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A B S T R A C T   

Transactive energy is a next big thing in the energy sector which considerably transform the association between 
utility, consumer, and the environment. Transactive energy management (TEM) system comprises a collection of 
economical and controlling strategies which helps to dynamically balance the power infrastructure. Peer-to-Peer 
(P2P) trading becomes familiar, which mainly based on the process of power generation and consumption is 
completely decentralized. At the same time, Hybrid electric vehicles (HEV) have become an important tech-
nology to accomplish energy efficiency and environmental sustainability. Battery Management System (BMS) 
evaluates the power and State of Charge (SOC), confirms the well-being depending upon the measurement. 
Accurate SOC estimation is crucial to ensure the unfailing functioning of Li-ion battery that is mainly employed 
in HEVs. A reliable SOC prediction model is needed to assure the precise measurement of the residual driving 
range of the vehicle and appropriate battery balancing. In this view, this paper presents an optimal machine 
learning based SOC estimation (OML-SOCE) model for HEVs in TEM. The OML-SOCE is aimed for estimating an 
accurate capacity of SOC of Li-ion batteries on HEVs. The OML-SOCE technique involves a two stage process 
namely stacked sparse autoencoder (SSAE) based prediction and salp swarm algorithm (SSA). At the first stage, 
SSAE is used for the prediction of SOC. Sparse auto-encoder (AE) is an enhanced AE technique that improves any 
some sparsity restrictions in the hidden layer of standard AE. A stack of multiple sparse AE forms a deep network 
framework that is named as SSAE. Next, in the second stage, the parameters involved in the SSAE are optimally 
adjusted by the use of SSA in such a way that the prediction performance can be considerably improved. A wide 
range of experiments take place and the results are investigated under varying temperature levels. The experi-
mental outcomes showcased the supremacy of the presented technique the recent techniques with respect to 
different measures.   

1. Introduction 

Transactive energy market (TEM) remains an important research 
area, which is commonly applied to balance the dynamic supply and 
demand over the grids. It enables the Peer-to-Peer (P2P) energy trading 
which creates a connection between the consumer as well as prosumer to 
trade energy with one another. The P2P energy improves the flexibility 
by reducing the user demand and minimizing the burden on the 

network. On the other hand, Lithium-Ion batteries are commonly 
employed in Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) 
because of their numerous benefits on other kinds of batteries [1]. It has 
the special characteristic that needs a Battery Management System 
(BMS) for dynamically monitoring its parameter, in addition, to guar-
antee the safe, reliable, and control operations of battery at the time of 
their discharging or charging cycle [2, 3]. The primary objective of the 
BMS is to control and monitor the battery processes like discharging 
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cycle and charging cycle, assure the health conditions of the battery, 
minimizing the possibility of battery damage by assuring optimized 
energy is being delivered from the battery to power the vehicle [4]. The 
monitoring circuits in BMS are employed for monitoring the key char-
acteristics of the battery such as current, voltage, temperature at dis-
charging, and charging conditions for ensuring the safe operation [5]. 

State of Charge (SOC) is a significant parameter determining the 
state of a Li-ion battery. SOCs are determined as the ratio of battery’s 
residual to the nominal capacity. As the over-discharging and -charging 
brings unavoidable harm to a Li-ion battery, precise SOC prediction 
must be given as the BMS. The more commonly applied approach for 
SOC predictions is Coulomb counting [6]. Nonetheless, prediction error 
might be gathered for open-loop approach, results in the prediction 
drifting far from the accurate value. Also, Early SOC errors cause biases 
in the prediction. Another widely utilized methods are the 
open-circuit-voltage (OCV) technique. This technique attains SOC from 
the battery0 s OCV-SOC relationships [7]. But, precise OCV measure-
ments require the batteries should be in state of equilibrium when the 
battery in EV is at operation in the course of driving. Hence, the OCV 
approach isn’t applicable for realtime SOC prediction. 

Approaches including classical Machine Learning (ML) method were 
employed in the previous. The benefit of this type of method is that they 
could be trained using realworld data and self-learn SOC prediction 
without needing handcrafted model [8]. But, if NNs are exclusively 
utilized, the outcomes are typically not sufficiently precise, and hence 
needed the further usage of Kalman filter or another inference ap-
proaches for achieving adequate prediction accuracy. Even though few 
studies have employed Kalman filter in conjunction with equivalent 
circuit battery models/integrated battery models, also various studies 
have employed in conjunction using NN battery model. In [9], a trained 
two layer NN with thirty neurons in the hidden layer estimate terminal 
voltage about 4% RMS errors [10]. Moreover, the ELM approach is 
trained on constant discharge pulse therefore the efficiency in transient 
load demand, experienced in realtime situations, isn’t known. In sub-
tractive clustering and FC means methods are employed using an SVM 
for SOC prediction. The study was executed is based on the last fuzzy 
SVM method with a GA based FC means clustering approach using a BP 
technique for estimating SOC and is stated to surpass traditional fuzzy 
modeling approaches. 

1.1. Motivation 

In recent years, the P2P energy trading improves the flexibility by 
reducing the user demand and minimizing the burden on the network. 
Previous studies have used statistical and machine learning models for 
battery SOC prediction in TEM. These approaches use a moving average 
prediction with a decreased electrochemical method that is capable of 
performing prediction without linearization error and permits for 
constraint on states such as Li-ion concentration and internal resistance 
state [11]. Though several approaches are existed in the literature, there 
is still needed to design OML-SOCE technique for SOC estimation of 
Li-ion batteries in TEM. 

1.2. Objectives 

The major objective of this study is to design an automated machine 
learning based prediction model for SOC estimation of Li-ion batteries 
on HEVs in TEM. 

1.3. Paper contribution 

This paper presents an optimal machine learning based SOC esti-
mation (OML-SOCE) model for HEVs for estimating an accurate capacity 
of SOC of Li-ion batteries on HEVs in TEM. The OML-SOCE technique 
involves a two-stage process namely stacked sparse autoencoder (SSAE) 
based prediction and salp swarm algorithm (SSA). Sparse auto-encoder 

(AE) is an enhanced AE technique that improved any sparsity re-
strictions in the hidden layer of traditional AE. Besides, the parameters 
involved in the SSAE are optimally adjusted by the use of SSA in such a 
way that the prediction performance can be considerably improved. A 
comprehensive simulation analysis is carried out and the outcomes are 
inspected under distinct temperature levels. 

1.4. Paper organization 

The rest of the paper is organized as follows. Section 2 offers a 
detailed literature review and Section 3 introduces the proposed OML- 
SOCE technique. In addition, Section 4 offers the detailed experi-
mental validation and Section 5 draws the conclusion of the study. 

2. Related works 

Chandran et al. [12] introduce the SoC predicting of Li-ion battery 
system through 6 ML methods for EV applications. The applied algo-
rithm consists of ANN, SVM, LR, GPR, EBa, and EBo. Error analyses of 
the models are performed for optimizing the battery’s efficiency. In 
Hannan et al. [13], the capability of optimized ML technique is proposed 
for enhancing SOC prediction based on accuracy, learning capability, 
convergence speed, and generalization performance. Also, authenticate 
the presented algorithm using, noise, Li-ion batteries experiment, EV 
drive cycle, aging effect, and temperature. Sidhu et al. [14] introduce an 
enhanced SOC prediction of Li-ion battery using RF approach, i.e., 
effective and robust to control dynamic system. For ensuring better ac-
curacy and good resilience, Gaussian filters are adapted at the 
concluding phase for minimizing the variation in the SOC prediction. 
The presented SOC estimators are tested on the investigational data of 
the Li-ion battery in distinct operating temperatures and Federal test 
driving schedules. 

Zhang et al. [15] proposed a compact RBF neural method for pre-
dicting SOC approach of lithium battery packs. Initially, an appropriate 
input set powerfully related to the package SOC is recognized from 
directly measured current, temperature, and voltage signals using an 
FRA strategy. Next, an RBF neural method for battery pack SOC esti-
mations is made by the FRA approach for pruning unwanted hidden 
layer neurons. Later, the PSO approach is employed for optimizing the 
kernel parameter. Lastly, a traditional RBF NN method, an enhanced 
RBF neural method with the 2 phase methods, and also LSSVM models 
are employed for estimating the battery SOC as a comparative analysis. 

In Xu et al. [16], a new method integrating Sigma-point Kalman 
filters and ML method depending on equivalent circuit models are pre-
sented for improving the SOC prediction accuracy of a reutilized battery 
pack (LiFePO4) by reducing the negative effects of hysteresis phenom-
enon. In Tian et al. [17], DNN based methods are presented for esti-
mating SOC by current data and 10-min charging voltage as the input. 
Therefore, it could be employed for calibrating the SOC prediction for 
the Ampere hour counting technique. Also, demonstrates that by inte-
grating the DNN method to Kalman filters, the strength of SOC predic-
tion against error spikes and arbitrary noise could be enhanced. 

Anjum et al. [18] have recognized a minimum configuration of a 
DNN framework and hyper parameters setting to efficiently predict SOC 
of EV battery cells. The experimental result shows that a minimum 
configuration of hidden neurons and layers could decrease the resource 
and computation costs needed without compromising efficiency. Addi-
tionally, it is assisted by several epochs for training optimal DNN SOC 
estimation models. In Zahid et al. [19], a SOC prediction method with 
subtractive clustering based neuro fuzzy systems are evaluated and 
presented using the experiment with an innovative vehicle simulator 
compared to BPNN and ENN methods. 

Chemali et al. [20] introduce a novel technique for performing 
precise SOC estimations for Li-ion batteries via an RNN using LSTM. 
Showcases the LSTM-RNN capability for encoding dependency in time 
and precisely predict SOC without the use of inference systems, battery 
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models, filters such as Kalman filters. Additionally, ML techniques, such 
as each other, can able to generalize the abstraction it learns at the time 
of training for another dataset taken in distinct situations. Hence, they 
exploit this feature by training an LSTM-RNN method on dataset noted 
at several ambient temperatures. In Wei et al. [21], the approach of the 
dynamic NN is applied for predicting the SOC of Li-ion battery, i.e., 
enhanced according to the classical close-loop non-linear autoregressive 
model using NARXNN method, and the open-loop NARXNN models 
consider anticipated outputs are presented. As the feedback delay, input 
delay, and hidden layers of the dynamic NN are generally elected 
empirically, that affect the prediction efficiency of the dynamic NN. 

3. The proposed OML-SOCE technique 

In this study, a new OML-SOCE technique is derived for the SOC 
estimation of the Li-ion battery in HEVs. The OML-SOCE technique in-
cludes SSAE based predictive model to determine the proper level of 
SOC. Besides, the parameter optimization of the SSAE model takes place 
using the SSA. 

3.1. Problem formulation 

Consider a group of positions l∈L,L=L_P∪L_p ‾ which could be 
charging station (viz.,L_P) or not (viz., L_P Depending upon this, they 
determine a transportation network as a graph G=(E,L) together node L 
& edge E, whereas e∈E denotes road and l∈L indicates junction of road 
network. They determine distinct time points t∈T,T⊆N when they 
represent the group of EVs as a∈A.

Here, ∀l∈L_P has several charging slots s_l∈N. All the charging sta-
tions l have a charging rate, c_l∈R_0^+ and each charging station has a 
set cost cost_l^elec∈N for paying the electricity supplier to all the units of 
electricity. Therefore, they determined a matrix allocation charge_(a,l, 
t)∈{0,1} for representing EV a is at charging station l in time point t. 
Furthermore, all the charging stations have an estimated demand dem_ 
(l,t)∈N for every time point that is considered to be fixed with the 
electrical energy supplier beforehand. A monetary penalty cost_(l,t) 
^imbl 

costimbl
l,t =

⃒
⃒
⃒
⃒
⃒

∑

a
chargea,l,t − deml,t

⃒
⃒
⃒
⃒
⃒
× costimbl (1)  

is employed for the station when the actual demand differs from the 
predictable one [24]. The variance in the complete values are the 
imbalance regarding utilized energy and costimbl is a set price the station 
pays to the electrical energy supplier if the actual demand is distinct 
from the predicted one. Hence, index a denotes EVs, l to the charging 
station, and t indicates time point. 

Every EVs a is assumed as an autonomous agent and has a kind θ_a=
〈d_a,b_a^( max ),b_(a,t),l_a^start,t_a^start,l_a^end,τ_a^prk,t_(a,l)^arr,t_(a,l) 
^dep,b_a^chrg,v_a^elec 〉. All a have a discharge rate d_a∈R_0^+, a 
maximal battery capability b_a^( max )∈R_0^+, also a present battery 
levels in time t,b_(a,t)∈R_0^+ estimated in kWh. Furthermore, all EV a 
start out from their source position l_a^start at time t_a^start∈T and 
should travel to terminus l_a^end where it should park at time τ_a^prk∈
N. Assume pairs of locations (l_a^start,l_a^end) and transport network G, 
shortest route, r_(l_a^start,l_a^end )∈R_(l_a^start,l_a^end ) from the source 
to destination is estimated by Dijkstra method. Likewise, the shortest 
route r_(l^’,l)∈R_(l^’,l) from the sources to the whole charging points 
l∈L_p are estimated. All the routes r_(l^’,l) have a distance δ_(l^’,l) z:R_ 
(l^’,l)→N calculated in kilometers, a time to travel τ_(l,l)^drive: R_(l^’,l)→ 
N and a quantity of energy desired, ε_(l’,l)^need (τ_(l’,l)^drive,d_a). 
Depending upon slot availability and capability of EV for attaining a 
charging point with its early battery level, a group of usable charging 
point Γ_(a,t) subseteqL_P is determined. All the EVs are presented for 
charging among t_(a,l)^arr=t_a^start+〖τ_(a,l)〗^drive and 〖t_(a,l)〗 
^dep=t_(a,l)^arr+τ_(a,l)^prk. Noted that τ^drive is estimated depending 

upon the distance to location l separated with an average speed. All the 
vehicles should charge a certain quantity of energies b_a^chrg≤b_a^( max 
) in charging point l and have private valuations v_(a,l) to charge the 
desirable quantity of energies in all the charging points. 

All the EVs have a private valuation to charge the desirable quantity 
of electricity in a certain position. 

va,l =

⎧
⎨

⎩

(
veleca − κtime

a,l

)
× bchrg

a ,

0,

if ba,t depa,l ≥ bchrg
a

otherwise
(2) 

Based on Eq. (2), a time cost 〖κ_(a,l)〗^time linked to drive for the 
station and walk from the station to the ending is subtracted in valuation 
v_a^elec to charge one unit of electricity. v_a^elec and k_(a,l)^time are 
with zero and one range. Noted that κ_(a,l)^time is processed equally for 
the whole agents since it is depending upon graph which is utilized for 
representing the road network. Noted that the agent has 0 valuations to 
charge lesser compared to b_a^chrg, and valuation v_(a,l) to charge 
equivalent to above b_a^chrg. Furthermore, all the agent a obtains utility 
u_a,

ua = va,l − pa (3)  

Whereas p_a∈R denotes monetary transmit from EV to systems (viz., the 
utility is an amount of fulfillment to charge the desirable quantity of 
electricity). p_a is generally positive, since the EV pays the charging 
station for electricity. But, the event of charging EV results in low 
imbalance cost to charging station, the transmission for this EV might be 
negative. It should disclose its kind θ_a to the scheme. Later, the scheme 
employs an EV to charge station distribution method for scheduling EV 
charging and utilizes each projected pricing mechanism for calculating 
the price. 

3.2. SSAE based predictive model 

The proposed method aims to model an efficient SOC evaluation 
approach for battery management in HEV. Initially, the output and input 
variables included in the proposed method are defined. Based on the 
HEV, the SOC undergoes sampling at step k, SOC(k), which is deter-
mined by the module input as it denotes the batteries existing condition. 
The SOC is a non-linear connection with the dominant factors, such as 
current and battery voltage. The proposed model can able to describe 
these connections accurately. Therefore, the straightaway measure 
parameter, current I(k) represents the input and the output V(k) signifies 
the battery terminal voltage. Furthermore, the terminal voltage at the 
sample steps -1,V(k-1), are further elected as the 3rd input to presented 
approach. V(k-1) means the battery’s condition at last step and signifies 
the beforehand working condition. The concepts exist in the choice of V 
(k-1) is the process of respective circuit method to Li-ion battery [21]. 
The terminal voltage at k steps are determined by Eq. (4): 

V(k) = OCV(SOC(k)) + RsI(k) + URC(k) (4)  

whereas R_s refers the battery internal resistance, U_RC (k) implies the 
RC circuit voltage connect to U_RC (k-1) with the 1-order differential 
equation. For making the approach input straightaway defined param-
eter, U_RC (k-1) is considered as included in V(k-1). Hence, V(k-1) has 
direct connection with V(k). The function is obtained by the syncreti-
zation of the hidden parameters 

V(k) = f (V(k − 1), I(k), SOC(k)), (5)  

which undergoes estimation using learning systems. The input and 
output vectors for the presented battery method is characterized as p 
(k)=[V(k-1) I(k)SOC(k)]^T & V(k). It is arithmetically determined by: 

F(p(k)) = V(k) (6) 

The input-output samples of {p(k)~V(k)} are achieved by the 
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simulation previous to model training. Define p(k)=x_j & V(k)=t_j. The 
training sets could be denoted as {(x_j,t_j )|x_j∈R^n,t_j∈R^m,j=1,…,N}. 
At these conditions, n=3, m=1, N indicates the amount of instance 
which present in the training data. Therefore, SSAE is used for predic-
tion purposes. 

The SSAE has been NN included of several SAEs linked from the end- 
to-end way. The outcomes of the previous layer of sparse self-encoding 
have been employed as the input of succeeding layer of self-encoding, so 
high level features illustration of input data were obtained. The greedy 
layerwise pre-trained technique has been employed to sequential 
trained of every layer of SSAE to retrieve the optimize association 
weights as well as bias values of the entire SSAE networks. Afterward, 
the error BP approach has been developed to fine-tuned the SSAE till the 
resultant of error function amongst the input as well as output data 
fulfills the expected necessities, for getting an optimum parameter 
technique. The error function J_sparse (W,b) is determined by: 

∂
∂wr

ij
Jsparse(W, b) =

1
2nr

∑nr

r=1

∂
∂wr

ij
Jsparse(W, b, X(n), Y(n)) + λwr

ij (7)  

∂
∂brJsparse(W, b) =

1
2nr

∑nr

r=1

∂
∂brJsparse(W, b, X(n), Y(n)) (8) 

Therefore, the upgraded manner of the weight and bias are provided 
as: 

wk
ij = wk

ij − η ∂
∂wk

ij
J(W, b) (9)  

br = br − η ∂
∂br J(W, b) (10)  

Where X(n) and Y(n) are correspondingly represents as nth actual vector 
and corresponding reformation vectors, and η stands for the upgraded 

learning rate [22]. 
Let sparse restraint in the SSAE technique, it essential employing 

many rates of learning to distinct parameters as reducing the frequency 
of upgrading for infrequent feature. Fig. 1 depicts the framework of 
SSAE [21]. However, the standard Gradient Descent (GD) approach has 
of Stochastic Gradient Descent (SGD) as well as mini-batch GD which 
employ an identical rate of learning for all the network parameters that 
need for upgrading, generating it difficult for choosing the proper rate of 
learning and simply gain the local minimal. 

3.3. SSA based parameter optimization 

For boosting the SOC estimation performance of the SSAE technique, 
the SSA is used to optimally modify the parameters involved in the SSAE 
model. SSA has been current bio-inspired optimized algorithm [23], 
simulated as navigation and foraging performance of salp chain, usually 
initiate in Deep Ocean. From the mathematical process, salp population 
has been separated as to 2 groups named leaders and followers. An 
optimum salp (optimum solution) has assumed that food source that 
subsequently the salp chain. Then all iterations, the leader salp modifies 
their place in terms of the feed source. The leader explore as well as 
exploit the search space about the optimum solution and follower salps 
move slowly nearby leaders. This procedure assists salp from converging 
to global optimum rapidly but avoiding it from being trapped from local 
optimum. 

The salp places were determined in the n-dimension search space: 
Where n implies the amount of decision variable from this issue. 

Considered that the food source FS under the search space as swarm 
targets. As per the place of food source, leader upgrades their place 
utilizing the Eq. (11): 

x1
j =

{
FSj + C1 ×

[
Ubj − LbjC2 + Lbj

]
, C3 ≥ 0

FSj − C1 ×
[
Ubj − LbjC2 + Lbj

]
, C3 < 0 (11) 

Fig. 1. Structure of SSAE.  
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The balance amongst exploration as well as exploitation in optimi-
zation is continued by coefficient C_1 determined as: 

C1 = 2 × e
−

[

4×iter c
iter max

]2

(12) 

At this point, iter_c represents the present iteration number and 
iter_max refers the maximal amount of iterations permitted, C_2 and C_3 
are the uniformly distributed arbitrary numbers from the interval 0 and 
1. Fig. 2 showcases the flowchart of SSA. 

In SSA, followers upgrade their places as per Newton’s law of motion: 

xij =
1
2
αt2 + w0t, i ≥ 2 (13)  

Where; 

α =
wfinal

w0
(14)  

and 

w =
x − x0

t
(15) 

Assuming, w_0=0 and as the variance amongst some 2 consecutive 
time steps is 1, so 

xij =
1
2
×

(
xij + xi− 1

j

)
; i ≥ 2 (16) 

The parameter optimization problem of SSAE can be optimally 
solved by the SSA and consequently, the prediction outcome is 
enhanced. 

4. Performance validation 

During this analysis, Dynamic Stress Test (DST) and Federal Urban 
Driving Schedule (FUDS) effort profiles have been utilized to test the 
projected method at 3 distinct temperatures. These effort cycles holds a 
diversity of present current profiles interms of distinct amplitude and 
time intervals with regenerative charging. The time period contained to 
complete 1-cycle of DST and FUDS is 360 s and 1372s correspondingly. 
For validating the projected approach, the data is gathered in CALCE 

Fig. 2. Flowchart of SSA.  
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battery group. The CALCE gained the data in customized made battery 
test bench. The readings are taken at diverse temperatures at 0 ◦C, 25◦, 
and 45 ◦C respective. The group of 3 important factors contained are 
voltage, current, and temperature. The election of 3 features are logical 
as current, voltage, and temperature are considerable control on battery 
outcomes. 

Fig. 3 investigates the RMSE analysis of the OML-SOCE technique for 
SOC estimation process at varying temperature. The figure depicted that 
the OML-SOCE technique has accomplished effective outcome with the 
minimal RMSE value under all temperature values. On the applied DST 
cycle, the OML-SOCE technique has resulted to a lower RMSE of 1.24, 
0.73, and 0.38 under 0 ◦C, 25 ◦C, and 45 ◦C correspondingly. Similarly, 
under FUDS cycle, the OML-SOCE technique has accomplished to a 
reduced RMSE of 1.53, 0.82, and 0.31 under 0 ◦C, 25 ◦C, and 45 ◦C 
correspondingly. 

Fig. 4 examines the MAE analysis of the OML-SOCE approach for 
SOC estimation process at varying temperature. The figure exhibited 
that the OML-SOCE manner has accomplished effectual result with the 
minimum MAE value under all temperature values. On the applied DST 
cycle, the OML-SOCE manner has resulted to a lesser MAE of 0.68, 0.43, 
and 0.28 under 0 ◦C, 25 ◦C, and 45 ◦C correspondingly. Also, under 
FUDS cycle, the OML-SOCE methodology has accomplished to a minimal 
MAE of 0.81, 0.45, and 0.32 under 0 ◦C, 25 ◦C, and 45 ◦C 
correspondingly. 

Fig. 5 explores the MAPE analysis of the OML-SOCE manner for SOC 
estimation process at distinct temperature. The figure exhibited that the 
OML-SOCE approach has accomplished effectual outcome with the 
lesser MAPE value under all temperature values. On the applied DST 
cycle, the OML-SOCE approach has resulted to a minimal MAPE of 9.52, 
6.56, and 4.10 under 0 ◦C, 25 ◦C, and 45 ◦C correspondingly. Eventually, 
under FUDS cycle, the OML-SOCE approach has accomplished to a 
decreased MAPE of 18.53, 11.87, and 9.21 under 0 ◦C, 25 ◦C, and 45 ◦C 
correspondingly. 

A brief RMSE results analysis of the OML-SOCE technique for SOC 
estimation in DST cycle is displayed in Fig. 6. The figure reported that 
the OML-SOCE technique has resulted to an effective outcome with the 
least RMSE. On the applied 0 ◦C, the OML-SOCE technique has accom-
plished to a lower RMSE of 1.24 but the RBFNN- BSA, GRNN-BSA, ELM- 
BSA, and BPNN- BSA techniques have obtained a higher RMSE of 1.95, 
2.37, 2.46, and 1.47 respectively. Besides, on the applied 25 ◦C, the 
OML-SOCE manner has accomplished to a minimal RMSE of 0.73 but the 
RBFNN- BSA, GRNN-BSA, ELM- BSA, and BPNN- BSA algorithms have 
reached a superior RMSE of 1.23, 2.13, 1.86, and 0.81 correspondingly. 
Moreover, on the applied 45 ◦C, the OML-SOCE method has accom-
plished to a least RMSE of 0.38 but the RBFNN- BSA, GRNN-BSA, ELM- 

Fig. 3. Result analysis of OML-SOCE model interms of RMSE.  

Fig. 4. Result analysis of OML-SOCE model interms of MAE.  

Fig. 5. Result analysis of OML-SOCE model interms of MAPE.  

Fig. 6. RMSE analysis of OML-SOCE model under DST cycle.  
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BSA, and BPNN- BSA methodologies have reached a superior RMSE of 
1.03, 1.42, 1.13, and 0.48 correspondingly. 

A detailed MAPE outcomes analysis of the OML-SOCE manner for 
SOC estimation in DST cycle is showcased in Fig. 7. The figure stated 
that the OML-SOCE manner has resulted to an effectual outcome with 
the least MAPE. On the applied 0 ◦C, the OML-SOCE technique has 
accomplished to a lesser MAPE of 9.52 but the RBFNN- BSA, GRNN-BSA, 
ELM- BSA, and BPNN- BSA algorithms have achieved an increased MAPE 
of 21.62, 30.24, 24.93, and 9.84 correspondingly. Moreover, on the 
applied 25 ◦C, the OML-SOCE method has accomplished to a lower 
MAPE of 6.56 but the RBFNN- BSA, GRNN-BSA, ELM- BSA, and BPNN- 
BSA techniques have obtained a higher MAPE of 14.58, 23.39, 18.47, 
and 5.07 respectively. Additionally, on the applied 45 ◦C, the OML- 
SOCE approach has accomplished to a minimum MAPE of 4.10 but the 
RBFNN- BSA, GRNN-BSA, ELM- BSA, and BPNN- BSA algorithms have 
gained a maximum MAPE of 8.98, 14.36, 12.29, and 5.07 
correspondingly. 

A briefly RMSE results analysis of the OML-SOCE method for SOC 
estimation in FUDS cycle is depicted in Fig. 8. The figure demonstrated 
that the OML-SOCE technique has resulted to an effective outcome with 
the least RMSE. On the applied 0 ◦C, the OML-SOCE technique has 
accomplished to a minimal RMSE of 1.53 but the RBFNN- BSA, GRNN- 
BSA, ELM- BSA, and BPNN- BSA manners have achieved an improved 
RMSE of 3.58, 3.22, 3.72, and 1.74 respectively. Followed by, on the 
applied 25 ◦C, the OML-SOCE technique has accomplished to a method 
RMSE of 0.82 but the RBFNN- BSA, GRNN-BSA, ELM- BSA, and BPNN- 
BSA approaches have attained an increased RMSE of 2.23, 2.17, 2.34, 
and 0.91 respectively. Eventually, on the applied 45 ◦C, the OML-SOCE 
technique has accomplished to a lower RMSE of 0.31 but the RBFNN- 
BSA, GRNN-BSA, ELM- BSA, and BPNN- BSA methodologies have ach-
ieved a higher RMSE of 1.75, 1.81, 2.27, and 0.57 correspondingly. 

A brief MAPE results analysis of the OML-SOCE technique for SOC 
estimation in FUDS cycle is displayed in Fig. 9. The figure outperformed 
that the OML-SOCE technique has resulted to an effective outcome with 
the least MAPE. On the applied 0 ◦C, the OML-SOCE approach has 
accomplished to a lesser MAPE of 18.53 but the RBFNN- BSA, GRNN- 
BSA, ELM- BSA, and BPNN- BSA techniques have obtained a higher 
MAPE of 31.13, 19.56, 34.71, and 20.09 respectively. At the same time, 
on the applied 25 ◦C, the OML-SOCE technique has accomplished to a 
lower MAPE of 11.87 but the RBFNN- BSA, GRNN-BSA, ELM- BSA, and 
BPNN- BSA techniques have obtained a higher MAPE of 18.54, 16.38, 
20.67, and 12.61 respectively. Finally, on the applied 45 ◦C, the OML- 
SOCE methodology has accomplished to a minimum MAPE of 9.21 but 
the RBFNN- BSA, GRNN-BSA, ELM- BSA, and BPNN- BSA approaches 
have gained a maximum MAPE of 12.84, 12.11, 19.94, and 9.63 

correspondingly. 
Table 1 investigates the performance of the OML-SOCE technique 

with existing techniques interms of SOC error [24]. The results depicted 
that the OML-SOCE technique has gained minimal SOC error values 
under varying temperature levels and cycles. On examining the results 
under 0 ◦C, the OML-SOCE technique has accomplished a lower SOC 

Fig. 7. MAPE analysis of OML-SOCE model under DST cycle.  

Fig. 8. RMSE analysis of OML-SOCE model under FUDS cycle.  

Fig. 9. MAPE analysis of OML-SOCE model under FUDS cycle.  

Table 1 
Result analysis of existing with proposed OML-SOCE model for SOC Error (%).  

Methods Temp. DST Cycle FUDS Cycle 

RBFNN- BSA 0 ◦C [− 12.1 + 12.3] [− 21.8 + 30.5] 
25 ◦C [− 7.7 + 8.9] [− 8.6 + 10.2] 
45 ◦C [− 5.9 + 5.5] [− 5.8 + 9.2] 

GRNN-BSA 0 ◦C [− 13.5 + 8.3] [− 18.7 + 27.8] 
25 ◦C [− 11.7 + 13.8] [− 8.7 + 11.1] 
45 ◦C [− 6.1 + 12.6] [− 8.4 + 10.5] 

ELM- BSA 0 ◦C [− 14.5 + 18.5] [− 22.8 + 30.8] 
25 ◦C [− 10.1 + 9.2] [− 12.7 + 13.9] 
45 ◦C [− 6.1 + 7.6] [− 10.6 + 16.4] 

BPNN- BSA 0 ◦C [− 8.5 + 8.8] [− 4.8 + 9.8] 
25 ◦C [− 2.8 + 4.7] [− 3.8 + 4.8] 
45 ◦C [− 2.1 + 3.2] [− 2.4 + 3.5] 

OML-SOCE 0 ◦C [− 8.0 + 8.4] [− 3.7 + 9.0] 
25 ◦C [− 2.1 + 3.7] [− 3.2 + 4.0] 
45 ◦C [− 1.4 + 2.3] [− 1.6 + 3.0]  
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error of [− 8.0 + 8.4] and [− 3.7 + 9.0] on the applied DST and FUDS 
cycles respectively. Followed by, the BPNN-BSA technique has obtained 
a slightly increased SOC error of [− 8.5 + 8.8] and [− 4.8 + 9.8]. 
Moreover, the ELM-BSA and GRNN-BSA techniques have gained 
moderately higher SOC values. Furthermore, the RBFNN-BSA technique 
has attained poor outcome with the maximum SOC values of [− 12.1 +
12.3] and [− 21.8 + 30.5] on the applied DST and FUDS cycles respec-
tively. By looking into the above mentioned results analysis, it is 
apparent that the OML-SOCE technique is found to be effective 
compared to existing techniques. 

5. Conclusion 

In this study, a new OML-SOCE approach is derived for the SOC 
estimation of the Li-ion battery for P2P energy trading in TEM. The 
OML-SOCE technique includes SSAE based predictive model to deter-
mine the proper level of SOC. The SSAE is an enhanced auto-encoder 
technique that improves any sparsity restrictions from the hidden 
layer of standard auto-encoder. Besides, the parameter optimization of 
the SSAE model takes place using the SSA. A comprehensive simulation 
analysis is carried out and the outcomes are inspected under distinct 
temperature levels. The experimental results depicted the supremacy of 
the proposed technique on the recent techniques with respect to 
different measures. In future, the SOC predictive outcomes can be raised 
by the use of advanced deep learning and feature selection approaches. 
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