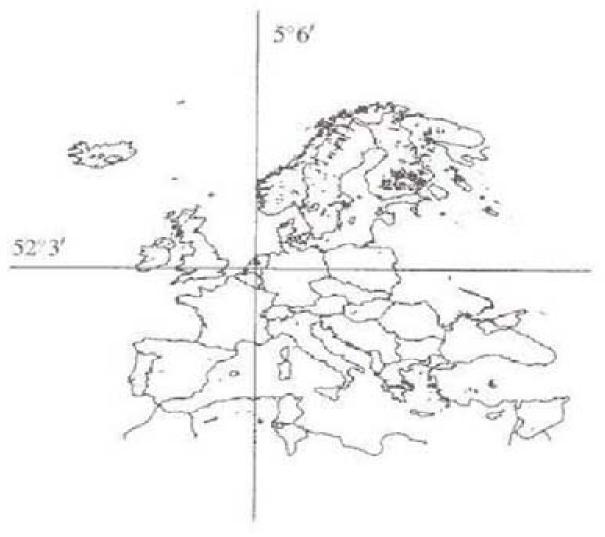
In The Name Of GOD

Point Location

Point Location



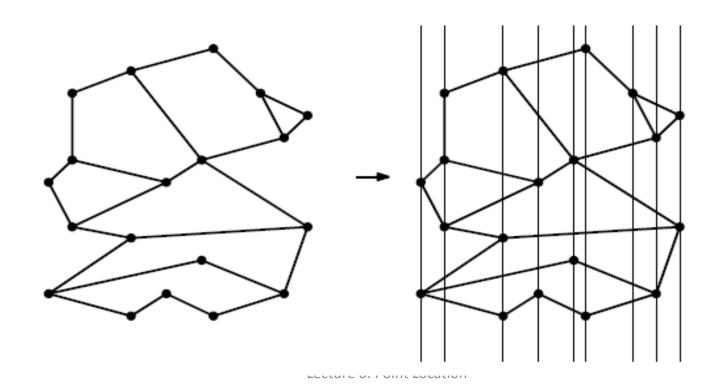
Lecture 6: Point Location

Definition

- Given: a planar subdivision S with n edges formed by multiple polygons called faces.
- Goal: build a data structure that, given a query Point, determines which face of the planar Subdivision that point lies in.
- Several different approaches lead to optimal data structures, with O (n) storage space and O (log n) query time.

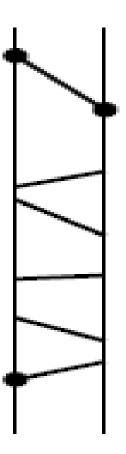
First attempt

- Want to divide the plane into easily manageable sections with simple data structure.
- Idea: Divide the graph into slabs, by drawing a vertical line Through every vertex of the graph.



• Given a subdivision of the plane into vertical slabs (area between two parallel); determine which slab contains a given point (do binary search).

• Given the query point, do binary search in the proper slab.

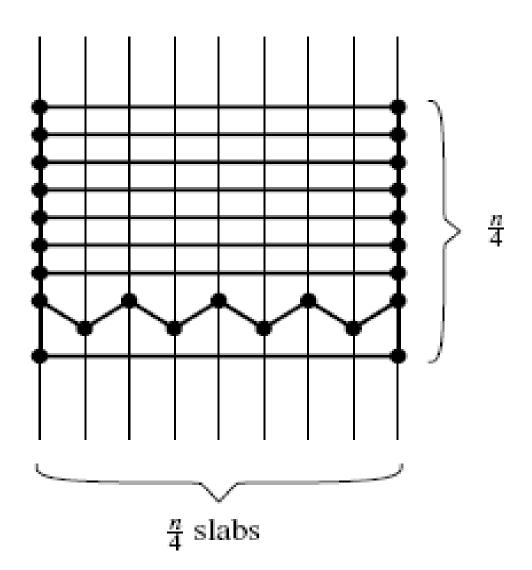


Analysis

• Query time:

O(log n)

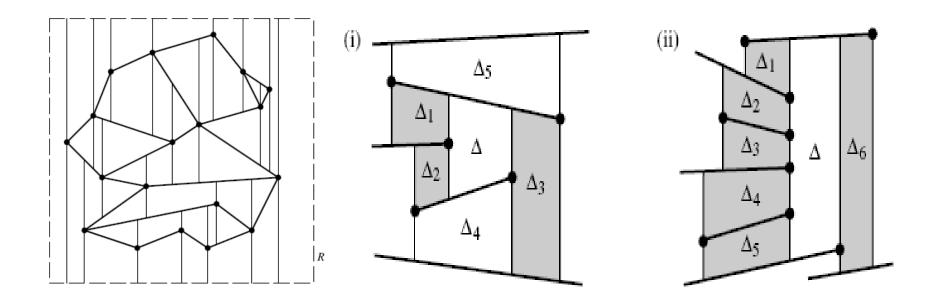
• Space: O(n²)



✓ Two line segment is non-crossing if their intersection is either empty or comment end point.

Assumptions/Simplifications

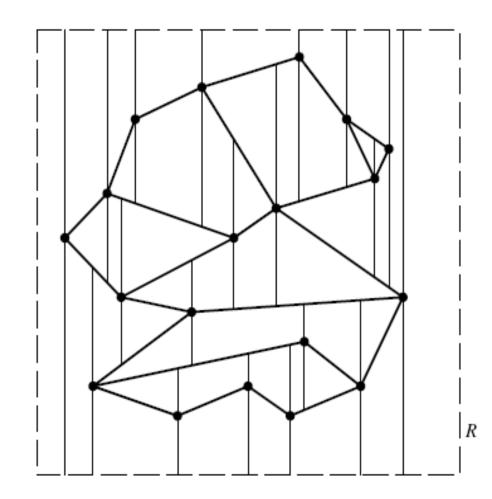
- >Add a bounding box R that contains S
- Assume that no two distinct endpoints of segments in the set s have the same x-coordinate.



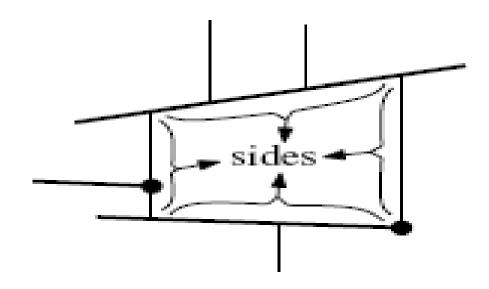
We have a set of n non-crossing line segment, enclosed in a bounding box R, and with the property that no two distinct endpoint line on a common vertical that call such a set a set of line segment in **general position**.

Second attempt

- We get a trapezoidal decomposition T(S) of S
- A trapezoidal decomposition is obtained by shooting vertical bullets going both up and down from each vertex in the original subdivision. The bullets stop when they hit an edge, and form a new edge in the subdivision.

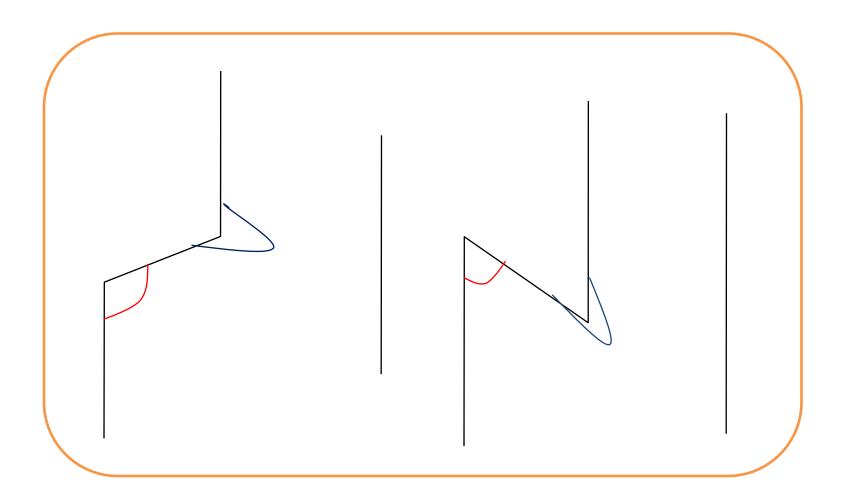


Lemma 6.1 each face in a trapezoidal map of a set S of line segment in general position has one or two vertical slides and exactly two non-vertical slides.



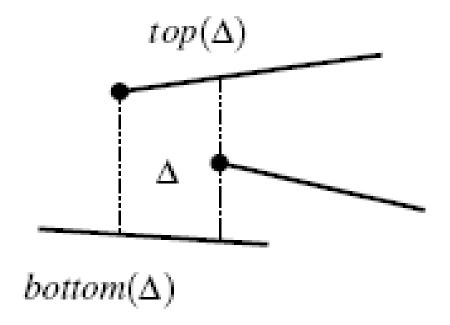
Convex Polygon

- Definition: A polygon that has all interior angles less than 180°.
- In geometry, The following property of a simple polygon are all equivalent to convexity:
- ✓ Every internal angle is at most 180 degrees.
- ✓ Every line segment between two vertices of the polygon does not go exterior to the polygon.

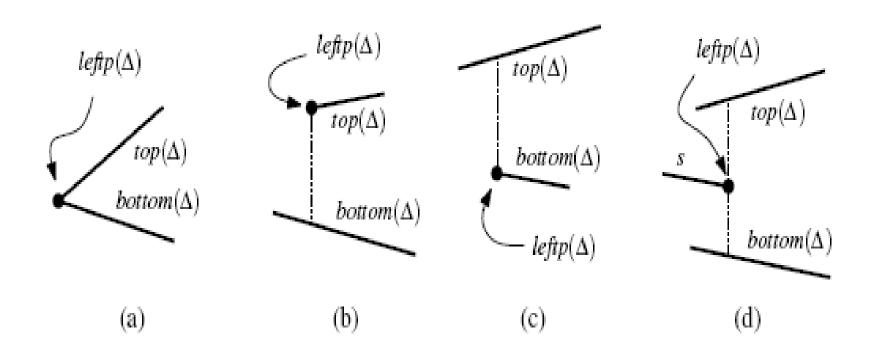


Some notation

Segments $top(\Delta)$ and $bottom(\Delta)$:



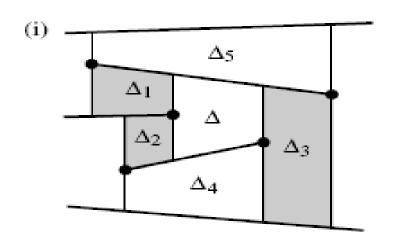
Points $leftp(\Delta)$ and $rightp(\Delta)$:

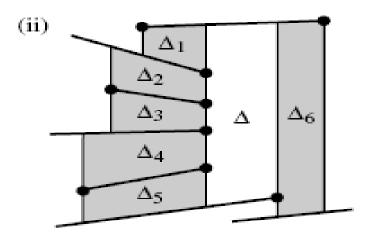


Each Δ is defined by top (Δ) , bottom (Δ) , leftp (Δ) , rightp (Δ) .

Lemma 6.2 The trapezoidal map **b**(s) of a set s of n line segments in general position contains at most 6n+4 vertical and at most 3n+1 trapezoids.

- Two trapezoids are adjacent if they share a vertical boundary.
- How many trapezoids can be adjacent to Δ ?
- If Δ ' be a trapezoid to Δ along the left vertical edge of Δ and:
- Top (Δ') = Top (Δ) then Δ' is upper left neighbor.
- Bottom (Δ ') = Bottom (Δ) then Δ ' is lower left neighbor.



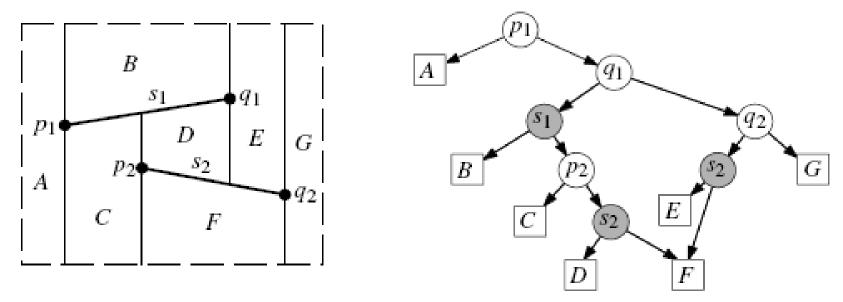


- The record for a trapezoid Δ store pointers to $\mathsf{Top}(\Delta)$ and Bottom (Δ) , pointers to leftp (Δ) and rightp (Δ) and pointers to its at most four neighbors.
- \succ We can deduce the geometry of Δ in constant time from the information stored for Δ .

A Randomized Incremental Algorithm

Search Structure

A directed acyclic graph with a single root and exactly one leaf for every trapezoid of the trapezoid map of S. Its inner node have outdegree 2. There are two types of inner nodes: x-nodes, which are labeled with an endpoint of some segment in S, and y-nodes which are labeled with a segment itself.



Lecture 6: Point Location

Type of tests

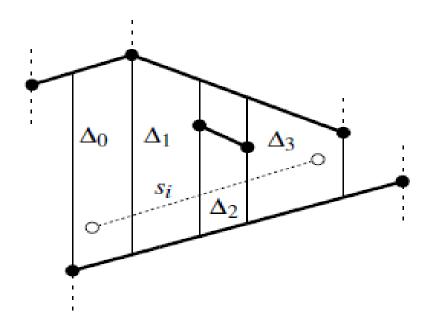
X-node:

"dose q lie to the left or to the right of the vertical line through the endpoint stored at this node?"

Y-node:

"dose q lie above or below the segment s stored here?"

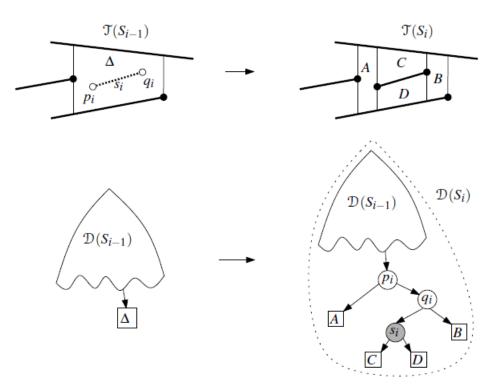
Describe steps



Adding new segment si

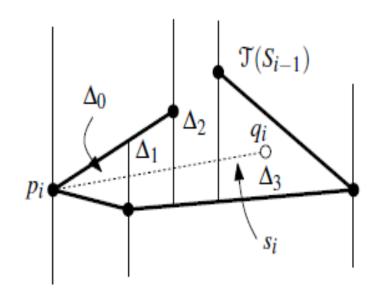
Simple case

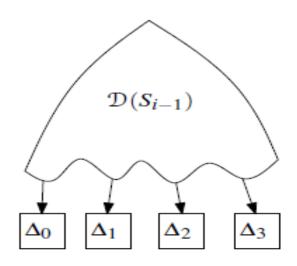
 S_i is completely contained in a trapezoid $\Delta = \Delta_0$.



Advanced case

- Let $\Delta_0 \dots \Delta_k$ be the trapezoids intersected by s_i (left to right)
- To find them:
 - ∆₀ is the trapezoid
 containing the left endpoint
 p of s_i find it by querying
 the data structure built so far.
 - $-\Delta_{j+1}$ must be a right neighbor of Δ_j .





Updating T

- Draw vertical extensions through the endpoints of si that were not present, partitioning Δ0 ... Δk
- Shorten the vertical extensions that now end at si, merging the appropriate trapezoids

