.3 Let N = (N(t));>0 be a homogeneous Poisson process with
intensity 1 and let Z be a positive rv independent of N. Then

N(t)=N(zt), t=0,

defines a so—called mized Poisson process. The latter class of processes has
been recognized as important in insurance; see Section 1.3.3 and Grandell
[284]. Notice that, conditionally upon Z, N is a homogenous Poisson process
with intensity Z. Hence, by the SLLN for renewal counting processes (The-

orem 2.5.10),
P(@—)Z Z) =1 as.

Thus taking expectations on both sides,
N(t
P (% — Z) =1.

This shows that Theorems 4.3.1 and 4.3.2 are applicable to the order statistics
of a sample indexed by a mixed Poisson process. a

For practical purposes, it often suffices to consider processes (N (t)) satisfying

NO R

, A (4.36)
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for some constant A > 0. For example, the renewal counting processes, includ-
ing the important homogeneous Poisson process, satisfy (4.36) under general
conditions; see Section 2.5.2. Analogous arguments to those in Section 4.2
combined with the ones in the proof of Theorem 4.3.1 lead to the following;:

Theorem 4.3.4 (Limit distribution of a vector of randomly indexed upper
order statistics)

Assume that (4.36) holds for a positive constant X and that F' € MDA(H) for
an extreme value distribution H such that (4.28) is satisfied. Then

- d i
(Cnl (Xl,N(n) _dn))iZL...,k — (Y)\( ))i=1,...,k )
where (Yk(l)7 ey Y;k)) denotes the k—dimensional extremal wvariate corre-

sponding to the extreme value distribution H. In particular,

lim P (c;! (Xgn—d,) <) =T (~InHz)), z€R. O

n—r00

Notes and Comments

The limit distribution of randomly indexed maxima and order statistics under
general dependence assumptions between (N(¢)) and (X,,) has been studied
in Galambos [249] and in Barakat and El-Shandidy [42]. General randomly
indexed sequences of rvs have been considered in Korolev [404]; see also the
list of references therein.

Randomly indexed maxima and order statistics occur in a natural way
when one is interested in the extreme value theory of the individual claims in
an insurance portfolio up to time ¢. Randomly indexed order statistics are of
particular interest for reinsurance where they occur explicitly as quantities in
reinsurance treaties, as for instance when a reinsurer will cover the k largest
claims of a company over a given period of time. This issue is discussed in
more detail in Section 8.7.

4.4 Some Extreme Value Theory for Stationary
Sequences

One of the natural generalisations of an iid sequence is a strictly stationary
process: we say that the sequence of rvs (X,,) is strictly stationary if its
finite—dimensional distributions are invariant under shifts of time, i.e.

d
(th yee - 7Xtm,) = (th-i-hv s 7Xtm+h)
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for any choice of indices t; < --- < t,,, and integers h; see also Appendix A2.1.
It is common to define (X,) with index set Z. We can think of (X,,) as
a time series of observations at discrete equidistant instants of time where
the distribution of a block (X¢, X¢41,...,X¢+n) of length h is the same for
all integers t.

For simplicity we use throughout the notion of a “stationary” sequence
for a “strictly stationary” one. A strictly stationary sequence is naturally also
stationary in the wide sense or second order stationary provided the second
moment of X = Xy is finite, i.e. EX,, = EX for all n and cov(X,, X,,) =
cov(Xo, X|n—pm) for all n and m.

It is impossible to build up a general extreme value theory for the class
of all stationary sequences. Indeed, one has to specify the dependence struc-
ture of (X,). For example, assume X,, = X for all n. This relation defines
a stationary sequence and

P(M,<z)=P(X<z)=F(z), ze€R.

Thus the distribution of the sample maxima can be any distribution F. This
is not a reasonable basis for a general theory.

The other extreme of a stationary sequence occurs when the X, are mu-
tually independent, i.e. (X,,) is an iid sequence. In that case we studied the
weak limit behaviour of the upper order statistics in Section 4.2. In partic-
ular, we know that there exist only three types of different limit laws: the
Fréchet distribution @, the Weibull distribution ¥, and the Gumbel distri-
bution A (Fisher—Tippett Theorem 3.2.7). The dfs of the type of @,,¥,, A
are called extreme value distributions. In this section we give conditions on
the stationary sequence (X, ) which ensure that its sample maxima (M,,)
and the corresponding maxima (M,,) of an iid sequence (X,,) with common
df F(z) = P(X < z) exhibit a similar limit behaviour. We call (X,,) an
itd sequence associated with (X,,) or simply an associated iid sequence. As
before we write F' € MDA(H) for any of the extreme value distributions H

if there exist constants ¢, > 0 and d,, € R such that c;l(Mn —dy) Aom.
For the derivation of the limit probability of P(M,, < u,) for a sequence of
thresholds (u,) we made heavy use of the following factorisation property:

P (1\7” < un> " ()? < un> (4.37)

= exp{ntn(1-P (X >u.)))

~ exp{—nF (un)} .

In particular, we concluded in Proposition 3.1.1 that, for any 7 € [0, <],
P(M, < u,) — exp{—7} if and only if nF(u,) — 7 € [0, 0]. It is clear that
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we cannot directly apply (4.37) to maxima of a dependent stationary se-
quence. However, to overcome this problem we assume that there is a specific
type of asymptotic independence:

Condition D(u,): For any integers p, ¢ and n
1<ip < <ip<j1<-<j,<n

such that j1 —ip > 1 we have

‘P < max X; < un> - P (maxXi < un) P <maxXi < un) ‘ <apy,
1€EAL1UAS 1€A; i€ Ao

where Ay = {i1, ..., ip}, Ao = {j1,...,Jq} and an; — 0 as n — oo for some
sequence | = 1,, = o(n).

This condition as well as D’(u,) below and their modifications have been
intensively applied to stationary sequences in the monograph by Leadbetter,
Lindgren and Rootzén [418]. Condition D(u,,) is a distributional mixing con-
dition, weaker than most of the classical forms of dependence restrictions. A
discussion of the role of D(u,) as a specific mixing condition can be found
in Leadbetter et al. [418], Sections 3.1 and 3.2. Condition D(u,,) implies, for
example, that

P (M, < uy)=P" (Mp < us) +o(1) (4.38)

for constant or slowly increasing k. This relation already indicates that the
limit behaviour of (M,) and its associated sequence (M, ) must be closely
related. The following result (Theorem 3.3.3 in Leadbetter et al. [418]) even
shows that the classes of possible limit laws for the normalised and centred

sequences (M,,) and (M,,) coincide.

Theorem 4.4.1 (Limit laws for maxima of a stationary sequence)

Suppose ¢, (M, — d,) L. for some distribution G and appropriate con-
stants ¢, > 0, d, € R. If the condition D(c,x + dy) holds for all real x, then
G is an extreme value distribution.

Proof. Recall from Theorems 3.2.2, 3.2.3 and from Definition 3.2.6 that G
is an extreme value distribution if and only if G is max—stable. By (4.38),

P(Mu, < cpx+d,) = PF(M,<c,x+d,)+0(l) — GFx)
for every integer k > 1, and every continuity point  of G. On the other hand,

P (M, <corx+dng) —  G(x).
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Now we may proceed as in the proof of Theorem 3.2.2 to conclude that G is
max—stable. O
Remark. 1) Theorem 4.4.1 does not mean that the relations ¢, ! (M, —d.,) 4

G and c;l(ﬁn —dp) % H hold with G = H. We will see later that G is
often of the form H? for some 6 € [0, 1] (see for instance Example 4.4.2 and
Section 8.1); 6 is then called extremal indez. O

Thus max—stability of the limit distribution is necessary under the conditions
D(cpz+d,), © € R. Next we want to find sufficient conditions for convergence
of the probabilities P(M,, < u,) for a given threshold sequence (u,,) satisfying

nF (u,) =7 (4.39)

for some 7 € [0, 00). From Proposition 3.1.1 we know that (4.39) and P(M,, <
u,) — exp{—7} are equivalent. But may we replace (M,) by (M,) un-
der D(u,)? The answer is, unfortunately, NO. All one can derive is

liminf P (M,, <uy,) >e 7 ;

n—oo

see the proof of Proposition 4.4.3 below.

Example 4.4.2 (See also Figure 4.4.5.) Assume that (Y,,) is a sequence of
iid rvs with df v/F for some df F. Define the sequence (X,,) by

X, =max(V,,Y,11), neN.

Then (X,,) is a stationary sequence and X, has df F for all n > 1. From this
construction it is clear that maxima of (X,) appear as pairs at consecutive
indices.

Now assume that for 7 € (0, 00) the sequence u,, satisfies u, 1 zp (zp is the
right endpoint of F') and (4.39). Then F'(u,) — 1 and

nP (Y1 >un):n(1— F(un)):%—)%.

Hence, by Proposition 3.1.1,
P(M, <u,) = P(max(Yy,...,Y,,Y,11) <u,)
= P(max(Yy,...,Yn) <up) F (un)
- e /2,

Condition D(u,) is naturally satisfied: if A; and As are chosen as in D(u,,)
and [ > 2, then we can take o, ; = 0. O
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This example supports the introduction of a second technical condition.
Condition D'(u,): The relation

[n/k]
lim limsup n Z P(X1>up,X; >un) =0.

k—oo n—soco -
Jj=2

Remark. 2) D'(u,) is an “anti—clustering condition” on the stationary se-
quence (X,,). Indeed, notice that D'(u,) implies

[n/K]
E Z I{Xi>un7Xj>'U«n,} < [n/k] Z EI{X1>U117Xj>'U4n,} -0,
1<i<< /K] s

so that, in the mean, joint exceedances of u,, by pairs (X;, X;) become very
unlikely for large n. O

Now we have introduced the conditions which are needed to formulate the
following analogue of Proposition 3.1.1; see Theorem 3.4.1 in Leadbetter et
al. [418]:

Proposition 4.4.3 (Limit probabilities for sample maxima)
Assume that the stationary sequence (X,) and the threshold sequence (u,)
satisfy D(uy), D' (uy,). Suppose T € [0,00). Then condition (4.39) holds if and

only if
lim P (M, <u,)=e 7. (4.40)

n—r 00
Proof. We restrict ourselves to the sufficiency part in order to illustrate the
use of the conditions D(u,) and D'(u,). The necessity follows by similar
arguments.
We have, for any [ > 1,
1
SP(Xi>un)— D> P(Xi>un, X; > up)
i=1 1<i<j<I

l (4.41)

< P(Mi>u,) <Y P(Xi>up).
=1
Exploiting the stationarity of (X,,) we see that

l
S P(Xi>u,) = LF(un),

=1

> P(Xi>upX;>u,) < 1Y P(X1>un,X; > u,).

1<i<j<l j=2
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Combining this and (4.41) for [ = [n/k] ([x] denotes the integer part of z)
and for a fixed k, we derive upper and lower estimates for P(Mp, 5 < un):

1-— [n/k]F(un) < P (M[n/k:] < un)
[n/k]
< 1=[n/KF (un) + [n/K] D> P (X1 > tn, Xj > )

j=2
From (4.39) we immediately have
n/k)F (u,) = 7/k, n— oo,

and, by condition D'(u,),

[n/k]
lim sup [n/k] E P(X1>up,X; >un) =0(1/k), k—o0.

Thus we get the bounds

1— = < liminf P (M < uy) < limsup P (Mpy g < ) < 1= 7 +0(L/k).

n—roo n—oo

This and relation (4.38) imply that

(1—£)k < liminf P (M, < u,)

n—oo
- k
< limsup P (M, <u,) < (1 Ty 0(1/k))
n—oo k

Letting £ — oo we see that

lim P (M, <u,)=e 7.

n— oo

This concludes the proof. |
Example 4.4.4 (Continuation of Example 4.4.2)
We observed in Example 4.4.2 that condition (4.39) implies P(M, < u,) —
exp{—7/2}. We have already checked that D(u,) is satisfied. Thus D'(uy)
must go wrong. This can be easily seen: since X; and X are independent for
7 > 2 we conclude that

[n/k]

n Z P (X1 > un, X; > up)

j=2

= nP (X1 > up, X2 > uy,) +n([n/k] — 2)P? (X1 > u,)

= nP (max(Y7,Y2,Y3) > u,) + 7°/k + o(1)

= n(1-F(un) +7°/k+o(l), n—oo.
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Figure 4.4.5 A realisation of the sequences (Yy) (top) and (X,) (bottom) with F
standard exponential as discussed in Examples 4.4.2 and /.4.4. Extremes appear in
clusters of size 2.

We have
n (1= F* (uy)) = nF (un) (14 F? (un) + F(uy)) = 37

Thus condition D'(u, ) cannot be satisfied. The reason for this is that maxima
in (X,,) appear in clusters of size 2. Notice that

n
E (Z I{Xi>umxi+1>un}> =nP (X} > tn, Xy > u,) = 37 >0,
=1

so that in the long run the expected number of joint exceedances of u, by
the pairs (X;, X;+1) stabilises around a positive number. O

Proceeding precisely as in Section 3.3 we can now derive the limit distribution
for the maxima M,,:

Theorem 4.4.6 (Limit distribution of maxima of a stationary sequence)
Let (X,,) be a stationary sequence with common df F € MDA(H) for some
extreme value distribution H, i.e. there exist constants ¢, > 0, d, € R such
that

lim nF (c,x+d,) = —-InH(z), z€R. (4.42)

n— oo
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Assume that for x € R the sequences (uyn) = (cpx + dy) satisfy the condi-
tions D(uy,) and D'(u,). Then (4.42) is equivalent to each of the following
relations:

(M, —d,) S H, (4.43)
MM, —dy) S H. (4.44)

Proof. The equivalence of (4.42) and (4.44) is immediate from Proposi-
tion 3.3.2. The equivalence of (4.42) and (4.43) follows from Proposition 4.4.3.
d

From the discussion above we are not surprised about the same limit behav-
iour of the maxima of a stationary sequence and its associated iid sequence;
the conditions D(c,x + d,,) and D'(c,x + d,) force the sequence (M) to
behave very much like the maxima of an iid sequence. Notice that Theo-
rem 4.4.6 also ensures that we can choose the sequences (c,) and (d,,) in the
same way as proposed in Section 3.3.

Thus the problem about the maxima of a stationary sequence has been
reduced to a question about the extremes of iid rvs. However, now one has
to verify the conditions D(c,x + d,,) and D’(c,z + d,,) which, in general,
is tedious. Conditions D(u,) and D'(u,) have been discussed in detail in
the monograph by Leadbetter et al. [418]. The case of a Gaussian station-
ary sequence is particularly nice: one can check D(u,) and D’'(u,) via the
asymptotic behaviour of the autocovariances

v(h) = cov (Xo, Xp) , h>0.

The basic idea is that the distributions of two Gaussian vectors are “close”
to each other if their covariance matrices are “close”. Leadbetter et al. [418]
make this concept precise by a so—called normal comparison lemma (their
Theorem 4.2.1), a particular consequence of which is the estimate

|P (X, <ty .o, Xy < un) — 98 (uy))|

n _u2
< constn ~v(h exp{in}
2 Pl Ty

for 1 <i; < --- < i < n. Here (X,,) is stationary with marginal df the stan-
dard normal @, and it is assumed that sup,~, |y(h)| < 1. In particular,

|P (M, < up) —P" (up)| < const nhZ::I |v(h)|exp {T‘ihﬂ} . (4.45)

Now it is not difficult to check conditions D(u.,,) and D'(u,). For details see
Lemma 4.4.1 in Leadbetter et al. [418]:
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Lemma 4.4.7 (Conditions for D(u,) and D'(u,) for a Gaussian stationary
sequence)

Assume (X,,) is stationary Gaussian and let (u,) be a sequence of real num-
bers.

(a) Suppose the rhs in (4.45) tends to zero as n — 0o and sup,~, |y(h)| < 1.
Then D(u,,) holds. -

(b) If in addition limsup,,_, . n®(u,) < oo then D'(u,) holds.

(¢) Ify(n)Inn — 0 and limsup,,_, ., n®(u,) < oo then both conditions D (u.,)
and D'(u,) are satisfied. O

Now recall that the normal distribution @ is in the maximum domain of
attraction of the Gumbel law A; see Example 3.3.29. Then the following is
a consequence of Lemma 4.4.7 and of Theorem 4.4.6. The constants ¢, and
d, are chosen as in Example 3.3.29.

Theorem 4.4.8 (Limit distribution of the maxima of a Gaussian stationary
sequence)
Let (X)) be a stationary sequence with common standard normal df ®. Sup-
pose that

lim y(n)lnn =0.

n—oo
Then

Inl In4
Valnn (M, = v2Inn+ =TT 4y
2(2Inn)t/2

O

The assumption y(n)lnn — 0 is called Berman’s condition and is very weak.
Thus Theorem 4.4.8 states that Gaussian stationary sequences have very
much the same extremal behaviour as Gaussian iid sequences.

Example 4.4.9 (Gaussian linear processes)
An important class of stationary sequences is that of the linear processes (see
Section 5.5 and Chapter 7), which have an infinite moving average represen-
tation .

Xo= > ¥jZnj, n€L, (4.46)

j=—00

where (Z,)nez is an iid sequence and ). 7 < oo. We also suppose that
EZ; =0and 0% = var(Z;) < oo. If (Z,,) is Gaussian, so is (X,,). Conversely,
most interesting Gaussian stationary processes have representation (4.46); see
Brockwell and Davis [92], Theorem 5.7.1, in particular, the popular (causal)
ARMA processes; see Example 7.1.1. In that case the coefficients v; decrease
to zero at an exponential rate. Hence the autocovariances of (X,), i.e.
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v(h) = E(XoXn) =0 Y jthjen, h>0,

j=—o00

decrease to zero exponentially as h — oo. Thus Theorem 4.4.8 is applicable
to Gaussian ARMA processes.
Gaussian fractional ARIMA(p, d, q) processes with p,¢ > 1,d € (0,1), enjoy
a (causal) representation (4.46) with ¢; = j9"'L(j) for a slowly varying
function L; see Brockwell and Davis [92], Section 13.2. It is not difficult to
see that the assumptions of Theorem 4.4.8 also hold in this case. Fractional
ARIMA processes with d € (0,0.5) are a standard example of long memory
processes where the sequence v(h) is not supposed to be absolutely summable.
This shows that the restriction v(n)lnn — 0 is indeed very weak in the
Gaussian case.
In Section 5.5 we will study the extreme value behaviour of linear processes
with subexponential noise (Z,) in MDA(A) or MDA(®,,). We will learn that
the limit distributions of (M,,) are of the form HY for some 6§ € (0, 1] and
an extreme value distribution H. This indicates the various forms of limit
behaviour of maxima of linear processes, depending on their tail behaviour.
O

Notes and Comments

Extreme value theory for stationary sequences has been treated in detail in
Leadbetter et al. [418]. There one can also find some remarks on the history
of the use of conditions D(u,) and D’(u,). A very recommendable review
article is Leadbetter and Rootzén [419].

In summary, the conditions D(u,) and D'(u,) ensure that the extremes
of the stationary sequence (X,) have the same qualitative behaviour as
the extremes of an associated iid sequence. The main problem is to verify
conditions D(u,) and D’(u,). For Gaussian (X,,) this reduces to showing
Berman’s condition, namely that v(n) = cov(Xo, X,) = o(1/lnn). It cov-
ers wide classes of Gaussian sequences, in particular ARMA and fractional
ARIMA processes. We mention that Leadbetter et al. [418] also treated the
cases y(n)Ilnn — ¢ € (0, c0].

In Section 5.3.2 we will come back to stationary sequences satisfying the
conditions D(u,) and D'(u,). There we will also study the behaviour of the
upper order statistics.
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An Approach to Extremes via Point Processes

Point process techniques give insight into the structure of limit variables and
limit processes which occur in the theory of summation (see Chapter 2), in
extreme value theory (see Chapters 3 and 4) and in time series analysis (see
Chapter 7).

One can think of a point process N simply as a random distribution of
points X; in space. For a given configuration (X;) and a set A, N(A) counts
the number of X; € A. It is convenient to imagine the distribution of N as
the probabilities

P(N(A) =ki,...,N(An) = km)

for all possible choices of nice sets A;,..., A,, and all non—negative integers
kl, ey ]{Jm

The most important point processes are those for which N(A) is Poisson
distributed. This leads to the notion of a Poisson random measure N (see
Definition 5.1.9) as a generalisation of the classical (homogeneous) Poisson
process on [0, 00). Poisson random measures are basic for the understanding
of links between extreme value theory and point processes; they occur in
a natural way as weak limits of sample point processes N,,, say. This means,
to over—simplify a little, that the relations

(No(A1), .., Nu(An)) 5 (N (A1), ..., N(4n))

hold for any choice of sets A;. Kallenberg’s Theorem 5.2.2 gives surprisingly
simple conditions for this convergence to hold.
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These are the fundamental notions which we need throughout. They are
made precise in Sections 5.1 and 5.2. The interrelationship between extremes,
point processes and weak convergence is perhaps best illustrated by the point
process of exceedances of a given threshold by a sequence of rvs; see Exam-
ple 5.1.3 and Section 5.3. Then the reader is urged to go through the beautiful
results on exceedances, limits of upper order statistics, joint convergence of
maxima and minima, records etc. in order to get a general impression about
the method; see Sections 5.4 and 5.5. Point process methods yield a unified
and relatively easy approach to extreme value theory. In contrast to the clas-
sical techniques as used in Chapter 3 and 4, they do allow for the treatment
of extremes of sequences more general than iid in a straightforward way.

In this chapter we need some tools from functional analysis and from
measure theory as well as certain arguments from weak convergence in met-
ric spaces; see Appendix A2. In our presentation we try to reduce these
technicalities to a minimum, but we cannot avoid them completely.

Our discussion below closely follows Resnick [530].

5.1 Basic Facts about Point Processes

5.1.1 Definition and Examples

In this section we are concerned with the question

What is a point process, how can we describe its distribution,
and what are simple examples?

For the moment, consider a sequence (X,,) of random vectors in the so—called
state space E and define for A C E

N(A) =card{i: X; € A},

i.e. N(A) counts the number of X; falling into A. Naturally, N(A) = N(4,w)
is random for a given set A and, under general conditions, N(-,w) defines a
random counting measure with atoms X, on a suitable g—algebra £ of subsets
of E. This is the intuitive meaning of the point process N.

For our purposes, the state space E, where the points live, is a subset
of a finite-dimensional Euclidean space possibly including points with an
infinite coordinate, and E is equipped with the o—algebra £ of the Borel sets
generated by the open sets. It is convenient to write a point process using
Dirac measure €, for x € E:

1 if xzeA,
0 if zd&A,

Aef.
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Figure 5.1.1 A configuration of random points X; in Ry x Ry. The number of
points that fall into the set A constitute the counting variable N(A); in this case
N(A,w) =9.

For a given sequence (z;);>1 in E,

m(A)=> e, (A)= 3 1=card{i:z; € A}, A€€,
=1

wx; EA

defines a counting measure on £ which is called a point measure if m(K) < oo
for all compact sets K € E. Let M,(E) be the space of all point measures
on E equipped with an appropriate o—algebra M, (E).

Definition 5.1.2 (Definition of a point process)
A point process on E is a measurable map

N :[2,F,P] = [M,(E), M,(E)] . O

Remarks. 1) The o-algebra M,(E) contains all sets of the form {m €
M,(E) : m(A) € B} for A € £ and any Borel set B C [0, 00], i.e. it is the
smallest o—algebra making the maps m — m(A) measurable for all A € £.

2) A point process is a random element or a random function which assumes
point measures as values. It is convenient to think of a point process as a
collection (IV(A)) ace of the extended rvs N(A). (An extended rv can assume
the value oo with positive probability.). Point processes are special random
measures; see for instance Kallenberg [365].
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3) The point processes we are interested in can often be written in the form

oo
N = E £X;
=1

for a sequence (X,) of d-dimensional random vectors. Then, for each w € (2,
N(Aw) =D ex,w(4), A€&,
i=1

defines a point measure on &.

4) Assume that m = Y .2, e,, is a point measure on E. Let (y;) be a sub-
sequence of (z;) containing all mutually distinct values (z;) with no repeats.
Define the multiplicity of y; as

n,=card{j:j>1,y; =x,}.
Then we may write

oo
m = E NiEy; -
i=1

If n; = 1 for all ¢, then m is called a simple point measure, and a multiple
one, otherwise. Analogously, if the realisations of the point process N are
only simple point measures, then N is a simple point process, and a multiple
one, otherwise. Alternatively, a point process N is simple if

P(N{z}) <1,z € E)=1. O

Example 5.1.3 (Point process of exceedances)

One of the point processes closely related to extreme value theory is the point
process of exceedances: let u be a real number and (X,,) a sequence of rvs.
Then the point process of exceedances

No() =Y 1) ixi5uy, n=1,2,..., (5.1)
=1

with state space E = (0, 1] counts the number of exceedances of the threshold
u by the sequence X1,...,X,,. For example, take the whole interval (0, 1].
Then

N,(0,1] = card{i:0<n'i<1 and X;>u}
= card{i<n:X;,>u}.

Here and in the sequel we write for a measure p
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n(a, b = u((a,b)), wla,b] = u(la,b]) ete.

We also see immediately the close link with extreme value theory. For exam-
ple, let X ,, denote the kth largest order statistic of the sample X,..., X,.
Then

{N,(0,1] =0} = {card{i <n:X;>u}=0}
= {None of the X;, i <n, exceeds u}
= {max(Xy,...,X,) <u}

{N,(0,1] <k} = {card{i <n:X,>u} <k}

= {Fewer than k among the X;, i <n, exceed u}
= {The order statistic X} ,, does not exceed u}
= {Xk,n < U} .

We notice that the point process of exceedances can be written in the (perhaps
more intuitively appealing) form

No() =D enrix, (), n=1,2,..., (5.2)
=1

with two—dimensional state space E = (0,1]N (u, 00). In our presentation we
prefer version (5.1) on E = (0,1], with the exception of Section 5.5.1. The
advantage of this approach is that weak convergence of (5.1) can be dealt with
by simpler means than for (5.2); compare for instance the difficulty of the
proofs in Sections 5.3 and 5.5.1. In Section 5.3 our interest will focus on the
point process of exceedances for a sequence of non—decreasing thresholds u =
u, which we will choose in such a way that (V,) converges weakly, in the
sense of Section 5.2, to a Poisson random measure; see Definition 5.1.9 below.

O

Example 5.1.4 (Renewal counting process)
Let (Y;) be a sequence of iid positive rvs, T, = Y; +--- + Y, n > 1. Recall
from Section 2.5.2 the renewal counting process generated by (Y;):

N(t)=card{i:T; <t}, t>0.

To this process we can relate the point process

]\T(A):io:é‘Ti(A)7 Aeg,
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X1
u
X 1
XlO
X, Xe
X, X,
X3 | Xy
X,
NI, Iz T, Ts1s T Ty Ty Tho

Figure 5.1.5 Visualisation of the point process of exceedances corresponding to the
random sums from Erample 5.1.6.

with state space E = [0, 00). Notice that for A = [0, ¢] we obtain
N(t) = N[0,¢], t>0.

In this sense, every renewal counting process corresponds to a point process.
The point process defined in this way is simple since 0 < T} < Ty < - - with
probability 1. Recall that a homogeneous Poisson process (see Example 2.5.2)
is a particular renewal counting process with exponential rvs Y;. Hence a
Poisson process defines a “Poisson point process”. a

Example 5.1.6 (Random sums driven by a renewal counting process)
In Chapter 1 and Section 2.5.3 we considered random sums driven by a
renewal counting process:

N(#)
St =Y X;, t>0.
=1

Here (N(t)) is a renewal counting process as defined in Example 5.1.4 and
(X;) is an iid sequence independent of (N(t)). Recall from Chapter 1 that
random sums are closely related to the renewal risk model in which we can
interpret the rv X; as claim size arriving at time T;. A point process related
to (S(t)) is given by
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(e}

N(A) = e x,)(4), A€E&,

=1

with state space E = [0,00) x R. For example, in the insurance context

N ((a,b] x (u,00)) = card{i:a < T; < b, X; > u}
counts the number of claims arriving in the time interval (a, b] and exceeding
the threshold value u. Notice that N is very close in spirit to the point process
of exceedances from Example 5.1.3. O

5.1.2 Distribution and Laplace Functional

The realisations of a point process IV are point measures. Therefore the dis-
tribution or the probability law of N is defined on subsets of point measures:

Py(A)=P(N € A), Aec M,E).

This distribution is not easy to imagine. Fortunately, the distribution of N
is uniquely determined by the family of the distributions of the finite—
dimensional random vectors

for any choice of Ay, ..., A, € € and m > 1; see Daley and Vere—Jones [153],
Proposition 6.2.1I1. The collection of all these distributions is called the finite—
dimensional distributions of the point process. We can imagine the finite—
dimensional distributions much more easily than the distribution Py itself.

Indeed, (5.3) is a random vector of integer—valued rvs which is completely
given by the probabilities

P(NA)=k,....,.NApn)=kn), k>0, i=1,...,m.
From a course on probability theory we know that it is often convenient to
describe the distribution of a rv or of a random vector by some analytical
means. For example, one uses a whole class of transforms: chfs, Laplace—

Stieltjes transforms, generating functions etc. A similar tool exists for point
processes:

Definition 5.1.7 (Laplace functional)
The Laplace functional of the point process N is given by

Un(g) = Eexp{—/Eng} (5.4)

/MP(E> P {_ /E‘g(x) dm(x)} dPy(m).

It is defined for non—negative measurable functions g on the state space E.O1
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Remarks. 1) The Laplace functional ¥y determines the distribution of a
point process completely; see Example 5.1.8 below.

2) Laplace functionals are an important tool for discovering the properties
of point processes; they are particularly useful for studying the weak conver-
gence of point processes; see Section 5.2.

3) The integral [}, gdN in (5.4) is well defined as a Lebesgue-Stieltjes integral.
Write N = Y7, ex, for random vectors with values in E; then

[Eng = Zg(Xi)-

In particular, [, dN = [, 14 dN = N(A). O

Example 5.1.8 (Laplace functional and Laplace transform)
To get an impression of the use of Laplace functionals we consider the special
functions

g=zI,, z>0, Acf.

Then
D) = Bexp {—/Eng} — Bexp{—2N(4)},

so that the notion of the ordinary Laplace transform of the rv N(A) is em-
bedded in the Laplace functional. Now suppose that A;,...,A,, € £. If we
choose the functions

21 ZO,...7Zm>0,

m ) -

g=z1da, + -+ 2z2n 14

then we obtain the joint Laplace transform of the finite—dimensional distri-
butions, i.e. of the random vectors (5.3). From the remarks above we learnt
that the finite-dimensional distributions determine the distribution of N. On
the other hand, the finite—dimensional distributions are uniquely determined
by their Laplace transforms, and hence the Laplace functional uniquely de-
termines the distribution of V. O

5.1.3 Poisson Random Measures

Point processes are collections of counting variables. The simplest and per-
haps most useful example of a counting variable is binomially distributed:
B, =" Iix,ca,y foriid X; counts the number of “successes” {X; € A}
among Xi,...,X,, and p, = P(X; € A,) is the “success probability”. Then
Poisson’s theorem tells us that B, = Poi(X) provided p,, ~ A\/n. This simple
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limit result also suggests the following definition of a Poisson random mea-
sure which occurs as natural limit of many point processes; see for instance
Section 5.3.

Let u be a Radon measure on &, i.e. u(A) < oo for compact sets A C E.

Definition 5.1.9 (Poisson random measure (PRM))

A point process N is called a Poisson process or a Poisson random measure
with mean measure p (we write PRM(u)) if the following two conditions are
satisfied:

(a) For A€ &,

L (A"
P(N(A)=k)={ © (A)uk! if p(d) <oo sy

0 if w(A) = o0,

(b) For any m > 1, if A1,..., Ay are mutually disjoint sets in £ then
N(A1),...,N(A,) are independent rvs. O

Remark. The name mean measure is justified by the fact that EN(A) =
wu(A). Since a Poisson distribution is determined by its mean value, it follows

from the above definition that PRM () is determined by its mean measure p.
O

Example 5.1.10 (Homogeneous PRM)

Recall the notion of a homogeneous Poisson process (N(t));>o with inten-
sity A > 0 from Example 2.5.2. It is a process with stationary, independent
increments such that N (¢) is Poi(At) distributed. Hence

P(N(t):k):e—“()‘]%,)k, k=0,1,....

Since (N(t))¢>o is a non-decreasing process the construction
N(s,t]=N(#)—N(s), 0<s<t<oo,

and the extension theorem for measures define a point process N on the
Borel sets of E = [0, 00). The stationary, independent increments of (N (t)):>o0
imply that

P(N(Al) :klw-'vN(Am) :km)

o QDY AR D
k! k!

for any mutually disjoint A; and integers k; > 0. Here | - | denotes Lebesgue
measure on [0,00). This relation is immediate for disjoint intervals A;, and



228 5. An Approach to Extremes via Point processes

in the general case one has to approximate the disjoint Borel sets A; by in-
tervals.

Alternatively, we saw from Example 5.1.4 that a homogeneous Poisson
process with intensity A can be defined as a simple point process N =
Ezl er,, where T; = Y7 + --- + Y; for iid exponential rvs Y; with mean
value 1/A.

Notice that N has mean measure

u(A):)\|A|:/\/dx7 A€€E. m
A

Now suppose that N is PRM()| - |) with state space E C R’ (R =
R U {—00,00}), where A >0 and | - | denotes Lebesgue measure on E. As
a generalisation of the homogenous Poisson process on [0, c0) we call N a ho-
mogeneous PRM or homogeneous Poisson process with intensity A. Moreover,
if the mean measure p of a PRM is absolutely continuous with respect to
Lebesgue measure, i.e. there exists a non—negative function f such that

ua) = [ fayan, Aee,

then f is the intensity or the rate of the PRM.
Alternatively, we can define a PRM(u) by its Laplace functional:

Example 5.1.11 (Laplace functional of PRM(u))

Py (g) = exp {— [ (=) du(x)} (5.5)

for any measurable g > 0. Formula (5.5) is a consequence of the more general
Lemma 5.1.12 below. O

Lemma 5.1.12 Let N be PRM(u) on E C R”. Assume that the Lebesgue
integral [ (exp{f(x)} —1)du(x) exists and is finite. Then [ |f|dN < oo a.s.

and
IN(f):Eexp{/Ede} :exp{—/E(l—ef(x))du(x)} :

Proof. For A € £ with u(A) < oo write f = I4. Then

In(f) = Eexp{ / de}zEexp{N(A)}

= S (u(A))* o—(A) — g=n(A)(1=e)

_ exp{_/E@—eﬂw))du(x)}.
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For .
f:ZZiIAiv Z1207 7;:17"'7m7 (56)
=1

and disjoint Ay, ..., A,, we can use the independence of N(Ay),...,N(A4,,):
Eexp {Z zi N (Ai)}
=1
H exp {—/ (1 — e IAi) du(:r)}
=1 E
exp {—/ (1 - ef(z)) du(x)} .
E

General non—negative f are the monotone limit of step functions (f,) as in
(5.6). Thus, applying the monotone convergence theorem, we obtain

Inv(f) = T}i_{I;oEeXp{/EfndN}
— nli_)rr;oexp{—/E (1—ef"(z)) d,u(x)}
- exp{—/E (1-e/@) d,u(x)} .

Since the right-hand side is supposed to be finite, Eexp{ [, fdN} < oo,
hence [, fdN < o0 a.s.

For negative f one can proceed similarly. For general f, write f = f+ — f—.
Notice that [, fTdN and [, f~dN are independent since E; = {z € E :
f(z) >0} and E_ = {z € E: f(z) < 0} are disjoint. Hence

In(f) = In(fO)In(=f")

_ exp{—/E+ (1 _ef+)du} exp{—/_ (1_e—f*) du}
- exp{—/E(l—ef)d,u}.

This proves the lemma. O

In(f)

PRM have an appealing property: they remain PRM under transformations
of their points.
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Proposition 5.1.13 (Transformed PRM are PRM)

Suppose N is PRM(u) with state space E C R®. Assume that the points of
N are transformed by a measurable map T:E— E', where E' C R"™ for
some m > 1. Then the resulting transformed point process is PRM(M(T_l))
on E', i.e. this PRM has mean measure u(T(-)) = p{z € E : T(x) € -}.

Proof. Assume that N has representation N = > ex,. Then the trans-
formed point process can be written as

(e}

ﬁ = ZE'ZA:(XJ :

=1

We calculate the Laplace functional of N:

U(g) = Eexp{—/’gdﬁ}

= FEexp {— g(f(Xi))}

= Eexp{—/Eg(f)dN}
- exp{—/E@—eg(f(w)))du(x)}
= eof- [ (1) au@ )}

This is the Laplace functional of PRM(u(T1)) on E'; see Example 5.1.11.
(|

Example 5.1.14 Let Iy be the points of a homogeneous Poisson process on
[0, 00) with intensity A and T'(x) = exp{z}. Then N = Y77, ecxpiry is PRM
on [1,00) with mean measure given by

b Inb
ia, ] = / @) =A [ de=An(bja), 1<a<b<oo. (57)
a Ina
It is interesting to observe that the mean measure of the PRM N depends
only on the fraction b/a, so that the mean measure is the same for all intervals
(ca, cb] for any ¢ > 0.
Now assume that the PRM N is defined on the state space R, where its

mean measure is given by (5.7) for all 0 < a < b < cc. Since the distribution
of a PRM is determined via its mean measure it follows that the PRM N(-)
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and N(c-) on R, have the same distribution in M,(R4) for every positive
constant c. O

Example 5.1.15 (Compound Poisson process)

Let (I3) be the points of a homogeneous Poisson process N on [0, 00) with
intensity A > 0 and (&;) be a sequence of iid non—negative integer—valued rvs,
independent of N. Consider the multiple point process

N = Z iery
=1

and notice that

) N(t)
NO,f]=> &er(0,]=Y &, t>0.
=1 =1

This is nothing but a particular (i.e. integer—valued) compound Poisson
process as used for instance in Chapter 1 for the Cramér-Lundberg model.
Therefore we call the point process N a compound Poisson process with in-
tensity A and cluster sizes &. The probabilities 7, = P(& = k), k > 0, are
the cluster probabilities of N.

The point process notion compound Poisson process as introduced above is
perhaps not the most natural generalisation of the corresponding random sum
process. One would like a random measure with property N(O, t] = Zi]\i(lt) &
for iid &; with any distribution. Since N (0,t] could then assume any real
value this calls for the introduction of a signed random measure. For details

we refer to Kallenberg [365].

Compound Poisson processes frequently occur as limits of the point processes
of exceedences of a strictly stationary sequence; see for instance Sections 5.5
and 8.4. O

Notes and Comments

Point processes are special random measures; see Kallenberg [365]. Standard
monographs on point processes and random measures are Cox and Isham
[134], Daley and Vere—Jones [153], Kallenberg [365], Karr [372], Matthes,
Kerstan and Mecke [447], Reiss [527]. Point processes are also treated in
books on stochastic processes; see for instance Jacod and Shiryaev [352],
Resnick [529, 531].

In our presentation we leave out certain details. This does not always
leave the sufficient mathematical rigour. We are quite cavalier concerning
measurability (for instance for point processes) and existence results (for
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instance for PRM), and we are not precise about compact sets in E C Rd. The
disappointed reader is invited to read through Chapters 3 and 4 in Resnick
[530] or to consult the first few chapters in Daley and Vere—Jones [153].

5.2 Weak Convergence of Point Processes

Weak convergence of point processes is a basic tool for dealing with the
asymptotic theory of extreme values, linear time series and related fields. We
give here a short introduction to the topic. First of all we have to clarify:

What does weak convergence of point processes actually mean?

This question cannot be answered at a completely elementary level. Consider
point processes N, N1, N, ... on the same state space £ C Rd. Then we know
from Section 5.1.2 that the distribution of these point processes in M, (E),
the space of all point measures on FE, is determined by their finite—dimensio-
nal distributions. Thus a natural requirement for weak convergence of (N,,)
towards NV would be that, for any choice of “good” Borel sets Ay,...,A,, € £
and for any integer m > 1,

On the other hand, every point process N can be considered as a stochastic
process, i.e. as a collection of rvs N(A) indexed by the sets A € £. Thus N is
an infinite—dimensional object which must be treated in an appropriate way.
A glance at Appendix A2 should convince us that we need something more
than convergence of the finite—dimensional distributions, namely a condition
which is called “tightness” meaning that the probability mass of the point
processes N,, should not disappear from “good” (compact) sets in M,(E).
This may sound fine, but such a condition is not easily verified. For example,
we would have to make clear in what sense we understand compactness. This
has been done in Appendix A2.6 by introducing an appropriate (so—called
vague) metric in M,(E).

Perhaps unexpectedly, point processes are user—friendly in the sense that
tightness follows from the convergence of their finite—dimensional distributi-
ons; see for instance Daley and Vere—Jones [153], Theorem 9.1.VI. Hence we
obtain quite an intuitive notion of weak convergence:

Definition 5.2.1 (Weak convergence of point processes)

Let N, Ny, Na, ... be point processes on the state space E C R equipped with
the o-algebra € of the Borel sets. We say that (N,) converges weakly to N

in M,(E) (we write N, 4 N) if (5.8) is satisfied for all possible choices of
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sets A; € € satisfying P(N(0A;) =0)=1,i=1,...,m, m > 1. (0A denotes
the boundary of A.) O

Assume for the moment that the state space E is an interval (a,b] C R. Con-
vergence of the finite—-dimensional distributions can be checked by surpris-
ingly simple means as the following result shows. Recall the notion of a simple
point process from Remark 4 after Definition 5.1.2, i.e. it is a process whose
points have multiplicity 0 or 1 with probability one.

Theorem 5.2.2 (Kallenberg’s theorem for weak convergence to a simple
point process on an interval)

Let (N,,) and N be point processes on E = (a,b] C R and let N be simple.
Suppose the following two conditions hold:

EN,(A) — EN(A) (5.9)
for all intervals A = (¢,d] with a < ¢ < d <b and
P(N,(B)=0) = P(N(B)=0) (5.10)
for all unions B = UE_, (c;,d;] of mutually disjoint intervals (c;,d;] such that
a<c <d <--<cp<dp <D
and for every k > 1. Then N, 4 N in M,(E). O

Remarks. 1) A result in the same spirit can also be formulated for point
processes on intervals in R?.

2) In Section 5.3 we apply Kallenberg’s theorem to point processes of ex-
ceedances (see also Example 5.1.3) which are closely related to extreme value
theory. a

The Laplace functional (see Definition 5.1.7) is a useful theoretical tool for
verifying the weak convergence of point processes. In much the same way
as the weak convergence of a sequence of rvs is equivalent to the pointwise
convergence of their chfs or Laplace—Stieltjes transforms, so the weak con-
vergence of a sequence of point processes is equivalent to the convergence of
their Laplace functionals over a suitable family of functions g. Specifically,
recall that the real-valued function g has compact support if there exists a
compact set K C E such that g(z) = 0 on K¢, the complement of K. Then
we define

CH(E) = {g:gis a continuous, non-negative function on E

with compact support} .

Now we can formulate the following fundamental theorem; see Daley and
Vere—Jones [153], Proposition 9.1.VII:
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Theorem 5.2.3 (Criterion for weak convergence of point processes via con-
vergence of Laplace functionals)

The point processes (N,,) converge weakly to the point process N in M,(E)
if and only if the corresponding Laplace functionals converge for every
g€ CE(E) asn — oo, i.e.

Ty, (g) :Eexp{—/Engn} — Uy (g) :Eexp{—/Eng} . (5.11)

O

Remark. 3) We mention that (5.11) for every g € C(E) is equivalent
to [, gdN, 4 [z 9dN for every g € C(E). Indeed, if g € C}:(E) then
zg € CE(E), = > 0. Thus (5.11) implies the convergence of the Laplace
transforms of the rvs [ g 9dN, and vice versa. But convergence of the Laplace
transforms of non—negative rvs is equivalent to their convergence in distrib-
ution. O

We consider another class of point processes which is important for applica-
tions. Assume

Ny =) emrig,), n=12,..., (5.12)
=1

where the random vectors &, ; are iid for every n. It is convenient to interpret
n~1i as a scaled (deterministic) time coordinate and &, ; as a scaled (random)

space coordinate.

Theorem 5.2.4 (Weak convergence to a PRM)
Suppose (Ny,) is a sequence of point processes (5.12) with state space Ry x E
and N is PRM(| - | x u), where | -| is Lebesque measure on Ry.. Then

Nn i> N, n— oo,
in Mp,(Ry x E) if and only if the relation
nP(Eny €-) = pu(-), n— oo, (5.13)

holds on £.

Remark. 4) In (5.13), the relation u,, — u denotes vague convergence of the
measures (i, to the measure u on E. For our purposes, F is a subset of R
Typically, E = (0,00] or E = [—00,0]\{0} or E = (—00,20]. In this case,
tn ~ g amounts to showing that p,(a,b] — u(a,b] for all a < b (b = oo
is possible). In the case E = (—o00,00]\{0} the origin must not be included
in (a,b]. A brief introduction to vague convergence and weak convergence
is given in Appendix A2.6. For a general treatment we refer to Daley and
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Vere—Jones [153], Chapter 9, or Resnick [530], Chapter 3. O

Sketch of the proof. We restrict ourselves to the sufficiency part and give
only the basic idea. For a full proof we refer to Resnick [530], Proposition 3.21.
Let g € C(Ry x E) and consider the Laplace functional

bt = Ben{- [ sav,)

FEexp {— ig (n—li7 gm)}
ﬁ (1 - /E (1 —ema(n7h, X)) dP (6,1 < X)) .

=1

Passing to logarithms, making use of a Taylor expansion for ln(1 — z) and
utilising the vague convergence in (5.13) one can show that

“nfy(g) = -Yln (1 - /E (1 - e*g(”‘”’x)) dP (En.1 < x))

= p! Z/E (1 — efg("_li’x)) d[nP (&1 < x)]+o(1)

— / /(l—e*g(s’x)) ds du(x), n— oo.
Ry JE

A glance at formula (5.5) convinces us that the last line in the above display
is just —In@y(g) where N is PRM(| | x ). Now an application of Theo-
rem 5.2.3 yields the result. a

Notes and Comments

Weak convergence of point processes and random measures has been treated
in all standard texts on the topic. We again refer here to Daley and Vere—
Jones [153], Kallenberg [365], Matthes, Kerstan and Mecke [447], and Resnick
[529, 530]. Resnick [530] gives an account of point process techniques particu-
larly suited to extreme value theory. Leadbetter, Lindgren and Rootzén [418]
use point process techniques for extremes of stationary sequences, and they
provide the necessary background from point process theory in their Appen-
dix.

As mentioned above, a rigorous treatment of weak convergence of point
processes requires us to consider them as random elements in an appropriate
metric space. A brief introduction to this topic is given in Appendix A2;
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the general theory can be found for instance in Billingsley [69] or Pollard
[504]. One way to metrize weak convergence of point processes is via vague
convergence of measures; see Appendix A2.6. A rigorous treatment is given
in Daley and Vere—Jones [153], Chapter 9, or Resnick [530], Chapter 3.

Weak convergence of point processes and vague convergence are closely
related to regular variation in ]Ri, see for instance de Haan and Resnick
[299, 300] and Stam [605], also Bingham, Goldie and Teugels [72].

Theorems 5.2.2 and 5.2.4 are the basic tools in Sections 5.3-5.5. Theo-
rem 5.2.2 is slightly more general in the sense that no vague convergence (or
regular variation) assumption on the tails of the underlying dfs is required.
Theorem 5.2.2 has been utilised in the monograph by Leadbetter et al. [418]
on extremes of stationary sequences; see also Section 5.3.2. Theorem 5.2.4
will prove very effective in the case that the underlying sequence of random
points has a special structure which can in some way be relaxed to an iid
sequence, as is the case of linear processes (see Section 5.5) which are special
stationary processes.

Resnick [529], pp. 134-135, gives a short resumé of advantages and dis-
advantages of point process techniques which we cite here in part:

Some Advantages:

(a) The methods are by and large dimensionless. Proofs work just as well
in R? as in R.

(b) Computations are kept to a minimum and are often replaced by con-
tinuity or structural arguments. This makes proofs simpler and more
instructive.

(¢) The methods lend themselves naturally to proving weak convergence in
a function—space setting. Functional limit theorems are more powerful
and informative than the one-dimensional variety. Furthermore, they are
often (despite common prejudices) simpler.

Some Disadvantages:

(a) The methods are not so effective for showing that regular variation is
a necessary condition.

(b) The methods sail smoothly only when all random variables are non—
negative.

(c) The methods rely heavily on continuity. Sometimes this can be seen as an
advantage, as discussed above. But heavy reliance on continuity is also
a limitation in that many questions which deal with quality of conver-
gence (local limit theorems, rates of convergence, large deviations) are
beyond the capabilities of continuity arguments.
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(d) The point process technique cannot handle problems involving normality
or Brownian motion.

(e) Those who prefer analytical methods may not find the approaches de-
scribed here (in [529]) attractive.

(f) Effective use of weak convergence techniques depends on a detailed
knowledge of the properties of the limit processes. Thus it is necessary
to know something about stochastic processes.

Since the second list appears longer than the first, I am compelled to make
some remarks about the disadvantages. Most serious in my view are (a) and
(d). As for (a), there are notable exceptions to the remark that the methods
are not suited to proving necessity. Regarding (d), it is sad that the point
process technique fails miserably in the presence of normality, but other weak
convergence methods often succeed admirably in this case. Disadvantage (d)
is a nuisance, but one can usually avoid the obstacles created by two signs
by using pruning techniques or random indices. As for (f) a method can-
not handle problems for which it is inherently unsuited. The problem raised
in (e) is simply one of taste. As for disadvantage (f), these weak convergence
techniques frequently suggest interesting problems in stochastic processes. So
if (f) were rephrased suitably, it could be moved to the plus column in the
ledger.

5.3 Point Processes of Exceedances

In Example 5.1.3 we introduced the point process of exceedances of a thresh-
old u, by the rvs Xq,..., X,:

No() =Y en1iO x50y, n=12,.... (5.14)
=1

We also indicated the close link with extreme value theory: let X, , <--- <
X1,» denote the order statistics of the sample X,...,X,, and M,, = X 5.
Then

{N.(0,1] = 0}

{M, <un},

(N, (01] <k} = {Xpn<u}. (5.15)

In this section we show the weak convergence of a sequence (N,,) of such point
processes to a homogeneous Poisson process N on the state space E = (0, 1].
The sequence (X,,) is supposed to be iid or strictly stationary satisfying the
assumptions D and D’ from Section 4.4. As a byproduct and for illustrative
purposes we give alternative proofs of the limit results for maxima and upper
order statistics provided in Chapters 3 and 4.
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Figure 5.3.1 Visualisation of the point processes of exceedances of insurance claim
data caused by water, n = 1762 observations. For the threshold w; = 6046 we
chose n/4 data points, correspondingly us = 8880 and n/2, us = 11131 and 3n/4,
us = 13051 and n.

5.3.1 The IID Case

Assume that the X,, are iid rvs and let (u,) be a sequence of real thresholds.
Recall from Proposition 3.1.1 that, for any 7 € [0, o0], the relation P(M,, <
u,) — exp{—7} holds if and only if

nF(un) =EY Iix,5u,} =T (5.16)
i=1
The latter condition ensures that there are on average roughly 7 exceedances
of the threshold u,, by X1, ..., X,. The Poisson approximation for extremes is
visualised in Figure 4.2.2; see also Figure 5.3.1. Condition (5.16) also implies
weak convergence of the point processes N, :

Theorem 5.3.2 (Weak convergence of point processes of exceedances, iid
case)

Suppose that (X,) is a sequence of iid rvs with common df F. Let (un)
be threshold values such that (5.16) holds for some T € (0,00). Then the
point processes of exceedances N, see (5.14), converge weakly in My(E) to
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a homogeneous Poisson process N on E = (0,1] with intensity 7, i.e. N is
PRM(7| - |), where | - | denotes Lebesque measure on E.

Proof. We may and do assume that the limit process IV is embedded in a ho-
mogenous Poisson process on [0, 00). In that case we argued that N must be
simple; see Example 5.1.10. Hence we can apply Kallenberg’s Theorem 5.2.2.
Notice that for A = (a,b] C (0,1] the rv

Nn(A) = ZEnfu(A) [{Xi>un}
=1

= Y Ixosu

a<n—1i<b

[nb]

= Z I{Xi>un}

1=[nal+1
is binomial with parameters ([nb] — [na], F (u,)). Here [z] denotes the integer
part of . Thus, by assumption (5.16),
EN,(A) = ([nb] — [na))F (un) ~ (n(b—a)) (n"'7) =7(b—a) = EN(A),

which proves (5.9).

Thus it remains to show (5.10). Since N,,(A) is binomial and in view of (5.16)
we have

P(N(4)=0) = FId ()
= exp {([nb] - [na])In (1 = F (un))}
— exp{-7(b—a)} . (5.17)

Recalling the definition of the set B from (5.10) and taking the independence
of the X; into account we conclude from (5.17) that

P(N,(B)=0) = P(Ny(ci,d;]=0, i=1,...,k)
= P( max X; <uy, i:L...,k)
[nei]<j<[nd;]
k
= HP ( max X; < un>
iy [nei]<j<[nd;]
k

= [P WNulci,di] =0)

=1
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k
- Hexp{—r(di —c)}.

On the other hand, by the Poisson property of N,

k
P(N(B) =0) = exp{—7|B|)} = exp {—TZ (d; — ci)} .

i=1
This proves the theorem by virtue of Kallenberg’s Theorem 5.2.2. a
The following example shows the close link between extreme value theory

and the point processes of exceedances.

Example 5.3.3 (Continuation of Example 5.1.3)
An application of Theorem 5.3.2 together with (5.15) yields

ol
[

P(Xpm <up)=P(N,y(0,1] < k) = P(NO0,1] < k) =¢ "

i
il
i

Il
o

This was the content of Theorem 4.2.3. Similar arguments as for Corol-
lary 4.2.4 also allow us to derive the limit distribution of the kth order sta-
tistic for dfs F' in the maximum domain of attraction of an extreme value
distribution. a

In Example 5.1.6 we considered iid sum processes indexed by a renewal count-
ing process and a corresponding point process: let (X;) and (Y;) be two inde-
pendent sequences of iid rvs, suppose Y7 is positive with probability 1 and set
T, =Yy + - +Y;. Then N'(t) = card{i : T; < t} defines a renewal counting
process and S(t) = Eizll(t) X; for t > 0 is the sum process. Here we consider
the corresponding point process of exceedances
_ N'(n)
Na() = > nmir (Vx50 (5.18)
i=1

on the state space E = (0,1]. As before, (u,) is a real-valued threshold
sequence. The strong law of large numbers implies nilT[m] R 2EY; =2\t
for x € (0, 1], and so we may hope that a result similar to Theorem 5.3.2 holds
in this situation. That is indeed the case:

Theorem 5.3.4 (Weak convergence of point processes of exceedances, iid
case and random index)

Let (N,) be the point processes of exceedances (5.18) of the threshold sequence
(un). Assume that (un) satisfies (5.16) for some 7 € (0,00). Moreover, let

T, =Y1+---+Y, be the points of a renewal counting process on [0,00) with

EY: = A\~' € R,.. Then the relation N, 4 N holds in M,(E), where N is a
homogeneous Poisson process on E = (0,1] with intensity TA.
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Proof. For an application of Kallenberg’s Theorem 5.2.2 it remains to show
the following two relations:

EN,(a,b] — EN(a,b)=7A(b—-a), 0<a<b<1, (5.19)

P(N.(B)=0) — P(N(B)=0) (5.20)

for all sets B = U™, (¢;,d;] with 0 < ¢; <dy <---<ep <dp <1,k>1.As
above, we write (N'(t)) for the renewal counting process generated by (75).
Then, by homogeneity of N’ and in view of (5.16),

ENJa,b)] = E > Ixu
i:a<n_1T;§b

N’(nb)

= E > Ixsuy
i=N'(na)+1

N'(n(b—a))
= E Y Ixuy
=1

k

= S PN -a)=k)EY Ixsuy
k=0

=1

= i P(N'(n(b—a)) =k) (k?(un))
k=0

= (nf(un)) (n_lEN'(n(b - a)))
— 1AMb—a)=EN(b—a).

Here we also used that n ! EN'(n(b—a)) ~ A\(b— a); see Proposition 2.5.12.
This proves (5.19). Next we turn to the proof of (5.20). For simplicity we
restrict ourselves to the set B = (c1,d1] U (¢a, dz]. Conditioning on N’ and
using the independence of (T;) and (X;) as well as the homogeneity of N’,
we obtain

P (ﬁn(B) - 0)
= P < max X <uy, max X <up
irc1<n~1T;<dy irca<n~1T;<ds

_U”n7

max max X <up
N'(nc1)<i<N’(ndy) N'(nc2)<i<N’(nd2)
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= E ((F(’u,n))(N’(ndl)*N’(nq))Jr(N'(ndz)—N’(ncz)))

In the last step we also used the SLLN for renewal counting processes (The-
orem 2.5.10) and Lebesgue dominated convergence. This proves (5.20) and,
by Kallenberg’s theorem, also the assertion. a

Example 5.3.5 (Limit distribution for iid sequence with random index)
Let (X;) be iid and independent of the renewal counting process (N'(t)) on
[0,00) with EY; = A~'. Denote by Xyvy vy < --- < Xy nr(y) the order
statistics of the random sample X1,..., Xy (). Then we may conclude from
Theorem 5.3.4 that

k—1 ;
—TA (T)‘)l _
= e ZT k=1,2,...,
1=0

provided nF(u,) — 7 € (0,00). In particular, if u,, = u,(z) = c,z + d,, and
nF(u,(z)) = —In H(z), x € R, for some extreme value distribution H, then

kol (— In Hx(ar))Z

P(Xk,N’(n)Scnx_"dn) — HX(JC)Zﬁ7 k:172,
i=0
This result was given in Theorem 4.3.2 in a more general set—up. O

5.3.2 The Stationary Case

In this section we approach the problem of finding the limit distribution of
the maxima M,, and of the upper order statistics of a sample from a strictly
stationary sequence (X,,) via the point process of exceedances as introduced
in (5.14). We assume that the conditions D(u,) and D’(u,) from Section 4.4
hold for a threshold sequence (u,), and we cite them here for convenience:

Condition D(u,): For any integers p, ¢ and n
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1<y < <ip<jr<-<jg<n

such that j; — i, > 1 we have

‘P < max X; < un> - P (maXXi < un) P <maXXi < un) ‘ < amn,
1€EA1UAS 1€A; i€ Ao

where Ay = {i1, ..., ip}, Ao = {j1,...,Jq} and an; — 0 as n — oo for some
sequence | =1, = o(n).

Condition D'(u,): The relation

[n/k]
lim sup n Z P (X1 > un, X; > u,) -0
7=2

holds as k — oc.

Remark. For an interpretation of these conditions we refer to Section 4.4.
We mention here that condition D’(u,) has an intuitive interpretation in the
language of point processes: if (u,) is chosen to satisfy nF(u,) — 7 € (0, 00)
then there are on average approximately 7 exceedances of u,, by Xi,..., X,,
and hence 7/k among X, ..., X},,/). Condition D'(u,) bounds the probabil-
ity of more than one exceedance among X, ..., X[, z. This will eventually
ensure that there are no multiple points in the limiting Poisson process; i.e.
this condition prevents clustering in the limit. In this context, Example 4.4.4
is quite instructive: condition D’(u,) is violated since maxima typically occur
as pairs. O

Having in mind the results of Section 4.4 it is certainly not surprising that
Theorem 5.3.2 remains valid for certain strictly stationary sequences:

Theorem 5.3.6 (Weak convergence of point processes of exceedances, sta-
tionary case)

Suppose (X,,) is strictly stationary and (uy) is a sequence of threshold values
such that (5.16), D(un,) and D'(u,) hold. Let (N,) be the processes (5.14).
Then N, % N in M,(E), where N is a homogeneous PRM on E = (0,1]
with intensity T.

Proof. We proceed as in the proof of Theorem 5.3.2 or 5.3.6, applying Kallen-
berg’s Theorem 5.2.2. The proof of (5.9) is the same as in the iid case. Thus it
remains to show (5.10) making use of D(u,,) and D'(u,). For simplicity we re-
strict ourselves to sets B = (¢1,d;] U (c2,ds] with 0 < ¢1 < dy < o < dy < 1.
The general case can be dealt with analogously.

Take (a,b] C (0,1]. Using the stationarity of (X,) and Proposition 4.4.3 we
obtain
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P(Nu(a,b]=0) = P< max Xigun>

i<[nb]—[na]
— exp{-7(b—a)} = P(N(a,b] =0). (5.21)
From condition D(u,) we conclude that
P (No(B) = 0)

= P(Nn(cl,dl] = 07Nn(027d2] = 0)

cl<n*1i§d1 Cz<’n71i§d2

= P( max X; <wu,, max Xigun)

cl<n*1i§d1 Cz<’n71i§d2

= P( max Xigun>P< max Xigun)—ko(l).

Indeed, the distance between the two index sets
Ay ={[nc1]+1,...,[ndi]} and Ay ={[nc]+1,...,[nds]}

exceeds (co — di)n > I, = o(n) which implies that a,;, — 0. Hence, by
(5.21),

P (Na(B) =0) = exp {~7((dr = e1) + (> — e2) ) } = P(N(B) =0),

which concludes the proof of (5.10) and, by Kallenberg’s theorem, proves the
assertion. O

The following is analogous to Example 5.3.3:

Example 5.3.7 (Limit probabilities of upper order statistics)
As usual, let
Xn,n S e S Xl,n

denote the order statistics of the sample Xy,...,X,,. Suppose that the as-
sumptions of Theorem 5.3.6 hold. Then
k—1 i
_r T
P (Xpn <tn) =P (No(0,1] <k) = P(N(0, 1] < k) =e ") R
1=0
This extends Proposition 4.4.3 to the upper order statistics of a strictly sta-
tionary sequence. |

Now it is immediate that we can derive the limit distribution of an upper order

statistic Xy, , by the usual folklore. Let (X,,) be an associated iid sequence

such that X < )Z', and denote its order statistics in the natural way by )Z'k,n.
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Theorem 5.3.8 (Limit distribution of upper order statistics)
Let (X,,) be strictly stationary with common df F € MDA (H) for an extreme
value distribution H, i.e. there exist constants ¢, > 0, d,, € R such that

lim nF (cp,z +d,) = —-InH(z), z€R.

n—r00

Assume that the sequences (u,) = (ch,x + d,), x € R, satisfy the condi-
tions D(uy,) and D'(uy). Then the relations

k—l
(=InH(x))" H(x
P(c;! (X —dn) < ) 1 , z€R,
1:0 !
kfl
~ (=InH(z))" H
P (Xpn — dy) < ) = , TER,
=0
hold for every k > 1. O

Theorem 5.3.8 shows the similarity between the asymptotic behaviour of
the extremes of the stationary sequence (X,) and of an associated iid se-
quence (X,,). This is again due to the conditions D(u,) and D' (uy).

In the following paragraphs we intend to generalise these results to a finite
vector of order statistics. This means that we are interested in probabilities
of the form

P (le <ul), . Xpn < ug“)

for k sequences of real numbers
) <<l (5.22)

Since we are dealing with k different sequences of thresholds (u,(f))7 1=
1,...,k, it seems appropriate to introduce a vector of k point processes of ex-
ceedances, one for each threshold sequence. However, the exceedances of the
levels ug) are very much related to each other For example, an exceedance
of u,(f is automatically an exceedance of ur, H), and so it is possible by a
geometric argument to reduce the problem of k exceedances to weak con-
vergence of a point process on (0,1] x R. We refer to Leadbetter, Lindgren
and Rootzén [418], Sections 5.5 and 5.6, for a complete description of their
“thinning” procedure and omit details. We also omit the definition of the
corresponding point processes and simply state the final result for the vector
of exceedances. Before we can do this we have to introduce a k—dimensional
analogue of condition D(u,,) above. We suppose that the k sequences (5.22)
are given.
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Condition Dy (uy): For any fized p,q and for any integers
1<y < <ip<yi<-<j,<n
such that j1 —ip > we have

‘P (X <u7(fm),m: 1,...,p, Xj,

(R —

<u$flr),r:1,...,q)

PR

_p (Xim <ulem) = 1,...,p) P (Xjr <ul) = 1,...,q>‘ < i,

for any integers 1 < s;,s,. <k, and o, — 0 as n — co for some sequence
l=1,=o0(n).

It will not be necessary to define an extended D’(uy) condition, since we shall
simply need to assume that D’(qu)) holds separately for each i =1,... k.
As in Section 4.2 we write

BSLZ):Z[{X,>'U,("Z)}7 71217 7;:17...7]{,’7
=1

for the number of exceedances of ugf) by Xi,..., X,.

Theorem 5.3.9 (Joint weak convergence of the number of exceedances,
stationary case)

Let (X,) be a strictly stationary sequence and suppose that the se-
quences (ugf)) satisfy (5.22) and that nf(ug)) — 1; for non—negative T;,
i=1,...,k. Assume Dy(u,) and D’(ugf)) for i=1,...,k. Then, for
ly,.... 0, >0,

P(Br(Ll) :(1,BT(L2) =0 +€27...,B7(Lk) :£1+"'+€k>

o (m—m)" (- o)™

6_1! ol 0 e , n— 00. O

_>

This theorem is completely analogous to the iid case; see Theorem 4.2.6.
Moreover, as in the iid case, cf. Theorem 4.2.8, we obtain the joint limit law
of the vector of upper order statistics:

Corollary 5.3.10 (Joint limit law of upper order statistics, stationary case)
Assume that F € MDA(H) with normalising constants ¢, > 0 and centring
constants d, € R. Moreover, suppose that Di(uy,) and D'(u,) are satisfied
for all sequences u, = cpx + dp, x € R. Then the limit relation

(" (Xim = dp))ictn = (YO)isy s, k>1, n— oo,

n seey

holds, where (Y(l),...,Y(k)) is the k—dimensional extremal variate corre-
sponding to the extreme value distribution H. O



5.4 Applications of Point Process Methods to IID Sequences 247

Finally, we mention that all results for a vector of k upper order statistics
which were given in Section 4.2 for the iid case remain valid for the strictly
stationary case as well, provided that D and D' are satisfied.

Notes and Comments

The point process of exceeedances has been used extensively in the mono-
graph by Leadbetter et al. [418] to build up an extreme value theory for iid
and stationary sequences. There the theory presented above can be found in
detail. In particular, they discuss the conditions D(u,) and D'(u,); see also
Section 4.4. Further convergence results for the point process of exceedances
are provided in Sections 5.5 and 8.4, where we consider linear and ARCH
processes. In contrast to the present section the limiting point processes are
not homogeneous Poisson but compound Poisson processes.

The point process techniques of this section could have been replaced by
classical methods of extreme value theory. The latter were implicitly used
for checking the assumptions of Kallenberg’s theorem. Therefore the present
section can be understood as an alternative approach to extreme value theory
which is quite elegant in the case of stationary sequences. The real power of
point process methods will become more transparent in Sections 5.4 and 5.5.

5.4 Applications of Point Process Methods to IID
Sequences

In this section we apply point process techniques to the extremes of iid se-
quences (for some basic facts we refer to Chapters 3 and 4). We are mainly
interested in records and record times. In Section 5.4.1 we give a short intro-
duction to this topic. It is followed by some technical results (Section 5.4.2)
which are used to embed the maxima of an iid sequence in an appropriate
continuous—time process which in turn is a function of a PRM. This “cou-
pling” construction is applied in Section 5.4.3 to derive limit results about
the growth and the frequency of record times. In Section 5.4.4 we consider
the weak convergence of maxima in a function space setting.

Throughout this section X, X, Xs,... is a sequence of iid rvs with com-
mon continuous df F'. We also write

ot =inf{z: F(x) >0} and 2% =sup{z: F(z) <1}

for the left and right endpoint of the distribution F'. As usual, we denote the
maximum of the first n rvs by
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M1:X1, anlrnax (Xl,...,Xn), 7122

1=1,...,n

Later on we will sometimes find it convenient to use A, V for min, max,
respectively. The rvs I; are always the points of a homogeneous Poisson
process on [0, 00) with intensity 1. We can write them as

[=Ei+---+E, i>1,

for an iid sequence of standard exponential rvs F;.

5.4.1 Records and Record Times

In daily life we hear quite often about records; they are indeed omnipresent
in sports, science, economy, environment etc. We hear about records of pollu-
tion, records of governmental debts, records in sports events, record insurance
claims or record gains/losses in finance. Some clever people collect informa-
tion about all sorts of records and write books about them.

What is a record in the context of extreme value theory?

If we consider observations X, a record would be a temporary maximum (or
minimum) in this sequence which will certainly change when time goes by.
This is precisely the notion record which we intend to use in this chapter:
a record X, occurs if X,, > M,,_. Clearly, the new maximum M, coincides
then with X,. Notice that a record happens when there is a jump in the
sequence (M,). The times Ly < Lo < --- when these jumps occur are random.
For obvious reasons, they are called the record times of (X,,). In the insurance
and financial context it is definitely an important issue to study both records
and record times of sequences of rvs, dependent or independent. They give
us some sort, of prediction of the good or bad things which can happen in the
future, in frequency and magnitude: big jumps in prices can lead to crashes
of financial institutions; big claim sizes in an insurance portfolio can cause
insolvency problems.

The following result describes the sequence of records (X, ) in terms of
a PRM:

Theorem 5.4.1 (Point process description of records)

Let F be a continuous df with left endpoint x's and right endpoint z'.. Then
the records (X,) of the iid sequence (X,) are the points of a PRM(u) on
(2, 2%) with mean measure p given by

w(a,b] = R(b) — R(a), 2% <a<b<ah, where R(z)=—InF(z).

In particular, if F' is standard exponential then R(t) =t and (X)) < ()

are the points of a homogeneous Poisson process on Ry with intensity 1.
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Figure 5.4.2 Records (solid top line) of 910 daily log—returns of the Japanese stock
index NIKKEI (February 22, 1990 — October 8, 1993) compared with four sample
paths of records from 910 #id rvs. The rvs in the latter sequence are Gaussian with
mean zero and the same variance as the NIKKEI data.

Proof. Since F' is continuous the function R is monotone increasing. Direct

calculation yields
X, £ RT(Ey).

Indeed,
P(R™(E\) <z) = P(Ei<R(z))
= 1—e B = p(2).

Hence the sequences (M,,) and

()= (o ()

have the same distribution. Moreover, denoting by (Zn)(g (Ly)) the record
times of the sequence (R (E;)), we have for the sequences of records that

(X)) 2 (R“ (EZ)> .

If F is standard exponential then the records (R“(E~ ) = (E~ ) are the
points of a homogeneous Poisson process on Ry with 1nten51ty 1. This fol-
lows from the observation that (E~ ) is Markov with transition probabilities
m(z, (y,0)) = exp{—(y — x)}; see "Resnick [530], Proposition 4.1. In view
of Proposition 5.1.13, (R‘_(Ezn)) are then the points of a PRM with mean
measure of (a,b] given by
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(R7) " (a,]| = [{s : a < R (s) < b}| = R(b) - R(a),

where | - | denotes Lebesgue measure. This concludes the proof. O

5.4.2 Embedding Maxima in Extremal Processes

The sequence (M,,),> defines a discrete-time stochastic process on the in-
tegers. We consider the finite—dimensional distributions of this process. We
start with two dimensions: let £; < x5 be real numbers and ¢; < #5 be positive
integers. Then

to
P(My <1, My, <o) = P<Mt1Sv’U17 \V Xin2>

1=ty +1

P (M, <z1)P(My_y, <x2)
= F'(z)F"27"(29).
Moreover, if x1 > xo,
P (M, <21, My, <x9) = F2(5).

Hence
P(]W,g1 <z, M, < xg) =Fh (xl /\CCQ) Fta—t (CCQ) .

By induction we obtain

P(Mtl lethz Sx%"'th Sxm)

m

m m

= [% (/\ xi> Fta—h (/\ xi> o et (Y (5.23)
i=1 =2

for all positive integers t; <ty < --- < t,,, every m > 1 and real numbers

x;. From this representation it is not difficult to see that (M,,) is a Markov

process; see Resnick [530], Section 4.1 or Breiman [90], Chapter 15.

We take (5.23) as the starting point for the definition of an F-extremal
process: if we do not restrict ourselves to the non—negative integers, but if we
allow for general real numbers 0 < t; < to < --- < t,, then (5.23) defines
a consistent family of distributions which, in view of Kolmogorov’s consis-
tency theorem, determines the distribution of a continuous—time process Y

on R, .
Definition 5.4.3 (F—extremal process)
The process Y = (Y (t))i>0 with finite—dimensional distributions (5.23) is

called an extremal process generated by the df F' or an F—extremal process.
O
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Thus the discrete—time process of the sample maxima (M,,) can be embedded
in the continuous—time extremal process Y in the sense that

(Mo),s1 = (Y (1)1 -

The latter relation is checked by a glance at the finite-dimensional distri-
butions of (M,) and Y at integer instants of time. The continuous—time
process Y inherits the distributional properties of the sequence of maxima;
it is a convenient tool for dealing with them.

An extremal process can be understood as a function of a PRM. Indeed,
let

N = Zs(tkdk) (5'24)
k=1

be PRM(| - | x p) with state space E = Ry x R, where |- | denotes Lebesgue
measure, and pu is given by the relation p(a,b] = In F(b) — In F(a) for a < b.
It is convenient to interpret (¢, ji) as coordinates of time (i.e. t) and space
(i.e. jx). Recall the definition of the Skorokhod space D of cadlag functions
from Appendix A2.3 and define the mapping Ti : M,(E) - D(0,00) by

(oo}

Ty(N) =T, (Zs(tk,jk)> =sup {jx 1 tr < -} . (5.25)

k=1

Proposition 5.4.4 (Point process representation of F—extremal processes)
The F-extremal process Y = (Y (t))i>o0 has representation

Y () £ sup {jir : tx <}
with respect to the PRM(]| - | x u) defined in (5.24).

Sketch of the proof. In view of the constructive definition of Y given above
it suffices to show that the finite-dimensional distributions of ¥ and T3 ()
coincide. Fix ¢ > 0. Notice that

{sup {ji 1t <t} <z} = {N((0,t] X (z,00)) =0} .
Thus we have by definition of a PRM that
P(sup{jr 1 tx <t} <x) = P(N((0,] x (x,00)) =0)
= exp{—EN ((0,t] x (z,00))}
= exp{—t p(z,0)}
— Fi(z)

= P(Y(t)<u).
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Similar arguments yield the finite—dimensional distributions in the general
case. (The reader is urged to calculate them at least for two dimensions.) They
can be shown to coincide with (5.23) which determine the whole distribution
of Y. This concludes the proof. O

In the following we need another representation of an F—extremal process. It
is a consequence of the following auxiliary result:

Lemma 5.4.5 Assume F is continuous. Let N be the PRM(| - | x u) on
(0,t0] x (2, 2%.), to > 0, as defined in (5.24). Then N has representation

N'=3cw.o-(rijt) »
1=1

where (U;) are #d uniform on (0,t0), independent of the points (I;) of a
homogeneous Poisson process on [0,00) with intensity 1, and

Q" (y) =inf{s: Q(s) <y}, Q(z)=-InF(z).

Proof. In view of Remark 1 after Definition 5.1.7 it suffices to show that the
Laplace functionals of N and N’ coincide. Since N is PRM we know from
Example 5.1.11 that

Uy (g) = exp {— /(Ot ]/(zl o (1 - e—g(tﬂ”)) d(lnF(x))dt} . (5.26)

Now, since F' is continuous, Q@ is monotone decreasing. Conditioning on
(I;) and writing

1

nlo) = / "exp {—g(t, 1)} dt = Eexp {—g(T1,2)} ,

we obtain

Tni(9) = Eexp —/ gdN'
(O,to]x(zlp,z})

= FEexp {—Zg(UuQ(_(Fi/tO))}
= EHg1 (QT(I1i/to))

= FEexp {Zlngl (QP(Fi/tO))} .

=1
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An application of Lemma 5.1.12 yields

Ini(g) = exp{—/R (l—gl(Q“(Z/to)))dZ}

= exp —/ / (l—e*g(t’Q(_(z))> dzdtp .
(0,t0] /R4

Substituting x for Q¥ (z) we arrive at the right-hand side of (5.26) which
concludes the proof. O

An immediate consequence of Lemma 5.4.5 and Proposition 5.4.4 is the fol-
lowing

Corollary 5.4.6 Let F' be a continuous df, Y an F—extremal process. Then
Y has representation

Y(t) = sup {QH(Fl/to) U; < t} , tE€ (O,to] R
where (U;) and (I3) are defined in Lemma 5.4.5. O

The jump times 1, of an F—extremal process are of particular interest since
we may hope that jumps of (M,,) (the records) and of Y occur almost at the
same time. This intuition will be made precise by a coupling argument in
Section 5.4.3.

Theorem 5.4.7 (Point process of the jump times of an extremal process)
If F is continuous then

Noo = io: Er, (527)
n=1

is PRM(u) on Ry with intensity f(t) = 1/t, i.e.

b
u(a,b]:/f(t)dt:lnb—lna fora<b.

Proof. It suffices to show that N, is PRM(u) on (0, ¢o] for every fixed to > 0.
In view of Corollary 5.4.6 we may assume that the F—extremal process Y has
representation

Y(t) = sup {Q (i /to) : Us < t}, te (0,t)].

Since F' is continuous, @ is monotone decreasing, hence the jump times of
the processes Y and Nj(t) = inf{n > 1: U, <t} are identical. We may write
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Ni(t) = inf{fn>1:U;'>t7"}

- inf{nZl:\/Ui_lztl}.

=1

Hence the jump times of Ny in (0, to] must be the records of max;—1,.. » Ut

2

in [tal, 00). By Theorem 5.4.1, the records of max;—1,... » U~! are the points

2

of a PRM on [tg, 00) with mean measure of (a, b] given by
—InP (U >b) = (-InP(U;' >a)) = —In(b~"/to) +In(a™"/to)
= In(b/a).

This concludes the proof. |

5.4.3 The Frequency of Records and the Growth of Record Times

In this section we use a special “coupling” construction of the jump times
L, of (M,) and 7, of the F—extremal process Y to derive information about
the record times of the iid sequence (X ). This will allow us to compare (L,,)
and (7,,) not only in distribution but also path by path.

By definition of Y (see Definition 5.4.3) (M) < (Y(n)). This relation
allows us to assume that (L,) and (7,,) are defined on the same probability
space in such a way that a jump of (M,) (i.e. a record) at L,, (the record
time) is also a jump of Y but the converse is not necessarily true. Indeed,
Y is a continuous—time process, and so it may also have jumps in the open
intervals (L, — 1, L,). Recall the definition of the point process Ny, of the
jump times of Y from (5.27) and define the point process of the record times

of (X,,) by
N=> L. (5.28)

Then, given the above coupling construction of (L,) and (7,),
{N(n—-1,n]=1} = {(X;) has a record at time n.}
= {No(n—-1,n]>1}. (5.29)
The following question arises naturally:

How often does it actually happen that Noo(n —1,n] > N(n —1,n]?

The following result ensures that the sequences (Noo(n — 1,n]) and (N(n —
1,n]) are identical starting from a certain random index.
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Proposition 5.4.8 (Coupling of N, and N)
Assume the df F is continuous and that (L) and (7,) are constructed as
above. Then there exists an integer—valued rv Ny such that for almost every
w € {2,

N((n,n+1],w) = Noo((n,n + 1],w), n > Np(w). (5.30)

Proof. It suffices to show (see (5.29)) that the event {Noo(n,n + 1] > 1}
occurs only finitely often with probability 1. By the Borel-Cantelli lemma,
see Section 3.5, this is the case if

iP(Noo(mn +1]>1)< 0. (5.31)

Since Noo is PRM(u) with u(a,b] = In(b/a) (see Theorem 5.4.7), direct cal-
culation shows that

P(No(n,n+1]>1)
= 1—P(No(n,n+1]=0)— P(Noo(n,n+1]=1)

- 1- efln(lJrn_l) _ efln(lJrn_l) ln(l + nfl)

= 1-(1+n ' (1+Inl+n")

IA
S
&

) n Z ]‘ )
and (5.31) follows, which concludes the proof. O

Remark. The coupling relation (5.30) can be reformulated as follows: for
almost every w € {2 there exists an integer j(w) such that

Noo((1,n],w) = j(w) + N((1,n],w), n > No(w). (5.32)

O
We use the coupling argument to answer the following question:

How often do records happen in a given period of time?

A first answer is supported by the following Poisson approximation to the
point process N of the record times (see (5.28)):

Theorem 5.4.9 (Weak convergence of the point process of record times)
The limit relation

holds in M,(Ry).
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Proof. According to Theorem 5.2.3 and Remark 3 afterwards it suffices to
show that

In:/ J@)dNu (@) S [ ge)dNo(®), geCERL).  (5.33)
Ry Ry

Since ¢ has compact support, there exists an interval [a,b] C Ry such that
g(x) =0 for = & [a,b]. Hence

In = Zg(nilLi)

= Z g )N (i—1 =17 -

iza<n—1:<b

Recalling the special construction (5.30) we obtain, for na > Ny(w),

L, = Z g(n~'i) Iin . (im1,0=1}
ira<n—1i<b

= D g ti) Nao(i—1,1]
ira<n—1i<b

= / gn(x)dNOO(x) =Jn,
Ry

where g, (z) = 302, g(n=")I;_1 ;(z). Thus we have shown that I,, — J,, =3
0. By a Slutsky argument (see Appendix A2.5) it remains, for (5.33), to show
that
Jo 5 | glz)dNo(z). (5.34)
R+
Recall from Example 5.1.14 that N (-) and N (n-) have the same distribu-
tion. Then

I=

In /R+ gn(2)dNy (nz)

% /R+ g(2)dNo () .

In the last step we have used the defining properties of a Lebesgue integral,
which here exists since ¢ is continuous, has compact support and is bounded.
This proves (5.34) and thus the theorem. O
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It is an immediate consequence of this theorem that N, (a, b] is approximately
Poi(In(b/a)) distributed:

Nn(a,b] = card{i:a<n"'L; <b}

4 Noo(a,b] £ Poi(In(b/a)).

Alternatively, the frequency of records in a given interval can be described
by limit theorems for Noo(1,¢]. In the following we assume that 74 > 1.
Otherwise we may consider only that part of the sequence (7,) for which
7; > 1. Since Ny is PRM(p) on Ry with u(a, b] = In(b/a) we may work with
the representation (see Example 5.1.14)

Ny = Z Cexp{Ii} > (535)
=1

where, as usual, (I;) are the points of a homogeneous Poisson process on
[0, 00) with intensity 1. Thus

Noo(l,t] = card{i:1<el" <t} =card{i:0< I; <Int}.

It is immediate that we can now apply the whole limit machinery for renewal
counting processes from Section 2.5.2. For the time—changed renewal counting
process (N (1,t]) we obtain the following: let ¢ denote the standard normal
distribution. Then

SLLN  lim (In ) Nyo(1,t] =1 as.,
— 00
LIL  limsup (2Int¢ Inlnln¢)™"2 (Noo(1,] — Int)

t—o0

= —liminf (2In¢ Inlnlnt)™"2 (N (1,£] — Int) = 1 a.s.,

t—oco
CLT (Int)"Y2(Nwo(1,t] —Int) 5 &.
(5.36)
The coupling construction (5.32) immediately implies that
¢yt (Noo(1,n] = N(1,n]) 30

n

provided ¢, — oo. This ensures that we may replace Ny, by N and ¢ by n,
everywhere in (5.36):

Theorem 5.4.10 (Limit results for the frequency of records)

Suppose F' has a continuous distribution, let (X,) be an iid sequence with
record times (L,) and let N be the corresponding point process (5.28). Then
the following relations hold:



258 5. An Approach to Extremes via Point processes

= | -

=1
= _
=
s |\ \d -

o L ____________

I
_| //
o 1000 2000 3000 4000 5000

n

Figure 5.4.11 The number of records N(1,n], n < 5000, from iid standard normal
rvs. Five sample paths are given. The solid lines indicate the graphs of Inn (middle)
and the 95% asymptotic confidence bands (top and bottom) based on Theorem 5.4.10.
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Figure 5.4.12 The number of records N(1,n], n < 910, from 910 daily log—returns
of the Japanese stock index NIKKEI (February 22, 1990 — October 8, 1993). The
solid lines are the graphs of Inn (middle) and the 95% asymptotic confidence bands
for the wid case; see Theorem 5.4.10.

SLLN  lim (Int)"'N(1,t]=1 as.,
—o0
LIL limsup (2Int Inlnlnt)='/2 (N(1,t] —Int)

t—o0
= —litrginf (2Int Inlnlnt)~"/2 (N(1,#] — Int) = 1 a.s.,
CLT (Int)"Y/2(N(1,t]—Int) 3 &,
where @ denotes the standard normal distribution. O

Finally, we attack the following problem:
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When do the records of (X,,) occur?

The coupling construction (5.32) again gives an answer: for n > Np(w) and
almost every w,

| Ln (@) = Ty jw) (@) < 1.
Hence, by (5.35),
InL, = In(ef"+ (1+0 (e 'n+)))
= Iy +o(l) as.
since I',4+; = O(n) a.s. by the SLLN. We learnt in Example 3.5.6 that

lim (Inn) 'max(Ey,...,E,) =1 as.

n— oo

Hence
InL, =I,+ Iy — 1) +0(1) =1,+0(nn) as.

This and the classical limit theory for sums of iid rvs (see Sections 2.1 and
2.2) yield the following;:

Theorem 5.4.13 (Limit results for the growth of record times)
Assume F is continuous. Then the following relations hold for the record
times L, of an iid sequence (X,,) :

SLLN lim n'lnL,=1 as.,

n—oo

LIL limsup (2n Inlnn)~Y/2(In L,, —n)

n— oo

= —liminf (2n Inlnn)~*?(InL, —n) =1 a.s.,
n— o0

CLT nY2(InL,—n)5 &,
where @ denotes the standard normal distribution. O

In summary, the number of records in the interval (1,¢] is roughly of the
order Int. Thus records become more and more unlikely for large ¢. Alter-
natively, the record times L, grow roughly exponentially like exp{I’,} (or
exp{n}) and thus the period between two successive records becomes bigger
and bigger.
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Log-record times

Figure 5.4.14 The logarithmic record times of 1864 daily log—returns of the S&P
index. According to Theorem 5.4.13, the logarithmic record times should grow
roughly linearly provided that they come from uid data.

15

10

Log record times

Figure 5.4.15 The logarithmic record times of 100000 7id standard normal rvs.
Three sample paths are given. The straight line indicates the ideal asymptotic be-
haviour of these record times; see Theorem 5./.13.

5.4.4 Invariance Principle for Maxima

In Section 5.4.2 we embedded the sequence of the sample maxima (M,,) in
a continuous-time F—extremal process Y. This was advantageous because
we could make use of the hidden Poisson structure of Y to derive limit re-
sults about records and record times. In the sequel we are interested in the
question:

How can we link the weak convergence of sample maxima with the weak
convergence of point processes?
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Intuitively, we try to translate the problem about the extremes of the se-
quence (X,,) for some particular df F' into a question about the extremes
of an iid sequence with common extreme value distribution H. Since there
are only three standard extreme value distributions H, but infinitely many
dfs F' in the maximum domain of attraction of H (F € MDA(H)) this is
quite a promising approach.

To make this idea precise suppose that F' belongs to the maximum domain
of attraction of H, i.e. there exist constants d,, and ¢, > 0 such that

et (My—dy) S H, n- oo, (5.37)

n

where H is one of the standard extreme value distributions (Weibull, Fréchet,
Gumbel) as introduced in Definition 3.2.6. Set

Y.(t) 021 (M[nt] — dn) if t>n"t,
n(t) =
ot (X —dy) if 0<t<n™!,

where [2] denotes the integer part of . Recall the notion of weak convergence
in the Skorokhod space D (0, 00) from Appendix A2.

The processes (Y;,) obey a result which parallels very much the Donsker
invariance principle for sums of iid random variables; see Theorem 2.4.4.

Theorem 5.4.16 (Invariance principle for maxima)
Let H be one of the extreme value distributions and Y = (Y (t))t>0 the cor-
responding H—extremal process. Then the relation

d
Y,—=Y, n—oo,

holds in D (0, 00) if and only if (5.37) is satisfied.
Sketch of the proof. For a detailed proof see Resnick [530], Proposi-
tion 4.20. Take ¢ = 1. Then Y, 5 Y obviously implies (5.37), i.e.

Yo(1) =t (M, —dy) 5 Y(1),

n

where Y (1) has distribution H.
Now suppose that (5.37) holds. This is known to be equivalent to

nF (c,x +d,) = —In H(x) (5.38)
on the support S of H; see Proposition 3.1.1. We define

é‘ { C:Ll(Xj—dn) ifC,:l(Xj—dn)ES,
n,j —

inf S otherwise,
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and
w(a,b] =1In H(b) — In H(a)

for (a,b] C S. Topologising the state space E in the right way, (5.38) just
means (see Proposition A2.12) that

nP (€1 € ) = () (5.39)
on the Borel sets of S. Now define
Np = Zs(n_lkvfn.k) ’ N = Zs(tmjk) )
k=1 k=1

where N is PRM(| | x ) on Ry x .S and | - | denotes Lebesgue measure.
Then Theorem 5.2.4 and (5.39) imply that N, % N. Recall the definition
of the mapping T, from (5.25). If we restrict ourselves to path spaces in
which both N,, and N live then ﬁ can be shown to be a.s. continuous. An
application of the continuous mapping theorem (see Theorem A2.6) yields
that _ _

Ti(N.) =\ G 4 TN = \/ i

n=lk<- tp<-

in D (0, 00). Note that in view of Proposition 5.4.4

Y() £\ je.

b <-

Moreover, one can show that in D (0, 00) the relation

Yn() - \/ gn,k £> 0

n-1k<-
is valid. This proves that Y, Ly, a

Remark. In the course of the proof above we left out all messy details. We
also swept certain problems under the carpet which are related to the fact
that the &, can be concentrated on the whole real line. This requires for
instance a special treatment for ' € MDA (®,,) (equivalently, F € R _,,) since
a regular variation assumption on the right tail does naturally not influence
the left tail of the distribution. Read Resnick [530], Section 4.4.2! O

This invariance principle encourages one to work with the H-extremal
process Y instead of the process Y,, of sample maxima for F' in the maximum
domain of attraction of H. Thus, in an asymptotic sense, we are allowed to
work with the distribution of Y instead of the one for Y,,. We stop here the
discussion and refer to Section 5.5 where the weak convergence of extremal
processes and of the underlying point processes is used to derive limit results
about the upper extremes of dependent sequences.
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Notes and Comments

We have seen in this section that point process techniques are very elegant
tools for dealing with extremal properties of sequences of iid rvs. They allow
us to derive deep results about the structure of extremal processes, of their
jump times, about records, record times, exceedances etc. The basic idea is
always to find the right point process, to show weak convergence to a PRM
and possibly to apply the continuous mapping theorem in a suitable way.

The elegance of the method is one side of the coin. We have seen from
the above outline of proofs that we have to be familiar with many tools from
functional analysis, measure theory and stochastic processes. In particular,
the proof of the a.s. continuity of the ffmappings is never trivial and requires
a deep understanding of stochastic processes. The a.s. continuity of the T-
mappings was treated for instance in Mori and Oodaira [468], Resnick [529],
Serfozo [577].

Excellent references for extreme value theory in the context of point
processes are Falk, Hiisler and Reiss [225], Leadbetter, Lindgren and Rootzén
[418], Reiss [527] and Resnick [529, 530]. We followed closely the last source
in our presentation.

In Section 6.2.5 we consider records as an exploratory statistical tool.
There we also give some further references to literature on records.

5.5 Some Extreme Value Theory for Linear Processes

In Sections 4.4 and 5.3.2 we found conditions which ensured that the extremal
behaviour of the strictly stationary sequence (X,,) is the same as that of an
associated iid sequence ()?n)7 i.e. an iid sequence with the same common
df F as X = Xj. Intuitively, those conditions D(u,) and D'(u,) guaranteed
that high level exceedances by the sequence (X,) were separated in time;
i.e. clustering of extremes was avoided. This will change dramatically for the
special class of strictly stationary sequences which we consider in this section.
We suppose that (X,,) has representation as a linear process, i.e.

X, = ijznfjv TLEZ,

j=—o00

where the noise sequence or the innovations (Z,) are iid and the 1, are real
numbers to be specified later. For simplicity we set Z = Z,. Here we study
linear processes from the point of view of extreme value theory. In Chapter 7
they are reconsidered from the point of view of time series analysis. Linear
processes are basic in classical time series analysis. In particular, every ARMA



264 5. An Approach to Extremes via Point processes

process is linear, see Example 7.1.1, and most interesting Gaussian stationary
sequences have a linear process representation.

Again we are interested in exceedances of a given deterministic sequence
of thresholds (u,) by the process (X,), and in the joint distribution of a fi-
nite number of upper order statistics of a sample X;,...,X,. We compare
sequences of sample maxima for the noise (Z,,), the stationary sequence (X,,)

and an associated iid sequence (X,,). As usual, (M,,) denotes the sequence of
the sample maxima of (X,,).

5.5.1 Noise in the Maximum Domain of Attraction of the Fréchet
Distribution @,

We assume that Z satisfies the following condition:

Fz(x)=P(Z>z)= ¥7 x>0, (5.40)

(0%

for some « > 0 and a slowly varying function L, i.e. L(z)z~% is regularly
varying with index —a; see Appendix A3. By Theorem 3.3.7 this is equivalent
to Z € MDA ($,) where

B, (r)=e ", >0,

denotes the standard Fréchet distribution which is one of the extreme value
distributions; see Definition 3.2.6. Moreover, we assume that the tails are
balanced in the sense that

Pz P(Z< -
fim LE>2) _ oy P

e s 5.41
% P(|Z] > 7) e P(Z|>a0) b (5-41)

for some 0 < p < 1 and such that p 4+ ¢ = 1. Thus we can combine (5.40) and
(5.41):

— L L
o) =20 250, By~ 1K@ Lo (5.42)
T p z“
We also suppose that
Z [th;|° < 0o for some 0 < § < min(a,1). (5.43)
Jj=—00

This condition implies the absolute a.s. convergence of the linear process
representation of X,, for every n; see also the discussion in Section 7.2. Note
that the conditions here are very much like in Sections 7.2-7.5, but there we
restrict ourselves to symmetric a—stable (sas) Z, for some a < 2. In that
case,
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_ c . P(Z > CC) 1
F ~— — lim ——— 2 =~
Z(x) xa ? xr 007 ZLHOIO P(|Z| >x) 2 ’
hence (5.40) and (5.41) are naturally satisfied. We also mention that, if a < 2,
then the conditions (5.40) and (5.41) imply that Z has a distribution in the
domain of attraction of an a—stable law; see Section 2.2.
We plan to reduce the study of the extremes of (X,,) to the study of the

extremes of the iid sequence (Z,). We choose the normalisation
cn = (1/Fz) (n), (5.44)

where f* denotes the generalised inverse of the function f. By (5.40) this
implies that Fz(c,) ~n~!. Then we also know that

cn = n*Li(n)

for a slowly varying function L;. Moreover, from Theorem 3.3.7 we are con-
fident of the limit behaviour

et max(Zy,..., Z,) 4 3, .

So we may hope that ¢, is also the right normalisation for the maxima M,
of the linear process (X,,).

We first embed (c;le)kzl in a point process and show its weak con-
vergence to a function of a PRM. This is analogous to the proof of The-
orem 5.4.16. Then we can proceed as in the iid case to derive information
about the extremes of the sequence (X,,).

Theorem 5.5.1 (Weak convergence of the point processes of the embedded
linear process)

Let Y021 €(tr,jn) be PRM(|-| x p) on Ry x E, where E = [—00,00]\{0},
|| is Lebesgue measure and the measure u on the Borel sets of E has density

(e

az” g0 (@) + qp ta(—2) T Loy (z), z€ER. (5.45)
Suppose the conditions (5.42) and (5.43) are satisfied. Then

oo oo oo
d
Zf(n—lk,c#xk) - Z Z E(tuhign) > MO0,

k=1 k=11=—o0
in M,(Ry x E).

Sketch of the proof. For a complete proof we refer to Davis and Resnick
[160]; see also Resnick [530], Section 4.5.

We notice that condition (5.42) is equivalent to

nP (c,'Z €-) = u()



266 5. An Approach to Extremes via Point processes

on the Borel sets of E, where the measure p on E is determined by (5.45).
This holds by virtue of Proposition A2.12 and since, as n — 0o,

nP (C;IZ > x) —x~% and nP (C;IZ < —x) —Sqp T, z>0.

It is then a consequence of Theorem 5.2.4 (see also the proof of Theo-
rem 5.4.16) that

oo

Zg(nflk,c;% DSy M0, (5.46)
k=1

k=1
in M, (Ry x E), where the limit is PRM(| - | x u).

The process X,, = Z‘;’;foo Y;Z,_; is a (possibly infinite) moving average of
the iid noise (Z,). A naive argument suggests that we should first consider
finite moving averages

j=—m

for a fixed integer m, then apply a Slutsky argument (see Appendix A2.5)
and let m — oo.

For simplicity we restrict ourselves to the case m = 1 and we further assume
that (Xr(bl)) is a moving average process of order 1 (MA(1)):

Xfr.l) :Zn+¢1Zn—17 nez.

We embed (X,(f)) in a point process which will be shown to converge weakly.
We notice that Xr(bl) is just a functional of the 2—dimensional vector

Zn = (Zn—h Zn) = Zn—lel + ZnQQ )

and so it is natural to consider the point process

Zs e 7)) - (5.47)

k=1

By some technical arguments it can be shown that (5.47) has the same weak
limit behaviour as

(o)
Z ( n=lk,c, Zkel) +6(TL 1k,c 1Zke'>)) :
k=1

Then an application of (5.46) and the continuous mapping theorem (see The-
orem A2.6) yield that the point processes (5.47) converge weakly to
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oo
E : E(tr,jrer) +E(tk7Jke”)) '

k=1

Since we want to deal with the MA(1) process (Xr(bl)) we have to stick the
coordinates of Z,, together, and this is again guaranteed by an a.s. continuous
mapping T5, say, acting on the point processes:

Mg

S(n ke (Zu+91 Zior))

k=1

o)

- ZE n=lk,c; ' Zs)
k=1
oo

~ : : n=lk Non Zkel) +E(n—1k,c;1Zke2))
k=1
o

d

- E : E(tr.grer) +E(t1”]ke°))
k=1

o

= Z E(t ) T Etas wm)) :

k=1
Similar arguments prove that

oo

o0

d
ZS( *Uc,c,le"' - Z Z E(tw,Pin)
k=1

k=11=—m
for every m > 1, and a Slutsky argument as m — oo concludes the proof. O

It is now our goal to consider some applications of this theorem. We suppose
throughout that the assumptions of Theorem 5.5.1 are satisfied.

Extremal Processes and Limit Distributions of Maxima

Analogously to iid sample maxima we consider the continuous—time process

v ( ) Cr_LlM[nt] if t> n! R
n(t) =
et Xy if 0<t<nt,

which is constructed from the sample maxima
M, =max(Xy,...,X,), n>1.

Note that M, is now the maximum of n dependent rvs. Define
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Yy =max (¥ V0), ¢ =max ((=¢;)V0). (5.48)

Recall the definition of the mapping T, from (5.25): for a point process
EZO:I S(Tkﬁk) set

(o)

T (Z s(mysk)> =sup{sy:rr <} .

k=1

It is an a.s. continuous mapping from M, (R} x E) to D (0, 0o). This relation,
Theorem 5.5.1 and the continuous mapping theorem yield that

Tl (Zs(nlk,cank)> = Yn() i)

k=1

u

Ty (i i S(tk,wk)) =V ( <7 wﬂ"c)

k=1i=—o0 tr<- \i=—oo

V (i) v (=6-5i) ) =Y ().

tp<-

The process Y defined thus is indeed an extremal process (see Definition 5.4.3
and Proposition 5.4.4) since Y = T (V) where

o] oo

N = Zf(tmmm + Ze(tm—w—jk) )
k=1 k=1
i.e. N is a PRM with mean measure of (0,t] x (z, 00) equal to

t (WY +ygp )™ for t>0,2>0.

By the definition of a PRM, for ¢t > 0, x > 0,

P (N((o,t] x (z, oo)) - o)

P(Y(t) <)

= exp {—Eﬁ((o,t] X (x,oo))}

= exp {—t (wi + L/ﬁqpfl) x*“} .

Summarising the facts above we obtain an invariance principle for sample
maxima which in the iid case is analogous to Theorem 5.4.16:
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Theorem 5.5.2 (Invariance principle for the maxima of a linear process
with noise in MDA(®,))

Assume either yp > 0 or y_q > 0, that the conditions (5.42) and (5.43)
hold and let (c,) be defined by (5.44). Then

d
Y,—=Y, n-—oo,

where Y is the extremal process generated by the extreme value distribution

¢2$+wqp_l(x) =exp{— (¥ +v%p ")z %}, z>0. u

Remarks. 1) For (X,,) iid, ¥; = 0 for ¢ # 0 and )y = 1. Then Theorem 5.5.2
degenerates into the case of a @,—extremal process Y.

2) The above method can be extended to get joint convergence of the
processes generated by a finite number of upper extremes in the sample
Xi,..., X, O

Corollary 5.5.3 (Limit laws for the maxima of a linear process with noise
in MDA(&,))
Assume that Z € MDA(®,,) for some a >0 and choose (c,) according to
(5.44). Then

i max (Zy,. .., Zn) 5 B, (5.49)
and, under the conditions of Theorem 5.5.2,
M, & grEtvReT (5.50)
Moreover, let (X,,) be an iid sequence associated with (X,,). Then
e 1M, 5 gVl (5.51)

where -
112 = > 151 (Trw, >0y + ap Ty, <o) -
j=—o0

Proof. (5.49) and (5.50) follow from Theorem 5.5.2 and the fact that
V(1) £ 7'M, S Y (1)

(5.51) is a consequence of (5.49), taking into consideration (see Lemma A3.26)
that

P Y iZi > | ~WleP(Z] > o). 0
Jj=—o0
The latter relation suggests that classical estimators for the tail index «
might also work for the tail of X;. This is unfortunately not the case; see for
instance Figure 5.5.4.
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Figure 5.5.4 A comparative study of the Hill-plots for 1000 #d simulated data
from an AR(1) process Xy = ¢ X¢—1+Zs, ¢ € {0.9,0.5,0.2}. The noise sequence (Zy)
comes from a symmetric distribution with exact Pareto tail P(Z > z) = 0.5z~ 10,
x> 1. According to Lemma A3.26, P(X > x) ~ cx 1%, The solid line corresponds
to the Hill estimator of the X as a function of the k upper order statistics. The
iotted line corresponds to the Hill estimator of the residuals Zy = X¢—¢pXe—1, where
¢ is the Yule—Walker estimator of ¢. Obviously, the Hill estimator of the residuals
yields much more accurate values. These figures indicate that the Hill estimator
for correlated data has to be used with extreme care. Even for ¢ = 0.2 the Hull
estimator of the X; cannot be considered as a satisfactory tool for estimating the
index of reqular variation. The corresponding theory for the Hill estimator of linear
processes can be found in Resnick and Stdricd [535, 537].
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Exceedances

Theorem 5.5.1 also allows us to derive results about the observations Xy /c,
exceeding a given threshold z, or equivalently about the linear process (X})
exceeding the threshold u, = c,z. Without loss of generality we will assume
that |¢;] <1 for all j.

Applying Theorem 5.5.1 and the continuous mapping theorem we find
that the point process of points with ordinates bigger than x > 0 converges
as n — 0o. Thus let

Ef =(z,00), E, =(-00,-2), E,=EfUE,;, x>0;

xT

then

ZE n=lk,cn ' X1.) (‘NRy x E) 4 Z Z St ((NRy X EF)
k=1 k=1 i=—o00

(5.52)
in M,(Ry x Ef). We can interpret this as weak convergence of the point
processes of exceedances of xc, by (Xi). We need the following auxiliary
result.

Lemma 5.5.5 The following relation holds in M,(Ry x E,) :

(oo} (oo}

d
Ny = Zs(tmjk) =Nz = ZE(F’“J’“) ’

k=1 k=1

where (') is the sequence of points of a homogeneous Poisson process on Ry

with intensity A = p~lz %, independent of the iid sequence (J},) with common
density
9y) = (g™ M(zoo) W) +ap~ a(=y) T T (Lo, (y)) P

= fyA ', yeR.

Proof. It suffices to show that the Laplace functionals of the point processes
N; and N, coincide; see Example 5.1.8. Since Ny is PRM(|-| x u) on Ry x E,.
we have by Example 5.1.11 that

Wy, (h) = exp{ /R+/ et Z> f(z)dzdt} .

On the other hand, conditioning on (I}) and writing

ho(t) = /Rexp{—h(tz)}g(z)dz — Bexp{-h(t, 1)}, t>0,

we obtain
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Oy, (h) = Eexp{—/R thN2}
= Eexp{—zh(Fk,Jk)}
k=1

E ] m(r)
k=1

= Eexp{ilnhl(Fk)} .

k=1

The rvs [}, are the points of a homogeneous Poisson process with intensity
A =plz~% This and Lemma 5.1.12 yield

yv/Nz (h) Eexp {—/\ (1 — h1 (t)) dt}

Ry
exp{—/R+/R (1 —e_h(t’z)) f(z)dzdt} :

This proves the lemma. |

Therefore the limit process in (5.52) has representation

oo oo

DD Etwanin T2 D2 St

k=11=—o0 k=1i=—o0

in M, (Rt x (z,00)). Finally, we define the iid rvs &, = card {i : ¢; J, > x}.
Now we can represent the limit process in (5.52) as a point process on Ry :

Noo = nglgpk
k=1

for independent ([) and (&). For any Borel set A in R} this means that

Noo(d) =D &Gen(A) = > &,
k=1

k€A

i.e. N is a multiple point process with iid multiplicities or cluster sizes &j.
In particular, it is a compound Poisson process as defined in Example 5.1.15.
This is completely different from the point processes of exceedances of iid or
weakly dependent rvs (cf. Section 5.3) where the limit is homogeneous Pois-
son, hence simple. Thus the special dependence structure of linear processes
yields clusters in the point process of exceedances.



5.5 Some Extreme Value Theory for Linear Processes 273

Example 5.5.6 (AR(1) process)
We consider the AR(1) process X; = ¢ X;—1 + Z; ,t € Z, for some ¢ € (0,1).
It has a linear process representation

Xe=> ¢Z;, tel.
j=0

The iid cluster sizes & have the following distribution:
o :P(gl :O)ZP(Jl Sx,ale Sl‘,):P(Jl SJJ) =q, JJ>0,

and for ¢ > 1,

= P>z, 07V > a0 0 <2)
= P(cpbl(h > a;goeJl <z
= ppTH(1— ). 0

Example 5.5.7 (MA(1) process)
We consider the MA(1) process Xy = Z; + 0Z;_1, t € Z. Assume first 6 > 0.
Direct calculation yields

P =0 = ¢
P&=1) = (1-60"Al)p
P& =2) = (6*Al)p.

Thus the cluster sizes & may assume the values 0, 1 and 2 with positive
probability for 6 € (0,1), whereas for # > 1 only the values 0 and 2 may
occur.

Now assume 6 < 0, then

!
~
223
oy

Il
(e»)
=2

Il

(1—=(l6]* A1) ¢,
P& =1) = p+(8]*A1)q.
Thus the cluster sizes & may assume only the values 0 and 1 for 6 < —1,

whereas for § € (—1,0), & =1 a.s.

This means (in an asymptotic sense) that exceedences may only occur in
clusters of 2 values if # > 1, whereas the cluster size may be 1 or 2 for
6 € (0,1). For # < 0 the point process of exceedences does not cluster. |



4000

3000

2000

0.7Xt—1+7Z: (top two) and of

see Example 5.5.6. In

’

5. An Approach to Extremes via Point processes

274

1000

o o o
o) o) o)
o) o) o)
< < <
3 =
e oenl
3 1
o) o o
o] o] o]
o] o] o]
@ @ @
peee o o o o0
- .“
o oot T |
P B |
o o o
o) 3 o) o) -
o] o] o]
« « N 4
4 -
= o e
= o oved
o) o o)
o] o] o]
e] o] o]
- “ — B L
3 =
e e e e e . e
i 9
) o )
vy ¢ 0 ¢ v 0007 000C 0  000c- vy ¢ ¢ 1T 0 000€ 000T 0O

the corresponding absolute values (bottom two). In each pair of figures, the upper one
corresponds to 1id standard normal noise (Z;), the lower one to iid standard Cauchy

noise. In the Cauchy case extremes tend to occur in clusters;
the Gaussian case clustering effects of extremal values are not present.

Figure 5.5.8 Realisations of the AR(1) process X
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Maxima and Minima
We consider the joint limit behaviour of the maxima (/,,) and of the minima
Wi=X;, W,=min(Xy,...,X,), n>2.
Choose © > 0 and y < 0 and write
A= (0,1] x [(=00,y) U (2,50 .
Then, by Theorem 5.5.1,
P(c,'M, <z,c,'W, >y)

= P (Z S(nflk,cngk) (A) = 0)

k=1

- P(Z Y S (4) =0> : (5.53)

k=1 1=—oc0

We consider the event in (5.53) in detail. Notice that
{card{(k,i) £0 < tp < 1and (¢ <y or bijs > ) } = o}
= {card{k: 0<t, <1and
(i < =2/t ox ji > w/tby ox ji < y/ts or ju > —y/v) | =0}
Write
B = (0,1 x [(= o0, (=a/v-) v (9/64) ) U ((@/v4) A (=y/-) 1)

Then the right-hand side in (5.53) translates into

P (Z E(tr,dn) (B) = 0)

k=1

exp { = (=00, (=2 /6-) v (w/v4)) U ((@/v4) A (=y/v-) ;) ) |

= exp{—([pie™* vy (=y) "]+ [2aT VL (—y) 7] )}
(5.54)

where ¢4, 1_ were defined in (5.48). Now introduce the two—dimensional df



276 5. An Approach to Extremes via Point processes

exp{—zﬁj’;xfa} /\exp{—wix;“} forx1 >0, 22 >0,

G(xl,xg) = {

0 otherwise.
(5.55)
Thus the right-hand side of (5.54) can be written in the form

G, —y)GY/" (~y, ),
and using the relation
P (c;an < x,c;an < y) =P (c;an < x)—P (c;an < x,c;an > y)
we obtain the following:

Theorem 5.5.9 (Joint limit distribution of sample maxima and minima of
linear process)

Assume that the conditions of Theorem 5.5.2 hold and let (c,) be defined by
(5.44). Then, for all real x,y,

P (C;IM’"' S z, cr_LlWTL S y) — G(xv oo)Gq/p(oovx) - G(SC, _y)Gq/p(_yvx) )
where G(x,y) is defined by (5.55). O

Summary

Assume that Z € MDA(®,,), i.e.

L
P(Z >z) = (x), x>0,
xa
for some a > 0, and that
L
P(Zg—x)Ng (x), T — 00,
p x“

for non—negative p, ¢ such that p+¢ = 1 and p > 0. Choose the constants c,, by
e = (1/F2)" ().
Then
c;lmax (Zy,...,2,) 4 3,
for the Fréchet distribution &, (z) = e * ", 2 > 0. Moreover, under the
conditions of Theorem 5.5.2,

o [e% —1
C;an S QSz*—W’qp , >0,

where ¢ ,1_ are defined in (5.48). The point process of the exceedances

of the threshold ¢,z by the linear process (Xj) converges weakly to a com-

pound Poisson point process with iid cluster sizes which depend on the coef-

ficients ;.
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5.5.2 Subexponential Noise in the Maximum Domain of
Attraction of the Gumbel Distribution A

In this section we again consider the linear process X,, = Z?’;_Oo Vi Zn—;
driven by iid noise (Z,) with common df Fz. In contrast to Section 5.5.1 we
assume that Fz belongs to the maximum domain of attraction of the Gumbel
distribution

Alzy=e*", zeR.

We know from Section 3.3.3 and Example 3.3.35 that MDA(A) contains a
wide range of distributions with quite different tail behaviour. Indeed, Fz
may be subexponential (for instance the lognormal distribution), exponen-
tial or superexponential (for instance the normal distribution). We found in
Example 4.4.9 that fairly general Gaussian linear processes (X,,) exhibit the
same asymptotic extremal behaviour as their associated iid sequence (X,).
This changes dramatically for linear processes with subexponential noise as
we have already learnt in Section 5.5.1 for regularly varying F . A similar
statement holds when Fz € MDA(A) NS, where S denotes the class of dis-
tributions Fz with subexponential positive part Z7T; for the definition and
properties of S see Section 1.3.2 and Appendix A3.2.

Before we state the main results for Fz € MDA(A)NS we introduce some
conditions on the coefficients +; and on the distribution Fz. Throughout we
suppose that the tail balance condition

P(Z > x) . P(Z< -2
B St | —_ = 5.56
BRIz T Rz s (5:56)
holds with 0 < p <1, p+ ¢ = 1. We also assume
Z [th;|° < 0o for some & € (0,1). (5.57)

j=—oco

We have that E|Z| < oo, which follows from the tail balance condition (5.56)
and from the fact that E(Z1)% < oo, 8 > 0, for Fz € MDA(A); see Corol-
lary 3.3.32. This and (5.57) guarantee the absolute a.s. convergence of the
series X, for every n. Without loss of generality we assume that

max |Y;| =1, (5.58)
j

since otherwise we may consider the re—scaled process X,/ max; |¢;]. Then
one or more of the ¢; have absolute value one. The quantities

Et =card{j:¢; =1}, k~ =card{j:¢; = -1} (5.59)
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are crucial for the extremal behaviour of the sequence (X,,). The above con-
ditions lead to the following result which is analogous to Theorem 5.5.1.
Theorem 5.5.10 below is proved in Davis and Resnick [163], Theorem 3.3, in
a more general situation.

Theorem 5.5.10 (Weak convergence of the point processes of the embedded
linear process)
Suppose Fy € MDA(A)NS. Then there exist constants ¢, >0 and d, € R
such that

nFyz(chx +d,) = —InA(x), z€R. (5.60)

Furthermore, assume that conditions (5.56)—(5.58) hold. Then

= d, _
Zs(n—lk,c,jl(kadn)) = kTNi+k Ny
k=1

in M, (Ry x E) with E = (—o00,00]. Here

Ni:zg(tkiyjki)v 1=1,2,
k=1
are two independent PRM(| - | x p;) on Ry X E, uy has density fi(x) = e
and po has density fo(x) = (g/p)e™™, both with respect to Lebesgue measure.
O

Remarks. 1) If k™ > 1 or k=~ > 1, the limit point process k™ Ny + k~ N, is
multiple with constant multiplicities k¥, £~. The two independent processes

kTN, and K~ N, are due to the contributions of those innovations Z,, for
which ¥, =1 or ¥, = —1.

2) A comparison of Theorems 5.5.10 and 5.5.1 shows that the limit point
processes for Fi; € MDA (A) NS and Fz € MDA(®,,) are completely different
although in both cases F is subexponential. For F; € MDA(®,,) the limit
depends on all coefficients 1; whereas for Fz € MDA(A) NS only the num-
bers k* and k™ defined by (5.59) are of interest. The differences are due to
the completely different tail behaviour; Fz € MDA (®,,) implies regular vari-
ation of Fz, F'z € MDA(A) NS rapid variation of Fz; see Corollary 3.3.32.
This has immediate consequences for P(X > z); see Appendix A3.3. O

In the sequel we again apply some standard arguments to derive information
from Theorem 5.5.10 about the extremal behaviour of the linear process (X,,).
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Extremal Processes and Limit Distribution of Maxima

Analogously to iid sample maxima we define the process

C:Ll (M[nt] — dn) if t>n"t,
Y. (t) =
ct (X1 —d,) if 0<t<nTl.
Let
Yt)=\/ juV V je=YT) VY~ (), t>0.
tr1 <t t2<t
We use the convention that max( = —oo. Then an application of the a.s.

continuous mapping T from (5.25), the continuous mapping theorem and
Theorem 5.5.10 yield that

Y, = Ty (Zf(nlk,cnl(xk—dn))>

k=1

d - oo B oo

- T <k+ Zs(tkhjkl) +k Zs(tk27jk2)>

k=1 k=1

=Y
in D (0,00). The cadlag processes YT and Y~ are independent extremal
processes and Y (being the maximum of them) is again an extremal
process. Remember that > .-, E(tr1,jra) 18 PRM with the mean measure of
(0,] x (z,00) equal to te™* and likewise Y ", £, 5,,) is PRM with the
mean measure of (0,t] x (z,00) equal to t(q/p)e”". Thus YT is A-extremal

and Y~ is A%/P—extremal. Hence Y = YtV Y~ is A'*9/P—extremal. Then,
fort >0,z €R,

P(Y(t) <z)=exp{—t(l+q/p)e "} =exp{—tp~'e "} .

Theorem 5.5.11 (Invariance principle for the maxima of a linear process
with noise in MDA (A) N S)

Assume that Fz € MDA(A)NS and that conditions (5.56)—(5.58) hold. Choo-
se the constants ¢, d,, according to (5.60). Then

Y. 4 Y, n — oo,
where Y is the extremal process generated by the extreme value distribution

Ap_l(x) = exp {—pilefx} , x €R. d

An immediate consequence is the following.
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Corollary 5.5.12 (Limit laws for the maxima of a linear process with noise
in MDA(A)N S)
Under the conditions of Theorem 5.5.11 the following limit relations hold:

Tt (max(Zy,..., Z) —dy) S A, (5.61)
(M, —dy) S A, (5.62)
ol (Mn—dn) o g R (5.63)

Proof. (5.61) and (5.62) follow from Theorem 5.5.11, while (5.63) is a con-
sequence of (5.61) taking into consideration (see Lemma A3.27) that

P> vZi>x|~FEp+k oP (2> 7). 0

j=—00

Exceedances

For = € R the point process of exceedances of ¢,z + d,, by the linear pro-
cess (Xi) is given by

(o)

Na() = D ek O et (xuan)e}
k=1

As a consequence of Theorem 5.5.10 and of the continuous mapping theorem
we conclude that

No 5k et dpnsey + 5 Y ctnlgnsny = KINT +E N~ (5.64)
k=1 k=1
in M,(R;). With a glance at the finite-dimensional distributions or at the
Laplace functionals it is not difficult to check that N* and N~ are homoge-
neous Poisson processes on Ry with intensity e~ and (¢/p)e™%, respectively.
If (I;7) and (I,) denote the sequences of the points of N* and N~ then we
obtain the following result from (5.64):

Theorem 5.5.13 Suppose that the assumptions of Theorem 5.5.11 hold.
Then the point processes of exceedances of cpx + dy, by the linear process (X)
converge weakly in My(Ry) as n — oo:

oo d & o
Z%—lkl{c,;l(xkfdn)m} - Z (kJrsFZr +k 6F{> )
k=1

k=1
Here (Iy+) and (I,-) are the sequences of the points of two independent

homogeneous Poisson processes on Ry with corresponding intensities e™*
and (q/p)e*. O
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We notice that the limit process of the point processes of exceedances is the
sum of two independent compound Poisson processes where the cluster sizes
are just constants k*,k~. This is in contrast to the iid or weakly depen-
dent stationary case where the limit point process is a (simple) homogeneous
Poisson process (see Section 5.3), but it is also different from the situation
when F; € MDA(®,,). In the latter case the limit point process is compound
Poisson with random cluster sizes (see Section 5.5.1).

Maxima and Minima

As in Section 5.5.1 point process methods can be used to derive the joint limit
distribution of maxima and minima of linear processes with £y € MDA(A)N
S. The approach is similar to the one in Section 5.5.1. We omit details and
simply state a particular result. Let W,, = A", X; and suppose that k= = 0,
i.e. there is no index j with ¢; = —1. Then

P (et (M, —dn) <a, eyt (W, +dn) >y) = A(x) AP (—y)

n

for z,y > 0. In general, the limit distribution depends on the fact whether
kT =0 or k= = 0. For more details see Davis and Resnick [163].

Summary

Assume that Fy € MDA(A) NS with constants ¢, and d,, chosen according
to Theorem 3.3.26, i.e.

et (max (Zy,...,Z,) —d,) N A,
where A denotes the Gumbel distribution A(z) = e~¢ ", € R. Then, under
the conditions of Theorem 5.5.11,

-1

et (M, —dy) S AP

n

Furthermore, the point processes of exceedances of the threshold ¢,z + d,,
by the linear process (X%) converge weakly to a multiple point process with
constant multiplicities.

Notes and Comments

Asymptotic extreme value theory for linear processes with regularly varying
tails is given in Resnick [530], Chapter 4.5. The latter is based on Davis and
Resnick [160, 161, 162] who also treat more general aspects of time series
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analysis, see Chapter 7, and on Rootzén [549] and Leadbetter, Lindgren and
Rootzén [418] who consider exceedances of linear processes.

Extremes of linear processes with exponential and subexponential noise
variables were treated in Davis and Resnick [163]. Further interesting work in
this context is due to Leadbetter and Rootzén [419] and Rootzén [549, 550].

Note that both the present section and Sections 4.4 and 5.3.2 deal with
strictly stationary sequences. However, the assumptions and results are of
different nature. The central conditions in the present section are regular
variation of the tails F' or subexponentiality of the df F;. This allows one to
embed the linear process in a point process and to derive elegant results which
yield much information about the extremal behaviour of a linear process.
The assumptions on the tails are much weaker in Sections 4.4 and 5.3.2.
In particular, the df does not have to belong to any maximum domain of
attraction. Thus more general classes of dfs can be covered. On the other
hand, conditions of type D(u,) or D'(u,) ensure that we do not go too far
away from the iid case. Linear processes seem to allow for “more dependence”
in the sequence (X,) although the kind of dependence is quite specific. We
can also compare the different point processes of exceedances. In the case of
linear processes we obtain multiple PRM in the limit. This is in contrast to
Section 5.3.2, where the limit is a homogeneous Poisson process.
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Statistical Methods for Extremal Events

6.1 Introduction

In the previous chapters we have introduced a multitude of probabilistic mod-
els in order to describe, in a mathematically sound way, extremal events in
the one—dimensional case. The real world however often informs us about
such events through statistical data: major insurance claims, flood levels of
rivers, large decreases (or indeed increases) of stock market values over a cer-
tain period of time, extreme levels of environmental indicators such as ozone
or carbon monoxide, wind-speed values at a certain site, wave heights dur-
ing a storm or maximal and minimal performance values of a portfolio. All
these, and indeed many more examples, have in common that they concern
questions about extreme values of some underlying set of data. At this point
it would be utterly foolish (and indeed very wrong) to say that all such prob-
lems can be cast into one or the other probabilistic model treated so far:
this is definitely not the case! Applied mathematical (including statistical)
modelling is all about trying to offer the applied researcher (the finance ex-
pert, the insurer, the environmentalist, the biologist, the hydrologist, the risk
manager, . . .) the necessary set of tools in order to deduce scientifically sound
conclusions from data. It is however also very much about reporting correctly:
the data have to be presented in a clear and objective way, precise questions
have to be formulated, model-based answers given, always stressing the un-
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derlying assumptions. The whole process constitutes an art: statistical theory
plays only a relatively small, though crucial role here.

The previous chapters have given us a whole battery of techniques with
which to formulate in a mathematically precise way the basic questions under-
lying extreme value theory. This chapter aims at going one step further: based
on data, we shall present statistical tools allowing us to link questions asked
in practice to a particular (though often non-unique) probabilistic model. Our
treatment as regards these statistical tools will definitely not be complete,
though we hope it will be representative of current statistical methodology in
this fast—expanding area. The reader will meet data, basic descriptive meth-
ods, and techniques from mathematical statistics concerning estimation and
testing in extreme value models. We have tried to keep the technical level of
the chapter down: the reader who has struggled through Chapter 5 on point
processes may well be relieved! At the same time, chapters like the one on
point processes are there to show how modern probability theory is capable of
handling fairly complicated but realistic models. The real expert on Extremal
Event Modelling will definitely have to master both “extremes”.

After the mathematical theory of maxima, order statistics and heavy—
tailed distributions presented in the previous chapters, we now turn to the
crucial question:

How do extreme values manifest themselves in real data?

A full answer to this question would not only take most of the present chapter,
one could write whole volumes on it. Let us start by seeing how in practice
extremes in data manifest themselves. We do this through a series of partly
hypothetical, partly real examples. At a later stage in the chapter, we will
come back to some of the examples for a more detailed analysis.

Example 6.1.1 (River Nidd data)

A standard data—set in extreme value theory concerns flows of the river Nidd
in Yorkshire, England; the source of the data is the Flood Studies Report
NERC [477]. We are grateful to Richard Smith for having provided us with
a copy of the data. The basic set contains 154 observations on flow data
above 65 CUMECS over the 35—year period 1934-1970. A crude de—clustering
technique was used by the hydrologists to prepare these data. Though the full
set contains a series of values for each year, for a first analysis only the annual
maxima are considered. In this way, intra—year dependencies are avoided
and a valid assumption may be to suppose that the data xq,...,x35 are
realisations from a sequence X7, ..., X35 of iid rvs all with common eztreme
value distribution H say. Suppose we want to answer questions like:
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Figure 6.1.2 The river Nidd data 1934—-1970 (top) and the corresponding annual
mazima (bottom). The data are measured in CUMECS.

— What is the probability that the maximum flow for the next year will
exceed a level a7

— What is the probability that the maximum flow for the next year exceeds
all previous levels?

— What is the expected length of time (in years say) before the occurrence
of a specific high quantity of flow?

Clearly, a crucial step forward in answering these questions would be our
gaining knowledge of the df H. The theory of Chapter 3 gives us relevant
parametric models for H; see the Fisher—Tippett theorem (Theorem 3.2.3)
where the extreme value distributions enter. Standard statistical tools such
as maximum likelihood estimation (MLE) are available. O

Example 6.1.3 (Insurance claims)

Suppose our data consist of fire insurance claims z1,...,z, over a specified
period of time in a well-defined portfolio, as for instance presented in Fig-
ure 6.1.4. Depending on the type of fire causing the specific claims, a condition
of the type “z1,...,x, come from an iid sample X, ..., X,, with df F” may
or may not be justified. Suppose for the sake of argument that the underlying
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Figure 6.1.4 4580 claims from a fire insurance portfolio. The values are multiples
of 1000 SFr. The corresponding histogram of the claims < 5000 SFr (left) and of
the remaining claims exceeding 5000 SFr (right). The data are very skewed to the
right. The z—azis of the histogram on the rhs reaches up to 250 due to a very large
claim around 225; see also the top figure.

portfolio is such that the above assumption can be made. Questions we want
to answer (or tasks we want to perform) could be:

— Calculate next year’s premium volume needed in order to cover, with suf-
ficiently high probability, future losses in this portfolio.

— What is the probable—maximum—loss of this portfolio if the latter is defined
as a high (for instance the 0.999-) quantile of the df F'?

— Given that we want to write an excess—of-loss cover (see Example 8.7.4)
with priority ar (also referred to as attachment point) resulting in a one—
in—k—year event, how do we calculate a;? The latter means that we want
to calculate ay so that the probability of exceeding ay equals 1/k.
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Again, as in the previous example, we are faced with a standard statistical
fitting problem. The main difference is that in this case we do not immediately
have a specific parametric model (such as the extreme value distributions in
Example 6.1.1) in mind. We first have to learn about the data:

— Is F light— or heavy—-tailed?
— What are its further shape properties: skewed, flat, unimodal,. ..?

In the heavy-tailed case fitting by a subexponential distribution (see Chap-
ter 1 and Appendix A3.2) might be called for. The method of exceedances
from Section 6.5 will be relevant. O

Example 6.1.5 (ECOMOR reinsurance)

The ECOMOR reinsurance contract stands for “Le Traité d’Excédent du
Cout Moyen Relatif” and was introduced by the French actuary Thépaut
[621] as a novel contract aiming to enlarge the reinsurer’s flexibility in con-
structing customised products. A precise mathematical description is given
in Example 8.7.7. Suppose over a period [0,#], the claims zy,..., 2, are
received by the primary insurer. The ECOMOR contract binds the rein-
surer to cover (for a specific premium) the excesses above the kth largest
claim. This leads us to a model where X7, ..., Xx() are (conditionally) iid
with specific model assumptions on the underlying df F' of X; and on the
counting process (N (t)); see Chapter 1. The relevant theory underlying the
ECOMOR contracts, i.e. the distributional properties of the k largest order
statistics X1 n(¢),- .-, Xk, n() from a randomly indexed ordered sample, was
given in Section 4.3. Standard models are hence at our disposal. It is perhaps
worthwhile to stress that, though innovative in nature, ECOMOR never was
a commercial success. (|

Example 6.1.6 (Value-at-Risk)

Suppose a financial portfolio consists of a number of underlying assets (bonds,
stocks, derivatives,. . .), all having individual (though correlated) values at any
time ¢. Through the estimation of portfolio covariances, the portfolio man-
ager then estimates the overall portfolio Profit-Loss (P&L) distribution. For
details on this see for instance RiskMetrics [543]. Management and regulators
may now be interested in setting “minimal requirements” or, for the sake of
argument, a maximal limit on the potential losses. A possible quantity is the
so—called Value-at-Risk (VaR) measure briefly treated in the discussion of
Figure 4 of the Reader Guidelines. There the VaR is defined as the 5% quan-
tile of the P&L distribution. The following questions are relevant.

— Estimate the VaR for a given portfolio.
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Figure 6.1.7 Daily log—returns of BMW share prices for the period January 2,
1978 — July 23, 1996 (n = 6146), together with a histogram of the data.

— Estimate the probability that, given we exceed the VaR, we exceed it by
a certain amount. This corresponds to the calculation of the so—called short-
fall distribution.

The first question concerns quantile estimation for an estimated df, in many
cases outside the range of our data. The second question obviously concerns
the estimation of the excess df as defined in Section 3.4 (modulo a change
of sign: we are talking about losses!). The theory presented in the latter
section advocates the use of the generalised Pareto distribution as a natural
parametric model in this case. a

Example 6.1.8 (Fighting the arch-enemy with mathematics)

The above heading is the actual title of an interesting paper by de Haan [294]
on the famous Dutch dyke project following the disastrous flooding of parts of
the Dutch provinces of Holland and Zeeland on February 1, 1953, killing over
1800 people. In it, de Haan gives an account of the theoretical and applied
work done in connection with the problem of how to determine a safe height
for the sea dykes in the Netherlands. More than with any other event, the re-
sulting work by Dutch mathematicians under van Dantzig gave the statistical
methodology of extremal events a decisive push. The statistical analyses also
made a considerable contribution to the final decision making about the dyke
heights. The problem faced was the following: given a small number p (in the
range of 10~% to 1073), determine the height of the sea dykes such that the
probability that there is a flood in a given year equals p. Again, we are con-
fronted with a quantile estimation problem. From the data available, it was
clear that one needed estimates well outside the range of the data. The sea-



6.1 Introduction 289

water level in the Netherlands is typically measured in (N.A.P. 4+ z) meters
(N.A.P. = Normaal Amsterdams Peil, the Dutch reference level corresponding
to mean sea level). The 1953 flood was caused by a (N.A.P. + 3.85) m surge,
whereas historical accounts estimate a (N.A.P. + 4) m for the 1570 flood, the
worst recorded. The van Dantzig report estimated the (1 — 10~*)—quantile
as (N.A.P. 4+ 5.14) m for the annual maximum. That is, the one—in—ten—
thousand—year surge height is estimated as (N.A.P. + 5.14) m. We urge all
interested in extreme value statistics to read de Haan [294]. O

Many more examples with an increasing degree of complexity could have
been given including:

— non-stationarity (seasonality, trends),

— sparse data,

multivariate observations,

infinite-dimensional data (for instance continuously monitored processes).

The literature cited throughout the book contains a multitude of examples.
Besides the work mentioned already by Smith on the river Nidd and de Haan’s
paper on the dyke project, we call the following papers to the reader’s atten-
tion:

— Rootzén and Tajvidi [553] where a careful analysis of Swedish wind storm
losses (i.e. insurance data) is given. Besides the use of standard methodol-
ogy (fitting of generalised extreme value and Pareto distributions), prob-
lems concerning trend analysis enter, together with a covariate analysis
looking at the potential influence from numerous environmental factors.

— Resnick [532] considers heavy tail modelling in a huge data—set (n ~ 50 000)
in the field of the teletraffic industry. Besides giving a very readable and
thought provoking review of some of the classical methods, extremes in
time series models are specifically addressed. See also Sections 5.5 and 8.4.

— Smith [594] applies extreme value theory to the study of ozone in Houston,
Texas. A key question concerns the detection of a possible trend in ground-—
level ozone. Such a study is particularly interesting as air—quality standards
are often formulated in terms of the highest level of permitted emissions.

The above papers are not only written by masters at their trade (de Haan,
Resnick, Rootzén, Smith), they also cover a variety of fields (hydrology, in-
surance, electrical engineering, environmental research).

Within the context of finance, numerous papers analysing specific data
are being published; see Figure 6.1.7 for a typical example of financial return
data. A paper which uses up—to—date statistical methodology on extremes is
for instance Danielson and de Vries [154] where models for high frequency
foreign exchange recordings are treated. See also Miiller et al. [470] for more
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background on the data. Interesting case studies are also to be found in
Barnett and Turkman [52], Falk, Hiisler and Reiss [225], and Longin [428].
The latter paper analyses US stock market data.

We hope that the examples above have singled out a series of problems. We
now want to present their statistical solutions. There is no way in which we
can achieve completeness concerning the statistical models now understood:
the definitive book on this still awaits the writing. A formidable task indeed!

The following sections should offer the reader both hands—on experience
of some basic methods, as well as a survival kit to get him/her safely through
the “jungle of papers on extreme value statistics”. The outcome should be
a better understanding of those basic methods, together with a clear(er)
overview of where the field is heading to. This chapter should also be a guide
on where to look for further help on specific problems at hand.

Of the more modern textbooks containing a fair amount of statistical
techniques we would like to single out Falk et al. [225] and Reiss [526]. The
latter book also contains a large amount of historical notes. It always pays
to go back to the early papers and books written by the old masters, and the
annotated references in Reiss [526] could be your guide. However, whatever
you decide to read, don’t miss out on Gumbel [290]!

6.2 Exploratory Data Analysis for Extremes

One of the reasons why Gumbel’s book [290] is such a feast to read is its
inclusion of roughly 100 graphs and 50 tables. The author very much stresses
the importance of looking at data before engaging in a detailed statistical
analysis. In our age of nearly unlimited computing power this graphical data
exploration is becoming increasingly important. The reader interested in some
recent developments in this area may for instance consult Chambers et al.
[109], Cleveland [122] or Tufts [627]. In the sections to follow we discuss some
of the more useful graphical methods.

6.2.1 Probability and Quantile Plots

Given a set of data to be analysed, one usually starts with a histogram, one
or more box—plots, a plot of the empirical df, in the multi-dimensional case
a scatterplot or a so—called draughtsman’s display which combines all 2 x 2
scatterplots in a graphical matrix form. Keeping to the main theme of the
book, we restrict ourselves however to the one—dimensional case and start
with a discussion of the problem:

Find o df F which is a good model for the iid data X, X, ..., X,.
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Figure 6.2.1 QQ-plot of exponentially (a), uniformly (b), lognormally (c) distrib-
uted simulated data versus the exponential distribution. In (d) a QQ-plot of ta—
distributed data versus the standard normal distribution is given.
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Figure 6.2.2 QQ-plots: (a) Gumbel distributed simulated data versus Gumbel dis-
tribution. GEV distributed data with parameters (b): € = 0.3, (c): £ = —0.3, (d):
&€ =0.7, versus Gumbel. The values £ = 0.7 and § = 0.3 are chosen so that o =1/¢
either belongs to the range (1,2) (typically encountered for insurance data) or (3,4)
(corresponding to many examples in finance).
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Define the ordered sample X,, , <--- < X ,. The theoretical basis that un-
derlies probability plots is the quantile transformation of Lemma 4.1.9, which
implies that for F' continuous, the rvs U, = F(X;), for i =1,...,n, are iid
uniform on (0,1). Moreover,

d
(F(kan))kZL...,n = (Ukvn)kZL...,n '
From this it follows that
—k+1
EF(Xp,) = 2—"F0  po1 .
’ n+1

Also note that F,,(Xk,n) = (n —k + 1)/n, where F), stands for the empirical
df of F. The graph

n—k+1
{(F(Xk’n),ﬁ> :k:l,...,n}

is called a probability plot (PP-plot). More common however is to plot the

((or (25 imiad

typically referred to as the quantile plot (QQ-plot). In both cases, the ap-
prozimate linearity of the plot is justified by the Glivenko—Cantelli theorem;
see Example 2.1.4. The theory of weak convergence of empirical processes
forms the basis for the construction of confidence bands around the graphs,
leading to hypothesis testing. We refrain from entering into details here; see
for instance Shorack and Wellner [579], p. 247.

There exist various variants of (6.1) of the type

{(Xkn, I (prn)) sk =1,...,n}, (6.2)

graph

where py, , is a certain plotting position. Typical choices are

n—k+ 0

Pen = n +’Yk

with (0g,vx) appropriately chosen allowing for some continuity correction.
We shall mostly take (6.1) or (6.2) with

n—k+0.5

Pen =
n

For a Gumbel distribution

Ax) = exp{—e_z} , T€ER,
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the method is easily applied and leads to so—called double logarithmic plot-
ting. Assume for instance that we want to test whether the sample X,,..., X,
comes from A. To this end, we take the ordered sample and plot X} ,, (more
precisely the kth largest observation xy ) against A (prn) = — In(—Inpg,»),
where py, , is a plotting position as discussed above. If the Gumbel distribu-
tion provides a good fit to our data, then this QQ-plot should look roughly
linear; see Figure 6.2.2(a).

Mostly, however, the data would be tested against a location—scale family
F((-—p) /%) where in some cases (for instance when F' = & standard normal)
w1 and v are the mean and standard deviation of X. A QQ-plot using F' would
still be linear, however with slope ¥ and intercept p. Using linear regression
for instance, a quick estimate of both parameters can be deduced.

In summary, the main merits of QQ—plots stem from the following prop-
erties, taken from Chambers [108]; see also Barnett [50], Castillo [104], Sec-
tion 6.2.1, David [156], Section 7.8, and Gnanadesikan [265].

(a) Comparison of distributions. If the data were generated from a random
sample of the reference distribution, the plot should look roughly linear.
This remains true if the data come from a linear transformation of the
distribution.

(b) Outliers. If one or a few of the data values are contaminated by gross er-
ror or for any reason are markedly different in value from the remaining
values, the latter being more or less distributed like the reference distrib-
ution, the outlying points may be easily identified on the plot.

(¢) Location and scale. Because a change of one of the distributions by a lin-
ear transformation simply transforms the plot by the same transforma-
tion, one may estimate graphically (through the intercept and slope) lo-
cation and scale parameters for a sample of data, on the assumption that
the data come from the reference distribution.

(d) Shape. Some difference in distributional shape may be deduced from the
plot. For example if the reference distribution has heavier tails (tends to
have more large values) the plot will curve down at the left and/or up at
the right.

For an illustration of (a) and (d) see Figure 6.2.1. For an illustration of (d)
in a two-sided case see Figure 6.2.1(d).

So far we have considered only location—scale families. In the case of the
generalised extreme value distribution (GEV), see Definition 3.4.1,
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Hepp ()

IRV
exp{—(l%—fT'u) }, 1+&(z—p)/v>0, (6.3)

Do (14 (x— pu)/(ar))) forx >p—va, £=1/a>0,
= § Y(-(0-(—p/law)) forz<p+ia, {=-1/a<0,
A = /) forzeR  £=0,

besides the location and scale parameters © € R, ¢» > 0, a shape para-
meter £ € R enters, making immediate interpretation of a QQ-plot more
delicate. Recall that &, ¥, and A denote the standard extreme value dis-
tributions Fréchet, Weibull and Gumbel; see Definition 3.2.6. A preferred
method for testing graphically whether our sample comes from Hyg,, , would
be to first obtain an estimate E for £ either by guessing or by one of the
methods given in Section 6.4.2, and consequently work out a QQ-plot using
Hg,,, where again p and ¢ may be estimated either by visual inspection
or through linear regression. These preliminary estimates are often used as
starting values in numerical iteration procedures.

6.2.2 The Mean Excess Function

Another useful graphical tool, in particular for discrimination in the tails, is
the mean excess function. Note that we have already introduced this func-
tion in the context of the GEV; see Definition 3.4.6. We recall it here for
convenience.

Definition 6.2.3 (Mean excess function)
Let X be a rv with right endpoint x; then

eu)=EX —-u|X>u), 0<u<uzp, (6.4)
18 called the mean excess function of X. O

The quantity e(u) is often referred to as the mean excess over the threshold
value u. This interpretation will be crucial in Section 6.5. In an insurance
context, e(u) can be interpreted as the expected claim size in the unlimited
layer, over priority u. Here e(u) is also called the mean excess loss function.
In a reliability or medical context, e(u) is referred to as the mean residual life
function. In a financial risk management context, switching from the right
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Figure 6.2.4 Graphs of the mean excess function e(u) of some standard distribu-
tions; see also Table 3.4.7. Note that heavy—tailed dfs typically have e(u) tending to

infinity.

tail to the left tail, e(u) is referred to as the shortfall. A summary of the most
important mean excess functions is to be found in Table 3.4.7.

In Example 3.4.8 we already noted that any continuous df F' is uniquely
determined by its mean excess function; see (3.48) and (3.49) for the relevant
formulae linking F' to e and vice versa.

Example 6.2.5 (Some elementary properties of the mean excess function)
If X is Exp(\) distributed, then e(u) = A~! for all u > 0. Now assume that
X is a rv with support unbounded to the right and df F. If for all y € R,

F(r —
lim M =Y

Jim S : (6.5)

for some 7 € [0,00], then lim, ,. e(u) =1 For the proof use e(u) =
[° F(y) dy/F(u) and apply Karamata’s theorem (Theorem A3.6) to F o In.
Notice that for F' € S (the class of subexponential distributions; see Defini-
tion 1.3.3), (6.5) is satisfied with v = 0 so that in this heavy—tailed case, e(u)
tends to oo as u — 0o. On the other hand, superexponential functions of the
type F(z) ~ exp{—z®}, a > 1, satisfy the limit relation (6.5) with 7 = 0o so
that the mean excess function tends to 0. The intermediate cases are covered
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by the so—called S(v)—classes; see Definition 1.4.9, Embrechts and Goldie
[205] and the references therein. O

Example 6.2.6 Recall that for X generalised Pareto the mean excess func-
tion is linear; see Theorem 3.4.13(e). The mean excess function of a heavy—
tailed df, for large values of the argument, typically appears to be between
a constant function (for Fzp()\)) and a straight line with positive slope (for
the Pareto case). Consequently, interesting mean excess functions are of the
form
u'=F/a, a>0,0<p<1,
el { u/(a+2Blnu), «,B>0.

Note that e(u) increases but the rate of increase decreases with w. Benk-
tander [60] introduced two families of distributions as claim size models with
precisely such mean excess functions. Within the insurance world, they now
bear his name. The Benktander—type—I and —type—II classes are defined in
Table 1.2.6. O

A graphical test for tail behaviour can now be based on the empirical mean
excess function e,(u). Suppose that Xy, ..., X, are iid with df F' and let F),
denote the empirical df and A, (u) ={i:i=1,...,n,X; > u}, then

1 ° 1
() = = Foly)dy = ———— Xi—u), u>0,
en(u) Fo(u) /u (y) dy cardA,, (u) EAZ:( )( u) u

(6.6)

with the convention that 0/0 = 0. A mean excess plot (ME-plot) then consists
of the graph
{(Xknen(Xkn)):k=1,...,n}.

The statistical properties of e, (u) can again be derived by using the relevant
empirical process theory as explained in Shorack and Wellner [579], p. 778.
For our purposes, the ME-plot is used only as a graphical method, mainly
for distinguishing between light— and heavy—tailed models; see Figure 6.2.7
for some simulated examples. Indeed caution is called for when interpreting
such plots. Due to the sparseness of the data available for calculating e,,(u)
for large u—values, the resulting plots are very sensitive to changes in the
data towards the end of the range; see for instance Figure 6.2.8. For this
reason, more robust versions like median ezcess plots and related procedures
have been suggested; see for instance Beirlant, Teugels and Vynckier [57] or
Rootzén and Tajvidi [553]. For a critical assessment concerning the use of
mean excess functions in insurance see Rytgaard [562]. For a useful applica-
tion of the ME—plot, see Section 6.5.1.
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Figure 6.2.7 The empirical mean excess function e,(u) of simulated data (n =
1000) compared with the corresponding theoretical mean excess function e(u)
(dashed line): standard exponential (top), lognormal (middle) with In X N(0,4),
Pareto (bottom) with tail index 1.7.
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Figure 6.2.8 The mean excess function of the Pareto distribution F(:c) =g 17,

x > 1, together with 20 empirical mean excess functions e,(u) each based on simu-
lated data (n = 1000) from the above distribution. Note the very unstable behaviour,
especially towards the higher values of w. This us typical and makes the precise in-
terpretation of en(u) difficult; see also Figure 6.2.7.

Example 6.2.9 (Exploratory data analysis for some examples from insur-
ance and finance)

In Figures 6.2.10-6.2.12 we have graphically summarised some properties of
three real data—sets. Two come from insurance, one from finance. The data
underlying Figure 6.2.11 correspond to Danish fire insurance claims in mil-
lions of Danish Kroner (1985 prices). The data were communicated to us by
Mette Rytgaard and correspond to the period 1980-1993, inclusive. There is
a total of n = 2493 observations. For a preliminary analysis of these data,
see Rytgaard [562].

The second insurance data, presented in Figure 6.2.12, correspond to a port-
folio of industrial fire data (n = 8043) reported over a two year period. This
data—set is definitely considered by the portfolio manager as “dangerous”,
i.e. large claim considerations do enter substantially in the final premium
calculation.

A first glance at the figures and Table 6.2.13 for both data—sets immediately
reveals heavy—tailedness and skewness to the right. The corresponding mean
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Figure 6.2.10 Ezploratory data analysis of BMW share prices. Top: the 500

largest values from the upper tail (positive returns) and lower tail (absolute neg-
ative returns). Middle: the corresponding log—histograms. Bottom: the ME—plots.

See Example 6.2.9 for some comments.
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Figure 6.2.11 FEzploratory data analysis of Danish insurance claims caused by
fire: the data (top left), the histogram of the log—transformed data (top right), the
ME-plot (bottom left) and a QQ-plot against standard exponential quantiles (bottom
right). See Ezample 6.2.9 for some comments.
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Figure 6.2.12 FEzploratory data analysis of insurance claims caused by industrial
fire: the data (top left), the histogram of the log—transformed data (top right), the
ME-plot (bottom left) and a QQ-plot against standard exponential quantiles (bottom
right). See Ezample 6.2.9 for some comments.
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Data Danish Industrial
n 2493 8043

min 0.3134 0.003

1st quartile | 1.157 0.587
median 1.634 1.526
mean 3.063 14.65

3rd quartile | 2.645 4.488
max 263.3 13520
0.99 24.61378  184.0009

Table 6.2.13 Basic statistics for the Danish and the industrial fire data; To.99
stands for the empirical 99%-quantile.

excess functions are close to a straight line which indicates that the underly-
ing distributions may be modelled by Pareto-like dfs. The QQ-plots against
the standard exponential quantiles also clearly show tails much heavier than
exponential ones.

Whereas often insurance data may be supposed to represent iid observations,
this is typically not the case for finance data as the BMW daily log—return
data underlying Figure 6.2.10. For the full data—set see Figure 6.1.7. The
period covered is January 23, 1973 — July 12, 1996, resulting in n = 6 146
observations on the log—returns. Nevertheless, we may assume stationarity of
the underlying times series so that many limit results (such as the SLLN)
remain valid under general conditions. This would allow us to interpret the
graphs of Figure 6.2.10 in a way similar to the iid case, i.e. we will assume that
the empirical plots (histogram, empirical mean excess function, QQ-plot) are
close to their theoretical counterparts. Note that we contrast these tools for
the positive daily log—returns and the absolute values of the negative ones.
The log-histograms again show skewedness to the right and heavy-tailedness.
It is interesting to observe that the upper and lower tail of the distribution of
the log—returns are different. Indeed, both the histograms and the ME-plots
(mind the different slopes) indicate that the lower tail of the distribution is
heavier than the upper one.

In Figure 6.2.10 we have singled out the 500 largest positive (left) and nega-
tive (right) log—returns over the above period. In Table 6.2.14 we have sum-
marised some basic statistics for the three resulting data—sets: BMW—all,
BMW-upper and BMW-lower. The nomenclature should be obvious.

We would like to stress that it is our aim to fit tail-probabilities (i.e. proba-
bilities of extreme returns). Hence it is natural for such a fitting to disregard
the “small” returns. The choice of 500 at this point is rather arbitrary; we will
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Data BMW-all BMW-upper BMW-lower
n 6 146 500 500

min -0.14060 0.01818 0.01719

1st quartile | -0.006656  0.020710 0.019480
median 0.00000 0.02546 0.02331
mean 0.0003407  0.0295700 0.0279500
3rd quartile | 0.007126 0.032920 0.031240
max 0.1172 0.1172 0.1406

Table 6.2.14 Basic statistics for the BMW data.

come back to this issue and indeed a more detailed analysis in Section 6.5.2.
O

6.2.3 Gumbel’s Method of Exceedances

There is a multitude of fairly easy analytic results concerning extremes which
yield useful preliminary information on the data. The first method, Gumbel’s
method of exceedances, concerns the question:

How many values among future observations exceed past records?

Let X,,,, < --- < Xi,, as usual be the order statistics of a sample X, ..., X,
embedded in an infinite iid sequence (X;) with continuous df F. Take the kth
upper order statistic Xy, ,, as a (random) threshold value and denote by S} (k),
r > 1, the number of exceedances of X}, among the next r observations
XnJrl, N ,Xn+7«, i.e.

S:L(k) = ZI{Xn,+i>Xk.n} .
=1

For ease of notation, we sometimes write S for S”(k) below.

Lemma 6.2.15 (Order statistics and the hypergeometric df)
The rv S defined above has a hypergeometric distribution, i.e.

<r+n—k—j)<j+k—1)
P(S=j)= n-k bl j=0,1,...,r. (6.7

OO N

P(S=j)= /OOOP(S =7 | Xin=u) dFy,(u),

Proof. Conditioning yields
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where F}, », denotes the df of X} ,,. Now use the fact that (Xi,...,X,) and
(Xnt1,- .., Xpqr) are independent, that -7, It x, -, has a binomial distri-
bution with parameters r and F(u), and, from Proposition 4.1.2(b), that

n!
(k—1)(n —k)!

to obtain (6.7). O

k—1

dFy ., (u) = F R w)F"  (u) dF (u)

Remark. It readily follows from the definition of S and the argument given in
the above proof that ES = rk/(n+1) for the mean number of exceedances of
the random threshold X}, ,,. For a detailed discussion on the hypergeometric
distribution see for instance Johnson and Kotz [361]. O

Example 6.2.16 Suppose n = 100, r = 12. We want to calculate the proba-
bilities p, = P(S{3°(k) = 0) that there are no exceedances of the level X}, 100,
k > 1, in the next twelve observations. For j = 0, formula (6.7) reduces to

nn—1)---(n—k+1)
(r+n)r+n—-1)---(r+n—-k+1)’

P(Sp(k) = 0) =

In tabulated form we obtain for n = 100 and r = 12,

k| 1 2 3 4 5
pe | 0.893 0.796 0.709 0.631 0.561

So if we have, say, 100 monthly data points and set out to design a certain
standard equal to the third largest observation, there is about a 70% chance
that this level will not be exceeded during the next year. O

p | k=1 k=2 k=3 k=4 k=5
7=0 07778 0.6010 0.4612 0.3514 0.2657
j=1101768 02795 0.3295 0.3428 0.3321
j=210.0370 00899 0.1446 0.1929 0.2299
j=3 00070 0.0234 0.0482 0.0791 0.1130
j=4 00012 00051 0.0130 0.0255 0.0427
j =5 0.0002 0.0009 0.0029 0.0066 0.0128
=6 | 0.0000 0.0001 0.0005 0.0014 0.0031
j=70.0000 0.0000 0.0001 0.0002 0.0006
=8 | 0.0000 0.0000 0.0000 0.0000 0.0001
7=09|0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.2.17 Exceedance probabilities of the river Nidd data. For given k (order
statistic) and j (number of exceedances), p = P(Stg(k) = j) as calculated in (6.7),
s given; see Example 6.2.18.
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Example 6.2.18 (River Nidd data, continuation)
For the river Nidd annual data from Example 6.1.1 we have that n = 35. The
exceedance probabilities (6.7) for the next » = 10 years are given in Table
6.2.17. For example, the probability of not exceeding during the next 10 years,
the largest annual flow observed so far equals P(S35(1) = 0) = 0.7778. The
probability of exceeding at least once, during the next 10 years, the third
highest level observed so far equals 1 — P(S53(3) = 0) = 1 —0.4612 = 0.5388.
O

6.2.4 The Return Period

In this section we are interested in answering the question:
What is the mean waiting time between specific extremal events?

This question is usually made precise in the following way. Let (X;) be a se-
quence of iid rvs with continuous df F" and u a given threshold. We consider
the sequence (I{x,,}) of iid Bernoulli rvs with success probability p = F(u).
Consequently, the time of the first success

Lu)=min{i > 1: X; >u},

i.e. the time of the first exceedance of the threshold u, is a geometric rv with
distribution
P(Lu)=k) =1 —-p)*tp, k=12,....

Notice that the iid rvs
Li(u) = L(u), Lpt1(u) =min{i> L,(u):X; >u}, n>1,

describe the time periods between successive exceedances of u by (X,,). The

return period of the events {X; > u} is then defined as EL(u) = p~! =

(F(u))~!, which increases to oo as u — co. For ease of notation we take dfs

with unbounded support above. All relevant questions concerning the return

period can now be answered straightforwardly through the corresponding

properties of the geometric distribution. Below we give some examples.
Define

k
re=P(Lw) <k)=pY (1-p''=1-(1-p", kel
i=1
Hence r; is the probability that there will be at least one exceedance of u
before time k (or within k observations). This gives a 1-1 relationship between

rr and the return period p~!.
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The probability that there will be an exceedance of u before the return
period becomes

P(L(u) < EL(u)) = P (L(u) < [1/p]) =1 — (1 — p)lM/7!,

where [z] denotes the integer part of . For high thresholds u, i.e. for u 1 0o
and consequently p | 0, we obtain

im U u = lim (1 — (1 —p)lt/7
lim P(L(w) < EL(w) = lm (1 - (1-p)1/7)

= 1-e1=063212.

This shows that for high thresholds the mean of L(u) (the return period) is
larger than its median.

Example 6.2.19 (Return period, t—year event)

Within an insurance context, a structure is to be insured on the basis that it
will last at least 50 years with no more than 10% risk of failure. What does
this information imply for the return period? Using the language above, the
engineering requirement translates into

P(L(u) < 50) <0.1.

Here we tacitly assumed that a structure failure for each year i can be mod-
elled through the event {X; > u}, where X is a structure-dependent critical
component, say. We assume the iid property of the X,;. The above condition,
solved for P(L(u) < 50) =1 — (1 — p)5° = 0.1, now immediately implies that
p = 0.002105, i.e. EL(u) = 475. In insurance language one speaks in this case
about a 475—year event.

The important next question concerns the implication of a t—year event re-
quirement on the underlying threshold value. By definition this means that
for the corresponding threshold w.,

b

!

Ut)

hence
’U,t:FE (1—t71) .

In the present example, usrs = F*(0.9979). This leads us once more to the
crucial problem of high quantile estimation. a

Example 6.2.20 (Continuation of Example 6.1.8)

In the case of the Dutch dyke example, recall that, assuming stationarity
among the annual maxima of sea levels, the last comparable flood before
1953 took place in November 1570, so that in the above language one would
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speak about a 382-year event. The 1953 level hence corresponds roughly to
the (1—1/382)—quantile of the distribution of the annual maximum. The sub-
sequent government requirements demanded dykes to be built corresponding
to a 1000-to—10 000—year event! O

The above examples clearly stress the need for a solution to the following
problems:

— Find reliable estimators for high quantiles from iid data.
— As most data in practice will exhibit dependence and/or non-stationarity
find quantile estimation procedures for non—iid data.

6.2.5 Records as an Exploratory Tool

Suppose that the rvs X; are iid with df F'. Recall from Section 5.4 the de-
finitions of records and record times: a record X,, occurs if X,, > M, =
max(Xy,...,X,—1). By definition we take X; as a record. In Section 5.4 we
used point process language in order to describe records and record times L,,.
The latter are the random times at which the process (M,,) jumps. Define
the record counting process as

n
M=1, Ny=1+4> Iix,om_y}p, n>2.
k=2

The following result (on the mean EN,) may be surprising.

Lemma 6.2.21 (Moments of N,,)
Suppose (X;) are iid with continuous df F and (N,,) defined as above. Then

n

1 11
EN, = ICZ::I % and var(N,) = Z <E - ﬁ) .

k=1

Proof. From the definition of N,, we obtain

1+ P(X > My 1)
k=2

EN,

n +o0
1+Z/ P (X >u) dP (My_1 < u) .
k=2Y "

Now use P (My_; < u) = F*~'(u) which immediately yields the result for
EN,,. The same argument works for var(N,,). O

Notice that EN,, and var(N,,) are both of the order Inn as n — oo. More
precisely, EN,, —Inn — =, where v = 0.5772... denotes Euler’s constant.
As a consequence:
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the number of records of id data grows very slowly!
Before reading further, guess the answer to the next question:

How many records do we expect in 100, 1 000
or 10000 4id observations?

Table 6.2.22 contains the somewhat surprising answer; see also Figures 5.4.2
and 5.4.12.

n=10* k= | EN, | Inn | Inn+v | D,
1 29| 23 29| 1.2
2 52| 4.6 52| 1.9
3 751 7.0 75| 24
4 9.8 | 9.2 9.8 | 2.8
5 12.1 | 11.5 12.1 | 3.2
6 14.4 | 13.8 14.4 | 3.6
7 16.7 | 16.1 16.7 | 3.9
8 19.0 | 18.4 19.0 | 4.2
9 21.3 | 20.7 21.3 | 4.4

Table 6.2.22 Ezxpected number of records EN,, in an iid sequence (X,,), to-
gether with the asymptotic approximations Inn, Inn + v, and standard devi-
ation D, = \/var(N,,), based on Lemma 6.2.21.

0 10 20 30 60

40 50
Figure 6.2.23 Vancouver sunshine data and the corresponding numbers of records.
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Example 6.2.24 (Records in real data)

In Figure 6.2.23 the total amount of sunshine hours in Vancouver during
the month of July from 1909 until 1973 is given. The data are taken from
Glick [264]. There are 6 records in these n = 64 observations, namely for
1=1,2,6,10,23,53. Clearly one would need a much larger n in order to test
confidently the iid hypothesis for the underlying data X7, ..., X4 on the basis
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of the record values. If the data were iid, then we would obtain ENgq = 4.74.
The observed value of 6 agrees rather well. On the basis of these observations
we have no reason to doubt the iid hypothesis. The picture however changes
dramatically in Figure 3 of the Reader Guidelines, based on catastrophic
insurance claims for the period 1970-1995. It is immediately clear that the
number of records does not exhibit a logarithmic growth. O

6.2.6 The Ratio of Maximum and Sum

In this section we consider a further simple tool for detecting heavy tails of a
distribution and for giving a rough estimate of the order of its finite moments.
Suppose that the rvs X, Xy, X, ... are iid and define for any positive p the
quantities

Sn(p) = |X1|p +-ot |Xn|p7 Mn(p) = max(|X1|p, K] |Xn|p)7 n>1.

We also write M,, = M,(1) and S, = S,(1) slightly abusing our usual
notation. One way to study the underlying distribution is to look at the
distributional or a.s. behaviour of functionals f(S,(p), M,(p)). For instance,
in Section 8.2.4 we gained some information about the limit behaviour of the
ratio M,,/S,. In particular, we know the following facts (Y1, Y2 and Y3(p)
are appropriate non—degenerate rvs):

M’I’L a.s.
M,
= Lo & E|X|I{x)<s) € Ro,
S, —nE|X
]\Z IX] Ly, & P(]X| > z) € R_, for some a € (1,2),
Mn d,
S——>Y2 < P(X]|>=x) € R_, for some a € (0,1),
S—”51 & P(X|>z)€Ry.
Writing
M (p)
Rn(p) = ;, n=>1,p>0, 6.8
() 5. (0) (6.8)

we may conclude from the latter relations that the following equivalences
hold:
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R.(p)*¥ 0 & E|X|P < o0,

Ry(p) 5 0 & E|XPPIx|<.} € Ro,

R, (p) 4 Ya(p) & P(JX]|>z) € R_qp for some a € (0,1),
R.(p) 51 & P(X|>z)ERy.

Now it is immediate how one can use these limit results to obtain some
preliminary information about P(|X| > z): plot R, (p) against n for a variety
of p—values. Then R,,(p) should be small for large n provided that E|X|? < co.
On the other hand, if there are significant deviations of R, (p) from zero for
large n, this is an indication for E|X|? being infinite; see Figures 6.2.25-6.2.29
for some examples of simulated and real data.

Clearly, what has been said about the absolute value of the X; can be
modified in the natural way to get information about the right or left dis-
tribution tail: replace everywhere | X;|? by the pth power of the positive or
negative part of the X,;. Moreover, the ratio of maximum over sum can be
replaced by more complicated functionals of the upper order statistics of a
sample; see for instance the definition of the empirical large claim indez in
Section 8.2.4. This allows to discriminate the distributions in a more subtle
way.

Notes and Comments

The statistical properties of QQ—plots, with special emphasis on the heavy—
tailed case, are studied for instance in Kratz and Resnick [407]. The impor-
tance of the mean excess function (or plot) as a diagnostic tool for insurance
data is nicely demonstrated in Hogg and Klugman [330]; see also Beirlant
et al. [57] and the references therein. Return periods and t—year events have
a long history in hydrology; see for instance Castillo [104] and Rosbjerg [554].
For relevant statistical techniques coming more from a reliability context, see
Crowder et al. [143]; methods more related to medical statistics are to be
found in Andersen et al. [10].

Since the fundamental paper by Foster and Stuart [243], numerous papers
have been published on records; see for instance Pfeifer [497], Kapitel 4,
Resnick [530], Chapter 4, and the references cited therein, see also Goldie and
Resnick [277], Nagaraja [475] and Nevsorov [478]. We find Glick [264] a very
entertaining introduction. Smith [593] gives more information on statistical
inference for records, especially in the non—iid case. In Section 5.4 we have
discussed in more detail the relevant limit theorems for records and their
connections with point process theory and extremal processes. Records in the
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presence of a trend have been investigated by several authors, in particular
for sports data. A good place to start is Ballerini and Resnick [41] and the
references therein. The behaviour of records in an increasing population is
for instance described in Yang [644]. Smith [593] discusses the forecasting
problem of records based on maximum likelihood methodology.

The exploratory techniques introduced so far all started from an iid as-
sumption on the underlying data. Their interpretation becomes hazardous
when applied in the non—iid case, as for instance to data exhibiting a trend.
Various statistical detrending techniques exist within the realm of regression
theory and time series analysis. These may range from fitting of a determin-
istic trend to the data, averaging, differencing,.... By one or more of these
methods one would hope to filter out some iid residuals to which the previous
methods again would apply; see for instance Brockwell and Davis [92], Sec-
tion 1.4, Feigin and Resnick [231] or Kendall and Stuart [375], Chapter 46. It
is perhaps worth stressing at this point that extremes in the detrended data
do not necessarily correspond to extremes in the original data.

6.3 Parameter Estimation for the Generalised Extreme
Value Distribution

Recall from (6.3) the generalised extreme value distribution (GEV)

NV B
HE;H’,/,(x):exp{— <1+fx7> } s 1+€% >0. (69)

As usual the case & = 0 corresponds to the Gumbel distribution
Hoypuyp () = exp {—e*“’”)/“/’} , z€R. (6.10)

The parameter 6 = (£, u,%) € R x R x Ry consists of a shape parameter ¢,
location parameter u and scale parameter . For notational convenience, we
shall either write H¢ or Hy depending on the case in hand. In Theorem 3.4.5
we saw that H¢ arises as the limit distribution of normalised maxima of iid
rvs. Standard statistical methodology from parametric estimation theory is
available if our data consist of a sample

Xi,..., X, iid from Hy. (6.11)

We mention here that the assumption of X; having an ezact extreme value
distribution H¢ is perhaps not the most realistic one. In the next section
we turn to the more tenable assumption that the X; are approrimately He
distributed. The “approximately” will be interpreted as “belonging to the
maximum domain of attraction of”.
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Fitting of Annual Maxima

As already discussed in Example 6.1.1, data of the above type may become
available when the X; can be interpreted as maxima over disjoint time periods
of length s say. In hydrology, which is the cradle of many of the ideas for
statistics of extremal events, this period mostly consists of one year; see for
instance the river Nidd data in Figure 6.1.2. The 1—year period is chosen in
order to compensate for intra—year seasonalities. Therefore the original data
may look like

xm = (X{l), . ,XS))
x® = (X1(2>7 . 7X§2))
X.(”) - (Xl(")7 . 7X§"))

where the vectors (X (i)) are assumed to be iid, but within each vector
X the various components may (and mostly will) be dependent. The time
length s is chosen so that the above conditions are likely to be satisfied. The
basic iid sample from Hy on which statistical inference is to be performed
then consists of

X;=max(X”,.. X)), i=1,...,n. (6.12)

For historical reasons and since s often corresponds to a 1—year period, sta-
tistical inference for Hy based on data of the form (6.12) is referred to as

fitting of annual mazima.

Below we discuss some of the main techniques for estimating # in the exact
model (6.11).

6.3.1 Maximum Likelihood Estimation

The set—up (6.11) corresponds to the standard parametric case of statisti-
cal inference and hence in principle can be solved by mazimum likelihood
methodology. Suppose that Hy has density hy. Then the likelihood function
based on the data X = (Xi,...,X,) is given by

L(9§ X) = H ho (Xi) I{1+£(X,:fu)/¢>0} .
i=1

Denote by ¢(8; X) =1In L(6; X) the log-likelihood function. The mazimum
likelihood estimator (MLE) for 6 then equals
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-~

0, = argmaxycg ((6; X),

ie. 6, =0, (X1,...,X,) maximises ¢(; X) over an appropriate parameter
space ©. In the case of Hoy,,,y this gives us

(0.0 X) = —nny = Y ep { - B YRS
=1 =1

Differentiating the latter function with respect to u and ¢ yields the likelihood
equations in the Gumbel case:

0 = n—Zexp{—Xi_'u} ,
=1 w

S5 (e (5 )
n+ exp 1) .
; v v

Clearly no explicit solution exists to these equations. The situation for H¢

o
I

when £ # 0 is even more complicated, so that numerical procedures are called
for. Jenkinson [355] and Prescott and Walden [510, 511] suggest variants of
the Newton—Raphson scheme. With the existence of the Fortran algorithm
published in Hosking [336] and its supplement in Macleod [432], the numer-
ical calculation of the MLE 6A’n for general Hy poses no serious problem in
principle.

Notice that we said in principle. Indeed in the so—called regular cases
maximum likelihood estimation offers a technique yielding efficient, consis-
tent and asymptotically normal estimators. See for instance Cox and Hinkley
[133] and Lehmann [420] for a general discussion on maximum likelihood
estimation. Relevant for applications in extreme value theory, typical non-
reqular cases may occur whenever the support of the underlying df depends
on the unknown parameters. Therefore, although we have reliable numerical
procedures for finding the MLE é\n, we are less certain about its properties,
especially in the small sample case. For a discussion on this point see Smith
[589]. In the latter paper it is shown that the classical (good) properties of
the MLE hold whenever £ > —1/2; this is not the case for £ < —1/2.

As most distributions encountered in insurance and finance have support
unbounded to the right (this is possible only for £ > 0), the MLE technique
offers a useful and reliable procedure in those fields.

At this point we would like to quantify a bit more the often encountered
statement that for applications in insurance (and finance for that matter)
the case £ > 0 is most important. Clearly, all financial data must be bounded
to the right; an obvious (though somewhat silly) bound is total wealth. The
main point however is that in most data there does not seem to be clustering
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towards a well-defined upper limit but more a steady increase over time of the
underlying maxima. The latter would then, for iid data, much more naturally
be modelled within £ > 0. A typical example is to be found in the Danish
fire insurance data of Figure 6.2.11.

An example where a natural upper limit may exist is given in Figure
6.3.1. The data underlying this example correspond to a portfolio of water—
damage insurance. In contrast to the industrial fire data of Figure 6.2.12, in
this case the portfolio manager realises that large claims only play a minor
role. Though the data again show an increasing ME—plot, for values above
5000, the mean excess losses are growing much slower than to be expected
from a really heavy—tailed model, unbounded to the right. The ME-plot for
these data should be compared with those for the Danish fire data (Figure
6.2.11) and the industrial fire data (Figure 6.2.12). The Pickands estimator
(to be introduced in Section 6.4.2) of the extreme value index in Figure
6.4.2 indicates that ¢ could actually be negative. Compare also with the
corresponding estimates of £ for the fire data; see Figures 6.5.5 and 6.5.6.

An Extension to Upper Order Statistics

So far, our data has consisted of n iid observations of maxima which we
have assumed to follow exactly a GEV Hy. By appropriately defining the
underlying time periods, we design independence into the model; see (6.12).
Suppose now that, rather than just having the largest observation available,
we possess the k largest of each period (year, say). In the notation of (6.12)
this would amount to data

Xpp < o< X{l=Xi i=1...n.

Maximum likelihood theory based on these k x n observations would use the
joint density of the independent vectors (X,gl)s7 . 7X1(2)7 1=1,...,n. Only
rarely in practical cases could we assume that for each ¢ the latter vectors
are derived from iid data. If that were the case then maximum likelihood
estimation should be based on the joint density of k upper order statistics
from a GEV as discussed in Theorem 4.1.3:

k
8' s—k
WHG (xk)ghg(x[)7 xk<"'<x17
where, depending on @, the x—values satisfy the relevant domain restrictions.
The standard error of the MLEs for p and ¢ can already be reduced con-
siderably if k = 2, i.e. we take the two largest observations into account. For
a brief discussion on this method see Smith [595], Section 4.18, and Smith
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Figure 6.3.1 FEzploratory data analysis of insurance claims caused by water: the
data (top, left), the histogram of the log—transformed data (top, right), the ME—-plot
(bottom). Notice the kink in the ME—plot in the range (5000, 6 000) reflecting the
fact that the data seem to cluster towards some specific upper value.
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[590], where also further references and examples are to be found. The case
n =1, i.e. only one year of observations say, and k£ > 1 was first discussed in
Weissman [637].

A final statement concerning maximum likelihood methodology, again
taken from Smith [595], is worth stressing:

The big advantage of maximum likelihood procedures is that they
can be generalised, with very little change in the basic methodol-
ogy, to much more complicated models in which trends or other
effects may be present.

If the above quote has made you curious, do read Smith [595]. We, how-
ever, would like to add that the MLE properties depend on where £ falls in
(—00, 00).

6.3.2 Method of Probability—Weighted Moments

Among all the ad—hoc methods used in parameter estimation, the method
of moments has attracted a lot of interest. In full generality it consists of
equating model-moments based on Hy to the corresponding empirical mo-
ments based on the data. Their general properties are notoriously unreli-
able on account of the poor sampling properties of second— and higher—order
sample moments, a statement taken from Smith [595], p. 447. The class of
probability—weighted moment estimators stands out as more promising. This
method goes back to Hosking, Wallis and Wood [338]. Define

w,(0) = E(XH;(X)), rely, (6.13)

where Hy is the GEV and X has df Hy with parameter 8 = (&, u, ). Recall
that for &€ > 1, Hy is regularly varying with index 1/¢. Hence wy is infinite.
Therefore we restrict ourselves to the case £ < 1. Define the empirical ana-
logue to (6.13),

+o0
@T(G):/ xHy(z)dF,(x), reNy,

— 00

where F), is the empirical df corresponding to the data Xi,...,X,. In order
to estimate # we solve the equations

w.(0) =w,.(0), r=0,1,2.

We immediately obtain
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1 n
() =~ > XjnHj (Xjn), r=0,12. (6.14)
71=1

Recall the quantile transformation from Lemma 4.1.9(b):
(HG(Xn,n)v cey HG(Xl,n)) g (Un,nv ey Ul,n) 3

where U, , < --- < Uy ,, are the order statistics of an iid sequence Uy, ..., U,
uniformly distributed on (0, 1). With this interpretation, (6.14) can be written
as

1 n
@(6) = =" X;uUf,, 1=0.1,2, (6.15)
j=1

Clearly, for r = 0, the rhs becomes X ,,, the sample mean. In order to calculate
wy-(0) for general r, observe that

400 1
w,(8) = / v Hy () dHy (x) = / Hi (y)y" dy |

— 00

where for 0 < y < 1,

Y ¢ .

— = (1-(-1 f
Hi () = H g(l (—Iny)~%) if £#£0,
uw—1ln(—Iny) if £€=0.

This yields for £ < 1 and & # 0, after some calculation,

1 v
~(0) = -—(1-ra-9Qa+nr° 6.16
@) = 5 {u-Ya-ra-oaenn}, @)
where I" denotes the Gamma function I'(t) = [~ e u'~" du, t > 0. A com-
bination of (6.15) and (6.16) gives us a probability—weighted moment esti-
mator 57(11)' Further estimators can be obtained by replacing U7, in (6.15) by
some statistic. Examples are:

— %2)7 where U, is replaced by any plotting position p;, as defined in
Section 6.2.1.

%3)7 where U7, is replaced by

n—j)n—j-1)--(m—j-—r+1)
mn—1n-2)---(n—r) ’

EU;, = r=1,2.
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From (6.16), we immediately obtain

wi6) = u-Fa-I1-g).
2wy (A) —wo(h) = %F(l—g) (2t -1),
3wy (0) —wo(f) = %F(l—f) (3°-1),

and hence
3w2(9) — wo(é’) _ 35 -1

2wy () —wo(f) 26 —1°
Applylng any of the estimators above to the last equation yields an estima-
tor f of £&. Given f , the parameters p and 1 are then estimated by

5 - _Coi-@)E
r(i-¢)@e-1)’

~

P wo%(l—r(l—am

where Wy, @y, Wy are any of the empirical probability—weighted moments
discussed above. The case & = 0 can of course also be covered by this method.

For a discussion on the behaviour of these estimators see Hosking et al.
[338]. Smith [595] summarises as follows.

The method is simple to apply and performs well in simulation
studies. However, until there is some convincing theoretical expla-
nation of its properties, it is unlikely to be universally accepted.
There is also the disadvantage that, at present at least, it does not
extend to more complicated situations such as regression models
based on extreme value distributions.

6.3.3 Tail and Quantile Estimation, a First Go

Let us return to the basic set—up of (6.11) and (6.12), i.e. we have an iid
sample X1,...,X,, from Hy. In this situation, a quantile estimator can be
readily obtained. Indeed, by the methods discussed in the previous sections,
we obtain an estimate @ of §. Given any p € (0,1), the p—quantile z,, is defined
via x, = Hy (p); see Definition 3.3.5. A natural estimator for z,, based on
Xi,...,X,, then becomes

Ty = Hg\_ (p)-
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By the definition of Hy this leads to
IO ¢
==L (- F)

The corresponding tail estimate for Hy(z), for z in the appropriate domain,
corresponds to

_ ~z— ~1/€
H-(z) =1—exp —(1—}-5 {/; ) ,

where 6 = (§A7 1, 12) is either estimated by the MLE or by a probability—
weighted moment estimator.

Notes and Comments

A recommendable account of estimation methods for the GEV, including
a detailed discussion of the pros and cons of the different methods, is Buis-
hand [102]. Hosking [335] discusses the problem of hypothesis testing within
GEV.

If the extreme value distribution is known to be Fréchet, Gumbel or Wei-
bull, the above methods can be adapted to the specific df under consideration.
This may simplify the estimation problem in the case of £ > 0 (Fréchet, Gum-
bel), but not for the Weibull distribution. The latter is due to non-regularity
problems of the MLE as explained in Section 6.3.1. The vast amount of papers
written on estimation for the three—parameter Weibull reflects this situation;
see for instance Lawless [414, 415], Lockhart and Stephens [426], Mann [440],
Smith and Naylor [596] and references therein. To indicate the sort of prob-
lems that may occur, we refer to Smith [589] who studies the Pareto-like
probability densities

flo; K, a) ~ca(K —2)*7!, wt K,

where K and a are unknown parameters.
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6.4 Estimating Under Maximum Domain of Attraction
Conditions

6.4.1 Introduction

Relaxing condition (6.11), we assume in this section that for some ¢ € R,
X1,...,Xn areiid from F € MDA (He) . (6.17)

By Proposition 3.3.2, F € MDA(H) is equivalent to

lim nF (c,z +d,) = —In He () (6.18)

n—oo

for appropriate norming sequences (¢, ) and (d, ), and z belongs to a suitable
domain depending on the sign of £&. Let us from the start be very clear about
the fundamental difference between (6.11) and (6.17). Consider for illustrative
purposes only the standard Fréchet case { = 1/a > 0. Now (6.11) means that
our sample X1,..., X, ezactly follows a Fréchet distribution, i.e.

F(z)=1-exp{—2"%}, 2>0.

On the other hand, by virtue of Theorem 3.3.7 assumption (6.17) reduces in
the Fréchet case to
Fla) =2 *L(x), >0,

for some slowly varying function L. Clearly, in this case the estimation of
the tail F(x) is much more involved due to the non-parametric character
of L. In various applications, one would mainly (in some cases, solely) be
interested in «. So (6.11) amounts to full parametric assumptions, whereas
(6.17) is essentially semi—parametric in nature: there is a parametric part «
and a non—parametric part L. Because of this difference, (6.17) is much more
generally considered as inference for heavy—tailed distributions as opposed to
inference for the GEV in (6.11).
A handwaving consequence of (6.18) is that for large u = ¢,z + dp,

U_dn>—1/5

Cn

nF(u) ~ (1 +¢

so that a tail-estimator could take on the form

n

R ~\ -L/E
(F<u))=%<1+§“id"> , (6.19)

for appropriate estimators E, ¢y and d,,. As (6.17) is essentially a tail-property,
estimation of { may be based on k upper order statistics X, <--- < Xy 5.
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A whole battery of classical approaches has exploited this natural idea; see
Section 6.4.2. The following mathematical conditions are usually imposed:

(a) k(n) — oo use asufficiently large number of order statistics, but

n
(b) —— — oo as we are interested in a tail property, we should also

k
(n) make sure to concentrate only on the upper order
statistics. Let the tail speak for itself.

(6.20)

When working out the details later, we will be able to see where exactly the
properties on (k(n)) enter. Indeed it is precisely this degree of freedom k which
will allow us to obtain the necessary statistical properties like consistency and
asymptotic normality for our estimators.

From (6.19) we would in principle be in the position to estimate the
quantile z, = F* (p), for fixed p € (0, 1), as follows

Z,=d, + % ((n(l —p))E— 1) : (6.21)

Typically, we will be interested in estimating high p—quantiles outside the
sample Xq,...,X,. This means that p = p, is chosen in such a way that
p > 1 —1/n, hence the empirical df satisfies F,(p) = 0 and does not yield
any information about such quantiles. In order to get good estimators for
&, ¢p and d, in (6.21) a subsequence trick is needed. Assume for notational
convenience that n/k € N. A standard approach now consists of passing to
a subsequence (n/k) with k = k(n) satisfying (6.20). The quantile x,, is then
estimated by

Fp = dnyi + E"g/’“ ((% (1 —pn)>7£ - 1) . (6.22)

Why does this work? One reason behind this construction is that we need to
estimate at two levels. First, we have to find a reliable estimate for £: this
task will be worked out in Section 6.4.2. Condition (6.20) will appear very
naturally. Second, we need to estimate the norming constants ¢,, and d,, which
themselves are defined via quantiles of F'. For instance, in the Fréchet case
we know that ¢,, = F* (1 —n~!); see Theorem 3.3.7. Hence estimating c,, is
equivalent to the problem of estimating z, at the boundary of our data range.
By going to the subsequence (n/k), we move away from the critical boundary
value 1 —n~! to the safer 1 — (n/k)~!. Estimating c,;, is thus reduced to
estimating quantiles within the range of our data. Similar arguments hold
for d,/, and indeed for the Gumbel and Weibull case. We may therefore
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hope that the construction in (6.22) leads to a good estimator for z,. The
above discussion is only heuristic, a detailed statistical analysis shows that
this approach can be made to work.

In the context of statistics of extremal events it may also be of interest to
estimate the following quantity which is closely related to the quantiles z,:

zp,=F<®/"), reN.
Notice that x, = x, 1. The interpretation of z,, is obvious from
p=F"(zp,) = P(max (Xpny1,. ., Xntr) < Tpr)

S0 xp,, is that level which, with a given probability p, will not be exceeded
by the next r observations X, y1,..., X+,. As an estimate we then obtain

from (6.22)
Tpr = i + E”g/’“ ((% (1 _pl/r))g_ 1) .

In what follows we will concentrate only on estimation of z,; from the defi-
nition of x, , it is clear how one has to proceed for general r.
From the above heuristics we obtain a programme for the remainder of

this section:

(a) Find appropriate estimators for the shape parameter ¢ of the GEV.

(b) Find appropriate estimators for the norming constants ¢, and d,,.

(¢) Show that the estimators proposed above yield reasonable approxima-
tions to the distribution tail in its far end and to high quantiles.

(d) Determine the statistical properties of these estimators.

6.4.2 Estimating the Shape Parameter £

In this section we study different estimators of the shape parameter ¢ for
F € MDA(H;). We also give some of their statistical properties.

Method 1: Pickands’s Estimator for £ € R

The basic idea behind this estimator consists of finding a condition equivalent
to F' € MDA(H¢) which involves the parameter ¢ in an easy way. The key to
Pickands’s estimator and its various generalisations is Theorem 3.4.5, where
it was shown that for F' € MDA (H), U(t) = F*© (1 — t') satisfies

L UCH-UW

= AN 98
t—oo U(t) — U(t/2)
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Furthermore, the following uniformity property holds: whenever lim;_,, c(t)
= 2 for a positive function c,
Ule(t)t) —U(?)

im ——27 ) 9t .
M T — Ue) (6.23)

The basic idea now consists of constructing an empirical estimator using
(6.23). To that effect, let
Vn,n S S Vl,n

be the order statistics from an iid sample V1,...,V, with common Pareto df
Fy(z) =1—271 2 > 1. It follows in the same way as for the quantile trans-
formation, see Lemma 4.1.9(b), that

d
(X p=t,n = UV )) ot

.y veey

where Xi,...,X,, are iid with df F. Notice that V%, is the empirical (1 —
k/n)—quantile of Fy,. Using similar methods as in Examples 4.1.11 and 4.1.12,
i.e. making use of the quantile transformation, it is not difficult to see that

k

P
— Vi =1, n— o0,
n

whenever k = k(n) — oo and k/n — 0. In particular,

P p1
Vin — o0 and — 5 -, n— .
’ 2

Combining this with (6.23) and using a subsequence argument, see Appendix
Al.2, yields
U (Vk,n) -U (VZk,n) 5 13
U (Vakn) = U (Vag,n) ’

Motivated by the discussion above and by (6.23), we now define the Pickands
estimator

n— 00.

1 Xk,n - X2k,n

=—Ihnh—" 6.24
In 2 . X2kz,n - X4k,n ( )

(P

S

This estimator turns out to be weakly consistent provided k — oo, k/n — 0:
§A k(fb) 5 &, n—oo.

This was already observed by Pickands [498]. A full analysis on E k(i) is to be
found in Dekkers and de Haan [173] from which the following result is taken.

Theorem 6.4.1 (Properties of the Pickands estimator)
Suppose (X,) is an iid sequence with df F € MDA(He), ¢ € R. Let ¢(F) =
SA,C(Z) be the Pickands estimator (6.24).
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20 40 60 80 100

Figure 6.4.2 Pickands—plot for the water—-damage claim data; see Figure 6.3.1.
The estimate of £ appears to be close to 0. The upper and lower lines constitute
asymptotic 95% confidence bands.

(a) (Weak consistency) If k — oo, k/n — 0 for n — oo, then
E(P) L &, n—=oo.

(b) (Strong consistency) If k/n — 0, k/Inlnn — oo for n — oo, then
E(P) aj)f, n— o00.

(c) (Asymptotic normality) Under further conditions on k and F (see Dek-
kers and de Haan [173], p. 1799),

VEE=6 S NO.0(E), n— oo,
where
52 (22£+1 + 1)
(2(2¢ —1)In2)*
Remarks. 1) This theorem forms the core of a whole series of results ob-
tained in Dekkers and de Haan [173]; on it one can base quantile and tail
estimators and (asymptotic) confidence interval constructions. The quoted

paper [173] also contains various simulated and real life examples in order
to see the theory in action. We strongly advise the reader to go through it,

v(§) = 0
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perhaps avoiding upon first reading the (rather extensive) technical details.
The main idea behind the above construction goes back to Pickands [498].
A nice summary is to be found in de Haan [294] from which the derivation
above is taken.

2) In the spirit of Section 6.4.1 notice that the calculation of Pickands’s esti-
mator (6.24) involves a sequence of upper order statistics increasing with n.
Consequently, one mostly includes a so—called Pickands—plot in the analysis,
ie.

{(k,f,jf}) k= 1n} :

in order to allow for a choice depending on k. The interpretation of such
plots, i.e. the optimal choice of k, is a delicate point for which no uniformly
best solution exists. It is intuitively clear that one should choose E k(z) from
such a k-region where the plot is roughly horizontal. We shall come back to
this point later; see the Summary at the end of this section. a

Method 2: Hill’s Estimator for § = a1 > 0

Suppose Xi,...,X, are iid with df F' € MDA(®,), a >0, thus F(z) =
x~*L(x), x > 0, for a slowly varying function L; see Theorem 3.3.7. Distri-
butions with such tails form the prime examples for modelling heavy—tailed
phenomena,; see for instance Section 1.3. For many applications the knowl-
edge of the index « of regular variation is of major importance. If for instance
a < 2 then EX? = co. This case is often observed in the modelling of insur-
ance data; see for instance Hogg and Klugman [330].

Empirical studies on the tails of daily log—returns in finance have indicated
that one frequently encounters values a between 3 and 4; see for instance
Guillaume et al. [289], Longin [428] and Loretan and Phillips [429]. Informa-
tion of the latter type implies that, whereas covariances of such data would
be well defined, the construction of confidence intervals for the sample au-
tocovariances and autocorrelations on the basis of asymptotic (central limit)
theory may be questionable as typically a finite fourth moment condition is
asked for.

The Hill estimator of a takes on the following form:

~1
k

~ ~(H 1

alH) = a];n) =z Zlan’” —In X ) (6.25)

j=1

where k =k(n) — oo in an appropriate way, so that as in the case of
Pickands’s estimator, an increasing sequence of upper order statistics is used.
One of the interesting facts concerning (6.25) is that various asymptotically



6.4 Estimating Under Maximum Domain of Attraction Conditions 331

equivalent versions of & () can be derived through essentially different meth-
ods, showing that the Hill estimator is very natural. Below we discuss some
derivations.

The MLE approach (Hill [326]). Assume for the moment that X is a rv
with df F' so that for a > 0

PX>z)=F(x)=2"%, z>1.
Then it immediately follows that Y = In X has df
PY>y)=e, y=0,

i.e. Y is Exp(a) and hence the MLE of « is given by

-1 -1
4, =Y, = lXn:mx = lzn:lnx
n - n - n “ J - n “ T
7=1 j=1
A trivial generalisation concerns
Flx)=Cz™, x>u>0, (6.26)

with u known. If we interpret (6.26) as fully specified, i.e. C = u®, then we
immediately obtain as MLE of «

-1 -1

1<, (X 1 ¢
dn= =3 In (=22 ==Y X, -1 . 6.27
a ”j:1n< u) nFln J, nu (6.27)

Now we often do not have the precise parametric information of these exam-
ples, but in the spirit of MDA (&,,) we assume that F behaves like a Pareto df
above a certain known threshold u say. Let

K=card{i: X;n >u,i=1,...,n}. (6.28)

Conditionally on the event {K = k}, maximum likelihood estimation of «
and C' in (6.26) reduces to maximising the joint density of (Xx n,..., X1,n)-
From Theorem 4.1.3 we deduce

IxXtmrn Xt (Ths 1)

k
! — N
= ﬁ(l—c&;a) kaakIIxi(Jrl), Uu<zrp<---<o1.
=1

A straightforward calculation yields the conditional MLEs
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Figure 6.4.3 Tail and quantile estimation based on a Hill-fit; see (6.29) and
(6.30). The data are the Danish insurance claims from Ezample 6.2.9. Top, left:
the Hill-plot for £ = 1/« as a function of k upper order statistics (lower horizontal
azis) and of the threshold u (upper horizontal awis), i.e. there are k exceedances of
the threshold w. Top, Tight: the fit of the shifted excess df F(x —u), z > u, on log—
scale. Middle: tail-fit of F(x+u), x > 0. Bottom: estimation of the 0.99—quantile as
a function of the k upper order statistics and of the corresponding threshold value
u. The estimation of the tail is based on k = 109 (u = 10) and o = £~ = 1.618.
Compare also with the GPD—fit in Figure 6.5.5.
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Figure 6.4.4 Tail and quantile estimation based on a Hill-fit; see (6.29) and
(6.30). The data are the industrial fire claims from Ezample 6.2.9. Top, left: the
Hill-plot for € = 1/« as a function of k upper order statistics (lower horizontal azis)
and of the threshold w (upper horizontal axis), i.e. there are k exceedances of the
threshold w. Top, right: the fit of the shifted excess df Fu(x—u), x > u, on log—scale.
Middle: tail-fit of F(ac + u), « > 0. Bottom: estimation of the 0.99—quantile as a
function of the k upper order statistics and of the corresponding threshold value w.
The estimation of the tail is based on k = 149 (u = 100) and o = £~ = 1.058.
Compare also with the GPD—fit in Figure 6.5.5.
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-1 -1
k k

(H 1 Xin 1

a = g <Xin> = F 2L X — 0 X
j=1 ’ 71=1

. kooam

C n — - k.,n

k, n k,n

So Hill’s estimator has the same form as the MLE in the exact model un-
derlying (6.27) but now having the deterministic u replaced by the random
threshold Xy, n, where k is defined through (6.28). We also immediately obtain
an estimate for the tail F(x)

(H)

_ -~k T “%n
(Fw) ="~ ( N ) (6.29)
and for the p—quantile
. _(n —1/a)
&, = (E(l —p)) " X - (6.30)

From (6.29) we obtain an estimator of the excess df F,(x — u), x > u, by
using Fy, (v —u) = 1 — F(x)/F(u). Examples, based on these estimators are
to be found in Figures 6.4.3 and 6.4.4 for the Danish, respectively indus-
trial, fire insurance data. We will come back to these data more in detail in
Section 6.5.2.

Example 6.4.5 (The Hill estimator at work)

In Figures 6.4.3 and 6.4.4 we have applied the above methods to the Danish
fire insurance data (Figure 6.2.11) and the industrial fire insurance data (Fig-
ure 6.2.12); for a preliminary analysis see Example 6.2.9. For the Danish data
we have chosen as an initial threshold v = 10 (k = 109). The corresponding
Hill estimate has a value £ = 0.618. When changed to u = 18 (k = 47),
we obtain E = 0.497. The Hill-plot shows a fairly stable behaviour in the
range (0.5,0.7). As in most applications, the quantities of main interest are
the high quantiles. We therefore turn immediately to Figure 6.4.3 (bottom),
where Tg g9 is plotted across all relevant u— (equivalently, k—) values. For k in
the region (45,110) the quantile-Hill-plot shows a remarkably stable behav-
iour around the value 24.7. This agrees perfectly with the empirical estimate
of 24.6 for xg.99; see Table 6.2.13. This should be contrasted with the sit-
uation in Figure 6.4.4 for the industrial fire data. For the latter data, the
estimate for £ ranges from 0.945 for v = 100 (k = 149) over 0.745 for v = 300
(k =49) to 0.799 for u = 500 (k = 29). All estimates clearly correspond to in-
finite variance models! An estimate for g g9 in the range (180,200) emerges,
again in agreement with the empirical value of 184. We would like to stress
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at this point that the above discussion represents only the beginning of a
detailed analysis. The further discussions have to be conducted together with
the actuary responsible for the underlying data. O

The regular variation approach (de Haan [295]). This approach is in the
same spirit as the construction of Pickands’s estimator, i.e. base the inference
on a suitable reformulation of F' € MDA(®,,). Indeed F' € MDA(®,,) if and
only if

im F_'(tx)

Using partial integration, we obtain

/too(ln:r —1Int)dF(z) = /too F(x) dz,

so that by Karamata’s theorem (Theorem A3.6)

=z"%, x>0.

1 e 1
m/t (lnx—lnt)dF(x)—)a, t— 0. (6.31)

How do we find an estimator from this result? Two choices have to be made:

a) replace y an estimator, the obvious candidate here is the empirica
1 Fb timator, the obvi didate here is th irical
distribution function

1 — 1 —
Fo(r) = - ZI{X;SZ} = Zf{xf,ngz},
=1 =1

(b) replace t by an appropriate high, data dependent level (recall ¢ — c0);
we take t = X}, ,, for some k = k(n).

The choice of ¢ is motivated by the fact that X}, , =3 oo provided k = k(n) —
oo and k/n — 0; see Proposition 4.1.14. From (6.31) the following estimator
results

k1

1 /Oo 1
- (nz —InXy,) dF,(z) = — InX;,-InX,
F (Xk,n) Xkon k-1 ]z:; ’

which, modulo the factor k — 1, is again of the form (a))~! in (6.25).
Notice that the change from k to k — 1 is asymptotically negligible; see Ex-
ample 4.1.11.
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The mean excess function approach. This is essentially a reformulation
of the approach above; we prefer to list it separately because of its method-
ological merit. Suppose X is a rv with df F' € MDA(®,), a >0, and for
notational convenience assume that X > 1 a.s. One can now rewrite (6.31)
as follows (see also Example 6.2.5)

1
ElnX —Int|InX >Int) - —, t—=o00.
a

So denoting v = Int and e*(u) the mean excess function of In X (see Defini-
tion 6.2.3) we obtain

. 1
e(u) - —, u—o0.

Q
Hill’s estimator can then be interpreted as the empirical mean excess function

of In X calculated at the threshold v =1n Xy ,,, i.e. e (In Xi ).

We summarise as follows.

Suppose Xi,...,X,, are iid with df F € MDA(®,), a > 0, then
a natural estimator for « is provided by the Hill estimator

-1
k
1
a = - ShX;,-mXe, | (6.32)

j=1

where k = k(n) satisfies (6.20).

Below we summarise the main properties of the Hill estimator. Before looking
at the theorem, you may want to refresh your memory on the meaning of
linear processes (see Sections 5.5 and 7.1) and weakly dependent strictly
stationary processes (see Section 4.4).

Theorem 6.4.6 (Properties of the Hill estimator)
Suppose (X,) is strictly stationary with marginal distribution F satisfying
for some a >0 and L € Ry,

F(r)=P(X >x)=2 *L(z), z>0.
Let aH) = a;ﬁ? be the Hill estimator (6.32).

(a) (Weak consistency) Assume that one of the following conditions is satis-
fied:
— (X,) is 1id (Mason [445]),
— (X,) is weakly dependent (Rootzén, Leadbetter and de Haan [552],
Hsing [341]),
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o 100 200 300 400 500

Figure 6.4.7 Pickands—, Hill- and DEdH-plots for 2000 simulated iid data with
df given by F(z) = =™, & > 1. For reasons of comparison, we choose the Hill
estimator for € = 1 as E(H) = (a( (H))fl. Various Hill- and related plots from
simulated and real life data are for instance given in Figures 6.4.11, 6.4.12 and
Section 6.5.2. See also Figure 4.1.13 for a “Hill horror plot” for the tail F(x) =
1/(zInz) and Figure 5.5.4 for the case of dependent data.

— (X,) is a linear process (Resnick and Starica [535, 537]).

If k = 00, k/n — 0 for n — oo, then
a L o

(b) (Strong consistency) (Deheuvels, Hausler and Mason [170]) If k/n — 0,
k/Inlnn — oo for n — oo and (X,,) is an iid sequence, then

a2 o

(¢) (Asymptotic normality) If further conditions on k and F are satisfied
(see for instance the Notes and Comments below) and (X,) is an iid
sequence, then

\/E(&(H)—a)gN(QaQ). O

Remarks. 3) Theorem 6.4.6 should be viewed as a counterpart to Theo-
rem 6.4.1 on the Pickands estimator. Because of the importance of & (),
we prefer to formulate Theorem 6.4.6 in its present form for sequences (X,,)
more general than iid.

4) Do not interpret this theorem as saying that the Hill estimator is always
fine. The theorem only says that rather generally the standard statistical
properties hold. One still needs a crucial set of conditions on F and k(n).
In particular, second-order regular variation assumptions on F have to be
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Figure 6.4.8 Pickands—, Hill- and DEdH-plots with asymptotic 95% confidence
bands for 2000 absolute values of 1id standard Cauchy rvs. The tail of the latter s
Pareto—like with index € = 1. Recall that, for gwen k, the DEdH and the Hill esti-
mator use the k upper order statistics of the sample, whereas the Pickands estimator
uses 4k of them. In the case of the Pickands estimator one clearly sees the trade—off
between variance and bias; see also the discussion in the Notes and Comments.
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imposed to derive the asymptotic normality of & (1), The same applies to the
case of the Pickands estimator. Notice that these conditions are not verifiable
in practice.

5) In Example 4.1.12 we prove the weak consistency of Hill’s estimator for
the iid case and indicate how to prove its asymptotic normality. Moreover,
we give an example showing that the rate of convergence of Hill’s estimator
can be arbitrarily slow.

6) As in the case of the Pickands estimator, an analysis based on the Hill
estimator is usually summarised graphically. The Hill-plot

{(k,a,gﬁ?) : k:z,...m} 7

turns out to be instrumental in finding the optimal k. Smoothing Hill-plots
over a specific range of k—values may defuse the critical problem of the choice
of k; see for instance Resnick and Starica [536].

7) The asymptotic variance of a") depends on the unknown parameter « so
that in order to calculate the asymptotic confidence intervals an appropriate
estimator of a, typically @ (*1), has to be inserted.

8) The Hill estimator is very sensitive with respect to dependence in the
data; see for instance Figure 5.5.4 in the case of an autoregressive process.
For ARMA and weakly dependent processes special techniques have been
developed, for instance by first fitting an ARMA model to the data and then
applying the Hill estimator to the residuals. See for instance the references
mentioned under part (a) of Theorem 6.4.6. O

Method 3: The Deckers—Einmahl-de Haan Estimator for £ € R

A disadvantage of Hill’s estimator is that it is essentially designed for
F € MDA(Hy), £ > 0. We have already stressed before that this class of mod-
els suffices for many applications in the realm of finance and insurance. In
Dekkers, Einmahl und de Haan [175], Hill’s estimator is extended to cover the
whole class He, £ € R. In Theorem 3.3.12 we saw that for F' € MDA(H,),
¢ <0, the right endpoint xp of F is finite. For simplicity we assume that
xp > 0. In Section 3.3 we found that the maximum domain of attraction
conditions for H¢ all involve some kind of regular variation. As for deriving
the Pickands and Hill estimator, one can reformulate regular variation con-
ditions to find estimators for any £ € R. Dekkers et al. [175] come up with
the following proposal:

(1)y2 -t
~ 1 [ (HS
E=1+HWY 4= <!—1> , (6.33)
Y
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where

HY =

> =

k
> (InXjn —In Xy )
7j=1

is the reciprocal of Hill’s estimator (modulo an unimportant change from k
to k+ 1) and

k
1
HY = E > (InXj, —InXppr)” .
=1

Because Hr(bl) and Hr(f) can be interpreted as empirical moments, §A is also
referred to as a moment estimator of £. To make sense, in all the estimators
discussed so far we could (and actually should) replace Inz by In(1V z). In
practice, this should not pose problems because we assume k/n — 0. Hence
the relation Xy, , X r >0 holds; see Example 4.1.14.

At this point we pause for a moment and see where we are. First of all
Do we have all relevant approaches for estimating the shape parameter £?

Although various estimators have been presented, we have to answer this
question by no! The above derivations were all motivated by analytical results
on regular variation. In Chapter 5 however we have tried hard to convince you
that point process methods are the methodology to use when one discusses
extremes, and we possibly could use point process theory to find alternative
estimation procedures. This can be made to work; one programme runs under
the heading

Point process of exceedances,
or, as the hydrologists call it,
POT: the Peaks Over Threshold method.

Because of its fundamental importance we decided to spend a whole section
on this method; see Section 6.5.

Notes and Comments

In the previous sections we discussed some of the main issues underlying the
statistical estimation of the shape parameter £. This general area is rapidly
expanding so that an overview at any moment of time is immediately out-
dated. The references cited are therefore not exhaustive and reflect our per-
sonal interest. The fact that a particular paper does not appear in the list of
references does not mean that it is considered less important.
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The Hill Estimator: the Bias-Variance Trade—Off

Theorem 6.4.6 for iid data asserts that whenever F(z) = 2~ *L(z), a > 0,
then the Hill estimator a (#) = a!") satisfies

VEk (&(H) —a) gN(QaQ) ,

where k = k(n) — oo at an appropriate rate. However, in the formulation
of Theorem 6.4.6 we have not told you the whole story: depending on the
precise choice of k and on the slowly varying function L, there is an important
trade—off between bias and variance possible. It all comes down to second—
order behaviour of L, i.e. asymptotic behaviour beyond the defining property
L(tz) ~ L(x), x — oo. Typically, for increasing k the asymptotic variance
a?/k of @ (H) decreases: so let us take k as large as possible. Unfortunately,

when doing so, a bias may enter!

A fundamental paper introducing higher—order regular variation techniques
for solving this problem is Goldie and Smith [278]. In our discussion below
we follow de Haan and Peng [297]. Similar results are to be found in de Haan
and Resnick [302], Hall [309], Hausler and Teugels [320] and Smith [587] for
instance.
The second—order property needed beyond F(x) = 2~“L(x) is that
Lt =1

im F(tx)/F(z) -t~ _
Tlim. ) t =, >0, (6.34)

exists, where a(z) is a measurable function of constant sign. The right—hand
side of (6.34) is to be interpreted as t~*Int if p = 0. The constant p <0 is
the second-order parameter governing the rate of convergence of F(tx)/F(x)
to ¢t~ . It necessarily follows that |a(z)| € R,; see Geluk and de Haan [252],
Theorem 1.9. In terms of U(t) = F*< (1 —t~1), (6.34) is equivalent to
1/a e
i Ul(tz)/U(x) — t*/ _ /e Pl —1
BT A ola
where A(z) = a=2a(U(z)).
The following result is proved as Theorem 1 in de Haan and Peng [297].

, (6.35)

Theorem 6.4.9 (The bias—variance trade—off for the Hill estimator)
Suppose (6.35), or equivalently (6.34), holds and k = k(n) — oo, k/n — 0 as
n — oo. If
. n
lim \/EA(—) =\eR, (6.36)
n— o0 k

then as n — 0o

\/E(&\(H)—a)i)N<a3)\ ,a2). O

p—a
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Example 6.4.10 (The choice of the value k)
Consider the special case

F(z) =cx “(1+a ")

for positive constants ¢, a and 3. We can choose

a(z) = fz =",
giving p = —3 in (6.34). Since U(t) = (ct)"/*(1 + o(1)), we obtain
A(z) = %(cx)_ﬁ/a(l +0(1)).

Then (6.36) yields k& such that
k ~ Cn2A)/20+a) o

where C' is a constant, depending on «, 3, ¢ and X\. Moreover, A = 0 if and
only if C' = 0, hence k = o(n(?#)/(26+a)), O

From (6.36) it follows that for k tending to infinity sufficiently slowly, i.e.
taking only a moderate number of order statistics into account for the con-
struction of the Hill estimator, A = 0 will follow. In this case & (") is an
asymptotically unbiased estimator for «, as announced in Theorem 6.4.6.
The asymptotic mean squared error equals

Lo, ot
k (p—a)?)”

Theorem 6.4.9 also explains the typical behaviour of the Hill-plot showing
large variations for small k£ versus small variations (leading to a biased esti-
mate) for large k.

Results such as Theorem 6.4.9 are useful mainly from a methodological point
of view. Condition (6.34) is rarely verifiable in practice. We shall come back
to this point later; see the Summary at the end of this section.

A Comparison of Different Estimators of the Shape Parameter

The question as to which estimator for the shape parameter ¢ one should
use has no clear cut answer. It all depends on the possible values of ¢ and,
as we have seen, on the precise properties of the underlying df F. Some
general statements can however be made. For £ = a~! > 0 and dfs satisfying
(6.34), de Haan and Peng [297] proved results similar to Theorem 6.4.9 for
the Pickands estimator (6.24) and the Dekkers—Einmahl-de Haan (DEdH)
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Figure 6.4.11 (Warning) A comparative study of Hill-plots (20 < k < 1900) for
1900 uid simulated data from the distributions: standard erponential (top), heavy—
tailed Weibull with shape parameter o = 0.5 (middle), standard lognormal (bottom).
The Hill estimator does not estimate anything reasonable in these cases. A (too)
quick glance at these plots could give you an estimate of 3 for the exponential dis-
tribution. This should be a warning to everybody using Hill- and related plots! They
must be treated with extreme care. One definitely has to contrast such estimates with
the exploratory data analysis techniques from Section 6.2.
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Figure 6.4.12 1864 daily log—returns (closing data) of the German stock index
DAX (September 20, 1988 — August 24, 1995) (top) and the corresponding Hill-plot
of the absolute values (bottom). It gives relatively stable estimates around the value
2.8 in the region 100 < k < 300. This is much a wider region than in Figures 6.4.11.
This Hill-plot is also qualitatively different from the exact Pareto case; see Figure
6.4.7. The deviations can be due to the complicated dependence structure of financial
times series.

estimator (6.33). It turns out that in the case p = 0 the Hill estimator has
minimum mean squared error. The asymptotic relative efficiencies for these
estimators critically depend on the interplay between p and a. Both the
Pickands and the DEdH estimator work for general £ € R. For £ > —2 the
DEdH estimator has lower variance than Pickands’s. Moreover Pickands’s
estimator is difficult to use since it is rather unstable; see Figures 6.4.7 and
6.4.8. There exist various papers combining higher-order expansions of F'
together with resampling methods. The bootstrap for Hill’s estimator has
been studied for instance by Hall [310]. An application to the analysis of high
frequency foreign exchange rate data is given by Danielson and de Vries [154];
see also Pictet, Dacorogna and Miiller [499]. For applications to insurance
data see Beirlant et al. [57].

Besides the many papers already referred to, we also would like to mention
Anderson [13], Boos [79], Csorgé and Mason [148], Davis and Resnick [159],
Drees [186], Falk [224], Hiusler and Teugels [320], Lo [425] and Smith and
Weissman [599).

More Estimators for the Index of Regular Variation

Hahn and Weiner [306] apply Karamata’s theorem to derive a joint estimator
of the index of regular variation and an asymmetry parameter for distribution
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tails. Their method essentially uses truncated moments. An alternative ap-
proach based on point process methods is discussed in Hépfner [332, 333] and
Jacod and Hopfner [334]. Csorgd, Deheuvels and Mason [147] study kernel
type estimates of a including the Hill estimator as a special case. Wei [635]
proposes conditional maximum likelihood estimation under both, full and
partial knowledge of the slowly varying function.

In the case of models like

F(Jc):e)(p{—grfaL(cc)}~7 a>0, LeRy,

one should consult Beirlant and Teugels [56], Beirlant et al. [57], Chapter 4,
Broniatowski [94], Keller and Kliippelberg [374] and Kliippelberg and Vil-
lasefior [400].

Estimators for the Index of a Stable Law

Since the early work by Mandelbrot [436] numerous papers have been pub-
lished concerning the hypothesis that logarithmic returns in financial data fol-
low a stable process with parameter 0 < a < 2. Though the exact stability has
been disputed, a growing consensus is formed around the heavy—tailedness of
log—returns. Consequently, various authors focussed on parameter estimation
in stable models. Examples include Koutrouvelis [406] using regression type
estimators based on the empirical characteristic function; see also Feuerverger
[237], Feuerverger and McDunnough [238] and references therein. McCulloch
[450] suggests estimators based on functions of the sample quantiles; this
paper also contains a good overall discussion. Though McCulloch’s approach
seems optimal in the exact stable case, the situation may dramatically change
if only slight deviations from stability are present in the data. DuMouchel
[194, 195] is a good place to start reading on this. For a detailed discussion on
these problems together with an overview on the use of stable distributions
and processes in finance see Mittnik and Rachev [465, 466] and the references
therein.

6.4.3 Estimating the Norming Constants

In the previous section we obtained estimators for the shape parameter £
given iid data Xi,..., X, with df F' € MDA(H;). Recall that the latter con-
dition is equivalent to

e N (M, — dy) S He

n

for appropriate norming constants ¢, > 0 and d,, € R. We also know that
this relation holds if and only if
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nF (cpr +dp) = —InHe(z), n—o00, z€R.

As we have already seen in Section 6.4.1, norming constants enter in quantile
and tail estimation; see (6.19). Below we discuss one method how norming
constants can be estimated. Towards the end of this section we give some
further references to other methods. In Section 3.3 we gave analytic formulae
linking the norming sequences (c,,) and (d,,) with the tail . For instance, in
the Gumbel case £ = 0 with right endpoint xr = oo the following formulae
were derived in Theorem 3.3.27

cn=a(d,), dy=F"(1-n"'), (6.37)

where a(-) stands for the auxiliary function which can be taken in the form

> F
a(z) = / ﬁdy.
» Fl(z)
Notice the problem: on the one hand, we need the norming constants ¢, and

d,, in order to obtain quantile and tail estimates. On the other hand, (6.37)
defines them as functions of just that tail, so it seems that

this surely is a race we cannot win!

Though this is partly true let us see how far we can get. We will try to
convince you that the appropriate reformulation of the above sentence is:

this is a race which will be difficult to win!

Consider the more general set—up F' € MDA(H¢), £ > 0, which includes for
our purposes the most important cases of the Fréchet and the Gumbel dis-
tribution. In Examples 3.3.33 and 3.3.34 we showed how one can unify these
two maximum domains of attraction by the logarithmic transformation

z*=In(lvz), z€eR.

Together with Theorem 3.3.26 the following useful result can be obtained.

Lemma 6.4.13 (Embedding MDA (Hy), € > 0, in MDA(A))

Let Xy,...,X, be iid with df F € MDA(H¢), £ >0, with vr =00 and
norming constants ¢, > 0 and d, € R. Then Xy,..., X are iid with df
F* € MDA(A) and auziliary function

e [T F(y)
a*(t) —/t ) dy .

The norming constants can be chosen as
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d, = (F)“(1-n7"),
= a'(d) = oo__*(y,) dy ~n ooW(y)dy-
@ F*(dy) ds

O

In Section 6.4.1 we tried to convince you that our estimators have to be based
on the k largest order statistics Xy, ,, ..., X1,n, where k = k(n) — co. From

the above lemma we obtain estimators if we replace F* by the empirical
df F:

gi/k = Xip1, =1V Xgy1,0)
sk n 00 Tk
Cn/k = E ~ Fn(y)dy
>
In X1,
n mo
= E/ Fi(y)dy
In X 41.n
1k
= EZlan,n—lnXkH,n. (6.38)
Jj=1

The latter is a version of the Hill estimator. The change from k to £+ 1 in
(6.38) is asymptotically unimportant; see Example 4.1.11.
Next we make the transformation back from F* to F' via

%P(X* >cj;/kx+dj;/k) :%P(X>exp{cfl/kx+dz/k}) , ©>0.

Finally we use that F* € MDA (A), hence the left—hand side converges to e~
as n — oo, provided that n/k — co. We thus obtain the tail estimator

F) = (oo {dprma))

< T ) _I/C:/k
Xk:+1,n

This tail estimator was already obtained by Hill [326] for the exact model
(6.26); see (6.30). As a quantile estimator we obtain

S|

-~

—~ n —Cok
Tp = (E(l —p)) Xkt1,n -
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Time to summarise all of this:

Let £ () denotes the Hill estimator for ¢, i.e.

k
£ = % S X, —In X,

=1

Let Xi,...,X, be a sample from F' € MDA(H), £ > 0, and
k = k(n) — oo such that k/n — 0. Then for x large enough, a tail
estimator for F(x) becomes

(ﬂ@f;%( . )/z

Xk:+1,n

The quantile z,, defined by F' (z,) = p € (0,1) can be estimated
by

~

,E(H)

&, = (% (1 _p)) Xipton -

Notes and Comments

It should be clear from the above that similar quantile estimation methods
can be worked out using alternative parameter estimators as discussed in
the previous sections. For instance, both Hill [326] and Weissman [637] base
their approach on maximum likelihood theory and the limit distribution of
the & upper order statistics as in Theorem 4.2.8. They cover the whole range
¢ € R. Other estimators of the norming constants were proposed by Dijk and
de Haan [183] and Falk, Hiisler and Reiss [225].

6.4.4 Tail and Quantile Estimation

As before, assume that we consider a sample X7, ..., X, ofiid rvs with df F' €
MDA (H¢) for some £ € R. Let 0 < p <1 and x, denote the corresponding
p—quantile.

The whole point behind the domain of attraction condition F' € MDA (H¢)
is to be able to estimate quantiles outside the range of the data, i.e.
p>1—1/n. The latter is of course equivalent to finding estimators for the
tail F(z) with x large. In Sections 6.3.3 and 6.4.3 we have already discussed
some possibilities. Indeed, whenever we have estimators for the shape parame-
ter £ and the norming constants ¢,, and d,,, natural estimators of z,, and F(x)
can immediately be derived from the defining property of F' € MDA (H,). We
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want to discuss some of them more in detail and point at their most important
properties and caveats. From the start we would like to stress that estimation
outside the range of the data can be made only if extra model assumptions
are imposed. There is no magical technique which yields reliable results for
free. One could formulate as in finance:

There is no free lunch when it comes to high quantile estimation!

In our discussion below, we closely follow the paper by Dekkers and de Haan
[173]. The main results are formulated in terms of conditions on U(t) =
F=(1—1t1) so that =, = U(1/(1 — p)). Denoting U, (t) = F (1 —t1),
where F¥~ is the empirical quantile function,

U, () = F- kot =Xuen, k=1,....n.
k-1 n ’

Hence X} ,, appears as a natural estimator of the (1—(k—1)/n)—quantile. The
range [X,, ,,, X1 ,,] of the data allows one to make a within—sample estimation
up to the (1 —n~1)—quantile. Although in any practical application p is fixed,
from a mathematical point of view the difference between high quantiles
within and outside the sample can for instance be described as follows:

(a) high quantiles within the sample: p = p, 11, n(l —p,) — ¢,c € (1,0],
(b) high quantiles outside the sample: p=p, T 1, n(l —p,) = ¢, 0<c< 1.

Case (a) for ¢ = oo is addressed by the following result which is Theorem 3.1
in Dekkers and de Haan [173]. It basically tells us that we can just use the
empirical quantile function for estimating x,.

Theorem 6.4.14 (Estimating high quantiles I)
Suppose X1, ..., X, is an iid sample from F € MDA(H¢), € € R, and F has
a positive density f. Assume that the density U’ is in Re—1 . Write p = p,
and k = k(n) = [n(1 — p,)], where [z] denotes the integer part of x. If the
conditions

pn—1 and n(l—p,) = o0

hold then

Xy —
Vak Rt f: 4N (0,222 /(25 —1)?) 0

Remark. 1) The condition U’ € R¢_1 can be reformulated in terms of F.
For instance for £ > 0, the condition becomes f € R_;_; /. O

In Theorem 3.4.5 we characterised F' € MDA (H¢) through the asymptotic
behaviour of U:
Ulte) —=U(t) 2f—1

li = 0 1.
Hm Uly) —0() ~ =1’ r,y>0, y#
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For £ = 0 the latter limit has to be interpreted as Inz/lny. We can rewrite
the above as follows

xf =1

(U@) —Uty))(1+0(1)) +U(t). (6.39)
Using this relation, a heuristic argument suggests an estimator for the quan-
tiles x,, outside the range of the data. Indeed, replace U by U, in (6.39) and
put y =1/2, x = (k—1)/(n(1 —p)) and ¢t =n/(k — 1). Substitute ¢ by an
appropriate estimator E Doing so, and neglecting o(1)-terms one finds the
following estimator of x,:

~

_ (K -p) -1

z, = =
1-2-¢

The following result is Theorem 3.3 in Dekkers and de Haan [173].

(Xkyn — Xokn) + Xin - (6.40)

Theorem 6.4.15 (Estimating high quantiles IT)

Suppose X1, ..., X, is an iid sample from F € MDA(He), £ € R, and assume
that lim,,_,o n(1 — p) = ¢ for some ¢ > 0. Let T, be defined by (6.40) with 3
the Pickands estimator (6.24). Then for every fixed k > ¢,

Tp —Tp d
Xin — Xown ~Y,
where
o (/0 =21 Qo)
1-2-¢ exp{¢Hr} — 1"
The rvs Hy and Qp are independent, Qr has a gamma distribution with
parameter 2k + 1 and

(6.41)

2k
E'.
ney B
kg1 )
for iid standard exponential rvs E1, Es, . . .. O

Remarks. 2) The case 0 < ¢ < 1 of Theorem 6.4.15 corresponds to extrap-
olation outside the range of the data. For the extreme case ¢ = 0, a relevant
result is to be found in de Haan [293], Theorem 5.1. Most of these results de-
pend on highly technical conditions on the asymptotic behaviour of F. There
is a strong need for comparative numerical studies on these high quantile
estimators.

3) Approximations to the df of Y in (6.41) can be worked out explicitly.

4) As for the situation of Theorem 6.4.14, no results seem to exist concern-
ing the optimal choice of k. For the consistency of the Pickands estimator
&, which is part of the estimator ¥,, one actually needs k& = k(n) — oo; see



6.4 Estimating Under Maximum Domain of Attraction Conditions 351

Theorem 6.4.1.

5) In the case £ < 0 similar results can be obtained for the estimation of
the right endpoint zp of F. We refer the interested reader to Dekkers and
de Haan [173] for further details and some examples. O

Summary

Throughout Section 6.4, we have discovered various estimators for the impor-
tant shape parameter £ of dfs in the maximum domain of attraction of the
GEV. From these and further estimators, either for the location and scale
parameters and/or norming constants, estimators for the tail F' and high
quantiles resulted. The properties of these estimators crucially depend on
the higher—order behaviour of the underlying distribution tail F. The latter
is unfortunately not verifiable in practice.

On various occasions we hinted at the fact that the determination of
the number & of upper order statistics finally used remains a delicate point
in the whole set—up. Various papers exist which offer a semi—automatic or
automatic, so—called ”optimal”, choice of k. See for instance Beirlant et al.
[57] for a regression based procedure with various examples to insurance
data, and Danielson and de Vries [154] for an alternative method motivated
by examples in finance. We personally prefer a rather pragmatic approach
realising that, whatever method one chooses, the “Hill horror plot” (Figure
4.1.13) would fool most, if not all. It also serves to show how delicate a tail
analysis in practice really is. On the other hand, in the "nice case” of exact
Pareto behaviour, all methods work well; see Figures 6.4.7.

Our experience in analysing data, especially in (re)insurance, shows that
in practice one is often faced with data which are clearly heavy—tailed and
for which "exact” Pareto behaviour of F(z) sets in for relatively low values
of x; see for instance Figure 6.2.12. The latter is not so obvious in the world
of finance. This is mainly due to more complicated dependence structure in
most of the finance data; compare for instance Figures 6.5.10 and 6.5.11.
A "nice” example from the realm of finance was discussed in Figure 6.4.12.
The conclusion ”"the data are heavy—tailed” invariably has to be backed up
with information from the user who provided the data in the first place!
Furthermore, any analysis performed has to be supported by exploratory
data analysis techniques as outlined in Section 6.2. Otherwise, situations as
explained in Figure 6.4.11 may occur.

It is our experience that in many cases one obtains a Hill- (or related)
plot which tends to have a fairly noticeable horizontal stretch across different
(often lower) k—values. A choice of k in such a region is to be preferred.
Though the above may sound vague, we suggest the user of extremal event
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techniques to experiment on both simulated as well as real data in order to get
a feeling for what is going on. A final piece of advice along this route: never
go for one estimate only. Calculate and always plot estimates of the relevant
quantities (a quantile say) across a wide range of k—values; for examples
see Figures 6.4.3 and 6.4.4. In the next section we shall come back to this
point, replacing k by a threshold u. We already warn the reader beforehand:
the approach offered in Setion 6.5 suffers from the same problems as those
discussed in this section.

Notes and Comments

So far, we only gave a rather brief discussion on the statistical estimation
of parameters, tails and quantiles in the heavy—tailed case. This area is still
under intensive investigation so that at present no complete picture can be
given. Besides the availability of a whole series of mathematical results a lot of
insight is obtained through simulation and real life examples. In the next sec-
tion some further techniques and indeed practical examples will be discussed.
The interested reader is strongly advised to consult the papers referred to so
far. An interesting dicussion on the main issues is de Haan [295], where also
applications to currency exchange rates, life span estimation and sea level
data are given; see also Davis and Resnick [159]. In Einmahl [198] a critical
discussion concerning the exact meaning of extrapolating outside the data is
given. He stresses the usefulness of the empirical df as an estimator.

6.5 Fitting Excesses Over a Threshold

6.5.1 Fitting the GPD

Methodology introduced so far was obtained either on the assumption that
the data come from a GEV (see Section 6.3) or belong to its maximum
domain of attraction (see Section 6.4). We based statistical estimation of
the relevant parameters on maximum likelihood, the method of probability—
weighted moments or some appropriate condition of regular variation type.
In Section 3.4 we laid the foundation to an alternative approach based on
exceedances of high thresholds. The key idea of this approach is explained
below.
Suppose

X, X1,...,X,, areiid with df F € MDA(H¢) for some £ € R.

First, choose a high threshold u and denote by
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Xs
X3
Y3
X3
Yl
Y, YNu
u
X1
X4 X3

Figure 6.5.1 Data X1,...,X13 and the corresponding excesses Yi,...,Yn, over
the threshold w.

N,=card{i:i=1,...,n, X; > u}
the number of exceedances of u by X, ..., X,. We denote the corresponding

excesses by Y1,..., Yy, ; see Figure 6.5.1. The ezcess df of X is given by

Fuy) = P(X —u<y|X>u)=PY <y|X >u), y>0;

see Definition 3.4.6. The latter relation can also be written as

F(u+y)=F(u)F.(y). (6.42)

Now recall the definition of the generalised Pareto distribution (GPD) from
Definition 3.4.9: a GPD G¢ g with parameters £ € R and 3 > 0 has distribu-
tion tail

Ve
Ge () = (”%) 87 0% senep),
e /8 if ¢ = 0,

where
0.00)  if €0,

D(w):{ 0,-8/€ it £<0.
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Theorem 3.4.13(b) gives a limit result for F,(y), namely

lim sup |Fu(:r) — Ew(u) ()] =0,

utzp 0<z<zpr—u
for an appropriate positive function 3. Based on this result, for u large, the
following approximation suggests itself:

F.(y) ~ égyg(u) (y) . (6.43)

It is important to note that 3 is a function of the threshold u. In practice, u
will have to be taken sufficiently large. Given such a u, £ and 8 = 3(u) are
estimated from the excess data, so that the resulting estimates depend on u;
see our discussion below.

Relation (6.42) then suggests a method for estimating the far end tail of
F by estimating F,(y) and F(u) separately. A natural estimator for F(u) is
given by the empirical df

~

— — I N,
(F(u)) = Fp(u) = - Y Iixisuy = .

i=1
On the other hand, the generalised Pareto approximation (6.43) (remember
that u is large!) motivates an estimator of the form

~

(Fu()) =Gz5 ) (6.44)

for appropriate E = E ~, and B = B N, -
A resulting estimator for the tail F(u + y) for y > 0 then takes on the
form

. -1/¢
<F<u+y>>=%(1+§%) o (6.45)

In the Fréchet and Gumbel case (£ > 0), the domain restriction in (6.45) is
y > 0, clearly stressing that we estimate F in the upper tail. An estimator of
the quantile z, results immediately:

fp:u+§: <i (1—p))5—1 . (6.46)

by
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The latter is obtained by putting Tp = 7; (i.e. p = 1) in (6.46). In Section
6.4.1 we said that the method of exceedances belongs to the realm of point
process theory. From (6.45) and (6.46) this is clear: statistical properties of
the resulting estimators crucially depend on the distributional properties of
the point process of exceedances (N, ); see for instance Example 5.1.3 and
Theorem 5.3.2, and also the Notes and Comments below.

The above method is intuitively appealing. It goes back to hydrologists.
Over the last 25 years they have developed this estimation procedure under
the acronym of the Peaks Over Threshold (POT') method. In order to work
out the relevant estimators the following input is needed:

— reliable models for the point process of exceedances,
a sufficiently high threshold w,
estimators £ and [,

— and, if necessary, an estimator v for location.

If one wants to choose an optimal threshold u one faces similar problems as
for the choice of the number k of upper order statistics for the Hill estimator.
A value of u too high results in too few exceedances and consequently high
variance estimators. For u too small estimators become biased. Theoretically,
it is possible to choose u asymptotically optimal by a quantification of a bias
versus variance trade—off, very much in the same spirit as discussed in The-
orem 6.4.9. In reality however, the same problems as already encountered for
other tail estimators before do occur. We refer to the examples in Section
6.5.2 for illustrations on this.

One method which is of immediate use in practice is based on the linearity
of the mean excess function e(u) for the GPD. From Theorem 3.4.13(e) we
know that for a rv X with df G¢ g,

B+ &u

1-¢’
hence e(u) is linear. Recall from (6.6) that the empirical mean excess function
of a given sample X7, ..., X, is defined by

en(u):F Z (Xi_u)v U>0,

“oieA, (u)

e(u)=E(X —u|X >u) =

uweDE,B), <1,

where as before N, =card{i:i=1,...,n,X; > u} =cardA, (u). The re-
mark above now suggests a graphical approach for chosing wu:

choose u > 0 such that e, (x) is approzimately linear for x > u.

The key difficulty of course lies in the interpretation of approzimately. Only
practice can telll One often observes a change in the slope of e, (u) for some
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value of u. Referring to some examples on sulphate and nitrate level in an
acid rain study Smith [595], p. 460, says the following:

The general form of these mean excess plots is not atypical of real data, espe-
cially the change of slope near 100 in both plots. Smith [588] observed similar
behaviour in data on extreme insurance claims, and Davison and Smith [166]
used a similar plot to identify a change in the distribution of the threshold
form of the River Nidd data. Such plots therefore appear to be an extremely
useful diagnostic in this form of analysis.

The reader should never expect a unique choice of u to appear. We recom-
mend using plots, to reinforce judgement and common sense and compare
resulting estimates across a variety of u—values. In applications we often pre-
fer plots indicating the threshold value u, as well as the number of exceedances
used for the estimation, on the horizontal axes; the estimated value of the
parameter or the quantile, say, is plotted on the vertical one. The latter is
illustrated in Section 6.5.2. As can be seen from the examples, and indeed
can be proved, all these plots exhibit the same behaviour as the Hill- and
Pickands—plots before: high variability for u large (few observations) versus
bias for u small (many observations, but at the same time the approximation
(6.43) may not be applicable).

Concerning estimators for £ and (3, various methods similar to those dis-
cussed in Section 6.4.2 exist.

Maximum Likelihood Estimation

The following results are to be found in Smith [591].
Recall that our original data X = (X,...,X,,) are iid with common df F'.
Assume F' is GPD with parameters £ and 3, so that the density f is

@) =S <1+£ %)%1 . weD(B).

The log-likelihood function equals

(& B); X) = —nln B — (% + 1) Zi;ln (1 + % XZ-> .

Notice that the arguments of the above function have to satisfy the domain
restriction X; € D(&, 8). For notational convenience, we have dropped that
part from the likelihood function. Recall that D(&,3) = [0,00) for £ > 0.
Now likelihood equations can be derived and solved numerically yielding the
MLE En, B\n This method works fine if £ > —1/2, and in this case one can
show that
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Figure 6.5.2 A “horror plot” for the MLE of the shape parameter & of a GPD.
The simulated data come from a df given by F(x) = 1/(xInz). Left: sample size
1000. Right: sample size 10000. The upper horizontal axis indicates the threshold
value u, the lower one the corresponding number k of exceedances of u. As for Hill
estimation (see Figure §.1.13) MLE also becomes questionable for such perturbed
Pareto tails.

-~

n'/? (En—g, %—1) i)N(O,M_l), n— 0o,

where

M—1:(1+§)<1J1rg ;)

and N(u, X) stands for the bivariate normal distribution with mean vector p
and covariance matrix ¥. The usual MLE properties like consistency and
asymptotic efficiency hold.

Because of (6.43), it is more realistic to assume a GPD for the ex-
cesses Y1,...,Yy, where N = N, is independent of the Y;. The resulting
conditional likelihood equations can be solved best via a reparametrisation
(&,8) = (&, 1), where 7 = —¢/[. This leads to the solution

~

N
E=E&rn=N"Y"I(1-7Y),
=1

where 7 satisfies
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The function h(7), defined for 7 € (—oo, max (Y, ...,Yy)), is continuous at 0.
Letting v = u, — oo, Smith [591] derives various limit results for the distrib-
ution of (§AN, BN) As in the case of the Hill estimator (see Theorem 6.4.9), an
asymptotic bias may enter. The latter again crucially depends on a second—
order condition for F.

Method of Probability—Weighted Moments

Similarly to our discussion in Section 6.3.2, Hosking and Wallis [337] also
worked out a probability—weighted moment approach for the GPD. This is
based on the quantitites (see Theorem 3.4.13(a))

B

,=EZ (Gep(2)) = , r=0,1,
b Ces@) = imerig "
where Z has GPD G¢ 3. We immediately obtain
2
g ZWOWL el W0
wo — 2w1 Wo — 2w1

If we now replace wy and w; by empirical moment estimators, one obtains the
probability—weighted moment estimators 3 and &. Hosking and Wallis [337]
give formulae for the approximate standard errors of these estimators. They
compare their approach to the MLE approach and come to the conclusion
that in the case £ > 0 the method of probability—weighted moments offers
a viable alternative. However, as we have already stressed in the case of a
GEV, maximum likelihood methodology allows us to fit much more general
models including time dependence of the parameters and the influence of
explanatory variables.

6.5.2 An Application to Real Data

In the above discussion we have outlined the basic principles behind the GPD
fitting programme. Turning to the practical applications, two main issues
need to be addressed:

(a) fit the conditional df F,(x) for an appropriate range of z— (and indeed u—)
values;
(b) fit the unconditional df F(z), again for appropriate x—values.

Though formulae (6.44) and (6.45) in principle solve the problem, in practice
care has to be taken about the precise range of the data available and/or the
interval over which we want to fit. In our examples, we have used a set—up
which is motivated mainly by insurance applications.
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Take for instance the Danish fire insurance data. Looking at the ME—plot
in Figure 6.2.11 we see that the data are clearly heavy—tailed. In order to
estimate the shape parameter ¢ a choice of the threshold u (equivalently,
of the number k of exceedances) has to be made. In the light of the above
discussion concerning the use of ME—plots at this stage, we suggest a first
choice of u = 10 resulting in 109 exceedances. This means we choose u from a
region above which the ME—plot is roughly linear. An alternative choice would
perhaps be in the range u ~ 18. Figure 6.5.5 (top, left) gives the resulting
estimates of £ as a function of u (upper horizontal axis) and of the number
k of exceedances of u (lower horizontal axis): the resulting plot is relatively
stable with estimated values mainly in the range (0.4, 0.6). Compare this plot
with the Hill-plot in Figure 6.4.3. For u = 10 maximum likelihood estimates
£ = 0.497 (s.e.= 0.143) and B = 6.98 result. A change to u = 18 yields
£=0.735 (s.e.=0.253) based on k = 47 exceedances.

From these estimates, using (6.44), an estimate for the (conditional) excess
df F,(z) can be plotted. Following standard practice in reinsurance, in Figure
6.5.5 (top, right) we plot the shifted df F,(x — u), x > u. In the language of
reinsurance the latter procedure estimates the probability that a claim lies
in a given interval, given that the claim has indeed pierced the level u = 10.

Though the above estimation (once u = 10 is chosen) only uses the 109
largest claims, a crucial question still concerns where the layer (v = 10 and
above) is to be positioned in the total portfolio; i.e. we also want to estimate
the tail of the unconditional df F which yields information on the frequency
with which a given high level u is pierced. At this point we need the full
data—set and turn to formula (6.45). A straightforward calculation allows us
to express ﬁ(z) as a three—parameter GPD:

e\ L/E
F<z)=1—<1+52g—,”) ez, (6.47)

where

: 3
(ﬁ) 1] and @:3@) .
n n

We would like to stress that the above df is designed only to fit the data
well above the threshold u. Below u, where the data are typically abundant,
various standard techniques can be used; for instance the empirical df. By
combining both, GPD above u and empirical df below u, a good overall fit
can be obtained. There are of course various possibilities to fine—tune such a
construction.
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Figure 6.5.3 The positive BMW log—returns from Figure 6.2.10. Top, left: MLE of
€ as a function of u and k with asymptotic 95% confidence band. Top, right: GPD-
fit to Fy(x — u), > u, on log-scale. Middle: GPD tail-fit for F(xz + u), = > 0.
Bottom: estimates of the 99.9%—quantile for the positive returns as a function of
the threshold w (upper horizontal azis) and of the corresponding number k of the
upper order statistics (lower horizontal azis). A GPD with parameters £ = 0.0335,
# =0.0136 is fitted, corresponding to u = 0.0354 and k = 100.
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Figure 6.5.4 The absolute values of the negative BMW log—returns from Figure
6.2.10. Top, left: MLE of € as a function of u and k with asymptotic 95% confidence
band. Top, right: GPD—fit to Fu(z —u), * > u, on log-scale. Middle: GPD tail-
fit for F(z +u), & > 0. Bottom: estimates of the 99.9%—quantile for the absolute
negative returns as a function of the threshold w (upper horizontal azxis) and of
the corresponding number k of the upper order statistics (lower horizontal azis). A
GPD with parameters £ = 0.207, 3 = 0.00849 us fitted, corresponding to u = 0.0343
and k = 100; ¢.e. the distribution has an infinite 5th moment. As mentioned in the
discussion of Figure 6.2.10, the lower tail of the distribution appears to be heavier
than the upper one.
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Figure 6.5.5 The Danish fire insurance data; see Figure 6.2.11. Top, left: MLE for
the shape parameter £ of the GPD. The upper horizontal axis indicates the threshold
u, the lower one the number k of exceedances/upper order statistics involved in the
estimation. Top, right: fit of the shifted excess df Fu(z — u), * > u, on log—scale.
Middle: GPD tail-fit for F(xz4+u), x > 0. Bottom: estimates of the 0.99—quantile as
a function of u (upper horizontal azis) and k (lower horizontal azis). A GPD with
parameters & = 0.497 and 3 = 6.98 is fitted, corresponding to k = 109 exceedances
of u=10. Compare also with Figure 6.4.3 for the corresponding Hill-fit.
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Figure 6.5.6 The industrial fire insurance data; see Figure 6.2.12. Top, left: MLE
for the shape parameter £ of the GPD. The upper horizontal azis indicates the
threshold w, the lower one the number k of exceedances/upper order statistics in-
volved in the estimation. Top, right: fit of the shifted excess df Fu(z —u), = > u,
on log—scale. Middle: GPD tail-fit for F(ac + u), « > 0. Bottom: estimates of the
0.99—quantile as a function of u (upper horizontal azxis) and k (lower horizontal
aris). A GPD with parameters £ = 0.747 and 3 = 48.1 s fitted, corresponding to
k = 149 exceedances of uw = 100. Compare also with Figure 6.4.4 for the correspond-
ing Hill-fit.
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Finally, using the above fit to F'(z), we can give estimates for the p—
quantiles, p > F'(u). In Figure 6.5.5 (bottom) we have summarised the 0.99—
quantile estimates obtained by the above method across a wide range of
u—values (upper horizontal axis), i.e. for each u—value a new model was fitted
and xg.g9 estimated. Alternatively, the number of exccedances of u is indicated
on the lower horizontal axis. For these data a rather stable picture emerges.
A value in the range (25,26) follows. Confidence intervals can be calculated.
The software needed to do these, and further analyses are discussed in the
Notes and Comments below.

Figure 6.5.6 for the industrial fire data (see Figure 6.2.12) and Figure
6.5.3 for the BMW share prices (see Figure 6.2.10) can be interpreted in a
similar way.

Mission Improbable: How to Predict the Unpredictable

On studying the above data analyses, the reader may have wondered why we
restricted our plots to .99 for the Danish and industrial insurance data, and
Zo.999 for the BMW data. In answering this question, we restrict attention
to the insurance data. At various stages throughout the text we hinted at
the fact that extreme value theory (EVT) offers methodology allowing for
extrapolation outside the range of the available data. The reason why we
are very reluctant to produce plots for high quantiles like 0.9999 or more, is
that we feel that such estimates are to be treated with extreme care. Recall
Richard Smith’s statement from the Preface: ” There is always going to be an
element of doubt, as one is extrapolating into areas one doesn’t know about.
But what EVT is doing is making the best use of whatever data you have
about extreme phenomena.” Both fire insurance data—sets have information
on extremes, and indeed EVT has produced models which make best use of
whatever data we had at our disposal. Using these models, estimates for the
p—quantiles z,, for every p € (0,1) can be given. The statistical reliability of
these estimates becomes, as we have seen, very difficult to judge in general.
Though we can work out approximate confidence intervals for these estima-
tors, such constructions strongly rely on mathematical assumptions which
are unverifiable in practice.

In Figures 6.5.7 and 6.5.8 we have reproduced the GPD estimates for
T0.999 and g.ggg99 for both the Danish and the industrial fire data. These
plots should be interpreted with the above quote from Smith in mind. For
instance, for the Danish fire insurance data we see that the estimate of about
25 for zg.99 jumps at 90 for xg.g99 and at around 300 for xg gg999. Likewise for
the industrial fire, we get an increase from around 190 for x99 to about 1400
for xg.999 and 10000 for xg 9999. These model-based estimates could form the
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Figure 6.5.7 GPD-model based estimates of the 0.999—quantile (top) and 0.9999—
quantile (bottom) for the Danish fire insurance data. WARNING: for the inter-
pretation of these plots, read ”Mission improbable” on p. 364.
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Figure 6.5.8 GPD-model based estimates of the 0.999—quantile (top) and 0.9999—
quantile (bottom) for the industrial fire data. WARNING: for the interpretation
of these plots, read ”Mission improbable” on p. 364.



366 6. Statistical Methods for Extremal Events

basis for a detailed discussion with the actuary/underwriter/broker/client
responsible for these data. One can use them to calculate so-called technical
premiums, which are to be interpreted as those premiums which we as sta-
tisticians believe to most honestly reflect the information available from the
data. Clearly many other factors have to enter at this stage of the discus-
sion. We already stressed before that in dealing with high layers/extremes
one should always consider total exposure as an alternative. Economic con-
siderations, management strategy, market forces will enter so that by using
all these inputs we are able to come up with a premium acceptable both for
the insurer as well as the insured. Finally, once the EVT model-machinery
(GPD for instance) is put into place, it offers an ideal platform for simu-
lation experiments and stress—scenarios. For instance, questions about the
influence of single or few observations and model-robustness can be analysed
in a straightforward way. Though we have restricted ourselves to a more de-
tailed discussion for the examples from insurance, similar remarks apply to
financial or indeed any other kind of data where extremal events play an
important role.

Notes and Comments

The POT method has been used by hydrologists for more than 25 years. It
has also been suggested for dealing with large claims in insurance; see for
instance Kremer [409], Reiss [525] and Teugels [618, 619]. It may be viewed
as an alternative approach to the more classical GEV fitting.

In the present section, we gave a brief heuristic introduction to the POT.
The practical use of the GPD in extreme value modelling is best learnt from
the fundamental papers by Smith [594], Davison [165], Davison and Smith
[166], North [482] and the references therein. Falk [224] uses the POT method
for estimating &. Its theoretical foundation was already laid by Pickands [498]
and developed further for instance by Smith [591] and Leadbetter [417]. The
statistical estimation of the parameters of the GPD is also studied in Taj-
vidi [611].

The POT model is usually formulated as follows:

(a) the excesses of an iid (or stationary) sequence over a high threshold u
occur at the times of a Poisson process;

(b) the corresponding excesses over u are independent and have a GPD;

(c) excesses and exceedance times are independent of each other.

Here one basically looks at a space—time problem: excess sizes and exceedance
times. Therefore it is natural to model this problem in a two—dimensional
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point process or in a marked point process setting; see Falk et al. [225], Sec-
tion 2.3 and Section 10.3, and Leadbetter [417] for the necessary theoretical
background. There also the stationary non—iid case is treated. Using these
tools one can justify the above assumptions on the excesses and exceedance
times in an asymptotic sense. A partial justification is to be found in Sec-
tion 5.3.1 (weak convergence of the point process of exceedances to a Poisson
limit) and in Theorem 3.4.13(b) (GPD approximation of the excess df).

The POT method allows for fitting GPD models with time-dependent
parameters £(t), 5(t) and v(t), in particular one may include non—stationarity
effects (trends, seasonality) into the model; see for instance Smith [594]. These
are further attractive aspects of GPD fitting.

Example 6.5.9 (Diagnostic tools for checking the assumptions of the POT
method)

In Figures 6.5.10 and 6.5.11 we consider some diagnostic tools (suggested by
Smith and Shively [597]) for checking the Poisson process assumption for the
exceedance times in the POT model. Figure 6.5.10 (top) shows the excesses
over v = 10 by the Danish fire insurance claims; see Figure 6.2.11. The left
middle figure is a plot of the first sample autocorrelations of the excesses.
In interpreting the latter plot, the value of £ is of course crucial. Indeed for
& > 1/2, the theoretical autocorrelations do not exist and hence there is no
straightforward interpretation of the sample autocorrelation plot. As we have
seen, ¢ takes values around 1/2 for v = 10 and above 1/2 for v = 18. Further
analyses on this point gave however no reason to reject independence. In the
right middle figure the corresponding inter—arrival times of the exceedances
appear. If these times came from a homogeneous Poisson process they should
be iid exponential; see Example 2.5.2. The (Lowess smoothed) curve in the
figure can be used to indicate possible deviations from the stationary as-
sumption; it is basically a smoothed mean value of the data and estimates
the reciprocal of the intensity of the Poisson process. The curve is almost
a straight line, parallel to the horizontal axis. In the left bottom figure a
QQ-plot of the inter—arrival times versus exponential quantiles is given. The
exponential fit is quite convincing. The sample autocorrelations of the inter—
arrival times (bottom, right) yield no ground for rejecting the hypothesis of
zero correlation. For a more detailed analysis of these data, see McNeil [452]
and Resnick [534]. The last paper also discusses the problem of testing for
independence when the underlying data possibly have infinite variance.

The picture changes for instance for the absolute values of the negative log—
returns of the BMW share prices (see Figure 6.2.10). In Figure 6.5.11 the
excesses over u = 0.0343 are given. Both autocorrelograms show a more in-
tricate dependence structure often encountered in finance data. |
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Figure 6.5.10 Top: the excesses over u = 10 of the Danish fire insurance data;
see Figure 6.2.11. Middle, left: the sample autocorrelations of the excesses. Middle,
right: the inter—arrival times of the exceedances and smoothed mean values curve.
Bottom, left: QQ—plot of the the inter—arrival times against exponential quantiles.
Bottom, right: sample autocorrelations of these times. See Example 6.5.9 for further
comments.
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Figure 6.5.11 Top: the excesses over u = 0.0343 of the absolute values of the
negative BMW log—returns; see Figure 6.2.10. Middle, left: the sample autocorre-
lations of the excesses. Middle, right: the inter—arrival times of the exceedances
and smoothed mean values curve. Bottom, left: QQ-plot of the inter—arrival times
against exponential quantiles. Bottom, right: sample autocorrelations of these times.
See Example 6.5.9 for further comments.
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Concerning software: most of the analyses done in this and other chapters
may be performed in any statistical software environment; pick your favourite.
We have mainly used S—Plus. An introduction to the latter package is for
instance to be found in Spector [603]. Venables and Ripley [629] give a nice
introduction to modern applied statistics with S—Plus. The programs used
for the analyses of the present chapter were written by Alexander McNeil
and can be obtained from http://www.math.ethz.ch/~mcneil/software.html.
We thank Richard Smith for having made some code available forming
the basis of the above programs. Further S-Plus programs providing con-
fidence intervals for parameters in the GPD have been made available by
Nader Tajvidi under http://www.math.chalmers.se/~nader/software.html.
Various customised packages for extreme value fitting exist. Examples are
XTREMES, which comes as part of Falk et al. [225], and ANEX [18].
In the context of risk management, RiskMetrics [543] forms an interest-
ing software environment in which various of the techniques discussed so far,
especially concerning quantile (VaR) estimation, are to be found.



7

Time Series Analysis for Heavy—Tailed

Processes

In this chapter we present some recent research on time series with large
fluctuations, relevant for many financial time series. We approach the problem
starting from classical time series analysis presented in such a way that many
standard results can also be used in the heavy—tailed case.

In Section 7.1 we give a short introduction to classical time series analysis
stressing the basic definitions and properties. This summary clearly cannot
replace a monograph on the topic, and so the interested reader who is not
familiar with time series analysis should also consult a standard textbook.
At the elementary level, Brockwell and Davis [93], and at the more advanced
level Brockwell and Davis [92] provide the necessary background. In Sec-
tion 7.2 linear processes with infinite variance are introduced. In Section 7.3
we concentrate on asymptotic properties of the sample correlations both in
the finite and the infinite variance case. In Section 7.4 asymptotic properties
of the periodogram under light or heavy tails of the observed time series are
studied. Parameter estimation for ARMA processes is the topic of Section 7.5.
We conclude with Section 7.6 in which notions such as “heteroscedasticity”,
“stochastic volatility” and their relationship to the previous sections are ex-
plained. We also give a short discussion about ARCH and related processes
which are alternative models for time series exhibiting large fluctuations. A
more profound analysis of ARCH processes is to be found in Section 8.4.
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7.1 A Short Introduction to Classical Time Series
Analysis

Classical time series analysis is mainly concerned with the statistical analysis
of stationary processes and, in particular, of linear processes

Xe= > ¢jZi;, teL, (7.1)

j=—o0

with iid real-valued innovations or noise variables (Z;)icz which have mean
zero and finite variance o%. For reasons of standardisation we also require
that o = 1. In practical situations, one would of course consider so—called
causal representations in (7.1), i.e. ¢; = 0 for j < 0. For fixed ¢, the series
in (7.1) converges a.s. provided the real-valued coefficients 1, satisfy the
condition -

var(Xy) = 0% Y 1) <o0. (7.2)

Jj=—00

The process (X;):ez is strictly stationary, i.e. the finite—dimensional distribu-
tions of the process are invariant under shifts of the time index. Every strictly
stationary finite variance process is also stationary (in the wide sense), i.e.
there exists a constant y such that EX; = p and EX; X4, is only a function
of h, not of ¢; see Appendix A2.1.

Example 7.1.1 (ARMA process)

The most popular linear processes are ARMA(p, q) processes (autoregressi-
ve—moving average processes of order (p, ¢)) which are given by the difference
equations

Xt_(,z&lthl_"'_Qﬁpthp - Zt+01Zt71+"'+0th7q, tGZ
(7.3)

The order (p, q) will typically be determined via an order selection criterion.
The parameters ¢; and 6; satisfy certain conditions in order to guarantee
that equation (7.3) has a solution which can be expressed in the form (7.1).
Special cases are the MA(q) or mowving average processes of order q

Xt:Zt+91Zt71+"'+9th7q, tGZ,

which only depend on the noise at the instants of time ¢t — ¢, ...,¢. Under
additional assumptions on the parameters ¢; (see the discussion in Section
7.5), pure AR(p) or autoregressive processes of order p can be interpreted as
genuine infinite moving average processes. For example, the AR(1) process
can be written as
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Figure 7.1.2 600 realisations of 1id N(0,2) noise (Z¢) (top) and of the correspond-
ing AR(1) processes X; = —0.8Xi—1+Z; (middle) and X¢ = 0.8Xi—1+Z; (bottom).

X = Zi+¢1 Xi
= Zi+¢1 2y 1+ (ﬁ X2

= Zi+ 61 Zi1+ 7 Zoo+ &5 Zog+ -
7=0

The condition |¢1| < 1 is obviously needed in order to justify the last equality;
only in that case does the series (7.2) converge, and then (7.4) converges a.s.
In the case of causal ARMA processes, see Section 7.5, the coefficients v; in
the representation (7.1) decrease to zero at an exponential rate and ¢; = 0
for j < 0. In particular, for MA(g)-processes, ¢; = 0 for j > ¢, and for an
AR(1) process, ¢; = ¢{ for j > 0. O

In order to fit a model of type (7.1), the parameters 1); and 0% have to
be estimated. Roughly speaking, there exist two different approaches. In
the time domain one studies the dependence structure in the series via

the analysis of the autocovariances v(h) = cov(Xs, Xiyn) or autocorrelations
p(h) = corr(Xy, Xiqn):



374 7. Time Series Analysis for Heavy—Tailed Processes

v(h) = ~(h]) = E(X; Xeyn) = E(Xo Xp), h€Z, (7.5)
_ 2
ph) = 5. heD. (7.6)

Example 7.1.3 (Continuation of Example 7.1.1)
Using the uncorrelatedness of the rvs Z; it is easily seen that for the linear
process (7.1) the relations

v(h) = 0% Z Vivirn . hEL,

j=—00
and -

p(h) = ij?_ﬁzfg'h , hez,
hold. O

The second approach is based on the spectral (Fourier) analysis of the series,
and is referred to as the frequency domain approach. The basic result for
spectral analysis is the so—called spectral representation of a stationary (in
the wide sense) process.

Theorem 7.1.4 (Spectral representation of stationary process)
Every (complex—valued) stationary mean-zero process (Xi)icz admits a sto-
chastic integral representation

Xt:/ ¢t dZ(z), te, (7.7)
(777-77"]

with respect to a mean—zero complez—valued process (Z(2))—n<-<x With un-
correlated increments and such that

E|Z(2)—Z ()] =F(22)—F(21), -m<zn<zn<r,

for a right—continuous, non—decreasing, bounded function F on [—m, 7] with
F(—m) =0. O

Remark. The stochastic integrals in (7.7) are not (pathwise) Riemann or
Riemann—Stieltjes integrals. They are defined as the mean square limit of
Riemann-Stieltjes type integrals for step functions (similarly to the definition
of an It6 integral). In particular, if (X;) is a Gaussian process then (Z(z))
must also be a Gaussian process with independent increments.

Representation (7.7) of a complez—valued stationary process (X;) is often
preferred in the literature although in most cases of practical interest one
deals with real-valued time series. In this case, (7.7) takes on the form



7.1 A Short Introduction to Classical Time Series Analysis 375

X; = / cos(At) dZy (N\) +/ sin(At) dZ;(N), (7.8)

(=7 (=7
where Z; and —Z are the real and the imaginary part of Z, respectively. Here
we also assumed for simplicity that F' is continuous at 0 and 7. Moreover,
for real-valued (X;), F is a symmetric function about 0. This means that
F(\) = F(m—) — F(—X=), A € (-7, 7). In what follows we stick to the
complex—valued representation of (X;). This is for notational convenience;

every statement can be interpreted in terms of real-valued processes by using
(7.8). O

We can roughly think of the stochastic integral (7.7) as a sum
> exp{ize_1t} (Z (2x) — Z (2k-1)) (7.9)
k=1

for a partition ((zx—1, 2k])k=1,....n Of the interval (—m, x]. Hence X} is approx-
imated by a linear combination of trigonometric functions exp{iz,_1t} with
random weights Z(zx) — Z(zx—1). It is clear that the trigonometric function
exp{izx_1t} will have the more influence on the value of X; the “larger” its
random weight. A measure for the magnitude of this weight is the quantity
E|Z(Zk) — Z(Zk,1)|2 = F(Zk) — F(Zkfl) .

The function F(z), —7 < x < 7, is called the spectral distribution function
(spectral df) of the stationary process (X). Note that F'//F() is a probability
df. The finite measure which is defined by the spectral df is called the spectral
distribution of the stationary process (X;). If F'is absolutely continuous with
respect to Lebesgue measure we can write it as an integral

F@= [ fe)ds, wel-ml,

where the non—negative function f(z) is called the spectral density of the
process (X;). Having the approximation (7.9) to the stationary process (7.7)
in mind, we see that

Bz - 2P = [ fe.

In particular, if f(z) has a large absolute maximum in the (sufficiently
small) interval [2,_1, zx] we may conclude that the summand e***—1%(Z(z) —
Z(zk—1)) makes a relevant contribution to the magnitude of the sum (7.9).
Since the function exp{iz} has period 27 we have for I € Z, exp{izi_1} =
exp{izg—1(1 + 27l/z_1)}. This means that, with high probability, the time
series X; assumes large values around the instants of time 1 + 27l/z;_;.
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Thus it exhibits some kind of cyclic behaviour with period 27/z;_; and ran-
dom amplitude determined by Z(zr) — Z(2x—1). What has been said about
the largest summand in (7.9) translates analogously to the other summands
which clearly have less influence on X; but they also create periodic subcycles
with smaller amplitude.

Theorem 7.1.5 (Spectral density of linear process)
Each mean—zero linear process (7.1) with finite variance 0% = var(Zy) admits
a spectral representation (7.7) with spectral density

2

Yo e |, ze[-ma]. (7.10)

j=—00

f()= 22

T or

O

From (7.10) it is clear that the spectral density of a linear process is basically
determined by the function

¥(z) = Z vie” ™,z € [-m ],

which is called the transfer function of the linear filter (1;) or simply the
transfer function. The function

|1/J(Z)|2 , 2 € [_Wvﬂ]v (711)

is the power transfer function. Its estimation is of crucial importance for
estimating the spectral density.

Example 7.1.6 (Continuation of Example 7.1.1)
The spectral density of an ARMA (p, ¢)—process has a particularly simple
representation: consider the two polynomials

d(z) = 1—¢1z—--—¢p 27, (7.12)
0(z) = 1+61z+---+0,27. (7.13)
Then the spectral density of this ARMA process has representation

) = o el

Notice that the constant spectral density f(2) = 0% /(27), z € [—, 7], corre-
sponds to iid noise (Z;). It is precisely for this reason (i.e. constant f) that
the latter is often referred to as white noise: all frequencies contribute equally.

O

z € [-m,m].
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Figure 7.1.7 FEstimated spectral density of the closing log—returns of the Japanese
stock index NIKKEI (February 22, 1990 — October 8, 1993). There is a peak around
the frequency 2’ = 1.65. The spectral density is estimated from n = 910 daily data
at the frequencies z; = 2nl/n. Thus z' corresponds to | ~ 240 which is roughly the
annual number of days at which the NIKKEI s evaluated. Thus the NIKKEI index
has roughly a cycle of one business year which gives a natural explanation for the
absolute mazximum of the spectral density. On the other hand, there are plenty of
submazima in the spectral density whose interpretation is not immediate. Moreover,
notice that the estimated spectral density is very flat, i.e. very close to the spectral
density of an 1id sequence. A detailed analysis would involve the construction of
confidence intervals on the log—scale followed by appropriate testing for peaks.

Time domain and frequency domain methods are equivalent analytic descrip-
tions of a time series; they are actually two languages based on different tools.
The following statement describes the close link between both domains.

Theorem 7.1.8 (Herglotz lemma)
A real-valued function y(h) defined on the integers is the autocovariance func-
tion of a (real-valued) stationary process (Xi)iez if and only if there exists
a spectral df F' on [—m, 7| such that

2 (h) = /( __eoslh)ar(), her. (7.14)

O

As a consequence of (7.14), (y(h)) uniquely determines F'.



378 7. Time Series Analysis for Heavy—Tailed Processes

In the following sections we consider statistical methods which have been
developed for linear processes in the classical case, i.e. when EXZ < co. We
will see that many methods of classical time series analysis in the time and in
the frequency domain can be adapted to the heavy—tailed case, i.e. to infinite
variance processes.

Notes and Comments

The basics of classical time series analysis as presented above can be found
in any standard monograph on the topic; see for instance Anderson [16], Box
and Jenkins [86], Brillinger [91], Brockwell and Davis [92, 93], Chatfield [111],
Fuller [246], Hamilton [314], Hannan [315], Priestley [512] and Rosenblatt
[555].

7.2 HeavyTailed Time Series

In this section we consider the (strictly stationary) linear process (7.1) with
iid innovations or noise (Z;), but we do not suppose that the variance 0% is
finite. To be more specific, we assume that Z(= Zp) has an sas distribution,
i.e. a symmetric a—stable distribution with chf

Eexp{izZ} =exp{—c|z|*}, z€R, (7.15)

where a € (0,2) and ¢ > 0. We refer to Section 2.2 for more details on stable
laws and their domains of attraction and we recall that Z has an infinite
variance. In particular, by the properties of stable distributions we have the
following identity in law for each t¢:

1/«

X2z ). (7.16)

j=—00

This implies that X, is sas, and one can even show that the finite—dimensional
distributions of the process (X;) are a—stable and therefore the process is
stable ; see Section 8.8, in particular Example 8.8.12. We conclude from (7.16)
that we need a specific condition on the coefficients v; in order to guarantee
the a.s. existence of the series in (7.1). By virtue of the 3—series theorem for
a series of independent summands (for instance Petrov [495, 496], Billingsley
[68], Theorem 22.8), X is well defined if and only if

> " < 0. (7.17)

j=—o00
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Figure 7.2.1 600 realisations of 1id symmetric 1.8-stable noise (Z;) with chf
(7.15) (top) and of the corresponding AR(1) processes Xy = —0.8X¢—1+Z; (middle)
and Xt = 0.8X—1 + Z; (bottom). Compare also with Figure 7.1.2 where the same
time series models with Gaussian noise are considered.

This condition fits nicely with (7.16). Note that condition (7.17) is satisfied
if (X;) is an ARMA(p, q) process which is given by the difference equation
(7.3): as in the classical case one can show that (7.3) has a unique solution
which can be expressed as a series (7.1). Moreover, the coefficients ); are the
same as in the classical case.

In our considerations below we will not only assume that (7.17) holds,
but will require the more stringent condition

oo

ST i< 0, (7.18)

j=—o0
for some constant d > 0 such that
6 = 1 if a>1,

6 < a if a<l.

The 3—series theorem and (7.18) ensure that the random series X; converges
absolutely with probability 1. Such a condition is necessary in order to guar-
antee that we can interchange limits, infinite sums and expectations.
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Recall from Example 8.8.3 that the iid sas rvs Z; have representation
Zy = Ai/2Nt7 where (A:) and (Ny) are independent, A, are iid «/2-stable
positive rvs and N; are iid standard normal. Hence (X;) has representation

(o)
Xe= Y AN, tel.
Jj=—00
This can be interpreted as a linear process with Gaussian innovations N
which are perturbed by potentially large multiplicative factors Ai /2 In this
sense, the theory below may be considered as a modification of the classical
(Gaussian) theory when there are large fluctuations in the noise.

The restriction to sas rvs is not at all necessary. It is possible to consider
analogous theorems for Z in the domain of attraction of a stable law or even
under the assumption E|Z|F < oo for some p > 0. The symmetry condition
on Z can also be relaxed in a natural way, i.e. by appropriate centring of
the rvs X;. However, the theory then becomes even more technical since we
would have to make several case studies according to different parameter
values. In particular, we would have to introduce a possibly confusing variety
of normalising and centring constants. Thus, for the sake of clarity and brevity
of presentation, we restrict ourselves to this simple particular case.

Notes and Comments

There is a small but steadily increasing number of articles on heavy—tailed
linear processes in the literature. An introduction to the topic can be found
in Brockwell and Davis [92], Chapter 13.3, where a justification of the rep-
resentation of an ARMA process as a linear process (7.1) is given; see also
Samorodnitsky and Taqqu [565], Section 7.12. In the following sections we
will cite more specific literature at the appropriate places. In a survey paper
Kliippelberg and Mikosch [394] contrast results in the classical and in the
heavy—tailed situation, both in the time and in the frequency domain.

In Section 7.1 we learnt about the spectral representation of a mean—zero
stationary process. According to Theorem 7.1.4 every mean—zero station-
ary process has a representation via stochastic integrals (7.7) with respect
to a process (Z(z)) with uncorrelated increments. For Gaussian (X;) the
process (Z(z)) is necessarily Gaussian with independent increments. In par-
ticular, every linear Gaussian process has a stochastic integral representation
(7.7). We might ask whether we can obtain a similar integral representation
for an sas linear process. It is possible to define a stochastic integral (7.7)
with respect to an sas motion; see Section 8.8.3. One can even show that
this process is strictly stationary and has some kind of a generalised spec-
tral density. However, the harmonisable stable process (X;) (see Example
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8.8.17) does not have a representation as linear process (7.1) (see Cambanis
and Soltani [103], Rosinski [556]), i.e. for a < 2 the class of the sas linear
processes and the class of the harmonisable sas processes are disjoint.

One of the main objectives in time series analysis is prediction. In the fi-
nite variance case, Hilbert space methods are used to make a linear prediction
of a linear process; see for instance Chapter 5 in Brockwell and Davis [92].
In the infinite variance case, the L? distance cannot be used as a measure of
error between the future value of the time series and its prediction. Another
distance measure has to be introduced to build up a prediction theory analo-
gous to the finite variance case. We refer to Cline and Brockwell [125] and to
Brockwell and Davis [92], Section 13.3, who give some results in this spirit.

7.3 Estimation of the Autocorrelation Function

As pointed out in Section 7.1, in the time domain one studies the dependence
structure of time series via autocovariances or autocorrelations. In this section
we will consider some statistical estimation problems in the time domain for
linear processes with or without finite variance.

In the classical case (0% < 0o) natural estimators for v(h), see (7.5), and
p(h), see (7.6), are given by the sample autocovariance ¥, (h) and the sample
autocorrelation pn(h):

n—|h|
- 1
An(h) = - ; Xy Xopn, hE€Z, (7.19)
pu(h) = dn(h) _ X K heT (7.20)
" ¥ (0) POAD. G ’

with the convention that ¥, (h) = p,(h) = 0 for |h| > n. In the classical case,
n(h) and py, (h) are consistent and asymptotically normal estimators of their
deterministic counterparts. We restrict ourselves to autocorrelations.

Theorem 7.3.1 (Asymptotic normality of sample autocorrelations)
Let (X¢)iez be the mean—zero linear process (7.1). Suppose that either

(o)

Z l;| < oo and EZ*< oo,

j=—o0

or
o'}

(oo}
Z |thi| < o0, Z Plj<oo and oy < o0.

j=—o00 Jj=—00
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Then, for each m > 1,

\/E(ﬁn(h)_ﬂ(h))hzl m i> (Yh)h:L...,m7

yeee

where
Vi =Y [ph+3)+p(h—5) =2p()p(W)] G;, h=1,...,m, (7.21)
j=1
and (Gj)j>1 are itd N(0,1) rvs. O

In particular, we obtain from Theorem 7.3.1 that, for each fixed h > 1,
1/2

Vi Ba(h) = p(h) 5 [ ST 1p(h+5) + plh = §) = 2p(Dp(W)P | G

Jj=1

Now suppose that (Z;)icz is ild sas noise with chf Eexp{izZ} =
exp{—c|z|*} for some a < 2. Since 0% = var(Z) = oo the notions of autoco-
variance and autocorrelation do not make sense. However, the corresponding
sample analogues are obviously well defined finite rvs; see (7.19) and (7.20).
Moreover, if the coefficients ¢, satisfy (7.18) then the quantities

Y ie oo ViVt n|
Yim ¥y

are finite numbers although they cannot be interpreted as autocorrelations of
the process (X;). Nevertheless, we will use the same notation p(h). Despite
the fact that the autocorrelations are not defined, the sample autocorrelations
are consistent estimators of the quantities p(h) just as in the classical case.

p(h) =

heZ,

Theorem 7.3.2 (Weak convergence of sample autocorrelations for sas time
series)

Let (Xy)iez be the linear process (7.1). Suppose that (Z;)icz is sas noise with
common chf (7.15) for some a < 2 and that the coefficients 1; satisfy (7.18).
Then, for each m > 1,

(/) (Fa(h) = p(W)) ey e = Vi)t

where

(oo}

Vi = S [oh+ ) + o(h = ) — 200)p(R)] g— h=1,....m. (1.22)

Jj=1

and (G;)j>o0 are independent stable rvs, G is positive a/2-stable with chf
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Figure 7.83.3 The sample autocorrelations pn(h) at lags h < 30 from n = 400
values of the ARMA(1,1) process X¢ — 0.5X¢—1 = Z¢ + 0.5Z; with p(1) = 0.71,
p(2) = 0.36, p(3) = 0.18, p(4) = 0.09 etc. In the figure above, the noise is iid
N(0,1), wn the figure below the noise 1s 1id symmetric Cauchy. The dotted lines
indicate the 95% asymptotic confidence band for the sample autocorrelations of iid
N(0,1) rus.

Eexp{izGo} (7.23)
= exp {—F(l — a/2) cos(mar/4)|z|*/? (1 — i sign(z) tan(noz/él))} ,
and (G;)j>1 are éd sas rvs with chf

Bexp {i2Gy) = { exp{—I'(1 —a)cos(ra/2)|z|*} if a#1, (724)
exp {—n|z|/2} if a=1.
(|

Remarks. 1) Theorem 7.3.2 can be compared with Theorem 7.3.1: if we
specialise Theorem 7.3.2 to one component then we obtain, for each fixed
h>1,
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Figure 7.3.4 The sample autocorrelations pn(h) at lags h < 25 of the closing log—
returns of the NIKKEI index (February 22, 1990 — October 8, 1998). The autocor-
relations of X1,..., Xso0 (top left), of X200, .., X500 (top right), of Xaoo, .- ., X700
(bottom left) and of Xeoo,...,Xo10 (bottom right) are given. The dotted lines in-
dicate the 95% asymptotic confidence band for the sample autocorrelations of iid
N(0,1) rvs. Notice that only the sample autocorrelation at lag 2 is significantly dif-
ferent from zero in the top figures. This significant value may, however, be spurious.

(n/In)'* (5 (h) — p(h))

1/«
Gy

S S lo(h+ ) + p(h = §) = 200)p(h)]* G (1)

=1

In particular,

Pu(h) = p(h) + Op ((n/nn) ™) |

which compares favourably with the slower rate Op (nil/ 2) in the classical
case. We can interpret this faster rate of convergence in the sense that large
fluctuations in the innovations stabilise the estimation of p(h). The sample
autocorrelation p,, (h) is a studentised or self-normalised version of the sample
autocovariance. Self-normalisation has the effect that we replace the original
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observations X;,t = 1,...,n, by X;/(>."_, X2)"/2,t = 1,...,n. In contrast
to the former rvs the latter are bounded quantities and have a finite variance.

2) A close look at the proof of this result shows that the rv Gy in the
denominator is (up to a multiplicative constant) nothing but the limit of
n=2/« 3" X2. In the classical case the latter corresponds to the quantity
n~t Y7 X7 which converges in distribution to a constant and therefore
self-normalisation is not necessary to guarantee consistent estimation of the
sample autocovariances. However, it is common practice to estimate the auto-
correlations; they are standardised autocovariances and therefore the depen-
dence structure of different time series is made comparable from one series
to another. Theorem 7.3.2 explains to some extent what happens to the es-
timation of p(h) when there are large fluctuations in the noise.

A glance at the proofs in the finite variance case (see Brockwell and Davis
[92], Chapter 7), and in the infinite variance case (Davis and Resnick
[160, 161, 162]) explains why the structure of the limit variables Y}, in (7.21)
and (7.22) is so similar. These limits are “built up” by the rvs G} which
are the limits of the normalised sample autocovariances n ! E?:_llh‘ VAVARRIN
of the iid noise (Z;). Notice that, for m > 1, the normalised sample au-
tocovariances (n_l/2 ;L;lh ZyZiyn)h=1,...,m converge in distribution to iid
Gaussian (Gp)p=1,.. m, provided 0% < oo. If Z is sas, the random vec-

tor ((nln n)—l/" fz_lh ZyZyh)h=1,...,m converges in distribution to iid sas
(Gr)h=1,....m-

3) The distribution of G /Gy in (7.25) is quite unfamiliar. It is given in Brock-
well and Davis [92], formula (13.3.17), and can be expressed via some special
functions; see Kliippelberg and Mikosch [397]. In particular, E|G/Go|® = oo
or < oo according as 0 > «a or § < «. Quantiles of this distribution can be

found by Monte—Carlo simulation of G /Gg. The limit distribution depends
on « which has to be estimated; see Section 6.4.2. |

Notes and Comments

Theorem 7.3.1 and related results can be found in Brockwell and Davis [92],
Chapter 7. Theorem 7.3.2 and more asymptotic theory for the sample auto-
covariance and the sample autocorrelation in the heavy-tailed situation are
given in Davis and Resnick [160, 161, 162]; see also Brockwell and Davis [92],
Chapter 13.3. We note that Davis and Resnick also treat the joint asymptotic
behaviour of the (properly centred and normalised) sample autocovariances
(Fn(0), 4 (1), ..., ¥n(m)). In that case, various subcases must be considered:

a) EZ* < co. Then the limit vector is jointly Gaussian.

b) EZ* = 00, 0% < o0 and Z? has a regularly varying tail. If (X;) is a gen-
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uine linear process (i.e. not an iid sequence) then the limit vector consists of
a stable rv multiplied by a constant vector; see Theorem 2.2 in Davis and
Resnick [162]. This result can be refined for iid noise (Z;) in which case the
limit vector consists of a stable rv in the first component and of iid Gaussian
variables in the remaining components.

c¢) Z is in the domain of attraction of an a—stable law, a < 2. The limit vector
is positive a/2—-stable in the first component and a—stable in the remaining
components.

Case b) has recently attracted some attention in the econometrics literature,
where the results by Davis and Resnick were partly reproved. The interest
is based on the empirical evidence that some financial time series have regu-
larly varying tails with index between 2 and 4; see for instance Longin [428] or
Loretan and Philips [429]. The paper by Miiller, Dacorogna and Pictet [471]
contains a detailed analysis confirming fat—tailedness in the foreign exchange
market and the inter—bank market of cash interest rates.

The similarity of the results in Theorems 7.3.1 and 7.3.2 is a consequence
of the linearity of the process (X;). Recent results by Davis and Resnick [164]
and Resnick [533] for a bilinear process X; = c¢X;_1Z;—1 + Z; with infinite
variance innovations Z; show that the sample autocorrelations converge to
non—degenerate limit laws.

7.4 Estimation of the Power Transfer Function

In this section we concentrate on the estimation of the power transfer function
|¥(2) |2, see (7.11), of the linear process (7.1). We again commence with the
classical finite variance case. As we know from Theorem 7.1.5, the spectral
density of a linear process is given by

2

2 0 2
FE) =22 3 ™| =ZZ R, zel-mal.

j==o00

Therefore it is important to estimate the power transfer function |(z)|?. Its
classical estimator is the periodogram

n
§ Xte—izt
t=1

It is a natural estimator because it is constructed as empirical analogue to
the power transfer function. Indeed, notice that

2

Inx(z) = % , 2 €[-m,m]. (7.26)
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Figure 7.4.1 The log—transformed smoothed periodogram (7.26) for n = 1864
daily log-returns (closing data) of the German stock index DAX (September 20,
1988 — August 24, 1995) (bottom) and the corresponding log—transformed smoothed
self-normalised version of the periodogram (top). Both lines are almost constant
indicating that the DAX log—returns perform very much like an i1d noise sequence.

oo

oLl () = Y (ke "

h=—o00
and that
I x(z) = Z %n(h)e_iﬁa
|h|<n
The periodogram is not a consistent estimator of the power transfer function,
but under mild conditions we are not far away from consistency.

Theorem 7.4.2 (Limit distribution of the periodogram, classical case)
Let (Xy)iez be the linear process (7.1). Suppose that EZ =0, 0%, < oo,

oo

S sl <o and W) >0, ze[-mal.

j=—00
Then, for any frequencies 0 < z1 < -+ < 2y, < T,
i 0% 2 (.2 2
(Tox )iz = Z (WGP (@2 48)
[EEEY) 1=1,....,m

where ay,B1, ..., Qm, Bm are 1id N(0,1) rvs.
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Note that (a? + 32)/2, as the sum of two independent 2 rvs, is a stan-
dard exponential rv. This is the form in which this classical result is usually
formulated.

Sketch of the proof. As a first step one can show that
Inx(2) = [Y(2)" In.z(2) + 0p(1), n— o0, (7.27)

where I,, z(z) denotes the periodogram of the iid sequence (Z;). Hence the
asymptotic behaviour of I,, x(z) depends only on the periodogram of an iid
sequence. We write

[mz(z)

_ 1 2 1 2

_ % ((%)1/2tzn;ztcos(zt)>2+% ((%)1/2§;Ztsin(zt)>2.

Thus we have to study the weak convergence of the vector (a,(z),Bn(2))
which is not too difficult. The normalisation /n in both terms a,(z) and
Bn(z) at once suggests applying a two—dimensional CLT for non-iid sum-
mands. This argument indeed works (also for a finite number of periodogram
ordinates) and proves that

d
(an(z)vﬁn(z)) — oz (alvﬁl) )
for iid N(0,1) rvs a; and ;. An application of the continuous mapping
theorem concludes the proof. a

Now suppose that (Z;) is a sequence of iid sas rvs with chf (7.15) for some
a < 2 and ¢ > 0. We learnt from Theorem 7.1.4 that the notions of a spectral
distribution and of a spectral density are very much related to stationary
processes in the wide sense, i.e. processes with finite covariance function.
Thus, for linear processes (X;) with iid sas noise, the notion of a spectral
density does not make sense. However, the power transfer function of such
a process is well defined under quite general conditions. And one can even
show that a result similar to Theorem 7.4.2 is valid: we browse through the
arguments of the proof of Theorem 7.4.2. First, (7.27) remains true if we
redefine the periodogram in a suitable way:

n
§ Xtefzzt
t=1

2

Ix(z) =n"2/® , z€[-mm]. (7.28)
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Whenever we work with sas time series we will assume that we deal with
this modification of the periodogram, i.e. we suppress its dependence on «
in the notation. Similar arguments as above show that we have to study the
joint convergence of

(an(2),Bn(2)) = (n‘l/o‘ Z Zy cos(zt) , n=/@ Z Zy sin(zt)) ,

t=1

and the normalisation n'/® already suggests that we have to apply a CLT for

rvs in the domain of normal attraction of an a—stable law; see Section 2.2.
However, a,,(2) and ,(z) are sums of non—iid rvs, so one has to modify the
theory for weighted sums of iid sas rvs. Finally, one arrives at the following
result:

Theorem 7.4.3 (Limit distribution of the periodogram, sas case)

Let (X4)iez be the linear process (7.1) with 4id sas noise (Zi)icz and common
chf (7.15) for some a < 2. Suppose (7.18) and | (2)|? > 0,2 € [—m,7]. Then,
for any frequencies 0 < z; < -+ < 2z, < T,

(Tox Gy, = (WGP (@2 GO +B2())

yeeny

i=1,....m
where (a(z1),8(21),...,a(zm), B(zm)) is an sas random wvector in R2™.
Moreover, there do not exist any two components in this vector which are
independent. a

Remark. For a precise formulation of this result we would need rather so-
phisticated arguments. The definition of an sas random vector via its chf
is given in Section 8.8.1. If we compare Theorems 7.4.3 and 7.4.2 there are
some similarities in structure, but we also see significant differences. Con-
cerning the latter, the components in the limit vector are dependent and
their distribution depends on the frequencies zx. A more detailed analysis
of Theorem 7.4.3 shows that the limit distribution of I,, z(z) is identical for
all frequencies z which are irrational multiples of 7. In many situations the
components (a?(zx) + 3%(2k))k=1,....m of the limit vector are exchangeable in
the sense that they can be embedded in a sequence of conditionally indepen-
dent rvs. On the other hand, it seems difficult to apply such a result since it
depends very much on the form of the frequencies and creates a non—tractable
form of dependence in the limit. O

An application of Theorem 7.4.3 requires the knowledge of o which appears
in the normalisation of (7.28). One way to overcome this problem is by self-
normalisation or studentisation. But notice that « still appears in the limit
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distribution. This technique was already mentioned in the context of sam-

ple autocovariances and sample autocorrelations. Results similar to Theo-
rem 7.4.3 hold true for the self-normalised periodogram

2

¥ _ [ Xiexp{—izt}]

[n,X(Z) En ) th )
t=

The motivation for such an estimator is given by the fact that

z € [-m, 7.

n~eNT X2 =07 N 72 (L+op(l)) B 92 Go,
t=1 t=1
where Gy is a positive a/2-stable rv and ¥ = 3372 4% . This means that
Yo, X7 and n?/® are roughly of the same order. It can be shown both in the
classical and in the sas case that the following holds true for any frequency
z € (0,7):

= i PRI e+ _ e)P
Ix(z) = =g G e

1+T(2)) .

In the classical case, Go = 2 and (a?(z) + (3%(2))/2 is a standard exponen-
tial rv, thus independent of the frequency z. In the sas situation, a(z), 5(z)
and Gy are dependent and (a(z), 3(z)) has an sas distribution in R? depend-
ing on z. In spite of these differences, in both cases

P(1+T(z) >x) <exp{—cz}, x>0, (7.29)
for a constant ¢ > 0 independent of the distribution of Z and
ET(2)=0, cov(T(2),T(z")=0, 0<z#z2'<m. (7.30)

These statements are trivial in the classical situation. They show how close
the classical and the self-normalised sas case actually are. Self-normalisation
under the condition of a finite variance is clearly not necessary for convergence
because n~t 371" | X7 satisfies a fairly general LLN.

In the classical situation, the properties (7.29) and (7.30) suggest estimat-
ing the power transfer function via a smoothed version of the periodogram.
The same methods also work in the sas situation although it seems difficult
to derive good confidence intervals in that case. In order to illustrate the
method we restrict ourselves to a simple discrete weighted average estimator;
similar results can be obtained for kernel type smoothers.

We introduce the following class of weights: let (w,(k))jxj<m be non—
negative real numbers such that

wn (k) = wn(—k) , Z wn(k) =1, Z w2 (k) =0,

|k|<m |k|<m
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Figure 7.4.4 The figure above shows the logarithm of the smoothed classical peri-
odogram (7.26) for n = 500 realisations of the AR(1) process X; = 0.8Xi—1 + Z;.
The 1id noise (Z:) has either a common standard normal distribution (o = 2) or a
common sas distribution (« € {1.8,1.5,1.0,0.5}). The estimated curves are almost
parallel indicating that the normalisation in the cases o # 2 is not correctly chosen.
The figure below shows the logarithm of the smoothed, self-normalised periodogram
as used in Proposition 7.4.5 for the same realisations of the AR(1) process with
weights (7.31), m = 15.

where we also require that m = m(n) — co and m/n — 0 as n — oo. The
simplest example of such weights is given by

1

— —n
=omz1’ ™ [n?], for some vy € (0,1), (7.31)

wp, (k)

where [-] denotes the integer part.

Proposition 7.4.5 Suppose that the iid noise rvs Z; are either sas for some
a < 2 or that var(Z) = 0% < 0o and EZ = 0. Then, for 0 < z <,

an(k)fnﬁx(zk) il |1/J§722)|27 n — 00.

|k|<m
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Here zg = 27l /n for somel € N is the Fourier frequency closest to z from the
left, and z, = 2n(l+ k)/n for the same l and |k| < m. O

Notes and Comments

The classical asymptotic theory for the periodogram (Theorem 7.4.2) can for
instance be found in Brockwell and Davis [92], Section 10.3, or in Priestley
[512]. The asymptotic independence of the periodogram ordinates at different
frequencies gives an intuitive explanation for the fact that one cannot im-
prove the pointwise weak convergence (i.e. convergence at fixed frequencies)
towards a FCLT. However, the asymptotic independence suggests consider-
ing integrated versions of the periodogram as analogues to the empirical df.
A rule of thumb is that any asymptotic result which holds for the empirical
df of iid rvs has some analogue in the language of the integrated periodogram.
There exist many results which show the close relationship between the the-
ory for the integrated periodogram and for the empirical df; see for instance
Dzhaparidze [196], Grenander and Rosenblatt [285] or Priestley [512]. For this
reason the integrated periodogram is sometimes also called the empirical spec-
tral distribution function. FCLTs for the integrated periodogram can be used
for constructing goodness—of—fit tests or for detecting a changepoint of the
spectral distribution function via Kolmogorov—Smirnov or Cramér—von Mises
type statistics. A recent account of the asymptotic theory in the classical case
has been given by Anderson [17]; see also Bartlett [44, 45] and Grenander
and Rosenblatt [285] as classical references, Kliippelberg and Mikosch [396]
(for changepoint detection via the integrated periodogram with a limiting
Kiefer—Miiller process, see also the literature cited therein), Dahlhaus [151]
and Mikosch and Norvaisa [462] (for uniform CLTs and LLNs of the inte-
grated periodogram indexed by classes of square—integrable functions). In
the a—stable case Kliippelberg and Mikosch [395] show FCLTs for the in-
tegrated periodogram with limiting processes which can be considered as
a—stable analogues of the Brownian bridge; see Example 8.8.14. For long
memory processes, Kokoszka and Mikosch [402] show analogous results both
in the classical situation and in the infinite variance case. We also refer to
the survey papers by Kliippelberg and Mikosch [397] and Mikosch [457] .
The theory for the estimation of the power transfer function in the sas and
more general cases has been developed in Klippelberg and Mikosch [390, 391].
The exact formulation of Theorem 7.4.3 is given in [390], and related results
for the self-normalised version of the periodogram are contained in [391];
see also Bhansali [66]. It should be mentioned that the effect of “robustifi-
cation” of periodogram estimators via self-normalisation has been observed
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in the time series context for a long time; see for instance Anderson [17] or
Priestley [512], Chapter 6.

Results for the smoothed periodogram (such as Proposition 7.4.5) in the
classical setting can be found for instance in Brockwell and Davis [92], Chap-
ter 10, in Grenander and Rosenblatt [285] or in Priestley [512], Chapter 6. In
the sas situation, Proposition 7.4.5 is formulated in Kliippelberg and Mikosch
[391].

The estimation of the pseudo—spectral density of harmonisable stable
processes (see the Notes and Comments at the end of Section 7.2) has been
considered for instance in Masry and Cambanis [446] and Hsing [343].

7.5 Parameter Estimation for ARMA Processes

From Section 7.1 we recall the notion of an ARMA(p,q) process, which is
a linear process given by the difference equations

Xt_¢1Xt_1_"'_¢pXt_p:Zt+01Zt_1+"'+0th_q, t€Z7
(7.32)

for a fixed order (p,q). We write
ﬂ: (¢17"'7¢p7017"'79q)T

and use the symbol 3y for the true, but unknown parameter vector. The
observed time series X1, ..., X, is supposed to come from the model (7.32)
with 8 = fg.

In the classical setting, there exist three basic techniques for estimat-
ing Bo: Gaussian mazimum likelihood, least squares and Whittle estimation.
The latter two methods provide approximations to the Gaussian maximum
likelihood estimator, the least squares estimator in the time domain and the
Whittle estimator in the frequency domain. They can be shown to be as-
ymptotically equivalent in the sense that they yield strongly consistent and
asymptotically normal estimators of [3y. Moreover, the Whittle estimator,
when restricted to pure AR processes, is the celebrated Yule—Walker esti-
mator. The Yule—~Walker estimator is introduced as moment estimator: the
parameter vector is chosen such that the theoretical and empirical autorcorre-
lations of an AR process match. It has been extended to ARMA processes and
is commonly used as preliminary estimator for more advanced optimisation
procedures; see Brockwell and Davis [92], Sections 8.1-8.5. In the following
we restrict ourselves to Whittle estimation which has been important within
asymptotic estimation theory since its discovery; see Whittle [641]. It works
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Figure 7.5.1 400 realisations of id s1.5s noise (top). They are used to generate
the ARMA processes Xy —0.4Xi—1 =724, Xe = Z1 +0.8Z:¢—1 and Xy — 0.4 X1 =
Zy + 0.8 Zi—1 (from top to bottom).

for processes under very different conditions such as long— or short-range
dependence, heavy or light tails. It can easily be calculated by means of the
fast Fourier transform algorithm; see Brockwell and Davis [92], Section 10.7.
First we formulate the classical finite variance result and then turn to the
sas case.

For a given parameter vector 3 the coefficients ¢; = ¢;(3), 7 > 0, of the
linear process define the corresponding power transfer function

2

(o)

¥ (2, B)° = ij(ﬂ)e_izj , Z€[-mm].

j=0
We suppose that 3y belongs to the natural parameter space

{BeRTT: ¢, #0,6, #0,

¢(z) and 6(z) have no common zeros,
#(2)6(z) #0for |z| < 1},

where the polynomials ¢(z) and 6(z) are defined in (7.12) and (7.13), re-
spectively. In that case the difference equations (7.32) have a unique solution
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which is a linear process (7.1) whose coefficients 1;(3) decrease to zero at an
exponential rate. Define

~92 g In X(Z)
g = _— dZ
2() /_ P

The Whittle estimator is motivated by the observation that the function

— |'¢ (2750)|2 dZ
0= 08P

assumes its absolute minimum on the closure of C precisely at the point
B = Bo; see Brockwell and Davis [92], Proposition 10.8.1. Thus, if we replaced
[¢(z, B30)|? by an appropriate periodogram estimator we would expect that
the Whittle estimator

En = argmingcc a2 (B) (7.33)

should be close to (y. Indeed, this approach works. Note that we may re-
place the ordinary periodogram I, x, see (7.26), in 52 (3) by any other re—
normalised version of it: the value of Bn is not influenced. However, if we are
interested in the limiting behaviour of 52(/3,) then the normalisation of I, x
is important.

For practical purposes, the following version of the Whittle estimator
(7.33) is more appropriate: define the discretised version of 52(f3) as

6,\2 :2_7r ImX(zt)
D=3 X ¥ (20, 8)]>

Zie(—ﬂﬂl']

where z; = 2rt/n denote the Fourier frequencies and

~

Bn = argmingce o2 () . (7.34)
Both versions of Whittle’s estimator have the same asymptotic properties:

Theorem 7.5.2 (Asymptotic normality of Whittle estimator, classical case)
Suppose (Xi)iez is the ARMA(p, q) process given by (7.32) with EZ = 0 and
02 =var(Z) < co. Then

(oo}

Vi (B —Bo) S 8TWTH(B0) D b6, (7.35)

=0

in RPT, where (G;) are iid N(0,1) rvs, W—1(8s) is the inverse of the matriz

T
7 o (2,801 [0 ¢ (=, o)
W(p) = / [ 23 ][ a7 ] dz, (7.36)

—T
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and

s —2
b] — 1 e—ijz |w(2760)|2 a|¢ (Z7ﬁ0)|

| 53 dz . (7.37)

Relation (7.35) remains valid with En replaced by Bn Moreover,
F(Bn) ¥ 2m0%, 320 B 2m0%. O

Remarks. 1) The limit vector in (7.35) is mean—zero Gaussian with covari-
ance matrix 47W ~1(y); see Brockwell and Davis [92], Theorem 10.8.2.

2) The estimators which are based on Gaussian maximum likelihood or least
squares yield exactly the same asymptotic results; see Brockwell and Davis
[92], Theorem 10.8.2. Moreover, if we restrict ourselves to AR processes then
the estimator Bn coincides with the commonly used Yule-Walker estimator;
for a definition see Brockwell and Davis [92], Section 8.1. O

The basic idea for the proof of Theorem 7.5.2 is a Taylor expansion of
952 (30)/9 about 3 = [}n and then an approximation of the expansion via
linear combinations of a finite number of sample autocovariances of the iid
noise which are jointly asymptotically normal; see Theorem 7.3.1. The same
idea also works in the heavy-tailed case since we have joint weak convergence
of a vector of sample autocorrelations of the iid noise; see Theorem 7.3.2.

The following is analogous to the classical result of Theorem 7.5.2. Recall
that we define the periodogram for sas (Xi) by (7.28).

Theorem 7.5.3 (Limit distribution of Whittle estimator, sas case)
Suppose (Xt)iez is the ARMA(p, q) process given by (7.32) for iid sas noise
(Z1)iez with common chf (7.15) for some a < 2. Then

a (7 d 2 177—1 — @
(/)™ (Ba = Bo) 5 872 W(By) ;b o (7.38)

in RPYY, where Gy and (G;)j>1 are independent rvs with chfs (7.23) and
(7.24), respectively, W=1(By) is the inverse of the matriz (7.36) and, for
J > 1, b; is the vector (7.37). Relation (7.35) remains valid with Bn replaced
by B\n Moreover,

52(B,) > 2rGo,

~

52(8,) > 2rGo,

wtle (32 x2) T35

t=1

o

2 /P?
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Figure 7.5.4 100 realisations of the AR(1) process X¢ = 0.8X:—1 + Z¢ with stan-
dard normal noise (top left) and standard Cauchy noise (top right). In the two bot-
tom figures the respective scatterplots and a straight line with slope 0.8 are shown.
The latter two graphs indicate that a regression estimator of the value 0.8 would
yield more precise results in the Cauchy case. These graphs indicate to some extent
why parameter estimators usually work better in the infinite variance case: large
values of the noise show the dependence structure of the observed time series much
better than for small values Z;.

Remarks. 3) Theorem 7.5.3 shows that one of the important classical es-
timation procedures also works for heavy—tailed processes. The rate of con-
vergence Op((n/Inn)~1/%) in the sas case is faster than Op(n~/2) in the
classical case.

4) Remark 3 in Section 7.3 concerning the calculation of the distribution
of G1/G)y also applies to the situation of Theorem 7.5.3. O

To get some idea of how the Whittle estimator behaves in the heavy—tailed
situation, we ran a small simulation study using the estimator 3, in (7.34)
based on the summed periodogram 2. It should be emphasized that the
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estimation requires knowledge of neither the stability parameter a nor the
scale parameter ¢ of the data; see the chf (7.15).

The following table summarizes some of our simulation results. We gen-
erated 100 observations from each of the models

].. Xt - 04 Xt,1 - Zt,
2. Xt - Zt + 08 Zt—17
3. Xt - 04 Xt—l - Zt + 0.8 Zt—17

where the innovations sequence (Z;) was either iid a-stable with a = 1.5 and
scale parameter ¢ = 1, or, for comparison purposes, N(0,2). In the stable
case we relied on the algorithm given by Chambers, Mallows and Stuck [110]
for the generation of the innovation process. We ran 1000 such simulations
for each model. In the stable example we estimated the ARMA parameters
via the estimator B\n, and in the Gaussian case via the usual ML estimator
(MLE). The results were as follows:

Model True Whittle estimate | Maximum likelihood
No. values mean | st. dev. | mean st. dev.
1 ¢ =041 0.384 0.093 0.394 0.102
2 61 =0.8 | 0.782 0.097 0.831 0.099
3 ¢1 = 0.4 | 0.397 0.100 0.385 0.106
f1 =08 | 0.736 0.124 0.815 0.082

Table 7.5.5 Estimating the parameters of stable and normal ARMA
processes via Whittle and MLE estimates.

We point out that the accuracy of the Whittle estimator in the stable case
seems to be comparable to that of the MLE in the Gaussian case. See also
the comparative empirical study of different parameter estimators given in
Figures 7.5.6 and 7.5.7.

Notes and Comments

The classical estimation theory for ARMA processes can be found in any stan-
dard textbook on times series analysis; see for instance Box and Jenkins [86]
as a classical monograph or Brockwell and Davis [92]. The asymptotic theory
for the Yule-Walker, the Gaussian maximum likelihood, the least squares and
the Whittle estimator (Theorem 7.5.2) is given in Brockwell and Davis [92],
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Chapters 8 and 10. There the estimator Bn, see (7.34), is treated, but similar
arguments prove the results for Bn

The general methodology for the Whittle estimator (see Whittle [641]),
with many subsequent contributions, such as from Hannan [315, 316], Fox
and Taqqu [244], Dahlhaus [152], or Giraitis and Surgailis [263], has evolved
steadily towards a unified theory. Heyde and Gay [324] give an overview of the
existing literature in the univariate and multivariate case for Gaussian/non—
Gaussian processes/fields with or without long—range dependence.

Theorem 7.5.3 and related results for the heavy—tailed case can be found
in Mikosch et al. [458]. There a discussion of other parameter estimators for
heavy-tailed processes is also given. We provide here an outline:

“There is a small, but interesting and rapidly growing, literature on paramet-
ric estimation for ARMA processes with infinite variance innovations. The
difficulties in developing a maximum likelihood estimator have led to a num-
ber of essentially ad hoc procedures, each of which generalises some aspect
of the Gaussian case. Nevertheless, a relatively consistent picture, at least as
far as rates of convergence are concerned, has developed. Not surprisingly,
the first estimator studied was a Yule-Walker (YW) type estimator for the
parameters of an AR(p) process.

The YW-estimates ¢y of the true values ¢o of an AR(p) process are
defined as the solution of N

SEoyw =p

where = = [p,,(i — j)]f,j:17 p=(Pn(1),...,0n(p)7T, and p,(h) is the sample
autocorrelation function. In the autoregressive case it is not difficult to see
that the YW-estimate coincides with the Whittle estimate based on 52 ().

Hannan and Kanter [317] showed that if 0 < a < 2, and § > «, then

n'/? (fgyw—qﬁo) 20, n—o .

More recently, Davis and Resnick [162] showed that there exists a slowly
varying function Ly such that

nt/® Lo(n) (ggyw — ¢0> 4y , n— 00
where the structure of Y is closely related to the rhs of (7.38).

A somewhat different approach to parameter estimation, still in the purely
autoregressive case, is based on a least absolute deviation (LAD) estimator,
which we denote by qAﬁL Ap- The LAD—-estimate of ¢g is defined as the min-
imiser of

SNIXi—r Xoog— - = dp Xo
t=1
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Figure 7.5.6 Bozplots of four parameter estimators of ¢1 = —0.6 in the AR(1)

model X¢ + 0.6Xi—1 = Z; (top) and of 01 = 0.5 in the MA(1) model X = Z; +
0.5Z:—1 (bottom). They are based on 50 simulations of a time series of length 500,
Z 1is sas with scale parameter c =1, a € {0.5,1,1.5,2}.
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Figure 7.5.7 Bozplots of four parameter estimators for ¢1 = —0.6 (top) and 61 =
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on 50 stmulations of a time series of length 500, Z is sas with scale parameter c =1,
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with respect to ¢ = (¢1,...,¢0p) L.

An and Chen [9] showed that if Z has a unique median at zero and Z is
in the domain of attraction of a stable distribution with index « € (1,2), or
Z has a Cauchy distribution centred at zero, then, for § > a,

nl/a(aLAD—@))E)(L n—oo.

More recently, Davis, Knight and Liu [158] defined the M-estimate aM of an
AR(p) process as the minimiser of the objective function

n

Yoor(Xe— i Xt — = ¢y Xiy)
t=p+1
with respect to ¢, where r is some loss function. They also established the
weak convergence of ¢);, for the case when r is convex with a Lipschitz
continuous derivative. Specifically, they showed that

nl/a Ll(n) (Q/Z;M - ¢0> i) g ) n— oo,

where £ is the position of the minimum of a certain random field, and L; is
a certain slowly varying function.

Thus, as is the case for the Whittle estimator, the rate of convergence of
the estimator is better than that in the Gaussian case, while the asymptotic
distribution is considerably less familiar.

We note that “more rapid than Gaussian” rates of convergence for estima-
tors in heavy—tailed problems seem to be the norm rather than the exception.
For example, Feigin and Resnick [229, 230] study parameter estimation for
autoregressive processes with positive, heavy-tailed innovations, and obtain
rates of convergence for their estimator of the same order as the Whittle
estimator, but without the slowly varying term. Their estimators, however,
are different from the Whittle estimator both in spirit and detail, and involve
the numerical solution of a non—trivial linear programming problem. For the
latter standard software exists. Finally, Hsing [342], Theorem 3.1, suggests
an estimator based on extreme value considerations, which works for the pure
MA case. Once again, he obtains an asymptotic distribution reminiscent of
(7.38), with a similar rate of convergence.”

There are some more recent contributions to parameter estimation of heavy—
tailed ARMA and related processes. Kokoszka and Taqqu [403] prove that
Theorem 7.5.3 remains valid for fractional ARIMA processes with noise dis-
tribution in the domain of normal attraction of an a—stable law, 1 < a < 2.
In that case, the coefficients ¢; are not absolutely summable, but of order
Yj ~ cj?1 for some d < 1 —1/a. In analogy to the finite variance case, such
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processes are said to have long memory or long—range dependence. Davis [157]
proves results on M, LAD and Gauss—Newton estimates of infinite variance
ARMA processes. He shows that LAD estimates outperform Gauss—Newton
and Whittle estimation in the sense that (n'/®(3.ap — fBo)) converges in
distribution. Thus one can avoid the logarithmic term in the normalisation
of (7.38). The performance of these estimators is illustrated in Figures 7.5.6
and 7.5.7.

We mention that some of the classical procedures for determining the
order (p,q) of an ARMA process, for instance the AIC for AR processes (see
Brockwell and Davis [92], Chapter 9.2), also work in the heavy-tailed case
(see for instance Bhansali [64, 65], Knight [401]).

7.6 Some Remarks About Non-Linear HeavyTailed
Models

In the literature on financial time series and finance one often finds claims
like “real financial data come from non-linear, non—stationary processes with
heavy—tailed, leptokurtic marginal distributions” or “financial data are het-
eroscedastic” or “the price process is highly volatile”. It is the aim of this
section to give a brief explanation of some of these catchy words which are
used to describe irregular behaviour of financial time series and processes.

Though price or exchange rate processes (X;) themselves can rarily be
described as a stationary time series, in most cases a straightforward trans-
formation brings them back (or closer) to a stationary model. For instance,
share prices, exchange rates, stock indexes etc. are believed to grow roughly
exponentially when time goes by. Therefore time series analysts and econo-
metricians mostly agree on the fact that daily logarithmic differences or log—
returns

Xi

constitute a stationary process (strictly or in the wide sense); see for instance
Taylor [616]. Clearly, “daily” can be changed into any relevant period of time.
Note that, by Taylor’s formula,

Xi ) ( X — th) X — X
In =Iln|1+ R .
(Xt—l Xi1 Xi1

X
Rt:ln< i ):1nXt—1nXt1

Hence (R;) can be considered as the sequence of daily relative returns. No-
tice that log—differencing of financial data makes them comparable; only the
relative change over time is then of interest. In particular, they become in-
dependent of the monetary unit.
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Figure 7.6.1 Top: 500 daily log—returns of the S&P index (left) and 500 realisa-
tions of itd Gaussian noise (right) with the same mean and variance. The corre-
sponding sample autocorrelations of the data (second row), of their absolute values
(third row) and of their squares (bottom). A comparion shows that the S&P data
have a difficult dependence structure different from an 1id sequence. The dashed
lines indicate 95% asymptotic confidence bands for the sample autocorrelations of
ud Gaussian Tvs.
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In what follows we always consider log-returns or log—differences which
are supposed to come from a stationary sequence. Stationarity of log—returns
may hence be accepted as a working hypothesis. Clearly, this assumption
becomes questionable if one considers times series over too long periods of
time, or in the case of so—called high frequency or tick—by-tick data, where
the sampling interval may go down to second or minute level.

A glance at any series of log—returns shows very convincingly that there
are values which are significantly larger than the others; see for instance the
S&P series in Figure 7.6.1. Therefore the one—dimensional marginal distrib-
ution is certainly not light—tailed, in particular not Gaussian. We discussed
an example of this in the analysis of the BMW data; see Figures 6.2.10 and
6.5.3. The notion of “heavy—-tailedness” is obviously not defined in a unique
way; in this book we tend to use it as “not having exponential moments”. The
class of subexponential distributions, see Section 1.3.2, satisfies this assump-
tion. There exist several approaches for modelling heavy—tailed log—returns,
for instance infinite variance processes and the ARCH family. Below we give
a short description of both classes.

In the previous sections we considered infinite variance stable processes,
in particular ARMA and linear processes, and related statistical problems.
Our conclusion was that many classical techniques work for such processes,
and the rate of convergence in the estimation of parameters and functions is
usually better than in the finite variance case, although the limit distributions
are in general not easy to handle. In the financial literature there has been
interest in infinite variance stable distributions and processes for a long time.
Articles on infinite variance processes in finance usually refer to the two,
by now classical, sources Mandelbrot [436] and Fama [226]. These authors
propagated the use of stable and Pareto distributions in finance. However,
articles supporting the hypothesis of a—stable distributions in finance do not
always mention the discussion which started afterwards and has never been
finished; see for instance Groenendijk, Lucas and de Vries [286] and Ghose
and Kroner [260] for some recent contributions. We cite here Taylor [616],
pp- 46—47, which is a standard monograph on financial time series:

“Fama and Roll [228] describe a practical method for estimating «. Estimates
are always between the special cases @ = 1 for Cauchy distributions and a = 2
for normal distributions. Many researchers find the conclusion of infinite vari-
ance, when a < 2, unacceptable. Detailed studies of stock returns have con-
clusively rejected the stable distributions (Blattberg and Gonedes [76]; Hager-
man [304]; Perry [492]). Hagerman, for example, shows that estimates of a
steadily increase from about 1.5 for daily returns to about 1.9 for returns
measured over 35 days. Returns over a month or more have distributions
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much closer to the normal shape than daily returns. A decade after his 1965
paper, Fama prefers to use normal distributions for monthly returns and so
discard stable distributions for daily returns (Fama [227], Chapter 1).”

These remarks should be read in the spirit of Chapter 6 where, among other
topics, we considered the hypothesis of Pareto tails and certain infinite mo-
ments for financial and insurance data. One of our main conclusions was that
it is very difficult to make a final decision about the value of a tail index
a or the finiteness of a certain power moment. However, the examples con-
sidered there show convincingly that log—returns have certain infinite power
moments. This is already seen by using simple diagnostic tools such as QQ-
or mean excess plots, and later reinforced by more subtle means such as tail
index estimators.

Log-returns exhibit a complicated dependence structure; see for instance
the sample autocorrelations of the transformed S&P data in Figure 7.6.1.
Therefore the direct use of standard tail index estimates (Hill, Pickands)
may become questionable. These estimators are very sensitive with respect
to dependence in the data; see for instance Figure 5.5.4 and Resnick and
Starica [535, 537]. The dependence structure gets even more complicated
when data are aggregated over weeks or months. Moreover, we have seen
in Chapter 6 that tail index estimation requires large sample sizes. Thus
some of the problems mentioned in the above citation could be due to the
dependence in the data and/or too small sample sizes. In our opinion, tail
estimation methods do not allow for a precise conclusion concerning patterns
in estimates for a based on data at different time scales.

Clearly, much of the finance literature is based on the notions of volatility
and correlation, i.e. finite second moments are necessarily required in such
models, and therefore the infinite variance case has gained only marginal pop-
ularity. The emergence of quantitative techniques for risk management has
changed this attitude considerably. It is a fact (or a so—called stylized fact,
as finance experts like to call it) that most financial data are heavy—tailed!
The infinite variance linear processes discussed in the previous sections offer
only one possible model for such data. A more careful look at financial data
quickly reveals the need for much more versatile models. For instance, the
detailed analysis of high—frequency foreign exchange data and data on the
inter—bank market of cash interest rates as summarised in Miiller et al. [471]
shows that though variances are finite, third or fourth moments may be infi-
nite. See also Longin [428], Loretan and Phillips [429] and various examples
in Chapter 6 for some empirical evidence. If one accepts an infinite fourth
moment for a stationary process, standard time series procedures may not
work. For instance, asymptotic confidence bands for sample autocorrelations
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are based on a CLT for which a finite fourth moment is required. Therefore,
the interpretation of sample autocorrelations may become problematic.

In the context of heavy—tailed models the notion of leptokurtosis often
occurs. As noted for instance in Eberlein and Keller [197] upon studying
data consisting of daily prices of the 30 DAX shares over a three-year period:
“...there is considerably more mass around the origin and in the tails than
the standard normal distribution can provide.” The kurtosis of a rv X with
df F is defined either as

fo = e —H_ (7.39)

or

%(%.75 — 20.25)

ky = (7.40)

Lo.9 — 0.1

where for 0 < p < 1, the quantiles z, are defined via z, = F* (p). The ad-
vantage of k, over k,, is that £, is always well defined. For the normal dis-
tribution, k,, = 3 and k, = 0.263. A df F' is now called leptokurtic if either
Ep > 3 or k, > 0.263; see Medhi [453], Section 4.10.2, for a further discussion.
As stated in Mood, Graybill and Boes [467], p. 76, “these measures do not
always measure what they suppose to”, and indeed practice in the finance
literature has evolved to using the notion “leptokurtic” for indicating “excess
peakedness and heavy tails”.

The notion stochastic volatility is used for describing random changes of
the variance as a function of time, the latter mainly in the context of solutions
to stochastic differential equations (SDE). To set the scene, first consider the
linear SDE

dX; = cXpdt + 09X dBy, t€]0,7T], (7.41)

where for the moment c€ R and ¢ >0 are constants. The driving
process (B;) is Brownian motion, see Section 2.4, and the differential dB;
has to be interpreted in the sense of It6 calculus. It is well known that (7.41)
has a unique strong solution

1
Xt:XOexp{(c—Eag)t+aoBt} , te0,T]. (7.42)

The stochastic process (X;) in (7.42) is called geometric Brownian motion and
is the standard, so—called Black—Scholes, model for financial price processes.
The value og is called wolatility; it constitutes the main parameter to be
estimated from the data. If (X;) were geometric Brownian motion we would
obtain for the log-returns

1
Rt = (C— 50'(2)) + oo (Bt - Btfl) .
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Hence log-returns should look like iid normal data with variance oZ. If we
compare this with real data we see that this rarely is the case; see for instance
Figure 7.6.1. Hence the SDE (7.41) is clearly an idealisation of the real world.
The main, obvious, reason in favour of (7.42) is its tractability with respect to
actual calculations. Also micro—economic considerations may be given leading
to processes of the type (7.42). Though as a first approximation, the statistical
fit of (7.42) to data may be reasonable, there are various arguments going
against it. These include:

— Real processes are not continuous in time; in the real world prices do not
change in intervals of microsecond length. On the other hand, the self—
similarity property of Brownian motion suggests that in any time interval
the driving process generates some noise.

— The linear SDE (7.41) with constant coefficients does not explain the fluctu-
ations and jumps in real data. Nor does it explain the observed leptokurtic
behaviour of price distributions.

— The SDE (7.41) suggests that the noise dB; of the market is independent
for disjoint time intervals. This is certainly not the case, at least not in
small intervals of time.

“Over the last twenty years, the Black—Scholes option pricing model has
proved to be a valuable tool for the pricing of options and, more generally,
for the management of hedged positions in the derivative markets. However, a
number of systematic biases in the model prices suggests that the underlying
security volatility may be stochastic. This observation is further reinforced
by empirical evidence from the underlying asset prices.” This statement is
taken from the review paper by Ball [39] on stochastic volatility. What does
the latter mean? The word “stochastic” actually refers to the fact that the
volatility oo in the SDE (7.41) is a random function of time: o9 = oo(t,w).
Stochastic volatility is one of the current main research topics in mathemati-
cal finance. By allowing for a random and time—dependent volatility one can
quite flexibly describe the change of the variance of log—returns; for some
more references see the Notes and Comments.

Discrete—time versions of stochastic volatility models are also relevant.
They are usually referred to as “conditional heteroscedasticity” models in the
econometrics and time series literature. In their simplest form these models
can often be written in multiplicative form

where R; is again interpreted as a daily log-return, say, and p is the expecta-
tion of R;. With few exceptions, V; and Z; are supposed to be independent,
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Z, are iid standard normal rvs and V; are non—negative rvs such that V; is
a function of R;_1, R;_2,.... Then

ER,=pu, var(RJRi 1,R; o,...)=V?,

i.e. V2 is the conditional variance of R, given the past R, 1, R; 2,.... As a
consequence, R; is mixed Gaussian.

The argument which is usually given in favour of the model (7.43) is the
following: many real financial time series have negligible sample autocorre-
lations at all lags with possible exceptions at lags 1, 2 or 3, although these
values are fairly small. This fits well with the fact that

Ccov (Rtht+h) =F (‘/t Zt‘/t+th+h) = 0, h Z 1.

On the other hand, the sample autocorrelations of the absolute value and of
the squares of real returns are usually greater than 0.2 at the first few lags
which is supported in part by the theoretical model (7.43). Figure 7.6.1 shows
a financial time series with typical behaviour of the sample autocorrelations. If
one fits an ARMA model to these data and simulates an ARMA process of the
same length with the same parameters, one can see that the autocorrelations
of the real and of the simulated data almost coincide, but the absolute values
and the squares of the ARMA process do not have autocorrelations similar
to the real data.

The processes which are most popular in econometrics and which belong
to the class (7.43) are the ARCH (autoregressive—conditionally—heterosce-
dastic) models and their variants GARCH (generalised ARCH), ARMACH
(autoregressive-moving—average—conditionally—heteroscedastic) etc. For ex-
ample, an ARCH(p)—process (ARCH of order p) with mean y = 0 is given by
the equation

=1

p 1/2
Rt = <¢0 + Z ¢7-Rt21> Zt ) teZ )

for iid N(0,1) rvs Z;, and non-negative parameters ¢;. Then
P
V? = var (R Ri_1,Ry2,...) = o+ Y_ ¢ R} ;,
i=1

i.e. the conditional variance of the return Ry, given the returns in the past,
is just a function of the last p returns. Thus, if V}? is large, the order of mag-
nitude of R; and future returns is very much influenced by this conditional
variance. This may lead to clusters of large values of R;; see Figure 7.6.2. One
can show that a stationary version of (R;) exists if the coefficients ¢; belong to
the parameter set C (see Section 7.5), i.e. if the corresponding AR difference
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Figure 7.6.2 400 realisations of the ARCH processes X = (0.01 + 0.1X7 | +
0.01X72 ,)Y2Z; (top) and X; = (0.01 + 0.9X2_; 4+ 0.1X2 ,)*2Z, (bottom) for iid
N(0,1) rus Z;.

equations have a unique a.s. convergent solution. We refer to Section 8.4 for
a more detailed analysis of ARCH(1) processes. There we show in particular
that such processes have Pareto-like tails.

Notes and Comments

Standard references for SDE are the monographs by Chung and Williams
[121] (it contains a derivation of the Black—Scholes formula), Karatzas and
Shreve [368] (it also has a chapter about stochastic finance, the recent mono-
graph [369] of these authors is solely devoted to mathematical finance), Prot-
ter [514] (this is an excellent reference to stochastic integration with respect
to semimartingales). The modern theory of stochastic calculus is masterfully
presented in Rogers and Williams [547]. Chapter II of Volume One of the lat-
ter is “a highly systematic account, with detailed proofs, of what every young
probabilist must know”. We always found Revuz and Yor [541] a most reliable
source on martingales and Brownian motion when studying new continuous—
time models in finance. Kloeden and Platen [385] is a compendium on numer-
ical solutions and applications of SDE; see also the companion book Kloeden,
Platen and Schurz [386] which is understood as an introduction to SDE and
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their numerical solution aimed at the non—mathematician. The extremal be-
haviour of financial models given by SDE has been investigated in Borkovec
and Kliippelberg [81].

Parameter estimation in financial models is an important subject. In the
by now classical case of (7.41), the volatility op appears as the main para-
meter of interest. It is traditionally either estimated using historical data
(historical volatility) or by inverting certain option pricing formulae contain-
ing the volatility parameter in a 1-to-1 way (implied volatility). Most standard
textbooks on mathematical finance contain a discussion on this topic. The
interested reader may also want to consult for instance Garman and Klass
[251] or Rogers and Satchell [546] for some basic ideas underlying volatil-
ity estimation. More generally, however, the topic of parameter estimation
for stochastic processes relevant in finance is becoming an important area of
research. A key question concerns estimation of parameters in continuous—
time models from discrete-time observations. The statistical literature on
this topic is huge! We personally found the accumulated contributions from
the “Aarhus School” particularly useful. Relevant references from the latter
are Bibby and Sgrensen [67], Pedersen [490] and the recent review paper by
Serensen [602]; see also Florens-Zmirou [241], Genon-Catalot and Jacod [254],
Kessler [377]. Géing [269] summarises the various alternative approaches; see
also the references in that paper. Especially the problem of discretisation and
estimation in stochastic volatility models receives attention. Melino [455] is
a further recent review on estimation of continuous—time models in finance.

From the growing literature on stochastic volatility in SDE and option
pricing we give a short list: Ball and Roma [40], Eisenberg and Jarrow [199],
Frey [245], Ghysels, Harvey and Renault [261], Hull and White [347, 348],
Rydberg [560], Scott [571], Sin [583], Stein and Stein [606]. We especially
found Frey [245] a most informative and readable introduction.

An alternative approach to modelling changing volatility in financial data
is by assuming that the driving process in the underlying SDE is not Brownian
motion, but a process with marginal distribution tails heavier than Gaussian
ones. Candidates for such processes may come from the class of semimartin-
gales, including for instance Lévy and infinite variance stable processes. In
this context, Barndorff-Nielsen [46, 47] discusses the use of generalised in-
verse Gaussian distributions for modelling financial data; see also Eberlein
and Keller [197] and Kiichler et al. [410].

The literature on links between time series and SDE should be viewed
more generally within the context of embedding discrete—time (and possibly
space—time) models in continuous—time processes. A paper to start with is
de Haan and Karandikar [317]; see also Nelson [476] and references therein.
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The models (7.43) can be understood as solutions to stochastic recurrence
equations. Work by Kesten [379] and Goldie [272] shows for some particular
cases, including the ARCH(1) process, that P(X; > x) ~ cx~P for certain
positive constants ¢ and p. This will be shown explicitly in Section 8.4.

Samorodnitsky [564] explains the effect of changes in the estimation of the
tail index «, when different time aggregations are used, by a shot noise process
with heavy tails. The reader interested in some of the more recent analysis
on this topic may consult Miller at al. [471] and the references therein.

A useful model of the type (7.43) is the so—called heterogeneous ARCH
(or HARCH) model introduced in Miiller et al. [469]. The HARCH (k) process
with k& > 1 satisfies

o\ 1/2

k i
Ry = ¢0+Z¢i ZRtfj Zy, tE€ET, (7.44)
=1 j=1

for iid rvs Z; and non-negative parameters ¢;. Note that HARCH(1)
processes are ARCH(1). They allow for instance to model the empirically
observed fact that for foreign exchange intra—day data, volatility over a
coarse time grid significantly predicts volatility defined over a fine grid. The
conditions for the existence of stationary solutions of (7.44) together with
necessary and/or sufficient conditions for the existence of moments are given
in Embrechts et al. [217].

Links between GARCH and stable processes were considered by Diebold
[181] and by de Vries [634]. Mittnik and Rachev [465, 466] model asset returns
with “alternative” stable distributions, i.e. with distributions which are stable
with respect to certain operations; for ordinary summation the a—stable laws
appear, for maxima the max—stable limit distributions.

A good introduction to the problem of modelling financial time series is
given by Taylor [616]. He discusses different models of multiplicative type,
see (7.43), and compares the performance of these models with the behav-
iour of a large amount of real financial data sets. The literature on ARCH
models, their ramifications and related models is rapidly increasing. There
exist more than 50 different such models which fact does not make it easy
to distinguish between them. We refer here to Bollerslev, Chou and Kroner
[78], Shephard [578] and references therein.
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Special Topics

8.1 The Extremal Index

8.1.1 Definition and Elementary Properties

In Chapters 3—6 we presented a wealth of material on extremes. In most
cases we restricted ourselves to iid observations. However, in reality extremal
events often tend to occur in clusters caused by local dependence in the data.
For instance, large claims in insurance are mainly due to hurricanes, storms,
floods, earthquakes etc. Claims are then linked with these events and do not
occur independently. The same can be observed with financial data such as
exchange rates and asset prices. If one large value in such a time series occurs
we can usually observe a cluster of large values over a short period afterwards.

The extremal index is a quantity which, in an intuitive way, allows one to
characterise the relationship between the dependence structure of the data
and their extremal behaviour. To understand this notion we first recall some
of the examples of extremal behaviour for a strictly stationary sequence (X,,)
with marginal df F. In this section we consider only this kind of model.
As usual, M,, stands for the maximum of the sample Xy,..., X, ()?n) is
an associated iid sequence (i.e. with common df F) and (M,) denotes the
corresponding sequence of maxima.

Example 8.1.1 Assume that the condition

nEF(u,) = 7 € (0,00) (8.1)
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holds for some non—decreasing sequence (uy,).

(a) For an iid sequence (X,,) we know from Proposition 3.1.1 that (8.1) is
equivalent to the relation

lim P (M, <wu,)=e . (8.2)

n— oo

Moreover, from Theorem 5.3.2 we conclude that the point processes of ex-
ceedances

Nn() = Z snfli(')[{Xi>un}
=1

of u, by Xi,..., X, converge weakly to a homogeneous Poisson process N
with intensity 7.

(b) Recall the conditions D(u,) and D’(u,) from Section 4.4. They en-
sure that the strictly stationary sequence (X,) has the same asymptotic
extremal behaviour as an associated iid sequence. In particular, (8.1) implies

(8.2) (see Proposition 4.4.3) and N, %4 N where N is again a homogeneous
Poisson process with intensity 7; see Theorem 5.3.6. Conditions D(u,) and
D'(u,) are satisfied for large classes of Gaussian stationary sequences, in-
cluding many Gaussian linear processes (for instance Gaussian ARMA and
fractional ARIMA processes).

(c) Recall the situation of Example 4.4.2: starting with an iid sequence (Y},)
with df V/F, the strictly stationary sequence

X, =max(YV,,Yn11), neN,
has df F' and
]\4,1:IIIE:],X(Y&,...7Y'n_|_1)7 n € N.
If (8.1) is satisfied then

lim P (M, <u,)= e /2

n—r 00

We know from Example 4.4.2 that condition D(u,) is satisfied in this case,
but D’ (u,) is not; see Example 4.4.4.

(d) Let (X,) be a linear process
X, = ijznfjv TLEZ,
j=—o00

driven by iid noise (Z;). Assume P(Z; > x) = = *L(z) as * — oo and that
the tail balance condition

P(Zy > x) ~pP(|Z1| > x) and P(Z; < —x)~qP(|Z1] > z) (8.3)
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holds for some p € (0,1], ¢ = 1 —p. This implies that F' € MDA(&,,) for some
a > 0. Then we obtain from Corollary 5.5.3 that there exist constants ¢, > 0
such that u, = u,(x) = ¢,z satisfies (8.1) for 7 = 7(z) = 2~%, x > 0, and

1i_>m P(Mn Sun(z)) = Polz), zeERY,
lim POLy Sun@) = (). ey

Here &, denotes the standard Fréchet distribution and

0= (Wip+v2q) /vl

where
i = max(y; VO) and - = max((—¢;) V0),
J J
118 = D 151* (T, 01 + a1y, <03) -
j=—o00
The point processes N,, of the exceedances of u,(z) by Xi,..., X, converge

weakly to a compound Poisson process
(o]

Neo =Y &en;
k=1

see Section 5.5.1. The I, are the points of a homogeneous Poisson process,
and the & are iid cluster sizes.

(e) Let (X,,) be a linear process driven by iid subexponential noise (Z;) with
F € MDA(A), where A denotes the standard Gumbel distribution. We also
assume the tail balance condition (8.3) and max; [¢);| = 1. Then we know
from Corollary 5.5.12 that there exist constants ¢,, > 0 and d,, € R such that
Up = Un(T) = cpz + d,, satisfies (8.1) for 7 = 7(z) = exp{—=z}, z € R, and

lm P(OT, <uu(e) = Alx). vek,
lim P (M, <u,(z)) = Az), zeR,
n—oo
where
0=Fp+k g,
and

kt =card{j:¢; =1} and k= =card{j:1,; = —1}.

The point processes N,, of exceedances of u,(z) converge weakly to a com-
pound Poisson process N (see Theorem 5.5.13) such that
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N =

NE

(k+5Fl:r + k_EF{> ,

k=1

where the sequences of the points (I;7) and (I};) are independent of each
other, each of them representing the points of a homogeneous Poisson process.

(f) Recall the definition of an ARCH(1) process from Section 8.4.2:

X, =1\/B+AX2 | Z,, neN,

for 3 > 0, A € (0,2¢”) and iid standard normal rvs Z,. We also know that
(X,) is a strictly stationary sequence provided Xy is appropriately chosen.
Moreover, by Theorem 8.4.20, there exist constants ¢, > 0 such that u, =
un () = cpx satisfies condition (8.1) for certain 7 = 7(z), and

P (M, < un(2)) = P(2), z€Ry,

for some k = k(\) and 6 € (0, 1), whereas an associated iid sequence has limit
distribution &, provided the same norming constants ¢, are used. Moreover,
the point processes N,, of exceedances of the threshold u,(z) by X,..., X,
converge weakly to a compound Poisson process whose structure is described
in Theorem 8.4.20. O

The examples above follow similar patterns. Indeed, it is typical for station-
ary (X,) and (u,) satisfying (8.1) that P(M,, < u,) — exp{—607} for some
6 € (0,1], whereas P(Mn < uy) — exp{—7}. Moreover, in the iid and weakly
dependent cases, the limit of the point processes of exceedances is homoge-
neous Poisson, whereas it is compound Poisson for the case of “stronger”
dependence. The latter fact indicates that exceedances of high threshold val-
ues u, tend to occur in clusters for dependent data. This is something we
might have expected when looking at real data—sets.

The above examples suggest the following definition which allows us to
distinguish between the extremal behaviour of different dependence struc-
tures.

Definition 8.1.2 (Extremal index)
Let (X,,) be a strictly stationary sequence and 6 a non-negative number.
Assume that for every T > 0 there exists a sequence (u,) such that

JLH;OnF(un) = T, (8.4)
lim P(M, <u,) = e 7. (8.5)

n— oo

Then 6 is called the extremal index of the sequence (X,,). O
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Remarks. 1) The definition of the extremal index can be shown to be inde-
pendent of the particular sequence (u,,). More precisely, if (X,,) has extremal
index 6 > 0 then, for any sequence of real numbers (u,) and 7 € [0, 00],
the relations (8.4), (8.5) and P(Mn < u,) — exp{—7} are equivalent; see
Leadbetter [416]. A particular consequence is the following: if ' € MDA (H)
for some extreme value distribution H then

M My—dy) S H & o NM,—d,) S H (8.6)

n n

for appropriate norming constants ¢, > 0 and d,, € R.

2) Since an extreme value distribution H is max—stable (see Definition 3.2.1),
H? is of the same type as H, i.e. there exist constants ¢ > 0,d € R such that
HY(x) = H(cx + d). This also implies that the limits in (8.6) can be chosen
to be identical after a simple change of the norming constants. O

Example 8.1.3 (Continuation of Example 8.1.1)

From the discussion in Example 8.1.1 it is immediate that the cases (a) and
(b) (iid and weakly dependent stationary sequences) yield the extremal index
6 = 1. In the case (c), # = 0.5 (this type of example can naturally be extended
for constructing stationary sequences with extremal index 6 = 1/k for any
integer k£ > 1). The examples (d)—(f) (linear and ARCH(1) processes) show
that we can get any number 6 € (0,1] as extremal index. O

From these examples two natural questions arise:
How can we interpret the extremal index 07
and
What is the range of the extremal index?

Section 8.1.2 is devoted to the first problem. The second one has a simple
solution:

0 always belongs to the interval [0,1].

From Example 8.1.3 we already know that any number 6 € (0, 1] can be an
extremal index. The case 8 = 0 is somewhat pathological. We refer to Lead-
better, Lindgren and Rootzén [418] and Leadbetter [417] for some examples.
The cases 8 > 0 are of particular practical interest. It remains to show that
f > 1 is impossible, but this follows from the following easy argument:

n

P(Mngun)zl—P<U{Xi>un}> >1—nF (uy) .

=1
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97 whereas the

By definition of the extremal index, the lhs converges to e~
rhs has limit 1 — 7. Hence e=%" > 1 — 7 for all 7 > 0 which is possible only if
6 <1.

Next we ask:
Does every strictly stationary sequence have an extremal index?

Life would be easy if this were true. Indeed, extreme value theory for sta-
tionary sequences could then be derived from the corresponding results for
iid sequences. The answer to the above question is (unfortunately) no.

Example 8.1.4 Assume (X)) is iid with F' € MDA(®,) and norming con-
stants ¢, > 0. Assume A is a positive rv independent of (X,,). Then

P (c,' max(AXy,...,AX,) <)
= P(c'M, <A™ 'z)
= EP(c¢;'M, <A™ 'z| A)
& Eexp{—az7"4"}, z>0. -

It is worthwhile mentioning that, for large classes of stationary sequences

(X,), there exist real numbers 0 < 8" < ¢ < 1 such that

e 0T <liminf P (M,, < u,) <limsup P (M, < u,) < e ' , >0,
n—00 n—o0

for every sequence (u,) satisfying (8.4). A proof of this result under condi-

tion D(u,,) is to be found in Leadbetter, Lindgren and Rootzén [418], Theo-

rem 3.7.1.

8.1.2 Interpretation and Estimation of the Extremal Index

We start with a somewhat simplistic example (taken from Weissman [638])
showing the relevance of the notion of extremal index.

Example 8.1.5 Assume a dyke has to be built at the seashore to protect
against floods with 95% certainty for the next 100 years. Suppose it has been
established that the 99.9 and 99.95 percentiles of the annual wave—height are
10 m and 11 m, respectively. If the annual maxima are believed to be iid, then
the dyke should be 11 m high (0.9995'%° &~ 0.95). But if the annual maxima
are stationary with extremal index 8 = 0.5, then a height of 10 m is sufficient
(0.999%° ~ 0.95). O
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This example brings out already that estimation of the extremal index # must
be a central issue in extreme value statistics for dependent data. Estimation
of 8 will be based on a number of different probabilistic interpretations of the
extremal index, leading to the construction of different estimators. Through-
out we exclude the degenerate case § = 0.

A First (Naive) Approach to the Estimation of 6: the Blocks
Method

Starting from the definition of the extremal index @, we have
P (M, <up)~ P°(M, <u,) = F'™(u,) ,
provided nF(u,) — 7 > 0. Hence

<
lim In P(M,, < up)

A e F ) (&7

This simple limit relation suggests constructing naive estimators of 6. Since
we do not know F'(u,) and P(M, < u,), these quantities have to be re-
placed by estimators. An obvious candidate for estimating the tail F(u,,) is
its empirical version

N 1

= 2y
This choice is motivated by the Glivenko—Cantelli theorem for stationary
ergodic sequences (X, ); see Example 2.1.4. To find an empirical estimator
for P(M,, < uy,) is not straightforward. Recall from Section 4.4 that condition
D(u,) implies

P(M,, <up) = Pk(M[n/k] < up) (8.8)

for constant k or slowly increasing k = k(n). The approximation (8.8) forms
the basis for the blocks method. For the sake of argument assume that n = rk
for integers r = r(n) — oo and k = k(n) — oo. Otherwise, let r = [n/k].
This divides the sample X, ..., X,, into k blocks of size r:

X17~~~7Xr§~~~§X(k71)r+17~~~7Xkr~ (89)
For each block we calculate the maximum
MY =max (X(—iyri1s--. Xir) , i=1,...,k.

Relation (8.8) then suggests the approximation
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P(M, <u,) = P(mwﬂﬂ”ﬁw)wpwmguﬁ
1<i<k

k k k
1 K
<% ;I{M*“W) -(-%) -

A combination of these heuristic arguments with (8.7) leads to the following
estimator of 6:

X

~ In(1-K 1In(l1-K
go - kWO =K/k) 1=Kk (8.10)
nln(l—N/n) rln(l—N/n)
Here N is the number of exceedances of u, by Xi,...,X, and K is the

number of blocks with one or more exceedances. A Taylor expansion argument
yields a second estimator

~ K 1K/k -

62 = — = L% 59 8.11

The blocks method accounts for clustering in the data. If the event
{Mﬁl) > Un} = U{X(i—l)r+j > Un}
7j=1

happens one says that a cluster occurred in the ith block. These events char-
acterise the extremal behaviour of (X,,) if we assume that the size r(n) of the
blocks increases slowly with n. This gives us some feeling for the dependence
structure in the sequence (X,,). In this sense, the extremal index is a mea-
sure of the clustering tendency of high—threshold exceedances in a stationary
sequence.

There has been plenty of hand—waving in the course of the derivation of
the estimators 8,\”. Therefore the following questions naturally arise:

What are the statistical properties of 67,51) and @52) as estimators of 67
and

Given that we have n observations, how do we choose
the values of r (or k) and u,?

These are important questions. Partial answers are to be found in the lit-
erature; see the Notes and Comments. A flavour of what one can expect as
an answer is summarised in the following remark from Weissman and Co-
hen [639]:

It turns out that it is not easy to obtain accurate estimates of 6.
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It seems that we are in a similar situation to that in Chapter 6, where we
tried to estimate the index £ of an extreme value distribution. This should
not discourage us from considering some more estimators of €, especially as
we will meet alternative interpretations of the extremal index along the way.

The Extremal Index as Reciprocal of the Mean Cluster Size

This approach is based on results by Hsing, Hiisler and Leadbetter [345],
Theorems 4.1 and 4.2. They show that, under a mixing condition which is
slightly stronger than D(u.,), the point processes of exceedances

N, = Z En_li‘[{X{>un,}

=1

converge weakly to a compound Poisson process (see Example 5.1.15)
N() = &ern()
i=1

provided nF(u,) — 7 > 0. Note that this is in accordance with the results
for linear and ARCH processes; see Example 8.1.1(d)—(f). The homogeneous
Poisson process underlying N (-) has intensity 67, and the iid cluster sizes §;
of N(-) have distribution (7;) on N. Also notice that

EN(0,1] = E i &ier; (0,1]

=1

o]

EY er,(0,1] B4

=1

= 0r Eg . (8.12)

Under general assumptions the following relation holds:

Uy = nlgrr;onj(n)

> Iixisuny > 0) , jEN.

=1

= P (; Iixisuny =7
Here again we have used the blocks as defined by (8.9), and r = r(n) is the
size of such a block. The integer sequence (r(n)) has to satisfy r(n) — oo
and r(n)/n — 0 and some more specific growth conditions. Moreover, under
an additional summability condition on (7;(n)),
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lim > jmin) =Y jm = E& . (8.13)
j=1 j=1

(Some summability condition is indeed needed; see Smith [592].) Recalling
(8.12), we see that (8.13) has the following interesting interpretation:

7= lim nF(u,) = lim EN,(0,1] = lim EY Tix,ou,)
=1

n—oco n—oo n—oo
= EN(0,1] = 67 E¢,.

This means that § = (E£;)~! can be interpreted as the reciprocal of the mean
cluster size of the limiting compound Poisson process V.
This interpretation of € suggests an estimator based on the blocks method:

k
oo = T oy K

Y Iixisuy N
i.e. number K of clusters of exceedances divided by the total number N of

exceedances. The same estimator has already been suggested as an approxi-

mation to 5,51) .

The Extremal Index as Conditional Probability: the Runs Method

O’Brien [485] proved, under a weak mixing condition, that the following limit
relation holds:

P(My 1) = (Flug)) P2 SlXiow) 4 o1)
= exp{-nP (X1 > up, Mz <up)}+o(l)
provided nF (u,) — 7. Here
M, ; = max(Xo,...,X,),

and s = s(n) satisfies s/n — 0, s — oo and some more specific growth
conditions. On the other hand, by definition of the extremal index,

P(M, < u,)=exp{-07}+0(1).
Hence, under the conditions above,

lim 6,(s(n),u,) = lim P(Mas <up| X1 >up) =6.
n— o0

n—roo

Thus # can be interpreted as a limiting conditional probability. The condi-
tional probability 6,,(s(n),u,) is some measure of the clustering tendency of
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high threshold exceedances: M5 s can be less than u,, only if X; is the last ele-
ment in a cluster of values which exceed u,,. If large values appear in clusters,
there must be longer intervals between different clusters. As a consequence,
P(M,, < u,) will typically be larger than for independent observations.

O’Brien’s result has been used to construct an estimator of # based on
runs:

a0 _ 2t La, Yo Iay,

n - ) (8'14)
Ei:l [{Xi>un} N

where
Ai,n = {Xz > UnaXiJrl S Unpy - - 7Xi+r S Un} . (815)

This means we take any sequence of r = r(n) consecutive observations below
the threshold as separating two clusters.

Example 8.1.6 We re—consider Example 8.1.1(c); see also Example 4.4.2.
We show that # = 1/2 can be calculated explicitly in the three different ways
explained above. Assume that nF(u,) — 7 > 0.

(a) The following is immediate from the definition of X,:
In P (M, <uy) 1
——= " .
nin F (u,) 2

(b) High threshold exceedances of (X,) typically appear in pairs. Hence
m, =1 and E& = E;’il Jjm; = 2. Since @ is the reciprocal of the mean cluster
size Efl, =21

(c) Finally, consider the conditional probability
P(X2 Sunv-”va Sun |X1 >Un)

P(Xl > Un, Xo < Up,y .o, X Sun)
P(X1 >Un)

Fs/2(un) _ F(S+1)/2(Un) Fs/2(un)

Fun) T F ()
The latter expression converges to 1/2 provided
F/2(u,) = exp{27 s In(1 — F(u,)} = 1.

This is clearly satisfied if s = s(n) = o(n). O
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Cluster i Cluster i+1
Figure 8.1.7 Clusters defined by the runs method. We chose r = 5; the cluster
size 18 equal to 9 for both clusters.

8.1.3 Estimating the Extremal Index from Data

In this section we compare the performance of the estimators @Ei) of the
extremal index 6 both, for real and simulated data. Table 8.1.8 summarises
the results for the exchange rate data presented in Figure 8.4.4. For data of
this type one often claims that ARCH or GARCH models yield a reasonable
fit. An ARCH(1) fit, based on maximum likelihood estimation, yields

X, = \/1.9 10=5 +0.5X2_, Z,, neN, (8.16)

for iid N (0, 1) noise (Z,); see Section 8.4.2. For the above model an ARCH(1)
time series with the same length as for the exchange rate data was simulated.
The estimators 6(%) are given in Table 8.1.9. From Table 8.4.23 we may read
off the corresponding theoretical value § = 0.835. This shows that 6 is clearly
underestimated. Also notice that the estimates strongly depend on the chosen
threshold value u and the size 7.

In Figures 8.1.10-8.1.13 the number of exceedances of a given threshold «
in a cluster of observations is visualised for the above data. Both, the blocks
and the runs method, are illustrated. For the former, r denotes the block
size as defined in (8.9). Every block is regarded as a cluster. For the same
r we define a cluster in the runs method as follows: it is a set of successive
observations separated from the neighbouring sets by a least r values below u.
See Figure 8.1.7 for an illustration. The cluster size is then the number of
exceedances of u in the cluster.

Every figure consists of three pairs of graphs. For each pair the upper
(lower) graph illustrates the blocks (runs) method for the same u and r.
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w | A g g | e | g g g
0.015 | 100 | 0.524 0.347 0.147 | 50 | 0.613 0.480 0.213
0.020 | 100 | 0.653 0.536 0.321 | 50 | 0.715 0.643 0.464
0.025 | 100 | 0.689 0.636 0.545 | 50 | 0.758 0.727 0.636

Table 8.1.8 FEstimators of 0 for the exchange rate data of Figure 8.4.4 (n = 4274)
for different thresholds u and sizes r.

w | AW g g | | g g o) |
0.015 | 100 | 0.625 0.403 0.149 | 50 | 0.820 0.612 0.403
0.020 | 100 | 0.708 0.571 0.393 | 50 | 0.714 0.643  0.536
0.025 | 100 | 0.632 0.583 0.583 | 50 | 0.694 0.667 0.583

Table 8.1.9 FEstimators of 0 forn = 4274 simulated data from the ARCH(1) model
given in (8.16) for different thresholds u and sizes r.

Notes and Comments

The concept of extremal index originates from Newell [479], Loynes [430] and
O’Brien [483]. A firm definition was given by Leadbetter [416]. An overview
of results concerning the extremal index is given in Smith and Weissman [600]
and Weissman [638].

Weissman and Cohen [639] present various models where the extremal
index can be calculated explicitly. Special methods have been developed for
ARMA processes (see Section 5.5) and Markov processes (see Leadbetter and
Rootzén [419], Perfekt [491] and Rootzén [551]).

The presence of exceedance clustering also affects the asymptotic distri-
bution of the upper order statistics. The following result is a consequence of
Theorem 6.1 in Hsing et al. [345] (which holds under certain mixing condi-
tions): whenever (c,1(M, —d,)) converges weakly, the limit distribution is
equal to H? for an extreme value distribution H and

lnH0 J .,

Sl

where I7°* = 1 and II’* is the j—fold convolution of IT = (r;); see also Cohen
[127], Hsing [339] and Leadbetter and Rootzén [419].

Hsing [339, 340, 341, 342] investigates the asymptotic properties of the
estimators of #. Aspects of bias, variance and the optimal choice of r(n)
and wu, for the 8" are discussed in Smith and Weissman [600]. Real-life
data analyses involving extremal index estimation have been carried out by
Buishand [102], Coles [131], Davison and Smith [166], Smith, Tawn and Coles
[598], and Tawn [615].

n—roo

k-1
lim P (c,' (Xpn — dn)gx):He(x)Z (
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Figure 8.1.10 Clusters of exceedances by the blocks method (top figures) in com-
parison with the runs method (bottom figures) for the exchange rate data from Fig-
ure 8.4.4 (top). The chosen values are r = 100 and v = 0.015 (top two), u = 0.020
(middle two) and w = 0.025 (bottom two). These figures clearly indicate the depen-
dence in the data.
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Figure 8.1.11 Continuation of Figure 8.1.10. The chosen values are r = 50 and
u=0.015 (top two), u = 0.020 (middle two) and u = 0.025 (bottom two).
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Figure 8.1.12 Clusters of exceedances by the blocks method (top figures) in com-
parison with the runs method (bottom figures) for simulated ARCH(1) data (top)

~

with parameters =05 and B=1.9-10"°. The chosen values are r = 100 and

uw=0.015 (top two), u = 0.020 (middle two) and u = 0.025 (bottom two),
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Figure 8.1.13 Continuation of Figure 8.1.12. The chosen values are r = 50 and
u=0.015 (top two), u = 0.020 (middle two) and u = 0.025 (bottom two).
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8.2 A Large Claim Index

8.2.1 The Problem

Throughout the book, we have seen various examples where a comparison
between the behaviour of the partial sum .S,, and the partial maximum M,
(or indeed more general order statistics) of an iid sequence X, Xy,...,X,
with df F' was instrumental in deriving estimates on extreme values. One
very prominent example for non—negative rvs was the introduction of the
famility S of subexponential distributions as the kind of dfs fit for modelling
heavy—tailed phenomena. Recall from Definition 1.3.3 that for F € S
. P(S,>x)
lim ————=
z—o0 P (M, > x)
Hence the tail of the partial maximum essentially determines the tail of the
partial sum. The idea that heavy—tailedness corresponds to a statement of the
type: “The behaviour of S,, is mainly determined by few upper order statis-
tics”, has been discussed in many publications. For instance, in Rootzén and
Tajvidi [553] on the accumulated loss in the most severe storms encountered
by a Swedish insurance group over a 12—year period 1982-1993, the following

=1, n>1.

summary is to be found.

It can be seen that the most costly storm contributes about 25% of
the total amount for the period, that it is 2.7 times bigger than the
second worst storm, and that four storms together make up about half
of the claims.

Some of the results of this type will be treated in this section.

We would like to start our discussion however by a story. In a consulting
discussion on premium calculations of one of us with two non—mathematicians
working in insurance, the problem of the influence of extreme values on rating
came up. Early on in the discussion it was realised that we were talking
about two different kinds of Pareto law. Indeed, the Pareto law they referred
to corresponded to the so—called 20-80 rule—of-thumb used by practicing
actuaries when large claims are involved. This rule states that 20% of the
individual claims are responsible for more than 80% of the total claim amount
in a well defined portfolio. Using some of the methods developed so far in the
book, we would like to answer the following question:

Can one characterise those portfolios where the 20-80 rule applies?
Or more precisely,
Classify those claim size dfs for which the 20-80 rule holds.

The next section will be devoted to the answer of the latter question.
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8.2.2 The Index

Let Xi,...,X, denote the first n claims in a portfolio. The X; are assumed
to be iid with continuous df F' and finite mean p > 0. As before, we denote
by X,n < --- < Xi,, the corresponding order statistics. The total claim
amount of the first n claims is denoted by S, = >"7_; Xx and F~ stands for
the empirical quantile function. Consequently,
k-1

— -

n

k
Fi(y)=Xp, for 1-—<y<1l-
n

In particular, for i =1,...,n, FS (i/n) = X—it1,n. The rvs needed in the
analysis of the problem posed in the introduction are
Xl,n + X2,n +-+ X[pn],n

p—y S 3
Hence T, (p) is the proportion of the [np] largest claims to the aggregate
claim amount S,,. The 20-80 rule now says that 77,(0.2) accounts for 80% of
Sp- The following result gives us the behaviour of T, (p) for n large. For its
formulation we introduce the function

1 1
Dep) = - / G (y)dy, pe,1],
MG 1-p

where G is the continuous df of a positive rv Y and

Tnw(p)

1
—<p<l1.
n

no =Y = [ " ydG () = | e wa.

Theorem 8.2.1 (Order statistics versus sums, asymptotic behaviour)
Suppose X1,...,X, are iid positive Tvs with continuous df F and finite
mean . Then as n — oo,

sup |Tn(p) = Dr(p)| = 0 as.

p€[0,1]

Proof. Observe that

[np]—1 .
1 1 n—1
o) = L R (1)

1=
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where oo
0

We have by the SLLN that X, *3 . Moreover, a Borel-Cantelli argument
yields

u< oo & ZP(Xn>sn)<oo, Ve >0

n=1

& P(X,>en i0)=0, Ve>0

& limn'X,=0 as.

n—roo

& lim n M, =0 as. (8.17)

n—roo
Hence
[np] 1 2n" ' M, as.
D — —-=—)-D < ———=0.
‘F<n n) PRWL S TR
We thus have T, (p) = (1 + o(1))Dp, (p) a.s. uniformly for p and hence it

suffices to show that

sup |Dp(p) — Dr,(p)] =0 as.
p€[0,1]

Notice that

/1 F<(y)dy — Frf(y)dy‘

-p 1-p

< / [F<(y) - FE(y)| dy

< ; |F(y) — Fy (y)| dy . (8.18)

From the Glivenko—Cantelli theorem (Example 2.1.4) we know that
sup |F(z) — F,(z)] 23 0.

Hence by Proposition A1.7, F (y) — F* (y) a.s. for every continuity point
y of F*. Moreover, the function |F* (y) — F (y)| is dominated by F* (y) +
F(y) and

/01 |F=(y) — Fy (y)ldy < /OlF“(yH/OlFf(y)dy

W+ pE, = 2u+o(l) as.,
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where we used the SLLN. Combining the argument above and Pratt’s lemma
(see Pratt [509]), we may conclude that the right-hand side in (8.18) con-
verges to zero with probability 1. This concludes the proof. O

Motivated by the previous result, we have the following definition.

Definition 8.2.2 (A large claim index)
Let F be a continuous df on (0,00) with finite mean p. For 0 < p < 1, we
define the large claim index of F' at p by

1

Dp(p)=— [ F (y)dy. O

1% 1-p
Remarks. 1) The value Dp(p) measures the extent to which the 100p %
largest claims in a portfolio contribute to the total claim amount. The-
orem 8.2.1 suggests to call T,,(p) = Dp, ([np]/n — 1/n) the empirical large
claim index.

2) If one defines Lp(l —p) =1— Dp(p), then Lp becomes the so—called
Lorenz curve. See for instance Csoérgd, Csorgé and Horvath [144], Goldie
[270] and references therein for a detailed discussion on properties of Lp.

3) The condition u < oo in Theorem 8.2.1 can be dropped, yielding T),(p) — 1
in probability, whenever ;1 = oo and the boundedness condition F(z) < (1 +
x)~® for some 0 < a < 1 and z large holds. For a proof see Aebi, Embrechts
and Mikosch [5], Theorem 2.

4) In Hipp [327] the asymptotic distribution of \/n(T,(p) — Dr(p)) is studied
by using the delta—method and the CLT for empirical processes; see Pollard
[504]. This allows one to construct asymptotic confidence bands for T, (p).
See also Csorgd et al. [144].

8.2.3 Some Examples

The basic question from the introduction can now be formulated as follows:
Give examples of dfs F for which Dp(0.2) is approzimately 0.8.

Below we have summarised D p—values for the most important classes of claim
size dfs. The parametrisations used are (see Tables 1.2.5 and 1.2.6 for details):

— Pareto (a) : F(z) = (1 +2)~%, >0,
— loggamma (a, 3),

— lognormal (u, o),

— gamma (o, 3),

— exponential.



434 8. Special Topics
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Figure 8.2.3 The large claim index Dp(p) across a wide class of potential claim
size distributions (top) and for the family of the Pareto distributions with the expo-
nential as a light—tailed limiting case.
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Figure 8.2.4 The empirical large claim indices T, (p) for 64T excesses of 2.5 mil-
lions Danish Kroner corresponding to 2493 Danish fire insurance losses from 1980
to 1990 (curve (a)) and for 8043 industrial fire losses from 1992 — 199/ (curve (b)).
For comparison the theoretical large claim index Dp(p) is plotted for the Pareto dis-
tribution with shape parameters a € {1.1,1.2,1.5,2}. The industrial fire losses are
very heavy—tailed; their index curve appears between the Pareto index for o = 1.1

and oo = 1.2; the Danish excess data appear between ov = 1.5 and a = 2.

a\p 0.5 0.4 0.3 0.2 0.1 0.05 0.01  0.005 0.001
1.01 | 0.998 0.997 0.995 0.992 0.986 0.980 0.965 0.958 0.943
1.05 | 0.991 0.985 0.976 0.963 0.936 0.908 0.843 0.816 0.756
1.1 | 0.983 0972 0.956 0930 0.882 0.833 0.723 0.679 0.587
1.2 1 0969 0.950 0.922 0.878 0.798 0.718 0.555 0.495 0.379
1.4 | 0948 0918 0.873 0.804 0.685 0.575 0.372 0.306 0.194
1.7 | 0.928 0.886 0.825 0.736 0.589 0.460 0.248 0.183 0.098
210914 0.865 0.795 0.694 0.532 0.397 0.190 0.136 0.062
310890 0.829 0.744 0.626 0.446 0.307 0.119 0.078 0.028

5| 0872 0.802 0.708 0.580 0.392 0.255 0.086 0.052 0.016
10 | 0.859 0.784 0.684 0.549 0.359 0.225 0.068 0.040 0.011
1000 | 0.847 0.767 0.661 0.522 0.331 0.200 0.056 0.032 0.008
Exp | 0.847 0.767 0.661 0.522 0.330 0.200 0.056 0.031 0.008

Table 8.2.5 Large claim index Dp(p) for different Pareto laws with index o and
the exponential distribution.
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In Figure 8.2.3, Dp is plotted for a wide family of potential claim size dis-
tributions. The 20-80 rule seems to apply for Pareto dfs with parameter a
in the range 1.3 to 1.5. Table 8.2.5 contains the calculated values of Dr for
specific Pareto dfs and p—values. It is for instance seen that for F' Pareto with
a =14, Dp(0.2) = 0.804 exactly explaining the 20-80 rule. The information
coming out of Figure 8.2.4 once more confirms the heavy—tailed behaviour
often encountered in non-life insurance data. Both the Danish fire insurance
data, as well as the industrial fire insurance data, though having finite mean,
correspond to Pareto models with infinite variance. The Danish data also ap-
pear less heavy—tailed than the industrial fire data, a conclusion we already
reached in Sections 6.2.2 and 6.5.2. At this point we would like to stress that
the large claim index introduced in this section should be viewed only as
a quick diagnostic tool; it therefore could have been included in the set of
exploratory data analysis techniques in Section 6.2. We decided to spend a
separate section on it because of the importance of 20-80 type rules often
used by applied actuaries.

8.2.4 On Sums and Extremes

Suppose X, Xy,..., X, are iid with df F' concentrated on (0,00). It im-
mediately follows from (8.17) and the SLLN that u= EX < oo implies
M, /S, *3 0. O'Brien [484] also showed that the converse implication holds.
Thus

lim My =0 as. ifandonlyif EX < oo, (8.19)

n—oo S,

so that for rvs with finite mean, in a strong (a.s.) sense,

the contribution of the mazimum to the sum is asymptotically neglible.
Statement (8.19) has been further refined by O’Brien [484]. indeed, by weak-
ening a.s. convergence to convergence in probability, he obtained

M,/S, 50 if and only if / ydF(y) € Ry. (8.20)
0

The above results (8.19) and (8.20) give conditions so that the maximum
(and a—fortiori every order statistic) is asymptotically negligible with respect
to the sum. A natural question concerns the other extreme case, namely

Under what conditions does M,,/S, — 1 in a specified way?

The following result was proved in Arov and Bobrov [21] (sufficiency) and
Maller and Resnick [435] (necessity):

M,/S, 51 ifandonlyif F € Ry. (8.21)
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Figure 8.2.6 Five realisations of (M, /Sn) for iid standard exponential rvs (top)

and 0.5-stable positive rvs (middle). In the first case M, /S, *3 0, in the second
one (My/Syn) converges in distribution. The bottom graph shows realisations of

(In(M,/Sn)) for a df with tail F(z) = 1/1n(z), > e. In this case, My, /Sy L
hence In(My /S») 20, The convergence appears to be very slow.
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Pruitt [516] gives necessary and sufficient conditions for the relation
M, /S, — 1 as.; this clearly means that one has to consider a subclass
of distributions with F € Rg. The latter condition is a very strong one
indeed, it implies that EX*® = oo for all € > 0. A natural question therefore
concerns situations in between (8.20) and (8.21). Twice the class Ry of
slowly varying functions entered as the characterising class. The following
result ((al) < (a2)) may therefore not come as a surprise.

(a) Equivalent are:
(al) M,/S, S Y7 for some non—degenerate Y7,
(a2) F € R_, for some a € (0,1),
(a3) limy, o E(S,/M,) =c1 € (1,00).
(b) If u < o0, then equivalent are:
(b1) (S, —nu)/M, Y Y; for some non—degenerate Y3,
(b2) F € R_, for some a € (1,2),
(b3) lim, oo BE((Sn —nu)/M,) = c2 € (1,00).

The implication (al)=(a2) is proved in Breiman [89], (a2)=-(al) in Chow
and Teugels [117], for the rest see Bingham and Teugels [73].

Remark. Reconsidering the results of this section, we have learnt that the
probabilistic behaviour of the ratio M, /S, for iid positive rvs (claims in
the insurance context) characterises the underlying df only for F € R_,,
0 < a < 2. Although this class of distributions is not unimportant for the
purposes of insurance it is nevertheless a relatively small class. For instance, it
does not help to discriminate data from a lognormal or a Pareto distribution
with finite variance. Therefore the large claim index introduced above offers
some more flexibility for discriminating dfs F' with heavy tails.

Nevertheless, the limit behaviour of M,,/S,, and the corresponding quantities
for X7 can be used as an exploratory statistical tool for detecting whether
EX? is finite; see Section 6.2.6 where several data—sets were considered. [

Notes and Comments

In our discussion in Section 8.2.2 we closely followed Aebi et al. [5]. Some of
the earlier work concerning the behaviour of M, /S, in the iid case is to be
found in Arov and Bobrov [21] and Darling [155]. An early paper linking the
asymptotic behaviour of partial sums with that of order statistics is Smirnov
[586]. Since then many publications on the relation between maxima and
sums appeared. In order to get up—to—date concerning sums, trimmed sums
(i.e. sums minus some order statistics) and maxima for iid rvs with general
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df F, read Kesten and Maller [380] and consult references therein. See also
Hahn, Mason and Weiner [305] on this topic.

The questions discussed above for the iid case are more naturally stud-
ied in a two—dimensional set—up, i.e. analyse the asymptotic behaviour of
the vectors (S, M, ) properly normalised. Assume that there exist norming
sequences (ay), (b,), (¢,) and (d,) such that

Sp=a, (S, —by) and M, =c,* (M, —dy)

converge weakly to S, respectively M. This means that F € DA (a)NMDA (H)
for some a € (0,2] and extreme value distribution H. Chow and Teugels
[117] show that the latter conditions holds if and only if the normalised joint
weak limit of (S,,M,) exists. Resnick [529] gives a detailed discussion of
the properties of the limiting random vector, using point process techniques.
Chow and Teugels [117] show that the limiting variables are independent if
a = 2. This result has been generalised by Anderson and Turkman [14, 15]
and Hsing [344] to certain stationary sequences.

8.3 When and How Ruin Occurs

8.3.1 Introduction

In this section we return to the insurance risk process introduced in Chapter 1.
There we studied, mainly by analytical methods, the asymptotic behaviour
of the ruin probability when the initial capital increases to infinity. In this
section we first review these results from a probabilistic point of view. We
also continue the analysis of the risk process. In particular, we are interested
in the question:

What does a sample path of the risk process leading to ruin look like?

This will be answered in Sections 8.3.2 and 8.3.3, both for the light— and the
heavy—tailed case. An important issue in our analysis concerns information
on the claim(s) causing ruin.

Throughout we consider the classical Cramér—Lundberg model as intro-
duced in Definition 1.1.1:

(a) The claim sizes X, X1, Xo,... are iid positive rvs with common non—
lattice df F' and finite mean u = EXj.

(b) The claim X} arrives at time Ty = Y7 + --- + Y}, where Y, Y7,Y5, ...
are iid Exp(\) rvs for some A > 0. The corresponding claim numbers
N(t) =sup{k > 1: T, < t}, t >0, constitute a homogeneous Poisson
process with intensity A > 0.
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(c) The processes (N (¢)) and (Xj) are independent.

The corresponding risk process is then defined by
Ut)y=u+ct—S(t), t>0,

where u is the initial capital, S(t) = Zi:fz(tl) X, the total claim amount until
time ¢ and ¢ > 0 is the premium income rate. We also assume the net profit
condition Ay — ¢ < 0.

In Chapter 1 we mainly concentrated on estimating the ruin probability
in infinite time:

= P inf U(t 0.

b(w) (,dnt_ v <o)

For our purposes, it turns out to be convenient to express ¥ (u) in terms of
the Lévy process R, where

Rt)=S(t)—ct=u—U(t), t>0.

Therefore R can be considered as a continuous—time analogue to a random
walk with negative drift. Consequently, we expect various results from ran-
dom walk theory to be useful in this context; see also Chapter 1, equation
(1.9) and the related discussion. In some cases the translation is a straight-
forward application of the so—called method of the discrete skeleton which is
described below.

Since ¢ > 0 ruin can occur only at the claim arrival times 7T} when R
jumps upwards; see Figure 8.3.1 (top). By virtue of the net profit condition
the discrete—time process

n

Rn:Z(Xk—CYk):Zn:Zk, n €N,
k=1 k=1

constitutes a random walk with negative drift which is generated by the iid
sequence Z, Z1, Zs, . ... Moreover,

P(u) =P <sup R(t) > u) =P (sup R, > u) . (8.22)
t>0 n>1
It is an immediate consequence of the SLLN that
M = supR(t) = supR, < o as. (8.23)
t>0 n>1

The random walk (R,) is referred to as a discrete skeleton embedded in
the continuous—time Lévy process R. Such a construction allows us to use
renewal theoretic arguments on the skeleton and to translate the results to
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Rn

24 27 43

(g}

Figure 8.3.1 A sample path of (R(t)) (top) and its discrete skeleton random walk
(Rn) (bottom). The ladder points are indicated by e. They appear for R, at the
indices (i.e. clatm numbers) n = 2,4,27,43. The ladder heights of (R») and (R(t))

coincide; they are also the records of (R.).

the process R. Thus representation (8.22) suggests using standard theory for
the maximum of a random walk with negative drift. Below we present some
of the main ideas and refer to the monographs Asmussen [27, 28], Feller [235]
or Resnick [530] for more details.

Recall from equation (1.11) in Chapter 1 that

L) = (1-a) S a"FP* (), u>0, (8.24)
n=0

where \

a = (0) 0,1). (8.25)

Here F is the integrated tail df Fy(u) = p~* fou F(y)dy.
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In what follows we give a probabilistic interpretation of (8.24) by ex-
ploiting the relation 1 — ¢(u) = P(M < w). We start by introducing another
discrete skeleton for R. The quantities which suggest themselves in a natural
way are the ladder indices

(0) = 0,
7+(1) = inf{t >0: R(t) >0},
(k+1) = if{t>7.(k): R(t) > R(r+(k))}, keN,

and the ladder heights R(7y (k)); see Figure 8.3.1 (top). Here, as usual, inf ) =
oo. In the language of Section 5.4 one could call R(7y(k)) a record of the
continuous—time process R and 7 (k) the corresponding record time.

The process between two consecutive ladder indices is called a ladder seg-
ment. Due to the independent and stationary increments property of R, it
is intuitively clear that at each ladder point (74 (k), R(71(k))) the process
starts anew, and that the ladder segments constitute a sequence of iid sto-
chastic processes. A detailed proof of these results uses the so—called strong
Markov property; we refrain from going into details here. The resulting re-
generative nature of the process is nicely discussed in Resnick [531], Sections
3.7.1 and 3.12.

Before we return to formula (8.24), we collect some useful facts about the
first ladder segment. Writing

V =R(r (1)) and Z=—R(r(1)-),

it follows that A = V + Z is the size of the claim leading to ruin, given
the initial capital v = 0. See Figure 8.3.8 for an illustration with V = V3
and Z = Z;. The following statement about V' is classical; see for instance
Cramér [138] or Feller [235], Section XI.4. The results for Z and A are to be
found in Dufresne and Gerber [193]. Here and in what follows we write

where
T(u) =inf{t > 0: R(t) > u}
is the ruin time, given the initial capital u.

Proposition 8.3.2 (Ruin with initial capital u = 0)
The following statements hold:

(a) POV <z)=PO(Z <) = Fi(a),
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(b) PO(A<z)=pt [ ydF(y),

(¢) Let U be uniform on (0,1), independent of A. Then the vectors (V, Z)
and (UA, (1 —U)A) have the same distribution with respect to P©). O

Remark. Statement (c) can be translated into

POV >0, Z>2) = l/ p (3§U§1—5)de(y)
1% vtz Y )

- l/°°(y—z—v)dF(y)

1% +z
= Filv+2), v,2>0, (8.27)

where we applied partial integration for the last equality. In the heavy—tailed
case, for initial capital u tending to oo, we shall derive a formula similar to
(8.27); see (8.40). O

Now we return to formula (8.24). From (8.23) it follows that the ladder
heights R(74(k)) determine the distribution of the maximum M. A precise
formulation of the regenerative property of R at its ladder points implies that
R(74(k)) — R(t4(k — 1)) are iid positive rvs. By Proposition 8.3.2(a), they
have distribution tail

P (R(14(1)) > z) = P(7(0) < 00)PO(V > 2) = aFy(z), x>0,

where a € (0,1) is defined in (8.25). Here we used that, if 7(0) = oo, then
R(t) < 0forall t > 0. The ladder indices constitute a renewal process which is
transient; see Remark 3 in Appendix A4. This means that the total number
K of renewals has a geometric distribution with parameter 1 —«a, where
a=(0) = P(1+(1) < c0). Indeed, using the iid property of the increments
7+ (k) — 74 (k — 1), we obtain

P(K=n) = P(rp(n)<oo, 7 (n+1)=o00)
= P <k311?>.<’n(u(k) —ry(k—1) <oo,my(n+1) = OO)

= a"(1—-a), n>0.

Since

we have that
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bw) = P(M > u)

= Y P(M>u,K=n)

- ZP (Z (R(T+(k)) — R(r4(k — 1))) >u, K = n)
=1  \k=1

= (1—a)Za”(1—FI”*(u)), u>0.

This yields (8.24).

In the following sections we further exploit the underlying random walk
structure of R. There we study a sample path of the risk process leading to
ruin. The problem and its solution will be formulated as conditional limit
theorems in terms of the conditional probability measures P(*) as defined in
(8.26). We give a short review of the sample path description obtainable and
contrast ruin under a small and large claim regime. These results will also
give us asymptotic expressions for the ruin probability in finite time, i.e.

1/1(u,T):P< sup R(t) >u> =P(r(u) <T), 0<T <.
0<t<T

In our presentation we follow Asmussen [24] in the Cramér-Lundberg case
and Asmussen and Kliippelberg [33] in the subexponential case. Those readers
who want to study the mathematical methods in detail should consult these
papers or the monograph by Asmussen [28].

8.3.2 The Cramér—Lundberg Case

Throughout this section we assume that the assumptions of the Cramér—
Lundberg Theorem 1.2.2 hold. This means in particular that X has a moment
generating function which is finite in some neighbourhood of the origin and
that the Lundberg exponent, i.e. the solution of the equation fooo e’*F(x)dr =
c/A, exists. Moreover, we assume [, ze"*F(z)dz < co. Theorem 1.2.2 then
gives us the approximation

Yu) ~ Ce ™™, u— o0, (8.28)

where C' is a positive constant depending on the parameters of the risk
process.
Consider the moment generating function of Z = X — ¢Y:

k(s) = Ee'?,
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for appropriate s—values. The Lundberg exponent v is the unique positive
solution of the equation x(s) = 1 and, by the net profit condition, x'(0) =
(Auw—c)/X < 0. Notice that «'(s) < 0in a neighbourhood of the origin, x(s) is
strictly convex and hence «'(v) > 0. For an illustration of « see Figure 8.3.3.

Figure 8.3.3 A typical example of k(s) with the Lundberg coefficient v.

Let Hz denote the df of Z = X — ¢Y'. The corresponding Esscher transformed
or exponentially tilted df is given by

H,(x) :/ e”VdHz(y), =e€R.
Since Ee'? =1, the df H, is proper with positive finite mean
/ rdH,(z) = / re"*dHz(x) = k'(v) > 0. (8.29)

Following Feller [235], p. 406, we call a random walk with increment df H,
associated. The main idea for dealing with the sample paths of R (with neg-
ative drift) under the condition 7(u) < oo now consists of switching to an
associated random walk (with positive drift). Write (Z) for an iid sequence
with df H,. Observe that

PN (Zy <ay,..., 2y <)

= P(Z1Sl‘l,...,ZnSCCn,M>U/)/P(M>U)

1 1 T,
- - P(M —y = —Yp
porsa ) [ PO

dHz(y1) - dHz(yn)
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- ﬁ/“ /f V(w—y1— - —yu)dHz(y1) - dHz(yn)

N / / ) AH (1) - - dH 7 (y) (8.30)

= Hy(x1)---H,(x,)
= P(lexlvvznsxn)

In (8.30) we used the ruin estimate (8.28), as u — 0o, combined with domi-
nated convergence. The latter is justified by a two—sided bound on ¢ (u) using
both (8.28) and (1.14). This calculation shows that the distribution of the
random walk (R,) and of R, given that ruin occurs in finite time, is closely
related to the distribution of the associated random walk.

This intuitive argument is further supported by the following facts: let
H,, be the empirical df of the sample Zy,..., Z,, i.e.

1 n
H,(z) = - ZI{Zka}7 r €R. (8.31)
k=1

An application of the Glivenko—Cantelli theorem (Example 2.1.4) yields that

sup |H,(z) — Hz(z)] = 0 a.s.

zER
This changes completely if ruin occurs and n is replaced by the ruin times
7(u); the following result indicates that the increment df H; of the random
walk (R,), conditioned on the event that ruin occurs, is close to H,, the
increment df of the asscociated random walk.

Proposition 8.3.4 The following relation holds as u — oo:

sup |HT(u) (z) — H, (x)| — 0 in P —probability. O
z€R

Remark. 1) Let A and A, be rvs. Here and in what follows we write A, — A
in P(*)—probability if

lim P (|A, —A]>e)=0, £>0.

U—r 00
Analogously convergence in P(*)-distribution of a sequence of random vec-
tors A, — A as u — oo, as used in Theorem 8.3.9 below, is defined as
E® f(A,) — Ef(A) for every bounded, continuous functional f; see also
Appendix A2. O

The following quantities describe the ruin event: the level R(7(u)—) of the
process R just before ruin, the level R(r(u)) at the ruin time, the excess
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R(7(u)) —u over u by R at the ruin time and the size R(7(u)) — R(7(u)—) of
the claim causing ruin. For u — oo their asymptotic distributional behaviour
is described below.

Theorem 8.3.5 (Ruin in the Cramér-Lundberg case)
The following relations hold for v — oco:
R(tr(u))

— &' (v)t| = 0 in P —probability.
7(u)

(a) SUP¢c(o,1]

r(u) = u/r'(v)
Jas(v)

where N is a standard normal ™ and s(v) is a quantity involving the

— N in P —distribution,

(b)

Lundberg exponent and certain moments of X.

(¢) The quantities R(t(u)) —u, u— R(7(u)—) and R(7(u)) — R(r(u)—) con-
verge jointly in P —distribution to a non-degenerate limit distribution.
Moreover, 7(u) and R(7(u)) — u are asymptotically independent. O

Remarks. 2) The above results (a) and (b) indicate that a sample path of R
leading to ruin has locally a linear drift with slope «'(v) > 0 just before ruin
happens. Notice that this is in contrast to the global picture where the drift
of R is negative. This is due to the close relationship between the sequences
(Zk) and (Z) for which EZ), = &/(v) > 0; see (8.29). The link of these two
sequences has been indicated above. The precise description of this relation-
ship would lead us too far; we refer to Asmussen [24], where also Proposition
8.3.4 is taken from.

3) Part (c) implies in particular that all these quantities converge to finite
limits. This is in contrast to the behaviour of the claim leading to ruin in the
heavy—tailed case; see Theorem 8.3.9. a

For completeness, we conclude this section with some results on the ruin
probability in finite time. Recall that the ruin probability for the interval
[0,T] is given by

wwr) =P (

Approximations to ¥ (u,T) may for instance be derived from FCLTs. In Ex-
ample 2.5.18 a diffusion approximation to ¢ (u,T’) was presented. It is based
on a FCLT for the total claim amount process (S(t)). Alternatively, Propo-
sition 8.3.5 can be exploited.

inf U(t) < 0) . (8.32)

0

Corollary 8.3.6 (Ruin in finite time in the Cramér-Lundberg case)

Jim_ S e’ (u,T) — CP <TS_+/\%”)> ‘ =0. (8.33)
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Here C is the same constant as in (8.28), & denotes the standard normal df,
and s(v) is a deterministic scaling factor involving the Lundberg exponent
and certain moments of the claim size distribution.

Proof. First note that by the definition of P(®)
P (r(u) <T) = ¢(u,T)/$(u).
Hence

sup | “(u,T) — CPW (r(u) < T)‘
0<T <0

= sup e"P(u,T)
0<T <0

e’1)(u)
The right-hand side tends to 0 as w — oo since ¥(u,T) < ¥(u) and
exp{rulyp(u) = C by (8.28). Since weak convergence to a continuous

limit implies uniform convergence of the dfs the result follows from Theo-
rem 8.3.5(b). O

‘ C

Remark. 4) The limit relation (8.33) suggests as approximation of the ruin
probability in finite time

T —u/K'(v)
u,T)~Ce " | —————= | . 8.34
¥(u.T) (T (8:34)
This approximation has to be treated with care: since no rate of convergence
is given the remainder term in this limit relation may be larger than the
term to be approximated. Further refinements and higher order approxima-
tions are to be found in Asmussen [25]. O

We may summarise the situation under the Cramér-Lundberg regime as fol-
lows:

The behaviour of the sample path of R just before ruin occurs is
as if the increment distribution changed from Hz; to H,, and the
main dramatic feature we see in the sample path is a change of
drift causing ruin. The intuitive picture is that rare events leading
to ruin occur as a consequence of a build—up of claims which locally
force the underlying random walk to behave like a random walk
with positive drift. The increment distribution of such a random
walk is given by the Esscher transformed df H, .
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8.3.3 The Large Claim Case

In contrast to the Cramér-Lundberg case, under a large claim regime rare
events causing ruin happen out of the blue. The process evolves in its “typi-
cal” way up to the ruin time. Then ruin occurs as a consequence of one single
large claim.

Recall the definition of a subexponential df F' (F € S):

P(Xi+ -+ X, >2) ~ Pmax(Xy,...,X,) >2), = —o00, (835)

for n > 2; see (1.26). In Chapter 1 various estimates of the ruin probability
Y (u) for heavy—tailed F were presented. In particular, we may conclude from
Theorem 1.3.6 that F7 € S implies
— A
a Fr(u) =
11—« c— A\

/OO F(y)dy, u—oc. (8.36)

Below we want to give answers to the following questions: given that ruin
occurs in finite time,

(a) How big is the claim leading to ruin?

(b) What is the asymptotic distribution of the ruin time?

(¢c) What does “the process evolves in its typical way up to the ruin time”
actually mean?

A first indicator of the fact that the risk process evolves typically up to
the ruin time is provided by the behaviour of the empirical df H, of the
increments Z,, of the embedded discrete skeleton random walk R,,; see (8.31).

Proposition 8.3.7 Under the conditions of Theorem 8.3.9,

sup |HT(U) (x) — Hz (x)| — 0 in P —probability. O
TER
Compare this result with Proposition 8.3.4 in the Cramér—Lundberg case;
there the limit of H.(,) turns out to be the Esscher transformed df H,.
For a precise description of the ruin event itself we consider the P(*)—
distribution of the following quantities (see Figure 8.3.8 for an illustration):

(a) —Z(u) = R(r(u)—), the level of R just before ruin,
(b) V(u) = R(7(u)), the level of R at the ruin time, and

(¢) V(u) —u, the excess over u by R at the ruin time.

Again we may use the regenerative structure of the process R. The negative
drift of R ensures that there are with probability one only finitely many
ladder points. Let

K(u) =inf{k € N: R(7(k)) > u},
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with inf() = oo, denote the ladder inder causing rTwin. The increments
Vi, = R(14(n)) — R(ty(n — 1)) are iid and PO (V; < z) = Fy(z) by Propo-
sition 8.3.2(a). Then

P(K(u) = n)
= P(K(u)=n, r(u) < )
= Plry(n) <o) PWVi+--+ Vg <u,Vi+---+V, >u|rp(n) < 00)
= P(ry(n) < o0)pn(u).

A justification of the following arguments is given in the proof of Lemma 2.6
in Asmussen and Kliippelberg [33]; the crucial assumption used is subexpo-
nentiality of F; implying that (8.35) holds for the V,, with respect to P(%):

pu(u) ~ P(maX(Vl,...7Vn_1) <w,max(Vi,..., Vo) >u ‘n_(n) < oo)
~ P(V,>u|r(n) —74(n—1) < 00)
= POV, >u)=Fr(u), u— .

Also notice that for « as in (8.25),

P(ry(n) <o) = P <k£11axn (4 (k) —m1(k = 1)) < oo)
= P"(r4(l) < 0) =a”. (8.37)

Combining (8.36)—(8.37), we conclude that
P(K(u) =n,7(u) < )

P (K (u) = n)

$(u)
N a"Fr(u)
(u)
- (1-a)a" !, (8.38)

i.e. the number of ladder segments until ruin has asymptotically a geometric
distribution with parameter 1 — a.

The path (S(t))¢e[o,~(u)) can be decomposed into K (u) ladder segments,
where K (u) is asymptotically geometric as in (8.38), the first K (u) — 1 seg-
ments are all “typical” as described in Proposition 8.3.2. However, the last
segment leading to ruin behaves differently. Ruin is caused by one single large
claim. Therefore one may expect that classical extreme value theory enters
for describing the ruin event.
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R V(u) = R(r(u))
V(u) —u \
o Veer

7(u) F 7+ (N (u))

_Z\N(u)

=)
4
|
N
Y

Figure 8.3.8 Idealised sample path leading to ruin.

Subexponential distributions are heavy-tailed in the sense that their
tails decrease to 0 more slowly than any exponential tail; see Lemma 1.3.5.
Their tails can be regularly varying, but also the lognormal and heavy—tailed
Weibull distributions are subexponential. This implies that subexponential
distributions may belong to the maximum domain of attraction of the Fréchet
distribution @, (see Section 3.3.1) or of the Gumbel distribution A (see Ex-
ample 3.3.35). We distinguish between these two cases.

Let (Z(u),V(u)) be a random vector having the same P(*)—distribution
as (—R(7(u)—), R(7(u))). The following result describes the sample path up
to ruin and the ruin event itself.

Theorem 8.3.9 (Ruin in the subexponential case)
Assume that either F1 € R_y¢ for £ € (0,00) or F; € MDA(A) NS (this
corresponds to &€ =0 below), and let a(u) = [° F(z)dz/F(u). Then

. |BT)

+c(l —a)t| -0 8.39
t€[0,1] 7(u) ( ) ( )

and
(a(u) ™ (e(1 = )r(u), Z(u), V(u) —u) = (Z¢, Ze, Ve)
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asu — 00 in P ~distribution. The rvs Ve and Ze are both generalised Pareto
distributed with

PVe>v,Z¢ >2)=Ge(v+2), v,2>0, (8.40)
where ( ) e ( )
— 1+€x B ) fe 0,00 )
Ge(z) = (8.41)
e, £E=0.
O

Remarks. 1) Recall from Remark 1 after Proposition 8.3.5, that convergence
in P —distribution of a sequence of random vectors A, — A as u — oo is
defined as E™ f(A,) — Ef(A) for every bounded, continuous functional f.

2) The generalised Pareto distribution appears as limit law for the normalised
excesses of an iid sequence over high thresholds; see Section 3.4. This is sim-
ilar to Theorem 8.3.9, where the excess V(u) — u of the process R over the
threshold v has a similar limit behaviour.

3) Relation (8.39) intuitively supports the statement that the process evolves
“typically” up to time 7(u) because R(t)/t “3 —c(1 —a) = Ay —c < 0 by
the SLLN. Also notice that Z(u)/7(u) — ¢(1 — ) in P(")—probability. This
again indicates “typical” behaviour until ruin occurs.

4) The above theorem should be compared with Theorem 8.3.5. Notice in
particular that, in the Cramér-Lundberg case, the excesses V(u) — u con-
verge weakly to a non—degenerate limit, while in the subexponential case the
excesses tend to oco. Notice that the normalising function a(u) is the mean
excess function which tends to infinity for subexponential F7; see Exam-
ple 3.3.34. The claim causing ruin starts at a “typical” level, then shoots all
the way up, crosses the high level u and even shoots over this high level by
a very large amount.

5) Equation (8.40) should be compared with (8.27). Although the last lad-
der segment has completely different probabilistic properties than the other
ones, the excess V(u) — u of R at the time of ruin and the level Z(u) of R
immediately before ruin occurs show a similar probabilistic relation for u = 0
and in the limit for u — oc. O

From Theorem 8.3.9 we immediately obtain for all £ € [0, 00)
Z(u) +V(u)—u
a(u)

This yields information about the size R(7(u)) — R(t(u)—) = V(u) + Z(u) of
the claim causing ruin.

— Z¢ + Ve in P -distribution .
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Corollary 8.3.10 (Size of the claim causing ruin in the subexponential case)

(a) Assume that F; € R_y ¢ for £ € (0,00). Then a(u) ~ u and
lim P® <M>x) - <1+1 <1—l>)x1/5, r>1.
x

U—00 u g
(b) Assume that F; € MDA(A)NS. Then a(u) = [° F(z)dz/F(u) and

o P V(u) + Z(u) —
P ( a(w)

u _
>x>:(1+x)e ¢, x>0.

U— 00

O

We conclude with some results on the ruin probability in finite time, given
by (8.32) for the interval [0, T]. Since

d(u, T) /() = P(r(u) < T|7(u) < 00) = P (r(u) < T),
the following can be derived from Theorem 8.3.9.

Corollary 8.3.11 (Ruin in finite time in the subexponential case)

(a) Assume that F; € R_y ¢ for £ € (0,00). Then a(u) ~ u and

. ’(/)(U,UT) 1 _ _ -1/
ulggo o) 1—(14c¢1-a)T) V.
(b) Assume that Fy € MDA(A)NS. Then a(u) = [° F(z)dz/F(u) and
- Y(u,a()T) _ —c(l—a)
ul;n;o o) =1—e =T,

We can summarise the situation under the subexponential regime as follows:

The behaviour of the sample path of R just before ruin happens
appears completely normal: it looks exactly as any sample path
for which ruin never occurs. Ruin then happens out of the blue,
caused by a single large claim. It is so large that, in order to obtain
a finite non—degenerate limit of the excess of R over the threshold
u, we have to normalise by a function which tends to oco.
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Notes and Comments

Notice that the problems discussed above have similarities with the estima-
tion of VaR (ruin say) and the shortfall (the excess of the claim causing ruin)
as discussed in Example 6.1.6.

Some early exposition of approximations to the ruin probability in finite
time is to be found in Cramér [140] and Segerdahl [574], who first derived
approximation (8.34). Later results exploit the diffusion approximation of the
total claim amount process as a useful tool; see Iglehart [351] and Grandell
[281] and also Example 2.5.18. A systematic approach with respect to FCLTs
for R and (7(u)) is provided by Asmussen [24], see in particular his Corol-
lary 3.1. Because of the small claim regime, the underlying limit processes
are Gaussian. New ideas by Siegmund [580] from sequential analysis led to
refinements and new variants.

The above results are closely related to large deviations. In the context
of insurance risk models, they have been studied by Martin-Lof [444],[443],
Djehiche [184], Slud and Hoesman [585] and Barndorff-Nielsen and Schmidli
[49]. All this refers to the small claim regime. See also Section 8.6 for a review
of large deviation results in the heavy—tailed case.

The results of Section 8.3.2 were derived in Asmussen [24] , the heavy—
tailed case is treated in Asmussen and Klippelberg [33]. Extending re-
sults of Asmussen, Flge—Henriksen and Klippelberg [31] and Asmussen and
Klippelberg [33], an extremal event analysis for the Markov—modulated risk
model was carried out by Asmussen and Hgjgaard [32].

The conditional limit theorems above have been applied to the efficient
simulation of ruin probabilities: in the light—tailed case by Asmussen [26] and
in the heavy—tailed case by Asmussen and Binswanger [30].

8.4 Perpetuities and ARCH Processes

Random recurrence equations have been used in various fields of applied
probability (to name a few references: Kesten [379] and Vervaat [631] were
very stimulating papers in this field; the monograph by Brandt, Franken and
Lisek [87]; the overview paper by Embrechts and Goldie [206]). In particular,
ARCH and GARCH processes (see also Section 7.6 for some remarks on the
topic) are given by stochastic recurrence equations. They serve as special
exchange rate or log-return models with stochastic volatility and are very
popular in econometrics. A flood of papers has been published on ARCH and
related models, mainly in the context of statistics. See for instance the recent
review paper by Shephard [578] and references therein.
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Our interest in these models arose from the fact that ARCH processes with
light—tailed input (i.e. Gaussian innovations) are indeed heavy—tailed (i.e.
Pareto-like) time series. This was first observed in 1973 by Kesten [379]. It is
the aim of this section to explain where the heavy tails come from and to study
the behaviour of the maxima of an ARCH(1) sequence. In our presentation
we follow Goldie [272] and de Haan et al. [303] who treat solutions of general
recurrence equations and their extremal behaviour, respectively.

8.4.1 Stochastic Recurrence Equations and Perpetuities

In finance and insurance applications we are often confronted with two con-
trary phenomena: accumulating and discounting. It is the aim of this section
to shed some light on discrete time accumulation and discounting techniques
which are closely linked to stochastic recurrence equations. In what follows
we introduce two basic concepts in those equations.

Example 8.4.1 (Accumulation and perpetuities)

Suppose you invest at times 0,1,2,... one unit (say, $1) in a bond with
interest rate § € (0,1). What is the accumulated value Y; at time ¢ of the
interest payments made at times 0, ..., ¢ for t > 1, assuming Yy = 17 Simple

calculation shows that
Yo=1, Yi=14+(1406), Yo=1+(1+0)+(1+0)>,....
In particular, we observe that Y; and Y; 1 are linked by the recursion
Vi=1+(1+0)Y,1, teN. (8.42)

Now assume that the interest rate 6 depends on time ¢. The recursion (8.42)
can immediately be modified:

}/t:1+(1+6t)5/t—17 teN,
yielding
Yo=1, i=14+(14+61), Yo=14+14+0)+Q+d0)A+d),....

We can also imagine a more complicated situation: assume that the interest
rate 6 and the invested amount A are time dependent. Setting By = 1 + d;,
this leads to the recursion

Y; - At + Btyvtfl 5 t S N 5 (843)

or explicitly
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Yi = YoBi+ A,
Y3 = Y()BlBQB3 +A1BQB3 +A2B3 +A3 s

and in general (by convention, Hé;} a; =1 and Zi;} a; =0)

t t t
Y, = YN[[Bi+> 4n ] B/, teN. (8.44)
7j=1 m=1 j=m+1

If Yy, Ay, By arervs, (8.43) is called a (forward) stochastic recurrence equation
or a (forward) stochastic difference equation. The word “forward” is related
to the fact that, starting from an initial value Yy, we successively apply the
random affine mappings W (x) = Ay + Bz such that V; = @, (Y;_;1). The
latter relation is also called an “outer iteration”; see for instance Embrechts
and Goldie [206].

In the insurance context, (Y;) as given by (8.44) can be interpreted as the
value of a perpetuity: the payments A; are made at the beginning of each
period and the accumulated payments Y;_; are subject to interest. The name
“perpetuity” comes from “perpetual payment streams” and recently gained
some popularity in the literature on stochastic recurrence equations. In the
form (8.44), (Y;) is referred to as a perpetuity—due. Gerber [257], Section 2.6,
gives a brief introduction to perpetuities from a life insurance point of view.
See also Dufresne [191, 192] and the references therein for applications in
insurance, mainly to pension funding. An introduction within the realm of
finance is for instance to be found in Brealey and Myers [88], p. 33; see also
Geman and Yor [253]. More background is to be found in the recent paper
by Goldie and Griibel [273]. O

Example 8.4.2 (Discounting)

The reverse problem to accumulation is discounting. Suppose payments of
one unit are made at times 0,1,2,.... Given the interest rate 6 € (0,1), the
discounted value at time 0 of those payments, made till time ¢, is

Uy=14+14+8)""+04+6)2+--+(1+6)", teN.

Allowing for time-dependent interest rates ¢ and payments A’ and setting
C; = (14 4;)~1, we obtain in a similar fashion

Uy = AL+ A0+ ACCo+ -+ ACy -+ - Cimy + Uy -+ - C

m—1

t t
A, [Ie+w]lc, ten. (8.45)

m=1 7j=1 7=1
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(The value Uy, which may be viewed as the final (time ¢) down—payment, is
unimportant when we are interested in the behaviour of U, for large t. Under
weak assumptions, the last term in (8.45) can be shown to converge to zero
a.s.; see the proof of Proposition 8.4.3(b) below.) If we assume that Uy, (A}),
(C}) are sequences of rvs, (8.45) can be written using a so—called (backward)
stochastic recurrence equation or a (backward) stochastic difference equation.
For the interpretation of (8.45) as an “inner iteration” of random affine maps
see Embrechts and Goldie [206].

A glance at (8.45) and (8.44) convinces us that the structure of the discounted
and accumulated sequences (U;) and (Y;) is very similar. This also concerns
the distribution of these rvs: assume Y is independent of the iid sequence
((A¢, By))e>1 and Uy is independent of the iid sequence ((A}, Ct))s>1. Observe
that for every t € N

d
(Yz)v((Akak)lg/ng = (va((At—k-i-lvBt—k-i-l))lgkgt) )

implying that

t t t
Vi = Yo[[Bi+> A4n [[ Bj
Jj=1 m=1

j=m-+1
t t m—1
L Y][Bi+> 4. [] B -
j=1 m=1 j=1

Immediately, if Y5 = Up and (A;, By) = (A}, C4), then U, £ Y. 0

Throughout this section we assume that Yy is independent of the iid sequence
((A¢, By))e>1- We also write for convenience (A,B) = (Ay,Bp). In what
follows we are concerned with properties of the perpetuity sequence (Y3)
defined by (8.44). It follows from the discussion in Example 8.4.2 that every
statement about the distribution of Y; is also about the distribution of Uy
defined by (8.45). The question we want to answer is

Which assumptions on (A, B) and Yy guarantee convergence of (Yi) in
distribution, and what are the properties of the limit distribution?

The answer can be found in Vervaat [631]; see also Kesten [379].

Proposition 8.4.3 (Distribution and moments of perpetuities)
Let (Y3) be the stochastic process defined by (8.44) and assume that

Elnt|A| <o and — oo < EIn|B|<0. (8.46)
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(a) Yy 4y for some rvY and Y satisfies the identity in law
Y £ A+BY, (8.47)

where Y and (A, B) are independent.
(b) Equation (8.47) has a solution, unique in distribution, which is given by

o m—1
vy =3 A, ] B (8.48)
j=1

m=1

The rhs of (8.48) converges absolutely with probability 1.
(¢) If we choose Yy LY asin (8.48), then the process (Yi)i>o is strictly

stationary.

Now assume the moment conditions
E|APP < o0 and E|BIP <1 for somep € [1,00)

(d) Then E|Y|P < 00, and the series in (8.48) converges in pth mean.

(e) If E|Yo|? < oo, then (Y;) converges to Y in pth mean, and in particular
E\Y;|P — E|Y|P as t — 0.

(f) The moments EY™ are uniquely determined by the equations

EY™ = kZ: (’Z)E (BFA™ FYEY*, m=1,...,[p],  (8.49)

where [p] denotes the integer part of p.

Proof. (a) The existence of the weak limit of (Y;) is shown in part (b) below.
Then it is immediate that

(At, Bi,Yie1) % (4,B,Y)
with (A4, B) and Y independent. This and the continuous mapping theorem
prove (a).
(b) Iterating equation (8.43) yields

t t t
Vi=Y[[Bi+> An ] B;» t>0. (8.50)
7j=1 m=1 j=m-+1

We write Y;(Yy) = Y when we want to emphasize the dependence on the
initial value Y;. Starting with different Yy and Yg’, we obtain

t
V() -Y(y) = (g - [[ B, teN. (8.51)

Jj=1
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The SLLN and (8.46) imply
1
¥21H|Bj| S Eln|B|l<0. (8.52)

=1

Hence

t
117
Jj=1

¢
= exp Zln|Bj| 0.
Jj=1

From this and (8.51) we conclude, that if Y;(Y}) %4 Y for some Yo, then the
latter relation holds for any initial value Y. In particular, if there is a Y such
that Y; %Y and Yo 2yis independent of (A, By)¢>1, then Y;(Y5) 2 Y,
and therefore Y in (8.47) is unique in distribution. Thus it remains to show
that (Y;) converges in distribution to Y given by (8.48).

Set Yy =0 and

t m—1
=Y An[[B;, teN (8.53)
m=1 j=1

Then .
V2 +% [[ B

j=1
which immediately follows from the discussion in Example 8.4.2. Note that
the Y;* are the partial sums of the infinite series in (8.48). So a sufficient
condition for Y;* to converge in distribution is a.s. convergence of the series
(8.48). Now, by the SLLN (8.52), and since m~'In" |A4,,| 3 0 (this is also a
consequence of the SLLN and of (8.46)),

m—1 m—1
1 1 —am
‘Am 1_[13]- <expqm Eln+|Am|+E Elln|Bj| <e
J= J=

for some a € (0,|EIn|B||) and sufficiently large m, with probability 1. Hence
the rhs in (8.48) converges almost surely. This proves (b).

The proof of (c) follows from the special structure of the process (Y;) for any
vector (Yi,...,Yiqn) for t,h € N, by a straightforward generalisation of the
following argument: by (8.47) we obtain for any t € N

(Y:,Yeq1) = (Y1, Apr + B Y?) (8.54)

u

= (Yo, A1 +B1Yy) = (Yo, V).
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Figure 8.4.4 Log-returns of the exchange rate $US/£ UK, January 2, 1980-May
21, 1996 (top, left) and the corresponding sample autocorrelations of this time se-
ries (top, right), of its absolute values (bottom, left) and of its squares (bottom,
right). The dotted lines indicate the 95% asymptotic confidence band for the sample
autocorrelations of wd Gaussian Tvs.

(d) For any rv Z set ||Z||, = (E|Z|?)"/?. Since ||A]|, < o0 and ||B]|, < 1, an
application of Jensen’s inequality ensures that (8.46), and hence Proposition
8.4.3(a)—(c) hold. Moreover,

o t—1
Bl <3 |4 [T B
t=1 7j=1

Hence E|Y|? < 0o and the series in (8.48) converges in pth mean.

(e) Y;" as defined in (8.53) converges a.s. to the rhs of (8.48). By (a)—(c) and
dominated convergence, E|Y* | — E|Y|P. Thus, for Yj = 0 a.s., E|Y;|? —
E|Y|?, using Y;(0) < Y/". For general Yj it follows from (8.51) that

oo
= 1Al D 1IBIl, ™ < oo
t=1

EY,(¥o) = i) < (EIBIP)' EYol” 50, t— 0.

(f) From (8.47) we conclude that (8.49) holds, whenever the occurring ex-
pectations exist, in particular for m = 1,...,[p]. The equations determine
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Figure 8.4.5 Simulated sample path of an ARCH(1) process with parameters A =
0.50001 and 8 = 1.9 -107°, the estimated parameters for the data of Figure 8.4.4,
and the corresponding sample autocorrelations of this time series (top, right), of its
absolute values (bottom, left) and of its squares (bottom, right). The dotted lines
indicate the 95% asymptotic confidence band for the sample autocorrelations of iid
Gaussian rvs.

EY™ successively for m = 1,..., [p]: the coefficient EB™ of EY™ on the rhs
satisfies
[EB| < B|B™ <1,

since ¢~ In E|B|? is a convex function in ¢ on (0, p] with non—positive values
at the endpoints. O

8.4.2 Basic Properties of ARCH Processes

In Chapter 7 we suggested linear processes for modelling financial data. They
may be appropriate as a first approximation, but often do not capture the
more detailed structure of financial data. Such data often exhibit the following
features:

(a) Almost no correlation in the data.
(b) Volatility changes in time.
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(c) Data are heavy—tailed.
(d) High correlation of the squares and absolute values of the data.
(e) High threshold exceedances appear in clusters.

Some of these features are not captured by linear processes. Various models
have been introduced aiming at properties (a)—(e). This section is devoted
to one particular class of such models. In 1982, Engle [219] introduced the
AutoRegressive Conditionally Heteroscedastic process of order p (ARCH(p))
for p € N. This class was extended by Bollerslev [77] who suggested an al-
ternative and more flexible dependence structure for describing log—returns,
the generalised ARCH or GARCH(p, ¢) model (p, g € N). It is defined by the
equations

Xt = UtZt, t e N, (855)

where (Z;) is a sequence of iid standard normal rvs and o; obeys the relation
P q
o} =B+ > NXZ +Y 607 ;. teN, (8.56)
i=1 j=1

with fixed non—negative constants 3, A; and ¢;. Notice that (X;) is a Gaussian
mixture model. In contrast to linear processes such as ARMA models, where
the noise is additive, here the noise (Z;) appears multiplicatively. The vari-
ance o2 of X;, conditionally on the past observations, is given by the
GARCH(p, q) equation (8.56). Thus the conditional variance o2 depends lin-
early on the past via the earlier squared log—returns X? ; fori = 1,...,p and
the conditional variances o2 ; for j =1,...,¢. It means that high volatility
may result from large absolute log—returns | X;_;| or from large volatility o;_;
in preceding time periods.

Fitting these models to financial data has been a major issue of economet-
rics during recent years. However, this is not the topic of this section and we
refer to the book by Harvey [319], the review papers by Bollerslev [77], Shep-
hard [578], and the vast amount of references therein; see also Section 7.6.
Another book in this context, also containing interesting case studies, is Tay-
lor [616]. A textbook treatment on the statistical analysis of financial time
series, including various sections on (G)ARCH processes is Mills [464].

We fitted an ARCH(1) process to the exchange rates presented in Figure
8.4.4. We obtained parameter estimators X = 0.50001 and B =1.9-107° by
standard maximum likelihood estimation. Figure 8.4.5 shows a simulated
sample path of an ARCH(1) process with the estimated parameter values.

We concentrate, however, rather on probabilistic properties implicated
by (a)-(e) above, and in particular we study the upper tail of the one—
dimensional marginal distribution. The extremes of certain stationary se-
quences are particularly tractable by the methods presented in Sections 4.4,
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5.3 and 5.5. The behaviour of the ARCH(1) process in its extremes is also
well understood and might serve as an indicator of the features of the more
general class of GARCH(p, ¢) models; see Section 8.4.3.

For ¢ = 0 and p = 1, (8.55) and (8.56) reduce to the ARCH(1) process,
which is defined by the equations

Xy =/B+AX?, Z;, teN, (8.57)

for some initial rv Xy independent of (Z;), parameters 3 > 0 and A > 0.
It is a Markov process, given by the explicit autoregressive structure (8.57).
By construction, X;_; and Z; are independent for every ¢t € N, and X; are
mean-—zero, uncorrelated rvs provided EX? < o0o.

For deriving probabilistic properties of the ARCH(1) process we will make
extensive use of the fact that the squared ARCH(1) process (X?) satisfies the
stochastic recurrence equations

XP=(B+A\X} )2} =A+B/X},, teN, (8.58)
where
(A, By) = (BZZ,\Z}), teN. (8.59)

Assuming that X, is independent of (Z;) and setting ¥; = X2, we are im-
mediately in the framework of Section 8.4.1. We intend to apply Proposition
8.4.3 to the sequence (X?). This requires a check of the assumptions of that
result. The following elementary lemma serves that purpose. In combination
with Proposition 8.4.3 it will become the key to the results in Sections 8.4.2
and 8.4.3.

Lemma 8.4.6 For a standard normal rv Z and X\ € (0,2€7), where v =
0.5772 is Euler’s constant, define

h(u) = E(AZ®H)", u>0.

Then
(2M\) 1

h(u) = \/7_rf'<u+§), u>0. (8.60)

The function h is strictly convex in w, and there exists a unique solution
Kk = Kk(A\) > 0 to the equation h(u) = 1. Moreover,

>1, A€ (0,1),
k(AN =1, A=1, (8.61)
<1, Ae(1,2¢e7),

and
E[(AZ*)*In(AZ*)] >0 and E[In(AZ%)] <0. (8.62)
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o] kappa

Figure 8.4.7 One possible situation for h(u) as described in Lemma 8.4.6.

Proof. Notice first that h(0) = 1 for all A. Furthermore, h has derivatives of
all orders. In particular,

W) = E[(\Z%)"n(\Z?)] (8.63)
R'(w) = E[(AZ*)“(In(A\Z%))*] > 0. (8.64)

(8.63) implies that

W(0) = E[n(\22)] — A+ ElnZ?
= 2N +I"(1)/I(E) = In(2\) =7 —2In2 (8.65)
= InA—In2—7v < 0

for 0 < A < 2¢", where v is Euler’s constant. (8.64) implies that h is strictly
convex on Ry . By symmetry of the normal density and partial integration,
we obtain

u DU >
h(u) = E (\Z%)" = / a?te " 2dy

V2T ) 0o
AU o

= 2 2y) 426 Vg
N /0 (2y)* /" Vdy
(20)* 1

= I Z
NG u+2 )

giving (8.60). Furthermore,
h(u) > E[(AZ%)"I{xz2503] > 2“P(AZ% >2) w00, u— 0.

The latter fact, together with h(0) = 1 and convexity of h implies that there
exists a unique £ > 0 such that h(k) = 1. Furthermore, h'(k) > 0, giving
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together with (8.63) and (8.65) the inequalities (8.62). Since h(1) = A, (8.61)
follows by a monotonicity argument. O

The value k = k(X) is crucial for the tail behaviour of the marginal distribu-
tion, the existence of moments and the extremal behaviour of the ARCH(1)
process. The equation h(u) = 1 cannot be solved explicitly, but numerical
solutions can be found in Table 8.4.8.

/\| 0.1 03 05 07 09 10 15 20 25 30 35
m|13.24 418 237 159 115 1.0 .54 .31 .17 .075 .007

Table 8.4.8 Values of k = k() for A € (0,2¢e7).

Now we are well prepared to apply Proposition 8.4.3 to (X?).

Theorem 8.4.9 (Properties of the squared ARCH(1) process)

Let (X;) be an ARCH(1) process given by (8.57) for fized f > 0 and X\ €
(0,2€7), where v is Euler’s constant, and assume that Xo is independent of
(Z4).

(a) The process (Xy) is strictly stationary if
e m—1
d
xp=5Y 2z, I[ (\z)) . (8.66)
m=1 7j=1

Moreover, every strictly stationary ARCH(1) process (X¢) has marginal
distribution
d
Xt = |X0| To,

with X2 satisfying (8.66), and ro is a Bernoulli rv with P(ro = +£1) = 0.5,
independent of | Xo|.

(b) Assume that (X;) is strictly stationary and write X = Xo, Z = Z;. Let
Kk be the unique positive solution of the equation h(u) = E(AZ?)* = 1.
Then E(X?)* < oo for 0 < u < k. Denote by p the largest integer strictly
less than k. Then form =1,...,p,

m—1
EX*™ = (1-EQ\Z*)™)'EZ*™ )" @?) B EX2F < o0,
k=0
(8.67)

Proof. (a) Set Y; = X?, A, = $Z? and B, = \Z?. By (8.62), Eln" |[A]| < 00
and Eln|B| < 0. An application of Proposition 8.4.3 yields that (Y%) is
strictly stationary with unique marginal distribution (8.66). An argument
similar to (8.54) proves that (X;) is also strictly stationary.
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Now assume that (X;) is strictly stationary. Then, by Proposition 8.4.3, X2
necessarily satisfies (8.66). Since X is symmetric, we have the identity in law

d
Xy = |Xt| To

for a symmetric Bernoulli rv ry independent of X;. This concludes the proof

of (a).

(b) By Lemma 8.4.6, the function h(u) is strictly convex and satisfies h(0) =

h(rx) = 1. Hence h(u) < 1 for 0 < u < k. According to Proposition 8.4.3(d,f),
E(X?)" < oo for u < k and X? £ (3 + AX?2)Z2. Then (8.67) follows from
(8.49). O

Corollary 8.4.10 Let (X;) be a stationary ARCH(1) process with parame-
ters 8 >0 and X € (0,1). Then the following relations hold:

(a) BX? = BJ(1- ).
(b) If N2 < 1/3, then EX* < 00 and corr (X2, X3) = X' for all t € N.

Proof. (a) Choose m =1 in (8.67). Then from h(1l) = A < 1,
EX? = 61— B(AZ2) " = B(1— h(1) "' = §/(1 - N).

(b) By Theorem 8.4.9, EX* < oo for 0 < A\? < 1/3. We obtain as in (a)

EX*=(1-NEZY) 'EZ*(3* + 2\3EX?) = - iﬂ;Q % .
Iterating the ARCH(1) equation yields
2 42 By
EXPX§ = 1 ];)A + N EX?

(EX?)? 4+ Avar(X?).
This concludes the proof. a

Remarks. 1) By now we have realised that A is a crucial parameter of the
ARCH(1) process (8.57):

— for A =0, (X;) is normal noise,

— for A € (0,1), (X¢) is stationary with finite variance,

—for 1 < )\ < 27 & 3.56856, (X;) is stationary with infinite variance; see
Theorem 8.4.12.
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Figure 8.4.11 Sample autocorrelation functions of two different simulated sample
paths of an ARCH(1) process with A\ = 0.7. The contrast between the two graphs in-
dicates that the sample autocorrelations do not converge in probability to constants.

2) We anticipate at this point that EX* = oo for A\?> > 1/3. This follows
from h(2) =1 for A = 1/v/3 ~ 0.577 together with (8.68) below. In this case
the notion of autocorrelation does not make sense for the squared ARCH(1)
process. Nevertheless, the sample autocorrelations px2(t) are well defined for
X2,...,X2. In contrast to linear processes (see Theorems 7.3.1 and 7.3.2) we
are not aware of a consistency result for pyz(t) which explains its behaviour
for large n.

3) For A\? < 1/3 it is interesting to observe that the squared ARCH(1) process
has the same autocorrelation structure as an AR(1) process X; = \X;—1 + 7,
t € Z;see Figure 8.4.15. For \? > 1/3 this is no longer true; see Figures 8.4.11
and 8.4.16. d

In the following result we describe the tail of the marginal distribution of an
ARCH(1) process. It gives a precise meaning to the statement “light—tailed
input causes heavy—tailed output”, a fact already observed by Kesten [379] in
the general context of stochastic recurrence equations. The renewal argument,
given below is due to Goldie [272] who also calculated the precise constant
(8.69). Theorem 8.4.12 opens the door to extreme value theory for ARCH(1)
processes; see Section 8.4.3. Goldie proved the following result for general
perpetuity models as introduced in Section 8.4.1. For simplicity we restrict
ourselves to the ARCH(1) case. A special property of the normal law (spread—
out) allows us to shorten the renewal reasoning in Goldie [272] for the specific
case we deal with.

Theorem 8.4.12 (The tail behaviour of an ARCH(1) process)

Let (Xy) be a stationary ARCH(1) process with parameters 3 > 0 and A €
(0,2€7), where v is Euler’s constant. Let k > 0 be the unique positive solution
of the equation h(u) = 1. Then
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P(X>z)~ gxﬁ” , & =00, (8.68)

where
_ E[((B+AX?)" — (0X?)")(2°)"]
‘= kE[(A\Z2)%1n(\Z2?)] € (0,00), (8.69)

for a standard normal rv Z, independent of X = X.

Before we can prove this result we have to ensure that the constant (8.69) is
well defined. Indeed, its numerator is the expected difference of two quantities
each of which having infinite expectation.

Lemma 8.4.13 Under the assumptions of Theorem 8.4.12,
0<E[(B+AX?)" — (A X?)"] < 00. (8.70)

Proof. For x < 1 the function (8 + A\z?)® — (Az?)” is bounded away from
0 and oo. Thus (8.70) follows. For x > 1, the function f(z) = 2" is strictly
convex on R and hence

Br(Az?) ™t < (B4 Ax?)F — (A2?)® < Br(B + Ax?) L.

This implies that

0 < BRE[AX?)"'] < E[(B+AX%)" - (AX*)"]]
< BRE[(B+AX*)",
the last expression being finite by Proposition 8.4.9(b). O

We also need the following elementary tool. Notice that this statement is
trivial if EY? < oo.

Lemma 8.4.14 Let X > Y a.s. be non—negative rvs. Then
/ (P(X>t)—P(Y >t)t* tat=6"E[X°-Y°] , §#0,
0

for the rhs finite or infinite.
Proof.

5/ (P(X >t) —P(Y >t) t° tat = 5/ PY <t<X)t' lat
0 0

X

= 6E/ O tdt
Y
X(S

= E[X°-Y]. O
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Figure 8.4.15 Sample path of the ARCH(1) process X = 1/0.3X2 | +0.75 Z,

and the sample autocorrelations of the corresponding squared ARCH process (top)
and a sample path of the AR(1) process X¢ = 0.3X:—1 + Z¢ and its sample autocor-
relations (bottom).
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Figure 8.4.16 Sample path of the ARCH(1) process X¢ = 1/0.9X? | +0.75 7,
and the sample autocorrelations of the corresponding squared ARCH process (top)
and a sample path of the AR(1) process X = 0.9X:—1 + Z¢ and its sample autocor-
relations (bottom).
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Figure 8.4.17 Simulated sample path of an ARCH(1) process with parameter A =
2.0 and the corresponding sample autocorrelations of this time series (top, right),
of its absolute values (bottom, left) and of its squares (bottom, right). The dotted
lines indicate the 95% asymptotic confidence band for the sample autocorrelations
of 1ud Gaussian rvs.

Proof of Theorem 8.4.12. Both the denominator and the numerator in
(8.69) are positive in view of (8.70) and (8.62). Hence ¢ € (0, c0).

We proceed with the proof of (8.68). Define the random walk (.S,,) generated
by the iid sequence (In(AZ2)):

So=0,8,=> Wm(\Z}) and Io=1, I, =e% =][(AZ}). (8.71)
t=1

t=1
Consider the telescoping sum
P(X?>e€") — P (X1, > ")

n—1
= Y (P(X*Iy > €") = P (X* ITpy1 > €7))
k=0
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= S (E[P(X?M, > e | )] — E [P (\Z2,, X2 [Ty > e | IT}))])

=0

k
n—1
/ (P(X?>e" ) =P (AZ°X?>e"Y))dP (Sk <) .
=0 'R
Introduce the measures v, by

dv,(z) = Ze”dP (Sk<z), mneN, (8.72)
k=0

and define
oa) = e (P (X2 > ) —P(\ZX*>e)) . wel
on(x) =P (X2 I, > e””) , R, mneN,

and
r(z) = " P(X? > ).

Notice that X? > A\Z2X2 | a.s., and hence g is non—negative. Now we obtain

r(xr) = e"P(X?%>eY)
- ey / (P(X?> e V) = P(AZ2X2 > 5 )
dP (S, < y) + dn(x)

_ / =) (P (X? > ¢"Y) - P (AZ2X? > " V)
R

n—1

"V " dP (Sk <y) + 0n(x)
k=0

/ o — P)dvmr(5) + 62 (2)
R

= g*xVn_1(7) +0n(x). (8.73)

For the proof of (8.68) one needs to study the behaviour of r(z) as z — oo.
For this reason we will apply the key renewal theorem in a similar fashion to
that in the proof of the Cramér—Lundberg theorem (Theorem 1.2.2).

Define the measure n by

dn(z) = e"*dP (In(A\Z°) < ) .

Notice that, by definition of &,
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/dn(x) = / e™dP (In(A\Z?%) < x) = E(\Z*)" = 1.
R R

Hence n defines a probability measure on R (obviously not lattice) with mean
(see (8.62))
w(n) = E[(AZ*)"In(AZ?)] > 0.

Let v be the renewal measure corresponding to 7, i.e.

(o)

dv(z) = Z dn**(z) = Ze”dp (Sp <x).

k=0 k=0

Notice that v, = >_,_, n** for n € N, where v, is defined in (8.72).
From Lemmas 8.4.13 and 8.4.14 we conclude that

g is integrable, it is bounded and lim, _,, g(x) = 0. (8.74)
Since u(n) > 0, the renewal measure v has the property
gxv(x) <oo, x€R.
Moreover,
g*vn_1(x) T g*xv(z), =z€eR. (8.75)

Furthermore, by (8.62), EIn(AZ?) < 0. Thus the random walk (S,) has a
negative drift and

lim 6,(z) = lim e"*P(X2%e" > %) =0

T —r0o0 T —r0o0

for every x € R. This together with (8.75) and (8.73) implies that r satisfies

r(z) = 1i_>m (g% Vn_1(x) +0,(x)) =g*v(z), TER.
The function g satisfies (8.74) and 7 is absolutely continuous. The latter two
facts allow us to apply Satz 3.1.7 in Alsmeyer [8], which in turn, together
with Lemma 8.4.14, leads to the relation

. _ 1 _ 1 2\ _ 2y5)(72)K] = ¢
lim r(z) = e /Rg(y)dy —u(n)ﬁE[((ﬂ'F)\X )" = (AX?)")(Z2%)"]

with ¢ as in (8.69). Hence by the definition of r we conclude that P(X? > z)
~ cx~ ", and by symmetry of X,
1
P(X>Jc):EP(X2>502)~§3U_2"7 T — 0. O

Remark. 4) The literature on ARCH and its various generalisations abounds



8.4 Perpetuities and ARCH Processes 473

Figure 8.4.18 The Hill estimator, see Section 6.4.2, for the data from Figure 8.4.4
(top) and for the ARCH(1) sequence of Figure 8.4.5 (bottom). For the latter we
obtain from Table 8.4.8 the value k = 2.365, hence the tail index 2k = 4.73, which
1s indicated by a straight line. See also Theorem 8.4.12.

with often vague statements on stationarity, moment conditions and tail be-
haviour. We therefore consider it important to prove Theorem 8.4.12 in detail,
especially as the main ideas for the Pareto asymptotics were made clear some
time ago in Kesten [379]. In the latter paper it was stressed that (see (8.66))

0o m—1
X323 (6zn) IT 02)
7j=1
has a tail comparable to that of
oo m—1 00
\ 8z2) I] A\z)) =\ (82,) e,
m=1 j=1 m=1

and the tail of the latter quantity is determined in part by max,>o S,. Since
S, has a negative expectation, results for the distribution of a random walk
with negative drift by means of defective renewal theory apply (cf. Feller
[235], Section XII.5, Example c), giving the Pareto-like tails of X. O

8.4.3 Extremes of ARCH Processes

In this section we investigate the extremal behaviour of an ARCH(1) process
(X¢) with parameters 8 > 0 and A € (0,2e"), where v is Euler’s constant.
Recall from (8.68) that P(X > z) ~ cx 2%/2. In the case that (X;) is
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an iid sequence such that X; L x , we conclude from Theorem 3.3.7 that
X € MDA(®,). In particular,

lim P (nfl/(%) M, < x) — exp {—faf?”} 7 (8.76)
n—oo 2
where, as usual, M, = max(Xy,...,X,). It is now natural to ask:

Does the strictly stationary ARCH(1) process have similar extremal
behaviour as an iid sequence with the same marginal distribution?

A full answer to this question was given in de Haan et al. [303], where also
the case of general perpetuities was discussed.

As in the previous sections, it is convenient first to study the extremes of
the squared ARCH(1) process (X?). The following result is based on a funda-
mental theorem by Rootzén [551] on maxima of strictly stationary sequences,
an application of which depends on the verification of the condition D(u,,)
for u,, = xn~'/*; cf. Section 4.4. The ARCH(1) process is strong mixing (see
Diebolt and Guegan [182]) which entails D(uy,).

Recall from Chapter 5 the basic notions of point process theory, and
from Section 8.1 the definition and interpretation of the extremal index of
a stationary sequence. As in the previous sections we write X = X, and
7 =17.

Theorem 8.4.19 (The extremes of a squared ARCH(1) process)
Let (X2) be a stationary squared ARCH(1) process and MP =
max(X2,...,X2). Then

li_)m Pn='*M® < z) = exp{—c0Pz"}, x>0, (8.77)

where K is the positive solution of the equation E(NZ?)* =1, c is defined by
(8.69) and

2) _ - - 2 —1), —r—1
(2 = ,wv/l P (rﬁl;),i(H()\Zt) <y > Y dy . (8.78)

- t=1

For x>0, let

N]SQ) () = Z Snfli(')I{Xi2>xn1/"}
=1

be the point process of exceedances of the threshold xn'/* by X32,..., X2
Then
N®? 4 N2

n 5 n— oo,

in M,((0,1]), where N® s o compound Poisson process with intensity
AP =5 and cluster probabilities
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(2) 0/(62) B el(ci)l
where
0,(62) = /-e/ P (card {n eN: H()\Zf) > y_l} =k- 1) y " ldy .
1 t=1
In particular, 9?) =03, O

Remarks. 1) Recall from Section 8.1 the definition of the extremal index of
a strictly stationary sequence. A comparison of (8.76) and (8.77) shows that
6(2) is nothing but the extremal index of the squared ARCH(1) process.

2) An alternative expression for 0122) can be obtained in terms of the random
walk

So=0 , S,=) (A7) (8.80)
t=1

which played a crucial role in proving the tail estimate of Theorem 8.4.12.
Write
=Ty >2Th>2T> > -

for the ordered values of the sequence (S,). Naturally, T} = sup,,~qSn < 00
a.s. since (S,) is a random walk with negative drift; see (8.62). We observe

that
card {n EN: H()\Zf) > yl} = Z[{Sn>71ny} =k-1

t=1 n=1
if and only if
Tp—1 >—-Iny and Tp < —Iny.

This implies that

o = [T (P@er >~y - P@> —y)y Ny
1

/0 (P(exp{kTi1} > ) — Plexp{sTi} > ¢))dy  (8.81)

= FElexp {kmin(T;_1,0)} — exp {k min(T%,0)}] .
In particular, #(?) = 9§2) =1— Eexp{xkmin(71,0)}. Plugging the values 91(3)
into formula (8.79), one can then calculate the cluster probabilities 71'1(62). O

With Theorem 8.4.19 we have the extremes of (X?), hence of (|X;|) under
control, but how can we use this knowledge for the extremes of the ARCH
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process itself? We observe by the symmetry and iid properties of (Z;) that
(|X¢]) and (r¢) = (sign(Xy)) = (sign(Z;)) are mutually independent and

(Xe) = (rel Xel) (8.82)

where P(r; = £1) = 0.5. Hence the partial maxima of (X;) and of (r;|X:|)
have the same distribution. Thus, in order to study exceedances of the high
level threshold u > 0 by (X}), we may try to use the known result for (| X¢|),
but we would have to rule out exceedances of the form {X; < —u}. This is
the basic idea of the derivation given below. For the formulation of the main
result on the extremes of an ARCH(1) process we also need the probability
generating function of the cluster probabilities (7r,(€2)) defined in (8.79):

T3 (u) = Zﬂ',(f)uk .
k=1

Theorem 8.4.20 (The extremes of an ARCH(1) process)
Let (X¢) be a stationary ARCH(1) process. Then
lim P (n_l/(Q“)Mn < x) = exp {—00(2) (1 - 17® (0.5)) x_%} . (8.83)

n—r00

Further, for x > 0 let
Nn() = an*li(')[{Xi>xn1/(2"‘)}
i=1

be the point process of exceedances of the threshold xn'/(?%) by Xi,..., X,,.
Then

N, LS N, n— oo,
in M,((0,1]), where N is a compound Poisson process with intensity cfz 2~
and cluster probabilities

1 >
T = (1 - H<2>(o.5)) > <7:> @2 keN, . (8.84)

m=k

Remark. 3) A comparison with (8.76) shows that # = 202 (1 — I71(*)(0.5))
is the extremal index of the process (X;). O

Sketch of the proof. We restrict ourselves to explain how the moment
generating function occurs in the limit distribution of the maxima. For more
details see de Haan et al. [303].

Set u,, = znt/(2%) for z > 0, let Nr(f) be the point process of the exceedances
of u?2 by X2,...,X2 and let 1 <7 <7 < --- < n be the times when the
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Figure 8.4.21 Simulated sample path of an ARCH(1) process with parameters A =
0.5 (top) and A = 0.9 (bottom). In both cases 3 = 1. We conclude from the two
graphs that clusters of large values become more prominent for larger values of .
This is in accordance with Table 8.4.23: the extremal index 0 = O(\) becomes the
smaller the larger X is. Small values of 0 indicate that there is more dependence in
the data; see Section 8.1.

exceedances occur. Now we use the ideas of the discussion before Theorem
8.4.20, in particular (8.82):

P(M, < u,)

- P (O {NY(LQ)(OJ] =k, X, < ~tn,..., X, < —un}>

k=0

- zn:P (N,§2>(0,1] k= =1, = _1)
k=0

_ - (2) _ —k
I;)P(Nn (0,1] k)2

(o)

- P (N<2> (0,1] = k) 9k (8.85)
k=0
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where N?) is the limit compound Poisson process given in Theorem 8.4.19
with x replaced by z2. Hence we may write

N® = "&er, ,
k=1

where the iid cluster sizes & are independent of the points I of the under-
lying homogeneous Poisson process N(?) with intensity A = c8()z—2%. We
also write

7 k)y=P&+---+&n=k), meN key.

Conditioning on the Poisson process N(2), the rhs in (8.85) can be trans-
formed as follows:

i P (N<2) (0,1] = k) 9~k

k=0
oo k N _
- Y3 (N@) (0,1] = m) P (N@) 0,1] = k| N®(0,1] = m) o=k
k=0 m=0
oo k e
NAm
_ - mx —k
= Z(Ze e (k)>2
k=0 \m=0
0o 0o ~X
_ mk —k —A
- X (T ) X
m=0 \k=m
0o N’Xm
_ m N
= ) (I(05)"e —
m=0
= exp {—X(l - H(0.5))} .
Inserting A = ez 2% gives (8.83). O

In the rest of this section we try to answer the question:

Given that 3 and \ are known, is there an easy way of calculating, at least
approzimately, the quantities 62 and 9,(62) ¢

An answer is offered by the following lemma.

Lemma 8.4.22 Let E,; be an exponential rv with parameter k, independent
of the random walk (S,) defined by (8.80). Then
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P2 = 91(:) =P <m§i( S, < —E'K) , (8.86)
9 = p (Z Iis,>py =k — 1) . k>2. (8.87)
n=1

Proof. We have

E {P (maXSn > —F,.
n>1

=)

= Ii/ P (max In(AZ}?) > —z) e “dz
0

n>1
- t=1

= /-@/ P (mgic In(\Z?2) > —1ny> y~ "Ly
1 "= t=1

= & Plmax | |AZ?) >yt )y " ld
/1 <n>1tH1( >y t)y y

= 1-69 .

This proves (8.86). Using the argument in Remark 2 above, the proof of (8.87)
is similar. O

This lemma suggests simulating independent replications of (S,) and, inde-
pendently, exponential rvs E,, and then counting the events {S,, > —E.}
for each replication separately. Since the random walk has negative drift,
the number of such exceedances is finite with probability 1. Practical prob-
lems (for instance how long one has to run the random walk and how many
replications are necessary) are discussed in de Haan et al. [303].

Based on these considerations, natural estimators for #2) and 9,(62) are

N
~ 1
6 = 1- Zf{max@sg,%E}j)} ,
=1
1 N
(2
ekg ) = N ;[Aik7

where

Ay = {i[gi :k—l} . Gy = {5,(;) > —Efj)} ,
n=1
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and ((S,(f))7 E,(f)) are N iid replications of ((S,), E«). The corresponding 6—
and m—quantities for the ARCH(1) process can now be calculated from (8.79)
and (8.84). This idea has been used to generate Table 8.4.23 taken from
de Haan et al. [303]. It is based on N = 1000 Monte—Carlo simulations of
((Sn), Ex), each with maximal length n = 1000 of the random walk S,,.
AN 6 | w0 ®m R W T

0.1 0.999 | 0.998 0.002 0.000 0.000 0.000

0.3 || 0.939 | 0.941 0.054 0.004 0.001 0.000

0.5 || 0.835 | 0.844 0.124 0.025 0.006 0.001

0.7 || 0.721 | 0.742 0.176 0.054 0.018 0.007

0.9 | 0.612 | 0.651 0.203 0.079 0.034 0.016

0.95 || 0.589 | 0.631 0.203 0.088 0.040 0.019

0.99 || 0.571 | 0.621 0.202 0.088 0.042 0.021

Table 8.4.23 The estimated extremal index 6 and the cluster probabilities
7, of the ARCH(1) process depending on the parameter \.

For the data of Figure 8.4.4 we estimated X = 0.5. Hence we can read
off the estimators # = 0.835 and (74 )ren immediately from Table 8.4.23.
In Section 8.1.3 we present other methods for estimating 6. They are also
applied to the data used for Figure 8.4.4.

Notes and Comments

A recent paper on perpetuities mainly looking at light—tailed behaviour is
Goldie and Griibel [273]; their work is partly motivated by probabilistic se-
lection algorithms in the style of quicksort and by shot—noise processes with
exponentially decaying after—effect. A nice summary of the basic extreme
value theory for ARCH processes is to be found in Borkovec [80]. The lit-
erature on ARCH—-type processes is huge and the most important survey
papers and relevant textbooks were already mentioned at the beginning of
Section 8.4.2. Recently, within the finance community the search for alterna-
tive models from the large ARCH family has been spurred by the increasing
availability of high—frequency data. New names have appeared on the ARCH-
firmament; one example is the HARCH process as a model for heterogeneous
volatilities. For a description of the latter see Miiller et al. [469]. The pro-
ceedings [513] contain a wealth of material on the econometric modelling of
high—frequency data. A further extension of the GARCH(p, ¢) model is the
so—called ARCH-in—mean or ARCH-M model; see Kallsen and Taqqu [366],
where also an option pricing formula in ARCH-type models can be found.
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The work on extremes of Markov chains with applications to random
recurrence equations has been extended by Perfekt [491].

In order to calculate (or approximate) #(*) from equation (8.86) the dis-
tribution of the maximum of a random walk is required. This is a problem
well-studied in risk theory for estimating the Lundberg exponent; see Chap-
ter 1. Alternatives to the simulation method leading to Table 8.4.23 exist.
A numerical method based on the fast Fourier transform has been suggested
by Griibel [287] and applied to the estimation of #2) by Hooghiemstra and
Meester [331].

8.5 On the Longest Success—Run

The following story is told in Révész [539]. It concerns a teaching experiment
of T. Varga related to success—runs in a coin tossing sequence.

A class of school children is divided into two sections. In one of the sections
each child is given a coin which they throw two hundred times, recording the
resulting head and tail sequence on a piece of paper. In the other section the
children do not receive coins, but are told instead that they should try to write
down a “random” head and tail sequence of length two hundred. Collecting
these slips of paper, he then tries to subdivide them into their original groups.
Most of the times he succeeds quite well. His secret is that he had observed
that in a randomly produced sequence of length two hundred, there are, say,
head runs of length seven. On the other hand, he had also observed that most
of those children who were to write down an imaginary random sequence are
uwsually afraid of writing down runs of longer than four. Hence, in order to
find the slips coming from the coin tossing group, he simply selects the ones
which contain runs longer than five.

The experiment led T. Varga to ask:
What is the length of the longest run of pure heads in n Bernoulli trials?

The second story along the same lines comes from a discussion with an am-
ateur gambler on the topic of the game of roulette. He claimed that to-
gether with friends (gambling colleagues) they had recorded the outcome of
all roulette games for a particular casino over a period of three years. Obvi-
ously, they were after a pattern they could then use to beat the system. He
told us that one evening they recorded 16 times red in a row! Clearly this
was at the odds with the assumption of randomness in roulette! Or is it not?

Both examples above concern the question of the longest sequence of
consecutive successes in a dichotomous experiment. Below we give a mathe-
matical analysis of the problem.
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We consider a very simple model: the rvs X, X, X5, ... are iid Bernoulli
with success probability p, i.e.

for some p € (0,1). A run of 1s of length j in Xi,...,X, is defined as a
subsequence (Xit1,...,Xit+;) of (X1,...,X,) such that

Xi=0, Xipn==Xiy;=1, Xipj41 =0,

where we formally set Xg = X,,41 = 0. We try to answer the following
question:

How long is the longest run of 1s in Xq1,...,X,?

An alternative formulation is given via the random walk (S,) generated by
(X,):

So=0, S,=X;+---+X,.
Let

) = i — S <j<
In(G) = max (Sit; —S5), 1<j<n,

and Z, be the largest integer such that I,,(Z,) = Z,,. Then Z,, is the length
of the longest run of 1s in X1,..., X,.

Example 8.5.1 (Longest run in insurance)
Let Y; be iid rvs denoting the claim sizes in a specific portfolio, and u > 0 a
given threshold. Introduce the Bernoulli rvs

Xi:I{Y,->u}7 1217

with success probability p = P(Y; > u). The longest run of 1s in the Bernoulli
sequence (X;) corresponds to the longest consecutive sequence of exceedances
of the threshold u. Instead of these particular X; we could consider any se-
quence of Bernoulli rvs of the form (Ix,ca}) for any Borel set A. A typical
example would be to take the layer A = (Dy, D5] as in the reinsurance Ex-
ample 8.7.6. O

Example 8.5.2 (Longest run in finance)

The standard Cox—Ross—Rubinstein model in finance assumes that risky as-
sets either go up with probability p or down with probability 1 — p. The
resulting binomial tree model serves as a skeleton for many of the more ad-
vanced models including the Black—Scholes model. A run of 1s in this set—up
would correspond to consecutive increases in the price of the risky asset. For
a description of these standard models in finance see Baxter and Rennie [53],
Cox and Rubinstein [135], Duffie [190], Hull [346] or Karatzas and Shreve
[369]. O



8.5 On the Longest Success—Run 483

In the following we collect some useful facts about the length of runs of 1s in
a sequence of iid rvs. We start with a precise distributional result.

Example 8.5.3 (The precise distribution of Z,, for a symmetric random
walk)

A symmetric random walk corresponds to p = 0.5. Székely and Tusnady
[610], see Révész [540], p. 18, gave the precise distribution for the largest
integer Z,, such that Z,, = I,,(Z,) for a symmetric random walk, by combi-

natorial methods. For each j =1,...,n,
1R i\ (n—kj
P(Z,<j)=— —1)k . 8.88
@n<i=5 3 X () () (5.59)

Formula (8.88) is of restricted value since only for small n can it be applied
in a reasonable way. The computer time to evaluate formula (8.88) increases
dramatically with n. Also, numerical approximations of the binomial terms
via Stirling’s formula or other methods do not give satisfactory answers. [

In the rest of this section we apply asymptotic methods to describe the growth
of Z, as n — oo.

8.5.1 The Total Variation Distance to a Poisson Distribution

Since the random walk (S,,) consists of binomial rvs a Poisson approximation
argument seems appropriate. The following can be found in Barbour, Holst
and Janson [43], pp. 244-249. These authors apply the celebrated Stein—
Chen method to derive bounds on the total variation distance between the
law Fyy, of

n
W; = E :I{Xi:07Xi+1:"':Xi+j:17X1'+j+1:0}
=1

and the Poisson distribution with parameter
A =ng’p’ = EW;.

Notice that W; counts all runs of 1s with length j. The total variation distance
between two distributions F; and F5 on the non-negative integers is given
by
1 oo
drv (Fi, o) = sup |FL(4) - Ba(4)] = 5 3[R (kD - Bk}
ACNp 2 k=0

In particular, an upper bound for drv (Fyy,, Poi (\)) provides also an estimate
of the individual distances
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= k2o

‘pm —b)—e

The following is formula (5.1) on p. 244 in Barbour et al. [43]:
drv (FW,7POZ(nq2p7)) < ((2] - 1)q + 2)qu y n> 2] +2.

Thus, in particular,

/\Ic
sup |P(W; = k) —e > =
k>0 k!
/\Ic
= sup P(There are precisely k runs of length j) —e? T
k>0 !
< (25 - Da+2)ap’ . (8.89)

This estimate provides useful information when the rhs ((2j — 1)q + 2)gp’ is
small compared with the Poisson probabilities on the lhs.

Example 8.5.4 (Continuation of Example 8.5.1)
In Example 8.5.1 we considered the largest number of consecutive exceedances
of a threshold u by iid rvs Y;. If we increase the threshold v = u,, with n in
such a way that

nP (Y; > u,) =np, - 7 € (0,00),

then the Poisson approximation of Proposition 3.1.1 yields
P (max(Yy,...,Y,) <wu,) —e 7. (8.90)

Set
Xi=Iyisuy, i=1,2,...,

where we suppress the dependence of the X; on n. From (8.89) we see that
for k>1

P(W, =k)

= P (There are precisely k consecutive exceedances of u,, of length j
by Yi,..., Yotjt1)

(rP"=)" (1 +0(1))
k!
(7'3'71’”1)]c (1+0(1))
k!

= exp{-m(L+o(1))p’ '} +0(v)

exp{—Tj(l +0(1))n*j+1} +0 (n*j)

= O(n*jﬂ), 7>2, n— .
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This result might be surprising at the first sight. However, it tells us only that
the probability of a fixed number of runs of 1s in X,..., X4 41 with the
same length j > 2 is negligible for large n. Notice that we can also evaluate
the probability P(W; = 0), i.e. the probability that there are no consecutive
exceedances of u,, of length j by Y7,...,Y, ;1. It is not difficult to see that

PW;=0)=14+0n"7),j>2, PWi=0)=e " +o0(1),

which is an interesting complement to (8.90).

If we assume that A = npJ, converges to a positive constant then (8.89) gives

a reasonable approximation by a Poi()\) law, with rate of convergence n—!.

A Poisson approximation to the distribution of W; for p, — 0 can also
be obtained by point process methods; see Chapter 5. Introduce the point
processes

n
Na() = E :Snfli(')[{yiéun Yit1>Un e Yigj > Un Yigjpi<uny 0 0 > 1,
=1

on the state space E = (0, 1]. We suppress the dependence of V,, on j. Notice
that N, is very close in spirit to the point process of exceedances used in
extreme value theory; see Section 5.3. Similar methods also apply here to
show that IV,, converges to a Poisson random measure. We have

(N, (0,1] =k} ={W; =k}, k>0,

which links N,, with W;. Assume that np/, — 7 € R, . Then it is not difficult
to verify that

EN,(a,b] > 7(b—a), P(N,(B)=0)—e 7, n— oo,
for any 0 < a < b < 1, any finite union B of disjoint intervals (¢, d] C (0, 1].
Hence, by Kallenberg’s theorem (Theorem 5.2.2),
N, 5N in M,y((0,1]),

where N is a homogeneous Poisson process on (0, 1] with intensity 7. Hence

P(N,(0,1]=k) = P(W; =k) > e " k>0,

H )

in particular drv (Fyw,, Poi(7)) — 0. The latter follows from Scheffé’s lemma;
see Williams [643], Section 5.10. O
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8.5.2 The Almost Sure Behaviour

Erdos and Rényi [220], see also Rényi [528], proved a result on the a.s. growth
of the length of the longest run of 1s in a random walk:

Theorem 8.5.5 (A.s. growth of the length Z,, of the longest run of 1s)
For every fized p € (0,1),
Zn 1

lim — =
n—oolnn —Inp

a.s. (8.91)

O

Below we indicate how this result can be proved by classical limit theory.

Thus the longest run of 1s is roughly of the order —Inn/Inp, so it in-
creases very slowly with n; see Table 8.5.11. It is natural to ask where the
logarithmic normalisation in the SLLN (8.91) comes from. The basic idea is
the following: write

L; = min{n>1:X, =0}, andfork>2,
Ly = min{n:n>Li+---+Lt1,X, =0} —(L1+--+Lk_1) .

Since the X, are iid we conclude from the Markov property of (S,,) that the
L, are iid positive rvs. It is not difficult to see that

P(Ly=k)=q¢" ", k>1.

Thus L; has a geometric distribution. By construction, the values L; — 1 > 1
are the lengths of the runs of 1s and the rv

N(n) :card{m: Zm:Lign}

counts the number of zeros among Xi,...,X,,. Hence it is binomial with
parameters (n,q). Thus, in order to determine the length of the longest run
of 1s in Xy,...,X,, we have to study maxima of iid geometric rvs along
a randomly indexed sequence. Indeed,

max L; —1<Z,< max L;-—1. (8.92)

For the proof of Theorem 8.5.5 we need the following auxiliary result.

Proposition 8.5.6 (Characterisation of minimal and maximal a.s. growth
of maxima of geometric rvs)
Let d,, be positive integers such that d, T oo.
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(a) The relation
P (maxLi >d, i.o.) =0 or 1

<n

holds according as

o0
Zpd” <00 or =00.
n=1

(b) Suppose in addition that np® — co. Then

P (maxLi <d, i.o.) =0 or 1

<n

according as
Zpd" exp {—npd”} <00 or =o0.
n=1
Moreover, if liminf,,_,o np?" < oo then
P (maxLi <d, i.o.) =1.
<n

(¢) (a) and (b) remain valid if n is everywhere replaced by [nc], where [x] de-
notes the integer part of x and ¢ is a positive constant.

Proof. The first part immediately follows from Theorem 3.5.1 since P(L; >
d,) = p®. The second part follows from Theorem 3.5.2; the assumptions

P(L; >d,)—0 and nP(L; >d,) = npt — oo

are satisfied. For the third part, one has to modify the proofs of Theo-
rems 3.5.1 and 3.5.2 step by step along the subsequence ([nc]). This goes
through without major difficulties. O

Remarks. 1) The restriction to integer sequences (d,,) is natural since we
are dealing with integer—valued rvs and events of the form

{maXLi < x} = {maxLi < [x]} .
i<n i<n

Here, and in the rest of this discussion, [z] denotes as usual the integer part
of z, and we shall also use {z} for the fractional part « — [2] of . The latter
notation does not mean fractional part when delimiting the argument of a
function! Thus exp{z} is just e* as usual.

2) In Example 3.5.6 we studied the a.s. behaviour of maxima of rvs with
exponential tails of the form P(X > x) ~ Ke™%*. Unfortunately, that theory
is not directly applicable to (L), but has to be modified. The reason is that
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111011101100100010100011110000
ooo101011101110110101100101111
101111101011100111100111000111
010110110100011011000011001000
110010111001001001101001010010
11100110001110111001000100100°0
010111101110011001010100011011
101101110101000110110101010101
001000010010000000101001111000
011101111110000111010110000110
011100101111001011101111001010
101110101100001010100101110010
001110111101111100000000100011
100111101110000000100011111011
110000000100010101010111100110
001111110001001011100001110110
101101001100011110011001101010
001011101000100111111101001110
o0ooooo0110000100110000110010111
010011000101110001100000010010

101101011100110‘111111111111‘010

001010101111000011000100101000
1111000010111110110101000101060
011011010110101110111001010000
100001101001010011010101010001
110010010111001010101011001101
010001010000001001001111001010
110011100001000101110110100100
010011011010011011111011001000
101010111001100001000000001011
111011010101011000101000101100
ooo1r11101101111010111000101111
010001001101100010100101001000

Figure 8.5.7 A random sequence of 990 walues of 0s and 1s. Both values occur
with the same chance. The longest run of 1s has length 12. This is in agreement
with Table 8.5.11.
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P(Ly > x) =P (Ly > [2]) = pl* = po~ 1), (8.93)
Thus the relation P(Ly > x) ~ p® does not hold as x — co. O

The proof of Theorem 8.5.5 is now a consequence of Proposition 8.5.6 and of
relation (8.92). However, there is still a minor problem: from Proposition 8.5.6
we get only

rln<aicLi/lnn X —1/Inp. (8.94)

Thus we have to replace n by the random index N(n) or by N(n) + 1, but
this does not provide any difficulties by virtue of Lemma 2.5.3 and the fact
that (N(n)) can be interpreted as a renewal counting process observed at
integer instants of time, hence N (n)/n %% ¢; see Theorem 2.5.10.

Applying similar techniques one can prove results more precise than The-
orem 8.5.5. Results of the following type can be found in Erdés and Révész
[221], Guibas and Odlyzko [288], Deheuvels [168] (who proved more subtle
theorems on the a.s. behaviour of Z,, as well as on the a.s. behaviour of the
kth longest run of 1sin Xy,...,X,) or in Gordon et al. [280]. The latter also
showed results about the length of runs of 1s that are interrupted by a given
number of 0s. As in Section 3.5 we use the notation

Ingz = x,ln; x = max(0,Inz) ,Ing x = max (0,Ing_y x) , x>0,k>2.
Let furthermore [x] denote the integer part of z.

Theorem 8.5.8 (Almost sure behaviour of the length of the longest run
of 1s)

(a) For each r € N the following relations hold:

» ( 7> {lnl(nq) P _lrllrzijnq) +51nT(nq)} i'0.)

0 if £>0,
1 if e<0.

(b) For each e >0,
P (Zn < FH(W) — Ing(ng) - 6} 1 i.o.) —0

—Inp

and

p(zng{w}ﬂ i.o.):l.

—Inp
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Proof. For fixed r > 1, ¢ > 0 and small ¢ write

bufeve) = |

Then it is easily checked that

Zpb"(g’c) <oo or =o00

n=1

Iny (nc) + Ins(ne) + - - - + In,.(ne) + € ln, (nc)
—Inp

according as £ > 0 or £ < 0. Hence, by Proposition 8.5.6,

P <max L, —1>by(s,0) i.o.) =0 or =1 (8.95)

i<[ne]

according as € > 0 or £ < 0. Since N(n)/n =3 ¢ it follows that, for each small
fixed 4 > 0 and for large n, with probability 1,

n(l—38)¢g< Nn)<n(l+d)qg—1. (8.96)
Also notice that, for large n,
bn(e/2,q(1+0)) < bu(e,q). (8.97)

Having (8.96), (8.97) and (8.92) in mind we obtain

P < max L; —1>b,(g/2,(1+9)q) i.o.) > P(Z, > by(s,q) io0.).
i<n(14+8)q

This together with (8.95) proves the first part of the theorem for € > 0. For

€ < 0 one may proceed in a similar way.

We proceed similarly in the second part. For ¢ > 0 set &/ = In(1 + £). Write,
for £ > 0, ¢ > 0 and large n,

() = {ln(nc) —_ﬁglsnc) —5] _ {ln(nc) —In((1 + ') Ina(nc))

—Inp

and (fractional part)

L {ln(nc) — Inz(ne) —5} |

—Inp
Then by (8.93), for large n,

P& exp { ~[ne] p )}

|
_ In2no (1+¢&")p~="exp {_M Iz(ne)(1+<Hp7™ }
ne nc
Inon
< const

n(lnn)d+e/2) "
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But the latter sequence is summable, and it follows from Proposition 8.5.6
that

P <maxLi < bl (g,c) i.o.) =0. (8.98)

<nc
Similarly, let

(o) = [ln(nc) - lng(nc)] .

—Inp
and
o= {ln(nc) - lng(nc)} .
—Inp
Then

"9 exp {_[nc] pb::(c)}

1 / /
= (g {_M Ins (1) pl— }
nc nc

Inon

> const .
nlnn

The latter sequence is not summable and hence, because of Proposition 8.5.6,

P <maxLi <bvl(c) i.o.) =1.

i<nc

It remains to switch to the random index sequence (N(n)). We proceed as
in the first part of the proof: choose 6 > 0 small and ” > 0 such that for
large n,

In(ng) —Ing(ng) — ¢ < In(ng(1 —0)) — Inz(ng(1 —0)) — "

—Inp
Then, by (8.98),

—Inp

P(Z,<b,(s,q9)—1 i0)<P < max L; < (", (1 —4d)q) i.o.) =0.
i<n(1—48)q

One can similarly proceed with the sequences (b/!(c)), but we omit details.
This proves the second statement of the theorem . O

These results show the very subtle a.s. behaviour of the length of the longest
run of 1s. We can deduce the following statement:
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12

10

8

Longest run of 1s
6

4

0 200 400 600 800 1000

Figure 8.5.9 Three simulated sample paths of the length Z, of the longest run of 1s
in a random walk. For comparison the curves (solid lines) of Inn/In2 (middle), an
(bottom) and B, (top) are drawn; see (8.100).

Corollary 8.5.10 For every fired € >0 and r € N, with probability 1 the
length of the longest run of 1s in X1, ..., X, falls for large n into the interval

o, _ [W0) —sng) —<]
[ q _hqu ] 1 (8.99)

P [ln(nq)-k'~'+lnT(nq)+51nT(nq)]'

—Inp O

In Table 8.5.11 we compare the a.s. growth rate for Z,,, i.e. —Inn/Inp, with
the lower and upper bounds in (8.99). We choose p = 1/2 and r = 3,¢ = 0.001
and the particular bounds

_ {ln(n/Q) —Inz(n/2) — 0.001} 1
In2 '

n

(8.100)
Bn

_ [In(n/2) +Inz(n/2) 4+ 1.001 Inz(n/2)
B { In2 } ’
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n|lnn/In2 | a, | Bn

20 3.32 2 4

50 5.64 3 6

100 6.64 4 8
150 7.23 4 8
200 7.64 5 9
250 7.96 5 9
500 8.96 6 | 11
750 9.55 6 | 11
1000 9.96 7 12
1500 10.55 71 13
2000 10.96 8| 13
5000 12.28 91 15
10000 13.28 10 16
50000 15.61 12 19
100000 16.61 13 | 20
1000000 19.93 16 | 24

Table 8.5.11 Almost sure bounds an and 3, with e = 0.001 and r = 3, see (8.100),
for the longest run Z,, of 1s wn a random walk.

8.5.3 The Distributional Behaviour

From Example 3.1.5 we learnt that the maxima of geometric rvs do not
have a limit distribution whatever the centring and normalising constants.
However, the tail of the geometric distribution is very close to the tail of the
exponential law. To be precise,

Li —1Z [By/(-Inp)] (8.101)

for a standard exponential rv Ej, [z] again stands for the integer part of z.
This is easily seen:

qp” P(Ly —1=k) =p" —p

= P(E € [k(=1np),(k + 1)(—1np)])

= P(E/(~Inp)=k).

Let now (E,,) be iid standard exponential rvs. We know from Example 3.2.7
that
max(El,...,En)—lnni)A, (8.102)

where A(x) =e ¢, x € R, stands for the Gumbel distribution. Having
(8.92) in mind we may also hope that the distribution of Z,, is not too far
away from the Gumbel distribution.
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12

10

8

6

Longest run of 1s for exceedances of 0, DAX
4

0 500 1000 1500

Longest run of 1s for exceedances of 0, NIKKEI

0 200 400 600 800

Figure 8.5.12 The longest run of 1s (dotted line) generated by the indicators
Iy, >0y for financial data.

Top: the underlying time series (Y,) consists of 1864 daily log-returns (closing
data) of the German stock index DAX, July 1, 1988 — August 24, 1995.

Bottom: the underlying time series (Y,) consists of 910 daily log—returns (closing
data) of the Japanese stock indexr NIKKEI, February 22, 1990 — August 8, 1993.
The longest runs Z, exhibit a behaviour similar to the longest runs in a random walk
with p = 0.5. For comparison, in each figure the solid curves of Inn/In2 (middle),
an (bottom) and 3, (top) are drawn, see (8.100), using an estimated p = 0.5.
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Theorem 8.5.13 (Asymptotic distributional behaviour of the length of the
longest run of 1s)
Let'Y be a rv with the Gumbel distribution A. Then

(e 5] ) ([ (5] ) o

Here {x} denotes the fractional part of x and [x] its integer part.

sup
kEZ

Proof. From (8.102) and Lemma 2.5.6 we may conclude that

maxi<nm) i  InN(n) 4 Y
—Inp —Inp —lnp’

(8.103)

given that an Anscombe condition holds and Y has distribution A. But this
can be seen by the following arguments:

< max <max E;—In m) - <max E; - 1n([nq])> ‘ > s)
n(1—6)g<m<n(1+4)q i<m i<ng

< P( max FE; — max Ei>6/2>+f(s/2y°°) <IH<M)>

i<n(1+6)q i<n(1-5)q [n(1 = 6)q]

= p1+D2,

say. The quantity py is equal to 0 for § small and n large. Moreover,

p1 = E; — max Ei>5/2>

< max

n(1—5)g<i<n(140)q i<n(1—6)q

P ma E; —In([n(1+8)¢] — [n(1 =46
<i§[n(1+6)q]—x[n(1—5)q] ([n( )a] — [n( )al)

— max FE,—In([n(1-94¢
B = (i - 9)q)

s cja- (LA U0}

[n(1 —d)q]

where (E!) is an independent copy of (E;). In view of (8.102), we see that p;
converges to
P(Y1 —Yy >¢/2—1n(20/(1 —9)))

for iid Y; with a common Gumbel distribution. Now, the rhs in the latter
limit probability can be made arbitrarily small by choosing & sufficiently
small. Hence an Anscombe condition holds. Since N (n)/n 3 ¢ we may now
replace the expression In N(n)/(—Inp) in relation (8.103) by In(ng)/(—Inp).
Because A is continuous we immediately obtain from (8.103) that
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ax; nEl 1 Y
sup‘P(mX<lN() —n(nQ)§t>—P( gt)‘—m.
t —Inp —Inp —Inp

([ ] <)
- e (o (=) - (200 =)

()] -

Since the quantities involved in the latter limit relation are integer—valued
the supremum over all real ¢ reduces to the supremum over the integers.
This allows us to complete the proof of the theorem in view of representation
(8.101) and inequality (8.92). O

This implies that

E;
wlr (=] -]

I /\

¢ lnp —Inp

A version of this result was proved in Gordon et al. [280] who also derived
bounds on the expectation and the variance of Z,.

From Theorem 8.5.13 we may conclude the following about the asymptotic
distributional behaviour of Z,,:

P(Zn <k +[In(ng)/(—1np)])
([ {8 <)

P( Y +{IH(W)} <k+1> +o(1)

—Inp —Inp

= P (Y <(k+1)(=Inp) — {%} (—1np)> +0(1)

— exp {_pkﬂf{lnmq)/(ﬂnp)}} +o(1)

for all integers k > 1 — [ln(ng)/(—lnp)]. In particular, for k positive,

P (Zn — {MD o gt ) /(10 p)}
Inp
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Notes and Comments

The question about the longest run of 1s and related problems have at-
tracted much attention in the literature. Applications lie not only in extreme
value theory, finance and insurance but also in molecular biology (longest
matching sequences in two DNA strings), pattern recognition (longest repet-
itive patterns in random sequences) and many other fields. A few relevant
references are Arratia and Waterman [23], Gordon, Schilling and Waterman
[280], Guibas and Odlyzko [288], Karlin and Ost [370]. A paper on the longest
success—run in the context of insurance and finance is Binswanger and Em-
brechts [75].

The problem of the longest run of 1s is closely related to the question
about the order of magnitude of the increments of a general random walk
(S»). We noted that a convenient tool to describe the order of the increments
is given by

In(.]) = 0<r£1<ar)bij (Si+j - Sz) ) 1 S] <n.

For the particular case of iid Bernoulli rvs with success probability p € (0, 1)
we may conclude from Section 8.5.2 that

o 1 (1255])

n— o0 Inn
—Inp

=1 a.s.

This result already shows the typical order of the increments for a general
random walk. Now assume that £X = 0 and that X has moment generating

function
M(h) = Ee"X .

Let
ho = sup{h: M(h) < o0} >0

and define the number ¢ = ¢(a) by

et/ = i%fe*’mM(h), a>0. (8.104)

It is easy to see that if Ay > 0 then the infimum lies striclty between 0 and
1, so that ¢ is positive.

The following is a classical result due to Erdos and Rényi [220]:

Theorem 8.5.14 (Erdés—Rényi SLLN for the increments of a random walk)
The relation

holds for each
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ae{]\]\{[’((;:)):0<h<ho}.

Here ¢ = c(a) is given by equation (8.104). O

Numerous generalisations and extensions of the Erdés—Rényi SLLN have been
proved. They depend very much on large deviation techniques (therefore the
existence of the moment generating function; see Sections 2.3 and 8.6) and on
generalisations of classical renewal theory. Results of iterated logarithm type,
see Section 2.1, have been shown for the largest increments I, (b,) for var-
ious sequences b, 1 c0. We refer to work by Csorgd and Steinebach [146],
Deheuvels [168], Deheuvels and Devroye [169], Deheuvels and Steinebach
[171, 172], Steinebach [607] and the references therein.

8.6 Some Results on Large Deviations

In Section 2.3 we touched on the question of large deviation probabilities for
sums S, = X1 + -+ + X, of iid rvs X,,. In the present section we intend to
give some results in this direction as a preliminary step towards dealing with
reinsurance treaties in Section 8.7.

A large deviation probability is an asymptotic evaluation of P(S, > x,)
for a given sequence x, — oo, where (,,) is such that P(S,, > z,) = o(1). Or,
alternatively, it can be understood as an asymptotic evaluation of P(S,, > x)
uniformly over some z-region depending on n, where now the region is such
that P(S, > x,) = o(1) uniformly over it. Thus large deviation probabilities
tell us about the probability that S,, exceeds a large threshold value = or x,,.
When dealing with extremal events it is of particular interest to get analytic
expressions or estimates for those probabilities.

In this section we consider precise large deviations. This means we evaluate
the probability P(S, > ) to at least the accuracy P(S,, > ) ~ a,(x) for an
explicit sequence of positive functions or numbers (a, ). This is in contrast to
rough large deviations which are evaluations to the accuracy In P(S, > ) ~
by, for some explicit sequence (b,,).

In Section 2.3 we learnt about two types of precise large deviation results.
The first, Cramér’s theorem (Theorem 2.3.3), tells us about the validity of
the normal approximation to the df of the sums .S,, under the very strong
condition that the moment generating function

M(h) = Ee"X (8.105)

exists in a neighbourhood of the origin. In particular, if var(X) = 1 then
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P(S,—nu>z) = & (z/v/n)(l+o(l)), (8.106)
P(Sy—nu<—z) = &(x/vn)(1+o0(1)),

uniformly for = o(n'/®). This result is of restricted use for the purposes of
insurance and finance in view of the condition on the exponential moments
of X. However, precise large deviation results under the existence of the
moment generating function are more the rule than the exception. Under
that condition several theorems about the order of P(S,, — nu > z) have been
proved in the critical region where z is of the same order as ES,, = nu. Final
results are due to Bahadur and Rao [36] and Petrov [493, 494]; see Petrov
[495], Bucklew [96]. For completeness and in order to get an impression of the
difficulty of the problem we state here Petrov’s theorem. Recall the notion of
a lattice—distributed rv X: there exist d > 0 and a € R such that

i P(X=kd+a)=1. (8.107)

k=—oc0
We call the largest possible d in (8.107) the mazimal step of the df F.

Theorem 8.6.1 (Petrov’s theorem on precise large deviations under an ex-
ponential moment condition)

Suppose that the moment generating function M, see (8.105), ewists in
a neighbourhood of the origin. Let

b:sup{h:/ eh“:dF(x)<oo},
0

and h = h(z) be the unique solution of the equation

_M'(h) _
"= 3w
Set
o?(h) = m'(h), ap=limm(h),

htb
and assume ag finite.
(a) Suppose F' is non-lattice. Then

_ exp{n(ln M (h) — hx)}

P (S, —nu>x) ho (h)/2mn

(1+0(1))

uniformly for x € [en, (agp — &)n].
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(b) Suppose F' is lattice with mazimal step d; see (8.107). Then

_ dexp{n(InM(h) — hx)} 1
P(Sn—nu>w) = o(h)V2mn (1 — e—dh) <1+O (n)) ’
uniformly for x € [en, (ap — £)n]. O

The very formulation of these results shows that it is not an easy matter to
apply them in a given situation. In particular, solving the equation m(h) = x
is in general troublesome. Basically, the same problems occur as for deter-
mining the Lundberg exponent in risk theory; see Definition 1.2.3.

Since we emphasise problems related to heavy tails we also want to give
some idea about precise large deviations in that case. We gained a first im-
pression from Heyde’s theorem for a symmetric F' in the domain of attraction
of an a—stable law with a < 2, i.e. F € R_q, as discussed in Theorem 2.3.5.
There we found that the condition nF(x,) — 0 implies the relation

P(S, > x,) =nF(z,)(1 +0(1)) = P(M, > x,), (8.108)

where, as usual, M, denotes the maximum of the first n values of the X;.
This is the typical relation that we can expect in the general case of regularly
varying tails. Notice that the F' with regularly varying tails form a subclass
of the subexponential distributions, see Section 1.3, which are defined by the
relation

P(S,>xz)=P (M, >z)(1+0(1))

for every fixed n > 1, as © — co. Thus (8.108) is just an extension of the
latter limit relation to the case when both x and n tend to infinity. It again
shows the dominating role of the maximum term over the sum of iid rvs.

Relation (8.108) remains valid for a wider class of distributions. This is
exemplified by the following theorem which is due to A. Nagaev [472, 473]; an
independent probabilistic proof of the relation (8.109) below has been given
by S. Nagaev [474].

Theorem 8.6.2 (Precise large deviations with regularly varying tails, I)
Suppose that F € R_,, for some a > 2, E|X|*° < co for some § > 0 and
that var(X) = 1. Then

P(S,—nu>z)=90 (%) (14 0(1)) +nF(z)(1 + o(1))

uniformly for x > \/n. In particular,

P(Sy—nu>z)=8 <%> (1+ o(1))
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for yn <z <a(nlnn)'/? and a < Va =2, and

P (S, —npu>z) =nF(z)(1+o0(1)) = P(M, > z) (8.109)
for x> a(nlnn)'/? and a > Vo — 2. O

Finally, we give here a unified result for F € R_,, for any o > 1.

Theorem 8.6.3 (Precise large deviations with regularly varying tails, II)
Suppose that F € R_,, for some a > 1. Then for every fized v > 0,

P (S, —nu>x) =nF(x)(1+o0(1))
uniformly for x > yn. O

For av < 2 this result is due to Heyde [321, 322, 323], for a > 2 it was proved by

A. Nagaev, as already mentioned. A unified approach for regularly varying F

(and more general classes of tails) has been given by Cline and Hsing [126].
Cline and Hsing [126] proved a result of type

P(S,>z)~P(M, >z
uniformly for certain z-regions, for F of extended regular variation, i.e.

F F
¢ P < liminf _((c:r) < lim sup ﬁ <c“

for some 0 < @ < 3 < oo and every ¢ > 1. They also extend their results
to certain randomly indexed sums and maxima. Precise large deviation
problems for other subexponential distributions, for example of the type
F(x) = exp{—L(z)z*} for a slowly varying L and a € [0,1), have also been
treated. They depend very much on the z—region and on the particular form
of F. They are not so easily formulated as Theorems 8.6.2 and 8.6.3. The
most complete picture about precise large deviations for subexponential dis-
tributions can be found in Pinelis [500], in the more recent survey paper by
Rozovski [559] and in the monograph Vinogradov [632].

Precise large deviations for random sums with heavy tails are our next
goal. We will point out in Section 8.7 how probabilities of precise large devi-
ations occur in a natural way in problems related to reinsurance treaties. We
restrict ourselves to the compound process

N(t)
=1

where X, are iid non—negative, non—degenerate rvs independent of the count-
ing process (N (t))t>0. We extend the standard compound Poisson process in
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the sense that, for every ¢, the rv N(¢) is Poisson, but its mean value is not
necessarily of the form At for a constant intensity A > 0. This makes sense
in the context of insurance futures (see Section 8.7) where N(t) can be large
due to “high density arrival times”, i.e. even in small intervals [0, {] the mean
value EN(t) is huge. In this sense, (S(¢)) may be considered as a process
indexed by the “operational time” EN(¢) which increases to infinity when ¢
increases.
Recall that
u(t) = ES(t) = u EN(t).

The following is analogous to Theorem 8.6.3:

Theorem 8.6.4 (Precise large deviations for random sums with regularly
varying tails)

Suppose that (S(t)):>o0 is a compound process where (N (t))i>o are Poisson rvs
such that EN(t) — 0o as t — ty for some tg € (0,00], and X is a.s. non—
negative and non-degenerate. Moreover, F € R_ for some o > 1. Then

P(S(t) — u(t) >x) =EN(@)F(z)(1+ o(1)), (8.110)
uniformly for x > yEN(t), for every fized v > 0 as t — to. O

A proof of this result is given in Kliippelberg and Mikosch [398]. Note that
the rhs in (8.110) is of the same order as P(My ) > x) ast — to.

Notes and Comments

Rough large deviations are widely applied in physics and mathematics; see
for instance the books by Dembo and Zeitouni [177] and Deuschel and Strook
[178], and for an introductory level Bucklew [96]. In that context, it is mostly
supposed that the random objects considered (not necessarily sums) have
a moment generating function finite in some neighbourhood of the origin.
This is motivated by Cramér’s result (see Theorem 2.3.3) and by its various
generalisations and extensions. There does not exist so much literature for
subexponential distributions. A survey of precise large deviation results was
provided by S. Nagaev [474] with many useful precise large deviation esti-
mates and an extensive reference list. More recent accounts are the papers
by Doney [185], Pinelis [500] and Rozovski [559] mentioned previously; see
also the monograph Vinogradov [632]. Gantert [250] considers rough large
deviations for sums of rvs which are subexponential, constitute a stationary
ergodic sequence and satisfy certain mixing conditions.

Large deviation techniques in the context of insurance are not uncom-
mon; see for instance Asmussen and Kliippelberg [33] and Kliippelberg and
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Mikosch [398] in the heavy—tailed case, and Djehiche [184], Martin—Lof [444],
Slud and Hoesman [585] under exponential moment conditions. These papers
mainly emphasise relations between estimates of ruin probabilities and large
deviation results.

8.7 Reinsurance Treaties

8.7.1 Introduction

Extreme value theory has an important role to play in the pricing of rein-
surance contracts, especially in the area of contracts for single events or few
events, involving high layers. The prime example is the CatXL reinsurance
treaty which corresponds in financial option theory to a bull spread with
the market loss ratio assuming the role of the underlying. The discussion on
CatXL below is taken from Sigma [581], p. 6.

In catastrophe reinsurance, the dominant type of reinsurance treaty is the
“Catastrophe Excess—of-Loss Cover per FEvent” — or CatXL for short. In
contrast to the proportional reinsurance treaty, in which the reinsurer shares
in equal parts in the premiums written and the claims incurred by the pri-
mary insurers, with the non—proportional treaty the reinsurer pays only from
a contractually agreed amount of loss (deductible) up to a defined mazimum
(exit point). The losses considered here are those which are attributable to spe-
cific occurrences (mainly natural events like windstorm, earthquake etc. ...
but in certain cases also conflagration or strike and riot) and occur within
a contractually agreed period of time. Both loss amounts which do not reach
the lower limit and those exceeding the upper limit must be borne by the pri-
mary insurer. The span between the deductible and the exit point is called the
“cover” or “line”.

The need for extreme value theory modelling becomes clear when discussing
the so—called reference loss; the definition below is again taken from Sigma
[581], p. 10-11.

The reference loss is a value which corresponds to a major loss which insur-
ance companies with average capitalisation should take as a basis for deciding
on the level of CatXL cover they require. The reference losses chosen are such
that they are rare but nevertheless possible. For European markets, a realistic
windstorm loss scenario was chosen for each market, while for markets at risk
from hurricanes a loss event with a return period of 100 years was chosen.
For the earthquake reference losses, return periods of 100 years (in countries
prone to high seismic activity), 500 years (in countries prone to moderate
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Figure 8.7.1 Ezample of an XL cover.

seismic activity) and 1000 years (in countries with low seismic activity) were
assumed.

The reference loss with a predetermined return period can be read off from
the so—called loss frequency curve of the relevant portfolio. In the language
of Section 6.2.4, estimation of the reference loss corresponding to a t—year
event comes down to

r=F(1—t1.

Here F stands for the estimated claim size distribution (in the Sigma—
language above: the loss—frequency curve). The methodology discussed in
Section 6.5 turns out to be particularly useful for estimating these high
quantiles in CatXL contracts. Also the contract—specific calculation of the
deductible, the exit point and the resulting premium can be based in part
on extreme value theory. We emphasise “in part” here: indeed, in the deter-
mination of premiums many more market factors and alternative techniques
enter. Important examples of the latter are simulation methodology and the
analysis of stress scenarios. Also for single event large claims it is paramount
to estimate (mostly by non—stochastic means) the total exposure, i.e. the cost
of the total loss of a system to be insured.
An ever recurring theme, or indeed question, is:

In the event of disastrous natural events,
have primary insurers bought sufficient cover?

Or equivalently,
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How do the estimated reference losses compare with a contract’s exit point?
And indeed,

If more cover is needed,
where does the necessary risk capital come from?

The new word appearing on the market is securitisation of risk. To stay in line
with the above discussion, we briefly discuss below just one of the finance in-
dustry’s answers to the last question: CAT futures and PCS options. In 1992,
the Chicago Board of Trade (CBOT) launched catastrophe (CAT) futures.
They can be viewed as offering an alternative to the CatXL treaties discussed
above. From the simplest perspective a futures contract is an agreement be-
tween two parties to make a particular exchange at a particular future date.
For example, a future contract made on June 30 could call for the purchasing
agent to pay $400, the futures price, on September 30 in exchange for an
ounce of gold delivered on September 30. The last few lines were taken from
Duffie [189]. If in the example above we would change “an ounce of gold” to
“an insurer’s loss ratio”, then we would come close to the definition of CAT
futures. The main problem in CBOT’s product design was the construction
of the underlying, i.e. the equivalent of the gold price say. For that reason,
pools of insurance companies were created, allowing for a broad data base
on losses within the home—owners market. Companies were mainly pooled on
a geographical basis. From such a pool the industry’s loss ratio (losses over
premiums) was constructed. This stochastic process defined the underlying
on which various derivatives (like futures and options) can be constructed. If
the time to maturity is 7" say, then the settlement value V(T') of the CAT
futures was put at

(Sp(T)

V(T) = $25 000 X min (PP(T) ,2) , (8.111)
where S, (T") stands for the pool’s loss process and P,(T") the (deterministic)
premiums covering the losses over the period [0, 7']. The exact construction of
Sp(T), i.e. of the losses, is more involved as a clear distinction has to be made
between actual versus reserved losses and between date of occurrence versus
settlement date of the claims. Typically, the first three months (event quarter)
of the contract would define the claim occurrence period, the next three
months (runoff quarter) were added to allow for claim settlement. By the end
of these 6 months (reporting period) one would hope that a high percentage
(80-90%) of the claims were indeed settled. The value V(T") would then be
made available in a first interim report shortly after the end of the reporting
period. The final report for this particular future would be published during
the 4th month after the reporting period. For further details we refer the
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reader to the various publications now available on these products. See for
instance CBOT [105, 106]. A very readable introduction is Albrecht, Ko6nig
and Schradin [6]. In order to see how a particular home—owner insurer can
use these futures as a hedging instrument, denote by S;(¢), respectively P;(t),
the insurer’s loss process, respectively premium function. By way of example,
suppose the futures are at present trading at a loss ratio of 0.6, i.e. a 60%
loss ratio for the pool. The insurer interested in having a loss ratio of 60 % at
maturity 7' can achieve this by buying now n; = P;(T)/25000 futures at the
quoted loss ratio of 0.6. For simplicity, we assume that all losses have been
settled by the end of the reporting period. It is not difficult to adjust the
argument when we have a 100 (1 — )% settlement quota, say. The insurer’s
“wealth” at maturity 7 then becomes:

P,(T) — S;(T) + “gain or losses from futures transactions”
Sp(T)
B, (T)

= a0+ (mn (30 2) S0

= P(T)(0.4+4 A, ,(T)) .

= P(T)-Si(T) + [ni % 25000 X min < ,2) —n; x 25000 x 0.6

If A;,(T) =0, i.e. the insurer’s loss ratio corresponds exactly to the pool’s
ratio, then his/her loss ratio S;(T")/P;(T) at maturity is exactly 60%. De-
pending on the value of A; ,(T"), more or less futures will have to be bought
in order to achieve the required hedge.

Though novel in construction, the contracts were not really a success.
Various reasons can be given for this:

— time difference: quarterly futures based on a three months claim period
versus standard year—contracts in the reinsurance industry,

— information on prices came very slowly and was incomplete,

— danger of adverse selection and moral hazard,

— who constitutes the secondary market, i.e. who sells these futures?

As CAT futures come close to being a so—called beta—zero asset, i.e. nearly
uncorrelated with other assets, they should be the Holy Grail of any portfolio
manager. That they were not perceived like that was mainly due to the
very slow flow of information on the futures prices. Rather than the futures
themselves, options traded better, especially the call option spreads where
insurers would (or could) appear on both sides of the transaction, i.e. as
buyer as well as seller. The CBOT has reacted to the market’s criticism and
launched its new generation of so—called PCS options which are designed
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to counter the most obvious defects of the CAT futures. For a discussion of
these options see CBOT [107]. Schradin and Moller [569] offer a very readable
introduction.

Before we turn to the mathematical analysis of some of the products
discussed above, consider the yearly data on California loss ratios (in %) for
earthquake insurance given in Table 8.7.2.

1971 174 1977 0.7 1983 2.9 1989 129.8
1972 0 1978 1.5 1984 5.0 1990  47.0
1973 0.6 1979 2.2 1985 1.3 1991 17.2
1974 34 1980 9.2 1986 9.3 1992 128
1975 0 1981 0.9 1987 228 1993 3.2
1976 0 1982 0 1988 11.5

Table 8.7.2 Yearly loss ratios (in %) for earthquake insurance in California.
On the basis of these data,

How would one predict the loss ratio for 19947
The answer came indeed one year later

| 1994 | 2272.7()) |

The event that had happened in 1994 was the Northridge earthquake. These
data from the California Department of Insurance (Insurance Information
Institute), are taken from Jaffee and Russell [353]. In the latter paper an
excellent discussion on insurance of catastrophic events is to be found. At this
point we would like to repeat a statement made in the Reader Guidelines.
“Though not providing the risk manager with the final product he or she can
use for monitoring risk on a global scale, we will provide that manager with
stochastic methodology needed for the construction of various components of
such a global tool.” The next section should be viewed with this statement
in mind.

8.7.2 Probabilistic Analysis

In this section we investigate some of the standard reinsurance treaties using
the techniques from extreme value theory and fluctuation theory for random
walks provided in this book. Throughout the individual claim sizes X,, are
iid non—negative, non—degenerate with common df F, independent of the
number N(t) of claims occurring up to time ¢. The latter rvs are supposed
to be Poisson—distributed, but they need not necessarily constitute a Poisson
process. The total claim amount of an insurance portfolio is then given by
the process



508 8. Special Topics

N(t)
Sty =Y Xi, t>0.
=1

Throughout we suppose that © = EX; exists and we also write

X=X, wult)=ES(t)=pEN(), t>0.
We are particularly interested in heavy—tailed dfs F' which are more realistic
models for claims in the context of reinsurance.

Example 8.7.3 (CAT futures)
Recall from (8.111) that the settlement value V(T') of the CAT futures at
maturity 7" equals

V(T) = $25000 x min <% ,2)
= $25000 x <% — max <% - 2,0)) :

For notational convenience we have dropped the suffix p referring to the pool.
The last equality represents V(T') as a long position in the pool’s loss ratio
and a short position in a European call written on the loss ratio with strike 2
and maturity 7. Hence in principle one should be able to price these futures
using the standard theory of no—arbitrage pricing, i.e. the value V (t) at time ¢
of the contingent claim V(T') equals

V(t) = EQ e‘T(T_t)V(T)‘}'t] . 0<t<T,

where r stands for the risk—free interest rate, and (F).e[o,r] is an increasing
family of o—algebras (filtration) such that F; describes the information avail-
able up to time ¢. The measure @) appearing mysteriously as an index denotes
the equivalent martingale measure which, since the paper by Harrison and
Pliska [318], enters all pricing models in finance. To be a bit more precise
we assume, as is usual in stochastic finance, that the underlying process is
defined on a probability space

(2.7 (Focicr - P) »

and the process (S(t)) is assumed to be adapted to (F:), i.e. for all ¢, S(t)
is Fi—measurable. The measure @Q is equivalent to P so that (S(t)) becomes
a Q—martingale. Within this framework, we could consider the pricing prob-
lem as being solved. In the case of CAT futures, this is however far from
the truth! This whole set—up does work well for instance if (S(t)) follows
a geometric Brownian motion. We know however that the underlying claim
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process is usually modelled by a compound Poisson, compound mixed Poisson
or even compound doubly stochastic (or Cox) process. In these cases, mainly
due to the random jumps corresponding to the individual claim sizes, the
market based on (S(t)) is incomplete and therefore allows for infinitely many
equivalent martingale measures: which one to choose? The interested reader
wanting to learn more about this should consult Delbaen and Haezendonck
[176] for general (re)insurance contracts and Meister [454] more in particular
for the CAT futures. From a more pragmatic, and indeed actuarial point of
view it is definitely worthwhile to calculate the distributional properties of
V(T) under the so—called physical measure P. This is exactly what is done
below.

In general, P(t) can be taken as a loaded version of the mean value u(t);
thus

P(t) =cult), >0,

for some constant ¢ > 1, but we require only ¢ > 0. For evaluating the futures
contract under the physical measure P it is of particular interest to determine

E(V(T)=E {$25.000 x <% — max <% - 2,0))} :

Since

(35)- -2

it remains to calculate

S(T) S(T) +
E max (m —270> =F (m —2) .
It is one objective of this section to give an asymptotic expression for this
value, but also for the variance of V(T'). For this reason we will exploit
a large deviation result for S(t) as provided by Theorem 8.6.4. Since T is in
general “small” (for instance three months &~ 90 days), but N (7T') is “large” it
makes sense to speak about high density data and to generalise the Cramér—

Lundberg model in so far as to require only that EN(t) becomes large with
increasing time. (|

Example 8.7.4 (Reinsurance treaties of random walk type)

In this example we assume throughout that (S(¢)) is given by the Cramér—
Lundberg model driven by a homogeneous Poisson process (N (t)) with con-
stant intensity A > 0.

Three common types of reinsurance treaties are the following:

Proportional reinsurance. This is a common form of reinsurance for claims
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of “moderate” size. Here simply a fraction p € (0,1) of each claim (hence the
pth fraction of the whole portfolio) is covered by the reinsurer. Thus the rein-
surer pays for the amount R;(t) = pS(t) whatever the size of the claims.

Stop—loss reinsurance. The reinsurer covers losses in the portfolio exceed-
ing a well defined limit K, the so—called ceding company’s retention level.
This means that the reinsurer pays for Rz(t) = (S(t) — K)*. This type of
reinsurance is useful for protecting the company against insolvency due to
excessive claims on the coverage.

Excess—of-loss reinsurance. The reinsurance company pays for all indi-
vidual losses in excess of some limit D, i.e. it covers R3(t) = Zf\;(f) (X; —D)*.
The limit D has various names in the different branches of insurance. In life
insurance, it is called the ceding company’s retention level. In non-life insur-
ance, where the size of loss is unknown in advance, D is called deductible. The
reinsurer may in reality not insure the whole risk exceeding some limit D but
rather buy a layer of reinsurance corresponding to coverage of claims in the
interval (Dy, D5]. This can be done directly or by itself obtaining reinsurance
from another reinsurer. The typical example of the CatXL was discussed in
Section 8.7.1; see Figure 8.7.1 for an example with perhaps D; = 2 million
and D» = 6 million Swiss francs.

It is an important question to value the losses R;, Rs, R3 by probabilistic
means. For example, it is of interest to estimate the probabilities

P (Ry(t) > x)

= P(S(t) = ult) >p~rz—p(t) , (8.112)
P (Ro(t) > )

= P((S(t)-K)" >z)=P(S(t) - K > x),

= P(S(t) — u(t) >« + K — u(t)) (8.113)
P (Rs(t) > )

N(t)
= P[> (Xi-D)" >= (8.114)

=1

N(t)
= P[> (Xi=D)" —AE(X - D)"t >z - \E(X - D)™t

=1
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A mathematical study of these probabilities is important especially for large
values of z. Typically, x and K in (8.113) depend on ¢ and indeed may be of
the same order as p(t).

We could apply the CLT to estimate the probabilities (8.112)—(8.114), given
var(X) < oo. For example, Theorem 2.5.16 with

xe(c) =p (,u(t) + ¢/t (var(X) + ,uQ)) , C€ER,

yields
P (Ry(t) > x4(c)) — &(c),

where @ denotes the standard normal df. Thus the CLT provides an answer
only in a relatively small #;~band of the order /¢ around the mean value y(t).
If x is of the critical order t, i.e. of the same order as the mean value u(t), or
even larger, large deviation results are the appropriate tools.

In the context of stop—loss reinsurance it is also of interest to study the

quantities
E<%—K)+ and var <%—K>+ (8.115)

for a fixed positive constant K and with the premium income P(t) = cu(t)
for some constant ¢ > 0. Notice that S(¢)/P(t) is just the loss ratio at time ¢
which is compared with a fixed limit K. Probabilities of large deviations will
also help to evaluate quantities like (8.115). O

The main tool for dealing with the problems mentioned in Examples 8.7.3
and 8.7.4 is the large deviation result of Theorem 8.6.4. Under the assumption
F € R_, for some a > 1 the relation

P(S(t) = p(t) > y) ~ EN(t)F(y) = EN(t)P(X > y) (8.116)

holds uniformly for y > yu(t) for every positive v > 0, provided EN(t) — oo
as t = tp € (0,00]. This formula immediately yields approximations to the
probabilities (8.112)—(8.114) when z is of the same order as u(t). For example,
consider the situation of (8.112) with y(c) = cu(t) for some ¢ > p. Then

P (Ri(t) > ye(c)) ~ MF ((p~'e = 1) u(t) |

i.e. P(Ri(t) > yt(c)) € R_at1 and therefore this probability is not negligible
even for large t.

Both quantities in (8.115) can be rewritten in a such way that asymptotic
analysis becomes fairly straightforward. Thus
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“(a %)

St .
E< ( _B>I{S(t)/(cu(t))—f\’>0}

cu(t)
Y AN (O R
= [ r(Smoree)
1 o0
- T(t)/m1>u<t)P(S(t)_“(t)>x) dz, (8.117)

where ¢, K are positive constants such that

y=Kec—-1>0.

S(tt) ks ﬂ> A — (/Omp<i((tt)) —K>x) dx)z

_ 2 /:o < d _1>P(S(t)—u(t)>x)d:¢ (8.118)

1 o0 2
B (T(t) /wu) P(S(t) — u(t) > x) dx) :

This solves the corresponding problems for the expectation and the variance
of the futures price (see Example 8.7.3) and of the stop—loss reinsurance treaty
(see Example 8.7.4). Since relation (8.116) holds uniformly for = > vyu(t),
given EN(t) = oo, a straightforward analytic argument applied to (8.117)
and (8.118) yields

+ oo

1 —

B(25-K) ~o Fy) dy,
C,U/(t) cp Y EN (t)

given a > 1, and that

[l
c\g
~
N
o
=
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+
var < 5@ — K)
cp(t)
2 [ 1 [ ’
T v\ = —
~ — ————— — | F(x)dx — —/ F(x)dx
CH JyLEN(t) (CN’EN(t) C) ( ) (C“’ YREN(t) ( )

2 > T fy) _
~ — ——— — — | F(2)dx,
cp YREN(t) (C.U’EN(t) c

given a > 2. Notice that the conditions @ > 1 and a > 2 guarantee the ex-
istence of the expectation and of the variance of (S(t)/cu(t) — K)*, respec-
tively. Using Karamata’s theorem (Theorem A3.6) we obtain the following
approximations:

S \T _ vEN®
E<Cu(t) A) c(a_l)F(wEN(t)), (8.119)

S\ L _2PEN®)
var(cu(t) B) Pl DT HEN®).  (8120)

Example 8.7.5 (Insurance futures, continuation of Example 8.7.3)

In the context of insurance futures it may be of interest to consider a high
density model for (S(t)): over the fixed period of time to maturity 7' (or
better said until the end of the event period) many claims may enter into
the pool so that EN(T') will be large. The latter can be modelled by Poisson
rvs N(t) such that EN(t) — oo as t — T'. For every t € [0, T], consider

V(t) = $25000 x min (ﬂ ,2) .
cu(t)
Clearly, the notation V() above should not be confused with the no—arbitrage
value as defined in Example 8.7.3. From the relations (8.119) and (8.120) one
can then derive the following asymptotic expressions for EV (t) and var(V (¢)):
assume 7 = 2K — 1 =2¢—1 > 0 and set

7 (h) = _S®) (sm L\*
V(t) = V(t)/$25.000 = el (Cu(t) 2) .
If « > 1 then
E(V(t) = % <1 — (1+0(1)) ijf(lt) F(WEN(t))) (8.121)
If a > 2 then
% _1 LXZ _ 0 M_
var(V () = <u2EN(t) (1+ (1) =5~ uEN(t))) (8.122)
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The evaluation of (8.121) with the help of (8.119) does not cause difficulties.
Next we derive (8.122). Observe that by (8.119) and (8.120),

var(V'(t))

= EV(t) - (EV(1))?

= 2(5a) o ((i(ft)) - 2>+>2 -5 (G 2)

2 2
2§X _(1+0(1))2Z EN(t)
Au?EN(t) Ala—2)
Whereas large deviations seem to be the right instrument for dealing with the
treaties and futures of Examples 8.7.3 and 8.7.4, extreme value theory is very
much involved in handling the following problems related to reinsurance. In
an insurance portfolio we consider the iid claims Xi,..., X () which occur
up to time ¢t. We study the randomly indexed ordered sample

Xnwy,wne < < XN -

Recall that (N(t)) is independent of (X,,), and throughout we will assume
that (N (¢)) constitutes a homogeneous Poisson process with constant inten-
sity A > 0.

Example 8.7.6 (Distribution of the number of claims in a layer and of the
kth largest claim)
We will touch on two important questions in reinsurance. The first one is

How many claims can occur in a layer (Dy, Dy] or (D1, 00) up to time t?

This means we are interested in the quantity
N(t)
B(A) = Iixen
i=1
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for some Borel set A. Conditional on N(t), B:(A) is binomially distributed
with success probability F'(4) = P(X € A). Hence

P(B,(4) =1)
= Y P(Bi(A) =1|N(t) = k) P(N(t) = k)
k=0
g > k | = k-1 (At)F
= e (F(A) (F(A) : (8.123)
> (1) e @) 5

This solves our first problem. Indeed, depending on the type of layer, we can
estimate F(A) and F(A) for instance with methods discussed in Chapter 6.
However, if we assume that the limits of the layer increase with time we can
apply a Poisson approximation to these probabilities. For example, assume
that the layer boundaries form a sequence (D,,) such that nF(D,,) — 7 for
some 7 € Ry . Then by Theorem 5.3.4,

N(n) ]
> Iix,sp,} = Poi(r)) .

=1
In particular,

N(n)
P ZI{XZ,>DH}:l —e ™

=1

@)
T

Next we ask

What do we know about the size of the largest claims?

In Proposition 4.1.2 we learnt about the distribution of the kth largest order
statistic X}, in a sample of n iid rvs, namely

P (Xpn < ) :k: (r) 2) F"~"(2). (8.124)

T

Again conditioning on N(t) we get an analogous formula for X, y):

(o)

P(Xpnw <z) = ZP (X <2|N(t) =1) P(N(t) =1)
=0
= e M ZP (Xk,l < $| N(t) = l) ()}f)l

=k
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[>S) k—1 1
e—kt Z ( (i) FT(.Z‘) Fl—r(x)> (/\lf)

=k \r=0
7tk71 )\Fl'tT o0 AF(x l—r
e o
r=0 l=r
o= \F(2) ki:l M , (8.125)

In comparing formulae (8.124) and (8.125), we see that (8.124) is the prob-
ability that a binomial rv with parameters F(z) and n does not exceed F,
whereas (8.125) is the probability that a Poisson rv with parameter A\tF(x)

does not exceed k.

Formula (8.125) can also be generalised for a finite vector of upper order
statistics. Exact calculations, though feasible, quickly become tedious. An
asymptotic estimate may therefore be useful. We apply the results of Sec-
tion 4.3. Since N(t)/t 3 X for the homogeneous Poisson process (N(t)) we
are in the framework of Theorem 4.3.2. Therefore assume that F' € MDA (H)
for an extreme value distribution H, i.e. there exist ¢, > 0 and d,, € R such
that

M (M, —d,) S H, (8.126)

where M,, = max(X1y,...,X,). Then, for every k > 1,
P(c,' (Xinm) —dn) <) = I (~InH2)) , =z €R,

where I}, denotes the incomplete Gamma function

1 o0
Fk(x): )'/ e_ttk_ldt7 z>0.

(k-1
The following approximation for the df of X} n(,) is obtained:
\ [u—dy
P(Xk,N(n)SU)%Fk —InH —_— . O
Cn

In order to exemplify further the usefulness of extreme value theory as pre-
sented in the previous chapters, we consider some more reinsurance treaties
which are defined via the upper order statistics of a random sample.

Example 8.7.7 (Reinsurance treaties of extreme value type)

Largest claims reinsurance. At the time when the contract is underwritten
(i.e. at t = 0) the reinsurance company guarantees that the k largest claims
in the time frame [0, ¢] will be covered. For example, the company will cover
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the 10 largest annual claims in a portfolio over a period of 5 years, say.
This means that one has to study the quantity

k
Ry(t) = Z Xi Nt
i1

either for a fixed k or for a k£ which grows sufficiently slowly with ¢.

ECOMOR reinsurance (Excédent du cotit moyen relatif). This form
of a treaty can be considered as an excess—of-loss reinsurance (see Exam-
ple 8.7.4) with a random deductible which is determined by the kth largest
claim in the portfolio. This means that the reinsurer covers the claim amount

N () ko1
Rs(t) = Z (XN — Xk,N(t))+ = Z Xinwy — (k= 1) Xk N
=1 i=1

for a fixed number & > 2. The link to extreme value theory is again immediate.
Moreover, (k — 1)/Rs looks very much like Hill’s estimator for the index of
a regularly varying tail; see Section 6.4.2.

The quantities R4(t) and Rs(t) are functions of the & upper order statistics
in a randomly indexed sample, a theory for which was given in Section 4.3.
Thus we can calculate the limit distribution of Ry for every fixed k: assume
that (8.126) is satisfied for appropriate constants ¢, d,, and an extreme value
distribution H. From Theorem 4.3.4 we know that

(! (Xiney —dn)) iy 4 S iz

where (YA(I)7 e 7Y/\(k)) denotes the k—dimensional extremal variate corre-
sponding to the extreme value distribution H*. Arguments as in Section 4.2,
see for instance the proof of Corollary 4.2.11, yield

k—1
¢i'Rs(n) = ¢! (Z XiNgn) — (k= I)Xk,mn))
=1

k—1

>oi (-t

=1

for k > 2. Now suppose that F' € MDA(A) where A(x) = exp{—exp{—2z}}
denotes the Gumbel distribution. Calculation shows that

1=

@) 2 @ Y 1y (8.127)

Hence
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e Rs(m) A3 (nY -y

2 N E (8.128)

for iid standard exponential rvs F;, where (8.128) follows from Corol-
lary 4.2.11. Hence the limit in (8.128) has a I'(k — 1,1) distribution.

Such a nice formula does not exist for F' € MDA(®,,) where for some a > 0,
&, (z) = exp{—2~“} denotes the Frechét distribution. However, a straight-
forward calculation shows that the following relation holds

() £ (e ey )

so that the joint density of (Yl(l)7 e Yl(k)) can be used to derive the limit
distribution of R5(n). This, however, will in general lead to complicated nu-
merical integration problems.

The same remark also applies to the limit distribution of the quantities R4 (n),
where for every fixed k£ > 1

k
et (Ra(n) —kdn) = ;"> (X n(n) — dn)

=1

v (8.129)

k
d,
—
=1

2

In the case F' € MDA (A) we can give an explicit, though complicated formula
for the limit distribution (8.129). Recall from Example 4.2.10 that

(Eipn —Inn),_, 4 (Y(i))izlymyk , n— oo,

where (E; ,,) denote the order statistics of a sample of size n from iid standard
exponential rvs F;. From Example 4.1.10 we also know that

d - L
(Bim)iey.on = | D i 'E;
J=t

1=1,...,n

Hence
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k k n
Z(Ei7n—lnn) 4 ZZj_lE]——klnn
i=1 i=1 j=i
k n
= Y Ej—klk+k > j'E;—k(nn—Ink)
j=1 j=k+1

= ZE —klnk+k Z i NE; = 1) +o(1)

J=k+1

ZE —klnk+k Z iHE - 1)

J=k+1

1=

Loyye,
=1

The infinite series on the rhs converges since

(Z] -—1>:§:j_2~k_17 k— 00 .

i=k+1 i=kt1
Now, recalling (8.127), we finally obtain the formula

k

k
DR SR LR 3P
=1

=1

u

Il

ZE —kln(k/\) +k Z iTHUE; - 1)

J=k+1

For small k the distribution of this limit rv can be derived by simulations
of iid standard exponential rvs. For larger & an asymptotic theory seems
appropriate. O

Notes and Comments

In the large deviation approach to insurance futures and reinsurance treaties
we have closely followed Kliippelberg and Mikosch [398]. Kremer [408] gives
the representation of reinsurance treaties in terms of order statistics. Teugels
[620] covers this topic in a set of lecture notes. Beirlant and Teugels [55], see
also the references therein, give some asymptotic theory for the quantities Rj
related to ECOMOR treaties. They assume that the number of order statis-
tics k increases as t — oo and that F' is either in the maximum domain of



520 8. Special Topics

attraction of the Fréchet or of the Gumbel law. Notice that some asymptotic
results for Rs can already be derived from the theory of Hill estimation as
provided in Section 6.4.2. Various authors have contributed to the pricing of
CAT futures: an early discussion is Cox and Schwebach [137]. A model based
on integrated geometric Brownian motion with or without a Poisson compo-
nent with fixed jump sizes was proposed by Cummins and Geman [149, 150].
Because of the geometric Brownian motion assumption, the latter papers use
the valuation theory of Asian options. The precise model assumptions (i.e.
fixed claim sizes) render the model complete and hence allow for unique no—
arbitrage pricing. An approach based on marked point processes is discussed
in Aase [1]. In Aase and Bdegaard [2] various models are empirically tested.
Meister [454] discusses in detail the equivalent martingale construction for the
underlying risk processes; he derives various pricing formulae within a utility
and general equilibrium framework. A summary of the latter work is to be
found in Embrechts and Meister [215]. See also Buhr and Carriere [101] for
a related approach. Chichilnisky [113] discusses the important issue of hedg-
ing and Chichilnisky and Heal [114] offer a new related financial instrument.
Various papers on the subject of securitisation of insurance risk are published
in Cox [136]. The general issue of comparing and contrasting actuarial versus
financial pricing of insurance is summarized in Embrechts [203]. This paper
also contains various references for further reading. An interesting paper to
start with concerning reinsurance in arbitrage—free markets is Sondermann
[601]. Delbaen and Haezendonck [176] give the relevant martingale theory in
order to embed premium calculation principles for risk processes in a no—
arbitrage framework. The more actuarial approach to pricing in finance is
beautifully summarized in Gerber and Shiu [258]. The latter paper singles
out the so—called Esscher premium principle when it comes to arbitrage pric-
ing of products in the intersection of insurance and finance. We encountered
the Esscher transform in our discussion of the Cramer-Lundberg theorem,
see Theorem 1.2.2, and also in our analysis of the path and claim leading to
ruin, see Section 8.3.2. The Esscher transform appeared as an exponentially
tilted df. The notion can be generalised to processes and indeed turns out to
be useful in a much wider context. For a generalisation to conditional Ess-
cher transforms for semi-martingales and their applications to finance see for
instance Biihlmann et al. [100] . The discrete time case is treated more in
detail in Bithlmann et al. [99].

In the near future we will see a large increase in the number as well as
diversity of (re)insurance products based on ideas coming from finance (the
CAT futures are such an example). Further examples from the latter family
are the so—called catastrophe-linked bonds for which the payout is contingent
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on the occurrence of specific catastrophic events. For instance, one buys today
a bond at $80 say; if during the next two years no well-defined catastrophe
occurs, then the bond repays at $100, if one catastrophe occurs, only $85,
and in the case of two, $65 say. A similar bond can be constructed where the
repayment value is contingent on the size of specific catastrophic losses. It is
clear that the pricing of such and similar products very much depends on our
understanding of the modelling of the underlying extremal events. Extreme
value theory will definitely offer a key set of relevant tools.

8.8 Stable Processes

In Section 2.4 we learnt about a particular stable process, the a—stable mo-
tion. It occurs in a natural way as the weak limit of (properly normalised
and centred) partial sum processes (Eg’g X;)¢>o for iid rvs X;. In the spe-
cial case when X has a finite variance, Brownian motion (B)¢>o is the limit
process. The central role of Brownian motion and, more generally, of Gaussian
processes in probability theory is uncontested. Thus they find applications
not only in martingale theory and stochastic analysis, but also in insurance
and stochastic finance. For a financial engineer, it is to an increasing extent
more important to know about Brownian motion and It6’s lemma than to
wear a dark suit and a tie.

Geometric Brownian motion (exp{ct + 0B;}):>0 for constants ¢, o is be-
lieved to be an elementary model for returns. However, a glance at any real
financial data set makes it clear that geometric Brownian motion is a very
poor approximation to reality. It does not explain changing volatility, or
jumps. Therefore, attempts have been made to move away from this simple
model. For example, infinitely divisible processes (Brownian motion is one of
them) are under discussion (see for instance Barndorff-Nielsen [46, 47] and
Eberlein and Keller [197]). a—Stable motion is also infinitely divisible. Apart
from any drift, it is a pure jump process and its marginal distributions have
an infinite variance. As such it is a candidate for modelling real phenomena
with erratic behaviour. a—Stable processes allow for generalisations and ex-
tensions in many ways. They are mathematical models as attractive as the
Gaussian processes. This has been proved convincingly in the recent books
by Janicki and Weron [354] and Samorodnitsky and Taqqu [565].

It is our intention now to give a short introduction to the topic of sta-
ble processes. We do this for the following two reasons: 1. We believe that
stable processes constitute an important class of stochastic processes with
the potential for wide applications in modelling extremal events. 2. They
are not very familiar (if not even unknown) to the applied worker. Even in
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circles where they are known there is a lot of suspicion about the infinite
variance of these processes, which is considered something extraordinary. (It
took 70 years before the role of Brownian motion was fully recognised in
finance.) Books like Mittnik and Rachev [465] will certainly contribute to
wider applications of stable processes in finance and insurance.

8.8.1 Stable Random Vectors

By virtue of Kolmogorov’s consistency theorem (see for instance Billings-
ley [69]), the distribution of a stochastic process (X¢)¢c7 is determined by its
self—consistent family of finite—dimensional distributions, i.e. the distributions
of the random vectors

(Xer, . X0,y ti,... ta€T, d>1. (8.130)

This is also the point to start with. We restrict ourselves to symmetric
processes which means that the distribution of the vector (8.130) does not
change when the latter is multiplied by —1. We use the abbreviation sas
(symmetric a—stable) and assume that a < 2; the case @ = 2 corresponds to
the Gaussian processes.

Recall (see Section 2.2) that an sas rv X has chf

Ee'™X ==l teR.

for some ¢ > 0 (a scaling parameter) and some « € (0, 2]. For completeness we
will also admit the parameter choice ¢ = 0 which corresponds to a “degenerate
stable distribution”. For iid symmetric X, X;, X5 this is equivalent to

d a av1l/a
a1 X1 +a2X2:X(|a1| +|a2| ) / , ai,az € R.
Stable random vectors are defined in a similar fashion:

Definition 8.8.1 (sas random vector)
The random vector X (the distribution F of X) with values in R? is sas for
some a € (0,2) if it has chf

e —op{ [ jeyFanm ), ver. s
Sdfl

Here (-,-) denotes the usual scalar product in RS and my is a symmetric (i.e.
ms(A) = ms(—A)) finite measure on the Borel sets of the unit sphere

Sd_lz{52(817,.,78(1):”5”: ~/S%++33:1}

of R%. It is called the spectral measure of the random vector X (of its distri-
bution F') and (8.131) is the corresponding spectral representation. O
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Remarks. 1) The spectral measure m, in (8.131) is unique on S¢~1 for
a < 2.

2) The spectral representation (8.131) yields immediately the following: let
X, X4, X3 beiid sas in R? and a1,a2 € R. Then

Eei(t,a1X1+a2X2) — Eei(t,alx) Eei(t,agx)

exp { = (arl” + ") [ 16yl

= Eexp{i (t,X(|a1|a+|a2|a)1/O‘)} , t € RE.

Hence
a1 X1 + as X2 4x (las|™ + |a2|a)1/a , ai,as € R.

For symmetric X, the latter can be shown to be equivalent to the defining
spectral representation (8.131) for an sas random vector. d

Example 8.8.2 (Independent sas rvs constitute an sas random vector)
Assume X = (X3,...,Xy) is a vector of independent sas rvs:

EeitXf:exp{—cj|t|O‘}, teR, j=1,...,d.

Then, for every t = (t1,...,tq) € R?,

d d d
Ee®X) = T] B = [[exp{-c; [t;"} =exp{ =3 ¢; [t5]°
j=1 Jj=1

j=1

Define the jth unit vector e; = (e;i)i=1,....a by

1 i=j,
€50 = izl,...7d.
0 i .

Then

Ee'™X) = expq = [(ej,t)|" ¢
7j=1

= eo{ [ voranm}.

where m; is the symmetrised version of the discrete measure

d
ms = E CjCe;
j=1
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(ex denotes Dirac measure concentrated in x) on the unit sphere S4~1 of R?.
Conversely, it can easily be seen that an sas random vector in R? with spec-
tral measure m; concentrated on the set of vectors {e1,...,eq,—€1,...,—eq}
has necessarily independent sas components. a

Example 8.8.3 (Subgaussian stable vector)
Let A be an a/2—stable positive rv. It is well known (see Samorodnitsky and
Taqqu [565], Proposition 1.2.12) that A has Laplace transform

Ee™*A = e>(p{—cso‘/2}7 $>0,

for some ¢ > 0. In the following we assume wlog that ¢ = 1. Recall that a nor-
mal N(0,20%) rv N has chf

Ee'™ = exp{—0?t’}, teER.
Assume A and N are independent and define
X = AY2N. (8.132)
Then
Ee'™ = E (E (eitAl/QN‘ A)) = Fexp {—Aa2t2}

= exp{—[o]"[t]*}, teR,

i.e. X is sas, and every sas rv X has representation (8.132). This is the moti-
vation for the following multivariate generalisation: assume N = (Ny, ..., Ny)
is mean—zero Gaussian in R? given by its chf

EeltN) — exp {—tTRt} , teR¢,

where the vectors t are understood as columns and T stands for transpose.

Moreover,
2R=2 (rij)i,jzl,,,,,d = (cov (Niij))

is the covariance matrix of N. If N and A are independent then X = AY/2N
is called subgaussian. It has chf

FeitX) EeiAl/Q(t,N)
= B (B(e7]4))
= Fexp {—AtTRt}

= exp {— |tTRt|a/2}

i,j=1,....d

/2

d
= exp4 — Z tit;ri; , te R? R

1,j=1
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which can be shown to be the chf of an sas random vector (it suffices to prove
that every linear combination of components of a subgaussian vector is sas;
see Proposition 1.3.1 in Samorodnitsky and Taqqu [565]; this follows from the
chf above). If N has iid N(0,20?) components the chf of X is particularly
simple:

J a/2
Ee'&X) = exp{ —|o|® Zt?
j=1
= exp{—|o|¥|t]*}, teR. (8.133)

For example, let d =2, & = 1 in (8.133). Then we obtain
Ee'®X) = exp {—|a| 2 + t%} , teR?,

which is the chf of the two—dimensional isotropic Cauchy law. It has density
o]

2m (22 4+ 23 + 02)

fX(xlva): 3/27 xl,SCQER.

The meaning of the word “isotropic” will become clear by the arguments
given below.

The sas distribution with spectral representation (8.133) corresponds to
a spectral measure ms which, up to a constant multiple, is Lebesgue measure
on S41, We verify this for d = 2. Write t in polar coordinates:

t1 COS ¢y [ 5
<t2) T<Sin¢t) 7 P

Then we have

21 27
/ | cos 6| do / lcos (6 — ¢0)|* déb

0

27
r"/ |cos ¢ cos ¢ + sin ¢y sin ¢ do
0
. m T COS Py cos ¢
- [ I(Ce) - (G2)
LI G)l
0 t2 ’ sin¢

de.
In a similar way, one can proceed in R?, using spherical coordinates.

«

do
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Notice that the distribution of a subgaussian X is invariant under rotations
(isotropic): let O be an orthogonal matrix (OT = O~1!). The vector OX is
the vector X after a rotation in R%. Then

BeX) = exp {~|o]° 1|1} = exp { ~[o]* |0T¢|"} = B0t et

since - )
[t?=tTt=t" (00O")t=(0Tt) (OTt)=]O"t||". O

8.8.2 Symmetric Stable Processes

Now we are in the position to define an sas process:

Definition 8.8.4 (sas process)

A stochastic process (Xi)ier is called sas if all its finite—dimensional dis-
tributions are sas, i.e. the random vectors (8.130) are sas in the sense of
Definition 8.8.1. O

From the definition of an sas process (X¢)er it follows that all linear com-
binations

d
ZaiXti o (@)imy, g €ERY, (ti)y L €T, d>T1,
=1

are sas. The converse is also true as it follows from Theorem 3.1.2 in
Samorodnitsky and Taqqu [565].

Example 8.8.5 (sas motion)

In Section 2.4 we learnt about a—stable motion as a process with independent,
stationary a—stable increments. sas motion is a special a—stable process with
symmetric a—stable finite-dimensional distributions: it is a process (X;)¢>o0
satisfying the conditions

— Xp=0a.s.

— (X3) has independent increments: X, — X,,..., X, — X;,_, are indepen-
dent for every choice of 0 < t; < -+- <ty < oo and d > 1.

- X — X, 4 Xi s, t>s,and X; is sas for every ¢t > 0.

Notice that for t; < --- < tg4, by virtue of the stationary, independent incre-
ments,

(Xtu"'vXtd)

4 (th}/“,zlt}/“ 2y (b — )Y

th}/a + Zy (t2 — t1)1/°‘ o Zg(tg— td_l)l/a)
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for iid sas Z; such that Z; 4 X;. In particular, for all ¢ > 0
i l/a
(Xct17~~~7Xctd)—C (Xt17"'7Xtd)'

This property is called 1/a-self-similarity of the process (X;) (see Section
8.9 for more information on self-similarity). Notice that Brownian motion is
1/2-self-similar and the Cauchy (i.e. s1s) motion is 1-self-similar. O

8.8.3 Stable Integrals

Many stable processes of interest have a stochastic—integral representation
with respect to a stable random measure. This is similar to the Gaussian
case. As for Gaussian processes, there exist different ways of defining stable
integrals. We prefer here a constructive approach to the topic.

First we introduce the notion of an a—stable random measure with respect
to which we will integrate. It is in general not a signed measure since it can
have infinite variation. We again restrict ourselves to the symmetric (sas)
case.

Definition 8.8.6 (a—Stable random measure)

Let [E,E,m.] be a measure space, i.e. £ is a o—algebra of subsets of E and m.
18 a measure on E. A set function M on & is called an sas random measure
with control measure m. if the following conditions are satisfied:

(a) For every A € & with m.(A) < oo, M(A) is an sas rv with chf
Ee™) = oxp {—m.(A)|t|*}, teR.

(b) For disjoint Ay,...,Aq € £ with Zfil me(A;) < oo, the rvs M(A),...,
M(Ay) are independent.
(c) For disjoint Ay, As,... € E with Y .2, m.(A;) < oo the relation

holds. O

Remarks. 1) For our purposes, E will be a subset of the real line equipped
with the corresponding o—algebra of the Borel sets.

2) Motivated by the defining properties (b) and (¢), M is also called an
independently scattered o—additive set function.

3) The existence of an sas random measure has to be proved. One way is
to apply Kolmogorov’s consistency theorem (see for instance Billingsley [69])
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since M can be considered as an sas process indexed by the sets A € £ with
finite m.—measure. It is easy to see that the rhs in (c) is a.s. convergent.
As a series of independent terms it converges a.s. if and only if it converges
in distribution (see Dudley [187], Section 9.7.1 on p. 251). And it converges
weakly to the distribution with chf

[I Eexp{itM (A} =[] exp{—mc(An)lt}
k=1 k=1
~ e { -t Smtan )
k=1

O

Example 8.8.7 (sas motion as an sas random measure)

Agsume that M is an sas random measure on [[0, 00), o([0, 00)), m. ] where
o([0,00)) denotes the o—algebra of the Borel sets in [0, 00) and m.. is Lebesgue
control measure. Define

X, =M(0,t), 0<t< .
By definition of an sas random measure, X; 2 t1/* X, and (X¢)e>0 has sta-
tionary, independent increments. Thus (X;);>o is an sas motion. a

Now we want to construct an sas integral. We start with a simple function
as integrand:

n
fo=>_cila;, (8.134)
j=1
where Ay,..., A, € € is a disjoint partition of ¥ and ¢y, ..., c, are arbitrary

real numbers. Then immediately
[ 5@ dme@) = Y el e (4)
j=1

We require that the rhs is finite, i.e. f, € L*[E, &, m.]. For such a function
we define the stochastic integral

TG0 = [ 1@ @) = Y e (4))

Using the independence of the M (A;), the chf of I(f,) is easily evaluated:
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Eeitl(fn)

— H Eeitc]-M(A )
j=1

exp _|t|a2|cj| me (4;)

exp{—|t|a/ (2 dmc(x)}. (8.135)

Hence I(f,) is sas, and therefore the notion sas or a-stable integral is
justifed.

Every measurable real-valued function f on [E, €] can be approximated
by simple functions f,, as defined in (8.134) which, in addition, satisfy the
conditions |f,| < |f| and f, — f m.—a.s. Samorodnitsky and Taqqu [565],
p. 122, give a particular construction for f,. If f € L¥[E, €, m.] then also
fn EL*[E,E,m,] for all n, and dominated convergence yields

/|fn fm ()" dme(x) =0, n,m — oo, (8.136)

/|fn — f(@)]" dm.(x) -0, n—oo.

Since it is always possible to find a disjoint partition (A;) of E jointly for f,
and f,,, we can write, for n > m,

:ch-k)IA]., k=n,m.
J

Hence I(fn — fm) =I(fn) — I(fm) and by (8.135) and (8.136) we may con-
clude that

pe st 10D —exp { e [ 1) = fnlo)” dmie)} 51, 1.
E

This proves that (I(f,)) is a Cauchy sequence with respect to convergence
in probability and hence it converges in probability to a limit rv which we

denote by
= | r@am

and which we call the stochastic integral of f with respect to M or an sas
integral. The limit I(f) is independent of the choice of the approximating
simple functions (f,). (If there is another approximating sequence (g, ), one
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can construct a joint sequence (hy) from elements of (f,) and (g,) which is
again Cauchy and has a unique limit I(f).)
In the following we give some simple properties of the stochastic integrals

Proposition 8.8.8 (Elementary properties of sas integrals)

Assume f, f1, fa,... € L*[E, &, m.].

(a) I(f) is sas with chf
Eet!l) :exp{—|t|°‘/ |f(:r)|“dmc(x)} , teR.
E
(b) I(f) is linear, i.e. for every ai,az € R,
[ @h@) + ap@) di@ =a [ fi@ai@ae [ @ i),
E E E
(¢) The relation I(f,) 5 I(f) holds if and only if
[ 154@) = @) dmefa) > 0.

Proof. From (8.135) we know that (a) holds for a simple function f,. For
general f, (a) follows from (8.135) and from the continuity theorem for chfs

since I(f,) £ (f) for the simple functions f,, used in the definition of I(f).

(b) is immediate for simple functions f;, fo. For general fi, fo let fl(n),
f2(n) be simple functions as used for the definition of I(f;), I(f2). Then
I(fi(")) KA I(f;),i=1,2, and (b) follows by first applying (b) to fi("), i=1,2,
and then by passing to the limit as n — oo.

(c) Notice that

Ee™ ) =1() = exp {—|t|a/ |[fn(z) — f(2)]” dmc(x)} , teR.
E
A necessary and sufficient condition for I(f,) 5 I(f) is that Eexp{it(I(f)—

I(fn))} — 1 for all ¢, but this means that [, |f.(z) — f(2)|* dm.(z) = 0. O

Proposition 8.8.9 For every f1,...,fa € L*[E,E,m.], the random vector
Ja=U(f1),. .., I(fa)) is sas.

Proof. We have the chf
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d
EeitJa)  — Eexp{iztjl(fj)}
7j=1

d
exp{—/E Zt]-f]-(x) dmc(x)}

>yt () a ( <, )a/z
exp { — 172 f5 (@) dme(z) ¢,
|- (T @) X

where ET ={z € E: E;l:l fi(x) > 0}. Introducing the new coordinates
fi(x)
v

gj:gj(x): P j:]-v"'vdv

on S* 1 we can write

. ’ a
Eet9) = exp {— /.. 3.t dm<g>} ,
/2
=L (o) e

7j=1

where

Proposition 8.8.10 The rvs I(f1) and I(f2) are independent if and only if
filx)f2(x) =0 m. — ae. (8.137)

Sketch of the proof. Using chfs, one has to show that

Eetl(fith)  — exp{—|t|a/E|f1(x)+f2(m)|a dmc(r)}

= exp{—|t|0‘ (/ | f1 ()™ dme (2 /|f2 “dme( ))}

= EetlUEet(2) ¢ eR.

This means that one has to prove that

/E |fi(@) + fo(2)]" dm.(x / | f1(2)]” dme(x / | f2(2)|* dme(x) .

(8.138)
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If fi and f, have disjoint supports as assumed by (8.137), (8.138) is imme-
diate. For the converse we refer to Samorodnitsky and Taqqu [565], Theo-
rem 3.5.3. O

Remark. 4) It should be mentioned that the above construction of an
sas—stable integral also works in the Gaussian case when a = 2. But
notice that then Eexp{itI(f)} = exp{—t* [, f*(x)dm.(x)}, ie. I(f) is
N(0,2 [, f*(z)dmc(x)). Thus one can define a Gaussian stochastic integral
with respect to a s2s random measure via only the variances of the rvs I(f),
which is standard in that case. O

8.8.4 Examples

In this section we consider some more examples of stable processes. In
most cases we will make use of the representation as sas integrals with re-
spect to an sas random measure. For the reader who is not interested in
the construction of such an integral as given in Section 8.8.3, it is conve-
nient to think of [, f(x)dM (z) for some E C R as a discrete sum of type
> f(xj—1)M((zj-1,x;]) for afinite partition z1 < x> < -+ <z, of elements
of E, where the rvs M ((z;_1,2;]) are independent sas with chfs

Eexp{itM((xj-1,%;])} = exp {=[t|* (me (x;) — me (x;-1))}
for a non—decreasing, right—continuous function m. on R.

Example 8.8.11 (sas motion)
Let

0o t
X; = / I(—oo,qy () dM (z) :/ dM(z), t>0,
0 0

where M is an sas random measure on R with Lebesgue control measure m..
Thus

Eeit(st—Xsl) = exp {_|t|a (82 _ 81)} , s1<s3, teR. (8.139)

By definition of an sas random measure, the increments

Xs,:_Xsi71:/ dM(JJ), 0381<"'<5d<00
Si—1

are independent and, in view of (8.139), also stationary.

In a similar way, we can introduce sas noise:
t+1
Yt:/ dM(z) =M@t +1)—M(t), teZ,
t

i.e. (Y;)iez are iid sas with chf Ee®s¥1 = e 151" seR. a
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Example 8.8.12 (sas linear process or moving average process)
In Chapter 7 we considered the linear or infinite moving ave