THREAD PROGRAMMING



Explicit Synchronization:
Creating and Initializing a Barrier

» To (dynamically) initialize a barrier, use code similar
to this (which sets the number of threads to 3):

pthread barrier t b;
pthread barrier init(&b,NULL,3) ;

* The second argument specifies an object attribute;
using NULL yields the default attributes.

» To wait at a barrier, a process executes:
pthread barrier wait(&b);

* This barrier could have been statically initialized by
assigning an initial value created using the macro

PTHREAD BARRIER INITIALIZER(3).

Slide source: Jim Demmel and Kathy Yelick



Calculating TT

111 I
a1l
" ( R A Por i )

double factor = 1.0:

double sum = 0.0;
for (1 =0; 1 < n: 1++, factor = —factor) |
sum += factor/(2%1+1):

|
pi = 4.0%sum;

Serial code for calculating I'l



Parallel Version

voidx Thread_sum(voidx rank) |{
long my_rank = (long) rank;
double factor;:
long Tong 1
long long my_n = n/thread_count;
long Tong my_first_i = my_nsmy_rank;
long Tong my_last_i = my_fTirst_i + my._.n;:

it (my_tirst_i % 2 = 0) /% my_first_1 15 even %/
factor = 1.0;

else /+ my_first_i is odd =/
factor = =-1.0;

for (1 = my_first_i; 1 < my_last_i; i++, factor = —factor) |{
sum 4= factor/(2«1+1);

|

return NULL;
} /% Thread_sum =/



Accuracy of Parallel and Serial on Dual
core

10° 106 107 108

g 3.14159 3.141593 3.14150927 3.14159265
1 Thread  3.14158 3.141592 3.1415926 3.14159264
2 Threads 3.14158 3.141480 3.1413692 3.14164686

Why serial iIs more accurate?
Because the same variable sumis being updated in parallel!



One Solution: Busy waiting with turn flag

voids Thread_sum({void* rank) |
long my_rank = (long) rank;
double factor, my_sum = 0.0;
long long 1;
long Tong my_n = n/Thread_count;
long long my_first_i = my_nsmy_rank:
long long my_last_i = my_first_.i + my.n;

if (my_first_i % == ()
factor = 1.0;
else

factor = —-1.0;

for (i = my_first_i; 1 < my_last_i; i1++, factor = —factor)
my_sum += factor/(2%i+1):

while (flag != my_rank);
Sum += my_sum;
flag = (flag+l) % thread_count;

return NULL;
} /% Thread_sum x/



Mutexes (aka Locks) in Pthreads

- To create a mutex:
#include <pthread.h>
pthread mutex t amutex = PTHREAD MUTEX INITIALIZER;
pthread mutex init (&amutex, NULL) ;
- To use it:
int pthread mutex lock (amutex) ;

int pthread mutex unlock (amutex) ;

- To deallocate a mutex

int pthread mutex destroy(pthread mutex t *mutex);

* Multiple mutexes may be held, but can lead to deadlock:

threadl thread2
lock (a) lock (b)
lock (b) lock (a)

Slide source: Jim Demmel and Kathy Yelick



Another Solution: Using Mutex

voids Thread_sum(void% rank) |

long my_rank = (Tong) rank;

double factor;

long long 1

long long my_n = n/thread_count;

long long my_first_i = my_nxmy_rank;
long long my_Tast_i = my_first_i + my.n;
double my_sum = 0.0;

if (my_first_i % 2 = 0)
factor = 1.0;

else
factor = -1.0;

for (1 = my_first_i; 1 < my_last_i; i++, factor

my_sum += factor/(2xi+1);

i
pthread_mutex_lock(&mutex);

sum += my_sum;
pthread_mutex_unlock(&mutex):

return NULL;:
/% Thread_sum =/

—factor)

{



Time Comparison

Table 4.1 Run-Times (in Seconds) of
Programs Using n= 10® Terms on a System
with Two Four-Core Processors

Threads Busy-Wait Mutex
1 2.90 2.90
2 1.45 1.45
4 0.73 0.73
8 0.38 0.38
16 0.50 0.38
32 0.80 0.40

64 3.56 0.38




Conditional Wait/Signal

- Block the thread on a conditional variable

* The thread will wake up when a signal is raised.

int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *af#);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t * mutex);

int pthread_cond_signal(pthread_cond_t *cond);

10



Shared Memory

» Dynamic threads

- Master thread waits for work, forks new threads, and when
threads are done, they terminate

- Efficient use of resources, but thread creation and
Termination is time consuming.

- Static threads

- Pool of threads created and are allocated work, but do not
terminate until cleanup.

- Better performance, but potential waste of system resources.
- Next page example:
- A static thread pool to execute simple calculation works

11



Example - Using Thread Pool

#include "queue.h"
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#define THREADS 3
/** Task queue. */
QUEUE queue;
/** Type of a calc work task. */
typedef struct {

int a;

int b;

int type:

QUEUE node;

} work_t;
12



Definitions
/** Our threads.*/
pthread_t threads[ THREADS];
/**Qur thread condition variable >/
pthread_cond_t cond;
/**Our thread mutex lock.*/
pthread_mutex_t mutex;
/* function headers */
void * worker();
void submit_work(int q, int b, int type);

/** Should execute the submited work tasks through
thread pool. */

13



int main(void) {

QUEUE_INIT(&queue);
pthread_cond_init(&cond, NULL);

pthread_mutex_init(&mutex, NULL);

/*3+3=6%*/
submit_work(3, 3, 1);
/*4-3=1%*/
submit_work(4, 3, 2);
/*7*8=56*/
submit_work(7, 8, 3);
/*30/6=5%*/
submit_work(30, 6, 4);

14



Starting threads
/* start all threads */

for (int i = 0; i <« THREADS; i++)
pthread_create(&threads[i], NULL, worker, NULL);

/* wait all threads to finish */

for (inti = 0; i <« THREADS; i++)
pthread_join(threads[i], NULL);

pthread_mutex_destroy(&mutex);

pthread_cond_destroy(&cond);

return EXIT_SUCCESS;

15



Work submission
void submit_work(int a, int b, int type) {
work_t * work = malloc(sizeof(work_t));
work->a = a;

work->b = b;

work->type = type:

pthread_mutex_lock(&mutex);
QUEUE_INIT(&work->node);
QUEUE_INSERT_TAIL(&queue, &work->node);
pthread_mutex_unlock(&mutex);

/* signal a thread that it should check for new work */
pthread_cond_signal(&cond);

} 16



Worker thread. Looks for new tasks to execute
void * worker() {
QUEUE * q:
int result;
bool spin = true;
work_t * work;
while (spin) {
pthread_mutex_lock(&mutex);
while (QUEUE_EMPTY(&queue)) {
pthread_cond_wait(&cond, &mutex);
}
q = QUEUE_HEAD(&queue);
QUEUE_REMOVE(q):
pthread_mutex_unlock(&mutex);
work = QUEUE_DATA(q, work_t, node);

17



switch (work->type) {

case 1:

result = work->a + work->b; break;

case 2.

result = work->a - work->b; break;

case 3:

result = work->a * work->b; break;

case 4.

result = work->a / work->b; break;

default: spin = false;

}

free(work);
}/ /while(spin)
pthread_exit(NULL);

18



Thread Safety

* Chapter 2 mentions thread safety of shared-memory
parallel functions or libraries.

- A function or Iibrar?l is thread-safe if it operates
“c}:\or'r'edc’rly” when called by multiple, simultaneously executing
threaas.

- Since multiple threads communicate and coordinate through
shared memory, a thread-safe code modifies the state o
shared memory using appropriate synchronization.

- Sofme features of sequential code that may not be thread
safe?

19



Summary of Programming with Threads

* Pthreads are based on OS features
- Can be used from multiple languages (need appropriate header)
- Familiar language for most programmers
- Ability to shared data is convenient

* Pitfalls

- Data races are difficult to find because they can be
infermittent

- Deadlocks are usually easier, but can also be intermittent

* OpenMP is commonly used today as a simpler
alternative, but it is more restrictive

- OpenMP can parallelize many serial programs with relatively
few annotations that specify parallelism and independence

20



OPENMP PROGRAMMING



OpenMP:

Prevailing Shared Memory Programming Approach
* Model for shared-memory parallel programming
* Portable across shared-memory architectures
» Scalable (on shared-memory platforms)

* Incremental parallelization

- Parallelize individual computations in a program while leaving
the rest of the program sequential

» Compiler based
- Compiler generates thread program and synchronization

- Extensions to existing programming languages
(Fortran, C and C++) I Prog J NI

- mainly by directives
- a few library routines

See http://www.openmp.org

22



A Programmer's View of OpenMP

* OpenMP is a portable, threaded, shared-memory
programming specification with “light" syntax
- Exact behavior depends on OpenMP implementation!
- Requires compiler support (C/C++ or Fortran)

* OpenMP will:

- Allow a pr'o?r'ammer to separate a program into serial regions
aﬂd pcczjra//e regions, rather than concurrently-executing
tThreads.

- Hide stack management
- Provide synchronization constructs

* OpenMP will not:

- Parallelize automatically
- Guarantee speedup
- Provide freedom from data races

23



OpenMP Execution Model

* Fork-join model of parallel execution
- Begin execution as a single process (master thread)

- Start of a parallel construct:
- Master thread creates team of threads (worker threads)

* Completion of a parallel construct:
- Threads in the team synchronize -- implicit barrier

- Only master thread continues execution

- Implementation optimization: ?
- Worker threads spin waiting on next fork

N\

join

2 JUJ



OpenMP uses Pragmas

* Pragmas are special preprocessor instructions.

- Typically added to a system to allow behaviors that
aren't part of the basic C specification.

- Compilers that don't support the pragmas ignore them.

* The interpretation of OpenMP pragmas
- They modify the statement immediately following the pragma
- This could be a compound statement such as a loop

#pragma omp ...

25



Programming Model - Data Sharing

* Parallel programs often emplo
two ‘rypgs o% data P // shared, globals

- Shared data, visible to all int bigdata[1024];
threads, similarly named

- Private data, visible to a single _ _
thread (often stack-allocated) void* foo(void* bar) ({

int tid;
PThreads:
*  Global-scoped variables are
shared #pragma omp parallel \
S‘rgck—alloca‘red variables are shared ( bigdata ) \
private
private ( tid )
OpenMP:
- shared variables are shared {
- private variables are private /* Calc. here */
Default is shared }

Loop index is private



In case the compiler doesn't support OpenMP

# Iinclude <omp.h>

N

#ifdef OPENMP
# Include <omp.h>
#Hendif

27



OpenMF directive Tormart C

(also Fortran and C++ bindings)

* Pragmas, format

#pragma omp directive_name [ clause [ clause ] ... ] new-
line

« Conditional compilation

#ifdef OPENMP
block,

e.g., printf (“"%d avail.processors\n”,omp get num procs());

#endif

« Case sensitive

* Include file for library routines
#ifdef OPENMP

#include <omp.h>
fendif

28



OpenMP runtime library, Query Functions

omp get num threads:

Returns the number of threads currently in the team executing the
parallel region from which it is called

int omp get num threads (void);

omp get thread num:

Returns the thread number, within the team, that lies between 0 and
omp get num threads () -1, inclusive. The master thread of the
team is thread 0

int omp get thread num(void);

29



OpenMP parallel region construct

* Block of code to be executed by multiple threads in
parallel

« Each thread executes the same code redundantly
(SPMD)

- Work within work-sharing constructs is distributed among
the threads in a feam

« Example with C/C++ syntax
#pragma omp parallel [clause [clause]...] new-line

structured-block

» clause can include the following:
private (list)
shared (list)

30



Hello World in OpenMP
* Let's start with a parallel region construct

» Things to think about

- As before, number of threads is read from command line

- Colclie should be correct without the pragmas and library
calls

* Differences from Pthreads

- More of the required code is managed by the compiler and
runtime (so shorter)

- There is an implicit thread identifier

gcc —-fopenmp ...

31



#include <stdio.h>
=#include <stdlib.h>
#include <omp.h>

void Hello(veid); /x Thread function =/

int main(int argc, charx argv[]) {

/¥ Get number of threads from command line =/
int thread count = strtol(argv[l], NULL, 10);

# pragma omp parallel num_threads(thread_count)
Hello ():

return 0;
b /% main %/

void Hello(veid) {
int my_rank = omp_get_thread_num();
int thread count = omp_get_num_threads ();

printf("Hello from thread %d of %d\n", my_rank, thread_count);

} /% Hello */

32



In case the compiler doesn't support OpenMP

# ifdef  OPENMP

Int my_rank = omp_get _thread _num ();

Int thread_count = omp_get_num_threads ( );
#else

Int my_rank = 0O;

Int thread count = 1;
# endif

33



OpenMP Data Parallel Construct: Parallel Loop
» All pragmas begin: #pragma

* Compiler calculates loop bounds for each thread
directly from seria/ source (computation decomposition)

» Compiler also manages data partitioning of Res
» Synchronization also automatic (barrier)

Serial Program: Parallel Program:

void main{) void main()

{ {
double Res[1000]; double Res[1000];

#pragma omp parallel for
for(int i=0;i<1000;i++) { for(int i=0;i<1000;i++) {
do_huge_comp(Res[i]); do_huge_comp({Res[i]);

} ]

} }

34



Limitations and Semantics

* Not all "element-wise" loops can be parallelized

#pragma omp parallel for
for (i=0; i < numPixels; i++) {}

- Loop index: signed integer

- Termination Test: <<= > => with loop invariant int

- Incr/Decr by loop invariant int; change each iteration
- Count up for <<=; count down for >>=

- Basic block body: no control in/out except at top

» Threads are created and iterations divvied up;
requirements ensure iteration count is predictable

35



OpenMP_Synchronization

* Implicit barrier
- At beginning and end of parallel constructs
- At end of all other control constructs
- Implicit synchronization can be removed with nowait
clause
» Explicit synchronization
—critical

—atomic

36



Programming Model - Loop Scheduling

- schedule clause determines how loop iterations are
divided among the thread team

- static([chunk]) divides iterations statically between
threads

- Each thread receives [chunk] iterations, rounding as
necessary to account for all iterations

- Default [chunk] isceil( # iterations / # threads )

- dynamic ([chunk]) allocates [chunk] iterations per
thread, allocating an additional [chunk] iterations when a
thread finishes

- Forms a logical work queue, consisting of all loop iterations
- Default [chunk] is 1

- guided ([chunk]) allocates dynamically, but [chunk] is
exponentially reduced with each allocation



Loop schedulin

dynamic(3) guided{1)

static

(2)

BOOOO00O080O0000808

0 |

EEE B EEEEOBCE]
(1 [ [ =



More loop scheduling attributes

* RUNTIME The scheduling decision is deferred until
runtime by the environment variable .
OMP_SCHEDULE. It is illegal to specify a chunk size
for this clause.

+ AUTO The scheduling decision is delegated to the
compiler and/or runtime system.

* NO WAIT / nowait: If specified, then threads do
not synchronize at the end of the parallel loop.

* ORDERED: Specifies that the iterations of the loop
must be executed as they would be in a serial
program.

* COLLAPSE: Specifies how many loops in a nested loop
should be collapsed into one large iferation space and
divided accordmg to the schedule clause (collapsed
order corresponds to original sequential order).



Impact of Scheduling Decision

- Load balance
- Same work in each iteration?
- Processors working at same speed?

* Scheduling overhead

- Static decisions are cheap because they require no run-time
coordination

- Dynamic decisions have overhead that is impacted by
complexity and frequency of decisions

» Data locality

- Particularly within cache lines for small chunk sizes
- Also impacts data reuse on same processor



Summary of Lecture

* OpenMP, data-parallel constructs only
- Task-parallel constructs later

* What's good?

- Small changes are required to produce a parallel program from
sequential (parallel formulation)

- Avoid having to express low-level mapping details
- Portable and scalable, correct on 1 processor

* What is missing?

- Not completely natural if want to write a parallel code from
scratch

- Not always possible to express certain common parallel
constructs

- Locality management
- Control of performance

41



