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Preface

This book describes a series of statistical methods for testing causal
hypotheses using observational data – but it is not a statistics book. It
describes a series of algorithms, derived from research in Artificial Intelli-
gence, that can discover causal relationships from observational data – but it
is not a book about Artificial Intelligence. It describes the logical and philo-
sophical relationships between causality and probability distributions – but
it is certainly not a book about the philosophy of statistics. Rather it is a
user’s guide, written for biologists, whose purpose is to allow the practising
biologist to make use of these important new developments when causal
questions can’t be answered with randomised experiments.

I have written the book assuming that you have no previous train-
ing in these methods. If you have taken an introductory statistics course –
even if it was longer ago than you want to acknowledge – and have managed
to hold on to some of the basic notions of sampling and hypothesis testing
using statistics, then you should be able to understand the material in this
book. I recommend that you read each chapter through in its entirety, even
if you don’t feel that you have mastered all of the notions. This will at least
give you a general feeling for the goals and vocabulary of each chapter. You
can then go back and pay closer attention to the details.

The book is addressed to biologists, mostly because I am a practis-
ing biologist myself, but I hope that it will also be of interest to statisticians,
scientists in other fields and even philosophers of science. I have not written
the book as a textbook simply because the discipline to which the material
in this book naturally belongs does not yet exist. Whatever the name even-
tually given to this new discipline, I firmly believe that it will exist, and be
generally recognised as a distinct discipline, in the future. The questions that
this new discipline addresses, and the elegance of its results, are too impor-
tant. None the less, the chapters follow a logical progression that would be
well suited to an upper level undergraduate, or graduate, course. I have used
the manuscript of this book for such a purpose and every one of my stu-
dents is still alive.
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1 Preliminaries

1.1 The shadow’s cause

The Wayang Kulit is an ancient theatrical art, practised in Malaysia and
throughout much of the Orient. The stories are often about battles between
good and evil, as told in the great Hindu epics. What the audience actually
sees are not actors, nor even puppets, but rather the shadows of puppets pro-
jected onto a canvas screen. Behind the screen is a light. The puppet master
creates the action by manipulating the puppets and props so that they will
intercept the light and cast shadows. As these shadows dance across the
screen the audience must deduce the story from these two-dimensional pro-
jections of the hidden three-dimensional objects. Shadows, however, can be
ambiguous. In order to infer the three-dimensional action, the shadows
must be detailed, with sharp contours, and they must be placed in context.

Biologists are unwitting participants in nature’s Shadow Play. These
shadows are cast when the causal processes in nature are intercepted by our
measurements. Like the audience at the Wayang Kulit, the biologist cannot
simply peek behind the screen and directly observe the actual causal pro-
cesses. All that can be directly observed are the consequences of these pro-
cesses in the form of complicated patterns of association and independence
in the data. As with shadows, these correlational patterns are incomplete –
and potentially ambiguous – projections of the original causal processes. As
with shadows, we can infer much about the underlying causal processes if
we can learn to study their details, sharpen their contours, and especially if
we can study them in context.

Unfortunately, unlike the Puppet Master in a Wayang Kulit, who
takes care to cast informative shadows, nature is indifferent to the correla-
tional shadows that it casts. This is the main reason why researchers go to
such extraordinary lengths to randomise treatment allocations and to control
variables. These methods, when they can be properly done, simplify the
correlational shadows to manageable patterns that can be more easily
mapped to the underlying causal processes.

1



It is uncomfortably true, although rarely admitted in statistics texts,
that many important areas of science are stubbornly impervious to experi-
mental designs based on randomisation of treatments to experimental units.
Historically, the response to this embarrassing problem has been to either
ignore it or to banish the very notion of causality from the language and to
claim that the shadows dancing on the screen are all that exists. Ignoring a
problem doesn’t make it go away and defining a problem out of existence
doesn’t make it so. We need to know what we can safely infer about causes
from their observational shadows, what we can’t infer, and the degree of
ambiguity that remains.

I wrote this book to introduce biologists to some very recent, and
intellectually elegant, methods that help in the difficult task of inferring
causes from observational data. Some of these methods, for instance struc-
tural equations modelling (SEM), are well known to researchers in other
fields, although largely unknown to biologists. Other methods, for instance
those based on causal graphs, are unknown to almost everyone but a small
community of researchers. These methods help both to test pre-specified
causal hypotheses and to discover potentially useful hypotheses concerning
causal structures.

This book has three objectives. First, it was written to convince
biologists that inferring causes without randomised experiments is possible.
If you are a typical reader then you are already more than a little sceptical.
For this reason I devote the first two chapters to explaining why these
methods are justified. The second objective is to produce a user’s guide,
devoid of as much jargon as possible, that explains how to use and interpret
these methods. The third objective is to exemplify these methods using bio-
logical examples, taken mostly from my own research and from that of my
students. Since I am an organismal biologist whose research deals primarily
with plant physiological ecology, most of the examples will be from this
area, but the extensions to other fields of biology should be obvious.

I came to these ideas unwillingly. In fact, I find myself in the embar-
rassing position of having publicly claimed that inferring causes without
randomisation and experimental control is probably impossible and, if pos-
sible, is not to be recommended (Shipley and Peters 1990). I had expressed
such an opinion in the context of determining how the different traits of an
organism interact as a causal system. I will return to this theme repeatedly
in this book because it is so basic to biology1 and yet is completely unamen-
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ary biologists of the twentieth century, the inventor of path analysis, and the intellectual
grandparent of the methods described in this book. The history of path analysis is explored
in more detail in Chapter 3.



able to the one method that most modern biologists and statisticians would
accept as providing convincing evidence of a causal relationship: the ran-
domised experiment. However, even as I advanced the arguments in Shipley
and Peters (1990), I was dissatisfied with the consequences that such argu-
ments entailed. I was also uncomfortably aware of the logical weakness of
such arguments; the fact that I did not know of any provably correct way of
inferring causation without the randomised experiment does not mean that
such a method can’t exist. In my defence, I could point out that I was saying
nothing original; such an opinion was (and still is) the position of most sta-
tisticians and biologists. This view is summed up in the mantra that is learnt
by almost every student who has ever taken an elementary course in statis-
tics: correlation does not imply causation.

In fact, with few exceptions2, correlation does imply causation. If we
observe a systematic relationship between two variables, and we have ruled
out the likelihood that this is simply due to a random coincidence, then some-
thing must be causing this relationship. When the audience at a Malay shadow
theatre sees a solid round shadow on the screen they know that some three-
dimensional object has cast it, although they may not know whether the
object is a ball or a rice bowl in profile. A more accurate sound bite for intro-
ductory statistics would be that a simple correlation implies an unresolved
causal structure, since we cannot know which is the cause, which is the effect,
or even if both are common effects of some third, unmeasured variable.

Although correlation implies an unresolved causal structure, the
reverse is not true: causation implies a completely resolved correlational
structure. By this I mean that once a causal structure has been proposed, the
complete pattern of correlation and partial correlation is fixed unambigu-
ously. This point is developed more precisely in Chapter 2 but is so central
to this book that it deserves repeating: the causal relationships between
objects or variables determine the correlational relationships between them.
Just as the shape of an object fixes the shape of its shadow, the patterns of
direct and indirect causation fix the correlational ‘shadows’ that we observe
in observational data. The causal processes generating our observed data
impose constraints on the patterns of correlation that such data display.

The term ‘correlation’ evokes the notion of a probabilistic associa-
tion between random variables. One reason why statisticians rarely speak of

1.1 T H E S H A D O W’S C A U S E
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12 It could be argued that variables that covary because they are time-ordered have no causal
basis. For instance, Monday unfortunately always follows Sunday and day always follows
night. However, the first is simply a naming convention and there is a causal basis for the
second: the earth’s rotation about its axis in conjunction with its rotation around the sun.
A more convincing example would be the correlation between the sizes of unrelated chil-
dren, as they age, who are born at the same time.



causation, except to distance themselves from it, is because there did not
exist, until very recently, any rigorous translation between the language of
causality (however defined) and the language of probability distributions
(Pearl 1988). It is therefore necessary to link causation to probability distri-
butions in a very precise way. Such rigorous links are now being forged. It
is now possible to give mathematical proofs that specify the correlational
pattern that must exist given a causal structure. These proofs also allow us
to specify the class of causal structures that must include the causal structure
that generates a given correlational pattern. The methods described in this
book are justified by these proofs. Since my objective is to describe these
methods and show how they can help biologists in practical applications, I
won’t present these proofs but will direct the interested reader to the rele-
vant primary literature as each proof is needed.

Another reason why some prefer to speak of associations rather than
causes is perhaps because causation is seen as a metaphysical notion that is
best left to philosophers. In fact, even philosophers of science can’t agree on
what constitutes a ‘cause’. I have no formal training in the philosophy of
science and am neither able nor inclined to advance such a debate. This is
not to say that philosophers of science have nothing useful to contribute.
Where directly relevant I will outline the development of philosophical
investigations into the notion of ‘causality’ and place these ideas into the
context of the methods that I will describe. However, I won’t insist on any
formal definition of ‘cause’ and will even admit that I have never seen any-
thing in the life sciences that resembles the ‘necessary and sufficient’ condi-
tions for causation that are so beloved of logicians.

You probably already have your own intuitive understanding of the
term ‘cause’. I won’t take it away from you, although, I hope, it will be more
refined after reading this book. When I first came across the idea that one
can study causes without defining them, I almost stopped reading the book
(Spirtes, Glymour and Scheines 1993). I can advance three reasons why you
should not follow through on this same impulse. First, and most important,
the methods described here are not logically dependent on any particular
definition of causality. The most basic assumption that these methods
require is that causal relationships exist in relation to the phenomena that
are studied by biologists3.

The second reason why you should continue reading even if you
are sceptical is more practical and, admittedly, rhetorical: scientists com-
monly deal with notions whose meaning is somewhat ambiguous. Biologists

P R E L I M I N A R I E S
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13 Perhaps quantum physics does not need such an assumption. I will leave this question to
people better qualified than I. The world of biology does not operate at the quantum
level.



are even more promiscuous than most with one notion that can still raise
the blood pressure of philosophers and statisticians. This notion is ‘proba-
bility’, for which there are frequentist, objective Bayesian and subjective
Bayesian definitions. In the 1920s von Mises is reported to have said: ‘today,
probability theory is not a mathematical science’ (Rao 1984). Mayo (1996)
gave the following description of the present degree of consensus concern-
ing the meaning of ‘probability’: ‘Not only was there the controversy raging
between the Bayesians and the error [i.e. frequentist] statisticians, but philos-
ophers of statistics of all stripes were full of criticisms of Neyman–Pearson
error [i.e. frequentist-based] statistics . . .’. Needless to say, the fact that those
best in a position to define ‘probability’ cannot agree on one does not
prevent biologists from effectively using probabilities, significance levels,
confidence intervals, and the other paraphernalia of modern statistics4. In
fact, insisting on such an agreement would mean that modern statistics
could not even have begun.

The third reason why you should continue reading, even if you are
sceptical, is eminently practical. Although the randomised experiment is
inferentially superior to the methods described in this book, when random-
isation can be properly applied, it can’t be properly applied to many (perhaps
most) research questions asked by biologists. Unless you are willing simply
to deny that causality is a meaningful concept then you will need some way
of studying causal relationships when randomised experiments cannot be
performed. Maintain your scepticism if you wish, but grant me the benefit
of your doubt. A healthy scepticism while in a car dealership will keep you
from buying a ‘lemon’. An unhealthy scepticism might prevent you from
obtaining a reliable means of transport.

I said that the methods in this book are not logically dependent on
any particular definition of causality. Rather than defining causality, the
approach is to axiomise causality (Spirtes, Glymour and Scheines 1993). In
other words, one begins by determining those attributes that scientists view
as necessary for a relationship to be considered ‘causal’ and then develop a
formal mathematical language that is based on such attributes. First, these
relationships must be transitive: if A causes B and B causes C, then it must
also be true that A causes C. Second, such relationships must be ‘local’; the
technical term for this is that the relationships must obey the Markov condi-
tion, of which there are local and global versions. This is described in more
detail in Chapter 2 but can be intuitively understood to mean that events
are caused only by their proximate causes. Thus, if event A causes event C

1.1 T H E S H A D O W’S C A U S E
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I propose to deal with one imperfectly defined notion – causality – but I will do it with
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only through its effect of an intermediate event B (A→B→C ), then the
causal influence of A on C is blocked if event B is prevented from respond-
ing to A. Third, these relationships must be irreflexive: an event cannot cause
itself. This is not to say that every event must be causally explained; to argue
in this way would lead us directly into the paradox of infinite regress. Every
causal explanation in science includes events that are accepted (measured,
observed . . .) without being derived from previous events5. Finally, these
relationships must be asymmetric: if A is a cause of B, then B cannot simul-
taneously be a cause of A6. In my experience, scientists generally accept
these four properties. In fact, so long as I avoid asking for definitions, I find
that there is a large degree of agreement between scientists on whether any
particular relationship should be considered causal or not. It might be of
some comfort to empirically trained biologists that the methods described
in this book are based on an almost empirical approach to causality. This is
because deductive definitions of philosophers are replaced with attributes
that working scientists have historically judged to be necessary for a rela-
tionship to be causal. However, this change of emphasis is, by itself, of little
use.

Next, we require a new mathematical language that is able to
express and manipulate these causal relationships. This mathematical lan-
guage is that of directed graphs7 (Pearl 1988; Spirtes, Glymour and Scheines
1993). Even this new mathematical language is not enough to be of practi-
cal use. Since, in the end, we wish to infer causal relationships from corre-
lational data, we need a logically rigorous way of translating between the
causal relationships encoded in directed graphs and the correlational rela-
tionships encoded in probability theory. Each of these requirements can
now be fulfilled.

P R E L I M I N A R I E S
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15 The paradox of infinite regress is sometimes ‘solved’ by simply declaring a First Cause:
that which causes but which has no cause. This trick is hardly convincing because, if we
are allowed to invent such things by fiat, then we can declare them anywhere in the causal
chain. The antiquity of this paradox can been seen in the first sentence of the first verse
of Genesis: ‘In the beginning God created the heavens and the earth.’ According to the
Confraternity Text of the Holy Bible, the Hebrew word that has been translated as
‘created’ was used only with reference to divine creation and meant ‘to create out of
nothing’.

16 This does not exclude feedback loops so long as we understand these to be dynamic in
nature: A causes B at time t, B causes A at time t��t, and so on. This is discussed more
fully in Chapter 2.

17 Biologists will find it ironic that this graphical language was actually proposed by Wright
(1921), one of the most influential evolutionary biologists of the twentieth century, but
his insight was largely ignored. This history is explored in Chapters 3 and 4.



1.2 Fisher’s genius and the randomised experiment

Since this book deals with causal inference from observational data, we
should first look more closely at how biologists infer causes from experi-
mental data. What is it about these experimental methods that allows scien-
tists to comfortably speak about causes? What is it about inferring causality
from non-experimental data that make them squirm in their chairs? I will
distinguish between two basic types of experiment: controlled and random-
ised. Although the controlled experiment takes historical precedence, the
randomised experiment takes precedence in the strength of its causal infer-
ences.

Fisher8 described the principles of the randomised experiment in
his classic The design of experiments (Fisher 1926). Since he developed many
of his statistical methods in the context of agronomy, let’s consider a typical
randomised experiment designed to determine whether the addition of a
nitrogen-based fertiliser can cause an increase in the seed yield of a partic-
ular variety of wheat. A field is divided into 30 plots of soil (50cm�50cm)
and the seed is sown. The treatment variable consists of the fertiliser, which
is applied at either 0 or 20kg/hectare. For each plot we place a small piece
of paper in a hat. One half of the pieces of paper have a ‘0’ and the other
half have a ‘20’ written on them. After thoroughly mixing the pieces of
paper, we randomly draw one for each plot to determine the treatment level
that each plot is to receive. After applying the appropriate level of fertiliser
independently to each plot, we make no further manipulations until harvest
day, at which time we weigh the seed that is harvested from each plot.

The seed weight per plot is normally distributed within each treat-
ment group. Those plots receiving no fertiliser produce 55g of seed with a
standard error of 6. Those plots receiving 20kg/hectare of fertiliser produce
80g of seed with a standard error of 6. Excluding the possibility that a very
rare random event has occurred (with a probability of approximately
5�10�8), we have very good evidence that there is a positive association
between the addition of the fertiliser and the increased yield of the wheat.
Here we see the first advantage of randomisation. By randomising the treat-
ment allocation, we generate a sampling distribution that allows us to cal-
culate the probability of observing a given result by chance if, in reality,
there is no effect of the treatment. This helps us to distinguish between
chance associations and systematic ones. Since one error that a researcher
can make is to confuse a real difference with a difference due to sampling

1.2 F I S H E R’S G E N I U S A N D T H E R A N D O M I S E D E X P E R I M E N T
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Station, (now IACR – Rothamsted), Hertfordshire. He was later Galton Professor at the
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fluctuations, the sampling distribution allows us to calculate the probability
of committing such an error9. Yet Fisher and many other statisticians10 since
(Kempthorpe 1979; Kendall and Stuart 1983) claim further that the process
of randomisation allows us to differentiate between associations due to
causal effects of the treatment and associations due to some variable that is
a common cause both of the treatment and response variables. What allows
us to move so confidently from this conclusion about an association (a ‘co-
relation’) between fertiliser addition and increased seed yield to the claim
that the added fertiliser actually causes the increased yield?

Given that two variables (X and Y ) are associated, there can be only
three elementary, but not mutually exclusive, causal explanations: X causes
Y, Y causes X, or there are some other causes that are common to both X
and Y. Here, I am making no distinctions between ‘direct’ and ‘indirect’
causes; I argue in Chapter 2 that such terms have no meaning except rela-
tive to the other variables in the causal explanation. Remembering that
transitivity is a property of causes, to say that X causes Y does not exclude
the possibility that there are intervening variables (X→Z1→Z2→ . . . →Y )
in the causal chain between them. We can confidently exclude the possibil-
ity that the seed produced by the wheat caused the amount of fertiliser that
was added. First, we already know the only cause of the amount of fertiliser
to be added to any given plot: the number that the experimenter saw
written on the piece of paper attributed to that plot. Second, the fertiliser
was added before the wheat plants began to produce seed11. What allows us
to exclude the possibility that the observed association between fertiliser
addition and seed yield is due to some unrecognised common cause of both?
This was Fisher’s genius; the treatments were randomly assigned to the
experimental units (i.e. the plots with their associated wheat plants). By def-
inition, such a random process ensures that the order in which the pieces of
paper are chosen (and therefore the order in which the plots receive the
treatment) is causally independent of any attributes of the plot, its soil, or
the plant at the moment of randomisation.

P R E L I M I N A R I E S
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19 It is for this reason that Mayo (1996) called such frequency-based statistical tests ‘error
probes’.

10 ‘Only when the treatments in the experiment are applied by the experimenter using the
full randomisation procedure is the chain of inductive inference sound; it is only under
these circumstances that the experimenter can attribute whatever effect he observes to the
treatment and to the treatment only’ (Kempthorpe 1979).

11 Unless your meaning of ‘cause’ is very peculiar, you will not have objected to the notion
that causal relationships cannot travel backwards in time. Despite some ambiguity in its
formal definition, scientists would agree on a number of attributes associated with causal
relationships. Like pornography, we have difficulty defining it but we all seem to know it
when we see it.



Let’s retrace the logical steps. We began by asserting that, if there
was a causal relationship between fertiliser addition and seed yield, then
there would also be a systematic relationship between these two variables in
our data: causation implies correlation. When we observe a systematic relation-
ship that can’t reasonably be attributed to sampling fluctuations, we con-
clude that there was some causal mechanism responsible for this association.
Correlation does not necessarily imply a causal relationship from the ferti-
liser addition to the seed yield, but it does imply some causal relationship that
is responsible for this association. There are only three such elementary
causal relationships and the process of randomisation has excluded two of
them. We are left with the overwhelming likelihood that the fertiliser addi-
tion caused the increased seed yield. We cannot categorically exclude the
two alternative causal explanations, since it is always possible that we were
incredibly unlucky. Perhaps the random allocations resulted, by chance, in
those plots that received the 20kg of fertiliser per hectare having soil with
a higher moisture-holding capacity or some other attribute that actually
caused the increased seed yield? In any empirical investigation, experimen-
tal or observational, we can only advance an argument that is beyond rea-
sonable doubt, not a logical certainty.

The key role played by the process of randomisation seems to be to
ensure, up to a probability that can be calculated from the sampling distri-
bution produced by the randomisation, that no uncontrolled common cause
of both the treatment and the response variables could produce a spurious
association. Fisher said as much himself when he stated that randomisation
‘relieves the experimenter from the anxiety of considering and estimating
the magnitude of the innumerable causes by which his data may be dis-
turbed’. Is this strictly true? Consider again the possibility that soil moisture
content affects seed yield. By randomly assigning the fertiliser to plots we
ensure that, on average, the treatment and control plots have soil with the
same moisture content, therefore removing any chance correlation between
the treatment received by the plot and its soil moisture12. But the number
of attributes of the experimental units (i.e. the plots with their attendant soil
and plants) is limited only by our imagination. Let’s say that there are 20
different attributes of the experimental units that could cause a difference
in seed yield. What is the probability that at least one of these was sufficiently
concentrated, by chance, in the treatment plots to produce a significant
difference in seed yield even if the fertiliser had no causal effect? If this prob-
ability is not large enough for you, then I can easily posit 50 or 100 different
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attributes that could cause a difference in seed yield. Since there is a large
number of potential causes of seed yield, then the likelihood that at least
one of them was concentrated, by chance, in the treatment plots is not neg-
ligible, even if we had used many more than the 30 plots.

Randomisation therefore serves two purposes in causal inference.
First, it ensures that there is no causal effect coming from the experimental
units to the treatment variable or from a common cause of both. Second, it
helps to reduce the likelihood in the sample of a chance correlation between
the treatment variable and some other cause of the treatment, but doesn’t
completely remove it. To cite Howson and Urbach (1989):

Whatever the size of the sample, two treatment groups are absolutely certain
to differ in some respect, indeed, in infinitely many respects, any of which
might, unknown to us, be causally implicated in the trial outcome. So ran-
domisation cannot possibly guarantee that the groups will be free from bias
by unknown nuisance factors [i.e. variables correlated with the treatment].
And since one obviously doesn’t know what those unknown factors are,
one is in no position to calculate the probability of such a bias developing
either.

This should not be interpreted as a severe weakness of the randomised
experiment in any practical sense, but does emphasise that even the random-
ised experiment does not provide any automatic assurance of causal infer-
ence, free from subjective assumptions.

Equally important is what is not required by the randomised experi-
ment. The logic of experimentation up to Fisher’s time was that of the con-
trolled experiment, in which it was crucial that all other variables be
experimentally fixed to constant values13 (see, for example, Feiblman 1972,
page 149). R. A. Fisher (1970) explicitly rejected this as an inferior method,
pointing out that it is logically impossible to know whether ‘all other vari-
ables’ have been accounted for. This is not to say that Fisher did not advo-
cate physically controlling for other causes in addition to randomisation. In
fact, he explicitly recommended that the researcher do this whenever pos-
sible. For instance, in discussing the comparison of plant yields of different
varieties, he advised that they be planted in soil ‘that appears to be uniform’.
In the context of pot experiments he recommended that the soil be thor-
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A→B→C and we want to experimentally test whether A causes C. If we hold variable B
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that common causes of A and C be held constant in order to exclude the possibility of a
spurious relationship. It is also a good idea, although not crucial for the causal inference,
that causes of C that are independent of A also be held constant in order to reduce the
residual variation of C.



oughly mixed before putting it in the pots, that the watering be equalised,
that they receive the same amount of light and so on. The strength of the
randomised experiment is in the fact that we do not have to physically
control – or even be aware of – other causally relevant variables in order to
reduce (but not logically exclude) the possibility that the observed associa-
tion is due to some unmeasured common cause in our sample.

Yet strength is not the same as omnipotence. Some readers will
have noticed that the logic of the randomised experiment has, hidden
within it, a weakness not yet discussed that severely restricts its usefulness to
biologists; a weakness that is not removed even with an infinite sample size.
In order to work, one must be able to randomly assign values of the hypo-
thesised ‘cause’ to the experimental units independently of any attributes of
these units. This assignment must be direct and not mediated by other
attributes of the experimental units. Yet, a large proportion of biological
studies involves relationships between different attributes of such experi-
mental units.

In the experiment described above, the experimental units are the
plots of ground with their wheat plants. The attributes of these units include
those of the soil, the surrounding environment and the plants. Imagine that
the researcher wants to test the following causal scenario: the added ferti-
liser increases the amount of nitrogen absorbed by the plant. This increases
the amount of nitrogen-based photosynthetic enzymes in the leaves and
therefore the net photosynthetic rate. The increased carbon fixation due to
photosynthesis causes the increased seed yield (Figure 1.1).

The first part of this scenario is perfectly amenable to the random-
ised experiment since the nitrogen absorption is an attribute of the plant
(the experimental unit), while the amount of fertiliser added is controlled
completely by the researcher independently of any attribute of the plot or
its wheat plants. The rest of the hypothesis is impervious to the randomised
experiment. For instance, both the rate of nitrogen absorption and the
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Figure 1.1. An hypothetical causal scenario that is not amenable to a
randomised experiment.



concentration of photosynthetic enzymes are attributes of the plant (the
experimental unit). It is impossible to randomly assign rates of nitrogen
absorption to each plant independently of any of its other attributes. Yet this
is the crucial step in the randomised experiment that allows us to distinguish
correlation from causation. It is true that the researcher can induce a change
both in the rate of nitrogen absorption by the plant and in the concentra-
tion of photosynthetic enzymes in its leaves but in each case these changes
are due to the addition of the fertiliser. After observing an association
between the increased nitrogen absorption and the increased enzyme con-
centration the randomisation of fertiliser addition does not exclude different
causal scenarios, only some of which are shown in Figure 1.2.

While reading books about experimental design one’s eyes often
skim across the words ‘experimental unit’ without pausing to consider what
these words mean. The experimental unit is the ‘thing’ to which the treat-
ment levels are randomly assigned. The experimental unit is also an experi-
mental unit. The causal relationships, if they exist, are between the external
treatment variable and each of the attributes of the experimental unit that
show a response. In biology the experimental units (for instance plants,
leaves or cells) are integrated wholes whose parts cannot be disassembled
without affecting the other parts. It is often not possible to randomly ‘assign’
values of one attribute of an experimental unit independently of the beha-
viour of its other attributes14. When such random assignments can’t be done
then one can’t infer causality from a random experiment. A moment’s reflec-
tion will show that this problem is very common in biology. Organismal,
cell and molecular biology are rife with it. Physiology is hopelessly entan-
gled. Evolution and ecology, dependent as they are on physiology and
morphology, are often beyond its reach. If we accept that one can’t study
causal relationships without the randomised experiment, then a large pro-
portion of biological research will have been gutted of any demonstrable
causal content.

The usefulness of the randomised experiment is also severely
reduced because of practical constraints. Remember that the inference is
from the randomised treatment allocation to the experimental unit. The
experimental unit must be the one that is relevant to the scientific hypoth-
esis of interest. If the hypothesis refers to large-scale units (populations, eco-
systems, landscapes) then the experimental unit must consist of such units.
Someone wishing to know whether increased carbon dioxide (CO2) con-
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centrations will change the community structure of forests will have to use
entire forests as the experimental units. Such experiments are never done
and there is nothing in the inferential logic of randomised experiments that
allows one to scale up from different (small-scale) experimental units. Even
when proper randomised experiments can be done in principle, they some-
times can’t be done in practice, owing to financial or ethical constraints.

The biologist who wishes to study causal relationships using the
randomised experiment is therefore severely limited in the questions that
can be posed. The philosophically inclined scientist who insists that a posi-
tive response from a randomised experiment is an operational definition of a
causal relationship would have to conclude that causality is irrelevant to
much of science.
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Figure 1.2. Three different causal scenarios that could generate an
association between increased nitrogen absorption and increased
enzyme concentration in the plant following the addition of fertiliser in a
randomised experiment.



1.3 The controlled experiment

The currently prevalent notion that scientists cannot convincingly study
causal relationships without the randomised experiment would seem in-
comprehensible to scientists before the twentieth century. Certainly biolo-
gists thought that they were demonstrating causal relationships long before
the invention of the randomised experiment. A wonderful example of this
can be found in An introduction to the study of experimental medicine by the great
nineteenth century physiologist, Claude Bernard15. I will cite a particularly
interesting passage (Rapport and Wright 1963), and I ask that you pay
special attention to the ways in which he tries to control variables. I will
then develop the connection between the controlled experiment and the
statistical methods described in this book.

In investigating how the blood, leaving the kidney, eliminated substances
that I had injected, I chanced to observe that the blood in the renal vein
was crimson, while the blood in the neighboring veins was dark like ordi-
nary venous blood. This unexpected peculiarity struck me, and I thus
made observation of a fresh fact begotten by the experiment, but foreign
to the experimental aim pursued at the moment. I therefore gave up my
unverified original idea, and directed my attention to the singular color-
ing of the venous renal blood; and when I had noted it well and assured
myself that there was no source of error in my observation, I naturally
asked myself what could be its cause. As I examined the urine flowing
through the urethra and reflected about it, it occurred to me that the red
coloring of the venous blood might well be connected with the secreting
or active state of the kidney. On this hypothesis, if the renal secretion was
stopped, the venous blood should become dark: that is what happened;
when the renal secretion was re-established, the venous blood should
become crimson again; this I also succeeded in verifying whenever I
excited the secretion of urine. I thus secured experimental proof that there
is a connection between the secretion of urine and the coloring of blood
in the renal vein.

Our knowledge of human physiology has progressed far from the
experiments of Claude Bernard (physiologists might find it strange that he
spoke of renal ‘secretions’); yet his use of the controlled experiment would
be immediately recognisable and accepted by modern physiologists. Fisher
was correct in describing the controlled experiment as an inferior way of
obtaining causal inferences, but the truth is that the randomised experi-
ment is unsuited to much of biological research. The controlled experi-
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ment consists of proposing a hypothetical structure of cause–effect rela-
tionships, deducing what would happen if particular variables are con-
trolled, or ‘fixed’ in a particular state, and then comparing the observed
result with its predicted outcome. In the experiment described by Claude
Bernard, the hypothetical causal structure could be conceptualised as
shown in Figure 1.3.

The key notion in Bernard’s experiment was the realisation that, if
his causal explanation were true, then the type of association between the
colour of the blood in the renal vein as it enters and leaves the kidney would
change, depending on the state of the hypothesised cause, i.e. whether the
kidney was secreting or not. It is worth returning to his words: ‘On this
hypothesis, if the renal secretion was stopped, the venous blood should
become dark: that is what happened; when the renal secretion was re-estab-
lished, the venous blood should become crimson again; this I also succeeded
in verifying whenever I excited the secretion of urine. I thus secured experi-
mental proof that there is a connection between the secretion of urine and
the coloring of blood in the renal vein.’ Since he explicitly stated earlier in
the quote that he was inquiring into the ‘cause’ of the phenomenon, it is
clear that he viewed the result of his experiments as establishing a causal con-
nection between the secretion of urine and the colouring of blood in the
renal vein.

Although the controlled experiment is an inferior method of
making causal inferences relative to the randomised experiment, it is actu-
ally responsible for most of the causal knowledge that science has produced.
The method involves two basic parts. First, one must propose an hypothesis
stating how the measured variables are linked in the causal process. Second,
one must deduce how the associations between the observations must
change once particular combinations of variables are controlled so that they
can no longer vary naturally, i.e. once particular combinations of variables
are ‘blocked’. The final step is to compare the patterns of association, after

1.3 T H E C O N T R O L L E D E X P E R I M E N T

15

Figure 1.3. The hypothetical causal explanation invoked by Claude
Bernard.



such controls are established, with the deductions. Historically, variables
have been blocked by physically manipulating them. However (this is an
important point that will be more fully developed and justified in Chapter
2), it is the control of variables, not how they are controlled, that is the
crucial step. The weakness of the method, as Fisher pointed out, is that one
can never be sure that all relevant variables have been identified and prop-
erly controlled. One can never be sure that, in manipulating one variable,
one has not also changed some other, unknown variable. In any field of
study, as Bernard documents in his book, the first causal hypotheses are gen-
erally wrong and the process of testing, rejecting, and revising them is what
leads to progress in the field.

1.4 Physical controls and observational controls

It is the control of variables, not how they are controlled, that is the crucial
step in the controlled experiment. What does it mean to ‘control’ a vari-
able? Can such control be obtained in more than one way? In particular, can
one control variables on the basis of observational, rather than experimen-
tal, observations? The link between a physical control through an experi-
mental manipulation and a statistical control through conditioning will be
developed in the next chapter, but it is useful to provide an informal dem-
onstration here using an example that should present no metaphysical prob-
lems to most biologists.

Body size in large mammals seems to be important in determin-
ing much of their ecology. In populations of Bighorn Sheep in the Rocky
Mountains, it has been observed that the probability of survival of an indi-
vidual through the winter is related to the size of the animal in the
autumn. However, this species has a strong sexual dimorphism, males being
up to 60% larger than females. Perhaps the association between body size
and survival is simply due to the fact that males have a better probability
of survival than females and this is unrelated to their body size. In observ-
ing these populations over many years, perhaps the observed association
arises because those years showing better survival also have a larger pro-
portion of males. Figure 1.4 shows these two alternative causal hypothe-
ses. I have included boxes labelled ‘other causes’ to emphasise that we are
not assuming the chosen variables to be the only causes of body size or of
survival.

Notice the similarity to Claude Bernard’s question concerning the
cause of blood colour in the renal vein. The difference between the two
alternative causal explanations in Figure 1.4 is that the second assumes that
the association between spring survival and autumn body size is due only to
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the sex ratio of the population. Thus, if the sex ratio could be held con-
stant, then the association would disappear. Since adult males and females of
this species live in separate groups, it would be possible to physically separ-
ate them in their range and, in this way, physically control the sex ratio of
the population. However, it is much easier to simply sort the data accord-
ing to sex and then look for an association within each homogeneous group.
The act of separating the data into two groups such that the variable in ques-
tion – the sex ratio – is constant within each group represents a statistical
control. We could imagine a situation in which we instruct one set of
researchers to physically separate the original population into two groups
based on sex, after which they test for the association within each of their
experimental groups, and then ask them to combine the data and give them
to a second team of researchers. The second team would analyse the data
using the statistical control. Both groups would come to identical conclu-
sions16. In fact, using statistical controls might even be preferable in this situ-
ation. Simply observing the population over many years and then statistically
controlling for the sex ratio on paper does not introduce any physical
changes in the field population. It is certainly conceivable that the act of
physically separating the sexes in the field might introduce some unwanted,
and potentially uncontrolled, change in the behavioural ecology of the
animals that might bias the survival rates during the winter quite indepen-
dently of body size.

Let’s further extend this example to look at a case in which it is not
as easy to separate the data into groups that are homogeneous with respect
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Figure 1.4. Two alternative causal explanations for the relationship
between sex, body size of Bighorn Sheep in the autumn and the
probability of survival until the spring.



to the control variable. Perhaps the researchers have also noticed an associ-
ation between the amount and quality of the rangeland vegetation during
the early summer and the probability of sheep survival during the next
winter. They hypothesise that this pattern is caused by the animals being
able to eat more during the summer, which increases their body size in the
autumn, which then increases their chances of survival during the winter
(Figure 1.5).

The logic of the controlled experiment requires that we be able to
compare the relationship between forage quality and winter survival after
physically preventing body weight from changing, which we can’t do17.
Since ‘body weight’ is a continuous variable, we can’t simply sort the data
and then divide it into groups that are homogeneous for this variable. This
is because each animal will have a different body weight. Nonetheless,
there is a way of comparing the relationship between forage quality and
winter survival while controlling for the body weight of the animals during
the comparison. This involves the concept of statistical conditioning,
which will be more rigorously developed in Chapters 2 and 3. An intui-
tive understanding can be had with reference to a simple linear regression
(Figure 1.6).

The formula for a linear regression is: Yi����Xi�N(0,�). Here,
the notation ‘N(0,�)’ means ‘a normally distributed random variable with a
population mean of zero and a population standard deviation of �’. As the
formula makes clear, the observed value of Y consists of two parts: one part
that depends on X and one part that doesn’t. If we let ‘E(Y|X )’ represent
the expected value of Y given X, then we can write:
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Figure 1.5. A hypothetical causal explanation for the relationship
between the quality and quantity of summer forage, the body weight of
the Bighorn Sheep in the autumn and the probability of survival until the
spring.



E(Y|Xi )����Xi

Yi�E(Y|Xi )�N(0,�)

Yi�E(Y|Xi ))�N(0,�).

Thus, if we subtract the expected value of each Y, given X, from
the value itself, then we get the variation in Y that is independent of X. This
new variable is called the residual of Y given X. These are the values of Y
that exist for a constant value of X. For instance, the vertical arrow in Figure
1.6 shows the values of Y when X�20.

If we want to compare the relationship between forage quality and
winter survival while controlling for the body weight of the animals during
the comparison, then we have to remove the effect of body weight on each
of the other two variables. We do this by taking each variable in turn, sub-
tracting the expected value of its given body weight, and then see whether
there is still a relationship between the two sets of residuals. In this way, we
can hold constant the effect of body weight in a way similar to experimen-
tally holding constant the effect of some variable. The analogy is not exact.
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Figure 1.6. A simple bivariate regression. The solid line shows the
expected value of Yi given the value of Xi (E[Yi |Xi ]). The dotted line
shows the possible values of Yi that are independent of Xi (the
residuals).



There are situations in which statistically holding constant a variable will
produce patterns of association different from those that would occur when
one is physically holding constant the same variable. To understand when
statistical controls cast the same correlational shadows as experimental con-
trols, and when they differ, we need a way of rigorously translating from the
language of causality to the language of probability distributions. This is the
topic of the next chapter.
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2 From cause to correlation and back

2.1 Translating from causal to statistical models

The official language of statistics is the probability calculus, based on the
notion of a probability distribution. For instance, if you conduct an analy-
sis of variance (ANOVA) then the key piece of information is the probabil-
ity of observing a particular value of Fisher’s F statistic in a random sample
of data, given a particular hypothesis or model. To obtain this crucial piece
of information, you (or your computer) must know the probability density
function of the F statistic. Certain other (mathematical) languages are tol-
erated within statistics but, in the end, one must link one’s ideas to a prob-
ability distribution in order to be understood. If we wish to study causal
relationships using statistics, it is necessary that we translate, without error,
from the language of causality to the only language that statistics can under-
stand: probability theory.

Such a rigorous translation device did not exist until recently (Pearl
1988). It is no wonder that statisticians have virtually banished the word
‘cause’ from statistics – it has no equivalent in their language1. Within the
world of statistics the scientific notion of causality has, until recently, been
a stranger in a strange land. Posing causal questions in the language of prob-
ability calculus is like a unilingual Englishman asking for directions to the
Louvre in Paris from a Frenchman who can’t speak English. The Frenchman
might understand that directions are being requested, and the Englishman
might see fingers pointing in particular directions, but it is not at all sure that
works of art will be found. Imperfect translations between the language of
causality and the language of probability theory are equally disorienting.

Mistakes in translation come in all kinds. The most dangerous ones
are the subtle errors in which a slight change in inflection or context of a
word can change the meaning in disastrous ways. Because the French word
demande both sounds like the English word ‘demand’ and has roughly the
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same meaning (it simply means ‘to ask for’, without any connotation of
obligation), I have seen French-speaking people come up to a store clerk
and, while speaking English, ‘demand service’. They think that they are
politely asking for help while the clerk thinks they are issuing an ultimatum.
I once came close to being beaten by an enraged boyfriend simply because
(I thought) I was complimenting his girlfriend on her long hair, which was
drawn in a ponytail. The word for ‘tail’ in French is queue, which takes a
feminine gender. There is another word in colloquial Canadian French, cul
(the ‘l’ is silent), that sounds almost the same. It takes a masculine gender, is
pronounced only slightly differently, and can be roughly translated as a
person’s rear end; the correctly translated word rhymes with ‘pass’ but the
reader will understand if I don’t give the literal translation. So, while trying
to make conversation with the boyfriend I told him that his girlfriend had
a nice cul instead of a nice queue. I immediately knew, from the look of rage
on his face, that I had chosen the wrong word.

The same subtle mistakes of translation can occur when translating
between the language of causality and the mathematical language of prob-
ability distributions. I began the first chapter by comparing causes and cor-
relations to three-dimensional objects and their two-dimensional shadows.
Clearly, there is a close relationship between the object and its shadow. Just
as clearly, they are not the same thing. The goal of this chapter is to describe
the relationship between variables involved in a causal process and the prob-
ability distribution of these variables that the causal process generates. Causal
processes cast probability shadows but ‘causes’ and ‘probability distributions’
are not the same thing either. It is important to understand exactly how the
translation is made between causal processes and probability distributions in
order to avoid the scientific equivalent of a punch in the nose from an
enraged boyfriend.

I will make the distinction between a causal model, an observational
model and a statistical model. Since every child knows that rain causes mud2,
I will illustrate the difference between these three types of model with this
analogy. The statement ‘rain causes mud’ implies an asymmetric relation-
ship: the rain will create mud, but the mud will not create rain. I will use
the symbol ‘→’ when I want to refer to such causal relationships. This leads
naturally to the sort of ‘box and arrow’diagrams with which most biologists
are familiar (Figure 2.1).

To complete the description it is necessary to add the convention
that, unless a causal relationship is explicitly included, it is understood not
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to exist. So, in Figure 2.1, the fact that there are no arrows between ‘rain’
and ‘other causes of mud’ means that there is no direct causal relationship
between them; in fact, there is no causal relationship of any kind in this
example, since the two are causally independent.

The observational model that is related to this causal model is the
statement that ‘having observed rain will give us information about what we
will observe concerning mud’. Notice that this observational statement
deals with information, not causes, and is not asymmetric. If we learn that
it has rained, then we will have added information concerning the presence
of mud in our yard, but observing mud in our yard will also give us infor-
mation about whether or not it has rained. I will use the symbol ‘—’ when
I refer to such observational relationships. This leads to the model in Figure
2.2.

Notice that, although rain and other causes of mud are causally
independent, they are not observationally independent given the state of
mud; knowing that it has not rained but that there is mud in the front yard
gives you information on the existence of other causes of mud.

The statistical model differs only in degree, not in kind, from the
observational model. The statistical model (Figure 2.3) specifies the math-
ematical relationship between the variables as well as the probability distri-
butions of the variables. Now we can use the equivalence operator of
algebra (‘�’), since we are stating a quantitative equivalence.

This mathematical statement says that the value obtained by meas-
uring the depth of the mud, in centimetres, is the same as (is ‘equivalent to’)
the value that is obtained by measuring the amount of rain that falls, in
centimetres, multiplying this value by 0.1, and adding another value (in
centimetres) obtained from a random value taken from a normal distribu-
tion whose population mean is zero and whose population standard devia-
tion is 0.1.
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Figure 2.1. The causal relationships between rain, mud and other
causes of mud.

Figure 2.2. The observational relationships between rain, mud and
other causes of mud.



What is the point of all this? According to Pearl (1997) a century
of confusion between correlation and causation can be traced, in part, to a
mistranslation of the word ‘cause’. When scientists and statisticians attempt
to express notions of causality using mathematics they mistranslate ‘cause’,
a word having connotations of asymmetry and all of the other properties
discussed in Chapter 1, as the algebraic notion ‘�’ used in the language of
probability theory. The symbols ‘→’ and ‘�’ do not mean the same thing.
It is perfectly correct to rearrange the equation in Figure 2.3 in order to
imply that the amount of rain can be predicted from the amount of mud
(Figure 2.4) even though any 5 year old child would recognise this as cau-
sally nonsensical.

This mistake is the scientific equivalent of telling a boyfriend that
his girlfriend has ‘un beau cul’ rather than ‘une belle queue’. The concep-
tual error occurs because we have replaced ‘→’ with ‘�’. After translating
from the language of causality to the language of observations, we have used
the syntax of this observational language to produce a perfectly reasonable
statement for this observational language, but then we have performed a
literal translation back into the language of causality without recognising the
difference in syntax. There are computer programs that attempt to translate
between human languages and those that use literal word-by-word transla-
tions run into the same problems. A newspaper headline like ‘Bill Gates
worth $1000000000’, after being literally translated (word for word) into
a different language and then re-translated back into English, might come
up with a phrase like ‘payment request for door in the fence costs
$1000000000’!

In the next few sections I develop a translation device to move
between causal models and observational (statistical) models. To do this we
require the necessary and sufficient conditions needed to specify a joint
probability distribution that must exist given a causal process. Put another
way, we require the necessary and sufficient conditions needed to specify the
correlational shadow that will be cast by a causal process. This provides the
key to translating between causal and statistical models. These sections
require more effort to understand but in each case I will also provide a more
intuitive description and some worked examples.
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Figure 2.3. A statistical model relating rain and mud.

Figure 2.4. Another statistical model relating rain and mud.



The strategy for translation from the physical world, in which the
notion of causation is applicable, to the mathematical world of probability
theory, in which the abstract notion of algebraic equivalence is applicable,
involves two steps. First, since algebra cannot express the sorts of relation-
ship that we term ‘causal’, we need a new mathematical language that can;
this language is that of directed graphs. Second, we need a translation device
that can unambiguously convert the statements expressed in such directed
graphs into statements concerning conditional independence of random
variables obeying a particular probability distribution. This translation
device is called ‘d-separation’ (short for directed separation).

2.2 Directed graphs

It is now time to introduce some terminology concerning directed (some-
times called causal) graphs. These terms, although unfamiliar to most biol-
ogists, are quite easy to grasp and use. These terms will be defined using the
causal graph shown in Figure 2.5.

Here is a partial verbal (as opposed to mathematical) description of
what Figure 2.5 means. Two of the six variables (A and B ) are causally inde-
pendent, meaning that changes in either will not affect the value of the other.
Each of the four other variables (C, D, E and F ) are causally dependent on A
and B, either directly (C ) or indirectly (D, E and F ). By ‘causally depen-
dent’ I mean that changes in either A or B will provoke changes in each of
C, D, E and F but changes in any of these will not provoke changes in either
A or B. A and B are direct causes of C because changes in A or B will provoke
changes in C irrespective of the behaviour of either D, E or F. A and B are
indirect causes of D, E and F because changes in A or B will only provoke
changes in these variables by causing changes in C; if C is prevented from
changing then A and B will no longer cause changes in these three other
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Figure 2.5. A directed graph describing the causal relationships
between five variables or vertices (A to F ).



variables. C is a direct common cause of D and E and an indirect cause of F
through its effects on D and E. Finally, both D and E are direct causes of F,
although they are not themselves causally independent.

It is clear that this directed graph is a very economic way of express-
ing even the previous incomplete verbal description of this causal system.
This economy of description is a major reason why researchers in artificial
intelligence adopted directed graphs as a way of economically programming
causal knowledge (Pearl 1988)3. In order to better use and interpret directed
graphs, a few definitions are needed.

In graph theory a directed graph is a set of vertices, represented by
letters enclosed in boxes in Figure 2.5, and a set of edges, represented by
lines; these lines can have either no arrowheads, single or double arrow-
heads. The arrowheads denote the direction of the functional relationship
between the vertices at either end of the line4. Since biologists will use
directed graphs to represent causal relationships between variables, you can
replace the abstract term ‘vertex’ with the more familiar word ‘variable’ and
the abstract term ‘edge’ with the more familiar word ‘effect’. The symbols
at the ends of the lines can be either an arrowhead or a ‘missing’mark. Thus,
the notation ‘X→Y ’ means that X is a direct cause of Y. The notation
‘X←Y ’ means that Y is a direct cause of X. Finally, the notation ‘X↔Y ’
means that neither X nor Y are causes of the other but both share common
unknown causes represented by some unknown vertex not included in the
causal graph. This last notation is needed later when we use incomplete
causal graphs with unspecified latent vertices.

A direct cause is a causal relationship between two vertices that exists
independently of any other vertex in the causal explanation. This denoted
by an arrow (→) whose tail is at the cause and whose head is pointing to its
direct effect. For instance, both A and B are direct causes of C in Figure 2.5.
Furthermore, A and B are the causal parents of C, and C is their causal child.
A cause is only direct in relation to the other vertices in the causal explana-
tion. This point is important because a common error is to incorrectly
equate a ‘direct’ cause relative to others in the causal graph with the more
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13 More accurately, directed graphs can economically store the conditional independence
constraints implied by a causal system of an arbitrary joint probability distribution. This
is explained in more detail below.

14 In the jargon of graph theory, an undirected graph consists of a set of vertices {A, B, C,
. . .} and a binary set denoting the presence or absence of edges (lines) between each pair
of vertices. The graph becomes directed when we include a set of symbols for each edge
showing direction. It is also possible to construct partially directed graphs. A graph is
acyclic if there are no paths that lead a vertex back onto itself, otherwise it is cyclic. The
causal graph in Figure 2.5 is therefore a directed acyclic graph, or DAG.



fundamental claim that the cause is somehow ‘direct’ with respect to any
other variable that might exist. Whenever you read the words ‘direct cause’
you should mentally add the words ‘relative to the other variables that are
explicitly invoked in the causal explanation’.

An indirect cause is a causal relationship between two vertices that is
conditional on the behaviour of other vertices in the causal explanation.
Again, a cause is only indirect in relation to the other vertices in the causal
explanation. For instance, in Figure 2.5 the vertex A is an indirect cause of
vertex D (A→C→D) because its causal effect is conditional on the behavi-
our of vertex C. Furthermore, A and B are causal ancestors of D in Figure
2.5 and D is a causal descendant of both A and B.

Perhaps an example would help at this point. If we wish to give a
causal description of the murder of a victim by a gunman and this explana-
tion involves only these two ‘variables’ then we would say that the gunman’s
actions were the direct cause of the victim’s death and write ‘Gunman’s
actions→Murder of victim’. On the other hand, if we also include the pres-
ence of the bullet penetrating the victim’s heart in our causal explanation
then we would say that the bullet was the direct cause of death, the gunman
was an indirect cause, and write ‘Gunman’s actions→Bullet→Murder of
victim’. If we wish to go into more gruesome physiological detail then we
would describe how the bullet interrupts the heart and the bullet would no
longer be a direct cause of the victim’s death. Virtually any causal mecha-
nism can be further decomposed into a more detailed causal mechanism and
so describing a cause as ‘direct’ or ‘indirect’ can be meaningful only in rela-
tive terms in the context of the other variables that make up the causal
explanation. This is simply the reductionist method common in science and
the trick is always to choose a level of causal complexity that is sufficiently
detailed that it meets the goals of the study while remaining applicable in
practice.

A directed path between two vertices in a causal graph exists if it is
possible to trace an ordered sequence of vertices that must be traversed,
when following the direction of the edges (head to tail), in order to travel
from the first to the second. If no such directed path exists, then the two
vertices are causally independent; causal conditional independence is defined
below. It is possible for there to be more than one directed path linking two
vertices. In Figure 2.5 there are two different directed paths between A and
F: A→C→D→F and A→C→E→F.

An undirected path between two vertices in a causal graph exists if it
is possible to trace an ordered sequence of vertices that must be traversed,
ignoring the direction of the edges (head to tail), in order to travel from the
first to the second. An undirected path can also be a directed path, but this
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is not necessarily the case. For instance, there is an undirected path between
A and B in Figure 2.5 (A→C←B) that is not also a directed path.

A collider vertex on a path is a vertex with arrows pointing into it
from both directions. Thus the vertex F in the undirected path D→F←E
in Figure 2.5 is a collider. It is possible for the same vertex to be a collider
along one path and a non-collider along another path. A vertex that is a col-
lider along an undirected path is inactive in its normal (unconditioned) state.
This means that, in its normal (unconditioned) state, a collider blocks (pre-
vents) the transmission of causal effects along such a path. The contrary of
a collider is a non-collider. The vertex C in the path A→C→D in Figure 2.5
is a non-collider. A vertex that is a non-collider along a path is said to be
active in its normal (unconditioned) state. This means that, in its normal
(unconditioned) state, a non-collider permits the transmission of causal
effects along such a path. It is sometimes easier to imagine a path as an
electrical circuit and the variables (vertices) along the path as switches. A
variable along a path that is a collider is like a switch that is normally OFF
and a variable along a path that is a non-collider is like a switch that is nor-
mally ON.

An unshielded collider vertex is a set of three vertices A→B←C along
a path such that B is a collider and, additionally, there is no edge between
A and C. In Figure 2.5 the vertex F in the undirected path D→F←E is not
only a collider but also an unshielded collider, since there is no edge between
D and E. The contrary of an unshielded collider is a shielded collider.

2.3 Causal conditioning

I have been referring to the letters in the causal graph as ‘vertices’. Once we
include the notion of a probability distribution that is generated by the
causal graph, these vertices will also represent random variables. These ver-
tices can be conceived to exist in one of two binary states along a given path:
active or inactive. As stated above, the natural state of a non-collider is the
active (ON) state and the natural state of a collider is the inactive (OFF)
state. Again, it is possible for a vertex to be active along one path and inac-
tive along another. Intuitively, one can think of the arrows as pointing out
the direction of causal influence. Thus a vertex that is both an effect and a
cause (a non-collider), for example vertex C along the path A→C→D, is
active because it allows the causal influence of A to be transmitted to D. In
the same way, a vertex that is an effect of two vertices and therefore a cause
to neither (a collider) is inactive because it blocks the causal influence from
being transmitted along the path. An example is the vertex F along the path
D→F←E in Figure 2.5. Conditioning on a vertex in a causal graph means to
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change its state; if it was active, then conditioning inactivates it but, if it was
inactive, then conditioning activates it. So, since vertex C along the path
A→C→D is naturally active (ON), conditioning on it changes its state to
inactive (OFF), thus blocking any indirect causal influence of A on D.

2.4 d-separation

Remembering that we are still not discussing probability distributions or
statistical models, and are still concerned only with properties of directed
acyclic graphs, we can now define what is meant by ‘independence’ of ver-
tices, or of groups of vertices, in a causal graph upon conditioning on some
other set of vertices. This property is called d-separation (‘directed separa-
tion’: Verma and Pearl 1988; Pearl 1988; Geiger, Verma and Pearl 1990).
The definition of d-separation uses the definitions above and, although it is
awkward to define in words, it is very easy to understand when looking at
a causal graph. The formal definition is given in Box 2.1. I then give a more
informal definition, and finally I illustrate it using figures.

Box 2.1. Formal definition of d-separation5

Given a causal graph G, if X and Y are two different vertices in G and Q is a
set of vertices in G that does not contain X or Y, then X and Y are d-separated
given Q in G if and only if there exists no undirected path U between X and
Y, such that (i) every collider on U is either in Q or else has a descendant in
Q and (ii) no other vertex on U is in Q.

Informally, d-separation gives the necessary and sufficient con-
ditions for two vertices in a directed acyclic (causal) graph to be observa-
tionally (probabilistically) independent upon conditioning on some other
set of vertices. d-separation is the translation device between the language
of causality and the language of probability distributions. To know whether
two vertices (X, Y ) are d-separated given some set of other vertices in the
causal graph, which we will call Q, do the following:

1. List every undirected path between X and Y.
2. For every such undirected path between X and Y (which is an

ordered sequence of vertices that must be traversed, ignoring the
directions of the arrows), see whether any non-colliding vertices in
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this path are in the conditioning set Q. If so, then the path is
blocked and there is no causal influence between X and Y along this
path. Remembering that conditioning on a non-collider changes
its state to inactive, then at least one of the vertices in Q blocks any
causal influence between X and Y along this undirected path.

3. For every such undirected path between X and Y, see whether every
collider vertex along this path is either a member of the condition-
ing set Q or else has a causal descendant that is a member of the
conditioning set Q. If not, then the path is blocked and there is no
causal influence between X and Y along this path. Remembering
that conditioning on a collider changes its state from inactive to
active, then there is at least one collider along this undirected path
that remains inactive and so this path cannot transmit causal influ-
ence between X and Y.

4. X and Y are d-separated given Q if every undirected path between
them is blocked.

The use of d-separation to deduce probabilistic independence upon
conditioning from a causal system is best understood using a diagram (Figure
2.6) from Spirtes, Glymour and Scheines (1993). Table 2.1 lists some of the
d-separation statements that can be obtained from Figure 2.6. I will use the
notation ‘I(X,Q,Y )’ to mean ‘vertices X and Y are independent given the
conditioning set Q’. The negation ‘�I(X,Q,Y )’ means that ‘vertices X and
Y are not independent given the conditioning set Q’. The set Q can include
the null set �, denoting unconditional causal independence.

The causal inferences listed in Table 2.1 are not exhaustive. After a
few minutes of practice it is easy to simply read off the conditional indepen-
dence relations from such a causal graph. d-separation leads to a wealth of
very useful results involving causal inference, many of which will be
described in later chapters. However, until d-separation is related to prob-
ability distributions, it provides no way of inferring causal relationships from
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Figure 2.6. A directed graph used to illustrate the notion of d-separation.



observational data. Before making this link explicit, we first need some
notions from probability theory.
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Table 2.1. Various probabilistic independence relationships of the directed graph in
Figure 2.6 that can de deduced using d-separation

Independence relation Explanation

I(X,�,V ). X and V unconditionally There are no directed paths between X
independent and V

�I(X,U,V ). X and V not independent, Since X→U←V collides at U, 
conditioned on U conditioning on U activates this path

�I(X,S1,V ). X and V not independent, Since S1 is a causal descendant of U, 
conditioned on S1 conditioning on S1 activates U along

path X→U←V

�I(U,�,W ). U and W are not The path U←V→W is naturally active. 
unconditionally independent U and W share a common cause (V )

and V is not in the conditioning set
{	}.

I(U,V,W ). U and W are independent, There is only one naturally active path 
conditioned on V between U and W: U←V→W.

Conditioning on V inactivates V,
blocking this path

I(X,�,Y ). X and Y are unconditionally The only undirected path between X
independent and Y is naturally blocked by both U

and W

�I(X,{U,W},Y ). X is not independent The only undirected path between X

of Y, conditioned simultaneously on U and Y has two colliders, and both are 
and W in the conditioning set. This activates

the undirected path

�I(X,{S1,S2},Y ). X is not independent The only undirected path between X
of Y, conditioned simultaneously on S1 and Y has two colliders, and the causal 
and S2 descendants of both are in the

conditioning set. This activates the
undirected path

I(X,{U,W,V },Y ). X is independent of Although conditioning on both U and 
Y, conditioned simultaneously on U, W activates these two colliders, 
W and V conditioning on V disactivates this

non-collider



2.5 Probability distributions

The vertices of a causal graph represent attributes in a causal system, for
instance the nitrogen concentration in a leaf or the body mass of a sheep.
When we randomly sample observational units (leaves, sheep) possessing
these attributes (nitrogen concentration, body mass) from some statistical
population which is governed by this causal system, then the vertices of the
causal graph are also random variables that obey a probability distribution.
Since causal relationships involve at least two such random variables, we
must deal with joint probability distributions.

As I have already briefly mentioned, the notion of ‘probability’
differs depending on whether one subscribes to a frequentist, objective
Bayesian or subjective Bayesian school of statistics. Since almost all statisti-
cal methods familiar to biologists derive from a frequentist perspective, I will
use this definition. One begins with a hypothetical statistical population (say,
all Wheat plants grown in Europe) that contains all of the observational
units (individual plants) of interest. Each observational unit has a variable
(say, the protein content of a seed) that can take different values (1.2mg, 3.1
mg . . .). The proportion of observational units (individual plants) in the
statistical population (Wheat grown in Europe) taking different values of the
variable of interest (seed protein content) is the probability of this variable
in this statistical population. Another way of saying this is that the probabil-
ity of a random variable (X ) taking a value X�xi (or having a value within
an infinitesimal interval around xi ) in a statistical population of size N is the
limiting frequency of X�xi in a random sample of size n as n approaches
N.

A probability distribution is the distribution of the limiting (rela-
tive) frequencies of X�x1, x2, . . . in such a statistical population. Happily,
it is an empirical fact that the distribution of many variables, when randomly
sampled, can be closely approximated by various mathematical functions.
Many of these functions are well known to biologists (normal distribution,
Poisson distribution, binomial distribution, Fisher’s F distribution, chi-
squared distribution) and there are many less well-known functions that can
be used as well. It is always an empirical question whether or not one of
these mathematical distributions is a sufficiently close approximation of
one’s data to be acceptable. For instance, the relative frequency of the seed
protein content per plant is likely to follow a normal distribution. The
formula for the normal distribution is:

f(x;
,�)�

� (x � 
)2

2�21

�2��2
 e
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When only one variable is measured on each observational unit,
then one obtains a univariate distribution. When one measures more than
one variable on each observational unit (say, both the protein content and
the average seed weight per plant) then one obtains a multivariate distribu-
tion6. If one obtains the relative frequencies of values of each unique set of
multivariate observations, then one has a multivariate probability distribu-
tion. Again, there are many multivariate mathematical functions that
approximate such multivariate probability distributions. Figure 2.7 shows
two versions of a bivariate normal distribution.

2.6 Probabilistic independence

By definition, two random variables (X, Y ) are (unconditionally) indepen-
dent if the joint probability density of X and Y is the product of the prob-
ability density of X and the probability density of Y. Thus:

If I(X,�,Y ) then P(X,Y )�P(X )�P(Y )

For instance, if X and Y are each distributed as a standard normal
distribution and they are also independent (Figure 2.7A), then the joint
probability distribution can be obtained as follows:

f(X;0,1)�

f(Y;0,1)�

f(X;Y )� f(X;0,1)� f(Y;0,1)�

If two random variables (X, Y ) are not (unconditionally) indepen-
dent then the joint probability density of X and Y is not the product of the
two univariate probability densities. If the variables are dependent then one
can’t simply multiply one univariate probability density by the other because
we have to take into consideration the interaction between the two (Figure
2.7B).

Figure 2.7A shows the bivariate normal density function of two
independent variables. Note that the mean value of Y is the same (0) no
matter what the value of X, and vice versa; the value of one variable doesn’t

� (X2 � Y2)
21

�2�
 e

� (Y)2

21

�2�
 e

� (X)2

21

�2�
 e
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change the average value (expected value) of the other variable. Figure 2.7B
shows the bivariate normal density function of two dependent variables.
Here, the mean value of Y is not independent of the value of X.

Similarly, X and Y are independent, conditional on (‘given’) a set of
other variables Z, if the joint probability density of X and Y given Z equals
the product of the probability density of X given Z and the probability
density of Y given Z for all values of X, Y and Z for which the probability
density of Z is not equal to zero7. The notion of conditional independence
will be explained in more detail in Chapter 3. Thus:

If I(X,Z,Y ) then P(X,Y|Z )�P(X|Z )�P(Y|Z )

2.7 Markov condition

Many ecologists, especially those who study vegetation dynamics, are famil-
iar with Markov chain models (Van Hulst 1979). These models predict veg-
etation dynamics based on a ‘transition matrix’. The transition matrix gives
the probability that a location that is occupied by a species si at time t will
be replaced by species sj at time t�1. The model is ‘Markovian’ because of
the assumption that changes in the vegetation at time t�1 depend at most
on the state of the vegetation at time t, but not on states of the vegetation
at earlier times. Stated another way, these models are Markovian because
they assume that the more distant past (t�1) affects the immediate future
(t�1) only indirectly through the present (t), thus: (t�1)→(t)→(t�1).

In the context of causal models, the Markov condition is a prop-
erty both of a directed acyclic (causal) graph and the joint probability dis-
tribution that is generated by the graph. The condition is satisfied if, given
a vertex vi in the graph, or a random variable vi in the probability distribu-
tion, vi is independent of all ancestral causes given its causal parents8. In the
context of a causal model, this assumption is simply the reasonable claim
that, once we know the direct causes of an event, then knowledge of more
distant (indirect) causes provides no new information. To use a previous
example9, assume that the only cause of an increased concentration of
photosynthetic enzymes in a leaf is the added fertiliser that was put on the
ground, and that the only cause of an increased photosynthetic rate is the
increased concentration of photosynthetic enzymes. Then, knowing how
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another set Z. 18 P(vi)��P(vi|parents(vi )).

19 Fertiliser→photosynthetic enzymes→photosynthetic rate.



much fertiliser was added gives us no new information about the photosyn-
thetic rate once we already know the concentration of photosynthetic
enzymes in the leaf.

An important property of probability distributions that obey the
Markov condition is that they can be decomposed into conditional prob-
abilities involving only variables and their causal parents. For example,
Figure 2.8 shows a causal graph and the joint probability distribution that is
generated by it. This decomposition states that to know the probability dis-
tribution of D, we need only know the value of C; i.e. P(D|C ). To know
the probability distribution of C we need only know the values of A and B;
i.e. P(C|{A,B}). A and B are independent and so to know the joint prob-
ability distribution of A and B we need only know the marginal distribu-
tions of A and B; i.e. P(A)P(B ).

2.8 The translation from causal models to observational
models

Although causal models and observational models are not the same thing,
there is a remarkable relationship between the two. Consider first the case
of causal graphs that do not have feedback relationships; that is, directed
paths from some vertex that do not lead back to the same vertex. Theorem
10 of Pearl (1988) states that for any causal graph without feedback loops (a
directed acyclic graph, or DAG), every d-separation statement obtained
from the graph implies an independence relation in the joint probability dis-
tribution of the random variables represented by its vertices.

This central insight has been a long time in coming, and I imagine
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Figure 2.8. A causal graph involving four variables and the joint
probability distribution that is generated by it.



that many readers will wonder whether the effort was worth the return, so
let me rephrase it:

Once we have specified the acyclic causal graph, then every d-separation relation that
exists in our causal graph must be mirrored in an equivalent statistical independency
in the observational data if the causal model is correct.

The above statement is incredibly general; it does not depend on
any distributional assumptions of the random variables or on the functional
form of the causal relationships. In the same way, if even one statistical inde-
pendency in the data disagrees with what d-separations of the causal graph
predict, then the causal model must be wrong. This is the translation device
that we needed in order to properly translate the causal claims represented
in the directed graph into the ‘official’ language of probability theory used
by statisticians to express observational models. After wading through the
jargon developed above, I hope that the reader will recognise the elegant
simplicity of this strategy (Figure 2.9). First, express one’s causal hypothesis
in a mathematical language (directed graphs) that can properly express the
asymmetric types of relationship that scientists imply when they use the lan-
guage of causality. Second, use the translation device (d-separation) to trans-
late from this directed graph into the well-known mathematical language
(probability theory) that is used in statistics to express notions of association.
Finally, determine the types of (conditional) independence relationship that
must occur in the resulting joint probability distribution. Continuing with
the analogy of a correlation as being an observational shadow of the under-
lying causal process, the translation device (d-separation) is the method by
which one can predict these shadows. The shadows are in the form of con-
ditional independence relationships that the joint probability distribution
(and therefore the observational model) must possess if the data are really
generated by the hypothesised directed graph.

2.9 Counterintuitive consequences and limitations of
d-separation: conditioning on a causal child

Although d-separation can also be used to obtain predictions concerning
how a causal system will respond following an external manipulation10,
d-separation is really only a mathematical operation that gives the correla-
tional consequences of conditioning on a variable in a causal system. One
non-intuitive consequence is that two causally independent variables will be
correlated if one conditions on any of their common children. This is
because conditioning on a collider vertex along a path between vertices X
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and Y means that X and Y are not d-separated. This has important conse-
quences for applied regression analysis and shows how such a method can
give very misleading results if these are interpreted as giving information
about causal relationships.

Consider a causal system in which two causally independent vari-
ables (X and Y ) jointly cause variable Z: X→Z←Y. To be more specific,
let’s assume that the nitrogen content (X ) and the stomatal density (Y ) of
the leaves of individuals of a particular species jointly cause the observed net
photosynthetic rate (Z ). Further, assume that leaf nitrogen content and
stomatal density are causally independent. So, the causal graph is: leaf
nitrogen→net photosynthetic rate←stomatal density. Let the functional
relationships between these variables be as follows:

leaf nitrogen�N(0,1)

stomatal density�N(0,1)

net photosynthesis�0.5 leaf nitrogen�0.5 stomatal
density�N(0,0.707)

These three equations can be used to conduct numerical simula-
tions11 that can demonstrate the consequences of conditioning on a
common causal child (net photosynthetic rate). Since I use this method
repeatedly in this book, I will explain how it is done in some detail. The
first equation states that the leaf nitrogen concentration of a particular plant
has causes not included in the model. Since the plant is chosen at random,
the leaf nitrogen concentration is simulated by choosing at random from a
normal distribution whose population mean is zero and whose population
standard deviation is 1. The second equation states that the stomatal density
of the same leaf of this individual also has causes not included in the model
(not the same unknown causes, since otherwise it would not be causally
independent) and its value is simulated by choosing another (independent)
number from the same probability distribution. The third equation states
that the net photosynthetic rate of this same leaf is jointly caused by the two
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Figure 2.9. The strategy used to translate from a causal model to an
observational model.



previous variables. The quantitative effect of these two causes on the net
photosynthetic rate is obtained by adding 0.5 times the leaf nitrogen con-
centration plus 0.5 times the stomatal density plus a new (independent)
random number taken from a normal distribution whose population mean
is zero, whose population variance is 1�2(0.52), and whose population
standard deviation is therefore the square root of this value; this third
random variable represents all those other causes of net photosynthetic rate
other than leaf nitrogen and stomatal density and these other unspecified
causes are not causally connected to either of the specified causes. By repeat-
ing this process a large number of times, one obtains a random ‘sample’ of
‘observations’ that agree with the generating process specified by the equa-
tions12. As is described in Chapter 3, this model is actually a very simply
path model. After generating 1000 independent ‘observations’ that agree
with these equations, and respecting the causal relationships specified by our
causal system, here are the regression equations that are obtained:

leaf nitrogen�N(0.035,1.006)

stomatal density�N(�0.031,1.017)

net photosynthesis�0.003�0.527 leaf nitrogen�0.498 stomatal
density�N(0,0.693)

Happily, the partial regression coefficients as well as the means and
standard deviations of the random variables are what we should find, given
sampling variation with a sample size of 1000. What happens if we give
these data to a friend who mistakenly thinks that leaf nitrogen concentra-
tion is actually caused by net photosynthetic rate and stomatal density? That
is, she mistakenly thinks that the causal graph is: net photosynthetic
rate→leaf nitrogen←stomatal density. We know, because we generated the
numbers, that leaf nitrogen and stomatal density are actually independent
(the Pearson correlation coefficient between them is �0.037) but this is the
set of regression equations that results from this incorrect causal hypothesis:

net photosynthesis�N(0.001,0.994)

stomatal density�N(�0.031,1.017)

leaf nitrogen�0.023�0.70 net photosynthesis�0.366 stomatal
density�N(0,0.799)
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Tests of significance for the two partial regression coefficients show
that each is significantly different from zero at a probability of less than
1�10�6. Why would the multiple regression mistakenly report a highly
significant ‘effect’ of stomatal density on leaf nitrogen when we know that
they are both statistically and causally independent (because we made them
that way in the simulation)? There is no ‘mistake’ in the statistics; rather it
is our friend’s interpretation that is mistaken. The regression equation is an
observational model and it is simply telling us that knowing something
about the net photosynthetic rate gives us extra information about (or helps
to predict) the amount of nitrogen in the leaf, when we compare leaves with
the same stomatal density13. This is exactly what d-separation, applied to the
correct causal graph, tells us will happen: leaf nitrogen and stomatal density,
while unconditionally d-separated, are not d-separated (therefore observa-
tionally associated) upon conditioning on their causal child (net photosyn-
thetic rate).

This counterintuitive claim is easier to understand with an every-
day example. Consider again the simple causal world consisting only of rain,
watering pails and mud, related as: rain→mud←watering pails. Now, in this
world there are no causal links between watering pails and rain. Knowing
that no one has dumped water from the watering pail tells us nothing about
whether or not it is raining; we can predict nothing about the occurrence
of rain by knowing something about the watering pail. On the other hand,
if we see that there is mud (the causal child of the two independent causes),
and we know that no one has dumped water from the watering pail (i.e.
conditional on this variable) then we can predict that it has rained.
Conditioning on a common child of the two causally independent variables
(rain and watering pails) renders them observationally dependent. This is
because information, unlike causality, is symmetrical.

Many researchers believe that the more variables that can be statis-
tically controlled in a multiple regression, the less biased and the more reli-
able the resulting model. The above example shows this to be wrong and
warns against such methods as stepwise multiple regression if the resulting
model is to be interpreted as something more than simply a prediction
device14. This point is almost never mentioned in most statistics texts.
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2.10 Counterintuitive consequences and limitations of
d-separation: conditioning due to selection bias

There is also an interesting consequence of d-separation that might occur
in experiments using artificial selection. ‘Body condition’ is a somewhat
vague concept that is sometimes used to refer to the general health and
vigour of an animal. It is occasionally operationalized as an index based on
a weighting of such things as the amount of subcutaneous fat, the parasite
load, or other variables judged relevant to the health of the species. Imagine
a wildlife manager who wants to select for an improved body condition of
Bighorn Sheep. His measure of body condition is obtained by adding
together the thickness of subcutaneous fat in the autumn (in centimetres)
and a score for parasite load (0�none, 1�average load, 2�above-average
load) as follows: body condition�0.5 fat�parasite load. These two com-
ponents of body condition are causally unrelated. He decides to protect all
individuals whose body condition is greater than 3 and removes all others
from the population by allowing hunters to kill them. The causal graph of
this process is: fat thickness→body condition←parasite load. If someone
were to then measure the fat thickness and parasite load in the remaining
population after the selective hunt, she would find that these two variables
were correlated, even though there is, in reality, no causal link between the
two15. This occurs because the selection process has removed all those indi-
viduals not meeting the selection criterion and this effectively results in con-
ditioning on body condition.

We can simulate this with the following generating equations16.

fat thickness�Gamma(shape�2)

parasite load�Multinomial(p�1/3,1/3,1/3)

body condition�0.5 fat thickness�parasite load

After generating 1000 independent ‘sheep’ following this process
we find the Spearman non-parametric correlation coefficient between fat
thickness and parasite load in the original population before artificial selec-
tion to be �0.018, consistent with independence. There were 493 ‘sheep’

2.10 C O N D I T I O N I N G D U E T O S E L E C T I O N B I A S

41

15 On the other hand, if this process were to be repeated for a number of generations and
the two attributes were heritable, then there would develop a causal link, since the average
values of the attributes in the next generation would depend on who survives, and this is
caused by the same attributes in the previous generation.

16 Gamma(shape�2) is the incomplete Gamma distribution which gives values greater than
zero with a right-tailed skew. Multinomial(1/3,1/3,1/3) means a multinomial distribu-
tion with equal probability of values being 0, 1 or 2.



whose body condition was at least 3, and so these are kept to represent the
post-selection population, the rest being killed. The Spearman non-
parametric correlation coefficient between fat thickness and parasite load for
this post-selection population was �0.593. This occurs even though these
two variables are causally independent.

2.11 Counterintuitive consequences and limitations of
d-separation: feedback loops and cyclic causal graphs

The relationship between d-separation in an acyclic causal model (a directed
acyclic graph) and independencies in a probability distribution is therefore
very general. What happens if there are feedback loops in the causal model?
We don’t know for sure, although this is an area of active research
(Richardson 1996b). Spirtes (1995) has shown that d-separation in a cyclic
causal model still implies independence in the joint probability distribution
that it generates, but only if the relationships are linear. Pearl and Dechter
(1996) have also shown that the relationship between d-separation and pro-
babilistic independence also holds if all variables are discrete without any
restriction on the functional form of the relationships. Unfortunately,
Spirtes (1995) has also shown, by a counter-example, that d-separation does
not always imply probabilistic independence when the functional relation-
ships are non-linear and the variables are continuous. There are some gram-
matical constructs in the language of causality for which no one has yet
found a good translation.

There are other curious properties of causal models with feedback
loops. Consider Figure 2.10. Such a causal model seems to violate many
properties of causes. The relationship is no longer asymmetrical, since X
causes Z (indirectly through Y ) and Z also causes X. The relationship is no
longer irreflexive, since X seems to cause itself through its effects on Y and
Z.

These counterintuitive aspects of feedback loops can be resolved if
we remember that causality is a process that must follow time’s arrow but
causal graphs do not explicitly include this time dimension. Causal graphs
with feedback loops represent either a ‘time slice’ of an ongoing dynamic
process or a description of this dynamic process at equilibrium, an interpre-
tation that appears to have been first proposed by F. M. Fisher (1970).
Richardson’s very interesting Ph.D. thesis (Richardson 1996b) provides a
history of the use and interpretation of such cyclic, or ‘feedback’ models17
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in economics. A more complete causal description of the process shown in
Figure 2.10 is given in Figure 2.11; the subscripts on the vertices index the
state of that vertex at a given time. From Figure 2.11 we see that, once the
explicit time dimension is included in the directed graph, the apparent par-
adoxes disappear. Rather than circles, when we ignore the time dimension
(as in Figure 2.10) we have spirals that never close on themselves when the
time dimension is included. Just as the 20 year old Bill Shipley is not the
same individual as I am as I write these words, the ‘X ’ that causes Y at time
t�1 will not be that same ‘X ’ that is caused by Z at time t�4 in Figure 2.11.

Conceived in this way, both acyclic and cyclic causal models repre-
sent ‘time slices’ of some causal process. Samuel Mason, described by Heise
(1975), provided a general treatment of feedback loops in causal graphs over
40 years ago for the case of linear relationships between variables. None the
less, trying to model causal processes with feedback using directed graphs
that ignore this time dimension is more complicated and requires that we
make assumptions about the linearity of the functional relationships.

2.12 Counterintuitive consequences and limitations of
d-separation: imposed conservation relationships

Relationships derived from imposed (as opposed to dynamic) conservation
constraints are superficially similar to cyclic relationships, but they are con-
ceptually quite different. By ‘conservation’ I mean variables that are con-
strained to maintain some conserved property. For instance, if I purchase
fruits and vegetables in a shop and then count the total amount of money
that I have spent, I can represent this as: money spent on fruits→total money
spent←money spent on vegetables. If the total amount of money that I can
spend is not fixed, then the amount that I spend on fruits and the amount
that I spend on vegetables are causally independent. However, if the total
amount of money is fixed, or conserved, due to some influence outside of the
causal system then every dollar that I spend on fruit causes a decrease in the
amount of money that I spend on vegetables. There is now a causal link
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Figure 2.10. A cyclic causal graph that seemingly violates many of the
properties of ‘causal’ relationships.



between the amount of money spent on fruits and on vegetables due only
to the requirement that the total amount of money be conserved.

There is no obvious way to express such relationships in a causal
graph. One might be tempted to modify our original acyclic graph by
adding a cyclic path between ‘fruits’ and ‘vegetables’ but, if we do this, then
we can’t interpret such a cyclic graph as a static graph of a dynamic process;
the conservation constraint is imposed from outside and is not due to a
dynamic equilibrium that results from the prior interaction of ‘money spent
on fruits’ and ‘money spent on vegetables’. In other words, it is not as if
spending one dollar more on fruits at time t�1 causes me to spend one
dollar less on vegetables at time t�2, which then causes me to spend one
dollar less on fruits at time t�3, and so on until some dynamic equilibrium
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Figure 2.11. The causal relationships between X, Y and Z from Figure
2.10 when the time dimension is included in the causal graph.



is attained. The conservation of the total amount of money spent is imposed
from outside the causal system.

One might also be tempted to interpret the conservation require-
ment as equivalent to physically fixing the total amount of money at a con-
stant value. If this were true, then one could maintain the causal graph
‘money spent on fruits→total money spent←money spent on vegetables’
but with the variable ‘total money spent’ being fixed due to the imposed
conservation requirement. Because ‘total money spent’ is now viewed as
being fixed rather than being allowed to vary randomly, then ‘money spent
on fruits’ would not be d-separated from ‘money spent on vegetables’
(remember d-separation); this is because ‘total money spent’ is the causal
child of each of ‘money spent on fruits’ and ‘money spent on vegetables’.
This would indeed imply a correlation between ‘fruits’ and ‘vegetables’.
Unfortunately, our causal system does not imply simply that the money
spent on fruits is correlated with the money spent on vegetables, but that there
is actually a causal connection between them that exists only when the con-
servation requirement is in place. d-separation upon conditioning on a
common causal child does not imply that any new causal connections form
between the causal parents. Perhaps the best causal representation is to
consider that the causal graph ‘money spent on fruits→total money
spent←money spent on vegetables’ is actually replaced by the causal graph
‘money spent on fruits←total money spent→money spent on vegetables’
with the convention that ‘total money spent’ is not random.

Systems that contain imposed conservation laws (conservation of
energy, mass, volume, number, etc.) cannot yet be properly expressed using
directed graphs and d-separation. In fact, such ‘causal’ relationships resem-
ble Plato’s notion of ‘formal causes’ rather than the ‘efficient causes’ with
which scientists are used to working. It is important to keep in mind,
however, that this does not apply to conservation relationships that are due
to a dynamic equilibrium, for which cyclic graphs can be used, but rather
to conservation relationships that are imposed independently of the casual
parents of the conserved variable.

2.13 Counterintuitive consequences and limitations of
d-separation: unfaithfulness

Let’s go back to the relationship between d-separation and probabilistic
independence. We now know that once we have specified the acyclic causal
model, then every d-separation relation that exists in our causal model
must be mirrored in an equivalent statistical independency in the observa-
tional data if the causal model is correct. This does not depend on any
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distributional assumptions of the random variables or on the functional form
of the causal relationships. Is the contrary also true? Can there be indepen-
dencies in the data that are not predicted by the d-separation criterion?

Yes, but only as limiting cases. For instance, this can occur if the
quantitative causal effect of two variables along different directed paths
exactly cancel each other out. Two examples are shown in Figure 2.12. In
these causal models we see that no vertex is unconditionally d-separated
from any other vertex. Assume that the joint probability distribution over
the three vertices is multivariate normal and that the functional relationships
between the variables are linear. Under these conditions, we can use
Pearson’s partial correlation to measure probabilistic independence18. By
definition, the partial correlation between X and Z, conditioned on Y,19 is
given by:

XZ.Y�

It can happen that XZ.Y�0 (i.e. XZ�XYZY ) even though X and
Z are not d-separated given Y, if the correlations between each pair of var-
iables exactly cancel each other. Using the rules of path analysis (Chapter
4), this will happen only if Y is perfectly correlated with X in the first model
in Figure 2.12, or if the indirect effect of X on Z is exactly equal in strength
but opposite in sign to the direct effect of X on Z.

When this occurs, we say that the probability distribution is unfaith-
ful to the causal graph (Pearl 1988; Spirtes, Glymour and Scheines 1993). I
will call such probabilistic independencies that are not predicted by
d-separation, and that depend on a particular combination of quantitative
effects, balancing independencies, to emphasise that such independencies
require a very peculiar balancing of the positive and negative effects between
the variables along different paths. Clearly, this can occur only under very
special conditions, and anyone who wanted to link a causal model with such
an unfaithful probability distribution would require strong external evi-
dence to support such a delicate balance of causal effects. This is not to say
that these things are impossible. It sometimes occurs that an organism
attempts to maintain some constant set-point value by balancing different
causal effects; an example is the control of the internal CO2 concentration
of a leaf, as described in Chapter 3. Essentially, in proposing such a claim
we are saying that nature is conspiring to give the impression of indepen-
dence by exactly balancing the positive and negative effects.

XZ � XY ZY

�(1 � 2
XY)(1 � 2

ZY)
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2.14 Counterintuitive consequences and limitations of
d-separation: context-sensitive independence

Another way in which independencies can occur in the joint probability dis-
tribution without being mirrored in the d-separation criterion is due to
context-sensitive independence. An example of this in biology is enzyme
induction20. Imagine a case in which the number (G ) of functional copies
of a gene determines the rate (E ) at which some enzyme is produced. If
there are no functional copies of the gene then the enzyme is never pro-
duced. However, the rate at which these genes are transcribed is determined
by the amount (I ) of some environmental inducer. If the environment com-
pletely lacks the inducer, then no genes are transcribed and the enzyme is
still never produced. It is possible to arrange an experimental set-up in
which the number (G ) of functional genes is causally independent of the
concentration (I ) of the inducer in the environment21. Both the number of
functional genes and the concentration of the inducer are causes of enzyme
production. We can construct a causal graph of this process (Figure 2.13).

Now, applying d-separation to the causal graph in Figure 2.13 pre-
dicts that G is independent of I, but that E is dependent on both G and I.
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of the gene.

Figure 2.12. Two causal graphs for which special combinations of
causal strengths can result in unfaithful probability distributions.



However, if there are no copies of G (i.e. G�0) then the concentration of
the inducer will be independent of the amount of enzyme that is produced
(which will be zero). Similarly, if there is no inducer (i.e. I�0) then the
number of copies of the gene will be independent of the amount of enzyme
that is produced (which will be zero). In other words, for the special cases
of G�0 and/or I�0 d-separation predicts a dependence when, in fact,
there is independence. Note that the d-separation theorem still holds;
d-separation does not predict any independence relations that do not exist. So
long as the experiment involves experimental units, at least some of which
include G�0 and I�0, the d-separation criterion still predicts both pro-
babilistic independence and dependence. Similarly, if both G and I were
true random variables (i.e. in which the experimenter did not fix their
values), then any reasonably large random sample would include such cases.

2.15 The logic of causal inference

Now that we have our translation device and are aware of some of the
counterintuitive results and limitations that can occur with d-separation, we
have to be able to infer causal consequences from observational data by using
this translation device. The details of how to carry out such inferences will
occupy most of Chapters 3 to 7. Before looking at the statistical details,
however, we must first consider the logic of causal and statistical inferences.

Since we are talking about the logic of inferences from empirical
experience, it is useful to briefly look at what philosophers of science have
had to say about valid inference. Logical positivism, itself being rooted in
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Figure 2.13. A biological example of a causal process that can
potentially result in context-sensitive independence.



the British empiricism of the last century that so influenced people like Karl
Pearson22, was dominant in this century up to the mid 1960s. This philo-
sophical school was based on the verifiability theory of meaning; to be
meaningful, a statement had to be of a kind that could be shown to be either
true or false. For logical positivism, there were only two kinds of meaning-
ful statement. The first kind was composed of analytical statements (tautol-
ogies, mathematical or logical statements) whose truth could be determined
by deducing them from axioms or definitions. The second kind was com-
posed of empirical statements that were either self-evident observations (‘the
water is 23 °C’) or could be logically deduced from combinations of basic
observations whose truth was self-evident23. Thus logical positivists empha-
sised the hypothetico-deductive method: a hypothesis was formulated to
explain some phenomenon by showing that it followed deductively from
the hypothesis. The scientist attempted to validate the hypothesis by deduc-
ing logical consequences of the hypothesis that were not involved in its for-
mulation and testing these against additional observations. A simplified
version of the argument goes like this:

• If my hypothesis is true, then consequence C must also be true.
• Consequence C is true.
• Therefore my hypothesis is true.

Readers will immediately recognise that such an argument commits
the logical fallacy of affirming the consequent. It is possible for the conse-
quence to be true even though the hypothesis that deduced it is false, since
there can always be other reasons for the truth of C.

Popper (1980) pointed out that, although we cannot use such an
argument to verify hypotheses, we can use it to reject them without com-
mitting any logical fallacy:

• If my hypothesis is true, then consequence C must also be true.
• Consequence C is false.
• Therefore my hypothesis is false.

Practising scientists would quickly recognise that this argument,
although logically acceptable, has important shortcomings when applied to
empirical studies. It was recognised as long ago as the turn of the century
(Duhem 1914) that no hypothesis is tested in isolation. Every time that we
draw a conclusion from some empirical observation we rely on a whole set
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of auxiliary hypotheses (A1, A2 . . .) as well. Some of these have been repeat-
edly tested so many times and in so many situations that we scarcely doubt
their truth. Other auxiliary assumptions may be less well established. These
auxiliary assumptions will typically include those concerning the experi-
mental or observational background, the statistical properties of the data,
and so on. Did the experimental control really prevent the variable from
changing? Were the data really normally distributed, as the statistical test
assumes? Such auxiliary assumptions are legion in every empirical study,
including the randomised experiment, the controlled experiment or the
methods described in this book involving statistical controls. A large part of
every empirical investigation involves checking, as best one can, such aux-
iliary assumptions so that, once the result is obtained, blame or praise can
be directed at the main hypothesis rather than at the auxiliary assumptions.

So, Popper’s process of inference might be simplistically para-
phrased24 as:

• If auxiliary hypotheses A1, A2, . . . An are true, and
• if my hypothesis is true, then consequence C must be true.
• Consequence C is false.
• Therefore, my hypothesis is false.

Unfortunately, to argue in such a manner is also logically fallacious.
Consequence C might be false, not because the hypothesis is false, but rather
because one or more of the auxiliary hypotheses are false. The empirical
researcher is now back where he started: there is no way of determining
either the truth of falsity of his or her hypothesis in any absolute sense from
logical deduction. This conclusion applies just as well to the randomised
experiment, the controlled experiment or the methods described in this
book. Yet, most biologists would recognise the falsifiability criterion as
important to science and would probably modify the simplistic paraphrase
of Popper’s inference by attempting to judge which, the auxiliary hypoth-
eses and background conditions, or the hypothesis under scrutiny, is on
firmer empirical ground. If the auxiliary assumptions seem more likely to
be true than the hypothesis under scrutiny, yet the data do not accord with
the predicted consequences, then the hypothesis would be tentatively
rejected. If there are no reasoned arguments to suggest that the auxiliary
assumptions are false, and the data also accord with the predictions of the
hypothesis under scrutiny, then the hypothesis would be tentatively
accepted.

Pollack (1986) called such reasoning defeasible reasoning25. Reveal-
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ingly, practising scientists have explicitly described their inferences in such
terms for a long time. At the turn of the century T. H. Huxley likened the
decision to accept or reject a scientific hypothesis to a criminal trial in a
court of law (reproduced in Rapport and Wright 1963) in which guilt must
be demonstrated beyond reasonable doubt.

Let’s apply this reasoning to the examples in Chapter 1 involving
the randomised and the controlled experiments. Later, I will apply the same
reasoning to the methods involving statistical control.

Here is the logic of causal inference with respect to the randomised
experiment to test the hypothesis that fertiliser addition increases seed yield:

• If the randomisation procedure was properly done so that the alter-
native causal explanations were excluded;

• if the experimental treatment was properly applied;
• if the observational data do not violate the assumptions of the sta-

tistical test;
• if the observed degree of association was not due to sampling fluc-

tuations;
• then by the causal hypothesis the amount of seed produced will be

associated with the presence of the fertiliser.
• There is/is not an association between the two variables.
• Therefore, the fertiliser addition might have caused/did not cause

the increased seed yield.

This list of auxiliary assumptions is only partial. In particular, we
still have to make the basic assumption linking causality to observational
associations, as described in Chapter 1. At this stage we must either reject
one of the auxiliary assumptions or tentatively accept the conclusion con-
cerning the causal hypothesis. If the probability associated with the test for
the association is sufficiently large26, traditionally above 0.05, then we are
willing to reject one of the auxiliary assumptions (the observed measure of
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resented’; p�0.10 ‘not very improbable’; p�0.01 ‘this very improbable result’. Note that
some doubt began at 0.1 and Pearson was quite convinced at p�0.01. The midpoint



association was not due to sampling fluctuations) rather than accept the
causal hypothesis. Thus we reject our causal hypothesis. This rejection must
remain tentative. This is because another of the auxiliary assumptions (not
listed above) is that the sample size is large enough to permit the statistical
test to differentiate between sampling fluctuations and systematic differ-
ences. Note, however, that it is not enough to propose any old reason to
reject one of the auxiliary assumptions; we must propose a reason that has
empirical support. We must produce reasonable doubt – in the context of the
assumption concerning sampling fluctuations scientists generally require a
probability above 0.05. Here it is useful to cite from the first edition of
Fisher’s (1925) influential Statistical methods for research workers: ‘Personally,
the writer prefers to set a low standard of significance at the 5 per cent point,
and ignore entirely all results which fail to reach this level. A scientific fact
should be regarded as experimentally established only if a properly designed
experiment rarely fails to give this level of significance.’ It is clear that Fisher
was demanding reasonable doubt concerning the null hypothesis, since he
asks only that a result ‘rarely fail’ to reject it. What if the probability of the
statistical test was sufficiently small, say 0.01, that we do not have reasonable
grounds to reject our auxiliary assumption concerning sampling fluctua-
tions? What if we do not have reasonable grounds to reject the other aux-
iliary assumptions? What if the sampling variation was small compared with
a reasonable effect size? Then we must tentatively accept the causal hypoth-
esis. Again, this acceptance must remain tentative, since new empirical data
might provide such reasonable doubt. Is there any automatic way of meas-
uring the relative support for or against each of the auxiliary assumptions
and of the principal causal hypothesis? No. Although the support (in terms
of objective probabilities) for some assumptions can be obtained – for
instance, those concerning normality or linearity of the data – there are
many other assumptions that deal with experimental procedure or lack of
confounding variables for which no objective probability can be calculated.
This is one reason why so many contemporary philosophers of science
prefer Bayesian methods to frequency-based interpretations of probabilistic
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footnote 26 (cont.)
between 0.1 and 0.01 is 0.05. Cowles and Davis (1982a) conducted a small psychological
experiment by fooling students into believing that they were participating in a real betting
game (with money) that was, in reality, fixed. The object was to see how unlikely a result
people would accept before they began to doubt the fairness of the game. They found
that ‘on average, people do have doubts about the operation of chance when the odds
reach about 9 to 1 [i.e. 0.09], and are pretty well convinced when the odds are 99 to 1
[i.e. �0.0101] . . . If these data are accepted, the 5% level would appear to have the appeal-
ing merit of having some grounding in common sense’.



inference (see, for example, Howson and Urbach 1989). Such Bayesian
methods suffer from their own set of conceptual problems (Mayo 1996). In
the end, even the randomised experiment requires subjective decisions on
the part of the researcher. This is why the independent replication of
experiments in different locations, using slightly different environmental or
experimental conditions and therefore having different sets of auxiliary
assumptions, is so important. As the causal hypothesis continues to be
accepted in these new experiments, it becomes less and less reasonable to
suppose that incorrect auxiliary assumptions are conspiring to give the illu-
sion of a correct causal hypothesis.

Here is the logic of our inferences with respect to the controlled
experiment to test the hypothesis that renal activity causes the change in the
colour of the renal vein blood, as described in Chapter 1:

• If the activity of the kidney was effectively controlled;
• if the colour of the blood was accurately determined;
• if the experimental manipulation did not change some other

uncontrolled attribute besides kidney function that is a common
cause of the colour of blood in the renal vein before entering, and
after leaving the kidney;

• if there was not some unknown (and therefore uncontrolled)
common cause of the colour of blood in the renal vein before
entering, and after leaving the kidney;

• if a rare random event did not occur;
• then by the causal hypothesis, blood will change colour only when

the kidney is active.
• The blood did change colour in relation to kidney activity.
• Therefore, kidney activity does cause the change in the colour of

blood leaving the renal vein.

Again, this list of auxiliary assumptions is only partial. Again, one
must either produce reasonable evidence that one or more of the auxiliary
assumptions is false or tentatively accept the hypothesis. In particular, more
of these auxiliary assumptions concern properties of the experiment or of
the experimental units for which we cannot calculate any objective prob-
ability concerning their veracity. This was one of the primary reasons why
Fisher rejected the controlled experiment as inferior. In the controlled
experiment these auxiliary assumptions are more substantial but it is still not
enough to raise any doubt; there must be some empirical evidence to
support the decision to reject one of these assumptions. Since we want the
data to cast doubt or praise on the principal causal hypothesis and not on the
auxiliary assumptions, we will ask only for evidence that casts reasonable
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doubt. It is not enough to reject the causal hypothesis simply because
‘experimental manipulation might have changed some other uncontrolled
attribute besides kidney function that is a common cause of the colour of
blood in the renal vein before entering, and after leaving the kidney’. We
must advance some evidence to support the idea that such an uncontrolled
factor actually exists. For instance, a critic might reasonably point out that
some other attribute is also known to be correlated with blood colour and
that the experimental manipulation was known to have changed this attrib-
ute. Although such evidence would certainly not be sufficient to demon-
strate that this other attribute definitely was the cause, it might be enough
to cast doubt on the veracity of the principal hypothesis. This is the same
criterion as we used before to choose a significance level in our statistical
test. Rejecting a statistical hypothesis because the probability associated with
it was, say, 0.5 would not be reasonable. Certainly, this gives some doubt
about the truth of the hypothesis but our doubt is not sufficiently strong that
we would have a clear preference for the contrary hypothesis. It is the same
defeasible argument that might be raised in a murder trial. If the prosecu-
tion has demonstrated that the accused had a strong motive, if it produced a
number of reliable eyewitnesses and if it produced physical evidence impli-
cating the accused, then it would not be enough for the defence to claim
simply that ‘maybe someone else did it’. If, however, the defence could
produce some contrary empirical evidence implicating someone else, then
reasonable doubt would be cast on the prosecution’s argument. In fact, I
think that the analogy between testing a scientific hypothesis and testing the
innocence of the accused in a criminal trial can be stretched even further.
There is no objective definition of reasonable doubt in a criminal trial; what
is reasonable is decided by the jury in the context of legal precedence. In the
same way, there is no objective definition of reasonable doubt in a scientific
claim. In the first instance reasonable doubt is decided by the peer review-
ers of the scientific article and, ultimately, reasonable doubt is decided by
the entire scientific community. One should not conclude from this that
such decisions are purely subjective acts and that scientific claims are there-
fore simply relativistic stories whose truth is decided by fiat by a power elite.
Judgements concerning reasonable doubt and statistical significance are con-
strained in that they must deliver predictive agreement with the natural
world in the long run.

Now let’s look at the process of inference with respect to causal
graphs.

• If the data were generated according to the causal model;
• if the causal process generating the data does not include non-linear

feedback relationships;
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• if the statistical test used to test the independence relationships is
appropriate for the data;

• if a rare sampling fluctuation did not occur;
• then each d-separation statement will be mirrored by a probabilis-

tic independence in the data.
• At least one predicted probabilistic independence did not exist;
• therefore, the causal model is wrong.

By now, you should have recognised the similarity of these infer-
ences. We can prove by logical deduction that d-separation implies probab-
ilistic independence in such directed acyclic graphs. We can prove that,
barring the case of non-linear feedback with non-normal data (an auxiliary
assumption), every d-separation statement obtained from any directed graph
must be mirrored by a probabilistic independence in any data that were gen-
erated according to the causal process that was coded by this directed graph.
We can prove that, barring a non-faithful probability distribution (another
auxiliary assumption, but one that is only relevant if the causal hypothesis is
accepted, not if it is rejected), there can be no independence relation in the
data that is not mirrored by d-separation. So, if we have used a statistical test
that is appropriate for our data and have obtained a probability that is
sufficiently low to reasonably exclude a rare sampling event, then we must
tentatively reject our causal model. As in the case of the controlled experi-
ment, if we are led to tentatively accept our causal model, then this will
require that we can’t reasonably propose an alternative causal explanation
that also fits our data as well. As always, it is not sufficient to simply claim
that ‘maybe there is such an alternative causal explanation’. One must be able
to propose an alternative causal explanation that has at least enough empir-
ical support to cast reasonable doubt on the proposed explanation.

2.16 Statistical control is not always the same as physical
control

We have now seen how to translate from a causal hypothesis into a statisti-
cal hypothesis. First, transcribe the causal hypothesis into a causal graph
showing how each variable is causally linked to other variables in the form
of direct and indirect effects. Second, use the d-separation criterion to
predict what types of probabilistic independence relationship must exist
when we observe a random sample of units that obey such a causal process.
In Chapter 1 I alluded to the fact that the key to a controlled experiment is
control over variables, not how the control is produced. It is time to look at
this more carefully. The relationship between control through external
(experimental) manipulation and probability distributions is given by the
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Manipulation Theorem (Spirtes, Glymour and Scheines 1993). Let me
introduce another definition in Box 2.2.

Box 2.2. Definition of a backdoor path

Given two variables, X and Y, and a variable F that is a causal ancestor of both
X and Y, a backdoor path goes from F to each of X and Y. Thus

X← ← ← F → → →Y

Whenever someone directly physically controls some set of va-
riables through experimental manipulation, he or she is changing the causal
process that is generating the data. Whenever someone physically fixes some
variable at a given level the variable stops being random27 and is then under
the complete control of the experimenter. In other words, whatever causes
might have determined the ‘random’values of the variable before the manip-
ulation have been removed by the manipulation. The only direct cause of
the controlled variable after the manipulation has been performed is the will
of the experimenter.

Imagine that someone has randomly sampled herbaceous plants
growing in the understorey of an open stand of trees. The measured vari-
ables are the light intensities experienced by the herbaceous plants, their
photosynthetic rates and the concentration of anthocyanins (red-coloured
pigments) in their leaves. Each of these three are random variables, since
they are outside the control of the researcher. One cause of variation in light
intensity at ground level is the presence of trees. The researcher proposes
two alternative causal explanations for the data (Figure 2.14).

To test between these two explanations, the researcher experi-
mentally manipulates light intensity by installing a neutral-shade cloth
between the trees and the herbs, and then adds an artificial source of light-
ing. Remembering that this is a controlled experiment, the researcher
would want to take precautions to ensure that other environmental variables
(temperature, humidity and so on) are not changed by this manipulation.
The Manipulation Theorem, in graphical terms28, states that the probabil-
ity distribution of this new causal system can be described by taking the
original (unmanipulated) causal graphs, removing any arrows leading into
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the manipulated variable (light intensity) and adding a new variable repre-
senting the new causes of the manipulated variable (Figure 2.15).

d-separation will predict the pattern of probabilistic independen-
cies in this new causal system. Notice that anthocyanin concentration is d-
separated from photosynthetic rate according to the first hypothesis in both
the manipulated system (Figure 2.15), when light intensity is experimen-
tally fixed, and in the unmanipulated system (Figure 2.14), when light
intensity is statistically fixed by conditioning. The same d-connection rela-
tionships between anthocyanin concentration and photosynthetic rate hold
in the second scenario whether based on physically or on statistically con-
trolling light intensity. In other words, statistical and experimental controls
are alternative ways of doing the same thing: predicting how the associations
between variables will change once other sets of variables are ‘held con-
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Figure 2.14. Two different causal scenarios linking the same four
variables.

Figure 2.15. Experimental manipulation of the causal systems that are
shown in Figure 2.14.



stant’. This does not mean that the two types of control always predict the
same types of observational independency in our data; remember the
example of d-separation upon conditioning on a causal child, described pre-
viously. Once we have a way of measuring how closely the predictions agree
with the observations, then we have a way of testing, and potentially falsify-
ing, causal hypotheses even in cases in which we cannot physically control
the variables of interest.

With these notions we can now go back and look again at the ran-
domised experiment in Chapter 1. Let’s consider an example involving an
agricultural researcher who is interested in determining whether, and how,
the addition of a nitrate fertiliser can increase plant yield. To be more spe-
cific, imagine that the plant is Alfalfa, which contains a bacterium in its roots
that is capable of directly fixing atmospheric nitrogen (N2). The researcher
meets a farmer who tells him that adding such a nitrate fertiliser in the past
had increased the yield of Alfalfa. After further questioning, the researcher
learns that the farmer had tended to add more fertiliser to those parts of the
field that, in previous years, had produced the lowest yields. The researcher
knows that other things can also affect the amount of fertiliser that a farmer
will add to different parts of a field. For instance, parts of the field that cause
the farmer to slow down the speed of his tractor will therefore tend to
receive more fertiliser, and so on29. Imagine that, unknown to the researcher,
the actual causal processes are as shown in Figure 2.16. There are only three
sources of nitrogen: the nitrate that is added to the soil by the fertiliser, by
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Figure 2.16. A hypothetical causal system before experimental
manipulation.



NOX deposition, and from N2 fixation by the bacterium. The amount of
fertiliser added by the farmer in different parts of the field is determined by
the yield of plants the previous year as well as the contours of the field. In
reality, all the sources of nitrogen and the soil phosphate level [P] are causes
of yield.

Before experimenting with this system, the researcher has previous
causal knowledge of only part of it, shown by the thicker arrows in Figure
2.16. He knows that the bacterium will increase Alfalfa yield. He knows
that the bacterium will increase the nitrate concentration in the soil. He
knows that the yield of Alfalfa in previous years has affected the amount of
nitrate fertiliser that the farmer had added, and he knows that the amount
of added nitrate fertiliser is associated with increased yields. What he doesn’t
know is whether or not nitrogen added to the soil is the cause of the sub-
sequent plant yield.

Since the experiment has not yet begun, the ‘random numbers’ in
Figure 2.16 do not affect any actions by the researcher and the researcher
has no causal effect on any variable in the system. The ‘random numbers’
and the ‘researcher’s actions’ are therefore causally independent of each
other and of every other variable in the system.

Based only on the partial knowledge shown by the thick arrows, can
the researcher use d-separation and statistical control to confidently infer
that the added nitrate fertiliser causes an increase in plant yield? No. He
knows that the yields of previous years were a cause of the farmer’s fertiliser
addition and not vice versa; therefore he knows that he can block any pos-
sible backdoor path between the amount of fertiliser added and plant
yield that passes through the variable ‘plant yield the previous year’.
Unfortunately, he also knows that this was not the only possible cause of the
amount of fertiliser added by the farmer to different parts of the field.
Therefore, he can’t exclude the possibility that there is some backdoor path
that does not include the variable ‘plant yield the previous year’ and that is
generating the association between present plant yield and the amount of
fertiliser added by the farmer. Remember that, to invoke such a possibility,
one must be able to present some empirical evidence that such a backdoor
path might exist, but this would be easy to do. For instance, if the tractor
slows down as it begins to go up a slope (and therefore deposits more ferti-
liser), and if water (which is known to increase plant yield) tends to accu-
mulate at the bottom of the slope then we have a possible backdoor path
(fertiliser added ← tractor slowed down ← hill → water accumulation →
plant yield).

The researcher knows that it is possible to randomly assign different
levels of nitrate fertiliser to plots of ground in a way that is not caused by
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any attribute of these plots. He convinces the farmer not to add any ferti-
liser. The previous cause of the amount of fertiliser added has been erased
in this new context and so the arrow from ‘plant yield previous year’ to ‘fer-
tiliser added by farmer’ is removed from the causal graph. Since the farmer
has agreed not to add any fertiliser, the value of this variable is fixed at zero,
and so all arrows coming out of this variable are also erased. The researcher
decides to add nitrate fertiliser to different plots at either 0 or 20kg/hectare,
based only on the value of randomly chosen numbers. Therefore we add an
arrow from ‘random numbers’ to ‘researcher’s actions’ and also an arrow
from ‘researcher’s actions’ to ‘nitrate added to soil’. Remember that an arrow
signifies a direct cause, i.e. a causal effect that is not mediated through other
variables in the causal explanation. Therefore we can’t add an arrow from
‘researcher’s actions’ to ‘plant yield this year’ unless we believe that the
researcher’s actions do cause a change in plant yield this year and that this
cause is not completely mediated by some other set of variables in the causal
system. Therefore, the causal structure that exists after the experimental
manipulation is shown in Figure 2.17.

Given this new causal scenario, we can now use d-separation to
determine whether there is a causal relationship between the amount of
nitrate fertiliser added by the researcher and the plant yield that year. If one
can trace a directed path beginning at ‘researcher’s actions’ and passing
through ‘plant yield this year’ by following the direction of the arrows, then
the two are not d-separated. This necessarily implies that there will be a sta-
tistical association between the two variables. If no such directed path exists,
then the addition of nitrate fertiliser by the researcher does not cause a
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Figure 2.17. Experimental manipulation of the causal system shown 
in Figure 2.16 based on a randomised experiment.



change in plant yield this year. In fact, these two variables are not d-separated
in this causal graph and so such a randomised experiment would detect an
effect of fertiliser addition on plant yield. In Chapter 1 I said that if there is
a statistical association between two variables, X and Y, then there can be
only three elementary (but not mutually exclusive) causal explanations: X
causes Y (shown by a directed path leading from X and passing into Y ), or
Y causes X (shown by a directed path leading from Y and passing into X ), or
there is some other variable (F ) that is a cause of both X and Y (shown by a
backdoor path from F and into both X and Y ). Because the researcher has
agreed to act completely in accordance with the results of the randomisation
process, we know that no arrows point into ‘researcher’s actions’ except the
one coming from ‘random numbers’. The random numbers are not caused
by any attribute of the system. Therefore the researcher knows that there can
be no backdoor paths confounding the results because he knows that there
are no arrows pointing into ‘researcher’s actions’ except for the one coming
from ‘random numbers’. If there is a statistical association between
‘researcher’s actions’ and ‘plant yield this year’ that can’t reasonably be attrib-
uted to random sampling fluctuations then the researcher knows that the
association must be due to a directed path coming from ‘researcher’s actions’
and passing through ‘plant yield this year’. This is why such a randomised
experiment, in conjunction with a way of calculating the probability of
observing such a random event, can provide a strong inference concerning
a causal effect. The reader should note that even the randomisation process
might not allow the researcher to conclude that ‘nitrate added to the soil’ is
a direct cause of increased plant yield. In Figure 2.17 the researcher has already
concluded that there is a backdoor path from these two variables emanating
from the presence of the nitrogen-fixing bacterium, and so to make such a
claim he would have to provide evidence beyond a reasonable doubt that his
actions did not somehow affect the abundance or activity of these bacteria.

Now, let’s modify the causal scenario a bit. Imagine that the farmer
has agreed to let the researcher conduct an experiment and promises not to
add any fertiliser while the experiment is in progress, but insists that the parts
of the field that had produced the lowest plant yield last year must absolutely
receive more fertiliser this year. The researcher decides to allocate the ferti-
liser treatment in the following way: after choosing the random numbers as
before, he also adds 5kg/h to those plots whose previous yields were below
the median value. Figure 2.18 shows this causal scenario. By doing so he is
no longer conducting a true randomised experiment.

Now, using d-separation we see that there would be an association
between ‘researcher’s actions’ and ‘plant yield this year’ even if there were
no causal effect of the amount of nitrate fertiliser added and the plant yield
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that follows. The reason is because there is now a backdoor path linking the
two variables through the common cause ‘[P] in soil the previous year’. This
path has been created by allowing ‘plant yield the previous year’ to be a cause
of the researcher’s actions. Yet all is not lost. He systematically assigned fer-
tiliser levels based only on the yield data of the previous year plus the random
numbers. This means that he knows that there are only two independent
causes determining how much fertiliser each plot received. He also knows,
because of d-separation, that any causal signal passing from any unknown
variable into ‘researcher’s actions’ through ‘plant yield the previous year’ is
blocked if he statistically controls for ‘plant yield the previous year’. He can
make this causal inference without knowing anything else about the causal
system. Therefore he knows that once he statistically conditions on ‘plant
yield the previous year’ then any remaining statistical association, if it exists,
must be due to a causal signal coming from ‘researcher’s actions’ and follow-
ing a directed path into ‘plant yield this year’. This causal inference is just as
solid as in the previous example in which treatment allocation was due only
to random numbers. What allows him to do this in this controlled, but not
strictly randomised, experiment but not in the original non-manipulated
system in which the farmer applied the fertiliser based on previous yield
data? If you compare Figures 2.16 (non-manipulated) and 2.18 (controlled,
non-randomised manipulation) you will see that in Figure 2.16 there were
other causes, besides yield, that influenced the farmer’s actions. These other
causes were both unknown and unmeasured, thus preventing the researcher
from statistically controlling for them, and this left open the possibility of
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Figure 2.18. Experimental manipulation of the causal system shown
in Figure 2.16 that is not based on a randomised experiment.



other backdoor paths that would confound the causal inference. In Figure
2.18 the experimental design ensured that the only cause (i.e. previous
yields) was already known and measured.

Using either randomised experiments or this controlled approach,
the researcher could conclude30 that his action of adding nitrate fertiliser
does cause a change in Alfalfa yield and in the amount of nitrate in the soil.

Under what conditions could he infer that the soil nitrate levels (as
opposed to nitrate fertiliser addition) causes the change in Alfalfa yield? That
is, what would allow him to infer that the fertiliser addition increased soil
nitrate concentration, which, in turn, increased Alfalfa yield? Although he
was able to randomise and to exert experimental control over the amount
of fertiliser added to the soil, this is not the same as randomly assigning
values of soil nitrate to the plots and he has not exerted direct experimental
control over soil nitrate levels. Because of this he cannot unambiguously
claim that the experiment has demonstrated that soil nitrate levels cause an
increase in plant yield. In other words, there might be a backdoor path from
the fertiliser addition to each of soil nitrate and plant yield even though soil
nitrate levels may have had no direct effect on plant yield. For instance,
perhaps the fertiliser addition reduced the population level of some soil
pathogen whose presence was reducing plant growth?

He can test the hypothesis that the association between soil nitrate
levels and plant yield is due only to a backdoor path emanating from the
amount of added fertiliser by measuring soil nitrate levels and then statisti-
cally controlling for this variable. d-separation predicts that, if this new
causal hypothesis is true, then the effect of fertiliser addition will still exist.
If the effect of fertiliser addition was due only to its effect on soil nitrate
levels, then d-separation predicts that the effect of fertiliser addition on plant
yield will disappear once the soil nitrate level is statistically controlled. Since
he knows, from previous biological knowledge, that there is at least one
backdoor path linking soil nitrate and plant yield (due to the effect of the
nitrogen-fixing bacteria in the root nodules) then he can determine whether
there is some other common cause generating a backdoor path if he can
measure and then control for the amount of this bacterium.

2.17 A taste of things to come

Up to now, we have been inferring the properties of the observational
model (the joint probability distribution) given the causal model that
generates it. Can we also do the contrary? If we know the entire pattern of
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statistical independencies and conditional independencies in our observa-
tional model, can we specify the causal structure that must have generated
it? No. It is possible for different causal structures to generate the same set
of d-separation statements and, therefore, the same pattern of independen-
cies. None the less, it is possible to specify a set of causal models that all
predict the same pattern of independencies that we find in the probability
distribution; these are called equivalent models, and these are described in
Chapter 8. By extension, we can exclude a vast group of causal models that
could not have generated the observational data. There are two important
consequences of this.

First, after proposing a causal model and finding that our observa-
tional data are consistent with it (i.e. that the data do not contradict any of
the d-separation statements of our causal model), we can determine which
other causal models would also be consistent with our data31. By definition,
our data can’t distinguish between such equivalent causal models and so we
will have to devise other sorts of observation to differentiate between them.

Second, we can exploit the independencies in our observational
data to generate such equivalent models even if we do not yet have a causal
model that is consistent with our data. This leads to the topic of explora-
tory methods, which is also discussed in Chapter 8. Such exploratory
methods are very useful when theory is not sufficiently well developed to
allow us to propose a causal explanation – a condition that occurs often in
organismal biology.

However, before delving into these topics, we must first look at the
mechanics of fitting such observational models, generating their correla-
tional ‘shadows’, and comparing the observed shadows (the patterns of cor-
relation and partial correlation) with the predicted shadows. This leads into
the topic of path models and, more generally, structural equations. Chapters
3 to 7 deal with these topics.
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3 Sewall Wright, path analysis and
d-separation

3.1 A bit of history

The ideal method of science is the study of the direct influence of one
condition on another in experiments in which all other possible causes of
variation are eliminated. Unfortunately, causes of variation often seem to
be beyond control. In the biological sciences, especially, one often has to
deal with a group of characteristics or conditions which are correlated
because of a complex of interacting, uncontrollable, and often obscure
causes. The degree of correlation between two variables can be calculated
with well-known methods, but when it is found it gives merely the resul-
tant of all connecting paths of influence.

The present paper is an attempt to present a method of measuring the
direct influence along each separate path in such a system and thus of
finding the degree to which variation of a given effect is determined by
each particular cause. The method depends on the combination of knowl-
edge of the degrees of correlation among the variables in a system with
such knowledge as may be possessed of the causal relations. In cases in
which the causal relations are uncertain the method can be used to find
the logical consequences of any particular hypothesis in regard to them.

So begins Sewall Wright’s 1921 paper in which he describes his
‘method of path coefficients’. In fact, he invented this method while still in
graduate school (Provine 1986) and had even used it, without presenting its
formal description, in a paper published the previous year (Wright 1920).
The 1920 paper used his new method to describe and measure the direct
and indirect causal relationships that he had proposed to explain the patterns
of inheritance of different colour patterns in Guinea Pigs. The paper came
complete with a path diagram (i.e. a causal graph) in which actual drawings
of the colour patterns of Guinea Pig coats were used instead of variable
names.

Wright was one of the most influential evolutionary biologists of the
twentieth century, being one of the founders of population genetics and inti-
mately involved in the modern synthesis of evolutionary theory and genet-
ics. Despite these other impressive accomplishments Wright viewed path
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analysis as one of his more important scientific contributions and continued
to publish on the subject right up to his death (Wright 1984). The method
was described by his biographer (Provine 1986) as ‘the quantitative backbone
of his work in evolutionary theory’. His method of path coefficients is the
intellectual predecessor of all of the methods described in this book. It is
therefore especially ironic that path analysis – the ‘backbone’ of his work in
evolutionary theory – has been almost completely ignored by biologists.

This chapter has three goals. First, I want to explore why, despite
such an illustrious family pedigree, path analysis and causal modelling have
been largely ignored by biologists. To do this I have to delve into the history
of biometry at the turn of the century but it is important to understand why
path analysis was ignored in order to appreciate why its modern incarnation
does not deserve such a fate. Next I want to introduce a new inferential test
that allows one to test the causal claims of the path model rather than only
‘measuring the direct influence along each separate path in such a system’.
The inferential method described in this chapter is not the first such test.
Another inferential test was developed quite independently by sociologists
in the early 1970s, based on a statistical technique called maximum likeli-
hood estimation. Since that method forms the basis of modern structural
equation modelling, I postpone its explanation until the next chapter.
Finally, I present some published biological examples of path analysis and
apply the new inferential test to them.

3.2 Why Wright’s method of path analysis was ignored

I suspect that scientists largely ignored Wright’s work on path analysis for
two reasons. First, it ran counter to the philosophical and methodological
underpinnings of the two main contending schools of statistics at the turn
of the twentieth century. Second, it was methodologically incomplete in
comparison with Fisher’s (1925) statistical methods, based on the analysis of
variance combined with the randomised experiment, which had appeared
at about the same time.

Francis Galton invented the method of correlation. Karl Pearson
transformed correlation from a formula into a concept of great scientific
importance and championed it as a replacement for the ‘primitive’ notion
of causality. Despite Pearson’s long-term programme to provide ‘mathemat-
ical contributions to the theory of evolution’ (Aldrich 1995), he had little
training in biology, especially in its experimental form. He was educated as
a mathematician and became interested in the philosophy of science early
in his career (Norton 1975). Presumably his interest in heredity and genet-
ics came from his interest in Galton’s work on regression, which was itself
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applied to heredity and eugenics1. In 1892 Pearson published a book enti-
tled The grammar of science (Pearson 1892). In his chapter entitled ‘Cause and
effect’ he gave the following definition: ‘Whenever a sequence of percep-
tions D, E, F, G is invariably preceded by the perception C . . ., C is said to
be the cause of D, E, F, G.’As will become apparent later, his use of the word
‘perceptions’ rather than ‘events’ or ‘variables’ or ‘observations’ was an
important part of his phenomenalist philosophy of science. He viewed the
relatively new concept of correlation as having immense importance to
science and the old notion of causality as so much metaphysical nonsense.
In the third edition of his book (Pearson 1911) he even included a section
entitled ‘The category of association, as replacing causation’. In the third
edition he had this to say:

The newer and I think truer, view of the universe is that all existences are
associated with a corresponding variation among the existences in a
second class. Science has to measure the degree of stringency, or looseness
of these concomitant variations. Absolute independence is the conceptual
limit at one end to the looseness of the link, absolute dependence is the
conceptual limit at the other end to the stringency of the link. The old
view of cause and effect tried to subsume the universe under these two
conceptual limits to experience – and it could only fail; things are not in
our experience either independent or causative. All classes of phenomena
are linked together, and the problem in each case is how close is the degree
of association.

These words may seem curious to many readers because they
express ideas that have mostly disappeared from modern biology. None the
less, these ideas dominated the philosophy of science at the beginning of the
twentieth century and were at least partially accepted by such eminent sci-
entists as Albert Einstein. Pearson was a convinced phenomenalist and
logical positivist2. This view of science was expressed by people such as
Gustav Kirchhoff, who held that science can only discover new connections
between phenomena, not discover the ‘underlying reasons’. Ernst Mach,
who dedicated one of his books to Pearson, viewed the only proper goal of
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men (women were presumably not worth discussing). He was interested in ‘those qual-
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to reputation . . .’. He concluded that ‘[those] men who achieve eminence, and those who
are naturally capable, are, to a large extent, identical’. Lest we judge Galton and Pearson
too harshly, remember that such views were considered almost self-evident at the time.
Charles Darwin is reputed to have said of Galton’s book: ‘I do not think I ever in my life
read anything more interesting and original . . . a memorable work’ (Forrest 1974).

12 It is more accurate to say that his ideas were a forerunner to logical positivism.



science as providing economical descriptions of experience by describing a
large number of diverse experiences in the form of mathematical formulae
(Mach 1883). To go beyond this and invoke unobserved entities such as
‘atoms’ or ‘causes’ or ‘genes’ was not science and such terms must be
removed from its vocabulary. So, Mach (and Pearson) held that a mature
science would express its conclusions as functional – i.e. mathematical –
relationships that can summarise and predict direct experience, not as causal
links that can explain phenomena (Passmore 1966).

Pearson had thought long and hard about the notion of causality
and had concluded, in accord with British empiricist tradition and the
people cited above, that association was all that there was. Causality was an
outdated and useless concept. The proper goal of science was simply to
measure direct experiences (phenomena) and to economically describe
them in the form of mathematical functions. If a scientist could predict the
likely values of variable Y after observing the values of variable X, then he
would have done his job. The more simply and accurately he could do it,
the better his science. If we go back to Chapter 2, Pearson did not view the
equivalence operator of algebra (‘�’) as an imperfect translation of a causal
relationship because he did not recognise ‘causality’ as anything but corre-
lation in the limit3. By the time that Wright published his method of path
analysis, Pearson’s British school of biometry was dominant. One of its fun-
damental tenets was that ‘it is this conception of correlation between two
occurrences embracing all relationships from absolute independence to
complete dependence, which is the wider category by which we have to
replace the old idea of causation’ (Pearson 1911).

Given these strong philosophical views, imagine what happened
when Wright proposed using the biometrists’ tools of correlation and
regression . . . to peek beneath direct observation and deduce systems of
causation from systems of correlation! In such an intellectual atmosphere
Wright’s paper on path analysis was seen as a direct challenge to the
Biometrists. One has only to read the title (‘Correlation and causation’) and
the introduction of Wright’s (1921) paper, cited at the beginning of this
chapter, to see how infuriating it must have seemed to the Pearson school.

The pagan had entered the temple and, like the Macabees, someone
had to purify it. The reply came the very next year (Niles 1922). Said H. E.
Niles: ‘We therefore conclude that philosophically the basis of the method
of path coefficients is faulty, while practically the results of applying it where
it can be checked prove to be wholly unreliable’. Although he found fault
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in some of Wright’s formulae (which were, in fact, correct) the bulk of
Niles’ scathing criticism was openly philosophical: ‘“Causation” has been
popularly used to express the condition of association, when applied to
natural phenomena. There is no philosophical basis for giving it a wider
meaning than partial or absolute association. In no case has it been proved
that there is an inherent necessity in the laws of nature. Causation is corre-
lation . . .’ (Niles 1922).

Any Mendelian geneticist during that time – of whom Wright was
one – would have accepted as self-evident that a mere correlation between
parent and offspring told nothing about the mechanisms of inheritance.
Therefore, concluded these biologists, a series of correlations between traits
of an organism told nothing of how these traits interacted biologically or
evolutionarily4. The Biometricians could never have disentangled the
genetic rules determining colour inheritance in Guinea Pigs, which Wright
was working on at the time, simply by using correlations or regressions.
Even if distinguishing causation from correlation appeared philosophically
‘faulty’ to the Biometricians, Wright and the other Mendelian geneticists
were experimentalists for whom statements such as ‘causation is correlation’
would have seemed equally absurd. For Wright, his method of path analy-
sis was not a statistical test based on standard formulae such as correlation or
regression. Rather, his path coefficients were interpretative parameters for
measuring direct and indirect causal effects based on a causal system that had
already been determined. His method was a statistical translation, a mathe-
matical analogue, of a biological system obeying asymmetrical causal rela-
tionships.

As the fates would have it, path analysis soon found itself embroiled
in a second heresy. Three years after Wright’s ‘Correlation and causation’
paper, Fisher published his Statistical methods for research workers (1925). Fisher
certainly viewed correlation as distinct from causation. For him the distinc-
tion was so profound that he developed an entire theory of experimental
design to separate the two. He viewed randomisation and experimental
control as the only reliable way of obtaining causal knowledge. Later in
his life Fisher wrote another book criticising the research that identified
tobacco smoking as a cause of cancer on the basis that such evidence was
not based on randomised trials5 (Fisher 1959). I have already described the
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15 I don’t know whether Fisher was a smoker. If he was, I wonder what he would have
thought if, because of a random number, he was assigned to the ‘non-smoker’ group in a
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assumptions linking causality and probability distributions, unstated by
Fisher but needed to infer causation from a randomised experiment, as well
as the limitations of these assumptions, when one is studying different attrib-
utes of organisms. Despite these limitations, Fisher’s methods had one
important advantage over Wright’s path analysis: they allowed one to rigor-
ously test causal hypotheses while path analysis could only estimate the
direct and indirect causal effects assuming that the causal relationships were
correct.

Mulaik (1986) has described these two dominant schools of statis-
tics in the twentieth century. His phenomenalist and empiricist school starts
with Pearson. Examples of the statistical methods of this school were cor-
relation, regression6, common-factor and principal component analyses.
The purpose of these methods was primarily, as Mach directed, to provide
an economical description of experience by economically describing a large
number of diverse experiences in the form of mathematical formulae. The
second school was the Realist school begun by Fisher. It emphasised the
analysis of variance, experimental design based on the randomised experi-
ment and the hypothetico-deductive method. These Fisherian methods
were not designed to provide functional relationships but rather to ensure
conditions under which causal relationships could be reliably distinguished
from non-causal relationships.

With hindsight then, it seems that path analysis simply appeared at
the wrong time. It did not fit into either of the two dominant schools of
statistics and it contained elements that were objectionable to each. The
Phenomenalist school of Pearson disliked Wright’s notion that one should
distinguish ‘causes’ from correlations. The Realist school of Fisher disliked
Wright’s notion that one could study causes by looking at correlations.
Professional statisticians therefore ignored it. Biologists found Fisher’s
methods, complete with inferential tests of significance, more useful and
conceptually easier to grasp and so biologists ignored path analysis too. A
statistical method, viewed as central to the work of one of the most influen-
tial evolutionary biologists of the twentieth century, was largely ignored by
biologists.
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3.3 d-sep tests

Wright’s method of path analysis was so completely ignored by biologists
that most biometry texts do not even mention it. Those that do (Li 1975;
Sokal and Rohlf 1981) described it as Wright originally presented it,
without even mentioning that it was reformulated by others, primarily
economists and social scientists, such that it permitted inferential tests of the
causal hypothesis and allowed one to include unmeasured (or ‘latent’) vari-
ables. The main weakness of Wright’s method – that it required one to
assume the causal structure rather that being able to test it – had been cor-
rected by 1970 ( Jöreskog 1970) but biologists are mostly unaware of this.

Two different ways of testing causal models will be presented in this
book. The most common method is called structural equations modelling
(SEM) and is based on maximum likelihood techniques. This method is
described in Chapters 4 to 7 and it does have a number of advantages when
testing models that include variables that cannot be directly observed and
measured (so-called latent variables) and for which one must rely on
observed indicator variables that contain measurement errors. SEM also has
some statistical drawbacks. The inferential tests are asymptotic and can
therefore require rather large sample sizes. The functional relationships must
be linear. Data that are not multivariate normal are difficult to treat.

These drawbacks led me to develop an alternative set of methods
that can be used for small sample sizes, non-normally distributed data or
non-linear functional relationships (Shipley 2000). Since these methods are
derived directly from the notion of d-separation that was described in
Chapter 2, I will call these d-sep tests. The main disadvantage of d-sep tests
is that they are not applicable to causal models that include latent (unmeas-
ured) variables.

The link between causal conditional independence, given by
d-separation, and probabilistic independence suggests an intuitive way of
testing a causal model: simply list all of the d-separation statements that are
implied by the causal model and then test each of these using an appropri-
ate test of conditional independence. There are a number of problems with
this naïve approach. First, even models with a small number of variables can
include a large number of d-separation statements. Second, we need some
way of combining all of these tests of independence into a single compos-
ite test. For instance, if we had a model that implied 100 independent d-
separation statements and tested each independently at the traditional 5%
significance level we would expect, on average, that five of these tests
would reach significance simply as a result of random sampling fluctuations.
Even worse, the d-separation statements in a causal model are almost never
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completely independent and so we would not even know what the true
overall significance level would be. Each of these problems can be solved.

3.4 Independence of d-separation statements

Given an acyclic7 causal graph, we can use the d-separation criterion to
predict a set of conditional probabilistic independencies that must be true if
the causal model is true. However, many of these d-separation statements
can be themselves predicted from other d-separation statements and are
therefore not independent. Happily, Pearl (1988) described a simple method
of obtaining the minimum number of d-separation statements needed to
completely specify the causal graph and proved that this minimum list of d-
separation statements is sufficient to predict the entire set of d-separation
statements. This minimum set of d-separation statements is called a basis set 8.
The basis set is not unique. This method is illustrated in Figure 3.1.

To obtain the basis set, the first step is to list each unique pair of
non-adjacent vertices. That is, list each pair of variables in the causal model
that do not have an arrow between them. So, in Figure 3.1 the list is: {(A,C ),
(A,D), (A,E ), (A,F ), (B,E ), (B,F ), (C,D), (C,F ), (D,F )}. Pearl’s (1988)
basis set is given by d-separation statements consisting of each such pair
of vertices conditioned on the parents of the vertex having higher causal
order. The number of pairs of variables that don’t have an arrow between
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probabilistic independence in cyclic causal models in which all variables are discrete and
in cyclic causal models in which functional relationships are linear.

18 Let S be the set of d-separation facts (and therefore the set of conditional independence
relationships) that are implied by a directed acyclic graph. A basis set B for S is a set of
d-separation facts that (i) implies, using the laws of probability, all other elements of S,
and (ii) no proper subset of B sustains such implications.

Figure 3.1. A directed acyclic graph (DAG) involving six variables.



them is always equal to the total number of pairs minus the number of
arrows in the causal graph. In general, if there are V variables and A arrows
in the causal graph, then the number of elements in the basis set will be:

�A

Unfortunately the conditional independencies derived from such a
basis set are not necessarily mutually independent in finite samples (Shipley
2000). A basis set that does have this property is given by the set of unique
pairs of non-adjacent vertices, of which each pair is conditioned on the set
of causal parents of both (Shipley 2000). Remember that an exogenous var-
iable has no parents, so the set of ‘parents’ of such a variable is empty (such
an empty set is written ‘{	}’or �). The second step in getting the basis set
that will be used in the inferential test is to list all causal parents of each
vertex in the pair. Using Figure 3.1 and the notation for d-separation intro-
duced in Chapter 29, Table 3.1 summarises the d-separation statements that
make up the basis set.

Each of the d-separation statements in Table 3.1 predicts a (condi-
tional) probabilistic independence. How you test each predicted conditional
independence depends on the nature of the variables. For instance, if the
two variables involved in the independence statement are normally and lin-
early distributed, you could test the hypothesis that the Pearson partial cor-
relation coefficient is zero. Other tests of conditional independence are

V !
2(V � 2)!
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19 In other words, X||_Y|Q means that vertex X is d-separated from vertex Y, given the set
of vertices Q.

Table 3.1. A basis set for the DAG shown in Figure 3.1 along with the
implied d-separation statements

Parent variables of either
Non-adjacent variables non-adjacent variable d-separation statement

A, C B A||_C|B
A, D B A||_D|B
A, E C, D A||_E|CD
A, F None A||_F
B, E A, C, D B||_E|ACD
B, F A B||_F|A
C, D B C||_D|B
C, F B C||_F|B
D, F B D||_F|B



described below. At this point, assume that you have used tests of indepen-
dence that are appropriate for the variables involved in each d-separation
statement and that you have obtained the exact probability level assuming
such independence. By ‘exact’ probability levels, I mean that you can’t
simply look at a statistical table and find that the probability is �0.05; rather,
you must obtain the actual probability level – say, p�0.036.

Because the conditional independence tests implied by the basis set
are mutually independent, we can obtain a composite probability for the
entire set using Fisher’s test. Since this test seems not to have a name, I have
called it Fisher’s C (for ‘combined’) test. If there are a total of k indepen-
dence tests in the basis set, and pi is the exact probability of the ith test assum-
ing independence, then the test statistic is:

C��2 ln(pi)

If all k independence relationships are true, then this statistic will follow a
chi-squared distribution with 2k degrees of freedom. This is not an asymp-
totic test unless you use asymptotic tests for some of the individual indepen-
dence hypotheses. Furthermore, you can use different statistical tests for
different individual independence hypotheses. In this sense, it is a very
general test.

3.5 Testing for probabilistic independence

In this section, I want to be more explicit concerning what ‘independence’
and ‘conditional independence’ mean and the different ways that one can
test such hypotheses given empirical data. Let’s first start with the simplest
case: that of unconditional independence.

The difference between the value of a random quantity Xi and its
expected value 
 is (Xi�
). Since these differences can be either negative
or positive, and we want to know simply the deviation around the expected
value, not the direction of the deviation, we can take the square of the
difference: (Xi�
)2. The expected value of this squared difference10 is the
variance: E[(Xi�
X)2]�E[(Xi�
X)(Xi�
X)].

The covariance is simply a generalisation of the variance. If we have
two different random variables (X,Y ) measured on the same observational
units, then the covariance between these two variables is defined as:
E[(Xi�
X)(Yi�
Y)]. If X and Y behave independently of each other, then
large positive deviations of X from its mean (
X) will be just as likely to be

�
k

i�1
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paired with large or small, negative or positive, deviations of Y from its mean
(
Y). These will cancel each other out in the long run (remember, we are
envisaging a complete statistical population) and the expected value of the
product of these two deviations, E[(Xi�
X)(Yi�
Y)], will be zero. So, pro-
babilistic independence of X and Y implies a population zero covariance11.
If X and Y tend to behave similarly, increasing or decreasing together, then
large positive values of X will often be paired with large positive values of
Y and large negative values of X will often be paired with large negative
values of Y. In such cases, the covariance will be large and positive. If X and
Y tend to behave in opposite ways, then the covariance between them will
be negative.

A Pearson correlation coefficient is simply a standardised covari-
ance. Neither a variance nor a covariance have any upper or lower bounds.
Changing the units of measurement (say, from metres to millimetres) will
change both the variance and the covariance. If we divide the covariance
between two variables by the product of their variances (taking the square
root of this product in order to ensure that the range goes from �1 to �1),
then we obtain a Pearson correlation coefficient. Box 3.1 summarises these
points.

Box 3.1. Variance, covariance and correlation

Population variance (sigma2, � 2) of a random variable X: E[(X�
X)2]
Variance (s2) of a random variable X from a sample of size n:

Population covariance (sigmaXY, �XY ) between two random variables X, Y:

E[(X�
X)(Y�
Y)].

Covariance (sXY ) between two random variables X, Y from a sample of size
n:

Population Pearson correlation (rhoXY, XY ) between two random variables,
X,Y:

� 
�XY

�� 2
X� 2

Y

E[(X � 
X)(Y � 
Y)]

�E[(X � 
X)2]E[Y � 
Y)2]

�
i

(Xi � X )(Yi � Y )

n � 1

�
i

(Xi � X )2

n � 1
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Pearson correlation coefficient (rXY ) between two random variables, X,Y
from a sample of size n:

The formulae in Box 3.1 are valid so long as both X and Y are
random variables. If we want to conduct an inferential test of independence
using these formulae, we have to pay attention to the probability distri-
butions of X and Y and the form of the relationship between them in case
they are not independent. Different assumptions concerning these points
require different statistical methods.

Case 1: X and Y are both normally distributed and any relationship
between them is linear

Tests of the independence of X and Y involving this set of assumptions are
treated in any introductory statistics book. First, one can transform the
Pearson correlation coefficient so that it follows Student’s t-distribution. If
X and Y, sampled randomly and measured on n units, are independent (so
the null hypothesis is that �0) then the following transformation will
follow a Student’s t-distribution12 with n�2 degrees of freedom:

tr�

This test is exact. So long as you have at least three independent observa-
tions then you can test for the independence of X and Y 13.

It is also possible to transform a Pearson correlation coefficient so
that it asymptotically follows a standard normal distribution (i.e. a normal
distribution with a mean of zero and a variance of 1). For sample sizes of at
least 50 (and approximately even for sample sizes as low as 25) one can use
Fisher’s z-transform:

z�0.5 ln�1 � r
1 � r��n � 3

r�n � 2

�1 � r2

sXY

�s2
Xs2

Y
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13 Of course, with so few observations you would have so little statistical power that only
very strong associations would be detected.



If X and Y are independent then the probability of z can be obtained from
a standard normal distribution. Finally, one can use Hotelling’s (1953) trans-
formation14, which is acceptable for sample sizes as low as 10:

z� �0.5ln �
Case 2: X and Y are continuous but not normally distributed and

any relationship between them is only monotonic

If X or Y are not normally distributed and any relationship between them
is not linear but is monotonic15, then we can use Spearman’s correlation
coefficient. Although there exist statistical tables giving probability levels for
Spearman’s correlation coefficient, one can use exactly the same formulae
as for Pearson’s correlation coefficient so long as the sample size is greater
than 10 (Sokal and Rohlf 1981).

The first step is to convert X and Y to their ranks. In other words,
sort each value of X from smallest to largest and replace the actual value of
each X by its order in the rank; the smallest number becomes 1, the second
smallest number becomes 2, and so on. Do the same thing for Y. Now that
you have converted each X and each Y to its rank, you can simply put these
numbers into the formula for a Pearson’s correlation coefficient and test as
before.

One complication is when there are ties. Spearman’s coefficient
assumes that the underlying values of X and Y are continuous, not discrete.
Given such an assumption then equal values of X (or Y ) will only occur due
to limitations in measurement. To correct for such ties, first sort the values
ignoring ties, and then replace the ranks of tied values by the mean rank of
these tied values. Box 3.2 gives an example of the calculation of a Spearman
rank correlation coefficient.

1.5ln�1 � r
1 � r�� r

4(n � 1)�1 � r
1 � r���(n � 1)
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 equals a value different from zero. This useful property allows one to compute confi-
dence intervals around the Pearson correlation coefficient.

15 A non-monotonic relationship is one in which X increases with increasing Y over part of
the range and decreases with increasing Y over another part of the range. If you think that
a graph of X and Y has hills and valleys, then the relationship is non-monotonic.



Box 3.2. Spearman’s rank correlation coefficient

Here are 10 simulated pairs of values and the accompanying scatterplot
(Figure 3.2). The X values were drawn from a uniform distribution and
rounded to the nearest unit. The Y values were drawn from the following
equation: Yi�Xi

0.2��(5,1) where the random component is drawn from a
� distribution with shape parameters of 5 and 1.

Values of X, Y and their ranks

X Y Rank Rank Rank Rank
X Y X Y

2 2.08 1 3 1 3
3 2.02 2 2 2.5 2

15 2.68 10 10 10 10
10 2.47 8 6 8 6
5 2.21 5 4 5 4

12 2.23 9 5 9 5
3 1.86 3 1 2.5 1
4 2.25 4 7 4 7
9 2.31 6 9 6.5 9
9 2.28 7 8 6.5 8
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Figure 3.2. A scatterplot of randomly generated pairs of values from
a bivariate non-normal distribution and possessing a non-linear
monotonic relationship.



In the above table, X, Y are the original values. Columns 3 and 4 of the table
are the ranks of X and Y before correcting for ties (the underlined values).
Columns 5 and 6 are the ranks after correcting for the two pairs of ties values
of X (there were two values of 3 and two values of 9). To calculate the
Spearman rank correlation coefficient of X and Y, simply use the values in
columns 5 and 6 and enter them into the formula for the Pearson’s correla-
tion coefficient. In the above example, the Spearman rank correlation
coefficient is 0.726. Assuming that X and Y are independent in the statistical
population, we can convert this to a standard normal variate using Hotelling’s
z-transform, giving a value of 2.47. This value has a probability under the
null hypothesis of 0.014.

Case 3: X and Y are continuous and any relationship between
them is not even monotonic

This case applies when the relationship between X and Y might have a very
complicated form, with X and Y being positively related in some parts of
the range and negatively related in other parts, and therefore when neither
a Pearson nor a Spearman correlation can be applied. This situation requires
more computationally demanding methods, including form-free regression
and permutation tests. Each of these topics is dealt with much more fully in
other publications but will be introduced intuitively here because these
notions are needed for the analogous case in conditional independence.
Form-free regression is a vast topic, which includes kernel smoothers, cubic-
spline smoothers (Wahba 1991) and local (loess) smoothers (Cleveland and
Devlin 1988; Cleveland, Devlin and Grosse 1988; Cleveland, Grosse and
Shyu 1992). Collectively, these methods form the basis of generalised addi-
tive models (Hastie and Tibshirani 1990). Permutation tests for association
are described by Good (1993, 1994).

3.6 Permutation tests of independence

To begin, consider a simple linear regression of Y on X, where both are
random variables. The correlation between X and Y is the same as the cor-
relation between the observed value of Y and the predicted value of Y given
X, that is: E[Y|X ]. To test for an association between X and Y in this regres-
sion context we need to do three things. First, we have to estimate the pre-
dicted values of Y for each value of X. For linear regression we simply obtain
the slope and intercept to get these values and in the general case we would
use form-free regression methods. Second, we need to calculate a measure
of the association between the observed and predicted values of Y; we can
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use a Pearson correlation coefficient, a Spearman correlation coefficient, or
any of a large number of other measures that can be found in the statistical
literature. Finally, we need to know the probability of having observed such
a value when, in fact, X and Y really are independent. This is where a per-
mutation test comes in handy.

Remembering the definition of probabilistic independence given
in Chapter 2, we know that if X and Y are independent then the probabil-
ity of observing any particular value of Y is the same whether or not we
know the value of X. In other words, any value of X is just as likely to be
paired with any other value of Y as with the particular Y that we happen to
observe. The permutation test works by making this true in our data. After
calculating our measure of association in our data, we randomly rearrange
the values of X and/or Y using a random number generator. In this new
randomly mixed ‘data set’ the values of X and Y really are independent
because we forced them to be so; we have literally forced our null hypoth-
esis of independence to be true and the value of the association between X
and Y is due only to chance. We do this a very large number of times until
we have generated an empirical frequency distribution of our measure of
association16. The exact number of times that we randomly permute our
data will depend on the true probability level of our actual data and the
accuracy that we want to obtain in our probability estimate. Manly (1997)
showed how to determine this number, but it is typically between 1000 and
10000 times. On modern computers this will take only a few seconds. The
last step is to count the proportion of times that we observe at least as large
a value of association within the permuted data sets, or its absolute value for
a 2-tailed test, as we actually observed in our original data. Box 3.3 gives an
example of this permutation procedure.

3.7 Form-free regression

Box 3.3. Loess regression and permutation tests

The following three graphs (Figure 3.3) show a simulated data set generated
from a complicated non-linear function (solid line of the first graph) along
with a loess regression (broken line) using a local quadratic fit and a neigh-
bourhood size of one half the range of X. The middle graph shows the same
complicated non-linear function in the range 1 to 3 of the X values and the
graph to the right shows this in the range 1.5 to 2.5 of the X values.
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The loess regression (the dotted line in the left graph) doesn’t actually
give a parametric function linking Y to X, but does give the predicted value
of Y for each unique value of X; i.e. it gives the estimate of E[Y|X ]; the solid
and broken lines in the left-most graph completely overlap except in the
range of X�2. To estimate a permutation probability of the non-linear cor-
relation of X and Y, we can first calculate the Pearson correlation coefficient
between the observed Y values (the circles in the figure) and the predicted
values of Y given X (the loess estimates). In this example, r�0.956. If we
don’t want to assume any particular probability distribution for the residuals,
then we can generate a permutation frequency distribution for the correla-
tion coefficient. To do this, we randomly permute the order of the observed
Y values (or the predicted values, it doesn’t matter which) to get a ‘new’ set
of Y* values and recalculate the Pearson correlation coefficient between Y*
and E[Y*|X ]. The following histogram (Figure 3.4) shows the relative fre-
quency of the Pearson correlation coefficient in 5000 such permutations; the
arrow indicates the value of the observed Pearson correlation coefficient.
None of the 5000 permutation data sets had a Pearson correlation whose
absolute value was at least 0.956. Since the residuals were actually generated
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Figure 3.3. The graph on the left shows a highly non-linear function
(the solid line) between X and Y and the loess fit (dotted line, mostly
superimposed on the solid line). The small rectangle is reproduced in
the middle graph and the small rectangle in this middle graph is
reproduced in the graph on the right.



from a unit normal distribution, we can calculate the probability of observ-
ing a value of 0.956 with 101 observations. It is approximately 1�10�39.

The first graph in Box 3.3 (Figure 3.3) shows a highly non-linear
relationship between X and Y and it is unlikely that we would be able to
deduce the actual function that generated these data17. On the other hand,
if we concentrate on smaller and smaller sections of the graph, the relation-
ship becomes simpler and simpler. The basic insight of form-free regression
methods is that even complicated functions can be quite well approximated
by simple linear, quadratic or cubic functions in the neighbourhood of a
given value of X. Within such a neighbourhood, shown by the boxes in the
graphs of Box 3.3, we can use these simpler functions to calculate the
expected value of Y at that particular value of X. We then go on to the next
value of X, move the neighbourhood so that it is centred around this new
value of X, and calculate the expected value of the new Y, and so on. In
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Figure 3.4. The frequency distribution of the Pearson correlation
coefficient in 5000 random permutations of the simulated data set
involving the observed Y values and the predicted loess values. The
arrow shows the observed Pearson correlation in the original
simulated data set.



this way, we do not actually estimate a parametric function predicting Y over
the entire range of X but we do get very good estimates of the predicted
values of Y given each unique value of X. To obtain the predicted values of
Y given X, we use weighted regression (linear, quadratic or cubic) where
each (X,Y ) pair in the data set is weighted according to its distance from the
value of X around which the neighbourhood is centred. In local, or loess18,
regression the neighbourhood size can be chosen according to different cri-
teria such as minimising the residual sum of squares and the weights are
chosen based on the tricube weight function. Shipley and Hunt (1996)
described this in more detail in the context of plant growth rates19.

3.8 Conditional independence

So far we have been talking about unconditional independence; that is, the
independence of two variables without regard to the behaviour of any other
variables. Such unconditional independence is implied by two variables in
a causal graph that are d-separated without conditioning on any other var-
iable. d-separation upon conditioning implies conditional independence. The
notion of conditional independence seems paradoxical to many people.
How can two variables be dependent, even highly correlated, and still be
independent upon conditioning on some other set of variables?

Consider the following causal graph: �1→X←Z→Y←�2. Does it
seem equally paradoxical if I say that X and Y will behave similarly owing
to the common causal effect of Z, but that they will no longer behave sim-
ilarly if I prevent Z from changing? If Z doesn’t change, then the only
changes in X and Y will come from the changes in �1 and �2, and these two
variables are d-separated and therefore unconditionally independent. A
moment’s reflection will convince you that if Z is allowed to change (vary)
then both X and Y will change as well in a systematic fashion, since they are
both responding to Z. If the variables in the causal graph are random then
the correlation between X and Y will be due to the fact that both share
common variance due to Z. If we restrict the variance in Z more and more,
then X and Y will share a smaller and smaller amount of common variance.
In the limit, if we prevent Z from changing at all, then X and Y will no
longer share any common variance; the only variation in X and Y will come
from the independent error variables �1 and �2 and so X and Y will then
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sense of the poetic.
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be independent. In such a case we would be comparing values of X and Y
when Z is constant. This is the intuitive meaning of conditional indepen-
dence. To illustrate, I generated 10000 independent sets of �1, X, Z, Y and
�2 according to the following generating equations:

�1�N(0,1�0.92)

�2�N(0,1�0.92)

Z�N(0,1)

Y�0.9Z��1

X�0.9Z��2

Since X, Y and Z are all unit normal variables, the population cor-
relations are X,Z�0.9, Y,Z�0.9 and X,Y�0.81. Notice that X and Y are
highly correlated even though neither X nor Y is a cause of the other. Figure
3.5 shows three scatterplots. The plot on the left shows the relationship
between X and Y when no restrictions are placed on the variance of Z. The
sample correlation between X and Y in this graph is 0.8016, compared with
the population value of 0.81. The graph in the middle plots only those values
of X and Y for which the value of Z is between �2 and �2, thus restrict-
ing the variance of Z a little bit. The sample correlation between X and Y
has been decreased slightly to 0.7591. The graph on the right plots those
values of X and Y for which the value of Z is between �0.5 and �0.5, thus
restricting the variance of Z much more. The sample correlation between
X and Y is now only 0.2294. Clearly, the degree of association between X
and Y is decreasing as Z is prevented more and more from varying.

If we calculate the correlation between X and Y as we restrict the
variation in Z more and more, we can get an idea of what happens to the
correlation between X and Y in the limit when the variance of Z is zero.
This limit is the correlation between X and Y when Z is fixed (or ‘condi-
tioned’) to a constant value; this is called the partial correlation between X
and Y, conditional on Z and it is written ‘XY.Z’ or ‘XY|Z’. Figure 3.6 plots
the sample correlation between X and Y as Z is progressively restricted in
its variance.

As expected, as the range of Z around its mean (zero) becomes
smaller and smaller, the correlation between X and Y also becomes smaller
and approaches zero. Given the causal graph that governed these data, we
know that X and Y are not unconditionally d-separated and therefore are
not unconditionally independent. However, X and Y are d-separated given
Z and therefore X and Y are independent conditional on Z.

If we remember that a regression of X on Z gives the expected value
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of X conditional on Z, then the residuals around this regression are the
values of X for fixed values of Z. This gives us another way of visualising
the partial correlation of X and Y conditional on Z: it is the correlation
between the residuals of X, conditional on Z, and the residuals of Y, con-
ditional on Z. If I regress, in turn, each of X and Y on Z in the above
example and calculate the correlation coefficient between the residuals of
these two regressions, I get a value of �0.0060.

This view of a conditional independence provides us with a very
general method of testing for it. If X and Y are predicted to be d-separated
given some other set of variables Q�{A, B, C, . . .} then regress (perhaps
using form-free regression) each of X and Y on the set Q and then test for
independence of the residuals using, if you want, any of the methods of
testing unconditional independence described above. If the residuals are
normally distributed and linearly related then you can use the test for
Pearson correlations. If the residuals appear, at most, to have a monotonic
relationship then you can use the test for a Spearman correlation. If the
residuals have a more complicated pattern then you can use one of the non-
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Figure 3.6. The Pearson correlation coefficient between X and Y in the
data shown in Figure 3.5 (left) when the absolute value of Z is restricted
to various degrees. The limiting value of the correlation coefficient
when |Z | is restricted to a constant value is the partial correlation
between X and Y.



parametric smoothing techniques available, followed by a permutation test.
The only difference is that you have to reduce the degrees of freedom in the
tests by the number of variables in the conditioning set.

Most of these tests can be performed using standard statistical pro-
grams20. If your statistical program can invert a matrix, then there are faster
ways of calculating partial Pearson or Spearman correlations. These are
explained in Box 3.4.

Box 3.4. Calculating partial covariances and partial correlations

Given a sample covariance matrix S, the inverse of this matrix is called the
concentration matrix, C. The negative of the off-diagonal elements cij give the
partial covariance between variables i and j, conditional on (holding constant)
all of the other variables included in the matrix. This gives an easy way of
estimating partial covariances and partial correlations of any order. To get the
partial covariance between variables X andY conditional on a set of other var-
iables Q, simply create a covariance matrix in which the only variables are X,
Y, and the remaining variables in Q. After inverting this matrix, this partial
covariance is the negative of the element in the row pertaining to X and the
column pertaining to Y, i.e. �cXY. The partial correlation between X and Y
is given by:

rX,Y|Q�

The partial correlation between two variables conditioned on n other
variables is said to be a partial correlation of order n. The unconditional correla-
tion coefficient is simply a partial correlation of order zero. Some texts give
recursion formulae for partial correlations of various orders, although partials
of higher orders are very tedious to calculate by such means. For instance, the
formula for a partial correlation of order 1 between X and Y, conditional on
Z, is:

X,Y|Z�

As an example, consider the following causal graph: W→X→Z→Y.
100 independent (W,X,Y,Z ) observations were generated according to struc-
tural equations with all path coefficients equal to 0.5 and the variances of all
four variables equal to 1.0. Here is the sample covariance matrix:

XY � XZ YZ

�(1 � 2
XZ)(1 � 2

YZ)

� cXY

�cXX � cYY
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W X Y Z

W 1.43347870 �0.75265627 �0.06269845 0.10179918
X �0.75265627 1.52762094 �0.53911722 �0.03777874
Y �0.06269845 �0.53911722 1.71116716 �0.90033856
Z 0.10179918 �0.03777874 �0.90033856 1.73196991

The inverse of the matrix (rounded to the nearest 100th) obtained by
extracting only the elements of the covariance matrix pertaining to W, X and
Y is:

W X Y

W 1.43 �0.75 �0.01
X �0.75 1.53 �0.56
Y �0.01 �0.56 1.24

The partial correlation between W and Y, conditional on X, is:

rWY|X� �0.0075

The same method can be used to obtain partial Spearman partial correlations,
by simply ranking the variables as described in Box 3.2 and then proceeding
in the same way as for Pearson partial correlations.

3.9 Spearman partial correlations

This next section presents some Monte Carlo results to explore the degree
to which the sampling distribution of Spearman partial correlations, after
appropriate transformation, follows either a standard normal or a Student’s
t-distribution. This section is not necessary to understand the application of
d-sep tests for path models, only to justify the use of Spearman partial cor-
relations in testing for conditional independence.

There has been remarkably little published in the primary literature
concerning inferential tests related to non-parametric conditional indepen-
dence21. It is known that the expected values of first-order partial Kendall
or Spearman partial correlations need not be strictly zero even when two
variables are conditionally independent given the third (Shirahata 1980;
Korn 1984). On the other hand, Conover and Iman (1981) recommended

� 0.01(� 1)
�1.43 � 1.24
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the use of partial Spearman correlations for most practical cases in which
the relationships between the variables are at least monotonic. A Spearman
partial correlation is simply a Pearson partial correlation applied to the ranks
of the variables in question. Therefore the conditional independence of
non-normally distributed variables with non-linear, but monotonic, func-
tional relationships between the variables can be tested with Spearman’s
partial rank correlation coefficient simply by ranking each variable (and cor-
recting for ties as described in Box 3.2) and then applying the same inferen-
tial tests as for Pearson partial correlations. For instance, if one accepts
Conover and Iman’s (1981) recommendations, then a Spearman partial rank
correlation will be approximately distributed as a standard normal variate
when z-transformed.

How robust is this recommendation? To explore this question,
Table 3.2 presents the results of some Monte Carlo simulations to deter-
mine the effects of sample size, the distributional form of the variables, and
the effect of non-linearity on the sampling distribution of the z-trans-
formed Spearman partial correlation coefficient. The random components
of the generating equations (�i) were drawn from four different probability
distributions: normal, gamma, beta or binomial. I chose the shape parame-
ters of the gamma and beta distributions to produce different degrees of
skew and kurtosis. Gamma(��1) is a negative exponential distribution.
Gamma(��5)22 is an asymmetrical distribution with a long right tail.
Beta(1,1) is a uniform distribution, beta(1,5) is a highly asymmetrical dis-
tribution with a long right tail and beta(5,1) is a highly asymmetrical distri-
bution with a long left tail. The final (discrete) probability distribution was
symmetrical with an expected value of 2 and had ordered states of X�0, 1,
2, 3 or 4; these were generated from a binomial distribution of the form
C(5,X )0.5X0.51�X. Random numbers were generated using the random
number generators given by Press et al. (1986). The generating equations
were of the form:

X1��1

Xi��iX
�i
(i�1)��i; i�1

These generating equations are based on a causal chain
(X1→X2→X3→ . . .) with sufficient variables (3, 4 or 5) to produce zero
partial associations of orders 1 to 3. When �i equals 1.0 the relationships
between the variables are linear and when �i is different from 1.0 then the
relationships between the variables are non-linear but monotonic. The
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results in Table 3.2 are based on models with �i�1 (linear) and 0.5 (non-
linear) but other values give similar results. All the simulation results in Table
3.2 are based on 1000 independent simulated data sets. In interpreting Table
3.2, remember that the z-transformed Spearman partial correlations should
be approximately distributed as a standard normal variate whose population
mean is zero, whose population standard deviation is 1.0, and whose 2-tailed
95% limit is |1.96|.

Generally, the sampling distribution of the z-transformed Spear-
man rank partial correlations is a very good approximation of a standard
normal distribution. In fact, the only significant deviation from a standard
normal distribution (based on a Kolmogorov–Smirnov test) was observed
for the ranks of normally distributed variables, for which one would not
normally use a Spearman partial correlation. The empirical standard devia-
tions were always close to 1.0 and the empirical means only once differed
significantly, but very slightly, from zero at high levels of replication.
Approximate 95% confidence intervals for the empirical 0.05 significance
level (i.e. the 2-tailed 95% quantiles), based on 1000 simulations, are 0.037
to 0.064 (Manly 1997).

The results of this simulation study support the recommendations
of Conover and Iman (1981). These results are also consistent with the theo-
retical values given by Korn (1984) for the special case of a Spearman first-
order partial based on trivariate normal and trivariate log-normal distribu-
tions, where the limiting values of the Spearman partial correlation are less
than, or equal to, an absolute value of 0.012, thus giving an expected abso-
lute z-score of �0.024. Korn (1984) gave a pathological example in which
the above procedure will not work even after ranking the data because there
is a non-monotonic relationship between the variables; he recommended
that one first check23 to see whether the relationships between the ranks are
approximately linear before using Spearman partial correlations.

3.10 Seed production in St Lucie’s Cherry

St Lucie’s Cherry (Prunus mahaleb) is a small species of tree that is found in
the Mediterranean region and relies on birds for the dispersal of its seeds.
As in most plants, seedlings from seeds that are dispersed some distance from
the adult are more likely to survive, since they will not be shaded by their
own parent or eaten by granivores that are attracted to the parent tree. For
species whose seeds can survive the passage through the digestive tract of
the dispersing animal, it is also evolutionarily and ecologically advantageous
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for the fruit to be eaten by the animal, since the seed will be deposited with
its own supply of fertiliser. Not all frugivores of St Lucie’s Cherry are useful
fruit dispersers. Some birds just consume the pulp while either leaving the
naked seed attached to the tree or simply dropping the seed to the ground
directly beneath the parent. In order to estimate selection gradients, Jordano
(1995) measured six traits of 60 individuals of this species: the canopy pro-
jection area (a measure of photosynthetic biomass), average fruit diameter,
the number of fruits produced, average seed weight, the number of fruits
consumed by birds and the percentage of these consumed fruits that were
properly dispersed away from the parent by passage through the gut. Based
on five of these variables for which I had data (I was lacking the total number
of fruits consumed by birds) I proposed the path model shown in Figure 3.7
(Shipley 1997), using the exploratory path models described in Chapter 8.

We can use this model to illustrate the d-sep test. The first step is
to obtain the d-separation statements in the basis set that are implied by the
causal graph in Figure 3.7. There are six such statements, since there are five
variables and four arrows. Table 3.3 lists these d-separation statements.

We next have to decide how to test the independencies that are
implied by these six d-separation statements. The original data showed het-
erogeneity of variance, as often happens with size-related variables, but
transforming each variable to its natural logarithm stabilises the variance.
Figure 3.8 shows the scatterplot matrix of these ln-transformed data.

Since the relationships appear to be linear and histograms of each
variable did not show any obvious deviations from normality, we can test
the predicted independencies using Pearson partial correlations. The results
are shown in Table 3.3. Fisher’s C statistic is 7.73, with 12 degrees of
freedom (df), for an overall probability of 0.806. The difference between the
observed and predicted (partial) correlations would occur in about an 80%
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Figure 3.7. Proposed causal relationships between five variables
related to seed dispersal in St Lucie’s Cherry.



of data sets (in the long run) even if the data really were produced by the
causal structure in Figure 3.7. This doesn’t mean that the data were pro-
duced by such a causal structure but it does mean that we have no reason to
reject it on the basis of the statistical test. If we want to reject it anyway, then
we will need to produce reasonable doubt. Perhaps the assumption of nor-
mality, upon which the test of the Pearson partial correlations is based, was
producing incorrect probability estimates. Table 3.3 also lists the Spearman
partial correlations. The overall probability of the model (�2�9.99, 12 df ),
based on the individual probability levels of these Spearman partial correla-
tions, was 0.616. On the other hand, there are equivalent models that also
produce non-significant probability estimates (Shipley 1997) and if any of
these equally well-fitting other models do not contradict what is known of
the biology of these trees, then they might constitute reasonable doubt24.

The original data of Jordano (1995) was fit to a latent variable model
using maximum likelihood methods25. Neither the model chi-squared sta-
tistic nor the model degrees of freedom were given. It is therefore not pos-
sible to judge the fit of that original model26, but it is possible to extract those
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24 The model was actually developed using the exploratory methods of Chapter 8. This, too,
should give us reason to question the model until independent data can be tested against
it. At this point, all we can reasonably say is that the data are consistent with the model
and so deserve further study. 25 These methods are described in Chapters 4 to 7.

26 One measured variable (total number of seeds dispersed) was not provided to me, so I
can’t fit his original model.

Table 3.3. Shown are the d-separation statements in the basis set of the causal
graph shown in Figure 3.7, along with the Pearson and Spearman partial
correlations that are implied by the d-separation statements.The probabilities,
assuming that the population partial correlations are zero, are listed as well

Pearson partial Spearman partial
correlations correlations

Probability Probability
d-separation assuming assuming
statement Estimate independence Estimate independence

X4||_X1|X2 �0.066 0.617 �0.063 0.635
X4||_X3|X2X1 0.142 0.289 0.144 0.279
X4||_X5|X2X3 0.004 0.976 0.075 0.574
X2||_X3|X1 0.021 0.873 0.059 0.655
X2||_X5|X3X1 �0.155 0.244 �0.160 0.229
X1||_X5|X3 0.076 0.565 0.102 0.443



d-separation statements involving only the measured variables available to
myself from the original latent-variable model. Jordano’s published model
implies four d-separation statements in the basis set that can be tested:
{(canopy projection area ||_ average fruit diameter), (canopy projection area
||_ average seed weight), (number of fruits produced ||_ average fruit diame-
ter), (number of fruits produced ||_ average seed weight)}. The d-sep test,
based on Pearson correlations, gives a probability of 0.005 (�2�21.85, 8 df).
Using Spearman correlations the probability is 0.019 (�2�18.24). These
low probabilities, based on a subset of the original measured variables,
provide reasonable doubt concerning Jordano’s (1995) model.

3.11 Specific leaf area and leaf gas exchange

The leaves of most flowering plants are photosynthetic organs. Since carbon
fixation is so central to the survival of plants, one might expect that there is
a tight integration of leaf form and physiology to provide for this necessary
function. However, land plants face a dilemma. They need to keep their
tissues turgid but these humid tissues find themselves surrounded by air or
soil that is not saturated with water. The leaves (and other tissues) are pro-
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Figure 3.8. Scatterplot matrix of the empirical observations (all variables
transformed to their natural logarithms).



tected by a cuticle to prevent dehydration. Unfortunately, this severely
restricts not only the diffusion of water vapour, but also other gases, espe-
cially CO2 that is required for photosynthesis, from diffusing into the leaves.
The production of stomates is the evolutionary solution to this problem.
Stomates are small openings on the surface of the leaves through which gases
can diffuse and the size of the stomatal openings is controlled by guard cells.

As soon as the stomates begin to open, CO2 begins to diffuse from
the outside air into the intercellular spaces of the leaf through a process of
passive diffusion. Since the leaf is photosynthesising, CO2 is being removed
from the intercellular spaces, creating a diffusion gradient. However, the air
inside the leaf is always saturated with water vapour. As soon as the stomates
begin to open, this water vapour also begins to diffuse out of the leaf, since
the outside air is not saturated with water. In essence, the leaf has to accept
a loss (water) in order to effect a gain (carbon). Cowan and Farquhar (1977)
proposed a theoretical model of stomatal regulation to predict how the leaf
should control its stomates in order to maximise carbon gain relative to
water loss. The basic insight of this model was that the leaf should restrict
carbon fixation below the maximum level because when the internal CO2
level in the leaf reaches a certain level the main carboxylating enzyme (rib-
ulose bisphosphate carboxylase (Rubisco)) becomes saturated, and further
increases in carbon fixation require the regeneration of ATP from the light
reaction of photosynthesis. The second stage results in a greatly reduced rate
of increase of carbon fixation per increase in the internal CO2 concentra-
tion, but the rate of water loss continues at its former rate. Thus Cowan
and Farquhar’s principal insight was that the leaf should maintain the inter-
cellular CO2 concentration at the break-point between Rubisco limitation
and ribulose bisphosphate regeneration limitation so that the carboxylating
capacity and the capacity to regenerate Rubisco are co-limiting.

On the basis of these theoretical notions, Martin Lechowicz and I
(Shipley and Lechowicz 2000) proposed a path model based on five vari-
ables: specific leaf mass (SLM: leaf dry mass divided by leaf area, g/m2), leaf
organic nitrogen concentration (mmol/m2), stomatal conductance to water
(mmol/m2 per s), net photosynthetic rate (
mol/m2 per s) and internal CO2
concentration (
l/l). The proposed model is shown in Figure 3.9. Our data
were the mean values from 40 herbaceous species typical of wetland envi-
ronments.

There are five outliers in the data in relation to the internal CO2
concentration. These are ‘C4’ species. The other 35 species are C3 species.
C4 species have an additional metabolic pathway in which atmospheric
carbon is first fixed by phosphoenol pyruvate carboxylase in the mesophyll
cells to form malate or aspartate. This molecule, a 4-carbon acid, is then
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transferred into bundle-sheath cells deeper in the leaf. Here these C4 acids
are decarboxylated and the freed CO2 enters the normal Calvin cycle of the
dark reaction of photosynthesis. An advantage of C4 photosynthesis is that
plants exhibiting it are able to absorb CO2 strongly from a lower concentra-
tion of CO2 within the leaf. They can do this without Rubisco acting as an
oxygenase, rather than a carboxylase, under conditions of low CO2 and high
O2. This means that C4 plants do not exhibit the wasteful process of photo-
respiration under conditions of high illumination and low availability of
water. Because of this, they are able to maintain high rates of photosynthe-
sis even when the stomates are nearly closed. The basis set implied by the
model in Figure 3.9, along with the relevant statistics, is summarised in Table
3.4.

There is no strong evidence for any deviation of the data from the
predicted correlational shadow, as given by the d-separation statements.
However, a reasonable alternative model would be that the leaf nitrogen
content, which is due primarily to enzymes related to photosynthesis,
directly causes the net photosynthetic rate. In other words, what if Cowan
and Farquhar’s (1977) model of stomatal regulation is wrong, and the leaf is
regulating its stomates to maximise the net rate of CO2 fixation indepen-
dently of water loss? In this case, the observed rate of stomatal conductance
would be a consequence of the net photosynthetic rate rather than its cause
and the net photosynthetic rate would be directly caused by leaf nitrogen
content. We can test this alternative model too and Table 3.5 summarises
the results.

This alternative model is clearly rejected when both the C3 and C4
species are analysed together, since there are only about 2 out of 10000
chances of observing such a large difference at random. This lack of fit is
coming from the predicted independence between leaf nitrogen level (2)
and stomatal conductance (3), conditioned jointly on specific leaf mass (1)
and net photosynthetic rate (4). This, of course, is the critical distinction
between the path model in Figure 3.9 and the alternative model. When
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Figure 3.9. Proposed causal relationships between five variables
related to interspecific leaf morphology and gas exchange. SLM,
specific leaf mass.
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looking only at the C3 species, the alternative model does not have a large
degree of lack of fit although the critical prediction still shows a reasonably
large lack of fit (r23|14�0.371, p�0.0338) and is always poorer that that pro-
vided by the structure shown in Figure 3.9.

Because of such results, and other reasons described in the original
reference, I prefer the causal structure shown in Figure 3.9. Such a conclu-
sion must remain tentative. After all, the conclusion is based on only 40
species and a larger sample size might detect some more subtle lack of fit
that was too small to be found in the present data set.

Given the model in Figure 3.9, and given that we have not been
able to reject it, we can now fit the path equations. Although Wright’s orig-
inal method was based on standardised variables, I prefer to use the original
variables because the variables each have well-established units of measure-
ment. The least squares regression equations, using only the C3 species, are
shown below. The residual variation is indicated by N(0,�).

ln(% nitrogen)�0.78�0.90 ln(SLM)�N(0,0.243), R�0.85

ln(conductance)��6.60�1.15 ln(% nitrogen)�N(0,0.56),
R�0.69

ln(photo)�3.08�0.55 ln(conductance)�N(0,0.31), R�0.81

ln(CO2 internal)�6.42�0.14 ln(conductance)�0.1 ln(photo)�
N(0,0.04), R�0.77

Each of the slopes is significant at a level below 10�4 and the sign
of each is in the predicted direction. With these path equations we can begin
to simulate how the entire suite of leaf traits would change if we change the
specific leaf mass (the exogenous variable in this model) or if we observe
species with different SLMs. We get the functional relationships by back-
converting the variables in the equations from their natural logarithms. Of
course, each of these variables may also change with changing environmen-
tal conditions. By including these environmental variables we could gener-
ate the response surfaces across which the suite of leaf traits would move as
the environment changes.
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4 Path analysis and maximum likelihood

James Burke (1996), in his fascinating book, The pinball effect, demonstrates
the curious and unexpected paths of influence leading to most scientific dis-
coveries. People often speak of the ‘marriage of ideas’. If so then the most
prolific intellectual offspring come, not from the arranged marriages pre-
ferred by research administrators, but from chance meetings and even illicit
unions. The popular view of scientific discoveries as being linear causal
chains from idea to solution is profoundly wrong; a better image would be
a tangled web with many dead ends and broken strands. If most present
knowledge depends on unlikely chains of events and personalities, then
what paths of discovery have been deflected because the right people did
not come together at the right time? Which historical developments in
science have been changed because two people, each with half of the solu-
tion, were prevented from communicating due to linguistic or disciplinary
boundaries? The second stage in the development of modern structural
equation modelling is a case study in such historical contingencies and inter-
disciplinary incomprehension.

During the First World War, and in connection with the American
war effort, Sewall Wright was on a committee allocating pork production
to various US states on the basis of the availability of corn1. He was con-
fronted with a problem that had a familiar feel. Given a whole series of var-
iables related to corn availability and pork production, how do all these
variables interact to determine the relationship between supply and demand,
and the fluctuations between these two? It occurred to him that his new
method of path analysis might help. He calculated the correlation co-
efficients between each pair of variables for five years, giving 510 separate
correlations. After much trial and error he developed a model involving
only four variables (corn price, summer hog price, winter hog price and hog
breeding) and only 14 paths that still gave a ‘good match’ between observed
and predicted correlations. He described his results in a manuscript that was
submitted as a bulletin of the US Bureau of Animal Industry. It was
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promptly rejected because officials at the Bureau of Agricultural Economics
considered it to be an intrusion onto their turf. Happily for Wright, he had
also shown it to the son of the secretary of agriculture (Henry A. Wallace)
who was interested in animal breeding and quantitative modelling. Wallace,
using his political influence, intervened to have the manuscript published as
a US Department of Agriculture bulletin (Wright 1925).

Although economists later developed methods that were very
similar to path analysis, Wright’s foray into economics does not seem to have
been very influential. During the Second World War, Wright presented a
seminar on path analysis to the Cowles Commission, where economists
were developing methods that were the forerunner of SEM. Neither
Wright nor the economists recognised the link between the two approaches
or the usefulness of such a marriage (Epstein 1987). None the less, some
economists were independently trying to express causal processes in func-
tional form2 (Haavelmo 1943). In economics, constraints on the covariance
matrix (for example, zero partial correlations due to d-separation) were
called ‘overidentifying constraints’. Since most work in this area was in param-
eter estimation, not theory testing, such constraints were mostly avoided
because they made consistent estimation difficult.

In the 1950s the political scientist Herbert Simon began to derive
the causal claims of a statistical model3. This led some social scientists to
think about expressing causal processes as statistical models that implied
certain structural, or overidentifying, constraints. One such person was H. M.
Blalock, who began deriving overidentifying constraints, in the form of
zero partial correlations, that were implied by the structure of the causal
process (Blalock 1961, 1964). Wright’s method of path analysis had been
largely rediscovered by social scientists, with the important difference that
the emphasis shifted from being an a posteriori description of an assumed
causal process – as Wright viewed his method – to being a (tentative) test of
an assumed causal process. The late 1960s and early 1970s saw many appli-
cations of path analysis in sociology, political science and related social
science disciplines.

The most important next step was the work of people such as
Jöreskog (1967, 1969, 1970, 1973) and Keesling (1972), who developed
ways of combining confirmatory factor analysis (see Chapter 5) and path
analysis using maximum likelihood estimation techniques. The advance was
not simply in using a new method of estimating the path coefficients. More
importantly, the use of maximum likelihood allowed the resulting series of
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equations describing the hypothesised causal process (a series of structural
equations) to be tested against data in order to see whether the overidentify-
ing constraints (the zero partial correlation coefficients and other types of
constraint) agreed with the observations. This advance solved the main
weakness of Wright’s original method of path analysis, since one did not
simply have to assume the causal structure, as Wright did. Now, one could
test the statistical consequences of the causal structure and therefore poten-
tially falsify the hypothesised causal structure4. Unfortunately, by the 1970s
most biologists had forgotten about Wright’s method of path analysis and
disciplinary boundaries prevented the new SEM approach from penetrating
into biology.

Wright’s method was essentially the application of multiple regres-
sion based on standardised variables in the order specified by the path
diagram (the causal graph). This, along with ANOVA and most other famil-
iar statistical methods, consists of modelling the individual observations. In
other words, the path coefficients were obtained using least square tech-
niques by minimising the squared differences between the observed and
predicted values of the individual observations, as is usual in multiple regres-
sion. Structural equations models, of which modern path analysis is a spe-
cialised version5, concentrate instead on the pattern of covariation between
the variables and minimise the difference between the observed and pre-
dicted pattern of covariation among them. The basic steps are:

1. Specify the hypothesised causal structure of the relationships
between the variables.

2. Translate the causal model into an observational model. Write
down the set of linear equations that follow this structure and
specify which parameters (slopes, variances, covariances) are to be
estimated from the data (i.e. that are free) and which are fixed (i.e.
are not to be changed to accommodate the data) based on the causal
hypothesis.

3. Derive the predicted variance and the covariance between each pair
of variables in the model using covariance algebra. Covariance
algebra gives the rules of path analysis that Wright had already
derived.
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4. Estimate these free parameters using maximum likelihood or related
methods, while respecting the values of the fixed parameters. This
estimation is done by minimising the difference between the
observed covariances of the variables in the data and the covariances
of the variables that are predicted by the causal model.

5. Calculate the probability of having observed the measured
minimum difference between the observed and predicted covari-
ances, assuming that the observed and predicted covariances are
identical except for random sampling variation.

6. If the calculated probability that the remaining differences between
observed and predicted covariances are due only to sampling vari-
ation is sufficiently small (say below 0.05) then one concludes that
the observed data were not generated by the causal process specified
by the hypothesis and that the proposed model should be rejected.
If, on the contrary, the probability is sufficiently large (say above
0.05) then one concludes that the data are consistent with such a
causal process.

4.1 Testing path models using maximum likelihood

Step 1: Translate the hypothetical causal system into a path
diagram

This first step should be almost second nature by now, but there are a few
notational conventions that must be introduced. Path diagrams contain
three different types of variable. Variables that have been directly observed
and measured are enclosed in squares; these variables are called manifest var-
iables in SEM jargon. Variables that are hypothesised to have a causal role in
the model, but which have not been directly observed or measured, are
enclosed in circles; these variables are called latent variables in SEM jargon6.
The third type of variable is the residual error variable7 and it is not enclosed
at all. This type of variable represents all other unmodelled causes of the var-
iable into which it points. It is also generally defined as a normally distrib-
uted random variable with a mean of zero and a variance of 1, although it
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is possible to model it with a variance different from 1. A second common
classification is between a variable that has no causal parents in the model,
called exogenous, and a variable that is caused by some other variable in the
model, called endogenous8. Finally, there are two types of arrow. A straight
arrow indicates a causal relationship between two variables just as it does in
the directed graphs of previous chapters. A curved, double-headed arrow
indicates an unknown causal relationship linking the two variables. This
means that there is a free covariance in the structural equations. These con-
ventions are shown in Figure 4.1.

Step 2: Translate the causal model into an observational model in
the form of a set of structural equations

As the arrows in Figure 4.1 suggest, the hypothesised relationships are asym-
metrical causal ones. When we translate the causal model into mathemati-
cal equations we obtain an observational (statistical) model. Because we are
now dealing with a statistical model, we must make assumptions concern-
ing the form of the functional relationships and the sampling distribution of
the random variables. Contrary to the path diagram, this new model is not
strictly a causal model because it is expressed in the language of algebra using
the equivalence operator (‘�’). It is an imperfect translation of the causal
model and we must not forget this and begin manipulating these algebraic
equations in ways contrary to the original asymmetrical causal relations
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Figure 4.1. A path model involving five variables; S45|3 is a free
covariance between �4 and �5.



expressed in the path diagram. In almost all structural equations models, the
relationships are assumed to be additively linear. In most structural equations
models, the random variables are assumed to be multivariate normal.
‘Multivariate normal’ means that the variables follow a multivariate normal
distribution, which is a somewhat stronger assumption than assuming simply
that each variable is normally distributed. Different ways of assessing this
assumption, and the degree of non-normality that can be tolerated, are
described in Chapter 6.

If your causal model is sufficiently detailed that you are willing to
hypothesise the numerical values of some parameters (path coefficients, var-
iances or covariances) then you can include this information in the model
by specifying the parameter to be fixed. If you are not able or willing to
make such an assumption (except, of course, that the parameter is not zero)
then the parameter is estimated from the data and is therefore free. Specifying
that a variable is not a direct cause of another (i.e. that there is not an arrow
from the one to the other in the path diagram) is the same as specifying that
the path coefficient of this ‘missing’ arrow is fixed at zero. Each parameter
that is fixed adds one degree of freedom to the inferential test.

In such models the interest is in the relationships between the var-
iables, not the mean values of the variables themselves9. For this reason, all
variables are ‘centred’ by subtracting the mean value of each variable from
each observation. For instance, if the mean of X1 in Figure 4.1 were 6, then
we would replace each value of X1 by (X1�6). This trick ensures that the
mean of each transformed variable is zero and therefore that the intercepts
are zero. Assuming that all of our variables are already centred, these are the
structural equations corresponding to Figure 4.1, where Cov(X1,X2) means
the population covariance between X1 and X2:

X1�N(0,�1) �3�N(0,�3)

X2�N(0,�2) �4�N(0,�4)

X3�a13X1�a23X2�b3�3 �5�N(0,�5)

X4�a34X3�b4�4

X5�a35X3�b5�5

Cov(X1,X2)�Cov(X1,�3)�Cov(X1,�4)�Cov(X1,�5)�
Cov(X2,�3)�Cov(X2,�4)�Cov(X2,�5)�Cov(�3,�4)�
Cov(�3,�5)�0

Cov(�4,�5)��45
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Happily, most commercial SEM programs do most of this transla-
tion work for you; you have only to specify which parameters are free and
which variables are direct causes of which other variables. In fact, all you
have to do is draw the path model in the latest versions of most commer-
cial SEM programs10. Notice that some parameters (�i,aij ) in the above
equations do not have numerical values and therefore have to be estimated;
before looking at the data they are ‘free’ to take on any value.

Let’s go through these equations more slowly to understand exactly
how the causal model in Figure 4.1 has been represented in equation form.
First, variables X1 and X2 are exogenous in the model; we don’t know, or
are not interested in explicitly modelling, the causal parents of these two
variables. In the equations I have specified that X1 and X2 are each normally
distributed random variables whose mean is zero and whose standard devi-
ation is unknown. Therefore, these two standard deviations are free and
must be estimated from the data11. Next, X3 is written as a linear function
of both X1 and X2 in accordance with Figure 4.1. Since I don’t know the
numerical strength of the direct causal effects of these two variables, the path
coefficients (a13 and a23) are also free and must be estimated from the data.
If my causal hypothesis had been sufficiently well developed that I could
specify what the values of these path coefficients were then I would have
entered the predicted values rather than having to estimate them from the
data. In addition, the combined direct effect of the other unknown causes
of X3 are not known either and so b3, the path coefficient from the error
variable (�3), is also free and must be estimated. Remember that all of the
error variables (�) are unit normal variables, i.e. with a zero mean and a stan-
dard deviation of 1. Multiplying a unit normal variable by a constant (b3 in
this case) makes its variance equal to the constant. Therefore, the part of the
variance of X3 that is not accounted for by X1 and X2 is b3. In this particu-
lar equation the residual is exactly analogous to the residuals of a multiple
regression, since it is made to be uncorrelated with either X1 or X2 but this
is not always the case. Next, each of X4 and X5 are also written as linear
functions of X3 with the accompanying free path coefficients.

Since there are five variables in the model, there are 10 different
pairs of variables and therefore 10 different covariances between the unique
pairs of variables. Since X1 and X2 are causally independent, the covariance
between these two variables must be zero (remember d-separation). X1, X2,
and the unknown other causes of X3 (i.e. �3) are also independent of each
other and of the unknown other causes of X4 and X5 and so each of these
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the error variable, or fixing the path coefficient to 1.0 and freely estimating the error var-
iance, are two equivalent ways of doing the same thing.



pairs of covariances must also be zero. Finally, the causal model in Figure
4.1 states that there is some causal influence linking X4 and X5 but the
researcher does not know what it is. Perhaps X4 causes X5? Perhaps X5 causes
X4? Perhaps there is a reciprocal causal relationship? Perhaps there is some
unknown common cause of both X4 and X5? Adding a free covariance (the
translation of a curved double-headed arrow) is an admission of ignorance
as to the causal origin of the covariance. Each of the above causal relation-
ships would generate a non-zero covariance between X4 and X5 even after
controlling for X3. Therefore, we allow �4 and �5 to have a non-zero covar-
iance and the numerical value of this non-zero covariance must also be esti-
mated from the data.

This completes the best translation of the causal model into the
observational (statistical) model as can be obtained consistent with the sta-
tistical assumptions that are needed to estimate the free parameters. It will
be important to evaluate these assumptions when judging whether the
results of the analysis can be trusted, as is true of any statistical method.

Step 3: Derive the predicted variance and the covariance
between each pair of variables in the model using
covariance algebra

Box 4.1. Basic rules of covariance algebra

The notation E(X) means the expected value of X. So, the population covar-
iance between two variables – symbolized here as Cov(X1,X2) – is defined as:

Cov(X1,X2)�E[(X1�E(X1))(X2�E(X2))]�E(X1X2)�
E(X1)E(X2)

If the variables are centred about their expected values, this reduces to:

Cov(X1,X2)�E(X1,X2)

Since a variance is simply the covariance of a variable with itself, we
can write the population variance (Var) as:

Var(X1)�Cov(X1,X1)

If k is a constant and X1, X2, X3 are random variables then we can also
state the following useful rules:
(1) Cov(k,X1)�0
(2) Cov(kX1,X2)�kCov(X1,X2)
(3) Cov(k1X1,k2X2)�k1k2Cov(X1,X2)
(4) Cov(X1�X2,X3)�Cov(X1,X2)�Cov(X2,X3)
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The set of structural equations allows us to derive the predicted
values for the covariances between each pair of variables. Since a Pearson
correlation coefficient is simply a covariance that has been standardised, one
can also derive the predicted values for the correlations between each pair
of variables. This step uses the rules of path analysis that were derived orig-
inally by Wright. Box 4.1 summarises a few basic rules of covariance algebra
that will be useful in discussing this section.

From Chapter 2 we know that two vertices in the path diagram that
are d-separated correspond to two random variables that are independently
distributed, meaning that the population covariance between them must be
zero. If the two vertices are not d-separated, then the corresponding random
variables are not independently distributed and so (given the assumption of
linearity made by SEM) the covariance between them can’t be zero. This
justifies the list of zero covariances in the structural equations given above.
For those vertices that are not unconditionally d-separated (and are there-
fore correlated in some way), we can use the rules of covariance algebra to
obtain formulae giving their covariances. Take, for instance, variables X1 and
X3 in Figure 4.1. We can write:

Cov(X1,X3)�Cov(X1, (a13X1�a23X2�b3�3))�a13Cov(X1,X1)�
a23Cov(X1,X2)�b3Cov(X1,�3).

Looking at the path diagram and applying the d-separation opera-
tion, we see that X1 is independent of both X2 and �3 and therefore the
population covariances involving X1 and these two variables are zero.
Therefore, the population covariance between X1 and X3 is simply
a13Cov(X1,X1) or a13Var(X1). In this way we can obtain formulae for the
expected value for each pair of variables in the model. These are shown in
Table 4.1.

This must seem like a lot of work. Most commercial SEM programs
do all of this work for you and the important point at this stage is only that
you have an intuitive understanding of why we can express the covariances
between each pair of variables as a function of path coefficients, variances
and covariances. For those who are used to working with matrix algebra,
Box 4.2 gives a more formal derivation of the predicted covariance matrix
based on the Bentler–Weeks model (for a concise description, see Bentler
1995).

If we go back to the analogy of correlations being the shadows that
are cast by causal processes, then Table 4.1 is a description of the ‘shape’ of
the shadow that is cast by the hypothesised causal process shown in Figure
4.1. Imagine that we were describing the shadow cast by a solid square
whose size was unknown to us (i.e. the length of whose sides are free param-
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eters). We would describe the shadow as having four equal sides of unknown
length (the first constraint) with four sides that meet in such a way that they
make four corners having 90° angles (the second constraint). The general
shape of the shadow is fixed (a square) but the numerical values (the lengths
of the sides) are free parameters and can be estimated by measuring the real
shadow.

Box 4.2. The Bentler–Weeks model

Definitions: Let the endogenous (i.e. dependent) variables in the model be
written in a column vector called � and let the exogenous (i.e. independent
variables, including the error variables) be written in a column vector called
�. Let the coefficients of the effects of dependent causes to dependent effects
be a matrix called � (rows are dependent effects and columns are dependent
causes) and let the coefficients of the effects of independent causes to depen-
dent effects be a matrix called � (rows are dependent effects and columns are
independent causes). Then the system of structural equations can be written
as: �������.

For instance, the path model in Figure 4.1 would be written:

� � �
x1

x2

�3

�4

�5

��a13 a23 b3 0  0
0    0  0 b4 0
0    0  0  0 b5

��
x3

x4

x5
��

0   0 0
a34  0  0
a35  0  0

��
x3

x4

x5
�
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Table 4.1. Predicted population variances and covariances for the observed variables
shown in Figure 4.1. Since this is a symmetrical matrix, the values on the lower
triangle of this matrix are the same as those on the upper triangle

X1 X2 X3 X4 X5

X1 Var(X 1) 0 a13Var(X 1) a13a34Var(X1) a23a35Var(X 1)

X2 Var(X 2) a23Var(X 2) a23a34Var(X 2) a23a35Var(X 2)

X3 Var(X 3) a35Var(X 3)

X4 Var(X 4)

a34a35Var(X 3)�b4b5Cov(�4�5)

X5 Var(X 5)



In reduced form the equation is: �� (I��)�1��, where I is the identity
matrix. Predicted covariances between exogenous variables: E[���]��.
Predicted covariances between endogenous and exogenous variables:
E[���]� (I��)�1��. Predicted covariances between endogenous variables:
E[���]� (I��)�1��� (I��)�1�.

Step 4: Estimate the free parameters by minimising the diff-
erence between the observed and predicted variances
and covariances

The hypothesised object was the solid square and from this we have pre-
dicted the shape of the shadow that it would cast. Is our hypothesis correct?
To decide, we look at the actual shadow, choose values for the length of the
sides of our hypothesised square that make it as numerically close to the
observed shadow as possible while respecting the constraints, and then
measure the remaining lack-of-fit. This is the same basic logic used to fit
and test a structural equations model. We first choose values for the free
parameters in our predicted covariance matrix that make it as numerically
close as possible to the observed covariance matrix, while respecting the
constraints applied to the predicted covariance matrix. How this is done
depends on the assumptions that have been made concerning the distribu-
tional form of the random variables; in SEM the usual assumption is that
the random variables follow a multivariate normal distribution.

The general strategy for obtaining the best values for the free
parameters is easy enough to grasp: choose values of the free parameters that
make the numerical values of the predicted covariance matrix (i.e. the values
in Table 4.1 after replacing the variables by their numerical values) as close
as possible to the actual covariances measured in the data. This is usually
done using maximum likelihood estimation (Fisher 1950). Eliason (1993)
and Bollen (1989) described the mechanics of this technique and Box 4.3
gives a brief introduction for those who are interested in this topic. In
essence, the numerical algorithm used to maximise the likelihood is a bit
like playing the game of 20 questions (Is it alive? Is it a mammal? Is it a car-
nivore? Does it live in Africa? . . .). Box 4.3 gives a more precise definition
of the likelihood function but this function can be intuitively understood to
measure the discrepancy between the observed data and the sort of data that
would have been observed had the free parameter been equal to our chosen
value. We start with an initial guess of the values of the free parameters and
calculate the likelihood of the data given the current parameter values. We
then see whether we can modify our guess of the values of the free param-
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eters in such a way as to improve the likelihood. We continue with this
process until we find values such that any change to them will do worse than
the present values.

Another analogy for maximising a likelihood function might be a
person who is blindfolded and finds herself in a landscape with various hills
and valleys. Her job is to walk down to the valley floor without peeking.
She begins by taking an initial step in a direction based on her best guess. If
she sees that she has moved down-slope then she continues in the same
direction with a second step in the same direction. If not, she changes direc-
tion and tries again. She continues with this process until she finds herself
at a position on the landscape in which every possible change in direction
results in movement up-slope. She therefore knows that she is in a valley.
Unfortunately, if the landscape is very complicated she may have found
herself in a small depression rather than on the true valley floor. The only
way to find out would be to start over at a different initial position and see
whether she again ends up in the same place.

Box 4.3. Maximum likelihood estimation

The probability of occurrence of a random variable, Xi, is given by a prob-
ability function (for discrete variables) or a probability density function (for
continuous variables). For instance, the probability density function of a uni-
variate normal random variable is:

f (X;
,�)�

The notation means that x is the random variable and 
 and � are popula-
tion parameters that are fixed. Now, if we take a series of N independent
observations of the random variable, then the joint probability density func-
tion for these N observations is: f (X1;
,�) f (X2;
,�) f (X3;
,�) . . . f (XN;
,�).
The objective of maximising the likelihood of a parameter is to find a value
of this parameter that maximises this joint probability density function. In
other words, find a value for the parameter (for example 
) that maximises
the likelihood of having observed the series of observations. This objective
turns the probability density function on its head. Now the observed values
(Xi) are fixed and we view the population parameters as variables. We are
envisaging a whole series of different normal distributions and we want to
choose the most likely one given our data. So, the likelihood function of the
univariate normal distribution is:

L(
,�;X)�
� (X � 
)2

2�21

�2��2
 e

� (X � 
)2

2�21

�2��2
 e
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and the joint likelihood function of the entire set of data is:
L(
,�;X1)L(
,�;X2)L(
,�;X3) . . . L(
,�;XN ).

The natural logarithm of a series of positive numbers is an increasing
function of these numbers. Because it is difficult to maximise a product but
easier to maximise a sum, we use the logarithm of the likelihood function.
For instance, imagine that we have observed eight values (1.20, 0.08, 0.34,
0.57, 0.46, 0.48, 0.56, 1.01) from a normal distribution whose population
variance (�2) is 1 and we want to find the maximum likelihood value for the
population mean (
). Figure 4.2 shows a graph of the log-likelihood func-
tion over the range 
��4 to �4.

We see that this function is maximal at around 0.58. This is the sample
mean of our eight values, showing that the standard formula for the sample
mean – an unbiased estimator – is also a maximum likelihood estimator.
Maximum likelihood estimates are not always unbiased in small samples (for
instance the maximum likelihood estimate of the variance is not) but they are
consistent, meaning that such estimates converge on the true value as the
sample size increases. In other words maximum likelihood estimates are
asymptotic estimates.

In general, the maximum (or minimum) of the likelihood function
occurs when its first derivative is zero. To see whether one has found a
maximum, one then checks to see whether the second derivative is negative.
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Figure 4.2. The log-likelihood function for the population mean (
),
given eight values (1.20, 0.08, 0.34, 0.57, 0.46, 0.48, 0.56, 1.01)
from a normal distribution whose population variance (�2) is 1 over
the range �4 to �4.



In SEM, the usual assumption is that the data are multivariate normal. In
other words, we assume that the probability density function is multivariate
normal. The likelihood function for this distribution is:

L(
,�;X)� e�[X�
]��1[X�
].

In SEM we usually centre the variables about their means, so the only
parameters whose likelihood estimates we need to estimate are those in the
population covariance matrix �. These parameters are the free parameters
that we have already derived. With this much more complicated function we
are not able to derive the maximum likelihood estimates directly, and so we
have to use numerical methods that involve iteration.

For instance, in Table 4.1 we had free parameters for the variances of
the two independent observed variables, the three coefficients for the error
variables and the one free covariance between X4 and X5. Let’s group all these
free parameters together in a vector called �. Now, if we take a first guess at
the values of these free parameters then we can calculate the predicted covar-
iance matrix based on these initial values; let’s call the predicted covariance
matrix that results from this guess �(1)(�) to emphasise that this matrix will
change if we change our values in �. We now calculate the value of the log-
likelihood function. Next, we change our initial estimates of the free param-
eters and recalculate the predicted covariance matrix, �(2)(�), in such a way
as to increase the log-likelihood. We continue in this way until we can’t
increase the value of the log-likelihood anymore.

Problems can occur if the log-likelihood function contains ‘potholes’
or local maxima. If this happens then the iterative procedure can become
‘trapped’ without finding the global maximum. The only way to determine
whether one has found a global maximum is to try different starting values
and see whether they all converge on the same values. Problems can also
occur if the iterative procedure wanders into areas of parameter space that are
illegitimate, for instance, negative variances. Most computer programs will
warn you when this happens, and this is usually a sign of a poorly fitting
model.

Let S be the observed covariance matrix, involving p dependent
(endogenous) and q independent (exogenous) variables. Let � be the
maximum likelihood estimate of the model covariance matrix. Since these
maximum likelihood estimates depend on the values of the free parameters,
which we group together in a vector �, we will write the model covariance
matrix as �(�). The maximum likelihood fitting function, FML, that
compares the difference between the observed and predicted covariance
matrices is:

1
(2�)n/2|�|1/2
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FML� ln|�(�)|� trace(S��1(�))� ln|S|� ( p�q )

This function has three important properties. First, the values of the
free parameters, �, that minimise it are also the values that make the pre-
dicted covariance matrix as similar as possible to the observed covariance
matrix while respecting the constraints implied by the causal model.
Second, the values of � that minimise this function are the same values that
maximise the multivariate normal likelihood function and so such values of
the free parameters that define the population covariance matrix (�) are
called maximum likelihood estimates. Third, and most importantly, if the
observed data (and therefore S ) really were generated by the causal process
that the structural equations are modelling, then the only remaining
differences between �(�) and S at the minimum of FML will be due to nor-
mally distributed random sampling variation. Given these assumptions then
(N�1)FML is asymptotically distributed as a chi-squared distribution.

I said that one probable reason why biologists did not accept
Wright’s method of path analysis was that his original method could derive
the logical consequences of a causal model but could not test it. The method
described above, developed by Jöreskog (1970), was the first to solve this
important shortcoming of path analysis.

Step 5: Calculate the probability of having observed the
measured minimum difference, assuming that the
observed and predicted covariances are identical except
for random sampling variation

The central chi-squared distribution has only one parameter: the degrees of
freedom. In testing a structural equations model we are comparing the fit
between the observed and predicted elements of the covariance matrix. If
we have v variables then there will be v 2 elements in the covariance matrix.
Since this matrix is symmetrical about its diagonal, some of these elements
are redundant. The number of unique elements is v(v�1)/2. If we were to
compare the observed and predicted values of these unique elements using
(N�1)FML and all of the predicted values were obtained independently of
the observed values then this would define the degrees of freedom for the
chi-squared test. However, we have had to use our data to estimate the free
parameters that partly determine the predicted covariance matrix. Each free
parameter that we have to estimate ‘uses up’ one degree of freedom. The
degrees of freedom available to test the model are:

� ( p�q )
v(v � 1)

2
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As before, q is the number of free variances of exogenous variables (includ-
ing the error variables) in the model and p is the number of free path
coefficients in the model. I say ‘free’ because it may sometimes be possible
to specify the value of a variance or path coefficient based on theory or prior
experience and therefore constrain the model to have the specified value no
matter what the data say.

So we specify, as the null hypothesis, that there is no difference
between the observed and predicted covariance matrices except what would
be expected given the random sampling variation of N independent obser-
vations all taken from the same multivariate normal distribution. Given this
hypothesis, then the following statistic (the maximum likelihood chi-squared
statistic) will asymptotically follow a central chi-squared distribution with the
degrees of freedom given above:

(N�1)FML→
N→�   

�2
[v(v�1)/2]�( p�q )

In practice one uses a computer program to do all of these calculations.

Step 6: If the calculated probability is sufficiently small (say below
0.05) then one concludes that the model was wrong. If
the probability is sufficiently large (say above 0.05) then
one concludes that the data are consistent with such a
causal process

At first blush this step appears much easier to understand than the previous
ones. In fact, it is the step than causes the greatest confusion. The previous
steps are more mathematically involved but they are largely automated and
so the user does not need more than an intuitive grasp of what is happen-
ing. This last step requires that the user interpret the meaning of the result-
ing probability for the biological model. This interpretation can often lead
to confusion.

In most of the statistical tests used by biologists, the biologically
interesting hypothesis is the alternative hypothesis; the null hypothesis func-
tions as a strawman that is erected only to see whether we have sufficiently
strong evidence to knock it down. This is useful because it forces us to have
strong evidence (evidence beyond reasonable doubt) before we can accept
the biologically interesting alternative hypothesis. In SEM on the other
hand, models are constructed based on biological arguments in such a way
as to reflect what we hypothesise to be correct. In other words, our model
and the resulting predicted covariance matrix embodies what we view to be
biologically interesting. The null hypothesis, not the alternative, is therefore
the biologically interesting hypothesis. A probability below the chosen
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significance level means that the predicted model is wrong and should be
rejected (i.e. the null hypothesis should be rejected). Although the flipping
of the null and alternative hypotheses might seem strange, it is exactly the
same logic as testing the null hypothesis that the slope of a simple linear
regression equals, say, 0.75. Notice that we are reversing the burden of
proof: we are requiring strong evidence, evidence beyond reasonable doubt,
before we are willing to reject our preferred hypothesis. This leads naturally
to the temptation to conclude that the predicted model is correct simply
because we have not obtained strong evidence to the contrary! In fact, all
that we can conclude is that we have no good evidence to reject our model
and that the data are consistent with it. The degree to which we have good
evidence in favour of our model will depend on how well we can exclude
other models that are also consistent with the data. This leads naturally to
the subject of equivalent models (Chapter 8).

At this stage, some numerical examples will help. I will generate
100 independent ‘observations’ following the causal graph shown in Figure
4.1. Here are the generating equations; these are the same as those shown
previously except that the free parameters have been replaced by actual
values:

X1�N(0,1)

X2�N(0,1)

X3�0.5X1�0.5X2�0.5�3

X4�0.5X3�0.707�4

X5�0.5X3�0.707�5

Cov(X1,X2)�Cov(X1,�3)�Cov(X1,�4)�Cov(X1,�5)�
Cov(X2,�3)�Cov(X2,�4)�Cov(X2,�5)�Cov(�3,�4)�Cov(�3,�5)
�0

Cov(�4,�5)�0.5

First, we look at the observed covariance matrix obtained from
these 100 observations. This matrix is the observational ‘shadow’ that was
cast by the causal process shown in Figure 4.1 and quantified by the above
equations. Table 4.2 shows this covariance matrix.

The first step is to specify the hypothesised causal model. Imagine
that we actually had two different competing models and wished to test
between them. The first model is the model shown in Figure 4.1; this is the
correct model that generated these data, although the model contains free
parameters that have not been specified by our theory. The second causal
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model that we want to test is shown in Figure 4.3. The next step is to trans-
late our two hypothesised causal graphs into structural equations. The trans-
lation of our first model has already been given. The translation of this
second (incorrect) model is the following:

X1�N(0,�1)

X2�N(0,�2)

X3�a13X1�a23X2�b3�3

X4�a34X3�b4�4

X5�a25X2�b5�5

Cov(X1,X2)�Cov(X1,�3)�Cov(X1,�4)�Cov(X1,�5)�
Cov(X2,�3)�Cov(X2,�4)�Cov(X2,�5)�Cov(�3,�4)�Cov(�3,�5)
�0

Cov(�4,�5)�0

Note the differences between these structural equations and the
ones derived from the correct model. First, the population covariance
between the residual errors of X4 and X5 (i.e. Cov(�4,�5)) is zero in this
incorrect model. Second, X5 is hypothesised to be directly caused by X2
rather than being indirectly caused by both X1 and X2 through their effects
on X3.

We next have to obtain the maximum likelihood estimates of the
free parameters of each model. To do this we have to provide starting values
for the iterative process. In this book I use the EQS program for structural
equation models, although there are many other commercial programs on
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Table 4.2. The observed unique variances and
covariances between variables X1 to X5 from 100
simulated observations based on the causal process
shown in Figure 4.1

X1 X2 X3 X4 X5

X1 0.931
X2 0.171 1.094
X3 0.630 0.762 1.350
X4 0.384 0.368 0.743 1.265
X5 0.324 0.385 0.611 0.624 0.949



the market. In the path models discussed in this chapter the choice of start-
ing values for the free parameters is usually not critical and so I will use the
default values of 1.0 for all of them. Remember that the fitting of these free
parameters is an iterative process in which the estimates at each iteration are
changed in such a way as to reduce the maximum likelihood fitting func-
tion, as described in Box 4.3. At the very first iteration, when all free param-
eters are equal to 1.0, both the correct model and the incorrect model
produce a predicted covariance matrix that poorly fits the observed values;
the maximum likelihood fitting function is 0.45707 for the correct model
and 0.74821 for the incorrect model. The correct model took five iterations
to converge on the maximum likelihood estimates, giving a final value of
0.04890 for the maximum likelihood fitting function. Since this value,
multiplied by 99 (i.e. N�1) is the maximum likelihood chi-squared statis-
tic, the final value of the chi-squared statistic was 4.8411. The incorrect
model took four iterations to converge on the maximum likelihood esti-
mates, giving a final value of 0.39369 for the maximum likelihood fitting
function. Therefore, the final value of the chi-squared statistic for this incor-
rect model was 38.98.

To see whether these chi-squared statistics are significantly different
from what one would expect given a correct model, we next need to deter-
mine the degrees of freedom. In both models we had five measured vari-
ables, giving a total of 15 unique variances and covariances, i.e. v(v�1)/2,
or 5(6)/2. In the correct model we had to estimate the variances of X1 and
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X2, and the three error variances as well as four path coefficients and one
free covariance (between X4 and X5); this makes 10 free parameters to esti-
mate. The correct model therefore had 15�10�5 degrees of freedom. In
the incorrect model we had to estimate the variances of X1 and X2, and the
three error variances as well as four path coefficients but no free covariance;
this makes nine free parameters to estimate. The incorrect model therefore
had 15�9�6 degrees of freedom. SEM programs do all of these calcula-
tions for you.

Remember what we are testing. If the hypothesised model is
correct, then the maximum likelihood chi-squared statistic will follow a chi-
squared distribution. If the predicted and observed covariance matrices were
identical then the maximum likelihood chi-squared statistic would be zero.
The further the predicted covariance matrix deviates from the observed
covariance matrix, the larger the maximum likelihood chi-squared statistic
will be. Of course, even if our causal model were correct we would not
expect the two matrices to be identical because of sampling variation; the
predicted covariance matrix contains the predicted population values but
the observed matrix is from a random sample of 100 observations. However,
if the only differences were due to random sampling fluctuations then the
maximum likelihood chi-squared statistic would closely follow (for large
samples) a theoretical chi-squared distribution with the appropriate degrees
of freedom. To evaluate our two models, we have only to hypothesise that
each is the true model and then calculate the probability, based on this null
hypothesis, of observing at least as large a difference between the observed
and predicted covariance matrices as measured by our statistic.

First, let’s look at the results for the correct model. The probability
of observing a chi-squared value of at least 4.8411 with 5 degrees of
freedom is 0.44. In other words, there is a probability of 0.44 of seeing such
a result even if our null hypothesis were correct. In fact, our null hypothe-
sis is correct, since we generated our data to agree with it. The result is
telling us what we know to be true: the data are perfectly consistent with
the model given normally distributed sampling variation. On the other
hand, the maximum likelihood chi-squared statistic for the incorrect model
was 38.98 with 6 degrees of freedom. The probability of observing such a
large difference between the observed and predicted covariance matrices,
assuming that the data were actually generated according to the incorrect
model, is 7.2�10�7. We either have to accept that an extremely rare event
has occurred (one chance in about 1.5 million times) or reject the hypoth-
esis that our data were generated according to the incorrect model. Again,
the result is telling us what we know to be true: the data are not consistent
with the model.
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Compare the two predicted covariance matrices with the observed
covariance matrix to see where the differences lie (Table 4.3). The biggest
differences involve X5. First, the predicted covariance between X1 and X5 is
zero in the incorrect model while the observed value is 0.324. This is
because X1 is d-separated from X5 in the incorrect model. The fitting pro-
cedure had to respect this constraint when fitting the incorrect model and
so constrained this predicted covariance to be zero. The correct model
allows X1 to be an indirect cause of X5 through its effect on X3. The fitting
procedure had to respect the constraint that the partial covariance between
X1 and X5 be zero when controlling for X3 but, since this constraint actu-
ally existed in the generating process, such a constraint did not distort the
estimates. In the same way, the incorrect model required that the partial
covariance between X3 and X5 as well as the partial covariance between X4
and X5 be zero when controlling for X2. Since neither of these constraints
actually existed in the correct causal process, the fitting procedure was
forced to distort the estimates in order to meet these incorrect constraints.

Let’s look next at the maximum likelihood estimates for the free
parameters in the two different models. Here again are the true population
values used to generate the data:

X1�N(0,1)

X2�N(0,1)

X3�0.5X1�0.5X2�0.5�3

X4�0.5X3�0.707�4

X5�0.5X3�0.707�5

Cov(X1,X2)�Cov(X1,�3)�Cov(X1,�4)�Cov(X1,�5)�
Cov(X2,�3)�Cov(X2,�4)�Cov(X2,�5)�Cov(�3,�4)�Cov(�3,�5)
�0

Cov(�4,�5)�0.5

Here are the maximum likelihood estimates with their asymptotic standard
errors in parentheses, based on the true model:

X1�0.931 N(0,1)
(0.132)

X2�1.094 N(0,1)
(0.156)

X3�0.565 X1�0.608 X2�0.531 E3
(0.076) (0.070) (0.075)
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X4�0.550 X3�0.856 E4
(0.084) (0.122)

X5�0.452 X3�0.673 E5
(0.074) (0.096)

Covariance(X4,X5) �0.287
(0.082)

Notice that each estimate is close to the population value. The stan-
dard errors are asymptotic, not exact, but with 100 observations these are
quite close to the actual sample standard errors and so two times each value
defines an approximate 95% confidence interval. For instance, the path
coefficient from X1 to X3 is 0.565 with a standard error of 0.076 so an
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Table 4.3. The observed covariance matrix for the 100
independent observations, along with the predicted
maximum likelihood covariance matrices based on the
correct model (Figure 4.1) and the incorrect model
(Figure 4.3)

X1 X2 X3 X4 X5

Observed covariance matrix
X1 0.931
X2 0.171 1.094
X3 0.630 0.762 1.350
X4 0.384 0.368 0.743 1.265
X5 0.324 0.385 0.611 0.624 0.949

Predicted values using the correct model
X1 0.931
X2 0.000 1.094
X3 0.526 0.665 1.233
X4 0.289 0.366 0.678 1.229
X5 0.238 0.301 0.557 0.594 0.925

Predicted values using the incorrect model
X1 0.931
X2 0.000 1.094
X3 0.526 0.666 1.234
X4 0.290 0.366 0.679 1.230
X5 0.000 0.385 0.234 0.129 0.949



approximate 95% confidence interval would be 0.565±2(0.076) or between
0.413 and 0.717; the true population value was 0.5. We could obtain the
maximum likelihood estimates for the incorrect model as well, but since we
already know that the data are very unlikely to have been generated by this
incorrect model at least some of the estimates will be incorrect.

We can place the estimates of the free parameters of the correct
model directly on the path diagram (Figure 4.4). I prefer this because the
path diagram makes explicit that these estimates are based on a causal model
with asymmetric relationships. The estimates shown in Figure 4.4 are not
the ones Sewall Wright would have used. First, his estimates were not based
on maximum likelihood methods but rather on least squares methods.
Second, he used standardised variables so that the decomposition of direct
and indirect effects were based on correlations rather than covariances. If the
causal model is correct then the maximum likelihood and least squares esti-
mates will be the same12, since least squares (partial) regression coefficients
are also maximum likelihood estimates, but if the causal model is wrong
then the two types of estimate will differ. The standardised estimates are
easily obtained by first standardising the variables to zero mean and unit var-
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12 This assumes, of course, that the data are multivariate normal.

Figure 4.4. The fully parameterised path model of Figure 4.1. The
numerical values are the maximum likelihood values of the free
parameters based on centred, but not standardised, variables.



iance. In fact, most SEM programs print these standardised estimates out.
Figure 4.5 shows the path diagram for the correct model based on standar-
dised variables.

4.2 Decomposing effects in path diagrams

One important use of path diagrams is to ‘decompose’ an association
between variables into different types of causal relationship. In fact, this was
the main goal of Wright’s original method of path coefficients. Remember-
ing the notions of causal graphs that were introduced in Chapter 2, we can
differentiate between types of effect: direct causal effects, indirect causal
effects, effects due to shared causal ancestors and unknown causal relation-
ships13. One way of visualising this classification of associations is shown in
Figure 4.6.

This decomposition of a statistical association into different types of
causal relationship is based on the fundamental association linking causality
with probability distributions, as described in Chapters 1 and 2. The overall
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Figure 4.5. The fully parameterised path model of Figure 4.1. The
numerical values are the maximum likelihood values of the free
parameters based on centred and standardised variables. Units are
therefore standard deviations from the mean.



association between two variables is simply the overall correlation or covar-
iance between them. This overall association can be generated by a number
of different causal relationships at the same time. Since the consequences of
interventions or manipulations will depend critically on these different types
of relationship it is important to be able to distinguish and quantify them.

Ancestor–descendant relationships

If you can trace a path on the causal graph from a causal ancestor to a descen-
dant by following the direction of the arrows then this path defines an effect
from the ancestor to its descendant. These effects can be of two different
types. A direct effect is an effect of the ancestor on its descendant that is not
transmitted through any other variable in the model; of necessity this means
that the relationship is one of parent and child. In other words, it is the effect
that would occur if all other variables in the model did not change14. The
magnitude of this direct effect is measured by the path coefficient on the
arrow going from the parent to the child. The units of this effect are the
same as those used to measure the variables. If the variables are not standar-
dised then the path coefficient measures the number of unit changes in the
child per unit change in the parent. For instance, if X is measured in grams,
Y is measured in millimetres, there is an arrow from X to Y (X→Y ) and the
path coefficient for this arrow equals 0.6 then this means that a 1g change
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Figure 4.6. A classification of associations (for example, correlations or
covariances).



in X will provoke a 0.6mm change in Y once X is d-separated from all other
causes in the model. It is also the quantitative effect of X on Y when all other
variables are held constant. If the variables are standardised, then the units
are standard deviations from the mean. As usual, these points are much easier
to grasp when looking at a causal graph. Consider Figure 4.7.

In Figure 4.7 there are six different direct effects. There are always
as many direct effects as there are one-headed arrows in the path diagram.
If we were to fit this model to data then the path coefficient from X1 to X2
would measure the direct effect of X1 on X2. If the three other variables
were held constant then this direct effect would quantify by how much X2
would change given a one unit change in X1. However, since X2 has no
other causal ancestors then this direct effect would also quantify by how
much X2 would change given a one unit change in X1 even if the other var-
iables were not held constant.

Indirect effects are the effects of a causal ancestor on its descendant
that are completely transmitted through some other variable. This interven-
ing variable is sometimes called a mediator of the causal effect. For instance
the effect of X1 on X3 along the path X1→X2→X3 is an indirect effect of X1
that is mediated by X2. To quantify this effect one multiplies the path
coefficients along this path. This indirect effect measures by how much X3
would change following a change in X1 if all causal parents of X3 except for
X2 were held constant. In general an indirect effect measures by how much
the effect variable would change following a change in the indirect cause
when this effect is transmitted only along the path in question. It is possible
for the same causal variable to exert both a direct and an indirect effect on
the same descendent. An example of this is the effect that X2 has on X4 in
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Figure 4.7. A path diagram used to illustrate the decomposition of
associations.



Figure 4.7; X2 had a direct effect on X4, since X2 is the causal parent of X4,
but X2 also exerts an indirect effect on X4 through its effect on X3.

Both direct and indirect effects involve variables in which one is a
causal ancestor of the other. In these cases there is a directed path from one
variable to the other. The third way in which an association can be decom-
posed in a path diagram is when the association between the two variables
is due to another variable that is a causal ancestor of both. In Figure 4.7 the
association between X5 and X6 is due to the effect of X4 (their common
ancestor) on both. To quantify this effect one multiplies the path coefficients
along the path15 from X4 to X5 and along the path from X4 to X6. Such
effects do not measure any causal effect of one variable on the other and
represent what Pearson might have called a ‘spurious’ association.

Finally, path diagrams can include unresolved causal relationships
between variables; these are shown by double-headed arrows. Including
such an effect in the model is an admission of ignorance; we do not know
which is the cause, which is the effect, or whether the association is due to
a common cause that is not included in the model. Such unresolved effects
are quantified simply by the covariance between the two variables16. In
tracing indirect effects along paths that include such double-headed arrows
one can go in either direction but can traverse the double-headed arrow
only once. Table 4.4 summarises the rules for decomposing the overall
covariance or correlation between two variables in the path model and Table
4.5 lists the decomposition of Figure 4.7.

4.3 Multiple regression expressed as a path model

Since path analysis looks rather similar to multiple regression, let’s look at
how to represent a multiple regression as a path model. A multiple regres-
sion equation uses a series of predictor variables (say, X1, X2 and X3) to
predict, or account for, the observed variation in the dependent variable Y.
The predictor variables are often called the ‘independent’ variables but this
term can be misleading, since they do not have to be independent of one
another at all. Except when these predictor variables are measured in con-
trolled experiments, they are often not independent of one another. Figure
4.8 shows such a multiple regression in the form of a path model.

It is clear from the path diagram that the partial regression coeffi-
cients that are estimated with multiple regression are the direct effects of
each predictor on the dependent variable. The indirect effects, which are
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16 Or a correlation coefficient if the variables are standardised, since a correlation is simply

a standardised covariance.



simply the unresolved causal relationships between the predictors, are
ignored. If the free covariances, (the sij in Figure 4.8) really are zero, then
the direct effects will also be the overall effects, but the regression equation
will not tell you this17. Furthermore, the model in Figure 4.8 can’t be tested
as a causal claim. There are only four observed variables in this model and
therefore there are 4(5)/2�10 unique elements in the covariance matrix.
There are also 10 free parameters that have to be estimated (the three path
coefficients, the three free covariances, the error variance and the variances
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Table 4.4. Given two variables (X and Y) in a path model, the overall covariance
or correlation (if using standardised variables) between them can be decomposed into
three different causal sources. Shown are the rules of the estimation of each source

Effect involving
variables X and Y Rule for its estimation

Direct effect Value of the path coefficient on the arrow from X to Y

Indirect effect along a Product of the path coefficients on the sequence of
single path arrows along the path leading from X, through at least

one intermediate variable, and into Y

Overall indirect effect Sum of the indirect effects along all paths from X to Y.
along all paths

Effect due to Multiply the path coefficients along a single path from Z
common causal to Y and the path coefficients along a single path from Z
ancestor (Z ) of both on X (called a trek). If there is more than one such trek 
X and Y linking X and Y due to common causes, sum these 

together

Effect due to Path coefficient on the double-headed arrow between X
unresolved causal and Y
relationship

Effect due to all Sum together the effects due to each common causal 
common causal ancestor of both X and Y
ancestors of both X
and Y

Overall effect Sum together, the direct effect, the total indirect effects,
the total effects due to common causal ancestors and any
remaining unresolved causal relationship between X and
Y. This will equal the covariance or correlation (if using
standardised variables) between X and Y.
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Table 4.5. Decomposition of the total association between each pair of variables in
Figure 4.7 into direct effects, indirect effects, effects due to common causal ancestors
and pure unresolved causal effects

Common Unresolved
Variable causal causal
pair Direct Indirect ancestor relationship

X1, X2 X1→X2 None None None

X1, X3 None (1) None None
X1→X2→X3
(2)
X1→X2→X4→X5↔X3

X1, X4 None (1) None None
X1→X2→X3→X4
(2)
X1→X2→X4

X1, X5 None (1) None None
X1→X2→X3→X4→X5
(2)
X1→X2→X3↔X5
(3)
X1→X2→X3→X4
X1→X2→X4→X5

X1, X6 None (1) None None
X1→X2→X3→X4→X6
(2)
X1→X2→X4→X6

X2, X3 X2→X3 (1) None None
X2→X4→X5↔ X3

X2, X4 X2→X4 (1) None None
X2→X3→X4

X2, X5 None (1) None none
X2→X3→X3↔X5
(2)
X2→X4→X5

X2, X6 None (1) None None
X2→X3→X6
(2)
X2→X4→X6

X3, X4 X3→X4 None (1) None
X4←X2→X4



of the three predictor variables). In other words, we have used up all of our
degrees of freedom in estimating our free parameters and have none left over
to test the causal implications of the model18. If you use the inferential test
described in Chapter 3 you will find that no variable is d-separated from any
other variable, either unconditionally or after conditioning on any set of
other observed variables. The regression model places no statistical con-
straints with which to test the causal implications of the model. Multiple
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example of a just-identified model.

Table 4.5. (cont.)

Common Unresolved
Variable causal causal
pair Direct Indirect ancestor relationship

X3, X5 None (1) None X3↔X5
X3→X4→X5

X3, X6 None (1) (1) None
X3→X4→X6 X3←X2→X4→X6

X4, X5 X4→X5 None (1) None
X4→X3↔X5

X4, X6 X4→X6 None None None

X5, X6 None None X5←X4→X6 None

Figure 4.8. A multiple regression of X1, X2 and X3 on Y, expressed as a
path diagram.



regression can certainly be used to decide whether the path coefficients (i.e.
the partial regression coefficients) are different from zero. Multiple regres-
sion can help us to decide whether the error (or residual) variance is less
than the total variance of Y (this is the F ratio). Multiple regression can’t
help us to decide whether the causal assumptions of the model are correct;
it can’t tell us whether the predictor variables are causes of Y. Multiple
regression can allow us to predict but not to explain. Statistics texts are quite
correct when they say that one can’t draw causal conclusions from regres-
sion. The causal conclusions must come from somewhere else. The best way
would be to conduct a controlled randomised experiment in which the
values of the X variables are randomly assigned to the experimental units,
since we would then have good reason to assume that the free covariances
between them really are zero. If this is not possible then we have to con-
struct our models, and collect our observations, in such a way that we can
constrain the patterns of covariation based on our causal hypothesis and then
test these constraints.

4.4 Maximum likelihood estimation of the gas-exchange
model

In Chapter 3 we looked at the model of Shipley and Lechowicz involving
specific leaf mass (SLM), leaf nitrogen concentration, stomatal conductance,
net photosynthetic rate and the internal concentration of CO2. Let’s fit and
test these same data (ln-transformed) to the proposed path model using
maximum likelihood methods. Remember that 5 of the 40 species were
actually C4 species and that these were clear outliers in the data set. Because
we require approximate multivariate normality, we can’t include these 5
species in the data set. The analysis will be restricted to the remaining 35
species. Since the resulting chi-squared statistic and the standard errors of
the free parameters are only asymptotically correct, we can expect that the
estimated standard errors are somewhat narrower than they should be and
the probability value of the chi-squared statistic will not be exact19. This
model is reproduced in Figure 4.9.

The first step is to specify the structural equations and to indicate
which parameters are free. There are five free path coefficients (a1 to a5) and
five free variances (the variance of specific leaf mass and the four error var-
iances �2 to �5). Since there are five measured variables there will be five
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degrees of freedom20. The free parameters are shown in Figure 4.9. Next, I
have to specify initial values for these free parameters. In my experience one
rarely has problems with convergence of the maximum likelihood estimates
when there are no latent variables in the model, unless parts of the model
are underidentified, and so I will make all free parameters equal to 1 except
a5, which I set at �1. I do this because I expect increasing photosynthetic
rates to reduce the internal CO2 concentration. One can sometimes have
problems with convergence if some variances are much larger (i.e. orders of
magnitude) than others, but I know that this is not the case with these var-
iables.

The value of the chi-squared statistic, based on the initial values of
the free parameters, was 150.96 – obviously a very poor fit. The numerical
algorithm searched for changes in these initial values that would improve the
fit while respecting the constraints and came up with a second set of values.
The value of the chi-squared statistic, based on this second set of values of
the free parameters, was 65.96 – obviously still a very poor fit but at least
much better. Again the estimates of the free parameters were adjusted and
after the third try the chi-squared statistic was 19.72. This process was
repeated a forth, and then a fifth time, giving a chi-squared statistic of 4.72.
The sixth attempt made such a small improvement (from 4.71954 to
4.71648) that the algorithm stopped; it had reached the valley floor. The
final maximum likelihood chi-squared value was therefore 4.72 and, with 5
degrees of freedom, the asymptotic probability under the null hypothesis
was 0.45. At this point we can obtain the estimates of the free parameters
and their asymptotic standard errors. These estimates, divided by their
asymptotic standard errors, can be used to test whether they are significantly
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Figure 4.9. The proposed path model relating leaf morphology and leaf
gas exchange. The letters with subscripts show the free parameters
whose maximum likelihood estimates must be obtained.



different from zero, using a z-test. Remember, because we only have 35
observations, such a z-test will be somewhat liberal, since the real standard
errors will be a bit larger that their asymptotic estimates. Here are the
maximum likelihood estimates. The asymptotic standard errors are given in
round brackets and the z-value (whose absolute value will be less that 1.96
95% of the time) is given in square brackets.

0.183
ln(SLM) � N�0,(0.044)�[4.123]

0.898ln(SLM) 0.057
ln(Nitrogen) � (0.096) �N �0,(0.014)�[9.338] [4.123]

1.146ln(Nit) 0.300
ln(Conductance) � (0.206) �N �0,(0.070)�[5.525] [4.123]

0.548ln(Cond) 0.091
ln(Photo) � (0.069) �N �0,(0.022)�[7.977] [4.123]

�0.162ln(Photo)       0.142ln(Cond)           0.001
ln(CO2) � (0.020) �          (0.013) �N�0,(0.0002)�[�8.133] [10.526] [4.123]

The probability associated with the maximum likelihood chi-
squared statistic (0.45) tells us that the data are consistent with the con-
straints that our model has placed on them. Given the small sample size we
know that this probability estimate is not exact but is far from being signif-
icant. We already knew this based on the d-sep test (Chapter 3), whose
probability estimates are exact. Although I discuss tests for multivariate nor-
mality in Chapter 6, one such test is due to Mardia (1970, 1974). The nor-
malised version of Mardia’s coefficient is asymptotically distributed as a
standard normal variate, although this requires very large sample sizes. At
least it gives a rough guide to deviations from multivariate normality and
the value of this coefficient in the present data set, 0.174, is much smaller
than the 1.96 needed for significant non-normality at the 0.05 level. These
points tell us that the causal structure that was proposed is consistent with
the data. We conclude that there is no good reason to reject the model and
so we can go on to look at the maximum likelihood estimates for the free
parameters.

The first thing to notice is that the z-scores, associated with each
of the 10 free parameters, are all much larger than the 1.96 value that indi-
cates significance at the 0.05 level. In other words, each of the free param-
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eters is significantly different from zero. Since d-separation predicts that each
of the five free path coefficients must be different from zero, this is good
news. A path coefficient that is not significantly different from zero doesn’t
necessarily mean that it really is zero. It is always possible that the true value
is close enough to zero that we can’t detect the difference; this is the well-
known problem of statistical power. None the less, a path coefficient that is
very close to zero requires that we be able to provide reasonable doubt that
it is not really zero as our model requires. The five variances (for specific leaf
mass and the four error variables) are also significantly different from zero.
The fact that the four error variances are not zero simply means that there
are other unknown causes contributing to the variance of each of the
dependent variables. We have no strong reason to suppose, however, that
there are unknown variables that are common causes of two or more meas-
ured variables, since, if there were, the covariances between the error vari-
ables would not all be zero as specified by the model and the model X 2 value
would be large. On the other hand, since we have a small data set, we have
little statistical power to detect common unknown causes that are numeri-
cally weak.

We can obtain the sort of path model that Sewall Wright would
have produced simply by first standardising each variable by subtracting its
mean and dividing by its standard deviation. In this way, the variance of each
variable is always 1.0. The residual variance of each variable is, as always, the
variance of the error variable (�, or the path coefficient from the error var-
iable to the measured variable if the variance of the error variable is fixed at
unity). This means that the explained variance is simply 1�Var(�) and the
square root of this gives the Pearson correlation coefficient for the (multi-
ple) regression, i.e. R. Here are the standardised equations:

ln(Nitrogen)�0.848ln(SLM)�0.530�1 R�0.845

ln(Conductance)�0.688ln(Nitrogen)�0.726�2 R�0.688

ln(Photo)�0.807ln(Conductance)�0.590�3 R�0.807

ln(CO2)��1.144ln(Photo)�1.480ln(Conductance)�0.484�4
R�0.875

Now that we have the maximum likelihood estimates for the free
parameters, we can estimate the effect of the variables on each other along
different paths of influence. These effects are the amount by which the
variable at the end of the path with change (in natural logarithmic units
since they are transformed) after a one unit change in the variable at the
beginning of the path, when all variables not involved in the path are held
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constant. Table 4.6 summarises these effects based on the non-standardised
variables.

Using the values in Table 4.6 we can see how the overall effects are
decomposed into direct effects, indirect effects and the effects of common
causal ancestors. For instance, the overall effect of a one ln-unit increase in
stomatal conductance on the internal CO2 concentration was to increase it
by only 0.053 ln-units. However, the direct effect was 0.142 units. The small
overall effect was due to the fact that stomatal conductance also had an indi-
rect negative effect on the internal CO2 concentration. Increasing stomatal
conductance increased the net photosynthetic rate by 0.548 units and
increasing photosynthetic rate decreased the internal CO2 concentration by
�0.162. The indirect effect of stomatal conductance on internal CO2 con-
centration through the mediating effect of net photosynthesis was 0.548�
(�0.162)��0.089. The overall effect was therefore 0.142�0.089�0.053
ln-units.

The importance of decomposing effects can be seen more clearly
when considering the standardised path coefficients. The overall effect (thus
the overall predicted correlation) between stomatal conductance and inter-
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Table 4.6. Predicted changes, in units of natural logarithms, of the variable at the
end of the path after a one unit change in the variable at the beginning of the path,
when holding constant all variables not involved in the path

Effect along
Path path

SLM→Nitrogen 0.898
SLM→Nitrogen→Conductance 1.029
SLM→Nitrogen→Conductance→Photosynthesis 0.564
SLM→Nitrogen→Conductance→Internal CO2 0.146
SLM→Nitrogen→Conductance→Photosynthesis→Internal CO2 �0.091
Nitrogen→Conductance 1.146
Nitrogen→Conductance→Photosynthesis 0.628
Nitrogen→Conductance→Internal CO2 0.167
Nitrogen→Conductance→Photosynthesis→Internal CO2 �0.102
Conductance→Internal CO2 0.142
Conductance→Photosynthesis 0.548
Conductance→Photosynthesis→Internal CO2 �0.089
Photosynthesis→Internal CO2 �0.162

Note:
SLM, specific leaf mass.



nal CO2 concentration was 0.557. This was due to a direct effect of 1.48
plus an indirect effect of 0.807��1.144��0.923. The overall effect (thus
the overall predicted correlation) between net photosynthetic rate and inter-
nal CO2 was only (1.48�0.81)�1.14�0.06, which is not even signifi-
cantly different from zero at the 0.78 level. Clearly, it would be biologically
absurd to suggest that the photosynthetic rate, which is removing CO2 from
the internal air spaces of the leaf, does not affect the internal concentration
of CO2. The apparent contradiction is resolved by decomposing this overall
effect. The direct standardised effect of net photosynthetic rate on internal
CO2 was �1.144. However, both net photosynthetic rate and the internal
CO2 concentration have a common causal ancestor: the stomatal conduc-
tance. The standardised effect of the path: net photosynthesis←stomatal
conductance→internal CO2 was 0.807�1.480�1.194. The overall corre-
lation between net photosynthesis and internal CO2 was therefore �1.144
�1.194�0.050. In other words, the direct effect and the effect of the
common causal ancestor almost cancelled each other out. This is just what
the physiological model of stomatal regulation of Cowan and Farquhar
(1977) would predict (see Chapter 3).
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5 Measurement error and latent variables

Ambient temperature affects the metabolic rate of animals. When it is cold
a homeothermic animal has to burn stored energy reserves, first glycogen
and fat and then (when these are exhausted) protein, in order to generate
heat and maintain its body temperature. The scaling of surface area (the site
of heat loss to the atmosphere) to body volume (where the heat is gener-
ated) means that small homeothermic animals such as song birds can lose up
to 15% of their body fat in one cold night. To burn this fat the bird must
increase its metabolic rate, which increases its O2 consumption. Imagine
that we conduct an experiment in which we place small birds inside meta-
bolic chambers overnight and vary the air temperature. The hypothesised
causal process is shown in Figure 5.1.

Unfortunately, we can’t directly measure any of these three vari-
ables; they are unmeasured, or latent, and so I have enclosed them in circles
following the conventions of path diagrams. If we measure the air temper-
ature using a thermometer then we aren’t directly measuring temperature –
the average kinetic energy of the molecules in the air. Instead we are meas-
uring the height of a column of mercury enclosed in a hollow glass tube.
In fact, we can’t even measure the actual height of the mercury exactly, since
our observed height will include some measurement error. Nor can we
directly measure metabolic rate. Typically, one measures the rate of gas
exchange (O2 decrease or CO2 increase) between the air entering and
leaving the metabolic chamber. If we measure oxygen consumption using
an infrared gas analyser then we aren’t even directly measuring oxygen con-
sumption. Instead we are measuring differences in the amount of light of
particular wavelengths that is absorbed as the light passes through the air.
Again, even this variable is not perfectly measured, since the observed values
will also contain measurement error. When we measure the fat reserves that
are burned by the birds we might actually be measuring the difference in
body weight over the course of the experiment and this too will include
measurement error. One simplified representation of the actual causal
process1 is depicted in Figure 5.2.
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In this causal scenario the variables that we can observe and measure
are not the variables that we hypothesise to form the causal chain of inter-
est. The causal process involves variables that we cannot directly observe.
We can obtain information about these latent variables by observing other
variables but the observed variables are also affected by other independent
causes that generate measurement errors. What are the consequences of this
for path analysis? What are the consequences of this for causal analysis in
general?

We know, based on d-separation, that if we could hold constant the
actual metabolic rate of our birds then changes in the temperature of
the ambient air would be independent of the changes in their fat reserves if
the causal hypothesis were correct. Therefore the partial correlation of the
unmeasured variables ‘air temperature’ and ‘change in fat reserves’ would be
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even the simplest scientific hypotheses have, hidden behind them, a whole constellation
of auxiliary hypotheses.

Figure 5.1. The causal structure relating air temperature, the metabolic
rate of the bird and the amount of fat reserves that are used up.

Figure 5.2. The causal structure relating air temperature, the metabolic
rate of the bird and the amount of fat reserves that are used up when
we conduct an experiment in the metabolic chamber and take
measurements.



zero when conditioned on the unmeasured ‘metabolic rate’. This would be
true whether we used experimental controls or statistical controls. However,
we can’t observe the actual metabolic rate; we can only infer its constancy
based on the observed rate of gas exchange. If gas exchange is perfectly cor-
related with metabolic rate then holding constant the rate of gas exchange
would ensure that metabolic rate was also constant. What happens if the
correlations between our measured variables and the variables of theoreti-
cal interest are not perfect?

5.1 Measurement error and the inferential tests

Figure 5.3A shows the causal scenario as we have conceived it, and Figure
5.3B shows it as it would look if we were willing to ignore the fact that our
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Figure 5.3. The first directed graph (A) shows the actual causal
structure of the experiment and the second directed graph (B) shows
the causal structure that is assumed when ignoring measurement error.



measured variables are imperfect measures of the causally important vari-
ables. Looking at Figure 5.3A, we see that there is only one conditional
independence relationship in the basis set involving the three latent variables
of interest; namely, ‘air temperature’ is independent of ‘change in fat
reserves’ after conditioning on ‘metabolic rate’. There are other conditional
independence relationships that involve the observed variables but these
observed variables don’t interest us except in how they can test the under-
lying causal hypothesis involving the latents. Notice that ‘thermometer
reading’ (one of our imperfect measures) is also independent of ‘change in
body weight’ (another imperfect measure) upon conditioning on ‘metabolic
rate’ as well. In other words, these two measured variables have the same
causal implications as those involving their underlying latent variables and
so the fact that these two measured variables are not perfect indicators of
their latents makes no difference to our ability to test the causal hypothesis.
However these two observed variables are not d-separated upon condition-
ing on ‘gas exchange’ in Figure 5.3A (the observed variable indicating meta-
bolic rate) even though they are conditionally independent in Figure 5.3B
which ignores measurement error. Therefore measurement error in the
conditioning variable will introduce errors into our test of the underlying
causal hypothesis. The error is not in the logic of the inferential test but in
our incorrect assumption that our measure of gas exchange is a perfect indi-
cator of metabolic rate.

We can conduct a numerical simulation based on the structural
equations derived from the causal graph in order to see what happens when
we include measurement error. I will represent the three latent variables (air
temperature, metabolic rate and change in fat reserves) by X, Y and Z and
the three corresponding observed variables by X�, Y� and Z�. Here is one
set of structural equations corresponding to the causal process:

X�N(0,1)

X��1X�N(0,�1)

Y�2X�N(0,2)

Y��1Y�N(0,�2)

Z�0.5Y�N(0, )

Z��1Z�N(0,�3)

Since we have generated our data in accordance with the causal
graph in Figure 5.3A, we know that about 5% of our simulated data sets
would produce a probability of less that 0.05 when examined using the

�0.75
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d-sep test. If we test 500 independent data sets, each with 1000 indepen-
dent observations, then the 95% confidence interval for our empirical rejec-
tion rate would be between approximately 2% and 8% (Manly 1997). Table
5.1 summarises the results of these simulations as we increase the measure-
ment errors. We see that even when the measurement error variance of Y �
is 0.3, i.e. slightly less than 4% of the true variance of Y, the rejection rate
is outside the 95% confidence limits. As the measurement error variance
increases further, the rejection rate increases rapidly. In other words, even if
the hypothesised causal process involving the theoretical variables were
correct, we would tend to reject it too often if we were to incorrectly
assume that our conditioning variable is measured without error. Here,
ignoring measurement error increases the likelihood that one will incor-
rectly reject a model that is correct. The effect of measurement error on the
accuracy of the probabilities associated with the maximum likelihood chi-
squared statistic is the same in this example (Table 5.1).

5.2 Measurement error and the estimation of path coefficients

The effect of measurement error on the accuracy of the estimation of the
path coefficients, using either the least squares regression methods of
Chapter 3 or the maximum likelihood regression methods of Chapter 4, are
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Table 5.1. The empirical rejection rates of 500 independent data sets, consisting of
1000 independent observations (X, X�,Y,Y�, Z, Z�) each, are shown.The true
model is shown in Figure 5.3A with different amounts of measurement error and
the inferential tests are based on the incorrect model in Figure 5.3B.The
population variances of the latent X,Y and Z are 1, 8, and 4.75.The population
variances of the observed X�,Y�, and Z� are 1��1

2, 8��2
2 and 4.75��3

2

d-sep MLMeasurement error Ratio of variances
rejection rejection

�1
2 �2

2 �3
2 X/X� Y/Y� Z/Z� rate rate

0.01 0.01 0.01 0.990 0.999 0.998 0.052 0.064
10.0 0.01 0.01 0.009 0.999 0.998 0.060 0.052
0.01 0.10 0.01 0.990 0.988 0.998 0.060 0.050
0.01 0.30 0.01 0.990 0.964 0.998 0.088 0.102
0.01 0.40 0.01 0.990 0.952 0.998 0.152 0.144
0.01 0.01 10.00 0.009 0.998 0.322 0.052 0.060

Note:
ML, maximum likelihood.



perhaps somewhat better known to biologists. Let’s first look at a simple
example involving only two variables (X and Y ) that are measured with
error. When I say ‘measured with error’ I don’t mean only the obvious case
in which the measuring device (say an analytical balance) has a certain
degree of error.

Imagine that you wish to measure the nitrate availability of the soil
in the rooting zone of a plant, but only measure the total nitrogen content
of samples of this soil at a single time. In such a case the error of measure-
ment will include, not only the error involved in the analytical method for
nitrate concentration, but also the error involved in using the sample meas-
ures of total nitrogen at one point in time as a proxy variable for the total
nitrogen availability in the rooting zone. Let us imagine a causal process in
which the nitrate absorption rate of a plant (Y ) is caused by the amount of
nitrate available in the rhizosphere of its roots (X ). X is estimated as the
average nitrate availability of a sample of soil cores taken directly beneath
the plant at one point in time. Y is estimated as the change in the net total
nitrogen concentration of the plant from the time the soil is sampled until
the next day. Figure 5.4 shows the causal graph assuming measurement error
(Figure 5.4A) and without measurement error (Figure 5.4B).

The path coefficient shown as ‘a’ in Figure 5.4 is the regression slope
of Y on X. By definition, this is:

a�

Now, the true value of a� in Figure 5.4B can be derived from the
rules of path analysis:

a��

Often the measured variables (X� and Y �) will scale 1�1 with the
underlying latent variable; that is, a unit increase in the underlying variable
will result in a unit increase or decrease of the measured variable. In such a
case (or if b1�b2) the formula can be simplified to:

a��

From this we see that the effect of measurement error (e2) is to
decrease a� relative to a. If we ignore the measurement error then a� will be
a biased estimate2 of a. The formula also shows why it is important to sample

aVar(X )
Var(X ) � Var(e2)

Cov(X�,Y�)
Var(X�)

�
a(b1)(b2)Var(X )

b1
2Var(X ) � Var(e2)

Cov(X,Y )
Var(X )

�
aVar(X )
Var(X )
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with measurement error, then the relationship between a and a� will also depend on the
covariances between the measurement errors. See Bollen (1989) for the exact formulae.



in such a way as to allow the widest variation possible in the causal variable
X. Presumably the measurement error will not change with the range of X
and so as the variance of X increases the difference between a� and a will
decrease. Furthermore, measurement error in the effect variable (Y ) has no
effect on the bias of the path coefficient.

These measurement errors have different effects on the estimation
of the path coefficients and on the probabilities of the overall inferential test
of the causal model. For instance, in the causal model shown in Figure 5.3,
measurement error in X (the air temperature) had no effect on the probabil-
ity levels estimated in the inferential test when we ignored measurement
error but would bias the path coefficient from air temperature to metabolic
rate. Measurement error in Y (metabolic rate) did have an effect on the esti-
mated probabilities but would not bias the path coefficient3 from X to Y.
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13 Measurement error in Y would bias the estimation of the path coefficient from Y to Z, if
we ignore it.

Figure 5.4. The first directed graph (A) shows the true causal structure
in this scenario. The second directed graph (B) shows the causal
structure that is assumed when ignoring measurement error.



5.3 A measurement model

When measurement error can’t be safely ignored, it must be explicitly
included in the model and estimated. Most biologists deal with measure-
ment error by ignoring it. Sometimes this is reasonable. After all, we are able
to measure temperature, mass or CO2 concentration with great accuracy.
Sometimes ignoring measurement error is not at all reasonable. Trying to
estimate the fat reserves of a large free-ranging mammal by palpating its ribs
and giving it a score of 1 to 4 can hardly inspire confidence in its accuracy,
yet this is a common measure of ‘body condition’. Similarly, we do not
possess the equivalent of a thermometer that we can put into the mouth of
our animals to measure their evolutionary fitness. If we try to measure fitness
using indirect measures then these measures will probably possess important
measurement errors.

Although not generally known to most biologists, methods for
dealing with measurement error have been developed in the social sciences.
Almost all important variables are latent in these sciences and they can be
measured only with substantial error. For instance, one might reasonably
hypothesise that the degree to which a person can empathise with suffering
might determine their career choice. It seems reasonable to suppose that a
person with more empathy might choose to become a nurse rather than a
mercenary soldier. Yet how can one measure ‘empathy’? A common
approach would be to devise a series of survey questions and develop an
index of empathy based on the answers to these questions. It is obvious that
choosing the answer ‘A’ in a multiple choice test does not cause one to
become a nurse rather than a mercenary nor does it cause one to become
more empathic. Rather, a psychologist might say that one’s empathic ten-
dency is a common latent cause both of the answers on the survey and of
one’s choice of career. The survey answers are imperfect measures, or indi-
cators, of the underlying latent variable and the measurement model must
separate those parts of the covariance between the answers that are due to
the underlying latent cause from those parts of the covariance due to other
causes. One simple type of measurement model is a factor model.

There is a huge literature devoted to measurement theory and to its
many pitfalls. Many of these pitfalls are conceptual rather than statistical, so
let’s begin with an example (Dunn, Everitt and Pickles 1993) that doesn’t
pose any conceptual problems. You cut a number of pieces of string into
different lengths and lay them on a table. Each string now has an attribute
– length – that you ask four different people to measure. One person uses a
ruler graduated in centimetres. One person uses a hand and measures in
hand lengths. The third person uses a ruler graduated in inches and the
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fourth person simply looks at each string and tries to estimate it to the
nearest centimetre. The length measurements have different units and each
estimate has two different causes. The first cause is the true length of the
string, since each person is trying to accurately measure this latent attribute.
The other type consists of all those other causes that give rise to the meas-
urement error (incorrectly calibrated rulers, tiredness, myopia . . .). Figure
5.5 shows the causal graph.

In this example everything is in plain sight. The true length of the
string, although latent, is not hypothetical. We can see the strings on the
table and know that each has a fixed value of the attribute ‘length’. The only
uncertainty is in knowing the actual length of each string. Let the j strings
( j�1,n) measured by the four people be Xj1 to Xj4 and let the true length
of each string be Lj. The structural equations representing this causal process
are:

Xj1��1Lj�N(0,�1)

Xj2��2Lj�N(0,�2)

Xj3��3Lj�N(0,�3)

Xj4��4Lj�N(0,�4)

These structural equations, coupled with the path diagram in
Figure 5.5, state that each person’s measurement (Xjk) is a linear function of
the true length of each string (Lj) plus a certain amount of other unknown
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Figure 5.5. The causal structure generating the different measured
lengths of the pieces of string.



causes whose variance is �k. The total variance in the kth person’s measure
of a given string is now separated into two parts: a part that is common to
everyone (the common variance) that is due to the true lengths of the strings,
and a part that is unique to each person (the unique variance, �k) that is due
to those other causes of a particular measurement. Since these unique var-
iances are d-separated in Figure 5.5, we know that they must be uncorre-
lated. Since there are four observed variables there are 4(5)/2�10 unique
covariances in the covariance matrix4. There are only nine free parameters
that we have to estimate: the four path coefficients (the four �i), the vari-
ances of the four measurement errors (the four � i

2) and the variance of the
latent variable. We can therefore fit this model by maximising its likelihood
and then test it using the maximum likelihood chi-squared test because we
have 1 degree of freedom left. Before we do this, however, we have to over-
come a problem of identification. Identification is a problem that is dis-
cussed in more detail in Chapter 6, after we have seen how to combine the
measurement model with the structural model involving the latent variables,
but it can be intuitively understood with the following example.

If you are given an equation, say y�2x�z, and are told only that
x equals 1, then there is more that one combination of values for y and z
that will solve this equation; in fact, there are an infinite number of such
values. The equation is said to be underidentified. If you are told both that x
equals 1 and that z equals 3, then there is only one value of y that is admis-
sible: y�5. The equation is just identified 5.

In our current example with the string lengths the underidentifi-
cation arises because we have to estimate both the path coefficients and the
variance of the latent variable. We see in Figure 5.5 that d-separation pre-
dicts that the partial correlations (thus, the partial covariances) of each pair
of observed variables must be zero when conditioned on the latent variable.
Maximum likelihood estimation fits the data to the structural equations
while respecting this constraint. The predicted covariance between the
latent L and each observed Xj is given by Cov(L, Xj)��iVar(L). Since there
is an infinite combination of � values and Var(L) that can solve the equa-
tions, we must choose one by imposing an additional constraint. In reality,
the imposition of this constraint consists of choosing the units that you want
for your latent variable.
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15 If we are told that x equals 1 and that two different estimates of z are 2.5 and 3.5, then

the equation is overidentified. There is no unique solution to overidentified equations and
in any empirical problem the objective is to find the combination of estimates that gives
the ‘best’ solution; least squares regression or maximum likelihood estimation are both
examples of this.



At this point you have a choice. If you want the latent variable to
have the same units as one of your measures, then you can fix the path
coefficient from the latent to this measure to 1. By doing this you are stating
that a one unit change in the latent changes the measured variable by one
unit of the chosen scale. For instance, if we wish to scale our latent string
lengths in centimetres then we could fix �1 to 1. Think carefully before
doing this. Your measure might systematically underestimate small values of
the latent variable and overestimate large values; in this case the slope (i.e.
the path coefficient) would be greater than 1. If this is the case, or if the
scales of none of the measured variables are inherently more reasonable or
useful than any of the others, then you can express the scale of the latent
variable in units of standard deviations. This is done by fixing the variance
of the latent variable to unity and allowing all the path coefficients to be
freely estimated. Remember that standardisation (dividing a variable by its
standard deviation so that its variance is unity) removes the original unit of
the variable and replaces it with a scale of standard deviations from the mean.
This has the effect of defining the scale of the latent variable by the meas-
ured variable and the path coefficient.

Here is the full set of structural equations that are used in the like-
lihood maximisation using a standard deviation scale for the latent:

Xj1��1L�N(0,�1)

Xj2��2L�N(0,�2)

Xj3��3L�N(0,�3)

Xj4��4L�N(0,�4)

Var(Xj)��j
2Var(L)�� j

2 j�1,4

Var(L)�1

Cov(Xi,Xj)��i�jVar(L) i� j

These structural equations decompose the observed variances of the four
measured variables into one part that is the same for all of them, due to the
common cause of L, and one part that is different for each of them, due to
the uncorrelated measurement errors. Let’s simulate this causal process using
the following generating equations:

Xj1�1L�N(0,0.5)

Xj2�0.07L�N(0,7)

Xj3�0.39L�N(0,3.3)
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Xj4�1L�N(0,10)

L�N(
�50,��10)

Notice that the real scale for the true latent length is in centimetres
in this simulation, since the path coefficients leading from the latent to X1
and to X3 are unity. So, I generate 100 independent ‘strings’, whose true
length (L) is measured in centimetres. Since the first person used a ruler grad-
uated in centimetres, the path coefficient is 1. Since she rounded her esti-
mates to the nearest half centimetre, I have given her measurement error a
standard deviation of 0.5cm. The second person used her hand, which was
14 centimetres long. Her measurement scale was hand-lengths, rounded to
the nearest half-hand and so the path coefficient is 0.07, with standard devi-
ation of the measurement error being 7 centimetres. The third person used
a ruler calibrated in inches, resulting in a path coefficient of 0.39, which is
the conversion from inches to centimetres. He took little care in his readings
and so the standard deviation of the measurement error was 3.3 centimetres.
The last person simply visually estimated the true length in centimetres and
so the path coefficient is 1. He was accurate only to within 10 centimetres,
resulting in the standard deviation of his measurement error being 10 centi-
metres. Figure 5.6 shows the scatterplot matrix6 of the 100 strings.

The measured lengths taken by the four people are all correlated,
since they are all trying to measure the same thing. The residual scatter in
the graphs between each measured variable is due the measurement errors
of both variables in the pair and the magnitudes of these measurement errors
differ from one variable to the other. Here are the maximum likelihood esti-
mates of the free parameters of the structural equations after fixing the var-
iance of the latent variable to unity:

X1�10.076L�N(0,3.416)

X2�1.829L�N(0,7.167)

X3�3.631L�N(0,3.480)

X4�12.120L�N(0,9.075)

The chi-squared statistic is 3.283 with 2 degrees of freedom,7 pro-
ducing a probability of 0.19 under the null hypothesis, telling us that the
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hypothesised causal structure is consistent with the data. The estimated var-
iances of the measurement error of each variable agree well with the true
values; the confidence intervals of these estimates, which are also given in
most commercial SEM computer programs, include the true values. The
estimated path coefficients are quite different from the true values. This is
due to the fact that I fixed the variance of the latent variable to 1 even
though we know that it is 100 (thus with a standard deviation of 10) in the
simulations. This means that the path coefficients are proportional to the
true values with the constant of proportionality being the inverse of the true
standard deviation of the latent variable. Since we know the true variance
of the latent variable in this simulation, we can convert the structural equa-
tions, obtaining:

X1�1.0076L�N(0,3.416)

X2�0.1829L�N(0,7.167)

X3�0.3631L�N(0,3.480)

X4�1.2120L�N(0,9.075)
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Figure 5.6. Scatterplot matrix of the simulated observations on the
lengths of the four strings (X1 to X4); the histograms in the diagonal cells
show the empirical distributions of the observations.



Both these equations and the ones before are identical up to a con-
stant (1/10) and so the conversion simply changed the mean of the latent
variable. Since SEM is generally concerned with the relationships between
the variables, not their means, this conversion will have no consequence on
the model. However, I said above that we could have fixed the scale of our
latent variable to centimetres by fixing the path from the latent to X1 to
unity and allowing the variance of the latent to be freely estimated. In an
empirical study we would not know the true variance of the underlying
latent variable and so this second strategy would be the one to use if the
scale of the latent is important to you. We can calculate the correlation
between the measured variables and the underlying latent variable in order
to judge how well the measurement model has done. These correlation
coefficients are routinely printed out in commercial SEM programs; Box 5.1
summarises the calculations.

Box 5.1. Correlating latents and indicators

By definition, the correlation coefficient between the latent variable, L, and
its observed indicator variable, Xi, is:

L,Xi
� �

where �i is the path coefficient from the latent (L) to its indicator (Xi).
The coefficient of determination, 2

L,Xi
, between the latent and its indi-

cator is:

2
L,Xi

� ��i
2�i

where �i is called the reliability of Xi.
If you want to obtain estimates of the latent variable, up to a scaling

constant, then you can form a weighting function of the observed variables;
see Bollen (1989) page 305, for the formula. However, no weighting func-
tion can estimate the latent without error and, in practice, the various weight-
ing functions that have been proposed do not improve the accuracy of the
estimation of the latent much beyond that obtained by choosing the meas-
ured variable whose correlation with the latent is highest.

The accuracy with which one can estimate the underlying latent
variable (up to a scaling constant) will depend both on the reliability of the
measured variables and on the number of such variables used to measure
the latent. However, this predictive ability is really quite secondary in the

�2Var(L)
Var(Xi)

�iVar(L)

�Var(L)Var(Xi)
Cov(L,Xi)

�Var(L)Var(Xi)
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context of testing causal models with measurement error. The most impor-
tant point is that a measurement model allows one to explicitly account for
measurement error, therefore providing unbiased estimates of the path
coefficients. Because the predicted covariances between the observed var-
iables are functions of the path coefficients linking them, then we can
obtain unbiased estimates of the predicted covariance matrix and, there-
fore, of the asymptotic probability of the model under the null hypothesis.
For those who like to see the algebraic details, Box 5.2 gives the generic
factor model.

Box 5.2. Standard factor model

Consider the following model (Figure 5.7) with six observed (manifest) var-
iables and two latent variables with an unresolved covariance between them.

Here are the structural equations:

y1�a11 f1�0f2�e1

y1�a12 f1�0f2�e2

y3�a13 f1�0f2�e3

y4�0f1�a24 f2�e4

y5�0f1�a25 f2�e5

y6�0f1�a26 f2�e6
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Figure 5.7. A measurement model involving two latent variables (f1 and
f2), each measured by three observed variables (y1 to y3 and y4 to y6).



In matrix form, the equation is Y�AF�E. Multiplying both sides by the
transpose of Y gives: YY �� (AF�E )Y �� (AF�E )(AF�E )�. Expanding
this gives: (AF )(AF )�� (AF )E��E(AF )��EE�. Since the errors are inde-
pents of the latent factors ( f1 and f2) and of each other, when we take expec-
tations the following two terms are zero: (AF )E� and E(AF )�. This gives
E[YY �]�E[AFF�A�]�E[EE�]. From this comes the standard factor model
equation:

�YY�A�A���

where �YY is the model covariance matrix between the observed (Y ) vari-
ables, � is the model covariance matrix between the latent (F ) variables, and
� is the model covariance matrix between the errors (which don’t have to
be mutually independent, as in the current example). In order to avoid inde-
terminacies, we can set the factor variances to unity. Putting this all together
for our model we get the following matrix equation:

�11 0

�11 �12 � �16 �21 0

��21 �22 � �26����31 0 � �1 	42���11 �21 �31 0 0 0 �� � � � 0 �42 	21 1       0     0    0   �42 �52 �62

�61 �62 � �66 0 �52

0 �62

The minimum number of observed variables needed to fit, and test,
a measurement model will depend on the number of hypothesised latent v-
ariables and the ways in which these latents are related to one another. For
instance, if you have only one measured variable, the structural equation is
Xj��L��. You have only one element in the covariance matrix (i.e. the
variance of X ) but you have three parameters to estimate: �, Var(�) and
Var(L). You can fix � to 1 to fix the scale of the latent, but this still leaves
Var(L) and Var(�). The equation is underidentified. If you can obtain an
independent estimate of the error variance, then you can fix Var(�) to this
value. This can sometimes be done. For instance, one could physically
extract the body lipids of a sample of animals to obtain a precise estimate of
body fat and then regress an indirect measure of this body fat to obtain the
residual error variance. This will allow you to separate measurement error
in subsequent data (assuming that the measurement error doesn’t change),
but you still can’t test this measurement model, since there would be no
degrees of freedom.
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What about two measures of a latent? With two observed variables
we have three non-redundant elements of the covariance matrix (two var-
iances and one covariance), but we also now have five free parameters (�1,
�2, Var(�1), Var(�2) and Var(L)). We have not solved our problem of under-
identification. With three measures of a latent we have six non-redundant
elements of the covariance matrix and seven free parameters. Since we have
to set the scale of the latent, for instance by fixing Var(L) at 1, we can now
fit the structural equations, but we will have no degrees of freedom with
which to test the measurement model. This is fine if we don’t need to inde-
pendently justify the measurement model (for instance, the relationship
between a thermometer and the air temperature) but if there is any ques-
tion about the causal relationships between the measured variables then we
have defeated the whole purpose of modelling measurement error. Four
measured variables per latent is the minimum number needed to both fit
and test such a measurement model.

5.4 The nature of latent variables

So far, I have described latent variables simply as variables that we have not
directly measured but that we can directly observe. In the previous exam-
ples there was no question but that the animals really did have lipid reserves
or that the strings really did have a length. Our only concern was in accu-
rately measuring these variables. In such situations the development of the
measurement model involves choosing measurable indicator variables that
are all linearly related to the same latent variable. Ideally, the only causal rela-
tionships between these indicators will be through the common effect of
the latent variable. If there exist other causal relationships between the meas-
ured variables, through other latents or not, then these must also be included
in the model.

Often nature is not that accommodating. What happens if we want
to model latent variables that we cannot directly observe? In such cases, even
the existence of the latent variable is hypothetical. The invocation of such
theoretical entities presents much more difficult choices, since we can’t rely
on direct observation to know whether such things even exist, although the
actual modelling is no different. None the less, the history of science is lit-
tered (or enriched, depending on your philosophical view) with such things.
When Gregor Mendel invoked recessive and dominant alleles of genes to
explain his patterns of inheritance in pea seeds, he did not measure or
observe such things. Rather, he inferred them because the ratios of the
resulting phenotypes agreed with the binomial proportions that would result
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if such things existed8. Genes were latent variables and still are; no one has
ever directly observed a gene. Atoms, too, are latent; the Periodic Table was
developed by inferring atomic structures from the numerical regularities
that resulted from experiments. Ernst Mach, who was mentioned in
Chapter 3 as one of the phenomenalists who influenced Karl Pearson’s
views, initially refused to accept the reality of shock waves caused by bullets
going faster than the speed of sound. He accepted such waves only when
he was able to devise an experiment in which a camera was rigged to take
a picture just as a bullet cut a fine wire covered in soot, revealing a V-shaped
pattern9. As these ‘successful’ latent variables attest, scientists have regularly
invoked things that can only be indirectly observed through the use of proxy
measures. The problem is that scientists have also invoked ‘unsuccessful’
latent variables. A classic example is the ‘aether’, through which light waves
were supposed to cross outer space. The use of latent variables in measure-
ment models or SEM is not so much a statistical controversy as a scientific
and philosophical one. Think carefully before including latent variables in
your models and be prepared to justify their existence.

Much of my personal discomfort with latent variable models comes
from the causal claims that many (by no means all) latent variables make. It
is one thing to invoke a theoretical unmeasured variable and quite another
to demonstrate that such an entity has both a reality in nature and has causal
efficacy. Choosing, developing and justifying such latent variables is, perhaps,
the most difficult aspect of structural equations modelling. I don’t know of
any set of rules that can unfailingly guide us in this task either. The explor-
atory methods, described in Chapter 8, can help to alert us to the existence
of latent variables. The statistical tests based on maximum likelihood allow
us to compare our data with such hypothesised latent variable models and
therefore potentially to reject them. However, scientists generally demand
stronger evidence than an acceptable statistical fit before accepting the phys-
ical reality of unmeasured variables. Before continuing further, it is again
useful to look briefly at the history of latent variable modelling in statistics.
The hornets’nest of confusion involving latent variable models is due in part,
I believe, to the historical link between latent variable models and factor
models in the social sciences.

In 1904 the English psychologist Charles Spearman combined
the new psychometric work of Alfred Binet on human intelligence with
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correlation coefficients. In his provocatively titled paper (Spearman 1904),
‘General intelligence objectively determined and measured’, he hypothe-
sised that the observed measures of intelligence of people, obtained from
test questions, were all correlated because they were all due to a general
latent intellectual capacity (g) that varied from person to person. If we have
four different measures of intelligence (from an IQ test, say) then the causal
graph would look like Figure 5.8.

Now, given this structure, the population correlation between any
two observed variables, say X1 and X2, would be 12��1�2. It follows that
the following three equations must be true if the model in Figure 5.8 is true:

1234�1324�0

1324�1423�0

1423�1324�0

Spearman called these ‘vanishing tetrads’ because each involves four corre-
lation coefficients and they are, in modern terms, constraints on the corre-
lations due to the causal structure of the model. He argued (incorrectly, as
explained in Chapter 8) that data obeying such vanishing tetrads was evi-
dence for this unmeasured latent cause (‘generalised intelligence’). Spearman
apparently viewed this latent variable as a real, causally efficacious attribute
of people. As more measured variables were added, and more complicated
latent structures were hypothesised, one could derive the vanishing tetrads
that were implied by the model, but this quickly became difficult to do, both
conceptually and computationally.

M E A S U R E M E N T E R R O R A N D L AT E N T I N F E R E N T I A L VA R I A B L E S

154

Figure 5.8. A measurement model for ‘general intelligence’ – a latent
variable. Note that the errors for each of the observed measures (X1 to
X4) are not shown but will exist unless the measures are all perfectly
correlated with this latent variable.



In the 1930s Harold Hotelling invented principal components anal-
ysis and Louis Thurstone invented factor analysis. These methods were not
based on any explicit causal model. Quite the contrary. Thurstone viewed
science in much the same way as Pearson did: science consisted of erecting
‘constructs’ that could describe the data as simply as possible. Whether or
not such ‘constructs’ actually existed in nature was irrelevant; they could
economically summarise the patterns of correlation and replace a large
number of observed variables by a single ‘construct’. These constructs, or
factors, had the property that they could partition the variances of each
measured variable into one part (the construct) that was common to all and
one part that was unique to each measured variable. Described in this way,
we appear to be right back to our measurement model, as described above.
However, such factor models (like principal component models) could
perform this trick quite independently of whether the ‘common variance’
was really due to some unmeasured common cause. Moreover, the method,
if drawn as a graph, always has the arrows going from the construct (factor,
common variance) to the measured variables. Such a structure was a require-
ment of the method. Interpreted as Thurstone had intended, this was not a
problem, since the constructs were simply mathematical functions designed
to summarise data. Interpreted as causal models (as Thurstone most emphat-
ically did not intend) factor models had the bizarre property of requiring
that the direction of causality always went from the latent construct to the
observed variables. The obvious advantage of factor analysis or principal
components analysis10 over Spearman’s method of vanishing tetrads was that
these former methods were easier to use and based on standard formulae.
One had only to plug the data into the equations and out popped the con-
struct or the principal component axis.

Thus vanishing tetrads became an historical footnote and factor
analysis (with its requirement that the arrows go from the construct to the
measured variables) took their place in psychometrics. Jöreskog (1967,
1969) applied maximum likelihood methods to factor analysis to develop an
inferential test for such models, and then extended this to allow for cause-
and-effect relationships between the latent variables based on econometric
simultaneous equations models, giving rise to structural equations models
(Jöreskog 1970, 1973). Although there is no longer any mathematical
requirement that the arrows always go from the latents to the measured var-
iables – as was the case with factor analysis – the formalism of factor analy-
sis still persists in SEM along with some of its philosophical origins.

5.4 T H E N AT U R E O F L AT E N T VA R I A B L E S

155

10 Principal components analysis, another multivariate data-summary method, requires that
the path coefficients always go in the opposite way to factor analysis.



As an example, consider the description given in Bollen’s (1989)
influential book on SEM. He stated that the measurement process begins
with a concept and defines a concept as an idea that unites phenomena
under a single term. He gave the example of ‘anger’, which provides the
common element tying together attributes such as screaming, throwing
objects, having a flushed face and so on. The concept of anger, he said, ‘acts
as a summarising device to replace a list of specific traits that an individual
may exhibit’. This is a close paraphrase of Thurstone’s original description
of a ‘factor’ but remember that Thurstone’s factor analysis was explicitly
acausal. To Bollen’s rhetorical question ‘Do concepts really exist?’, he
answered ‘[c]oncepts have the same reality or lack of reality as other ideas
. . . The concept identifies that thing or things held in common. Latent var-
iables are the representations of concepts in measurement models.’ If we are
dealing with purely statistical models devoid of causal implications, then
such a view might be fine. If our models are statistical translations of causal
processes then the latent variables in our models must be something more
than a mathematical summary; latent variables must represent variables with
physical reality having causal relationships to the measured variables.

One of the early controversies amongst geneticists at the turn of the
century concerned the inheritance of size differences in different body
parts. W. E. Castle, an influential geneticist at the time and Sewall Wright’s
thesis supervisor, argued that there was a single ‘size factor’ that was inher-
ited and that determined the allometric scaling of different body parts. Part
of this argument was based on correlation coefficients, calculated by Wright
while still a graduate student, relating five different bone measurements of
rabbits. Davenport (1917), studying human stature, argued that the patterns
of correlation between different lengths of different body parts suggested
that these attributes of size were inherited independently. In 1918 Wright
published ‘On the nature of size factors’ based on the rabbit measures, in
which he calculated a series of partial correlations. Based on these calcula-
tions he concluded that his own supervisor was wrong and that ‘These three
correlations11 suggest the existence of growth factors which affect the size
of the skull independently of the body, others which affect similarly the
length of homologous long bones apart from all else, and others which affect
similarly bones of the same limb.’Since no one knew what these ‘size factors’
were, the entire argument concerned the number of latent variables con-
trolling the inheritance of size in different body parts. The following
example shows how one can test such claims.
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5.5 Horn dimensions in Bighorn Sheep

Marco Festa-Bianchet and his students have been following a population of
Bighorn Sheep from the Rocky Mountains of Alberta for many years. Horn
size is very important in this species because, among other things, it affects
the ability of males in combat during the rut and therefore their evolution-
ary fitness. Every year from 1981 until 1998 the researchers measured the
total length and the circumference at the base of the two horns of the cap-
tured sheep. As one might expect, these four variables are highly correlated
and display the sorts of allometric scaling pattern that are so ubiquitous in
biology. Are these four variables simply responding to a single latent ‘size
factor’. In other words, are the patterns of correlation between the four var-
iables simply due to a single common unmeasured cause that determines
increases in linear dimensions, as Chase might have supposed?

Figure 5.9 shows this hypothesis, translated into a causal graph. To
fix the scale of the latent, I fixed the variance of the latent variable to 1. The
data do not follow a multivariate normal distribution, even after a ln-
transformation, as shown by Mardia’s normalised coefficient of kurtosis.
Because of this, I use a robust estimation method for the chi-squared statis-
tic (the Satorra–Bentler chi-squared); these statistics are explained in detail
in Chapter 6. The data are clearly not consistent with the single common
latent model in Figure 5.9, since the Satorra–Bentler chi-squared statistic is
759.106 with 2 degrees of freedom. The probability of observing this by
chance is far lower than one in a million.
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Figure 5.9. The hypothesised measurement model relating four
observed attributes of the horns of male Bighorn Sheep.



A look at the residuals shows why the fit is so bad. The residuals of
the two length measures are highly correlated, indicating that there is some-
thing else that is affecting length independently of the basal circumference.
Perhaps the ‘General size factor’ causes two ‘Specific size factors’ – one for
length and one for circumference? In Chapter 6 I explain how one can sta-
tistically test these ideas, however I can’t point to any specific biological
mechanism to justify this proliferation of hypothetical unmeasured variables.

At this point I apply the SQUIRM test. When the hypothesised
latent variable begins to resemble ‘a summarising device to replace a list of
specific traits that an individual may exhibit’ rather than a physical ‘thing’
with causal efficacy then I begin to squirm. The statistical model has wan-
dered too far away from any causal model to which it was supposed to be a
translation. I can’t justify one of the auxiliary assumptions (that the latent
variable is not simply a statistical construct) beyond reasonable doubt. Each
person will have their own tolerance for this, but in my experience most
biologists (and reviewers!) have a very low SQUIRM tolerance indeed. My
own (highly personal) opinion is that this is a good thing.

5.6 Body size in Bighorn Sheep

Body size is another important attribute of Bighorn Sheep. Large animals
are less likely to fall prey to predators. Animals that have been able to amass
sufficient fat reserves in the autumn are more likely to survive the severe
winter conditions at the top of a mountain in Canada. Larger males are more
successful in the rut and therefore are able to copulate with more of the
females. The reproductive success of a female is affected by her fat reserves.
Now imagine that you are a field biologist, perched at the top of a steep
rocky slope with a temporarily subdued animal, and you need to estimate
its body size. You do not have a balance (and have to keep your own
balance!) but you can quickly take measurements of attributes associated
with body size. Can you construct a measurement model that will be able
to estimate the unmeasured ‘body size’?

The following analysis, based on data provided by Festa-Bianchet,
are from four indirect measures of body size based on 248 observations of
Bighorn Sheep. The observed variables are the total length of the animal
(snout to tail), the circumference of the neck, circumference of the chest
just behind the front legs, and a visual estimate (which sounds better than
‘guess’) of body weight. These data, transformed to their natural logarithms,
are consistent with multivariate normality, based on Mardia’s coefficient.
The measurement model consists of a single latent variable, which I have
labelled body size, that is the single common cause of the four indirect meas-
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ures listed above. As always, one can set the scale of the exogenous latent
variable either by fixing its variance to unity or by fixing the path coefficient
from it to one of the observed variables. Since ‘body size’ is usually inter-
preted as meaning mass, I have therefore chosen to fix the path coefficient
from the latent to the estimated body weight at unity. This means that the
latent ‘body size’ is measured in ln(kilograms) (the units of the estimated
body weight). Figure 5.10 shows the directed graph for this measurement
model.

The chi-squared statistic for this model is 0.971 with 2 degrees of
freedom, giving a probability under the null hypothesis of 0.615. The data
are perfectly consistent with the model. Here are the structural equations
and the proportion of the variation of each measured variable that is
accounted for by the latent ‘body size’:

ln(Estimated weight)�1ln(Body size)�N(0,0.023) R2�0.893

ln(Total length)�0.370ln(Body size)�N(0,0.003) R2�0.911

ln(Neck circumference)�0.424ln(Body size)�N(0,0.005)
R2�0.883

ln(Chest circumference)�0.387ln(Body size)�N(0,0.001)
R2�0.982

ln(Body size)�N(0,0.191)

We see that the estimated error variance of the ln(estimated body
weight) is 0.023 and the latent ‘body size’ accounts for 89.3% of the vari-
ance of this estimated weight. The guesses were not so bad after all. In fact,
these guesses of the true body weight appear to be just as tightly correlated
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Figure 5.10. The hypothesised measurement model relating four
observed size attributes of Bighorn Sheep.



with the latent body size as the measures of neck circumference. The
observed variable that was most highly correlated (R2�0.982) with the
latent body size was the chest circumference. If only one measurement is to
be taken, the chest circumference should be the one to use.

If we now wish to test a causal model involving body size in a new
data set we can either use one of the measured variables and explicitly
include our estimates of the error variance or else use all four measured var-
iables. The advantage of using all four variables is that we do not have to
assume that the error variances will remain the same from one study to the
next; we can instead estimate them. This might be a wise decision if, for
instance, different people take these measurements from one study to the
next and some people make more measurement errors than others.

The problem of different people making systematically biased esti-
mates is the likely explanation for the lack of fit that occurs when another
measured variable is included in the measurement model described above.
This variable is the length of the hind foot. The chi-squared statistic for a
new model that includes this new variable is 25.808 with 5 degrees of
freedom, for a probability of about 1�10�4. This five-variable measure-
ment model can be made to fit the data only by letting the length of the
hind foot covary freely with the weight estimate and the neck diameter12.
In other words, there are other causes, independent of the latent ‘body size’
that are generating associations between these three measured variables.
Although it is possible that these other causes are related to the biology of
the animals, it seems more likely that the other causes are due to the way
the data were collected.

The measurements were taken over many years by many different
people – mostly graduate students with different levels of ability in field
work. Unlike the other length measurements, the length of the hind foot
requires that the foot and hoof be consistently extended to the same degree.
These measurements must be taken quickly while the animal is still subdued.
Imagine that you are sitting at the edge of a steep precipice on the top of a
mountain, with an adult Bighorn Sheep about to wake up. It is safe to
assume that the care with which the foot is extended will vary from person
to person. So, if there are any systematic biases between people in how they
measure the three variables in question (the length of the hind foot, the
weight estimate and the neck diameter) then this would be a cause of cor-
relations between them independent of differences in ‘body size’.
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5.7 Name calling

A certain Henry P. Crowell of Ravenna, Ohio, bought a bankrupt mill in
1881 and ‘went into the business of convincing people to consume what pre-
viously only poverty-stricken Scotsmen, Germans and horses had eaten’
(Burke 1996). How did he accomplish this feat of marketing13? Since people
associated the word ‘Quaker’with honesty and a healthy life-style, he simply
called his new product ‘Quaker Oats’. Thus began one of the longest-running
breakfast cereals in the USA. A certain mouthwash company proudly pro-
claimed that its product, besides making one’s breath taste fresh, also cured
‘halitosis’. The dictionary definition of halitosis is ‘bad-smelling breath’. So
what is the latent variable, shown in Figure 5.10, that is the single indepen-
dent ‘cause’ of the estimated body weight, the total length, the neck and the
chest circumference of the sheep? I have labelled it ‘body size’but is this mis-
leading advertising? Just as saying that something ‘cures halitosis’ evokes con-
notations beyond simply ‘curing bad breath’, does calling my latent variable
‘body size’ evoke connotations beyond simply ‘that theoretical variable that
has the property of making the partial covariances between each unique set
of measured variables equal to zero, when conditioned on it?’

Remember Bollen’s (1989) claim that ‘[l]atent variables are the rep-
resentations of concepts in measurement models’, and that ‘[t]he concept
identifies that thing or things held in common’. It is certainly reasonable to
state that ‘body size’ is that which is common to weight, length and circum-
ference of the body (the measured variables). However, if Figure 5.10 is to
be interpreted as a description of a causal process, then the latent variable
also represents a single common cause of body weights, lengths and circum-
ferences. The causal claim must be that there is a single biological process
that determines all of these body dimensions. It would obviously be better
if we knew enough about the genetic and developmental processes deter-
mining body size that we could label our latent variable as ‘hormone X’ or
‘gene Y’. If we can’t, then we could at least label it as the ‘unknown cause
of body size’. So long as both you and I understand the name ‘body size’ as
being a short form of saying this, then we can properly translate between
the causal claim and the statistical model. It is particularly important that we
choose our words carefully when dealing with latent variables and the
burden of clarity is on the person proposing the model, not on the reader.
If you see a latent variable in a structural equation and its meaning and causal
justification are not clearly explained, think of bad breath.
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6 The structural equations model

The structural equations model is commonly described as the combination
of a measurement model and a structural model. These terms derive from
the history of SEM as being a union of the factor analytical, or measure-
ment, models of psychology and sociology and the simultaneous structural
equations of the econometricians. In its pure form it therefore explicitly
assumes that every variable that we can observe is an imperfect measure of
some underlying latent causal variable and that the causal relationships of
interest are always between these latent variables. As in many other things,
purity is more a goal than a requirement. Using the example in Chapter 5
of the effect of air temperature on metabolic rate (Figure 6.1), the things
that we can measure (the height of the mercury in the thermometer or the
change in CO2 in the metabolic chamber) always contain measurement
error (�i). The measurement model, shown by the dotted squares in Figure
6.1, describes the relationship between the observed measures and the
underlying latent variables (average kinetic energy of the molecules in the
air and the metabolic rate of the animal). The structural model, shown by
the dotted circle in Figure 6.1, describes the relationship between the ‘true’
underlying causal variables. If we have only one measured variable per latent
variable, and we assume that the measured variable contains no measure-
ment error (i.e. the correlation between the measured variable and the
underlying latent variable is perfect) then we end up with a path model. If
we have a set of measured variables for each latent variable and we do not
assume any causal relationships between the latent variables, then we have a
series of measurement models. If we have more complicated combinations
in which we assume causal relationships between the latent variables, then
we have a full structural equations model. Therefore, if you have understood
Chapters 1 to 5, then you already know how to construct and test a struc-
tural equations model; you simply have to put the pieces together.

The goal of this chapter is therefore to deal with some technical
details that I have ignored up to now. The first detail is the problem of iden-
tification. In models involving more complicated combinations of latent and
observed variables, how can we make sure that no model parameters are
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underidentified? The second detail involves the robustness of SEM to vio-
lations of two important assumptions: large sample sizes and multivariate
normal distributions. What happens when our data do not agree with these
assumptions, and what can be done about it?

6.1 Parameter identification

We have already met the problem of underidentification in Chapter 5.
Intuitively, a model is underidentified when more than one combination of
parameter values can account for the same pattern of covariance. If a model
is underidentified then you can’t trust the parameter estimates, their standard
errors, the chi-squared value or its probability level. If a model is underiden-
tified then most commercial SEM programs will print a warning. For instance,
if you are told that a parameter estimate ‘is a linear combination’of some other
set of parameters or that an estimated variance estimate is negative or ‘set at
zero’, then this probably means that the model is underidentified.

A model can be structurally underidentified or empirically underiden-
tified. Structural underidentification means that the model will be under-
identified for any combination of parameter estimates – the problem is in
the way the model itself is constructed. You will want to ensure that your
model is not structurally underidentified before collecting data, in order to
avoid wasting your time. Empirical underidentification means that the
model is under identified only for some particular sets of parameter esti-
mates – the problem is not in the general construction of the model but
rather with the particular values found in the data. These points will be
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Figure 6.1. The relationship between the measurement model and the
structural model in the causal structure relating the ambient air
temperature and the metabolic rate of an animal.



illustrated with examples later. Let’s start with some useful rules for avoid-
ing this problem.

6.2 Structural underidentification with measurement models

Following the notions introduced in Chapter 5, let’s call a measurement
model any factor analytical model consisting of a set of latent variables and
a set of observed indicator (measurement) variables that are each caused by
at least one of the latent variables. The latent variables can be allowed to
freely covary (i.e. there can be curved double-headed arrows between them)
but there are no cause–effect relationships between the latent variables (i.e.
there can be no arrows from one latent to another). Bollen (1989) has sum-
marised three rules to help in judging whether a measurement model is
structurally identified. These rules cover many types of measurement
model, but not all. All of these rules assume that the scale of each latent var-
iable has been fixed, as described in Chapter 5, either by fixing one of the
path coefficients to 1 or by fixing the variance of the latent variable to 1.

Rule 1: t�n(n�1)/2 where n is the number of observed variables and t is
the number of free parameters (i.e. free path coefficients, free error
variables and free covariances either between the latents or between
the error variables). This rule is necessary for identification; if the
rule doesn’t hold in your model then you can be sure that the model
is not identified. Unfortunately, this rule doesn’t ensure that your
model will be identified; even if the rule holds, the model might still
be underidentified. The following two rules are sufficient (i.e. if
they hold then the model is identified) but not necessary (i.e. there
are still identified models that violate these rules).

Rule 2: A measurement model is identified if, along with rule 1:
1. There are at least three indicator variables per latent variable.
2. Each indicator variable is caused by only one latent variable.
3. There are no correlations between the error variables.

Rule 3: A measurement model is identified if, along with rule 1:
1. There is more than one latent variable.
2. There are at least two indicator variables per latent variable.
3. Each indicator variable is caused by only one latent variable.
4. Each latent variable is correlated with at least one other latent

variable.
5. There are no correlations between the error variables.

To understand how these rules work, let’s look at Figure 6.2, which
shows six different measurement models. The scale of the latent variables
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(L) have all been set by fixing the variances of the latent variables to unity.
Free parameters (the path coefficients, the variances of the error variables,
or the covariances indicated by curved double-headed arrows) are shown by
an asterisk (*). The model in Figure 6.2A is underidentified; there are four
free parameters (t�4) and two observed indicator variables (n�2) but rule
1 states that t �n(n�1)/2. If we constrain the values of the two path
coefficients to be the same during the iterative procedure that minimised
the maximum likelihood chi-squared statistic (shown in Figure 6.2B as the
dashed line between the two free path coefficients) then we have only three
free parameters, and the model is just identified1. This trick, while allowing
us to identify the model, doesn’t really allow us to get unbiased estimates of
the measurement error or of the two path coefficients.

The model in Figure 6.2C is just identified. There are t�6 free
parameters and n�3 observed variables, therefore 6�3(4)/2 and rule 1 is
fulfilled. Since there are no degrees of freedom left, we cannot test such a
model using the maximum likelihood chi-squared. Such a model can always
be fit even if the causal assumption of a single common latent cause is
wrong, and we can’t know whether or not the causal assumption is reason-
able on the basis of statistical criteria.

The model in Figure 6.2D is overidentified. There are t�8 free
parameters and n�4 observed variables, therefore 8�4(5)/2 and rule 1 is
fulfilled. Since there are 4(5)/2�8�2 degrees of freedom left, we can also
test such a model using the maximum likelihood chi-squared. Such a model
can always be fit but if the causal assumption of a single common latent cause
is wrong then we would obtain a significant probability estimate of the
measured maximum likelihood chi-squared statistic and could therefore
reject the model. Both the measurement models for the Bighorn Sheep
horns and for the body dimensions, studied in Chapter 5, were of this form
and we saw that the model for the horn dimensions was clearly rejected
(p�10�6) while the model for the body dimensions was not rejected (p�
0.615).

The model in Figure 6.2E is like the model in Figure 6.2D except
that it has a free covariance between the error variables of X1 and X2. Rule
1 is still satisfied since t�9, n�4 and 9�4(5)/2. Rule 2 is not satisfied;
although there are at least three indicator variables per latent (there are four)
and each indicator variable is caused by only one latent, there is also a cor-
relation between two of the error variables. Rule 3 can’t be applied either,
since there is only one latent variable. However, rules 2 and 3 are sufficient
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conditions, not necessary conditions. We can’t state that the model is defi-
nitely not identified, only that we can’t tell one way or the other. In fact,
model E in Figure 6.2 is structurally identified.

The model in Figure 6.2F looks a bit like two models from Figure
6.2A combined. Remember that model A wasn’t identified because rule 1
was violated. What about model F? There are t�9 free parameters and n�4
observed variables. Since 9�4(5)/2, rule 1 is satisfied. Rule 2 is not satis-
fied (there are only two indicator variables per latent) but rule 3 is satisfied.
Therefore, model F is structurally identified.

This model also provides a good example of how a model can be
structurally identified but empirically underidentified. If, in reality, the
covariance between the two latent variables (the curved, double-headed
arrow) is close to zero then the estimated covariance in the data might be
zero due to sampling fluctuations. If this occurs then the maximum likeli-
hood procedure will be trying to fit two independent measurement models,
each with only two indicators per latent. Since each separate measurement
model has four free parameters (two error variances and two path coeffi-
cients) but only two indicator variables, rule 1 would be violated in this par-
ticular case.

Recall the measurement model for the length and basal diameter of
the left and right horns of the Bighorn Sheep. We were quite confident that
the correlations between these four measures were not due to a single
common unknown cause because the measurement model with a single
latent variable was strongly rejected. Perhaps the observed correlations are
due to two correlated latent causes, as shown in Figure 6.2F? In bilaterally
symmetrical organisms the left and right halves of the body should be mirror
images in terms of size and shape. You have only to look into a mirror
(when no one else is watching) to see that no one is really perfectly bilater-
ally symmetrical. Various environmental perturbations during embryonic
development can cause random deviations from perfect bilateral symmetry,
and the degree of this ‘fluctuating asymmetry’ is sometimes used as an index
of pollution load or other forms of environmental stresses. Perhaps the
model with a single latent cause of horn dimensions was rejected because
there were additional causes of the left and right horns besides a single ‘size’
factor that generate deviations from bilateral symmetry? This hypothesis
produces the model in Figure 6.2F and we know that this model is both
structurally identified and has 1 degree of freedom left to test the model.
The single ‘size’ factor is reflected in the free covariance between the two
latent variables. The two latent variables, according to our present hypoth-
esis, should represent the different causes of the left and right horns gener-
ating deviations from bilateral symmetry. The two latent variables in Figure
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6.2F would then represent the causes specific to the left and right horns.
When I fit this model to the data (using the Satorra–Bentler chi-squared, since
there is significant multivariate kurtosis in the data), I get a chi-squared value
of 146.1205 with 1 degree of freedom. Clearly, this model, too, is wrong2.

If we think of how the measurements were taken, we are led to
another measurement model with two latent variables. The horns are
strongly curved and their length is measured with a measuring tape that has
to properly follow the curve of the horn. It is possible that longer horns,
with a more pronounced curve, would be systematically underestimated as
the exasperated researcher tries to make the measuring tape follow the curve
of the horn before the sheep regains control. The longer the horn, and the
more it is curved, the greater the degree of underestimation, since the meas-
uring tape will have more chance to slip down a bit along the horn. A similar
systematic bias might occur for the two measures of basal diameter, since
this measurement too requires a subjective decision as to where the base of
the horn begins. If these speculations are correct, then each of the length
measures and each of the diameter measures might have a separate cause (i.e.
the way in which they are measured) besides a common ‘size’ factor as horn
volume increases during development. When I fit this model to the data
(again using the Sattora–Bentler chi-squared, since there is significant multi-
variate kurtosis in the data), I get a chi-squared value of 3.948 with 1 degree
of freedom, giving a probability level of 0.05. This model has an ambigu-
ous probability level and its true value is probably higher, given the large
positive multivariate kurtosis of the data (Mardia’s coefficient of multivari-
ate kurtosis is 27.1); this point will be further discussed in the section on
non-normality of the data. Therefore, I conclude that there is not sufficient
evidence to reject it. The path coefficients from the latent ‘diameter’ to the
two diameter measures were 0.522 and 0.519 for the left and right horns.
Since the square of the diameter of a circle is proportional to its area (a
dimension of 2), one would expect these path coefficients to be 0.5. The
path coefficients from the latent ‘length’ to the two length measures were
0.875 and 0.869 with standard errors of about 0.03 for the left and right
horns. Since length has a dimension of 1, one would expect these path
coefficients to be 1. An approximate 95% confidence interval of the
path coefficients is therefore about 0.87�2(0.03) and 1.0 is clearly outside
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this interval. Therefore the measurement model suggests that the lengths of
the longer horns were systematically underestimated. The covariance (and
correlation, since their variances were fixed at unity) between the two
latents for ‘length’ and ‘diameter’ was 0.9995. If we accept this two-factor
measurement model then all these points suggest that the horn dimensions
are caused by a single latent ‘size’ factor, but that there was a systematic bias
in measuring the longer horns that introduced a second latent cause of the
lengths independent of the diameters.

Now apply your personal SQUIRM test. Does my interpretation
of these latent variables seem reasonable to you? The acceptable fit of the
measurement model with two latents says nothing about what these two
latent variables represent. The explanation that I have outlined, that the two
latents represent the systematic errors made in measuring lengths and diam-
eters and that the covariance between the latents is due to the common ‘size’
factor, is an interpretation of the latent variables. This interpretation of the
latent variables in the model is not supported by any statistical evidence;
rather, my evidence comes from how the variables were measured and the
sorts of error of measurement that might occur. The next step would be to
search for an independent confirmation of this explanation. For instance, if
the explanation is correct, then the two latent variables should disappear and
be replaced by a single latent variable once we measure horn length in a way
that does not systematically underestimate longer horns. One way would be
to photograph the horns and then measure the lengths using image analysis.

Davis (1993) described a way of testing for identification in much
more complicated measurement models, applicable to any measurement
model in which each indicator is caused by only one latent variable. This
method (the FC1 rule) requires that you be able to do matrix multiplica-
tion, but many statistical programs can do this3. A further requirement is that
the scale of each latent be fixed by fixing one path coefficient to 1 rather
than fixing the scale by fixing the variance of the latent variable to 1. Box
6.1 summarises the FC1 rule.

Box 6.1. FC1 rule for identification of a measurement model

The FC1 (‘Factor Complexity 1’) rule for the structural identification of a
measurement model assumes that each observed indicator variable is caused
by only 1 latent variable (hence its name).

For each latent variable, Li, in the measurement model, construct a
binary matrix Pi with qi rows and t columns; qi is the number of observed

6.2 M E A S U R E M E N T M O D E L S

169

13 My Toolbox (Appendix) includes a program to carry out this test.



indicator variables of Li and t is the total number of observed indicator vari-
ables in the model. Each element (pij ) of Pi has a 1 if the error variables of
indicators i and j are d-separated or if the covariance between them has been
fixed and if the covariance of the latents associated with indicator variables i
and j are free.

Form the matrix Di�PiPi�. Iteratively multiply D i
j�1�DiD i

j � until you
get the matrix D i

qi�1.
The first requirement for structural identification is that every element

of D i
qi�1 be non-zero in the row corresponding to the indicator of Li that

defines its scale. This must be true for all latent variables in the model.
The second requirement for structural identification of the full meas-

urement model is that, for every pair of latent variables whose covariance is
to be estimated (i.e. that are not d-separated or whose covariance is not fixed)
there must be at least one pair of indicator variables (one for each latent) whose
error variables are independent (i.e. d-separated) or whose covariance is fixed.

The third requirement for structural identification of the full measure-
ment model is that, for every latent variable whose variance is to estimated
(i.e. is not fixed), there must be at least one pair of indicator variables (one
for each latent) whose error variables are independent (i.e. d-separated) or
whose covariance is fixed.

I will now show how this rule works with reference to Figure 6.3.

In this model there are two latent variables, and so we need two P
matrices:

0 1 0 0 1 1 0 1 1 0 1 1
P1��1 0 1 1 1 1� P2�� 1 1 1 1 0 1�0 1 0 1 1 0 1 1 0 0 1 1
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Note that p12�p21�1 in P1 because �1 has a fixed (zero) covariance with �2
and similarly for �4 and �5 in P2. There are three indicator variables for each
latent and so q1�q2�3. We must form D1

3�1 and D2
3�1. These are the same

in this example, although this is not true in general:

17 20 16
D2

1�D2
2��20 33 20�16 20 17

Now, the first requirement is that every element in the row of each matrix
representing the scaling variable must be non-zero. The scaling variable of the
first latent variable is X1 and so every element in row 1 of the first matrix
must be non-zero. The first part of this first requirement is fulfilled. The
scaling variable of the second latent variable is X4 and so every element in
row 1 of the second matrix must be non-zero. The second part of this first
requirement is also fulfilled.

The next requirement is that there be at least one pair of error variables
(one associated with an indicator of each unique pair of latents) whose covari-
ance is zero or fixed to some other value. Error variables �2 and �5 fulfil this
second requirement.

The final requirement is that there must be at least one pair of error
variables (associated with an indicator of each latent) whose covariance is zero
or fixed to some other value. Error variables �1 and �2 fulfil this requirement
for the first latent variable and error variables �4 and �5 fulfil this requirement
for the second latent variable. Therefore this measurement model is structu-
rally identified.

6.3 Structural underidentification with structural models

Obtaining identification of the measurement model is necessary to fit a
structural equations model. However, SEM also includes the causal relation-
ships between the latent variables. In fact, you can think of the structural
model as the ‘path’ model that is imbedded in the full model. A path model
is therefore also a structural model. The rules for ensuring structural iden-
tification that I will describe come from Rigdon (1995). Rigdon’s rules do
not apply to models in which there are cyclic relationships involving more
than two variables (for example, if X causes Y causes Z causes X ). On the
other hand, these rules are both necessary and sufficient for acyclic or block-
acyclic structural models; a ‘block-acyclic’ model is defined below. This
means that any acyclic or block-acyclic structural model that satisfies these
rules is guaranteed to be structurally identified and any such structural
model that does not satisfy these rules is guaranteed to be non-identified.
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The first step is to conceptually divide the structural model into
segmented blocks. The model is fully segmented when: (i) there are no
cyclic relationships between the blocks and (ii) each block contains the
minimum number of variables needed to satisfy (i). In other words, if the
members of a set of variables in the model do not have a cyclic relationship
then each variable defines a separate block. If, on the other hand, a set of
variables does define a cyclic relationship (for example A causes B causes C
causes A) then they must be included in the same block. If, once this has
been done, there are more than two variables in any block then the iden-
tification status of the model can’t be determined. If this is not the case, then
the identification status of the whole structural model can be determined
by verifying the identification status of each block. If each block is iden-
tified then the whole structural model is also identified4. In evaluating these
blocks, we don’t need to consider the exogenous variables. Figure 6.4 illus-
trates these points.

In Figure 6.4A there are seven variables. Since variables X3 and X4
have a reciprocal (cyclic) relationship they must be included in the same
block. Since variables X5 and X6 have correlated errors they too must be
included in the same block. Variables X1 and X2 also have correlated errors
and form a block but they are exogenous in this model and so we don’t have
to worry about them. Finally, X7 is in a block all by itself. Therefore Figure
6.4A can be decomposed into four blocks, the causal relationships between
the blocks have no cyclic patterns, and the model fulfils the requirements
for Rigdon’s test.

In Figure 6.4B there are three variables (X1, X2 and X3) that possess
a feedback relationship. Therefore all three variables must be included in a
single block. The last variable, X4, forms a second block. Because there are
more than two variables in one of the blocks, we can’t determine the iden-
tification status of this model using Rigdon’s rules.

Once the structural model has been reduced to these blocks, then
you simply have to determine the identification status of each block. To do
this, refer to Figure 6.5, which shows eight different patterns. To interpret
these diagrams, you will need some notational conventions. The two vari-
ables indicated as ‘1’ and ‘2’ are the two variables in the block (if there is only
one variable in the block then it is automatically identified). The variables
indicated as ‘P ’ are causal parents. If an arrow and a circle as shown with
solid lines then the two ‘P ’ variables must be present. If an arrow and circle
are shown with broken lines then the two ‘P ’ variables can be present but
their existence is irrelevant to determining the identification status of the
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block. Finally, ‘OR’ means that at least one of the two ‘P ’ variables must be
present and ‘BOTH’ means that both ‘P’ variables must be present.

Now, look at each block of the structural equation that contains two
variables in a cyclic relationship and classify it as belonging to one of the eight
cases in Figure 6.5. If any of these blocks are not identified then the model
is also not identified. The only complication is with case 8 in Figure 6.5. To
determine the identification status of a block belonging to this case, ignore
the common causal parent of 1 and 2 and then see which of the other seven
cases corresponds to the block while ignoring the common causal parent.

6.4 Behaviour of the maximum likelihood chi-squared statistic
with small sample sizes

Many of my in-laws like to make home-made wine. A superficial glance at
bottles of these ‘wines’might convince you that they are the real thing. When
you taste them you realise that they vary along a gradient from ‘gut-rot’
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Figure 6.4. An illustration of Rigdon’s rules for structural identification
with cyclic models. (After Rigdon 1995.)



Fi
gu

re
 6

.5
.

E
ig

ht
 d

iff
er

en
t 

ca
se

s 
us

ed
 t

o 
ev

al
ua

te
 R

ig
do

n’
s 

ru
le

s 
fo

r 
st

ru
ct

ur
al

 id
en

tifi
ca

tio
n.

 (A
ft

er
 R

ig
do

n 
19

95
.)



through ‘drinkable’ to ‘divine’. As with latent variables, giving something a
name doesn’t make it so. The so-called ‘maximum likelihood chi-squared
statistic’ (MLX2) is the statistical equivalent of home-made wine. It is not
really distributed as a chi-squared variate at all and, unfortunately, its true
sampling distribution is unknown. However, as the size of the sample of
independent observations increases, the sampling distribution of this statis-
tic becomes closer and closer to the theoretical chi-squared distribution. At
very small sample sizes the MLX2 statistic is like gut-rot wine; it bears an
approximate resemblance to the true �2 distribution but there is no confus-
ing the two. At moderate sample sizes the MLX2 is like ‘drinkable’ home-
made wine; it is a reasonable approximation of the real thing unless it is to
be used for a special occasion. It is only when sample sizes are very large that
one cannot distinguish between the two. So how big is ‘big enough’and what
can be done if one’s sample is not big enough? In this section, I discuss the
effects of sample size on the MLX2 assuming that the data follow a multivar-
iate normal distribution. To explore these questions I use simulations drawn
from the path model shown in Figure 6.6, with all exogenous variables being
drawn from a standard normal distribution (i.e. zero mean and unit standard
deviation).

Figure 6.7 shows the empirical sampling distribution of the MLX2

statistic, based on 1000 independent data sets. I fixed all path coefficients to
their theoretical values (0.5) and all the error variances to their theoretical
values (1). This way, the only free parameters were the variances of X1 and
X2, and the model covariance matrix could be determined without itera-
tively minimising the MLX2. There were therefore 13 degrees of freedom
and the curve shown in Figure 6.7 is the theoretical �2 distribution with 13
degrees of freedom. The first histogram shows the distribution of the
MLX2 statistic in the 1000 data sets with 10 observations each. It is clear
that this empirical distribution is not well approximated by the theoretical
�2 distribution; the 95% quantile, corresponding to a 5% significance level,
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Figure 6.6. The path model used to simulate the data that are
summarised in Figure 6.7.



is shown by the arrow. The second histogram shows the distribution of the
MLX2 statistic in the 1000 data sets with 100 observations each. The empir-
ical 90%, 95%, 97.5% and 99% quantiles in the second simulation were
19.68, 21.94, 24.33 and 27.13, corresponding to theoretical probabilities of
0.103, 0.056, 0.028 and 0.012. Now, the empirical and theoretical distri-
butions are quite close and, assuming that the MLX2 is truly distributed as
a �2 distribution, will introduce little error.

In general, small sample sizes result in conservative probability esti-
mates. In other words, the true probability level will be larger than the value
obtained when assuming a �2 distribution. If your model produces a MLX2

value that is judged to be significant using the �2 distribution, then you have
an ambiguous result and you will have to use a different method of estimat-
ing the true probability level. For instance, Table 6.1 shows the empirical
quantiles and theoretical probability levels using the model shown in Figure
6.6. For this particular model a sample size of only 30 provides a passable
estimate of the tail probabilities but with somewhat conservative probabil-
ity estimates and a sample size of 50 is quite acceptable. In general, the more
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Figure 6.7. Empirical distributions of simulated data based on sample
sizes of 10 (left) or 100 (right) observations per data set. The solid curve
shows the theoretical chi-squared distribution and the arrow shows the
95% quantile corresponding to the 5% probability level.



free parameters in the model that need to be estimated, the larger the sample
size required. More complicated models may require sample sizes of 200 or
more. One rule of thumb is that there should be at least five times more
observations than free parameters (Bentler 1995).

What can be done if your sample size is too small to confidently
assume that the sampling distribution of the MLX2 statistic is close to the
theoretical �2 distribution? If there are no latent variables in your model
then you can use the method described in Chapter 3. If there are latent var-
iables then you will need another way. One way is to use bootstrap methods;
since this method is also useful in cases where the variables have other dis-
tributional problems, the bootstrap will be described later. Another way
around the problem of small sample sizes (but not non-normal distributions
in general) is to use Monte Carlo methods, as used in the simulations
reported in Table 6.1.

The first step is to fit your model using any SEM program, obtain
the MLX2 statistic (call it X ) and the degrees of freedom (df ). Next, con-
struct a model covariance matrix that has the same number of degrees of
freedom as does your model. If your SEM program permits numerical sim-
ulations then just specify your original model with model parameters the
same as those estimated by the program and whose random values are drawn
from normal variates with the specified means and variances. Simulate a
large number N (say 1000) data sets, each with the sample size (n) of your
original data, following this model. Next fit each simulated data set to your
original model with the same pattern of free and fixed parameters and save
the calculated MLX2 values of each run. Finally count the number (x) of
these simulated MLX2 values that are greater than the value (X ) obtained in
your original data. The proportion x/N will estimate the probability value
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Table 6.1. Empirical quantiles from 1000 independent data sets, with different
numbers of observations (‘sample size’), are shown along with the theoretical
probability levels assuming a �2 distribution with 13 degrees of freedom (see Figure
6.6)

Sample 50% 90% 95% 97.5% 99%
size quantile quantile quantile quantile quantile

10 16.18 26.80 30.58 33.70 38.65 
(p�0.24) (p�0.01) (p�0.004) (p�0.001) (p�0.0002)

30 13.55 21.38 24.72 27.00 29.81
(p�0.41) (p�0.07) (p�0.025) (p�0.012) (p�0.005)

50 12.79 20.48 22.47 24.43 27.52
(p�0.46) (p�0.08) (p�0.05) (p�0.027) (p�0.011)



(p) that you are looking for. Since these simulated data sets are mutually
independent and large in number you can obtain a 95% confidence inter-
val (Manly 1997) around p by referring to a normal distribution whose mean
is x and whose variance is Np(1�p). Thus the 95% confidence interval is

p�1.96 .

If your SEM program does not do Monte Carlo simulations, then
you can still get an empirical probability estimate so long as you have access
to a computer program that can generate standard normal random variates
and do simple matrix operations (invert a matrix and calculate a determi-
nant)5. Since the MLX2 statistic requires that we calculate the determinant,
and the inverse, of the model covariance matrix, it is useful to choose a
matrix for which this can be easily done. The determinant of a square
matrix whose non-zero values are all on the diagonal is simply the product
of these diagonal values. Similarly, the inverse of such a diagonal matrix is
simply a diagonal matrix whose diagonal values are the inverse of the orig-
inal matrix. We therefore simulate data from a model consisting of v mutu-
ally independent variables, each of which is drawn from a standard normal
distribution. The predicted covariance matrix, �, of such a model has non-
zero values only on its diagonal. There are v(v�1)/2 non-redundant ele-
ments. If we estimate the variance of q of the v variables, which will be on
the diagonal of �, then there will be v(v�1)/2�q degrees of freedom. So,
here are the steps needed to estimate an empirical probability level6 for a
MLX2 statistic of X:

1. Given the desired degrees of freedom (df ), find the smallest
integer value of v such that df�v(v�1)/2. This will be the smallest 

integer value of v such that v� . For example, if

df�9 then we need the smallest integer value of v such that

v� �3.8. Thus v�4.

2. Find the integer value of c such that c�v(v�1)/2�df. So, if df�9
and v�4 then c�1.

3. Construct a model covariance matrix � with v* rows and columns.
Estimate the variances of the first c variables and put these in the
first c diagonal elements. Define all other diagonal elements (the
remaining variances) to be 1 and all non-diagonal elements to be 0.

� 1 � �1 � 8(9)
2

� 1�1 � 8df
2

	p(1 � p)
N
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15 Most commercial statistical programs can do this.
16 My Toolbox (Appendix) contains a program to do this.



This is the population covariance matrix of v mutually independent
standard normal variates, of which the variances of the first c of
these variables have been estimated from the data. This model
covariance matrix will have df degrees of freedom.

4. Now, generate a large number N (say 1000) independent data sets
consisting of v* mutually independent standard normal random
variables with n observations in each data set.

5. For each of the i simulated data sets, calculate the sample covariance
matrix Si and also MLXi

2�(n�1)(ln|�|� trace(Si�
�1)� ln|Si|� c)

(‘trace’ is the trace of the resulting matrix).
6. Count the number (x) of the N MLX2 values that are greater than

the value of the MLX2 value obtained in your real data (X).
7. The estimated empirical probability of your data will be x/N and

the 95% confidence interval of this estimate can be calculated as
described before.

6.5 Behaviour of the maximum likelihood chi-squared statistic
with data that do not follow a multivariate normal distribution

A biologist, a physicist and a statistician are shipwrecked on a deserted island.
Besides themselves, only a crate of canned food has been washed ashore.
After staring hungrily at the cans for a number of hours, the biologist sug-
gests that they break open some cans with a large rock. The physicist sug-
gests instead that they climb to just the right height in a palm tree. She
explains that the kinetic energy, as the can hits the ground, should be just
enough to crack it open without losing any food. Glancing over to the sta-
tistician, who has just finished writing some equations in the sand, they see
him shaking his head in disapproval at their crude methods. He announces
that he has just found a more elegant method of opening the cans, and
points proudly at his equations. ‘Now’, he begins, pointing to the first equa-
tion, ‘assume that we have a can opener . . .’.

Sometimes we don’t have the statistical equivalent of a can opener.
Knowing the assumptions of a statistical test is important but knowing what
might happen if the assumptions are wrong can be just as important.
Another assumption of the maximum likelihood chi-squared statistic is that
the data follow a multivariate normal distribution7. We require methods of
both testing and relaxing this assumption. First, let’s look at how to test for
a departures from multivariate normality.
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17 Actually, the assumption is that the endogenous variables follow a multivariate normal dis-
tribution. Exogenous variables (i.e. ones that are not caused by any others in the model)
don’t have this restriction (Bollen 1989).
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The normal distribution is fully characterised by its mean and var-
iance. Departures from normality can be characterised by non-zero skew
and kurtosis. The skew measures the degree of asymmetry of the distribu-
tion. A negative skew occurs when a univariate distribution has a longer tail
to the left and whose mode is to the right of centre. A positive skew occurs
when a univariate distribution has a longer tail to the right and whose mode
is to the left of centre (Figure 6.8). An index of skew for a series of N obser-
vations of a random vector X is:

g11�

where s is the standard deviation of X. Box 6.2 summarises the calculations
for using this statistic to test for skew in large (�150) sample sizes.
D’Agostino, Belanger and D’Agostino (1990) provided more exact formu-
lae that can be used for sample sizes as low as 8.

Kurtosis measures the concentration of values near the mean and at
the extremes, relative to intermediate values. For symmetrical unimodal dis-
tributions, positive kurtosis indicates heavy tails and peakedness relative to
the normal distribution and negative kurtosis indicates light tails and flatness
(DeCarlo 1997). A familiar distribution with positive kurtosis is Student’s t-
distribution. With this distribution the kurtosis increases as the degrees of
freedom decrease; the graph on the bottom left of Figure 6.8 shows a
t-distribution with 3 degrees of freedom as well as a standard normal distri-
bution. An index of kurtosis is:

g21�

Box 6.2 summarises the steps for identifying significant deviations from nor-
mality with respect to kurtosis.

Box 6.2. Measures of skew and kurtosis

Univariate skew

The expected value of g11 for a normal distribution is 0. The following sta-
tistic is approximately distributed as a standard normal variate for large
(N�149) sample sizes, and values greater than 1.96 in absolute value would
indicate skew:

�
N

i�1

(Xi � X )4

Ns4

�
N

i�1

(Xi � X )3

Ns3
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z�g11

For tests applicable to small samples, the reader is directed to D’Agostino,
Belanger and D’Agostino (1990) or Bollen (1989).

Univariate kurtosis

The expected value of g21 is 3 for normally distributed variables. For this
reason, many computer programs often report the centred version of the g21
statistic ( g21�3) even though this is not always well documented. The fol-
lowing statistic follows a standard normal distribution only in very large
samples (N�1500) but at least provides a rough guide. A more complicated
statistic, applicable to small sample sizes (N�19) is given by D’Agostino,
Belanger and D’Agostino (1990) or Bollen (1989).

E( g21)� , Var( g21)� and z�

Many SEM programs report either the standardised (z) or the asymptotic
centred value of kurtosis ( g21�3) as a benchmark for normality. In using these
tests on all variables in your model, you should use a Bonferonni correction
to the significance levels. If you want to test at an overall level of �, then test 
each of the V variables at a level of �/V. For instance, if you want to test at
a 95% level (��0.05), then test each variable at a level of 0.05/V.

Multivariate measures of skew and kurtosis

The above measures of skew and kurtosis are applied separately to each var-
iable. Since it is possible for the joint distribution to have skew or kurtosis
even though each individual variable shows no evidence of this, Mardia
(1970, 1974) developed multivariate analogs of these statistics. They are based
on a matrix of squared Mahalanobis distances. For a single variable (Xi) with
N observations, the squared Mahalanobis distance is simply

(Xij�X̄ )2

If each of the j observations consists of a series of V variables then the result-
ing data set, X, has N rows and V columns. The squared Mahalanobis dis-
tance matrix for the entire data set is: X�SX, where S is the covariance matrix
of X. Looking at the Mahalanobis distance for each observation helps to iden-
tify outliers in the multivariate space. Based on the squared Mahalanobis dis-
tance, Mardia’s multivariate measure of skew with V variables is:

1
� i

2 �
n

j�1

(g21 � E(g21))

�Var(g21)
24N(N � 2)(N � 3)

(N � 1)2(N � 3)(N � 5)
3(N � 1)
(N � 1)


(N � 1)(N � 3)
6(N � 2)
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g1v� (X�SX)3

If the data follow a multivariate normal distribution then the expected value
of this statistic is 0. The statistic N�g1v/6 asymptotically follows a chi-
squared distribution with V(V�1)(V�2)/6 degrees of freedom if the data
are multivariate normal. Mardia’s multivariate measure of kurtosis is:

g2v� trace((X�SX)2)

where ‘trace’ means the diagonal elements. If the data follow a multivariate
normal distribution then the expected value of g2v is V(V�2) and the vari-
ance is 8V(V�2)/N. The statistic

asymptotically follows a standard normal distribution. Bollen (1989) provides
more complicated test statistics that are applicable to small data sets.

If any of the variables in your model have significant skew or kur-
tosis then the joint multivariate distribution also has significant skew or kur-
tosis. However, it is possible for the multivariate distribution to have either
skew or kurtosis even though each variable, taken singly, is normally distrib-
uted. This means that we also require a multivariate version of our meas-
ures of skew and kurtosis. Such measures, along with their tests, are given
by Mardia (1970, 1974). The calculations are explained in Box 6.2.

Most biologically oriented statistics texts describe the Box–Cox
method of choosing a transformation to make data more closely follow a
normal distribution. This is because statistical tests involving means (t-tests,
ANOVA, etc.) are more sensitive to skew and the Box–Cox method helps
to reduce skewness in data. However, tests involving variances and covari-
ances, such as those used in SEM, are more sensitive to kurtosis than to skew
(Mardia, Kent and Bibby 1979; Jobson 1992). Jobson (1992) described a
modified power transformation that is designed to reduce kurtosis:

Y�SIGN ��0

Y�SIGN ln(�X�XM��1) ��0

SIGN is the sign of the original value of (X�XM) and XM is the median
value of X.

To find the value of � that reduces the kurtosis best, I calculate the
sum of squared differences between a series of quantiles of Y (say, 5%, 10%,

(�X � XM� � 1)� � 1
�

(g2v � v(v � 2))

�8v(v � 2) /N

�1
N� �

� 1
N 2� �

N

i�1
�

N

j�1
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50%, 90% and 95%) for different values of � and the quantiles of a normal
distribution with the mean and standard deviation8 of Y. The value of � that
minimises this sum of squared differences will best reduce the kurtosis of
the original values. Most statistics packages allow one to plot the empirical
quantiles (cumulative percentage) against these theoretical quantiles. Using
these graphs, you can try different values of � and choose the one in which
the resulting graph looks most like a straight line. Figure 6.9A shows a quan-
tile plot for 100 values drawn from a t-distribution with 3 degrees of
freedom. These values have a centred kurtosis of 4.12, the standardised value
is 9.06 and the probability of this occurring in a normally distributed vari-
able is 6.6�10�5. Notice the large deviations in the tails (the extreme
values). Figure 6.9B shows the value of the sum of squared distances
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18 Alternatively, you can standardise your variable first and then refer to the quantiles of a
standard normal distribution. These quantiles can be found in most tables of the standard
normal distribution.

Figure 6.9. (A) A normal quantile plot for 100 values drawn from a
t-distribution with 3 degrees of freedom. (B) The value of the sum of
squared distances between the quantiles of these values and those of a
standard normal distribution for various values of � using Jobson’s
transformation. (C) The normal quantile plot after transforming the data
using the best value of �.



between the quantiles of these values and those of a standard normal distri-
bution, as described above, for various values of � between 0 and 1. The
best value of � is around 0, thus demanding a ln-transformation. Figure
6.9C shows the quantile plot for the values transformed using ��0. The
centred kurtosis of this transformed variable is �0.10, the standardised value
is �0.23 and the probability of observing such a kurtosis in a normally dis-
tributed variable is 0.95.

Non-normality can affect the accuracy of the maximum likelihood
chi-squared statistic, the standard errors of the free parameters and the esti-
mation of the free parameters themselves. As you might expect, researchers
have spend a good deal of effort in exploring how different types and
degrees of non-normality affect these statistics. To get an idea of robustness
of the maximum likelihood chi-squared statistic, I again generated data from
the model shown in Figure 6.6. The path coefficients were fixed at 0.5. The
exogenous variances (i.e. the variances of X1, X2, �3, �4 and �5) were gen-
erated from different probability distributions with different degrees of skew
and kurtosis: the standard normal distribution, a t-distribution with 3
degrees of freedom, a beta distribution with shape parameters of 2 and 5, a
chi-squared distribution with 2 degrees of freedom and a uniform distribu-
tion between 0 and 1. The t-distribution has no skew but strong positive
kurtosis. The uniform distribution has no skew but strong negative kurto-
sis. The chi-squared distribution with 2 degrees of freedom has both strong
positive skew and kurtosis. The beta distribution with shape parameters of
2,5 has positive skew and negative kurtosis. For each distributional type, I
simulated 1000 independent data sets of 50, 100 or 200 observations.
Average values of Mardia’s multivariate estimates of skew and centred kur-
tosis for these data were also estimated. The results are shown in Table 6.2.

The first thing to notice is that distributions with strong kurtosis
produce conservative probability levels; there is a tendency for models to be
rejected more often than they should be when one is assuming a theoreti-
cal �2 distribution. This is the same result as we saw for small sample sizes.
The second thing to notice is that even models generated from very non-
normal distributions produce quite acceptable probability levels as sample
sizes increase. This shows the asymptotic robustness of the maximum like-
lihood chi-squared test statistic. If the errors are distributed independently of
their non-descendants in the model, the test statistic should asymptotically
follow a chi-squared distribution. The robustness conditions hold under
independence and not necessarily under ‘uncorrelatedness’9; for example, if
the variance of the error variable changes systematically with respect to any
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Table 6.2. Simulation results (1000 data sets each) based on sample sizes of N
with exogenous variables drawn from a standard normal, a t-distribution with 3
degrees of freedom, a beta distribution with shape parameters of 2 and 5, a uniform
distribution between 0 and 1, and a �2 distribution with 2 degrees of freedom.
Shown are the 50, 90, 95 and 97.5% quantiles of the 1000 maximum
likelihood statistics for each simulation as well as the theoretical probabilities
assuming a �2 distribution with 10 degrees of freedom.The average of Mardia’s
multivariate centred estimate of kurtosis is also shown

Quantiles (theoretical probability)

N Type 50 90 95 97.5 kurtosis

50 Normal 10.00 16.58 18.73 21.17 �1.26
(0.440) (0.084) (0.044) (0.020)

50 t(3df ) 9.72 17.87 20.89 24.81 �17.83
(0.465) (0.057) (0.022) (0.006)

50 Beta(2,5) 9.92 17.00 19.20 21.23 �1.51
(0.448) (0.074) (0.038) (0.020)

50 �2(2 df ) 9.91 17.24 20.11 23.41 �11.98
(0.448) (0.069) (0.028) (0.009)

50 Uniform 9.48 16.59 19.92 22.04 �5.38
(0.487) (0.084) (0.030) (0.015)

100 Normal 9.45 15.87 18.34 20.76 �0.70
(0.490) (0.103) (0.050) (0.023)

100 t(3df ) 9.25 16.98 19.48 22.16 �34.37
(0.509) (0.075) (0.035) (0.014)

100 Beta(2,5) 9.68 16.43 19.10 20.79 �1.13
(0.469) (0.089) (0.039) (0.023)

100 �2(2 df ) 9.30 17.09 19.48 22.09 �17.86
(0.504) (0.072) (0.035) (0.015)

100 Uniform 9.24 16.35 18.53 20.09 �5.68
(0.509) (0.090) (0.047) (0.028)

200 Normal 9.38 16.19 18.50 20.67 �0.17
(0.497) (0.094) (0.047) (0.024)

200 t(3df ) 9.25 16.45 19.61 22.74 �64.24
(0.508) (0.087) (0.033) (0.012)

200 Beta(2,5) 9.46 16.42 18.44 20.77 �0.76
(0.489) (0.088) (0.048) (0.023)

200 �2(2 df ) 9.64 16.67 18.37 22.04 �23.51
(0.472) (0.082) (0.049) (0.015)

95% confidence 0.531 0.119 0.064 0.035
intervals for to to to to
probabilities 0.479 0.081 0.036 0.015



of its causal parents then this would undermine independence10. The
robustness of the maximum likelihood chi-squared statistic depends on
many different attributes of the model and the data: the number of free
parameters, the distributional properties of each variable and (especially)
non-independence of the error variables with respect to their non-
descendants in the model11.

6.6 Solutions for modelling non-normally distributed variables

Since non-normality can cause problems with the maximum likelihood
chi-squared statistic, a number of alternative ways of fitting the model have
been devised. Most commercial SEM programs will include statistics based
on generalised least squares, elliptical estimators and distribution-free esti-
mators, as well as a method of correcting for non-normality that produces
‘robust’ chi-squared statistics and confidence intervals12. The most popular,
and best studied, correction method comes from Satorra and Bentler
(1988).

There now exists an extensive literature that uses Monte Carlo
methods to explore the relative merits of these different solutions for non-
normality. Different studies have explored the effects of sample size, the
number of free parameters, model type (measurement models, path models,
full structural models) and distributional violations (kurtosis, skew and non-
independence of errors and their causal non-descendants). Hoogland and
Boomstra (1998) have done a meta-analysis of these studies. Their main rec-
ommendations are the following:

1. With respect to sample size, they recommend that there be at least
five times as many observations as there are degrees of freedom in
the model.

2. When the observed variables have an average positive kurtosis of 5
or more, the sample size may have to be increased by up to 10 times
the degrees of freedom.

3. The generalised least squares chi-squared statistic has an acceptable
performance for a sample size that is two times smaller than the
sample size needed for an acceptable performance of the maximum
likelihood chi-squared statistic.
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10 This is similar to heteroscedastic error variances in ordinary regression.
11 Except, of course, when the non-independence is explicitly modelled.
12 Another correction method is found in Browne (1984). This consists of dividing the

maximum likelihood chi-squared statistic by the ratio of Mardia’s multivariate measure of
kurtosis to its expected value given normality. Little simulation work seems to have been
done on this correction.



4. With small samples the standard errors of the estimates of the free
parameters are biased. Positive kurtosis results in estimates of the
standard errors that are smaller than they should be. Negative kur-
tosis results in estimates of the standard errors that are larger than
they should be.

5. The degree of skew has little effect on the bias of the estimators.
6. The asymptotic distribution-free estimator should not be used

except for very large sample sizes (�1000).
7. The Satorra–Bentler robust estimator, upon which is based their

robust (S–B) chi-squared statistic and standard errors, largely cor-
rects for excessive kurtosis and for problems in which the errors are
not independent of their causal non-descendants. This is particu-
larly important for models that include latent variables and meas-
urement models, since the S-B chi-squared statistic can correct for
cases in which the latent variables and the measurement errors are
not independent.

Basically, unless your data are very strongly kurtotic and your
sample sizes are very low, you can still perform a reasonable test of your
causal model. As a last resort, you can use bootstrap methods (Bollen and
Stine 1993). The bootstrap has been included in some commercial SEM
programs, and most will soon have this option. Note, however, that the
original data must be transformed using a technique called a Cholesky fac-
torisation13 and not all commercial SEM programs implement this step. The
bootstrap is related to Monte Carlo methods except that, rather than sam-
pling from some theoretical distribution (multivariate normal or otherwise),
you sample from your own data to build up an empirical sampling distribu-
tion. See Manly (1997) for a discussion of bootstrap methods in biology.
Box 6.3 summarises the steps required to generate a bootstrap distribution
of the maximum likelihood chi-squared statistic. Note, however, that this
method is very computer-intensive.

Box 6.3. Bootstrapping the sampling distribution

Here are the steps to take in order to generate a bootstrap sampling distribu-
tion and perform an inferential test.
1. Given your original data set (Y ) with N rows and p variables centred

about their means, calculate the sample covariance matrix (S), obtain
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13 See Press et al. (1986) for a description of the Cholesky factorisation of a square positive
definite matrix and numerical algorithms to calculate this.



the predicted model covariance matrix (� ) and the maximum likel-
hood chi-squared statistic, MLX2.

2. Calculate the Cholesky factorisation of S and � to give S�1/2 and 
� 1/2.

3. Form a new data set: Z�YS�1/2� 1/2.
4. Randomly choose N observations from Z with replacement to form a

bootstrap sample Z*. Form the covariance matrix from this bootstrap
sample, fit the model to these data, and save the bootstrap value of the
maximum likelihood chi-squared statistic (MLX2*).

5. Repeat step 4 a large number of times (at least 1000).
6. Count the proportion of times that MLX2* is greater than MLX2. This

proportion is the empirical estimate of the probability of observing the
data given the model. Note that this probability does not assume any
particular sampling distribution.

6.7 Alternative measures of ‘approximate’ fit

This section deals with various methods of assessing the degree of ‘approx-
imate’ fit between data and a theoretical model. I don’t like these methods
and don’t advise you to use them either, for reasons that I will explain below.
However, they are popular with many users of SEM and are always printed
out in commercial SEM programs. These measures of approximate fit are
generally used once the model has already been rejected and the purpose of
these approximate fit measures are to determine the degree to which the
rejected model is ‘approximately’ correct.

The origin and rationale behind the use of these approximate fit
indices comes from a consideration of statistical power. The power of a sta-
tistical test can be defined as the probability that the test will reject the null
hypothesis when it is indeed false. To illustrate this notion, imagine that we
wish to test the null hypothesis that two random variables, X and Y, are
uncorrelated (H0:�0). I generated 100 independent data sets each with 10,
50, 100 or 500 observations in which the true population correlation
coefficient was either 0, 0.1, 0.2, 0.3, 0.4 or 0.5. We know that, if H0 is true
then we should reject about 1 out of 20 tests at the ��0.05 level. If we had
perfect statistical power then we should reject all data sets in which  is
different from 0. In other words, we should reject a proportion � when the
null hypothesis is correct and proportion 1 whenever  deviates, however
slightly, from 0. Figure 6.10 shows the actual proportion of the 100 data sets
for which the null hypothesis (�0) was rejected at ��0.05.
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In Figure 6.10 we see that when the sample size is very small (N�
10) then even when the null hypothesis is false (i.e. when the true correla-
tion between X and Y is not zero) the null hypothesis won’t be rejected a
large proportion of the time; even when �0.5 only 33 out of 100 tests14

rejected the null hypothesis that �0. As the number of observations per
data set increases then the number of times that the test correctly rejects the
hypothesis that �0 also increases. The curves in Figure 6.10 are called
power functions and the proportion of times that a test will reject H0:�0
when, in fact ��, is called the power of the test. From Figure 6.10 we can
see that if we have 50 observations then the test has at least a 90% chance of
rejecting our null hypothesis (thus, a power of 0.9) when  is greater than
about 0.5. If we have 100 observations then we have a power of 0.9 as soon
as  is greater than about 0.3 and if we have 500 observations then we have
a power of 0.9 as soon as  is greater than about 0.16. In other words, as the
sample size increases we have a greater and greater chance of detecting a
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Figure 6.10. The proportion of the 100 data sets of various sample
sizes (N ) for which the null hypothesis H0 ( �0) was rejected at ��
0.05 when the true population value of the correlation coefficient took
various values between �0 and �0.5.



smaller and smaller difference between the hypothesised value and the true
value. At very large sample sizes even minuscule differences (say �0.01)
will almost surely be detected and the null hypothesis would be rejected
almost always.

Usually therefore, more power is a good thing. Tests of structural
equations models, based on the chi-squared distribution, also have power
properties. The justification for using alternative tests of fit is based on the
premise that statistical power is not always such a good thing. If you remem-
ber the section in Chapter 2 dealing with the logic of inference in science
then you will recall that no hypothesis is ever really tested in isolation. Every
hypothesis contains within it many other auxiliary hypotheses. In the
context of testing structural equations models with reference to a chi-
squared distribution we are really interested in knowing whether the causal
structure of the model is wrong. Unfortunately, when we conduct our sta-
tistical test we are testing all aspects of the model: the causal implications,
the distributional properties of the variables, the linearity of the relation-
ships and so on. Now, when we add the notion of statistical power to our
argument we realise that, as sample size increases, we run a greater and
greater risk of rejecting our models because of very minor deviations that
might not even interest us. This point was raised early in the history of
modern SEM by Jöreskog (1969).

What might these uninteresting and minor deviations be? They
can’t be minor deviations from multivariate normality, since the maximum
likelihood chi-squared statistic is asymptotically robust against non-
normality. In any case, we have already seen ways of dealing with this. Small
amounts of non-linearity could be one such minor deviation that would not
interest us. If some parameter values (for instance, path coefficients or error
variances) are fixed to non-zero values in our model then small deviations
from these fixed values might be another minor difference that would not
interest us. For instance, we might have only a single indicator of some latent
variable whose error variance we fix at 1.1, perhaps based on previous expe-
rience. If the true error variance of this indicator was 1.15 and we use a large
enough sample size, then our model would be rejected. However, the prin-
cipal ‘minor deviation’ that is evoked in the justification for measures of
approximate fit is a minor deviation in the causal structure of the model.
The theoretical objective of the various indices of approximate fit is there-
fore somehow to quantify the degree of these deviations. The various alter-
native fit indices attempt to quantify the degree of such deviations by
measuring the difference between the observed covariance matrix and the
predicted (model) covariance matrix. The most popular fit indices do this
in a way that standardise for differences in sample size.
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At first blush then, these indices of approximate fit have a seductive
quality. Wouldn’t it be nice, after having found that one’s preferred causal
explanation (as translated by the structural equations model) has been
rejected, to be able to say: ‘but it is almost right! The remaining lack-of-fit
is only due to minor errors that are not really very important anyway.’ This,
I suspect, is the real (psychological) objective of these fit indices. Even this
weakness of the flesh could be tolerated if there were any justification for
the implicit assumption that minor errors in specifying the causal structure
will translate into only minor differences between the observed and pre-
dicted covariance matrices. Unfortunately, no such one-to-one relationship
has ever been demonstrated for these indices of approximate fit. To me,
evoking such an argument of approximate fit to justify accepting a causal
model is like the old joke about the drunk in the parking lot15. The alter-
native fit indices measure different aspects of the ability of the observational
model (the structural equations) to predict the data, not the explanatory ability
of the causal model. As such, the indices of approximate fit commit the sort
of subtle error of causal translation that I discussed in Chapter 3: small (but
real) differences between the observed and predicted covariances of the
observational model do not necessarily mean only small (but real) differences
between the actual causal structure and the predicted causal structure.

Now that I have given my reasons why you should not use these
alternative fit indices, you can read the justifications of those who promote
them and decide for yourself (Bentler and Bonnett 1980; Browne and
Cudeck 1993; Tanaka 1993). Below, I describe two of the more popular
alternative fit indices. The book by Bollen and Long (1993) contains a
number of chapters that deal with these alternative indices of approximate
fit.

6.8 Bentler’s comparative fit index

Let’s go back to the maximum likelihood chi-squared statistic for a moment.
This statistic, and its inferential test, measure exact fit between the observed
and predicted covariance matrices. The logic is that if the data are generated
by the process specified by the structural equations (and therefore the causal
structure of which these equations are a translation) then the observed and
predicted covariance matrices will be identical except for random sampling
variation. If this assumption is true then the maximum likelihood chi-squared

T H E S T R U C T U R A L E Q U AT I O N S M O D E L

192

15 You enter a parking lot late at night and see a drunk causal modeller on his knees under-
neath the only street light. He explains that he is looking for his car keys. ‘Are you sure
that you lost your keys here?’ you ask. ‘No’, he answers. ‘In fact, I have no idea where
they are, but at least here I have enough light to see’.



statistic will asymptotically follow a chi-squared distribution with the appro-
priate degrees of freedom (�). Actually, it is more precise to say that this sta-
tistic will asymptotically follow a central chi-squared distribution (�v

2) with the
appropriate degrees of freedom. The central chi-squared distribution is a
special case of a more general chi-squared distribution called the non-central
chi-squared distribution. The non-central chi-squared distribution (�2

v,�) has
two parameters: the degrees of freedom (�) and the non-centrality parame-
ter (�). A central chi-squared distribution is simply a non-central chi-squared
distribution whose non-centrality parameter (�) is zero.

Now, if the degree of mis-specification of the model covariance
matrix is not zero (as assumed in the test for exact fit) but is small relative to
the sampling variation in the observed covariance matrix, then the
maximum likelihood chi-squared statistic actually asymptotically follows a
non-central chi-squared (�2

v,�) distribution and the non-centrality parame-
ter (�) measures the degree of mis-specification. The expected value of
the non-central chi-squared distribution is simply the expected value of
the central chi-squared distribution plus the non-centrality parameter:
E[�2

v,�]�E[�2
v]������. In practice, the non-centrality parameter is esti-

mated as the value of the maximum likelihood chi-squared statistic (MLX2)
minus the degrees of freedom of the model (i.e. the expected value that the
maximum likelihood chi-squared statistic would have if there were no errors
of mis-specification). Because the non-centrality parameter can’t be less
than zero, negative values are replaced with zero. Therefore ��max
{(MLX2��),0}.

The Bentler comparative fit index uses this fact to measure by how
much the proposed model has reduced the non-centrality parameter (thus,
the degree of mis-specification) relative to a baseline model. The most
common baseline model is one that assumes that the variables are mutually
independent. If �i is the estimate of the non-centrality parameter for the
model of interest and �0 is the estimate of the non-centrality parameter for
the baseline model, then the comparative fit index is defined as:

CFI�

If the model of interest fit exactly then the expected value of its
non-centrality parameter (�i) would be zero and the CFI value would be
1.0. Therefore, the CFI index varies from 0 (the proposed model fits no
better than the baseline model) to 1.0. The sampling distribution of this
index is unknown and users of this index consider a value of at least 0.95 as
being an acceptable ‘approximate’fit. There is no theoretical justification for
this value; it is simply a rule of thumb.

�0 � �i

�0
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Actually, the description above is for the sample-based CFI.
Although this is the index usually reported in most commercial SEM pro-
grams, it is known that the sample-based CFI is a biased estimator of the
population-based CFI. The result of this bias is to exaggerate the degree of
misfit. Steiger (1989) explained how to calculate the unbiased estimator of
the population CFI from the information provided by most commercial
programs. If p is the number of observed variables in the model, df is the
degrees of freedom and n is the sample size then first get the model fit index,
or calculate it as:

F̂�

The unbiased estimator of the population CFI is

6.9 Approximate fit measured by the root mean square error
of approximation

A second measure of approximate fit was developed by Steiger (1990) and
expanded by Browne and Cudeck (1993). This measure also relies on the
non-centrality parameter. The root mean square error of approximation
(RMSEA, �) is defined as:

�� �

where � is the non-centrality parameter and � is the degrees of freedom of
the model. If we propose a null hypothesis for the RMSEA (H0: �a�a) then
we can test this hypothesis using the non-central chi-squared distribution
and produce confidence intervals around it. If your favourite statistics
program doesn’t have this probability distribution then you can use the algo-
rithm given by Farebrother (1987). Of course, if your null hypothesis is that
�a�0 then you are doing a test of exact fit with reference to the central chi-
squared distribution. Here are the steps:

1. Specify the null hypothesis H0: �a�a
2. Calculate the maximum likelihood chi-squared statistic (MLX2)

and the non-centrality parameter �*�n�v��a
2.

3. Find the probability of having observed MLX2 given a non-central
chi-squared distribution with parameters �,�*.


max{MLX2 � �),0}
n�
 �

n�

p
p � 2F̂

(X2 � df )
n � 1
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4. If the probability is less than your chosen significance level, reject
the null hypothesis and conclude that �a is greater than that spec-
ified in the null hypothesis.

An obvious problem with this test is in choosing the null hypothe-
sis. Remember that these indices of approximate fit are used when one has
already rejected the null hypothesis of exact fit (i.e. �a�0). We already know
that there is something wrong with the model. Browne and Cudeck (1993)
recommend the null hypothesis of �a�0.05, but this is only their rule of
thumb. Again, there is no compelling reason for choosing this value as a rea-
sonable level of ‘approximate’ fit.

Quite apart from using the RMSEA to measure ‘approximate’ fit,
there is a very useful property of the inferential test for this fit statistic. If we
have not been able to reject our model then it is still important to be able to
estimate a confidence interval for the RMSEA. In such a case the confidence
interval will have a lower bound of zero. The upper bound will reflect the
statistical power of our test. A large upper bound indicates that the test had
little statistical power to reject alternative models. A 90% confidence interval
for RMSEA would not reject the null hypothesis of exact fit at the 5% level.
This interval can be calculated as the values of � for a non-central chi-squared
distribution whose 5% and 95% quantiles equals the calculated MLX2 statis-
tic (Browne and Cudeck 1993). These confidence intervals, and a whole
plethora of approximate fit statistics, are provided by most SEM programs.

6.10 An SEM analysis of the Bumpus House Sparrow data

Natural selection was in the air during the last decade of the nineteenth
century. According to Bumpus (1899) natural selection was literally in the air
during a New England snow and ice storm one cold night. Many House
Sparrows (Passer domesticus) were immobilised during that storm and 136 of
the unfortunate birds were collected and transported to the Brown University
Anatomical Laboratory. Seventy two birds (51 males and 21 females) subse-
quently recovered but 64 birds (36 males and 28 females) died. Bumpus deter-
mined the sex of all 136 birds and also measured nine phenotypic attributes
of each bird, alive or dead. He used these data to show the selective elimina-
tion of individuals in a population based on their characteristics.

These data have been subsequently analysed by many different
people16. In particular, Lande and Arnold’s (1983) influential paper on the
statistical estimation of selection gradients used this particular data set as an
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example. The method of Lande and Arnold was essentially an application
of multiple regression of a suite of correlated characters on a measure of
evolutionary fitness. The regression coefficients were interpreted as causal
measures of the selection gradient. In Chapter 2 we have seen the problems
that can occur when we use multiple regression in such a context.

Pugesek and Tomer (1996) reanalysed the Bumpus data using SEM.
Besides two binary variables representing sex (male/female) and survival
(alive/dead) they used seven other observed variables of various body meas-
urements, transformed to natural logarithms: length of femur, tarsus,
humerus, sternum, wing and head, and width of skull. They began with the
measurement model involving all birds, living or dead. The first model that
they considered (Figure 6.11A) was that all seven length measures were due
to a single latent variable. Since there were two sexes they actually used a
two-group model with across-group constraints (see Chapter 7). This first
measurement model did not fit well (MLX2�43.59, 28 df, p�0.03). Their
second measurement model was a three-factor model (Figure 6.11B).
Pugesek and Tomer interpreted these latents as a latent general ‘size’ factor
that is a common cause of all seven body measurements, a latent ‘leg size’
factor that is an additional common cause only of the femur and tarsus
lengths, and a latent ‘head size’ factor17 that is an additional common cause
only of the head length and skull width. As we have seen before, giving the
latents these names doesn’t necessarily mean that the names are accurate; it
is also possible that some more mundane causes, systematic measurement
errors for instance, are the source of these latent variables. Whatever the
source of the latent variables, the model provided a good fit (MLX2�28.82,
24 df, p�0.227). A series of nested models (see Chapter 7) showed that
there were not significant differences between the males and females in any
of the free parameters. Fixing all these free parameters to be equal in the
two sexes provided a final measurement model with an acceptable fit (MLX2

�49.29, 40 df, p�0.149).
The next step was to relate the measured and latent variables to sur-

vival. Pugesek and Tomer allowed the three latent ‘size’variables to be direct
causes of a fourth latent variable that they call ‘fitness’ and which then deter-
mines the death or survival of the individual bird. Since they fixed the path
from the latent ‘fitness’ to the observed ‘survival’ at 1, and the residual error
of ‘survival’ at zero, the latent ‘fitness’ variable is redundant since it will be
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perfectly correlated with ‘survival’18. This two-group model provided a
marginal fit to the data (MLX2�62.72, 48 df, p�0.075), but the authors
added an edge from ‘wing length’ directly to the latent ‘fitness’ that signifi-
cantly improved the fit of the model (MLX2�52.37, 46 df, p�0.241).
Finally, a nested sequence of models showed no significant differences in the
path coefficients or error variances leading into, and out of, the latent
‘fitness’ variable and so these were constrained to be equal in the males and
females.

The final model is shown in Figure 6.11C. The parameter values of
this final model can be found in Figure 8 of Pugesek and Tomer (1996). The
path coefficients (based on standardised variables) allow one to determine
by how much a change in one morphological variable will change the prob-
ability of survival of the bird. For instance from their model one can calcu-
late that an individual whose general size was one standard deviation larger
than average increased its chances of survival by 0.564 standard deviations
more than the average. On the basis of their model, it seems that larger birds
were less likely to die during the storm than the smaller birds, birds whose
legs and head were even larger than average given their general size were
even less likely to die (although the path coefficients from these latent var-
iables were not significant at the 5% level), but birds whose wings were
shorter than average given their general size were also less likely to die.
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7 Nested models and multilevel models

Like successful politicians, good statistical models must be able to lie without
getting caught. For instance, no series of observations from nature are really
normally distributed. The normal distribution is just a useful abstraction –
a myth – that makes life bearable. In constructing statistical models we
pretend that the normal distribution is real and then check to ensure that
our data do not deviate from it so much that the myth becomes a fairy tale.
In Chapter 6 we saw how far we could stretch the truth about the distrib-
utional properties of our data before our data called us a liar. The goal of
this chapter is to describe how SEM can deal with two other statistical myths
that people often relate with respect to their data.

Two important assumptions made by all of the models that we have
studied up to now is that the observations in our data sets are (i) indepen-
dent draws generated by (ii) the same causal process. Consider first the
assumption of causal homogeneity. It is easy to imagine cases in which
different groups of observations might be generated by partially different
causal processes. For instance, a behavioural ecologist studying a series of
variables related to aggression and social dominance in primates would not
necessarily want to combine together the observations from males and
females, since it is possible that the behavioural responses of males and
females are generated by different causal stimuli. When we sample from
populations with different causal processes, either in terms of the causal
structure or of the quantitative strengths between the variables, and we wish
to compare the causal relationships across the different groups, we require a
model that can explicitly take into account these differences between
groups. Such a model is called multigroup SEM and this, in turn, requires the
notion of nested models.

The assumption of independence of observations can often be vio-
lated as well. Natural selection itself suggests a way in which we can get non-
independence of observations (Felsenstein 1985; Harvey and Pagel 1991).
The attributes of organisms, if they have a genetic component, will tend to
be more similar to those of close relatives than to genetic strangers. The
process of speciation therefore generates a hierarchical structure to data
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when we combine observations from different families, populations or
species. If we ignore this hierarchical structure, and therefore ignore the
non-independence of the observations, then we will obtain incorrect prob-
ability estimates. The application of multilevel SEM can deal with this com-
plication.

7.1 Nested models

Given two SEM models with the same set of variables, then one model is
nested within a second one if (i) all of the fixed parameters in the first model
are also fixed to the same values in the second, but (ii) some of the free
parameters in the first are still fixed in the second. In other words, the fixed
parameters in the first model are a subset of the fixed parameters in the
second model. The notion of nesting can be grasped most easily by com-
paring some path diagrams. In Figure 7.1 model B is nested within A and
model D is nested within C.

Model A has two fixed parameters. The path coefficients for the
edges between X 1 and X 2 and between X 1 and X 3 have each been fixed to
zero, therefore there is no edge between X 1 and X 2 or between X 1 and X 3.
There are two fixed parameters in model A, all others being freely esti-
mated1. There is only one fixed parameter in model B – the path coefficient
for the edge between X 1 and X 3 is still fixed to zero – and all others, includ-
ing the path from X 1 to X 2, are freely estimated. So the fixed parameters of
model B are a subset of those in model A and model B is nested within
model A.

Model C also has two fixed parameters. The path coefficient for the
edge between X 1 and X 3 is still fixed to zero and the path coefficient for the
edge from X 1 to X 2 has been fixed to 0.5. Note that model C is not nested
within model A; it is true that the path coefficients between X 1 and X 2 are
both fixed but they are not fixed to the same value. Model D is, however,
nested within model C. This is because every fixed parameter in model D
– the path coefficient for the edge between X 1 and X 3 – is also fixed in
model C.

Nested models are useful because the difference in the maximum
likelihood chi-squared values between nested models is, itself, asymptoti-
cally distributed as a chi-squared variate if the freely estimated parameters
are equal to their associated fixed parameters. The degrees of freedom of
this change in chi-squared are the number of parameters that have been
freed in the nested model, which is the same as the change in the degrees
of freedom between the nested models.
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Intuitively, the testing of a nested model uses the following logic.
One starts with a model (call it model 1) in which a set of parameters are
fixed to particular values (zero or otherwise). Now, we define a new nested
model (call it model 2) by freeing some previously fixed parameters but
without changing anything else relative to model 1. If we allow some of
these previously fixed parameters to be freely estimated, but these newly
freed parameters really do have the values to which they had previously been
fixed, then the only difference in the estimated covariance matrices between
models 1 and 2 will be due to random sampling variation. If this is true then
the difference between the maximum likelihood chi-squared statistics will
also follow a chi-squared distribution with degrees of freedom equal to the
number of previously fixed parameters that have been freed in the nested
model 2. Here are the steps:

1. Fit the model at the top of the nested sequence, obtain its chi-
squared value (MLX1

2) and its degrees of freedom (df1).
2. Fit the model at the bottom of the nested sequence, obtain its chi-

squared value (MLX2
2) and its degrees of freedom (df2).

3. Calculate the change in the chi-squared value and the change in the
degrees of freedom: �MLX2�MLX1

2�MLX2
2 and �df�df1�df2.

4. Determine the probability of having observed this change in the
chi-squared value (��2)assuming that the freed parameters in the
second (nested) model are equal to those in the first model, except
for random sampling variation.

5. If this probability is less than the chosen significance level, conclude
that the freed parameters were not the same as those fixed in the
first model.

Tests of nested models are used in a number of different research
contexts. One reason might be if you want to test for the equality of a set
of parameters to some theoretical values but don’t care whether the model
as a whole is acceptable. Two exploratory methods in SEM (the Wald and
Lagrangian multiplier tests) are based on this logic. Perhaps the most useful
application of nested models is in the context of multigroup models and
multilevel models.

7.2 Multigroup models

Another assumption of the tests for structural equations models that have
been described so far is that all of the observations come from the same sta-
tistical population. In other words, we are assuming that the same causal
process has generated all of our observations even if we don’t know what
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this causal process might be. Often we know (or suspect) that this is not the
case. For instance, if we are studying attributes related to reproductive
success then we might suspect that different causal processes are at work for
males and females. Even if the causal structure is the same in males and
females, it is possible that the two sexes differ in the numerical strength of
the causal relationships. If we were to combine males and females into one
data set then we would obtain incorrect parameter estimates and might
incorrectly reject the model even though the qualitative structure of the
model is correct. Perhaps our data come from three different geographical
regions and we are not willing to assume that the same causal forces (with
the same numerical strengths) apply to the observations in these different
regions. Perhaps our data come from groups that we have subjected to
different experimental treatments. All of these examples require that we
explicitly include the group structure into our analysis. Such analyses are
called ‘multigroup SEM’.

The first impulse (which is not always wrong) is to analyse the data
in each group separately. The real strength of multigroup SEM is the ability
to compare statistically between groups and determine which parts of the
models in each group (i.e. which parameters) are the same and which parts
differ. In this sense multigroup SEM is analogous to ANOVA except that,
rather than testing for differences in the means between groups, we are
testing for differences in the covariance structure between the groups. To
do this we construct a series of nested multigroup models.

A multigroup model can be fit with a minor modification of the
method that you already know. Since the standard structural equation
model is simply a multigroup model with only one ‘group’, let’s start
there. With only one group we have only one observed covariance matrix
(S1). We then set up the model covariance matrix (�1) using covariance
algebra and iteratively find values of the free parameters of �1 that
minimise the maximum likelihood chi-squared statistic: (N1�1)( ln|�1
(�1)� trace(S1�1

�1(�1))� ln|S1|�p1). This is the same formula that you
saw in Chapter 4 ( p is the number of variables in the model) except that
I have added subscripts to emphasise that we are referring to group 1.
When our data are divided into g groups with N1, N2, . . ., Ng observa-
tions in the different groups then we have g sample covariance matrices
(S1, S2, . . ., Sg ) and also g population covariance matrices (�1, �2, . . .,
�g ). Each population covariance matrix can potentially have different sets
of free and fixed parameters or even different sets of variables. We itera-
tively choose values of all of these free parameters simultaneously to
minimise:
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[(N1�1)(ln|�1(�1)� trace(S1�1
�1(�1))� ln|S1|�p1)]� [(N2�1)

(ln|�2(�2)� trace(S2�2
�1(�2))� ln|S2|�p2)� . . .

[(Ng�1)(ln|�g(�g)� trace(Sg�g
�1)(�g))� ln|Sg|�pg)

Although this equation looks intimidating, it is simply the sum of the
maximum likelihood chi-squared statistics for each group.

The value of this multigroup maximum likelihood chi-squared sta-
tistic at the minimum also asymptotically follows a chi-squared distribution
with degrees of freedom equal to the sum of the degrees of freedom of the
model in each group. Even if a particular parameter is free in each group,
we can constrain the fitting procedure to choose the same value for all groups
(this generates g�1 extra degrees of freedom). In this way we are stating
that, although we don’t know what the numerical value of the free param-
eter is, it must be the same numerical value in all groups. Viewed in this way,
we see that multigroup models define a continuum. If we propose the same
causal structure and the same numerical values for all free parameters across
the groups, then we get the same result as if we had centred each variable
around its group mean and then put all of our data into one big group. If
we allow all of the free parameters to differ between groups then we get the
same result as if we had tested each group separately and summed the
maximum likelihood chi-squared statistics and degrees of freedom. By con-
straining the estimation of different sets of free parameters across groups
then we can define a series of nested models. In this way, we can test for the
equivalence of various free parameters in the different groups. If we do this
more than once then we should adjust our significance level using a
Bonferonni correction2.

The following example comes from Meziane (1998). Although it is
a path model without latent variables, the logic and approach are identical
with full SEM models. The study consisted of 22 species of herbaceous
plants grown under controlled conditions in four different environmental
conditions: a high (N) and low (n) nutrient concentration in hydroponic
culture crossed with a high (L) and low (l) light intensity. This gave four
different groups of data corresponding to the four different environments:
NL, Nl, nL, nl. Two leaves on each plant were harvested and a series of four
morphological attributes were measured: the water content of the leaf, the
thickness of the lamella, the thickness of the midvein and the specific leaf
area (the ratio between the projected leaf area and its dry weight). The values
of the two leaves per plant were averaged. Owing to a few missing values,
there were a total of 80 independent observations in the final data set. A
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previously published study (Shipley 1995) had described a path model relat-
ing these variables, and one objective of Meziane (1998) was to see whether
the previous path model could be applied under different environmental
conditions. If Meziane had simply combined the data from all four environ-
ments and tested his path model then he would have implicitly assumed that
the different environments had no effect on the relationships between the
four variables. By ‘no effect’ I mean both that the structure of the relation-
ships (their presence or absence) and their numerical strengths do not
change. If you remember that each variable is centred around its mean in
the data set, then combining the data from all four environments would also
implicitly require that the treatments did not affect the mean values of the
variables either. By separating the data into the four groups, the variables are
centred around their respective group means. In this way, the treatment
effects on the means are removed and only the relationships between the
variables are analysed.

In his multigroup analysis he specified four models, each with the
same structure but each potentially differing in the numerical strengths of
the free parameters. I have shown this in Figure 7.2, in which I have
included the free parameters. In this model there are five free path coeffi-
cients and four free error variances in each of the four models. There are
therefore from 9 (if all free parameters are constrained to be equal across
groups) to potentially 36 different free parameters to estimate (if no free
parameters are constrained to be equal across groups). Using the rule of
thumb requiring five times more observations than free parameters, we see
that any multigroup model with more than 16 free parameters will not be
well approximated by a chi-squared distribution and will have true probabil-
ity values that are somewhat higher than those obtained using a chi-squared
distribution. The data, after transforming to natural logarithms, had reason-
ably low values of Mardia’s multivariate index of multivariate kurtosis
(�4.37, �2.70, �3.34 and 1.40 for the NL, Nl, nL and nl groups, respec-
tively).

The first step was to fit the data to the most constrained model;
namely, in which all nine free parameters are forced to be equal across the
four groups3. This fully constrained model gave a maximum likelihood chi-
squared statistic of 48.271 with 31 degrees of freedom (p�0.02). Why 31
degrees of freedom? Each covariance matrix was composed of four vari-
ables, so there were 4(5)/2�10 non-redundant elements in each matrix.
There were four independent matrices for a total of 40 non-redundant
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elements in all. Since we fixed all free parameters to be equal across groups,
we estimated only nine different free parameters. This gives a total of 40�9
�31 degrees of freedom. Since we had 80 observations and 9 free parame-
ters, and the data did not show strong kurtosis, we can be fairly confident
that this fully constrained multigroup model has some errors in it. Since
there were no obvious nonlinearities in these data and the distributional
assumptions do not seem to cause any problems, the remaining problems
reside either in the causal structure of the model or in the equality con-
straints that we have imposed on the data. If we remove all equality con-
straints across groups, then we will be testing only that the same qualitative
structure applies to all four groups. The maximum likelihood chi-squared
statistic, when all equality constraints are removed, is 3.224 with 4 degrees
of freedom ( p�0.52). Even though we now have few observations per esti-
mated free parameter (we have 36 free parameters now, so the ratio is only
2.2�1) the probability level gives us no good reason to reject this multigroup
model with no between-group equality constraints for the parameter esti-
mates4.

Since the lack of fit that was detected in the fully constrained multi-
group model appears to be in the equality constraints between the four
groups, we can use a series of nested models to detect which of the equal-
ity constraints is unreasonable. If we remove only one between-group
equality constraint then this new model will be nested within the fully con-
strained model. There will be 3 degrees of freedom less in this new model,
since we now have to independently estimate the value of this free param-
eter in all four groups, rather than simply estimating one value for all four
groups. The difference in the two maximum likelihood chi-squared statis-
tics, compared to a chi-squared distribution with 3 degrees of freedom (the
difference in the degrees of freedom between the fully constrained model
and the new model), will test for a difference in the value of this parameter
between the four groups. We do this nine times, each time removing the
equality constraint for a different free parameter. Since we have done this
test nine times at a significance level of 5%, we adjust the overall significance
level to 0.05/9�0.0056.

Table 7.1 summarises the results. The first column lists the free
parameter whose between-group equality constraint has been removed.
The second column lists the maximum likelihood chi-squared statistic for
this new model (always with 28 degrees of freedom). The third column lists
the change in the maximum likelihood chi-squared statistic relative to the
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model with all between-group equality constraints applied. The fourth
column lists the (asymptotic) probability for the change in the maximum
likelihood chi-squared statistic.

From Table 7.1 we see that only two of the path coefficients (those
between the thickness of the lamina and midvein and the specific leaf area)
differ between the four groups given our chosen significance level. Note
that, although the path coefficient from leaf water content to specific leaf
area had a probability level of 0.031, we had to adjust our individual signif-
icance levels to 0.05/9�0.0056 in order to maintain an overall significance
level of 0.05. Our final multigroup model fixes all free parameters except
for these two path coefficients to be equal across groups. This model has a
maximum likelihood chi-squared statistic of 21.463 with 25 degrees of
freedom, giving a probability level of 0.667. The confidence interval of the
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Table 7.1. The results of comparisons of a series of nested models based on the
four-group model shown in Figure 7.2.The first row gives the results of the fully
constrained model assuming all free parameters are the same in the four groups.The
remaining rows show the result of relaxing one constraint at a time

Free parameter whose between-
group equality constraint was Change in MLX2 Probability of
released MLX2 (�MLX2) �MLX2

None 48.271

Variance of leaf water content 42.141 6.130 0.105

Error variance of specific leaf area 45.995 2.276 0.517

Error variance of lamina thickness 46.387 1.884 0.597

Error variance of midvein thickness 47.195 1.076 0.783

Path coefficient from leaf water
content to specific leaf area 39.411 8.860 0.031

Path coefficient from lamina
thickness content to specific leaf area 27.710 20.561 0.0001

Path coefficient from midvein
thickness content to specific leaf area 35.122 13.149 0.004

Path coefficient from leaf water
content to leaf lamina thickness 44.34 3.931 0.269

Path coefficient from leaf lamina
thickness to midvein thickness 47.646 0.625 0.891

Note:
MLX2, maximum likelihood chi-squared statistic.



RMSEA for this model is (0,0.074). Since the original purpose of the anal-
ysis of Meziane (1998) was to see whether the original path model that I
had proposed (Shipley 1995) could be applied to plants growing in differ-
ent resource environments, the conclusion is that the model appears to apply
in its general structure, but that the numerical strengths of the two thick-
ness measures on the specific leaf area change in the different environments.
Of course, given the rather small number of observations and therefore low
power, we must temper this conclusion, since small differences between
groups might not have been detected.

In interpreting the results of a multigroup SEM it is important to
remember that we are testing only for differences in the relationships
between the variables within each group. Differences in the mean values of
the variables between the groups are never detected because the variables
are centred about their mean values within each group. In the example from
Meziane (1998) the mean values of every one of the variables differed
between the groups, on the basis of analyses of variance. In other words,
the different levels of nutrients and light intensities did cause changes in the
average values of the leaf attributes (from the ANOVA) and did change the
numerical strengths of the effects of the two thickness measures on specific
leaf area, but did not change the numerical strengths of the other relation-
ships, the error variances or the causal structure (i.e. the topology) between
the variables.

7.3 The dangers of hierarchically structured data

Let’s now turn to the problem of analysing data when the observations are
not independent. To illustrate the problems caused by partially dependent
data, consider first the following naïve analysis5: I wish to test the hypothe-
sis that people with blue eyes (such as myself ) have shorter hair than do
people with beautiful green eyes (such as my wife). To test this hypothesis I
randomly choose 20 hairs from my head and 20 hairs from my wife’s head,
measure them, and then conduct a t-test on this set of 40 observations using
(40 – 2) degrees of freedom. Of course, I find a highly ‘significant’ differ-
ence in hair length between the two groups and, of course, the probability
level associated with this test would be profoundly wrong. The problem is
that both variables, eye colour and hair length, are nested within individu-
als, of which there are only two. A large proportion of the total variation in
hair length and all of the total variation in eye colour resides at the level of
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individual people, not at the level of individual observations. Clearly, I do
not have 40 independent observations of the two variables (eye colour, hair
length).

If two values of some variable X (say X 1 and X 2) are independent
then knowing the value of X 1 tells us nothing about the likely value of X 2.
Two independent values give us two ‘pieces’ of information and n indepen-
dent values give us n ‘pieces’ of information. If, in some group, every indi-
vidual had exactly the same values of X, then as soon as you knew X 1 then
you would also know the values of all other X in the group. No matter how
many observations of X that you took from such a group, you would have
only one ‘piece’ of non-redundant information.

Now, imagine that we create two groups. We randomly choose 20
values of X to form the first group and these values are independently and
normally distributed with a mean of 1 and a standard deviation of 0.5. We
randomly choose 20 values of X to form the second group and these values
are also independently and normally distributed but with a mean of 2 and
a standard deviation of 0.5. If the values within each group were exactly
the same then we would still only have two ‘pieces’ of information, but this
is not the case. If knowing that an observation came from a particular group
told us nothing about what values it might have, then we would have 40
‘pieces’ of information, but this is not the case either. So, we have more
than 2 and fewer than 40 ‘pieces’ of information6. This is the nature of
hierarchically structured data, and we require a way of determining how
many ‘pieces’ of information different variables possess at different levels of
the hierarchy. This is the goal of multilevel models, also called ‘random
coefficient models’, ‘variance component models’ or ‘hierarchical linear
models’. Such models, in the generalised linear context, have a large liter-
ature7. Detailed discussions and statistical derivations can be found in a
number of books (Bryk and Raudenbush 1992; Longford 1993; Goldstein
1995).

Hierarchies and partial dependence are the rule, rather than the
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be VarSRS (‘simple random sampling’), the correct variance estimate be VarC, the number
of observations per group be c and the intraclass correlation be , then the relationship
between them is VarC�VarSRS(1�(c�1)). A similar formula exists for the variance of a
linear regression slope with hierarchical structure. If 

�
is the intraclass correlation for the

residuals and X is the intraclass correlation for the predictor, then Scott and Holt (1982)
showed that VarC�VarSRS(1�(c�1)

�
X).

17 These models were mostly developed for the field of educational research and commer-
cial statistical programs are available. One such program is MLwiN (Goldstein et al.1998).



exception, in nature. If this is so, then we need to incorporate this structure
into our models of nature. One way to do this is through the use of multi-
level models. Before going on to the mechanics of fitting such models, or
even of interpreting them, it is useful to have a simple concrete example of
such a structure. A good example is the relationship between seed size and
seedling relative growth rate. Relative growth rate (RGR) is the amount of
new biomass produced by a plant over a unit time period, relative the
amount of biomass that the plant had as an initial ‘capital’ at the beginning
of the time period. If we plot the weight of different seeds of individuals
within a single species against the RGR of the seedling that emerges, we
often find a positive relationship between the two. For individuals within a
given species, having larger seeds translates into more rapidly growing seed-
lings, with all of the attendant benefits. When we compare across species,
however, we see that both average seed size and average potential RGR
varies much more between species than within species. For instance, the
seeds of some orchids are almost microscopic while it might require two
hands to hold the seeds of a Coconut Palm. Under constant environmental
conditions and resource levels, the variation of seedling RGR within a
single species usually varies by less than 10% of the variation in the mean
RGR values between different species. Curiously, the relationship between
the average values of seed size and seedling RGR across species usually shows
a negative relationship. Figure 7.3 plots some simulated data showing this
pattern. There are 10 simulated species, each having a different plotting
symbol. Figure 7.3A shows the relationship between the two variables for
the first species, along with its regression line. Figure 7.3B shows the rela-
tionship between the two variables when the data for all 10 species are com-
bined.

This example, although very simple, demonstrates many of the
challenges of analysing data that are hierarchically ordered. It is clear that
part of the variation in each variable, and the covariation between the two,
is generated by differences between individuals within each species, as
shown by Figure 7.3A. It is also clear that part of the variation and covari-
ation involving these variables is generated by differences between the
species means. We would like to model this covariation both within and
between species, taking into account the fact that individuals within a given
species tend to resemble each other more than the do individuals of differ-
ent species. Finally, we would like to model how the different levels in the
hierarchy interact and constrain each other.

Since there are two levels to this data hierarchy, let’s call ‘level 2’ the
level of species and call ‘level 1’ the individual level. If we had only one
species, then we could write the regression equation as:
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yi�a�bxi�ei

In this equation the subscript i refers to each individual, a is the
value of the average individual when x�0 (i.e. the intercept) and ei is the
amount by which the value of y for the ith individual deviates from its
expected value given xi. As usual, we assume that these deviations are
random. Since we have 10 species in our data set, we could write:

yi1�a01�bxi1�ei1

yi2�a02�bxi2�ei2

yi10�a010�bxi10�ei10

In this simple example I have assumed a common slope for all species (thus
b has no subscript) because that is how I generated these data. In general,
multilevel models allow for random slopes as well as random intercepts. The
assumption of a common slope across species in a structural equation model
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Figure 7.3. Hypothetical relationships between the relative growth rate
(RGR) of 50 plants and their seed size. (A) This relationship for one
species. (B) The relationship when all 10 species are combined. Notice
that the relationship is positive within every species but the overall
trend shows a negative relationship because the relationship between
the species’ means is negative.



could be tested with a multigroup model, as described in the previous
section, remembering that the slope is the path coefficient between x and y.

Here, we have a different regression equation for each species. We
could, at this point, simply introduce a dummy variable and conduct an
analysis of covariance. In the context of SEM, this would be the equivalent
of doing a multigroup model. However, if we have chosen our 10 species
at random, and want to extrapolate to a larger population of species, then
our regression intercepts are, themselves, random variables and we might
want to model how these species-level random variables change as well. In
this case, the 10 intercept terms (a1 to a10) are random variables which we
can model as: a0j�a00�u0j. Here, a00 is the overall intercept term for the
entire population of species and u0j is the random deviation of the intercept
for the jth species from this overall intercept term. Putting this all together
we obtain:

yij� (a00�u0j)�bxij�eij

Here the i-subscript refers to the level-1 units (the individual plants) and the
j-subscript refers to the level-2 units (the different species). Rearranging, we
obtain:

yij�a00�bxij�u0j�eij

This equation expresses each yij as a function of a systematic component (a00
�bxij), a random component due to the differences in the mean values of
yij between the species (u0j) and a random component due to the differences
of individuals within each different species (eij).

Up to now the model that we have developed is perhaps familiar to
some readers, since it is simply a variance components model8 with a
between-species variance component (the variance of the u0j) and a within-
species component (the variance of eij). However, since the intercepts (u0j)
are random variables, the relationships between these intercepts may be
determined by other, species-level variables. For instance, in Figure 7.3 it is
clear that as the mean value of seed size for a given species increases the mean
value of RGR for that species decreases.

Secondary succession in plant communities starts with some major
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disturbance event, for instance a field that has been cultivated and then aban-
doned. As different species reinvade the site the relative abundance of each
species changes. Because of this one often finds that particular species tend
to be most abundant in abandoned fields of a specific age. Immediately fol-
lowing a major disturbance event one typically finds annual species that
have rapid relative growth rates and that produce a large quantity of small
seeds. As secondary succession proceeds dominance shifts to species with
larger seeds and slower relative growth rates (Grime 1979). This is a selec-
tion process in which different frequencies and intensities of density-
independent mortality (the result of disturbance events) select for different
suites of plant attributes. As such, selection pressures represented by such
variables as ‘average time since the last major disturbance event’ affect
species-level properties by determining the mean and variation of individ-
ual-level attributes.

Actually, I generated the data shown in Figure 7.3 by simulating the
scenario described above. I defined a species-level variable – the frequency
of major disturbance events – that quantifies how often a habitat experi-
ences a major event of density-independent mortality. The causal effect of
this variable is to select for individuals with both larger seeds and lower
RGRs as the frequency of disturbance events decreases and as successional
age of the vegetation increases. In other words, although RGR increases
with increasing seed size within each species, the average seed size and the
average relative growth rates of a given species are both determined by the
common cause ‘disturbance frequency’. This is shown in Figure 7.4.

As Figure 7.4 makes clear, the relationship between individual seed
size and individual relative growth rate consists of causes that operate at two
different hierarchical levels. At the level of individual plants there is a posi-
tive direct effect (seed size→relative growth rate). At an interspecific level
there is a negative indirect effect between the two variables that is generated
by the common cause of selection for habitats experiencing different dis-
turbance frequencies. Whether the overall relationship between seed size
and relative growth rate is positive, negative or ambiguous depends on the
relative strengths of these different paths. In the data that I have simulated,
the species-level effect dominated, which is why the overall trend in Figure
7.3 is a downward sloping cloud of points. How can we incorporate these
hierarchical effects into our models? We could ignore the individual level
and simply work with the species means. If we did this then we would not
only lose a great deal of information (by reducing our data set from 50
observations to 10) but we would also ignore the fact that the relationship
at the individual level is quite different from the relationship at the species
level. We could ignore the fact that ‘disturbance frequency’ is a variable that
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is only relevant to the species-level process and simply conduct a standard
multiple regression of RGR on both seed size and average disturbance fre-
quency. This is like correlating eye colour and hair length – the average dis-
turbance frequency is the same for all individuals within a given species and
so we would be inflating the number of ‘pieces’of information that we really
possess. Instead, we should take an explicit multilevel approach.

First, we model the individual level relationship between RGR and
seed size:

RGRij��0j��1seedsizeij�eij

Here, we are specifying that RGR varies at both the individual (i-level) and
the species ( j-level). The intercept (�0j) varies only at the level of species.
The slope of the relationship between RGR and seed size (�1) is constant
across all species. Finally, the residual variation in RGR within each species
(eij) is assumed to be normally distributed with a constant variance9. Since
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Figure 7.4. The causal process determining the relationship between
seed size and relative growth rate operated at two levels. At the level of
individuals, seed size causes relative growth rate. However, the average
seed size and relative growth rate of each species is caused by the
typical disturbance frequency of the habitat occupied by each species.



the intercepts of RGR are, themselves, random variables that change from
species to species, we next model this species-level variation in these inter-
cepts:

�0j��00��01disturbancej�
0j

Now we are specifying that the species-level intercepts are functions of the
average disturbance frequency, which is a species-level variable. There is a
constant intercept (�00) term which represents the average seed size across
all species in the statistical population. The species-level slope between
average disturbance frequency and the intercepts of each species is �01.
Finally, the deviations of each species’ intercept from that predicted by
average disturbance frequency is the random variable 
0j. Putting this all
together we get:

RGRij��00��1seedsizeij��01disturbancej�
0j�eij

The standard error of the slope of seed size is based on the error variance at
the level of individuals within species (eij), which has been corrected for the
species-level variation. The slope of the average disturbance frequency is
based on the error variance at the level of species (
0j), which has been cor-
rected for the error variance at the individual level.

We next specify a multilevel model for seed size. According to
Figure 7.4, seed size is caused only by average disturbance frequency and
this effect occurs only at the species level. Our multilevel model is there-
fore:

seedsizeij��00��01disturbancej�
0j�eij

If I fit these models using the MLwiN software (Goldstein et al. 1998), I
obtain the following results:

Seed size�443.76�16.32 disturbance frequency

RGR��0.284�0.0006 seed size�0.0217disturbance frequency

The residual variation of the mean seed sizes per species was 55.28
(13%) and the residual variation of individual seed sizes was 361.76 (77%).
The residual variation of the mean RGR values per species was 4.96�10�5

(64%) and the residual variation of the individual RGR values was
2.79�10�5 (46%). The big difference between this multilevel model and an
ordinary regression model is best seen in the standard errors of the param-
eters of the equation for RGR. If we were to do an ordinary regression then
we get an estimate of the standard error of the slope for average disturbance
frequency of 1�10�4 while the standard error estimated from the multi-
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level model was 8.3�10�4. In other words, by ignoring the hierarchical
nature of RGR the ordinary regression overestimated the precision of the
slope by eight times. Since significance tests of the effects of a variable in a
regression are based on these standard errors, the effect of ignoring the par-
tially dependent nature of observations is to produce probability estimates
that are much smaller than they should be.

Hierarchically ordered data not only cause problems for parameter
estimation and inferential tests of significance. The patterns that can be gen-
erated with multilevel data can often be downright counterintuitive. To give
you a feeling for such patterns, I have generated data from a very simple
two-level model, shown in Figure 7.5. In this scenario there are two attrib-
utes (X and Y ) of each individual i (1 to 11) from each species j (1 to 10).
Each species has a mean value of each variable (
Xj

and 
Yj
) and each indi-

vidual has a value of each variable that varies around its species mean (Xij�

Xj��Xij and Yij� 
Yj�1Xij��Yij). Variable �Xij takes values from �0.25 to
�0.25. Since we are interested in comparing the within-species and
between-species patterns, I will ignore the random variation of Y at the
individual level (�Yij) and concentrate on the expected value of y (E[Y|X]
� 
Yj�1Xij). Substituting for Xij we get:

E[Y|X]�
Yj
�1
Xj

�1�Xij

This equation represents the intraspecific (i.e. within-group) level. The
interspecific (i.e. between-group level) will be generated in different ways10

and the combined data are then shown in Figure 7.6. We imagine that the
mean value of variables X and Y (
X and 
Y) differ randomly between the
10 species and that the interspecific relationship between these interspecific
means follows the following equation: 
Y�a


X
��


X
.

First, let’s see what happens when there is no species-level variation
or covariation. To simulate this, I set a in Figure 7.5 equal to zero and make
the values of 
X and 
Y the same (zero) for all 10 species (thus, the variance
of these two variables is zero). If we put these values into our generating
equation we obtain:

E[Y|X ]�(0)�1(0)�1�Xij

Figure 7.6A shows the pattern that results. There are actually 10 lines in this
figure but they are superimposed on each other, since we have exactly the
same values for all 10 species (remember that I am plotting the expected
values). The solid circles show the mean values of X and Y for each species.
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fixed at the square root of the number of individuals per species. This will be explained
later.
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Since all 10 species have the same means, these 10 circles are also super-
imposed.

In Figure 7.6B I simulate what happens if each species has a differ-
ent mean value for X but has the same mean value for Y; that is, I allow 
X
to vary randomly but not 
Y. All 10 lines – one for each species – appear
to line up along the same trend as that observed at the intraspecific level.
Notice that species whose mean for X (
Xj

) is less than other species have
their individual values of both X and Y (their line in the graph) in the lower
left. Similarly, those species whose mean for X (
Xj

) is greater than other
species have their individual values of both X and Y (their line in the graph)
in the upper right. In other words, there is a positive correlation between
the mean values of X and Y of these 10 species even though there is no real
relationship between the species means 
Xj

and 
Yj
. To see why, we have

only to write the generating equation for this simulation:

E[Y|X ]�(0)�1
Xj
�1�Xij

Whenever the mean value of X for a given species (
Xj
) happens, by chance,

to be less than average, this decreases the values of Y that individuals of this
species will possess. Similarly, whenever the mean value of X for a given
species (
Xj

) happens, by chance, to be greater than average, this increases
the values of Y that individuals of this species will possess. The observed
interspecific correlation that we observe is simply an artefact of mixing
together the two levels of variation.

In Figure 7.6C I simulate what happens if each species has a differ-
ent mean value of Y but the same mean value of X; that is, I allow 
Y to
randomly vary but not 
X. Returning to our generating equation and sub-
stituting, we get:

E[Y|X ]�
Yj�1(0)�1�Xij

The result is a series of lines stacked on top of each other. The overall cor-
relation between X and Y is severely diluted.

In Figure 7.6D I simulate what happens if each species has a differ-
ent mean value of both X and Y but there is still no true interspecific rela-
tionship between these mean values; that is, I allow both 
X and 
Y to vary
randomly and independently. The result is intermediate between graphs B
and C.

In Figure 7.5E I simulate what happens when each species both has
a different mean value of X and Y and there is also a positive interspecific
relationship between these mean values. To do this, I allow 
X and 
Y to
randomly vary but link them: 
Yj

�1
Xj
��


Xj
. Substituting this into the

generating equation, I get:
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E[Y|X ]�
Yj
�1
Xj

�1�Xij
�2
Xj

��

Xj

�1�Xij

The result is that the slope between the means appears twice as large as it
really is.

Finally, in Figure 7.6F I simulate what happens when each species
has a different mean value of X and Y and there is also a negative interspe-
cific relationship between these mean values. In other words, the interspe-
cific relationship is the opposite of the intraspecific relationship. To do this,
I allow 
X and 
Y to vary randomly but link them: 
Yj

��1
Xj
��


Xj
.

Substituting this into the generating equation, I get:

E[Y|X]�
Yj
�1
Xj

�1�Xij
�0(
Xj

)��

Xj

�1�Xij

The result is that the correlation between the means disappears even though
there are really strong (but opposite) relationships between the variables at
both hierarchical levels. The moral of this simple set of simulations is that
combining data that have relationships at different levels and analysing it as
if the hierarchical structure did not exist can lead to incorrect conclusions.

There is much more to be said about multilevel regression than has
been said so far. What I have described is not so much an introduction as an
appetiser and for more information the interested reader should consult the
references given earlier in this chapter. Now that we recognise the problem
that hierarchically organised data can cause, and have an intuitive under-
standing of how multilevel regression deals with it, let’s see how these
notions can be incorporated into SEM11.

7.4 Multilevel SEM

Suppose that we have a variable that has been measured on N observations.
These observations are organised into G groups with N1, N2, . . ., NG obser-
vations in each group; for the moment we will assume that there are the
same number (C ) observations in each group. I write Yij to mean the ith
observation in group j and I write ·j to mean the mean of the value in the
jth group. The deviation of this value from the overall mean is (Yij� ). We
can decompose this deviance as follows: (Yij� )� ( ·j� )� (Yij� ·j).
This leads to the one-way ANOVA table that is fondly remembered by
everyone who has taken an introductory course in statistics (Table 7.2).

YYYY
Y

Y
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11 Although I do not discuss multilevel tests of path models based on the method presented
in Chapter 3, the reader should be aware that multilevel regression methods can be used
to obtain probability estimates of conditional independence by fitting a series of regres-
sions in accordance with the hypothesised causal graph. These probability estimates can
then be combined using Fisher’s C statistic.



The above decomposition has the useful property that the between-
group deviations have zero correlation with the within-group deviations.
Remembering that a variance is simply the covariance of a variable with
itself, we can do the same trick with covariances. In this way, we can define
both a pooled within-group covariance matrix (SPW) and a between-group
covariance matrix (SB) for our data. The pooled within-group covariance
matrix is constructed by first centring each variable by its group mean, cal-
culating the sum of squares and cross-products of these group-centred var-
iables, and then dividing by N�G. One easy way to obtain this matrix from
any statistical program is simply to calculate the covariance matrix of the
centred variables (which has a denominator of N�1), and multiply by
(N�1)/(N�G). The between-group covariance matrix is constructed by
calculating the sum of squares and cross-products of the group means and
dividing by G�1. An easy way to obtain this matrix from any statistical
program is simply to calculate the covariance matrix of the group means,
which has a denominator of G�1.

The sample pooled within-group covariance matrix (SPW) is an
unbiased estimate of the population within-group covariance (�PW) matrix.
Unfortunately, the sample between-group covariance matrix (SB) is not a
simple estimator of the population between-group covariance matrix (�B);
instead it estimates SB��PW�C�B. If you look carefully at this equation
then you will notice that it looks suspiciously like the multigroup structu-
ral equations formulation that we studied earlier in this chapter, with two
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Table 7.2. Decomposition of the variance in a one-way analysis of variance

Degrees of
Source of variance Sum of squares freedom Variance

Total (Yij� )2 N�1

Between groups C ( .j� )2 G�1

Within groups (Yij� .j )
2 N�G

�
G

j�1
�
Nj

i�1
(Yij �Y .j)

2

N � G
Y�

G

j�1
�
Nj

i�1

C�
G

j�1
(  Y .j �Y )2

G � 1
YY�

G

j�1

�
G

i�1
�
Ni

j�1
(Yij �Y )2

N � 1
Y�

G

i�1
�
Ni

j�1



‘groups’. We can therefore trick commercial SEM programs into fitting a
multilevel SEM by treating it like a multigroup SEM with particular cross-
group constraints.

To set up the analysis we tell the program that it is actually conduct-
ing a multigroup analysis with two groups. The first ‘group’ represents the
group-centred data, for which there is the pooled sample covariance matrix
obtained from the group-centred variables (SPW) based on N�G ‘observa-
tions’. This is the level 1 covariance matrix. We specify our within-group
causal structure for this ‘group’. Next, we define a second ‘group’, for which
we have the sample between-group matrix (SB) based on G ‘observations’,
where G is the number of groups in the multilevel model. For this second
‘group’we specify both the within-group causal structure and the between-
group causal structure. These two causal structures are linked by latent var-
iables that represent the true values of the group means in the statistical
population; remember that our calculated group means are only estimates
of these underlying parameters. Since the variances and covariances of the
group means are multiplied by the constant C (the number of individuals
within each group), we fix the path coefficients leading from these latent
variables to the individual variables by 12. Finally, we must constrain all
of the free parameters in the first ‘group’ (i.e. the model at the level of the
individual) to be equal to the equivalent parameters in the second group (i.e.
those parameters in the second group dealing with the model for the indi-
vidual level). When we fit this model to our data the estimation procedure
will correct for the partial non-independence of our data due to its hier-
archical nature.

When we have different numbers of observations per group, we can
calculate an approximate scaling factor due to Muthén:

C�

Estimates based on this scaling factor have been shown to be fairly accurate
so long as the group sizes are not extremely different (Hox 1993; McDonald
1994; Muthén 1994b). Of course, when group sizes are equal this reduces
to the common group size. The parameter estimates, standard errors and
maximum likelihood chi-squared statistics are still asymptotic values but
now the requirement for sufficient sample sizes applies both at the level of

N2 ��
G

i�1

N2
i

N(G � 1)

�C
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12 If we have an equation: Y�aX�e then the variances are Var(Y )�a2Var(x)�Var(e). By
setting the path coefficient from the latent variable representing the group mean to the
individual-level variable at (i.e. L� X�e) then we obtain Var(L)�C*Var(X )�
var(e).

�C�C



individuals and at the level of groups. Note that, at the level of groups, we
are considering random samples of means. This means that the central limit
theorem applies and the distribution of means will be closer to multivariate
normal than is the distribution of the actual values.

In order to better understand how to interpret such multilevel
structural equations models, I will analyse simulated data generated by
different models. First, let’s see what happens in the simplest case when all
of the observations are really independent observations generated by the
same causal process; in other words, there is really no group-level structure
and all variances and covariances exist at the individual level. To do this, I
generate 200 independent observations from the following equations:

X�N(0,1)

Y�0.5X�N(0,0.75)

Z�0.5Y�N(0,0.75).

Now, I randomly divide these 200 independent observations into 40
groups of 5 observations each. Since this assignment is completely random,
the only variation between the group means is due to sampling variation and
the systematic variation in the group means is zero. Figure 7.7 shows the
multilevel model. The variables M1, M2 and M3 are latent variables represent-
ing the population means of each variable centred around the overall mean
of each variable. Since there are 5 observations per group the scaling con-
stant C is 5. Since there are no causal paths linking these latent variables, we
are assuming that there is no covariance between them, although we could
allow for such covariances; this will be shown in a later example.

I now fit two models, one nested within the other. First, I fit the
model shown in Figure 7.7 (remembering to constrain all the free parame-
ters at level 1 to be equal in the model associated with the within-group
covariance matrix and the model associated with the between-group covar-
iance matrix) while fixing the variance of the latent M1, M2 and M3 to zero.
The model in Figure 7.7 is the between-groups model that necessarily con-
tains the within-groups model (X→Y→Z ) nested within it. By fixing the
variance of the latents M1, M2 and M3 to zero I am assuming that the vari-
ance in the population means between groups are zero for all three variables
and that any observed variance at this group level is due only to sampling
variation. This assumption is, of course, correct for these data. The result-
ing model gives a maximum likelihood chi-squared statistic of 7.611 with
7 degrees of freedom, for a probability of 0.368.

There were two covariance matrices, the within-groups covariance
matrix and the between-groups covariance matrix, and each had (3�4)/2�
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6 non-redundant elements. Therefore, we had 12 non-redundant elements
in total. The within-groups model had to estimate 5 free parameters (aYX,
aZY, �X, �Y and �Z). The between-groups model also had to estimate the
same 5 free parameters since the variances of the latents M1, M2 and M3 were
fixed at zero. I also had to constraint the 5 free parameters associated with
the within-groups model to be equal to these same free parameters in the
between-groups model. Therefore, I had 12�5�7 degrees of freedom.

Since this model, with the variances of the latents M1, M2 and M3
fixed to zero, provides a non-significant probability level, we could stop
there. However to test the hypothesis that there is really no group-level var-
iance contributing to X, Y or Z, I now re-fit the model by allowing the var-
iances of the latent M1, M2 and M3 to be freely estimated. This new model
gives a maximum likelihood chi-squared statistic of 7.475 with 4 degrees of
freedom, for a probability level of 0.113. Note that we have reduced the
degrees of freedom from 7 to 4 because we are now estimating three param-
eters that were previously fixed. Since this model is nested within the first,
we can calculate the probability that the variances of M1, M2 and M3 really
were zero by calculating the difference in the chi-squared statistics (0.136)
with 3 degrees of freedom. The resulting probability level (0.987) tells us
that the observed variation in the group means was very likely to have been
due only to sampling variation. If we go back to our first model and look
at the estimated variances of M1, M2 and M3 and the standard variation of
these estimates, we find that each is very small and less than 1 standard error
from zero. I have not explained the actual code needed to fit models in this
book because each program does this differently, and most have user-
friendly interfaces that hide much of the code anyway. However, since the
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Figure 7.7. A two-level model involving three variables (X, Y and Z ) and
their population means.



multilevel model is more complicated, I show some ‘pseudo-code’ for the
EQS program (Bentler 1995) in Box 7.1.

Box 7.1. EQS program code for a multilevel model

The following is the program code of the EQS program needed to fit the
multilevel model shown in Figure 7.4. Note that the actual code generation
is done automatically in EQS from a user-friendly interface. My comments
are shown in italics.

/TITLE
within-groups model

/SPECIFICATIONS
DATA� ‘WITHIN.ESS’;
VARIABLES�3; CASES�160;
GROUP�2
METHODS�ML;
MATRIX�COVARIANCE;

This section specifies that the first input data file, containing the pooled within-group
covariance matrix, is called ‘WITHIN.ESS’, that there are 3 variables in this file, that
it is a covariance matrix, and that it is based on 160 observations.Remember that there
are really 200 observations, but the data are grouped into 40 groups.The within-group
covariance matrix has 200�40�1 degrees of freedom. Finally, the code tells us that
the overall model has 2 groups and the parameters are to be estimated using maximum
likelihood techniques.

/LABELS

V1�X; V2�Y; V3�Z;

There are only four legal types of variable in EQS. Observed variables are called V,
latent variables are called F, errors of observed variables are called E and the errors of
latent variables are called D.The LABELS section just tells us how our variables’
names (X,Y, Z) map onto the EQS variables.

/EQUATIONS
V2��1*V1�E2;
V3��1*V2�E3;

These are the equations for the within-groups section of the overall model. Note that
there are no latent variables here.The asterisk indicates that there is a free parameter to
be estimated (slope in this case), and that the starting guess for its value in the itera-
tions is the number before the asterisk.

/VARIANCES
V1 � *;
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E2 � *;
E3 � *;

These are the variances whose free values are to be estimated.Again, the asterisk indi-
cates that it is a free parameter whose value must be estimated. Since X (V1) is exog-
enous, its variance is estimated. Since Y (V2) and Z (V3) are endogenous, their error
variances must be estimated.

/COVARIANCES

Since no entries have been given in the COVARIANCE section, this means that no
free covariances are to be allowed.

/END

Now,we enter the model for the second model of the multigroup model.Remember that
we are actually trying to trick the program into fitting a multilevel model using the
syntax of a multigroup model.

/TITLE
full between-group and within-group model

/SPECIFICATIONS
DATA� ‘between.ESS’;
VARIABLES�4; CASES�40;
METHODS�ML;
MATRIX�COVARIANCE;

This gives the same type of information as in the first section, except that we are using
the file ‘between.ESS’ which holds the covariance matrix of the 40 group means.

/LABELS
V1�X; V2�Y; V3�Z;

/EQUATIONS
V1��2.236F1�E1;
V2��2.236F2�1*V1�E2;
V3��2.236F3�1*V2�E3;

Compare these equations with those in the first section; the variables F1, F2 and F3
are EQS code for three latent variables.These latents represent the population group
means in this case.The difference is that both the within-group model and the between-
group model are combined in this second ‘group’.The between-group part links X(V1),
Y(V2) and Z (V3) at level 1 to their group means, which are represented by the three
latent variables.The path coefficients from these latents to their respective level-1 vari-
ables are fixed at �2.236.You can tell that these are fixed values because there is
no asterisk after these values.

/VARIANCES
E1�*;
E2�*;

�5
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E3�*;
F1�*;
F2�*;
F3�*;

Notice that we now specify the variances of the three latent variables representing the
group means. Here, these latent variances are allowed to be freely estimated. If we want
to fix them at zero, we replace the asterisks with 0. Note also that we don’t specify a
variance for V1 since, in this model, it is no longer exogenous (it is now caused by F1,
its group mean). Instead, we have to specify its error variance (E1).

/COVARIANCES

Again, we don’t allow any free covariances. If we wanted to allow a free covariance
between the population means of (say) X(V1) and Y(V2) then we would add the fol-
lowing line:‘F1, F2�*;’.

/CONSTRAINTS
(1,V1,V1)� (2,E1,E1);
(1,E2,E2)� (2,E2,E2);
(1,E3,E3)� (2,E3,E3);
(1,V1,V2)� (2,V1,V2);
(1,V3,V2)� (2,V3,V2);

This is a critical part of the overall model.This section specifies which free parameters
in the two models are constrained to be equal. We must make all free parameters in the
first model (the within-group model) be equal to their equivalents in the second model.
Thus, we state for instance that the error variance of V2 in model 1 – (1,E2,E2) – be
equal to the error variance of V2 in model 2 – (2,E2,E2). Note also that V1 is exog-
enous in model 1 and so it has a variance (1,V1,V1) but it is endogenous in model
2 so it is represented by its ‘error’ variance – (2,E1,E1).
/END

The first simulation exercise was simply to show you that, if there
really is no group-level variation that results in partial non-independence of
the observations, then the multilevel model will detect this fact. Next, let’s
look at a case in which there really is group-level variation, but not group-
level covariation. This time, we generate our 200 observations according to
the following equations:

(A) For the 40 groups:


Xj
�N(0,1)


Yj
�N(0,1)


Zj
�N(0,1)
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(B) For each of the five observations within each of the 40 groups:

Xij�
Xj
�N(0,1)

Yij�
Yj
�0.5Xij�N(0,1)

Zij�
Zj
�0.5Yij�N(0,1)

Note that, in this simulation, each variable receives variation from
two sources: the variation at level 1 (the group level) due to the random
variation of each of the group means and the variation at level 2. I again fit
two nested models, as in the first example. In the first model I fix all of the
group-level variation associated with the latent M1, M2 and M3 to zero (see
Figure 7.7). This model does poorly (MLX2�197.079, 7 df, p�10�7), as
it should. Since the variance of the group-level latent means was fixed at
zero then all of the group-level error variance is incorrectly forced down to
the within-group level. The resulting estimates of the three within-group
error variances are 1.647, 1.904 and 1.857 instead of the correct value of 1.
Now, I re-fit the model but allow the variances of the latent population
means (M1, M2 and M3) to be freely estimated. This time, the model pro-
vides an adequate fit (MLX2�6.931, 4 df, p�0.140), as it should. Since this
model is nested within the first, the difference in the maximum likelihood
chi-squared statistic tests the hypothesis that there was group-level variance.
This difference is highly significant (MLX2�190.148, 3 df, p�10�7). Both
the group-level variances and the individual variances are correctly esti-
mated. If we ignore the multilevel nature of these data and simply put all
200 observations into the same data set and fit the model X→Y→Z, then
the model fails (MLX2�6.206, 1 df, p�0.013). This is a general result
(Muthén 1994a).

Up to now, we have seen how ignoring the multilevel nature of data
can result in improper parameter estimates and probability levels. The real
strength of multilevel SEM is that we can actually model how the group-
level variables interact separately from the level 1 variables, and how these
two levels interact together. To show this, I will simulate data from the
process shown in Figure 7.8.

This model has four observed variables. Three of these variables,
the number of seeds produced per plant, the seed size for an individual plant
and the relative growth rate (RGR) of an individual plant, are properties of
individual plants, and form the within-group model. The fourth variable,
the average disturbance frequency of the habitat, is a property of each
species; that is, individuals within a given species tend to be found in habi-
tats with the same average frequency of disturbance. The model proposes
that, at the level of individuals, increasing seed size causes an increase in
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RGR but a decrease in the number of seeds produced. At the level of
species, selection for habitats of different disturbance frequencies results in
species that are adapted to frequently disturbed habitats (early during secon-
dary succession) producing fewer seeds (because they tend to be smaller
plants), also smaller seeds on average, and seedlings having faster average
RGRs. Note that the relationship between seed size and RGR is positive
at the level of individuals but negative at an interspecific level. Figure 7.9
shows the simulated data set.

Before analysing these simulated data, I want you to notice some
interesting trends. First, there is a negative relationship between seed size
and RGR. This is because the species-level effect of selection, based on
average disturbance frequency, dominates the within-species tendency for
larger seeds to increase RGR. Second, notice that there is a positive rela-
tionship between seed number and disturbance frequency even though the
direct effect of disturbance frequency on these two variables, at an interspe-
cific level, is negative. This is because an increasingly disturbed habitat
selects for species with smaller seeds on average and this, in turn, reduces
the seed size within such species. However, smaller seeds increase seed
number within a given species resulting in an overall effect along this path
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Figure 7.8. A hypothetical causal structure involving four observed
variables and three latents. One of these observed variables
(disturbance frequency) is a species-level variable that is a common
cause of the three latent species’ means. The other three observed
variables are individual-level variables that are caused by the latent
species’ means.
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being positive. Since this path dominates the direct effect at the species level,
we see a positive overall relationship.

Now, we fit a series of nested models. First, we specify no variance
or covariance at the species level. This model is rejected (MLX2�746.249,
7 df, p�10�10). Next, we allow variance, but not covariance, at the species
level. This nested model is also rejected (MLX2�51.385, 4 df, p�10�10)
but the change in the maximum likelihood chi-squared statistic is signifi-
cant (MLX2�694.864 , 3 df, p�10�10) showing that there is significant
species-level variation. Finally, we allow the three latent variables to freely
covary amongst themselves. This model, nested within the second, provides
an acceptable fit (MLX2�2.096, 1 df, p�0.148) and the change in the
maximum likelihood chi-squared statistic is significant (MLX2�49.289, 3
df, p�1.13�10�10) showing that there is also species-level covariation.

Since there is significant covariation between the latent species-
level means, we introduce the species-level variable ‘average disturbance fre-
quency’and specify that this variable is the sole common cause of these three
species-level variables. This model (which is the true model that generated
these data) also provides an acceptable fit (MLX2�5.123, df�4, p�0.275).
Figure 7.10 shows the final parameter estimates and their standard errors in
parentheses.

The parameter estimates are all close to the true values that I had
simulated, and all are within the approximate 95% confidence intervals (two
times the standard errors). This model is quite remarkable. Not only have
we been able to account for the partial non-independence of the data within
each species due to their hierarchical nature, but we have also been able to
separate the within-species structure from the between-species structure and
link the two hierarchical processes together. Although the data were simu-
lated, they are biologically realistic. Natural selection based on some average
environmental property determines the average values of attributes shown
by different species and the covariation between these average values. These
average values then limit the range of values shown by particular individu-
als within each species but still allow variation between individuals and co-
variation of the attributes at the level of individuals.

The multigroup model can be extended to more than two levels.
For simplicity, let’s imagine that our data are grouped into G different
genera, S different species and I different individuals. The value for our
attribute in individual i of species j of genus k is Yijk. Now, we can write:

Yijk� ( ..k� )� ( .jk� ..k)� (Yijk� .jk)

where is the grand mean over all I observations, ..k is the mean of Y for
each genus, and .jk is the mean of Y for each species. It follows that we canY

YY

YYYYY
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decompose the sum of squares of Yijk into a term representing the devia-
tions of each genus mean from the grand mean, ( ..k� ), a term repre-
senting the deviations of each species from its genus mean ( .jk� ..k) and
a term representing each individual from its species mean ( ijk� .jk).
Following exactly the same logic as we used to derive the two-group multi-
level model, we can therefore obtain a genus-level sample covariance matrix
(SG), a species-level pooled sample covariance matrix (SPS) and an individ-
ual-level pooled sample covariance matrix (SPI)

13:

SPI�

SPS�

SG�
�

G

k�1

N..k(Y..k � Y )2

G � 1

�
G

k�1
�

S

j�1
N.jk(Y.jk � Y..k)

2

S � G

�
G

k�1
�

S

j�1
�

I

i�1
(Yijk � Y.jk)

2

N � S

YY
YY

YY
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Figure 7.10. The maximum likelihood estimates of the free parameters
of Figure 7.8, based on the simulated data. Values in parentheses are
the standard errors of the parameter estimates.



If our data are completely balanced with NG species per genus and
NS individuals per species, we can write: �T�NG�G�NS�S��I. If this is
not the case then we have to use Muthén’s approximate scaling factor for
each level of the hierarchy:

CL�

Here, CL is the scaling factor for level L of the hierarchy, N is the total
number of observations in the data set, NL is the total number of units at
level L (for instance, the number of species or genera) and NiL is the number
of units within group i of level L. In this way, we can model structural rela-
tionships at various levels of organisation and account for partial non-inde-
pendence due to common ancestry at various taxonomic levels. Of course,
these levels do not have to represent traditional taxonomic classifications.
For instance, you might have measures at different times for the same indi-
vidual, defining a within-individual level. Some readers might have noticed
that the above description looks much like a nested Type II ANOVA. Box
7.2 describes the relationship for those who are interested.

Box 7.2. Variance components in a nested ANOVA

Consider a typical balanced ANOVA table for a nested analysis with three
levels. There are 160 observations. These observations are grouped into
N1�40 level 1 groups, N2�80 level 2 groups (i.e. two level 2 groups per
level 1 group) and N3�160 level 3 observations (two level 3 observations per
level 2 group).

Source df SS MS Expected MS

Level 1 N1�1�40�1 SS1 SS1/(N1�1) � 2
L3⊂L2

�C2�
2
L2⊂L1

�C1�
2
L1

Level 2 N2�N3�80�40 SS2 SS2/(N2�N3) � 2
L3⊂L2

�C2�
2
L2⊂L1

Level 3 N3�N2�160�80 SS3 SS3/(N3�N2) � 2
L3⊂L2

Total N3�1�160�1 SST SST/(N3�1)

Note:
SS, sum of squares; MS, mean square.

Here, the notation � 2
L3⊂L2

means the variation of the level 3 units
nested within the level 2 units. C2 is the number of level 3 units within each
level 2 unit and C1 is the number of level 2 units within each level 1 unit. We
see that the higher level mean squares (which are sample variances if the units
are randomly sampled) do not estimate variation unique to that level but a
weighted sum of variation at that level and all levels below it.

N2 ��
NL

i�1

N 2
iL

N(NL � 1)
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If we subtract the variance (i.e. MS) at a given level with the variance
directly below it in the hierarchy, and divide by the number of observa-
tions per unit (i.e. Ci), then we obtain an estimate of the variance component
at that level. For instance, to obtain the variance component at level 1 we
write:

��2
L1

We estimate this variance component by calculating:

The variance (i.e. MS) at a given level measures the total amount of
variation that is found at that level. However, such variation is due to the
combined effect of variation at lower levels and the added variation contrib-
uted at that level. The variance components measure the amount of added
variation at each level. Usually, one expresses these variance components as
percentages of the total variation.

A variance (or a sum of squares) is simply a special type of covariance
(or sum of cross-products); namely the covariance of a variable with itself.
We can therefore apply the same logic to each variance and covariance in a
covariance matrix. If we measure a whole set of variables on each observa-
tional unit instead of only one then we can produce a table that summarises
the decomposition of the entire covariance matrix. Rather than sums of
squares (SS), we would calculate sums of squares and cross-products (SSCP).
Rather than mean squares (variances) we would calculate mean squares and
cross-products (MSCP), i.e. covariances.

Source df SSCP MSCP Expected MSCP

Level 1 N1�1�40�1 SSCP1 SSCP1/(N1�1) �2
L3⊂L2

�C2�
2
L2⊂L1

�C1�
2
L1

Level 2 N2�N3�80�40 SSCP2 SSCP2/(N2�N3) �2
L3⊂L2

�C2�
2
L2⊂L1

Level 3 N3�N2�160�80 SSCP3 SSCP3/(N3�N2) �2
L3⊂L2

Total N3�1�160�1 SSCPT SSCPT/(N3�1)

The variance components can be extracted from the diagonal elements of
these covariance matrices.

One important type of multilevel model involves repeated meas-
urements over time on the same set of individuals. In such a sampling design,
the first level would be the intra-individual level (i.e. variation over time in
the same individual); this is analogous to ‘repeated-measures’ analyses with
which many biologists are familiar. Unfortunately, I am not aware of any

[MSL1 � MSL2]
C1

[(�L
2
3⊂L2 � C2�

2
L2⊂L1 � C1�

2
L1) � (�L

2
3⊂L2 � C2�

2
L2⊂L1)]

C1
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multilevel models that have been used in a biological context and only very
few in any other context (Muthén 1990, 1994a,b; Muthén and Satorra
1995). None the less, I suspect that multilevel models will become very
important in biology, since hierarchies are so ubiquitous.
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8 Exploration, discovery and equivalence

8.1 Hypothesis generation

If this were a textbook of statistics then this chapter would not exist.
Modern statistics is almost entirely concerned with testing hypotheses, not
developing them. This bureaucratic approach views science as a compartmen-
talised activity in which hypotheses are constructed by one group, data are
collected by another group and then the statistician confronts the hypothe-
sis with the data. Since this book is a user’s guide to causal modelling such
a compartmentalised approach will not do. One of the main challenges
faced by the practising biologist is not in testing causal hypotheses but in
developing causal hypotheses worth testing.

If this were a book about the philosophy of science then this
chapter might not exist either. The philosophy of science mostly deals with
questions such as: ‘How can we know whether a scientific hypothesis is true
or not?’ or ‘What demarcates a scientific hypothesis from a non-scientific
hypothesis?’. For most philosophers of science the question of how one
looks for a useful scientific hypothesis in the first place is someone else’s
problem. For instance, Popper’s (1980) influential Logic of scientific discovery
says that ‘there is no such thing as a logical method of having new ideas, or
a logical reconstruction of this process. My view may be expressed by saying
that every discovery contains “an irrational element”, or “a creative intui-
tion”. . .’ Later, he says that ‘[scientific laws] can only be reached by intui-
tion, based on something like an intellectual love of the objects of
experience.’Again, one gets the impression that science consists to two her-
metically sealed compartments. One compartment, labelled ‘hypothesis
generation’, consists of an irrational fog of thoughts and ideas, devoid of
method, out of which a few gifted people are able to extract brilliant
insights. The other compartment, labelled ‘hypothesis testing’, is the public
face of science. Here, one finds method and logic, in which established rules
govern how observations are to be taken, statistically manipulated and inter-
preted.

At a purely analytical level there is much to be gained by taking this
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schizophrenic view of the scientific process. After all, how a scientific idea
is developed is irrelevant to its truth. For instance, the history of science
documents many important ideas whose genesis was bizarre1. Archimedes
reportedly discovered the laws of hydrostatics after jumping into a bathtub
full of water. Kukulé discovered the ring structure of benzene after falling
asleep before a fire and dreaming of snakes biting their tails. These curious
stories are entertaining but we remember them only because the laws of
hydrostatics hold and benzene really does have a ring structure. As a public
activity, science is interested in the result of the creation, not in the creative
act itself.

The day-to-day world of biology does not exist at such a purely
analytical level. Although it is possible to conceptually divide science into
distinct hypothesis-generation and hypothesis-testing phases, the two are
often intimately intertwined in practice. When the two are not intertwined
the science can even suffer. Peters (1991), in his A critique for ecology, pointed
out that because empirical and theoretical ecology are often done by differ-
ent people, the result is that much ecological theory is crafted in such a way
that it can’t be tested in practice and much of field ecology can’t be gener-
alised because it is not placed into a proper theoretical perspective. In this
context I like the citation, attributed to W. H. George, given at the begin-
ning of Beveridge’s (1957) The art of scientific investigation: ‘Scientific research
is not itself a science; it is still an art or craft.’Unlike the assembly-line worker
who receives a partly finished object, adds to it, and then passes it along to
someone else, the craftsman must construct the object from start to finish.
In the same way the craft of causal modelling consists as much of the gen-
eration of useful hypotheses as of their testing. Certainly hypothesis gener-
ation is more art than method, and hypothesis testing is more method than
art, but this does not mean that we must relegate hypothesis generation to
a mystical world of creative intuition in which there are no rules. The
purpose of this chapter is to describe reliable methods of generating causal
hypotheses.

8.2 Exploring hypothesis space

How does one go about choosing promising hypotheses concerning causal
processes? To place the problem in context, imagine that you have collected
data on N variables and at least some of these variables are not amenable to
controlled randomised experiments. Why you suspect that these N variables
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possess interesting or important causal relationships may well be due to the
irrational creative intuition to which Popper referred, but you are still left
with the problem of forming a multivariate hypothesis specifying the causal
connections linking these variables.

To simplify things, let’s assume that all of the data are generated by
the same unknown causal process (i.e. causal homogeneity), that there are
no latent variables responsible for some observed associations (i.e. causal
sufficiency) and that the data are faithful2 to the causal process. How many
different causal graphs could exist under these conditions? Each pair of var-
iables (X and Y ) can have one of four different causal relationships: X
directly causes Y, or Y directly causes X, or X and Y directly cause each
other, or the two have no direct causal links. We now have to count up the
number of different pairs of variables, which is just the number of combi-
nations of two objects out of N. The combinatorial formula is therefore 

4

Table 8.1 gives the number of different potential causal graphs of this type
that can exist given N variables.

If we think of the full set of potential causal graphs having N vari-
ables as forming an ‘hypothesis space’, and your research program as a search
through this space to find the appropriate causal graph, then Table 8.1 is bad
news. Even if we could test one potential graph per second it would take us

N !
2!(N � 2)!
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Table 8.1. The number of
different cyclic causal graphs
without latent variables that
can be constructed given N
variables

N Number of graphs

2 4
3 64
4 4096
5 1048576
6 1073741824



almost 32 years to test every potential graph containing only six variables!
If we were to restrict our problem to acyclic graphs then the numbers would
be smaller, but still astronomical (Glymour et al. 1987). If it is true that the
process of hypothesis generation (in this case, proposing one casual graph
out of all those in the hypothesis space) is pure intuition, devoid of method,
then it is a wonder that science has made any progress at all. That science
has made progress shows that efficient methods of hypothesis generation,
although perhaps largely unstated, do exist.

So how should we go about efficiently exploring this hypothesis
space? To go back to my previous question: how does one go about gener-
ating promising hypotheses concerning causal processes (Shipley 1999)?
One way would be to choose a graph at random and then collect data to
test it. With five variables there is a bit less than one chance in a million of
hitting on the correct structure. There is nothing logically wrong with such
a search strategy; we will have proposed a falsifiable hypothesis and tested it.
However, no thinking person would ever attempt such a search strategy
because it is incredibly inefficient. We need search strategies that have a good
chance of quickly finding those regions of hypothesis space that are likely
to contain the correct answer. What would be our chances of hitting on the
correct structure if we were to appeal only to ‘pre-existing theory’, as rec-
ommended by many SEM books? Clearly that would depend on the quality
of the pre-existing theory. If, however, the theory really was so compelling
that the researcher did not feel a need to search for alternatives then the
problem would be firmly within the ‘hypothesis testing’ compartment and
no question of a search strategy would be posed.

Very often biologists find themselves in the awkward position
of straddling the ‘hypothesis-generation’ and ‘hypothesis-testing’ compart-
ments. Often, we have some background knowledge that excludes certain
causal relationships and suggests others, but not enough firmly established
background knowledge to specify the full causal structure without ambigu-
ity. In such situations the goal is not to test a pre-existing theory – which
might not be sufficiently compelling to justify allocating scarce resources and
time to testing it – but rather in developing a more complete causal hypoth-
esis that would be worth testing with independent data. The real problem
is less in testing hypotheses than in finding hypotheses that are worth testing
in the first place. We need search strategies that can be proved to be efficient
at exploring hypothesis space, at least given explicitly stated assumptions.
Until very recently such search strategies, which are described in this
chapter, did not exist. You will see that these search strategies rely heavily
on the notion of d-separation and on how this notion allows a translation
from causal graphs to probability distributions.
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8.3 The shadow’s cause revisited

I have repeatedly compared the relationship between cause and correlation
to the relationship of an object and its shadow. There is something missing
in this analogy when applied to actual research projects. When we measure
a correlation in a sample of data we are almost never interested in the value
as such. Rather, we use the value to infer what the correlation might be in
the population from which we randomly chose our sample data. It is as if,
in nature’s Shadow Play, not only do the causal processes cast potentially
ambiguous correlational shadows, but these shadows are randomly blurred
as well. We therefore have two problems. First, we have to find a way of
provably deducing causal processes from correlational shadows and, second,
we have to take into account the inaccuracies caused by using sample cor-
relations to infer population correlations. It is important to keep these two
problems distinct. The second problem, that of dealing with sampling vari-
ation, is a typical problem of mainstream statistics. For this reason, we will
first see how to go from correlations to causes when there is no sampling
variation. In other words, we will consider asymptotic methods.

The history of the development of these exploratory methods, or
‘search’algorithms, is fascinating. The word ‘history’has connotations of age
but, in fact, all of these methods date to less than 10 years before the writing
of this book. The mathematical relationships between graphs, d-separation
and probability distributions were worked out in the mid 1980s by Judea
Pearl and his students at the University of California at Los Angeles (UCLA)
(Pearl 1988). This was the translation device between the language of cau-
sality and the language of probability distributions that had been missing for
so long. As soon as it became possible to convert causal claims into prob-
ability distributions the dam was burst and the conceptual flood came
pouring out. It became immediately obvious that one could also convert
statements concerning probabilistic independencies into causal claims. Pearl
and his team at UCLA developed a series of algorithms to extract causal
information from observational data during the period 1988-19923.
Interestingly, a group of people at the Philosophy Department at Carnegie–
Mellon University (Clark Glymour, Peter Spirtes, Richard Scheines and
their students) had also been working on the same goal. In the late 1980s
they had published a book (Glymour et al. 1987) in which zero partial cor-
relations and vanishing tetrad differences were used to infer causal structure,
but without the benefit of d-separation or the mathematical link between
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causal graphs and probability distributions. As soon as the Carnegie-Mellon
group encountered Pearl’s work on d-separation (they didn’t know about
the discovery algorithms of Pearl) they immediately began to independently
derive and prove almost identical search algorithms. These algorithms (and
much more) were proved and published in Spirtes, Glymour and Scheines
(1993) and incorporated into their TETRAD II program. An algorithm
called the Inductive Causation algorithm was proved and published by
Verma and Pearl (1991) and is very similar to the Causal Inference algorithm
of the Carnegie–Mellon group that is presented in this chapter. I will leave
it to the people involved to sort out questions of priority. I think that it is
fair to say that once the d-separation criterion was developed the various
algorithms were ‘in the air’ and had only to be brought down to earth by
those with the knowledge. The philosopher’s dream of inferring (partial
knowledge of ) causation from observational data had been realised.

In Chapter 2 I explained how to translate from the language of cau-
sality, with its inherently asymmetric relationships, to the language of prob-
ability distributions with its inherently symmetric relationships. The
Rosetta Stone allowing this translation was the notion of d-separation.
Using d-separation we could reliably convert the causal statements expressed
in a directed acyclic graph into probabilistic statements of dependence or
independence that are expressed as (conditional) associations. This transla-
tion strategy was used in Chapters 3 to 7 to allow us to test hypothesised
causal models using observational data.

Now that we are attempting to discover causal relationships, the
problem has been turned on its head. We have to start with probabilistic
statements of (conditional) dependence or independence and somehow
back-translate into the language of causality. As you will see, this back-
translation is almost always incomplete. There is almost always more than
one acyclic causal graph that implies the same set of probabilistic statements
of (conditional) dependence or independence. In other words, there are
almost always different acyclic causal graphs that make different causal pre-
dictions but exactly the same predictions concerning probabilistic depen-
dence or independence. This gives rise to the topic of equivalent models, a
topic that has been recognised in SEM for a long time and generally ignored
for just as long.

The methods that I describe in this chapter are based on the strat-
egy of back-translation that I described above. The first step is to obtain a
list of probabilistic statements of (conditional) dependence or independence
involving the variables in question. From this list, we construct an undirected
dependency graph. An undirected dependency graph looks like a causal graph
in which all of the arrows have been converted into lines without arrow-
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heads. However, the lines in the undirected dependency graph have a very
different meaning. Two variables in this graph have a line between them if
they are probabilistically dependent conditional on every subset of other
variables in the graph. The lines in the undirected dependency graph express
symmetrical associations, not asymmetrical causal relationships. Since we
can’t measure associations involving variables that we have not measured,
the undirected dependency graph can’t have latent variables. The next step
is to convert as many of the symmetrical relationships in the undirected
dependency graph as possible into asymmetrical causal relationships. This is
called orienting the edges and uses the notion of d-separation4. Generally, not
all of the undirected lines will be converted into directed arrows and so we
do not end up with a directed graph. Rather, we end up with a partially
oriented graph.

8.4 Obtaining the undirected dependency graph

Before I explain how to obtain an undirected dependency graph from
observational data, it is useful to explore how to convert a directed acyclic
graph into an undirected dependency graph involving only measured vari-
ables. Doing this will help to underscore the difference between the undi-
rected dependency graph and the causal graphs with which you are now
familiar. In acyclic graphs without latent variables, the undirected depen-
dency graph is simply the directed acyclic graph in which all of the arrows
are replaced with lines lacking arrowheads. However, for the method to be
useful in discovery, we can work only with those variables that we have actu-
ally measured. If the directed graph contains latent variables then the result-
ing undirected dependency graph, involving only observed variables, will
usually require modifications and these modifications help to illustrate the
proper interpretation of such graphs. To get the undirected graph from a
directed acyclic graph5 (Figure 8.1), or from a typical acyclic path diagram
if it contains correlated errors, do the following things.

1. If there is not already an arrow or curved double-headed arrow
between any two observed variables, but d-separation of the pair
requires conditioning on latent variables, then draw a line (not an
arrow) between the pair; see inducing paths (pp. 250–253).

2. If there are curved double-headed arrows between any pairs of var-
iables (i.e. correlated errors), then replace these with a line (not an
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arrow).
3. Remove the latent variables and also any arrows going into, or out

of, these latent variables.
4. Change all remaining arrows to lines.

The top of Figure 8.1 shows a path diagram with both latent vari-
ables and correlated errors. The bottom of Figure 8.1 shows the undirected
dependency graph that results when considering only the observed vari-
ables. In Figure 8.1 there is a line between {B,C}, {B,D} and {C,D} in the
undirected dependency graph even though these pairs of variables were not
adjacent in the original path diagram. This is because, following the first
rule, d-separation of each of these pairs required conditioning on a latent
variable (A). Since we have not measured variable A we can’t condition on
it, and so the three pairs of observed variables remain probabilistically asso-
ciated even after conditioning on any set of other observed variables.
Similarly, there is a line between {F,G} in the undirected dependency graph
even though the two variables were not adjacent in the original path
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Figure 8.1. A path diagram (top) involving six observed variables and
one latent variable. Below is the undirected dependency graph
corresponding to this path diagram.



diagram. This is because, following the second rule, this pair of variables has
correlated errors. After changing all remaining arrows in the path diagram
to lines, we end up with the undirected graph.

A direct cause between two variables in a causal graph is a causal rela-
tionship between them that can’t be blocked by other variables or a set of
variables involved in the causal explanation. Similarly, we can define a direct
association between two variables in an undirected dependency graph as an
association that can’t be removed upon conditioning on any other observed
variable or set of variables6. The undirected dependency graph is therefore
a graph that shows these direct associations. Of course, if we are attempting
to discover causal relationships then we will not already have the directed
acyclic graph. Our first task is therefore to discover the undirected depen-
dency graph from the data alone (remembering that, for the moment, we
are assuming that our sample size is so large that we can ignore sampling
variation) when we don’t know what the true directed acyclic graph looks
like.

Let’s begin with the following assumptions:

1. Every unit in the population is governed by the same causal process
(i.e. causal homogeneity).

2. The probability distribution of the observed variables measured on
each unit is faithful to some (possibly unknown) cyclic7 or acyclic
causal graph.

3. For each possible association, or partial association, among the
measured variables, we can definitely know whether the association
or partial association exists (is different from zero) or does not exist
(is equal to zero). This is simply the assumption that there is no sam-
pling variation.

We don’t have to assume that there are no unmeasured variables
generating some associations (this assumption is called causal sufficiency) or
that the variables follow any particular probability distribution, or that the
causal relationships between the variables take any particular functional
form. No assumptions of an acyclic structure are needed, although the algo-
rithms for cyclic structures require linearity in the functional relationships
between variables. The method uses d-separation and we know the d-sep-
aration implies zero (partial) associations (Spirtes 1995; Pearl and Dechter
1996) under such conditions. Unfortunately, we don’t yet know whether
the converse is true; that is, whether there can be independencies generated
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by cyclic causal processes that are not implied by d-separation (Spirtes 1995).
The assumption concerning causal homogeneity can be partly relaxed as
well, as is described later.

Given these assumptions, Pearl (1988) has proved that there will be
an edge (a line) in our undirected dependency graph between a pair of var-
iables (X and Y ) if X and Y are dependent conditional on every set of var-
iables in the graph that does not include X or Y. We can therefore discover
the undirected graph of the causal process that generated our data by apply-
ing the algorithm below. Following the definition of the order of a partial
correlation, let’s define the conditioning order of an association as the
number of variables in the conditioning set. So, a zero-order association is
an association between two variables without conditioning, a first-order
association is an association between two variables conditioned on one other
variable, and so on. How one measures these associations will depend on
the nature of the data; the various methods described in Chapter 3 can be
used for different types of data.

8.5 The undirected dependency graph algorithm8

The first step is to form the complete undirected graph involving the V
observed variables. In other words, add a line between each variable and
every other variable. Since latent variables are, by definition, unmeasured,
we can’t include them in our complete undirected graph. Now, for each
unique pair of observed variables (X, Y ) that have a line between them in
the undirected dependency graph at any stage during the implementation
of the algorithm, do the following:

1. Let the order of the association be zero.
2.1 Form every possible set of conditioning variables, containing the

number of variables specified by the order, out of the remaining
observed variables in the graph.

2.2 If the association between the pair of variables (X,Y ) is zero when
conditioned on any of these sets, then remove the line between X
and Y from the undirected dependency graph, move on to a new
pair of variables and then go to step 1.

2.3 If the association between the pair of variables (X,Y ) is not zero
when conditioned on all of these sets, then increase the order of the
association by one, and go to step 2.1. If you cannot increase the
conditioning order, then the line between your two variables is
kept. Move on to a new pair of variables.
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Once you have applied this algorithm to every set of observed var-
iables, the result is the undirected dependency graph. Given the assumptions
listed above, you are guaranteed to obtain the correct undirected depen-
dency graph of the causal process that generated the data if the algorithm is
properly implemented.

To illustrate this algorithm, let’s imagine that we have been given
data (lots of it so that we do not have to worry about sampling variation)
that, unknown to us, was generated by the causal graph shown in Figure
8.2.

Now, we don’t know about Figure 8.2; this causal structure is
hidden behind the screen of nature’s Shadow Play. In fact, we might not
even know of the existence of the latent variable (L), since, had we known
about it, we probably would have measured it. All that we have is a (very
large) data set containing observations on the variables A to E and a series
of measures of association and partial association between them; these are
the shadows that we can observe on the screen. Our task is to infer as much
about the structure of Figure 8.2 as we can. To begin, we create the com-
plete undirected dependency graph of these five variables (Figure 8.3).

Notice that the latent variable (L) doesn’t appear in Figure 8.3
because we are dealing only with observed variables at this point. Let’s begin
with the pair (A,B ) and apply the algorithm. Since A and B are adjacent in
the true causal structure (Figure 8.2) then these two variables are not uncon-
ditionally d-separated. We will therefore find that the pair is associated in
our data when we test for a zero association (independence) without con-
ditioning (zero-order conditioning). Therefore the line between A and B in
Figure 8.3 remains after the zero-order step. We increase the conditioning
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Figure 8.2. A directed graph, including one latent variable, used to
illustrate the undirected dependency graph algorithm. This causal graph
is unknown to the observer.



order to 1 and see whether A and B become independent upon condition-
ing on the following first-order sets: {C}, {D}, {E}. These are the only
first-order conditioning sets that we can form from five variables while
excluding variables A and B. From Figure 8.2 we know that A and B are
not d-separated given any of these sets. Therefore they will not be indepen-
dent in our data upon first-order conditioning and the line between them
in Figure 8.3 remains after this step. We continue by increasing the condi-
tioning order to 2 and test for a zero association relative to the following
sets: {C,D}, {C,E}, {D,E}. These are the only second-order conditioning
sets that we can form. Given the true causal structure in Figure 8.2 we will
find that the second-order association between A and B remains. We
increase the conditioning set to 3 and test for a zero association relative to
the following conditioning set: {C,D,E} but still the association between A
and B would remain. Since we cannot increase the conditioning order any
more, we conclude that there is a line between A and B in the final undi-
rected dependency graph.

We then go on to a new set of variables; in this case, A and C. When
we apply the algorithm to the pair (A,C ) we will find that A and C are still
zero-order associated since they are d-connected in Figure 8.2. When we
increase to order 1 and form the sets {B}, {D} and {E} we will find that
A and C become independent upon conditioning on B. This is because,
in Figure 8.2 (the true graph) A and C are d-separated given B and d-
separation implies probabilistic independence. So, we remove the line
between A and C in Figure 8.3, giving Figure 8.4. Since we have removed
the line we don’t have to go any further with this pair.

If we apply the algorithm to the pair (A,D) we would find that A
and D also become independent upon conditioning on B, and so we would
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Figure 8.3. Step 1 in the construction of the undirected dependency
graph. There is an undirected edge between each pair of observed
variables.



remove the line from A to D in Figure 8.4. A and E would also become
independent either upon conditioning on B or on the sets {B,C}, {B,D}
or {B,C,D}. This is because A and E are d-separated by any of these con-
ditioning sets. The pair (C,D) would never become independent, since, in
Figure 8.2, they are both caused by a latent variable that will never there-
fore appear in any of the conditioning sets. Similarly, the pair {C,E} will
always remain associated as will the pair {D,E}. The undirected dependency
graph that results after applying the algorithm to every possible pair is shown
in Figure 8.5; this is the correct undirected dependency graph given the
causal process shown in Figure 8.2.
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Figure 8.4. The undirected edge between A and C has been removed
because we have found a subset of observed variables – {B } – that
makes A and C independent upon conditioning.

Figure 8.5. The completed undirected dependency graph. The
undirected edges between A and D, between A and E, and between B
and E have been removed because we have found a subset of
observed variables that renders each pair independent upon
conditioning.



8.6 Interpreting the undirected dependency graph

The undirected dependency graph informs us of the pattern of direct asso-
ciations in our data. It doesn’t inform us of the pattern of direct causes in
our data. For instance, there is a line between C and D in Figure 8.5 even
though, peeking at the causal process that generated the data (Figure 8.2)
we know that the association between C and D is due only to the effect of
the latent variable (L). Just as the term ‘direct’ cause can only have meaning
relative to the other variables in the causal explanation, a ‘direct’ association
can only have meaning relative to the other variables that have been meas-
ured. However, we can infer from the undirected dependency graph that if
two variables have a line between them then there is:

1. a direct causal relationship between the two and/or
2. a latent variable that is a common cause of the two and/or
3. a more complicated type of path between the two, called an induc-

ing path; this will be explained in more detail later.

At the same time, we can exclude other types of latent variables.
For instance, we know that there is no latent variable that is a common cause
of A, B and C in Figure 8.5. If there were, then A and C would not be
d-separated given any set of other observed variables and there would there-
fore be a line between A and C in the undirected dependency graph.

The first two explanations for a direct association in an undirected
dependency graph should be understandable by now. The third possibility
is less obvious but can be illustrated by an example given by Spirtes,
Glymour and Scheines (1993). Consider Figure 8.6. On the left is the
directed acyclic graph with a latent variable F. Neither variable A nor var-
iable B has any direct causal link with variable D. On the right is the undi-
rected dependency graph. Notice that there is a line between A and D and
also between B and D in the undirected dependency graph even though
there are neither direct causal links between the pairs nor latent variables
that are causes common to both. This is because A and D would never be
d-separated given any subset of variables B and C and thus would always be
probabilistically associated. Similarly, B and D would never be d-separated
given any subset of variables A and C and thus would always be probabilis-
tically associated. For instance, if we look at the pair (A,D) in the true causal
graph then A and D would be both unconditionally associated through the
path A→C→D and associated conditional on B, associated conditional on
C through the path A→C←F→D and also associated conditional on both
B and C for the same reason.
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To better understand how this third possibility can arise in general
requires more definitions before the explanation can be understood.

Directed versus undirected paths

Look at the directed acyclic graph (DAG) in Figure 8.7. Imagine
that this DAG is a road map consisting only of one-way streets whose direc-
tion is shown by the arrows. Normally, to go from one variable to another
we have to respect the traffic rules and follow the arrows. If we can go from
one variable to the other by following these rules then we will call our route
a directed path. For instance, we can go from A to D by following the directed
path A→B→C→D. The following is not a directed path: A→B←F→D
because we have gone the wrong way on a one-way road (B←F ) when
going from B to F. However, if we ignore the rules of the road and drive in
whatever direction we want, irrespective of the direction of the arrows, then
we can go from A to F along the path A→B←F→D. Such a path, in which
the direction of the arrows is ignored, is called an undirected path. We haven’t
erased the arrows, we have simply decided to ignore them9. Of course, a
directed path must also be an undirected path but an undirected path might
not also be a directed path. For instance, the following are undirected paths
in Figure 8.7 but they are not directed paths: A→B←F→D, A→B→
C←F→D.
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Figure 8.6. The true causal structure is shown on the left and the
resulting undirected dependency graph is shown on the right. Notice
that there are edges between A and D and between B and D in the
undirected dependency graph even though no such directed edges
exist in the directed graph. This is due to the presence of the latent
variable F generating an inducing path between these pairs of variables.



Inducing paths10

List all of the variables in the DAG and call it the set V. In Figure
8.7 the set V is {A,B,C,F,D}. We can call this complete DAG the graph G.
Now choose some subset of variables in the DAG and call it O. For instance,
you might choose the set O�{A,B,C,D} thus leaving out the variable F.
By doing this you will have a new graph (call it G�) in which the variable F
is latent; that is, the variable F still has the same causal relationships to the
other (O) variables as before, but variable F doesn’t appear in G�. Because
G� doesn’t show the variable F, it is not a complete description of the full
causal process. Now, choose two variables in your chosen set (O) of vari-
ables and find an undirected path between them in the complete graph (G).
For instance, if we choose A and D in Figure 8.7 then we can find the undi-
rected paths A→B←F→D, A→B→C←F→D, A→B←F→C→D and
A→B→C→D. Some of these undirected paths might be a special type of
path called an inducing path relative to O. To determine whether a given undi-
rected path is an inducing path relative to O, look at those variables in the
undirected path in G that are also in your chosen set O. If (i) every variable
in O along the undirected path except for the endpoints (here, A and D) is
a collider along the path, and if (ii) every collider along this undirected path
is an ancestor of either of the endpoints, then the path is an inducing path
between the endpoints relative to O. Such an inducing path has the prop-
erty that the endpoints will never be d-separated given any subset of other
variables from the set O.

Let’s look at the first undirected path between A and D (A→B
←F→D) and choose O�{A,B,C,D}. The only other variable along this
undirected path, except for A and D (the endpoints), that is in O is B, since
F has been left out (i.e. is latent). Since B is a collider along this path and is
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Figure 8.7. A directed graph with one latent variable (F ).



an ancestor (because of the path B→C→D) of D (one of the endpoints) the
path A→B←F→D is an inducing path relative to O�{A,B,C,D}. To see
that this inducing path results in A and D never being d-separated given any
subset of variables from O, we have only to look at each possible condition-
ing set. The empty set (i.e. unconditional conditioning) allows d-connec-
tion though the path A→B→C→D. The set {B} allows d-connection
through the undirected path A→B←F→D. The set {C} allows d-connec-
tion through the undirected path A→B→C←F→D. The set {B,C} allows
d-connection through either of these last two undirected paths.

None of the other undirected paths between A and D are inducing
paths relative to O�{A,B,C,D}. For instance, the undirected path
A→B→C←F→D has the variable B that is in O but is not a collider along
the path. Therefore, conditioning on B will d-separate A and D. Similar
reasons exclude the paths A→B←F→C→D and A→B→C→D.

Notice that the variables at the ends of such an inducing path will
never be d-separated given the variables in O because one will always be
conditioning on a collider and thus opening a path through some variable
not in O. Therefore the undirected dependency graph involving the vari-
ables in O will always have a line between two variables if there is an induc-
ing path between them. Noting that O will usually consist of the set of
‘observed’ variables, you might start to see the usefulness of the notion of
an inducing path. If you see a line between two variables in the undirected
dependency graph then you will know that there is an inducing path
between them.

One practical problem with the algorithm that I have presented for
obtaining the undirected dependency graph is that, as the number of
observed variables increases, the number of sets of conditioning variables
increases geometrically. When faced with large numbers (say 50) observed
variables, even fast personal computers might take a long time to construct
the undirected graph if the topology of the true causal graph is uncooper-
ative. A slightly modified version of the algorithm11 is presented by Spirtes,
Glymour and Scheines (1993); it is more efficient when one is dealing with
many observed variables. The two algorithms are equivalent given popula-
tion measures of association, but the more efficient algorithm can make
more mistakes in small data sets.

We sometimes have independent information about some of the
causal relationships governing our data. In such cases it is straightforward to
modify the algorithm for the undirected dependency graph to incorporate
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such information. If we know that the association between two observed
variables is due only to the fact that another measured variable, or set of
measured variables, is a common cause of both then we simply remove that
edge before applying the algorithm. Similarly, if we know that two observed
variables either have a direct causal relationship, or share at least one
common latent cause, then simply forbid the algorithm from considering
that pair. Note that it is not enough to know (say from a randomised experi-
ment) that one measured variable is a cause of another; we must know that
it is (or is not) a direct cause. A randomised experiment will not be able to
tell us this when some of the observed variables are attributes of the experi-
mental units, as explained in Chapter 1.

8.7 Orienting edges in the undirected dependency graph using
unshielded colliders assuming an acyclic causal structure

In Chapter 2 I discussed how d-separation predicts some counterintuitive
results concerning statistical conditioning. Consider a simple causal graph
of the form X→Z←Y. X and Y are causally independent and, since they are
unconditionally d-separated, they are also probabilistically independent.
However, if we condition on Z (the common causal descendant of both X
and Y ) then X and Y become conditionally dependent. This is because X
and Y are not d-separated conditional on Z. In general12, if we have two
variables (X and Y ) and condition on some set of variables Q that contains
at least one common causal descendant of both X and Y, then X and Y will
not be d-separated. Because of this X and Y will not be probabilistically
independent upon conditioning on Q even if X and Y are causally indepen-
dent.

This fact allows us to determine the causal direction of some lines
in the undirected dependency graph. In Chapter 2 I defined an unshielded
collider as a causal relationship between three variables (X, Y and Z ) such that
both X and Y are direct causes of Z (X→Z←Y ) but there is no direct causal
relationship between X and Y (i.e. there is no arrow going from one to the
other13). Let’s now define an unshielded ‘pattern’ in an undirected dependency
graph as one in which we have three variables (X, Y and Z ) such that there
is a line between X and Y, a line between Y and Z (X—Z—Y ), but no line
between X and Y. Since there is no line between X and Y we know that X
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and Y are d-separated given some subset of other variables in the undirected
dependency graph. Given such an unshielded pattern we can decide
whether there are arrowheads pointing into Z from both directions or not
in the causal graph that generated the data. If there were arrowheads point-
ing into Z from both directions in the actual causal process generating the
data, then X and Y would never be probabilistically independent conditional
on any set of other observed variables that includes Z.

To illustrate this method of orienting our undirected paths in the
undirected dependency graph, imagine that the unknown causal process
generating our observed data is as shown in Figure 8.8. Even though the
causal process is hidden from us, we will obtain the undirected dependency
graph shown in Figure 8.8 once we apply the algorithm to our data. Now,
since we don’t know what the actual causal process looks like, we don’t
know whether there are latent variables generating some of the direct asso-
ciations.

Before going on, let’s introduce some more conventions for mod-
ifying our undirected dependency graph. A graph in which only some of
the edges are oriented is called a partially directed graph or a partially oriented
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Figure 8.8. The true (unknown) causal graph and the resulting
undirected dependency graph.



graph. Since we don’t yet know whether or not there are arrowheads at the
ends of any of the lines in our undirected dependency graph (i.e. we don’t
yet know the directions of the causal relationships shown in the causal graph
at the top of Figure 8.8), let’s admit this fact by adding an open circle (X —
 Y ) at the end of each line (Figure 8.9). By doing this we are no longer
dealing with an undirected graph; rather, we are dealing with a partially ori-
ented graph whose directions are not yet known. An open circle simply
means that we don’t know whether or not there should be an arrowhead.
Therefore, given X — Y the oriented edge in the true causal graph might
be ‘X→Y ’, ‘X←Y ’ or ‘X↔Y ’. The final oriented edge (X↔Y ) doesn’t
mean a feedback relationship between X and Y (remember our assump-
tions). Rather, it means that there is an unmeasured (latent) common cause
generating the direct association between X and Y. It doesn’t necessarily
mean that there is a common latent cause of X and Y either, as Figure 8.6
makes clear.

The partially oriented graph in Figure 8.9 has six unshielded pat-
terns, as given in Table 8.1. To orient some of the edges by detecting an
unshielded collider, apply the following algorithm to each unshielded
pattern (X — Z — Y ).

8.8 Orientation algorithm14 using unshielded colliders

Let the conditioning number (i ) be 1.

1. Form all possible conditioning sets of i observed variables consist-
ing of the variable in the middle of the unshielded pattern (Z ) plus
any observed variables other than the variables at the ends of the
unshielded pattern (X and Y ). Call each such conditioning set Q.

2.1 If the partial association between X and Y, conditioned on any set
Q of other variables, is zero then stop and conclude that the three
variables forming the unshielded pattern do not form an unshielded
collider in the true causal graph (i.e. not X →Z← Y ). We can call
such a pattern a definite non-collider.

2.2 If the partial association between X and Y, conditioned on every
set Q of other variables, is not zero, then increase the conditioning
number (i) by one and go to step 1.

E X P L O R AT I O N,  D I S C O V E RY A N D E Q U I VA L E N C E

256

14 This algorithm is used in Pearl’s IC (Inductive Causation) algorithm. The related algo-
rithm in Spirtes, Glymour and Scheines (1993) uses a set called Sepset(X,Y ) that reduces
the computational burden. The output is identical in acyclic causal structures, but can be
different in cyclic causal structures.



After cycling through all possible orders of i, if we have not declared the
unshielded pattern to be a definite non-collider, then it is a collider. Orient
the pattern as: X →Z← Y.

Since, in this example, we can peek at the true causal graph (top of
Figure 8.9), we can use d-separation to predict what would happen if we
applied the above algorithm to each of the six unshielded patterns that we
found in our partially oriented graph. For instance, when we test the
unshielded pattern A — B — C we would begin the algorithm by testing
for a zero association (probabilistic independence) between A and C given
B. The order of the conditioning set is initially 1 and we already have one
variable (B ). Since A and C are d-separated by B we will find A and C to
be probabilistically independent given B and therefore stop right away, con-
cluding that the causal effects do not collide at B. This unshielded pattern
is a definite non-collider. The full results, and their explanations, are given
in Table 8.2. You will notice one more new notation in Table 8.2. If we
have concluded that an unshielded pattern is a definite non-collider (i.e. that
there definitely are not arrowheads pointing into the middle variable), then
underline the middle variable. Thus, the notation X — Y — Z means

8.8 O R I E N TAT I O N A L G O R I T H M U S I N G U N S H I E L D E D C O L L I D E R S

257

Figure 8.9. The true causal graph and a corresponding partially oriented
graph with no orientations of the edges specified.



that we still don’t know what the actual orientation is, but it is definitely not
X →Z← Y.

The final partially oriented graph that results is shown in Figure
8.10. In fact, since the partially oriented edges indicate inducing paths,
Spirtes, Glymour and Scheines (1993) called these partially oriented inducing
path graphs or POIPGs.

At this point, other information about some of these partially ori-
ented relationships might help us. If, for instance, we knew from previous
work that the direct association between A and B was due at least in part to
a common latent cause, then we could orient this as: A↔B. This would
immediately restrict the orientations of the other lines, since we know that
the three unshielded patterns of which B is the middle variable are all def-
inite non-colliders. Therefore we can exclude A↔B← C and A↔B← D.

Because a randomised experiment, when it can be done, can give
us information about causal direction, the combination of prior informa-
tion from randomised experiments and these search algorithms can often be
very useful. For instance, imagine that the five variables in Figure 8.10 rep-
resent five attributes of a plant and that we can’t perform randomised
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Table.8.2. Applying the orientation algorithm using unshielded colliders to the
partially oriented graph in Figure 8.9

Partially
Unshielded pattern oriented pattern Explanation

A — B — C A — B — C B must be in Q. A and C are always d-
separated given B and any other observed
variable

A — B — D A — B — D B must be in Q. A and D are d-separated
given B and any other observed variable

C — B — D C — B — D B must be in Q. C and D are d-separated
given B and any other observed variable

B — C — E B — C — E C must be in Q. B and E are d-separated
given {C,D} and any other observed
variable

B — D — E B — D — E D must be in Q. B and E are d-separated
given {D,C} and any other observed
variable

C —E — D C →E← D E must be in Q. C and D are never
d-separated given E plus any other
observed variable



experiments to untangle the causal relationships between them. However,
we can introduce a new variable that is a property of the external environ-
ment, for instance light intensity. It is possible to randomly allocate plants
to the different treatment groups representing light intensity and so we can
tell, for each of the five plant attributes, whether changes in light intensity
cause changes in the attribute. For the reasons given in Chapter 1 we can’t
say that light intensity is a direct cause but we can say that, if the values of
the attribute differ between treatments, then the causal signal (direct or indi-
rect) goes from light intensity to the attribute and not the other way around.
Now if, in an observational study, we measure the five attributes plus light
intensity, and find that there is an edge in the partially oriented graph
between light intensity and some of the plant attributes, then we can use
this information to orient such edges. Once some edges are oriented this
will usually help to orient others.

If we are willing to assume that there are no latent variables respon-
sible for some of the lines in an undirected graph (i.e. causal sufficiency)
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Figure 8.10. The true, but unknown causal graph is shown at the top.
The final partially oriented graph, with orientation using unshielded
colliders, is shown below.



then we can further restrict the number of possible graphs. For instance, if
we take the partially oriented graph in Figure 8.10 and assume causal suffi-
ciency then there are only four different directed acyclic graphs that are
compatible with the partially oriented graph (Figure 8.11). There were a
huge number of potential causal graphs involving five variables in our initial
hypothesis space and we have reduced this number to four.

8.9 Orienting edges in the undirected dependency graph using
definite discriminating paths

In order to orient edges using unshielded colliders we require that the
pattern be unshielded. When we have a shielded pattern (three variables
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Figure 8.11. On the left is the partially oriented graph of Figure 8.10.
On the right are the four possible completely directed acyclic graphs
without latent variables that are consistent with the partially oriented
graph.



with lines between each of the three pairs, forming a ‘triangle’) we can
sometimes still orient the pattern if it is embedded within a special type of
partially oriented path called a definite discriminating path.

Let’s start with some undirected path (call it U) between two vari-
ables (X and Y ) in a partly oriented graph that contains some other variable
B. Even though the graph is only partially oriented (thus we don’t know all
of the asymmetrical relationships between the variables) there is a special
type of undirected path that contains important information about the var-
iable B. Before giving the formal definition, I have to introduce yet another
symbol. If we look at a single variable and the edge coming into it then we
can have three different symbols at the end of the edge. For instance, we can
have X←, X — or X—. The three different symbols are the ‘arrowhead’,
the ‘ ’ and the ‘empty mark’. Now, if I write ‘X*—’ then the star is simply
a placeholder that can refer to any of the three different symbols. So, if I say
‘replace X*—  Y by X*→Y ’ then I mean ‘keep whatever symbol was next
to the X but change the “ ” symbol next to the Y to a “�” symbol’.

Here is the definition of a definite discriminating path. An undi-
rected path U is a definite discriminating path for variable B if and only if:

1. U is an undirected path between variables X and Y containing B.
2. X and Y are not adjacent.
3. B is different from both X and Y (i.e. B cannot be an endpoint of

the path).
4. Every variable on U except for B and the endpoints (X,Y ) is either

a collider or a definite non-collider on U.
5. If two other variables on U (V and V �) are adjacent on U, and V �

is between V and B on U, then the orientation must be: V *→V �
on U.

6. If V is between X and B on U and V is a collider on U then the
orientation must be either V→Y or else V←*X.

7. If V is between Y and B on U and V is a collider on U then the
orientation must be either V→X or else V←*Y.

To see the usefulness of such definite discriminating paths, consider
Figure 8.12. Each of the four unshielded patterns in the undirected depen-
dency graph (X—V—V �, V—V �—A, V �—A—B and V �—A—Y )
derived from this partially oriented graph allowed us to apply the algorithm
for unshielded colliders; in this case all were determined to be definite non-
colliders. Unfortunately, the shielded pattern involving A, B and Y can’t be
oriented this way. However, the undirected path X — V — V � —
 A — B — Y is also a definite discriminating path for the variable B.
What happens if, in the underlying causal graph, X and Y are d-separated
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given A and B, but not given A alone? The only way that this could occur
is if B were a definite non-collider along the undirected path (A — B —
 Y ), since, if the orientation was really A →B← Y then conditioning on
A and B would not d-separate X and Y. So we can definitely state that the
partial orientation is A — B — Y. Yet this is not all. Since we have
assumed that the unknown causal graph is acyclic, there are only two differ-
ent partially oriented acyclic causal graphs that accord with this information
(Figure 8.13).

Now we can put all of the pieces together and state the Causal
Inference algorithm of Spirtes, Glymour and Scheines (1993).

8.10 The Causal Inference algorithm15

1. Apply the algorithm to obtain the undirected dependency graph.
2. Orient each edge in the undirected dependency graph as  — .
3. Apply the orientation algorithm using unshielded colliders. For

each unshielded pattern (A—B—C ) orient unshielded colliders as
A →B← C and orient each definite non-collider as A — B —
 C.

4. If there is a directed path from A to B, and an edge A*—*B, orient
A*—*B as A*→B.

5. If B is a collider along a path A*→B←*C, B is also adjacent to
another variable D (i.e. B*—*D), and A and C are conditionally
independent16 given D, then orient B*—*D as B←*D.

6. If there is an undirected path U that is a definite discriminating path
between variables A and B for variable M, and variables P and R are
adjacent to M along U, and P*— M —*R forms a triangle, then
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15 My description of the Causal Inference algorithm differs from the original formulation
only in replacing Sepset sets with the actual d-separation claim.

16 There was an error in Spirtes, Glymour and Scheines (1993) at this point, which was cor-
rected in a subsequent Erratum.

Figure 8.12. A partially oriented graph involving six observed variables.
The undirected path Xo—oV o—oV �o—oAo—oBo—oY is a definite
discriminating path for the variable B.
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i. If A and B are conditionally independent given M plus any other
variable except A and B, then P*— M —*R along U is ori-
ented as a non-collider: P*— M —*R.

ii. If A and B are never conditionally independent given M plus any
other variable except A and B, then P*— M —*R along U is
oriented as a collider: P*→M←*R.

iii. If the triangle is already oriented as P*→M*—*R then orient
it as P*→M→R.

Repeat steps 4-6 until no further changes can be made.
The result is a partially oriented inducing path graph. You should

be able to understand steps 1 to 3 by now. Step 4 is justified by the assump-
tion that there are no cyclic relationships in the causal structure. If there is
a directed path from variable A to variable B and we were to also orient the
direct edge as B→A then this would create a cyclic path. Step 5 is simply a
generalisation of the reason for orienting an unshielded collider. Remember
that the two variables (X,Y ) in this group will never be d-separated if con-
ditioned on any of their causal descendants. Since we have already estab-
lished that the orientation is A*→B←*C and there is another edge oriented
as B —*D, and that both A and B are (conditionally) causally independent
of D (i.e. they are not d-connected), then d-separation predicts that A and
D would become probabilistically dependent when conditioned on D if the
orientation was B—*D and remain probabilistically independent if the
orientation was B←*D. Steps 6i and 6ii derive from the notion of a defi-
nite discriminating path, as described before. In step 6iii we have already
established that M is a non-collider along P*→M*—*R. Therefore there
cannot be arrowheads pointing into M from both directions and we can
orient the triplet as P*→M—*R. There is now only one orientation pos-
sible, namely P*→ M→R.

8.11 Equivalent models

The inferential testing of structural equations models, described in Chapters
3 to 7, consisted of deriving the observational predictions of the hypothe-
sised causal process (the correlational shadows) and then comparing the
observed and predicted patterns of correlation or covariation. I have empha-
sised that failing to reject such an hypothesised model provides support for
it, but does not allow us to accept it without other (non-statistical) evidence.
One reason might be that the sample size was too small to permit us to
detect a real (but small) deviation between the observed and predicted pat-
terns. However, the search algorithms in this chapter should alert us to

E X P L O R AT I O N,  D I S C O V E RY A N D E Q U I VA L E N C E

264



another reason: different causal processes can cast the same observational
shadows.

This leads to the topic (rarely discussed in the SEM literature) of
observationally equivalent models; that is, different causal models that can’t
be distinguished on the basis of observational data. Such equivalent models
will produce exactly the same chi-squared values, and exactly the same
probability levels, when tested against the same data set. This is true no
matter how big your data set is. In fact, it will be true even if you have the
population values rather than sample values. When we test a structural equa-
tions model we are really testing the entire set of observationally equivalent
models against all non-equivalent models. In one sense this might be disap-
pointing; we can’t distinguish between some competing causal explanations.
In another sense this is useful; when we reject a particular model we are also
simultaneously rejecting all of the observationally equivalent models as well.

The search algorithms in this chapter can allow us to find all of the
causal models that are observationally equivalent17 to our hypothesised one.
Given your path diagram, here are the steps:

1. Change all arrows (even double-headed ones18) to lines.
2. Draw the  symbol at either end of each line.
3. Redraw each unshielded collider that was in the original path

diagram; that is, if there was an unshielded collider in the path
diagram (X→Z←Y ) then replace X — Z — Y with
X →Z← Y.

4. For each non-collider triplet that was in the original path diagram,
add an underline; that is, if there was either X→Z→Y, X←Z←Y
or Z←Z→Y in the path diagram then replace X — Z — Y with
X — Z — Y.

Figure 8.14 summarises these steps.
At this point you can permute the different possible orientations so

long as you never introduce an unshielded collider that was not in your orig-
inal path diagram, and never remove an unshielded collider that was in your
original path diagram.

8.11 E Q U I VA L E N T M O D E L S

265

17 The algorithm for observational equivalence in acyclic models was first published by
Verma and Pearl (1991).

18 A model having two variables sharing correlated errors (i.e. a double-headed arrow
between them) is equivalent in its d-separation consequences to a model having a latent
variable that is a common cause of both (Spirtes et al. 1998).



8.12 Detecting latent variables

One practical problem with the Causal Inference algorithm is that it can be
quite uninformative when many observed variables are all caused by a small
number of latent variables. In such cases the application of the Causal
Inference algorithm will not be very informative. Consider the simple
measurement model (graph A) shown in Figure 8.15 and the resulting
output from the Causal Inference algorithm.
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Figure 8.14. The top graph shows a path diagram. The following two
graphs show the steps in obtaining all models that are equivalent to the
path diagram.



The output of the Causal Inference algorithm tells us that each of
the observed variables (A to D) is probabilistically associated with each of
the others. Since there are no unshielded patterns among the observed var-
iables in either of the two output graphs, we can’t orient any of the edges.
Whenever you see a set of observed variables that form such a pattern (I will
call this a saturated pattern) you should suspect latent variables. However, it
is possible for such saturated patterns to arise even without latent variables,
as causal process B shows. Is there any way of differentiating between the
two? Yes. For this, we need to look again at vanishing tetrad equations,
which we studied briefly in Chapter 5.

You will recall that Spearman (1904) derived a set of equations,
called vanishing tetrads, which must be true given the type of structure
shown in the causal graph A in Figure 8.15. He argued that if such vanish-
ing tetrad equations held then this was evidence for the presence of a
common latent cause of the observed variables. As will be explained below,
this claim is not true, but a modification of it can indeed be used to detect
such a common latent cause if the relationships between the latent variable
and the observed variables are linear.
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Figure 8.15. On the top are directed acyclic graphs of two different
causal processes that both imply the same partially oriented graph on
the bottom.



A vanishing tetrad equation is a function of four correlation (or
covariance) coefficients. Because of the causal structure of models like those
in Figure 8.16, and because of the rules of path analysis, such a vanishing
tetrad equation must be zero in the population regardless of the (non-zero)
values of the path coefficients. For instance, the population correlation
coefficient (AB) between the observed variables A and B is a*b. The pop-
ulation correlation coefficient (CD) between the observed variables C and
D is c*d. Therefore, ABCD�a*b*c*d. However, we also know that AC�
a*c and that BD�b*d. Therefore ACBD�a*c*b*d. It follows that
ABCD�ACBD�0, since a*b*c*d�a*c*b*d�0. The tetrad equation
(ABCD�ACBD) becomes zero, or vanishes, because of the way the
observed variables relate to the latent variable. The causal process shown in
Figure 8.16 implies three different vanishing tetrad equations (of which only
two are independent). In fact, every set of four variables can have three pos-
sible tetrad equations regardless of the true causal process, although they
don’t have to be zero.

AB�CD�AD�BC�0

AC�BD�AD�BC�0

AC�BD�AB�CD�0

Unfortunately, a causal structure like the one in Figure 8.17 also
implies vanishing tetrad equations. For instance, using the rules of path anal-
ysis we will find that AC�BD�AD�BC�(ab)(bc)� (abc)(b)�0. Clearly,
simply showing that a vanishing tetrad equation holds is not evidence for
the presence of a common latent cause of the observed variables. Although
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Figure 8.16. A directed graph involving four observed variables and one
latent variable (F ).



it may not seem immediately obvious, there is a close relationship between
d-separation and vanishing tetrad equations19.

A vanishing tetrad equation can be given a graphical interpretation.
Let’s define a trek between two variables (X,Y ) as a pair of directed paths;
one directed path goes from a source variable (S ) to X and the other directed
path goes from the same source variable to Y. One of the two directed paths
can be of length 0 (i.e. S�X or S�Y ). For instance, in Figure 8.18 there
are three treks between X and Y. One is from the source variable S1
(X←Z←S1→Y ), one is from the source variable S2 (X←S2→Y ) and one
is from the ‘source’ variable X in which one directed path is of length zero
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19 Theorem 6.11 of Spirtes, Glymour and Scheines (1993) states that a vanishing tetrad equa-
tion of the type IJKL�ILJK�0 is linearly implied by an directed acyclic graph only if
either IJ or KL equals zero and if either IL or JK equals zero or there is a (possibly empty)
set Q of variables in the directed acyclic graph such that IJ.Q�KL.Q�IL.Q�JK.Q�0.

Figure 8.17. This directed acyclic graph also implies a vanishing tetrad
(AC �BD �AD �BC � (ab)(bc� (abc)(b)�0) even though there are no
latent variables.

Figure 8.18. A directed acyclic graph used to illustrate the concept of a
trek.



(X→Y ). I will write ‘T(X,Y )’ to mean a trek between X and Y, ‘T(X,Y )’
to mean the set of all treks between X and Y and I will write ‘X(T(X,Y ))’
to mean the directed path in a trek between X and Y that goes into X.

In Figure 8.19 there are three different treks between X and Y:
X←S→Y, X←S→V→Y and X←S→V→W→Y. Notice that all the
directed paths in all these treks leading into X pass through S. When this
occurs we say that S is a choke point for X(T(X,Y )). There was no choke
point for X(T(X,Y )) in Figure 8.18.

To see what all this has to do with vanishing tetrads let’s consider a
set of four variables (I, J,K,L). If we have a set of treks T(I, J ) between two
variables (I, J ) and a set of treks T(K,L) between two other variables (K,L)
and all of the directed paths in T(I, J ) that are into J (i.e. J(T(I, J ))) and all
of the directed paths in T(K,L) that are into L (i.e. L(T(K,L))) intersect at
the same variable Q, then Q is called a JL choke point. The Tetrad
Representation Theorem (Spirtes, Glymour and Scheines 1993) states that
if we see a vanishing tetrad in the statistical population (IJKL�ILJK�0)
then this means that there is either a JL choke point or an IK choke point.

How can vanishing tetrads help to detect the presence of latent var-
iables? If you see a saturated pattern in your undirected dependency graph
involving four variables20, then test to see whether there are any vanishing
tetrads between these variables. If vanishing tetrads exist then this is evi-
dence for a latent variable. To see why, consider that if the choke point
implied by this vanishing tetrad was an observed variable then the two var-
iables ( J,L) or (I,K ) would be d-separated by this choke point and therefore
could not form part of a saturated pattern21.
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20 If there are more than four variables forming a saturated pattern, then take each unique
set of four variables.

21 In Figure 8.17 there was a vanishing tetrad but no latent variable. The treks between each

Figure 8.19. A directed acyclic graph used to illustrate the concept of a
choke point for a set of treks.



This fact provides a simple algorithm to test whether the observed
correlations among a set of four observed variables is due to a common
latent cause. These are the steps.

8.13 Vanishing Tetrad algorithm

Given a set O of observed variables and a set T of four observed variables
from O that form a saturated pattern in the undirected dependency graph,
assume that there is no reason to invoke a common latent cause for these
four variables in T and then do the following:

1. Choose one of the three tetrad equations that are possible given the
four chosen variables in T. If you have tried all three then stop.

2. If the tetrad equation does not equal zero, go to step 1.
3. If the tetrad equation does equal zero then there is a latent variable

that forms the IK choke point of IK(T(I, J ),T(K,L),T(I,L),T( JK ))
or the JL choke point of JL(T(I, J ),T(K,L),T(I,L),T( J,K )).

To illustrate this algorithm, let’s go back to the two graphs in Figure
8.15. The undirected dependency graph will contain a saturated pattern for
variables A, B, C and D. Here again are the three tetrad equations:

AB�CD�AD�BC�0

AC�BD�AD�BC�0

AC�BD�AB�CD�0

All three tetrad equations vanish in graph A of Figure 8.15. Because
the first equation vanishes we know that there is either an AC and/or a BD
choke point. Because the second equation vanishes we know that there is
either an AB and/or a CD choke point. Because the third equation vanishes
we know that there is either an AD or a BC choke point. In fact all these
choke points exist in this graph and all are the same variable (F ). If we do
the same thing to graph B of Figure 8.15 we will see that no tetrad equa-
tion vanishes22.

Let’s go on and apply the Vanishing Tetrad algorithm to a causal
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of the four pairs of variables (AC, BD, AD and BC ) all had directed paths of zero length
(A→B→C, B→C→D, A→B→C→D and B→C ). The choke point for these four treks
was the variable B, which was an observed variable. This is part of the reason why these
four variables do not form a saturated pattern.

22 Unless the graph is unfaithful. It is always possible to choose path coefficients in such a
way as to make a particular tetrad equation vanish, but the vanishing tetrad equation is not
implied by the topology of the graph.



graph involving two latent variables (Figure 8.20). Here are the three tetrad
equations:

AB�CD�AD�BC�(ab)(cd )� (afd )(bfc)�abcd(1� f 2)�0

AC�BD�AD�BC�(afc)(bfd )� (afd )(bfc)�0

AC�BD�AB�CD�(afc)(bfd )� (ab)(cd )� f 2(1�abcd )�0

Notice that the only tetrad equation that vanishes is the one with
either an AB and/or a CD choke point. In fact, both choke points exist. All
the directed paths leading into A and B of all treks between the four pairs
of variables (AC, BD, AD and BC ) pass through F1. All the directed paths
leading into C and D of all treks between these four pairs of variables also
pass through F2.

8.14 Separating the message from the noise

The ancients knew how to discover causal relationships. Things happened
in the world because the gods willed them. One had only to ask and, if the
gods were willing and the diviner gifted, the causes would be revealed.
Unfortunately, the gods were capricious and their words couched in alle-
gory. A good seer had to be able to separate the message from the noise, to
know when a bump in a goat’s intestine foretold war and when it was simply
undigested grass23. If the methods presented in this chapter are the modern
version of the diviner’s art then we still need to separate the causal message
from the sampling noise.

The various algorithms all require that we know whether or not
sets of random variables are independent. We are constantly being asked: ‘Is
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23 The ancient Greek philosophers were the first to conceive of a world governed by natural
causes rather than by divine will. They then confronted the subject of this chapter.
Democritus (460–370 BC) is reported to have said: ‘I would rather discover one causal
law than be King of Persia’ (Pearl 2000).

Figure 8.20. A path diagram involving four observed variables and two
latent variables; a, b, c, d and f are path coefficients.



the statistical association zero or different from zero’? So far I have assumed
that we can always answer such a question unambiguously because I have
assumed that we have access to the entire statistical population. If correla-
tions are the shadows cast by causes then I have assumed that these shadows
are always crisp and well defined. Given such an assumption we can extract
an amazing amount of causal information from purely observational data;
certainly much more than is intimated by the old mantra that ‘correlation
does not imply causation’.

Let’s get back to reality. We almost never have access to the entire
statistical population. Rather, we collect observations from random samples
of the statistical population and these random samples are not perfect repli-
cas of the entire population. If correlations are the shadows cast by causes
then sample correlations are randomly blurred correlational shadows. We have
to find a way of dealing with the imperfect information contained in these
blurred correlational shadows. Inferring population values from sample
values is the goal of inferential statistics and inferential statistics is the art of
drawing conclusions based on imperfect information. In practice we can
never unambiguously know whether the statistical association is zero or
different from zero. How can we deal with this problem when applying the
various discovery algorithms and what sort of errors might creep into our
results? To see this, we first need to review some basic notions of hypothe-
sis testing.

Consider the problem of determining whether the population
value of a Pearson correlation coefficient (XY) between two random vari-
ables, X and Y, is zero based on the measured sample value (rXY). There are
only two possible choices: either it really is or it really isn’t. Similarly, we can
only give one of two answers based on our sample measure: either we think
it is or we think it isn’t. These define four different outcomes (Table 8.3).

Normally, the types of biological hypothesis that interest us are ones
in which variables are associated, not independent. Because we want evi-
dence beyond reasonable doubt before accepting this interesting hypothesis
(see Chapter 2) we usually begin by assuming the contrary – that there is no
association – and then look for strong evidence against this assumption
before rejecting it and therefore accepting our biologically interesting one.
In other words, we want to see a value of rXY that is sufficiently large that
there is very little probability that it would have come from a statistical popu-
lation in which XY�0 is true.

So what is a small enough probability that we would be willing to
declare that XY really is different from zero? This is a somewhat subjective
decision, as described in Chapter 2, but Table 8.3 shows that part of our
decision will depend on how important it is for us to avoid either a Type I
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error (incorrectly declaring that XY�0 when, in reality, XY�0) or a Type
II error (incorrectly declaring that XY�0 when, in reality, XY�0).
Because the presence of a real association usually (but not always) gives us
useful biological information, and because we know that our ever-present
sampling variation can sometimes fool us into observing a large value of rXY
even when the variables are independent, we usually place more importance
in reducing our Type I errors than in reducing our Type II errors. Therefore,
we usually choose a small probability before we are willing to declare our
value of rXY as being ‘significantly’ different from zero. For instance, choos-
ing a significance level of 0.05 means that we are only willing to accept a
5% chance of making a Type I error. Notice, however, that by decreasing
our significance level to the low value of 0.05 we are simultaneously willing
to accept a larger chance of making a Type II error. This is usually okay
because we have already decided that it is more important to be quite sure
that XY is not zero than to be quite sure that XY is zero.

In each of the algorithms described in this chapter you are repeat-
edly asked to decide whether the measure of association is zero or not. You
have to make this choice based on a random sample of data and, therefore,
you have to conduct statistical tests and choose how important it is to mini-
mise either Type I or Type II errors. Here’s the rub: by definition, these are
discovery algorithms. You don’t already have a preferred causal hypothesis
that you wish to test. You can’t have any a priori preference for either XY�0
or XY�0 and neither outcome provides more information than the other
to the various algorithms24.

This brings us to the notion of statistical power. The hypothesis that
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24 One exception might be in the orientation phase of the algorithms. It might be better to
plead ignorance, and leave edges unoriented, than to make a definite choice about declar-
ing an unshielded pattern to be a collider or a definite non-collider.

Table 8.3. Possible combinations of decisions to a null hypothesis and its
alternative, giving rise to Type I and Type II errors

True value in the
statistical population

XY�0 XY�0

Your answer after XY�0 Right choice Type II error
looking at rXY and
calculating its XY�0 Type I error Right choice
probability



XY�0 is not really a single hypothesis at all; rather, it is a composite hypoth-
esis that includes XY�0.01, XY�0.1, XY�0.9 and an infinite number of
other individual hypotheses. Intuitively, it is obvious that it would be much
more difficult to distinguish between 0.0 and 0.01 than between 0.0 and 0.9
in any sample of data. If we had a huge data set (say a thousand observa-
tions) and the population value was 0.0 then our sample correlation would
almost always be extremely close to zero (Figure 8.21). Sampling variation
would only very rarely result, by chance, in a value greater than even a low
number such as 0.1. Therefore, if the population value was even slightly
different from 0.0 then we would almost always find a very small probabil-
ity value for our measured rXY and would almost never conclude that XY�0
when, in reality, XY�0. Our test would be very powerful in detecting even
very slight associations between X and Y. If, on the other hand, we had only
a small data set (say 10 observations) and our population value was 0.0 then
our sample correlation would fluctuate quite widely around zero simply due
to sampling variation (Figure 8.21). Therefore, even if the population value
was quite different from 0.0 (say XY�0.4) we would often observe sample
values close to zero simply due to sampling variation. Because of this, the
probability of incorrectly concluding that XY�0 would not be negligible.
Our test would not be very powerful in detecting even moderate associa-
tions between X and Y and we would make Type II errors more often.
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Figure 8.21. The probability of observing a Pearson correlation
coefficient of various values when the population value is zero at two
different sample sizes.



The power of a statistical test is the probability of rejecting the null
hypothesis when, in fact, it is false. It is defined as 1��, where � is the
probability of a sample statistic, taken from a statistical population in which
the null hypothesis is false, falling within the acceptance region of the null
hypothesis. The power is affected by sample size, by the significance level
chosen for rejecting the null hypothesis and by the difference (the ‘effect
size’) between the true value of the test statistic and the value assumed by
the null hypothesis. Figure 8.22 plots the statistical power to reject the null
hypothesis that �0 when the true value varies from �0.9 to �0.9 at two
sample sizes (30 and 300 observations) and three different significance levels
(��0.05, 0.10 and 0.20).

Figure 8.22 clearly shows the compromise that must be made. If the
null hypothesis (�0) is true, then increasing the significance level from �
�0.05 to ��0.2 increases our chances of incorrectly rejecting the null
hypothesis (Type I error). We will be incorrectly declaring associations to
exist more often when they really do. On the other hand, increasing the sig-
nificance level from ��0.05 to ��0.2 increases our power to reject the
null hypothesis when associations really do exist but are weak. As sample
size increases then power increases irrespective of the chosen significance
level. This is a good thing because now we can increase our power to detect
real, but weak associations without increasing our significance level and
therefore without increasing our chances of falsely accepting associations
that don’t really exist. At large sample sizes we are best to set a low signifi-
cance level (say ��0.05 or even ��0.01), since at such large sample sizes
we will keep both Type I and Type II error rates low. At small sample sizes
we are best to increase our significance level if, in fact, we don’t have any
preference for the presence or absence of a real association. This is because,
at a low significance level, only very large values of the correlation coeffi-
cient would have a reasonable chance of being detected. As the sample size
increases, that power approaches 1.0 even as � approaches 0, meaning that
the chances of committing both Type I and Type II errors approach zero.

You will see that significance levels of ��0.2, 0.4 or even higher
might be used with very small sample sizes. Clearly, applying these algo-
rithms to small samples means accepting more and more errors due to sam-
pling fluctuations. Remember that these are exploratory methods, not
methods designed to test a preconceived hypothesis. If you set out to hike
through an unfamiliar area then you would probably take a map. The search
algorithms are like imperfect maps to a causal landscape. At large sample
sizes these maps will give you all the detail that can be obtained even though
no one map might be able to provide all the information that is wanted. At
small sample sizes these maps will only give you the major hiking trails, may
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quite possibly miss some of the smaller trails and even include some incor-
rect paths. Independent tests using new data are always important after
applying the search algorithms but this is especially important as sample size
decreases. None the less, you will see that the error rates are not that bad,
especially for constructing the undirected dependency graph, even at small
sample sizes. With these points in mind, let’s look at the Causal Inference
algorithm in the presence of sampling error.

8.15 The Causal Inference algorithm and sampling error

At this stage it is useful to look at a numerical example. Figure 8.23 shows
a path model from which I will generate sample data and apply the Causal
Inference algorithm. I will generate two different data sets, one with 30
observations and one with 300 observations. The coefficient � equals 0.4.
Let’s begin with the larger sample size (N�300). Table 8.4 shows the vari-
ances on the diagonal, the covariances below the diagonal, and the correla-
tions above the diagonal, for a simulated data set with N�300.

The first step is to obtain the undirected dependency graph. I will
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Figure 8.23. Path model used to generate sample data.



choose a significance level25 of 0.05. After constructing the saturated undi-
rected graph, I then remove any lines between variables whose zero-order
correlations are not significantly different from zero at a rejection level of
0.05; that is, if |r|�0.113. There is one correlation coefficient in Table 8.4,
between A and E, that is judged to be zero. Note that this decision is actu-
ally a Type II error, since A and E are really associated with a weak popu-
lation coefficient of 0.128. However, this does not introduce any errors in
the undirected dependency graph, since this graph is concerned only with
direct associations. In other words, the algorithm is robust to these types of
error.

I next look at each of the 10 pairs of variables ({A,B}, {A,C}, . . .,
{D,E}) and, for each, test for zero first-order partial correlations. That is,
for each pair I calculate the partial correlation conditional on each of the
remaining three variables in turn. With each test I see whether the absolute
value of the partial correlation is less than 0.113 and, if it is, I remove the
line joining the two variables in the pair. When I do this I find only four
first-order partials that are judged to be zero: rAC|B��0.008 ( p�0.89),
rAD|B��0.062 ( p�0.28), rAE|B� �0.022 ( p�0.70) and rCD|B�0.069
( p�0.23). Note that we can’t remove the line between A and E, since it
was already removed (by error) when looking at the zero-order correla-
tions26. This is why I said that the algorithm is robust.
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25 This significance level refers to each individual statistical test, not the final partially ori-
ented graph. From Figure 8.17 I know that I will have almost 100% power to detect cor-
relations whose population values are greater than 0.2 in absolute value, although, in an
empirical study, I would not know what the population values were.

26 Actually the algorithm would not even calculate this partial correlation, since the two var-
iables are not adjacent at this stage.

Table 8.4. Variances (diagonal), covariances (lower
subdiagonal) and correlations (upper subdiagonal) of
300 simulated data from a multivariate normal
distribution generated according to the causal structure
shown in Figure 8.23

A B C D E

A 0.93 0.35 0.14 0.08 0.10
B 0.35 1.03 0.42 0.38 0.35
C 0.15 0.45 1.11 0.22 0.52
D 0.07 0.37 0.22 0.94 0.52
E 0.11 0.38 0.59 0.54 1.12



I next look at each of the remaining pairs of variables that are still
adjacent and, for each, test for a zero second-order partial correlation. That
is, for each pair I calculate the partial correlation conditional on each pos-
sible pair of the remaining three variables in turn and remove the line
between any pair whose absolute value of the second-order partial is less
than 0.113. There is only one such zero second-order partial: rBE|{CD}�
0.009 ( p�0.88). I then go on to test for zero third-order partials but I do
not find any. The result is the correct undirected dependency graph (Figure
8.24, top).

I then go on to the orientation phase. If I maintain the same signif-
icance level (0.05) then the algorithm makes a mistake. The path
C →E← D collides at E but, in order to detect this, I must find that the
partial correlation between C and D, conditioned on every other possible
subset of the other variables that includes E, is never zero. However, even
at a sample size of 300 we don’t have much power to detect small non-zero
associations. What’s even worse, we have to conduct four different tests
(rCD|{E},rCD|{EA} rCD|{EB}, rCD|{EAB}). If these were independent tests then our
actual rejection level for all four tests together would be 0.054�6.25�10�6.
If these four tests were perfectly correlated (i.e. the probability level for each
is the same) then we would have maintained an overall significance level of
0.05. In other words, by setting the significance level of each test at 0.05 we
were really demanding very strong evidence – perhaps as low as six chances
in a million and certainly less than five chances in a hundred – before we
were willing to recognise a collider triplet. Of course, we don’t know the
degree to which these four tests are correlated but if they were independent
then we should choose a significance level of about 0.47 for each test in
order to maintain an overall level of 0.05. This is because 0.474�0.049.

These considerations emphasise the exploratory nature of the
method. The best approach is to try different significance levels and see how
the undirected graph, and the partially directed graph, change. In any real
study you could also include any prior information about the data, for
instance if some variables occurred earlier in time than others, in order to
choose between the different results. Figure 8.24 shows the undirected
graph, and the partially directed graph that results from our data using differ-
ent significance levels. The structure of this undirected dependency graph
is very stable; varying the significance level from 0.001 to 0.6 always gives
the same result. The structure of the partially oriented graph is less stable.
Below a significance level of around 0.15 all unshielded patterns are declared
unshielded colliders, including the one that is really a collider. Between 0.15
and 0.3 the correct partially oriented graph is obtained. Beyond 0.3 a second
(incorrect) unshielded collider is detected.
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At this stage I can use my d-sep test to evaluate each of the three
partially oriented graphs27. When I do this I find that the equivalent graphs
that result when the significance level used in the orientation stage is 0.3 or
larger are clearly rejected. This is because these graphs all predict that A and
C are unconditionally independent. In fact, rAC�0.35 and, with a sample
size of 300, this would occur much less than once in a million times if the
data were really generated according to this graph. Therefore, we have to
choose between the first two partially oriented graphs. When we look at
the first partially oriented graph we see that it is impossible for all of the
unshielded patterns to be definite non-colliders and for there to also be no
cycles in any equivalent DAG that is consistent with it. We are led to accept
the middle partially oriented graph as the most consistent with our data.

Figure 8.25 shows the results when the undirected dependency
graph algorithm is applied to a sample data set, generated from Figure 8.23,
but with a small sample size of 30 observations. Now we see many errors.
No equivalent model from the undirected dependency graph, obtained
using ��0.01, provides an acceptable fit to the data. However, all of the
remaining undirected graphs have equivalent models that do produce an
acceptable fit, based on the d-sep test and a significance level of 0.05. To go
any further requires information beyond that which exists in this little data
set. For instance, the undirected graphs at ��0.05 to 0.2 all predict that A
and B are independent of C, D and E28. If, in other studies, either A or B
was found to be correlated with C, D or E, then this undirected graph could
be rejected29. Once you decide upon a particular undirected graph as being
most consistent with all of the information, then you can begin to explore
the orientation phase.

The best way to see what types of error these search algorithms will
make at different sample sizes is to generate data with different characteris-
tics and count the types of error that occur. Spirtes, Glymour and Scheines
(1993) have conducted such simulation studies for the case of causal suffi-
ciency and using both the algorithms described here and also others that are
more efficient with large numbers of variables, but which commit more
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27 Every possible partially oriented graph can be tested in this way. Simply choose one of the
equivalent DAGs consistent with the partially oriented graph and apply the d-sep test.
Since every equivalent graph will give the same probability level under the null hypoth-
esis it doesn’t matter which one you choose.

28 Since there are no undirected paths between these two sets of variables, there can be no
directed paths either. Therefore they must be independent.

29 In Shipley (1997) I described how imbedding the algorithm for the undirected depen-
dency graph inside a bootstrap loop helps to reduce the effects of small sample sizes. This
option is included in the EPA program of my Toolbox (see Appendix).
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errors at small sample sizes. I have also explored the error rates of the Causal
Inference algorithm with small sample sizes, and using bootstrap techniques
(Shipley 1997). The general results that come from these simulation studies
are:

1. Error rates are lower for constructing the undirected dependency
graph than for orienting the edges.

2. The error rates for adding a line in the undirected dependency
graph when there shouldn’t be one are quite low. Even at very small
sample sizes (say 30 observations), if a line appears then it probably
exists unless the rejection level is very high (say 0.5 or more).

3. The error rates for missing a line in the undirected dependency
graph when there should be one are higher. As the strength of the
direct causal relationships decrease, this error rate increases. As the
number of other variables to which a given variable is a direct cause
increases, this error rate increases. As the sample size increases, this
error rate decreases.

4. The error rates for orienting edges are higher than those related to
the undirected dependency graph. This is to be expected, since the
orientation phase depends on the number and types of unshielded
pattern; therefore any errors in the undirected dependency graph
will be propagated into the orientation phase.

5. The rejection level used in constructing the undirected dependency
graph should increase as the sample size decreases. At very small
sample sizes values of 0.2 or higher should be used. At sample sizes
of around 100 to 300 a rejection level of 0.1 should be used. At
higher sample sizes a value of 0.05 is fine, since statistical power
does not have to be traded off against the ability to avoid Type I
errors.

8.16 The Vanishing Tetrad algorithm and sampling variation

The Vanishing Tetrad algorithm has been much less studied than the other
algorithms that I have described. In part, this is because the assumption of
a linear relationship between the latents and the observed variables limits its
application. Another reason is perhaps because it is less informative than the
other algorithms; it can alert us to the presence of latent variables but can’t
tell us exactly how these latents connect to the observed variables. Another
reason is that, unlike the tests for (conditional) independence that are used
in the other algorithms, the test for a zero tetrad equation is only asymp-
totic. In other words, in order to get accurate probability estimates based on
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the null hypothesis that a tetrad equation is zero, you need a certain
minimum sample size. No one (to my knowledge) has formally studied the
asymptotic requirements for this test, and so I will present some Monte
Carlo results to give you some rules of thumb when interpreting the asymp-
totic probability levels of the test statistic.

The test statistic is !�IJKL�ILJK, where I, J, K and L are the
four variables involved in the tetrad; remember that there are always three
tetrad equations for each set of four variables. Under the null hypothesis this
value will be zero in the population. Wishart (1928) derived the asymptotic
sampling variance of this statistic in the first part of the twentieth century
but no one (to my knowledge) has ever derived the exact sampling variance.
The asymptotic sampling variance30 is:

where D is the determinant of the population correlation matrix of the four
variables, DIK is the determinant of the 2�2 matrix consisting of the pop-
ulation correlation matrix of variables I and K, DJL is the determinant of the
2�2 matrix consisting of the population correlation matrix of variables J
and L, N is the sample size and the four variables follow a multivariate
normal distribution. There are six possible pairs of four variables, four of
these pairs define a tetrad equation and the other two pairs define the 2�2
submatrices whose determinants are used in calculating the asymptotic var-
iance. If the null hypothesis is true then the test statistic is asymptotically dis-
tributed as a normal variate with a zero mean and the given variance.
Therefore, the value !/ asymptotically follows a standard normal
distribution.

To conduct the statistical test you replace the population values by
the sample values. In doing this you are only approximating the true prob-
ability level and so it is important to know how good (or bad) this approx-
imation is. Table 8.5 shows some results of Monte Carlo simulations in
which a four variable measurement model, of the sort shown in Figure 8.16,
was used to generate 500 independent data sets. Each such simulation used
a different sample size per data set and a different value for the path coeffi-
cients (�) between the latent variable and the observed variables.
Remember that, according to the rules of path analysis, the population cor-
relation coefficient () between each pair of observed variables in such a
model, is �2.

�var(!)

�DIKDJL(N � 1)
(N � 1)

� D�� 1
N � 2�
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30 The formula given by Spirtes, Glymour and Scheines (1993) is incorrect, but these authors
give the correct formula in their earlier book (Glymour et al. 1987).



It is clear that when the correlations between the four observed var-
iables are very low then the approximation is not good. When the popula-
tion correlation between them is only 0.01 then even a sample size of 1000
produces conservative probability levels and you would reject the null
hypothesis that the tetrad is zero too often. By the time that the population
correlation between the four observed variables is about 0.25 then even
small sample sizes cause no problems.

In using the Vanishing Tetrad algorithm, you would first construct
the undirected dependency graph. If no set of four (or more) variables in
the undirected dependency graph is saturated (i.e. in which each variable
has a line to each other variable in the set) then there is no need to apply
the Vanishing Tetrad algorithm. If you do see such a pattern then apply the
Vanishing Tetrad algorithm to this set of variables, keeping in mind the
approximate nature of the calculated probabilities. If the correlations
between the variables are very weak then you should increase the signifi-
cance level.
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Table 8.5. Each line summarises the results of 500 independent data sets
generated from a model like that of Figure 8.16 with path coefficients � between
the latent and each measured variable.  gives the population correlation between
each measured variable, N is the sample size, �(!) is the asymptotic standard
deviation of the tetrad equation and SD(!) is the average standard deviation of the
500 data sets.Also shown are the 20%, 10% and 5% quantiles of the
standardised tetrad equations (!/ )

Quantiles

�  N �(!) SD(!) 0.20 0.10 0.05

25 0.0603 0.0974 0.09 0.05 0.02
0.1 0.01 50 0.0293 0.0483 0.11 0.06 0.02

1000 0.0015 0.0024 0.12 0.05 0.02
25 0.0603 0.0974 0.09 0.05 0.02
50 0.0374 0.0514 0.13 0.06 0.03

0.3 0.09
100 0.0218 0.0285 0.16 0.07 0.03
500 0.0079 0.0085 0.21 0.10 0.05

0.4 0.16
25 0.0811 0.1061 0.12 0.06 0.03
50 0.0481 0.0582 0.17 0.09 0.05

0.5 0.25 25 0.0964 0.112 0.20 0.09 0.04
0.6 0.36 25 0.1094 0.1175 0.23 0.11 0.05

�Var(!)



8.17 Empirical examples

In Chapters 3 and 4 I used data from Jordano (1995) consisting of 5 vari-
ables measured on 60 trees of St Lucie’s Cherry, to test a path model. In fact,
the path model was derived from the Causal Inference algorithm. The five
variables were (1) the area of the tree canopy projection (a measure of the
photosynthetic biomass), (2) the total number of ripe fruit produced per tree
during the year, (3) average fruit diameter, (4) average seed weight and (5)
the number of seeds dispersed from the tree by birds. The primary variable
of interest was the number of seeds dispersed from the tree. This is because
seeds that fall directly beneath the tree and germinate will generally die
owing to shading from the parent and so the evolutionary fitness of the tree
will be more closely related to the number of seeds that are dispersed away
from the parent. However, it is reasonable to suppose that the other meas-
ured variables will interact to affect the number of seeds dispersed and so
we wish to understand how these variables relate to one another.

There are approximately 59000 potential acyclic graphs to consider
given our five measured variables. I could propose a specific causal model,
and even provide reasonable biological arguments to back it up. I am quite
sure that most readers could also propose a specific causal model and provide
reasonable biological arguments. I am also quite confident that the proposed
causal models will not be the same31. In fact, I could propose alternative
different causal models and come up with equally good reasons for each one!
The problem is that my biological knowledge of the phenomenon is not
sufficiently detailed to strongly favour one model over other reasonable
models. This is a situation in which it does not make much sense to waste
a great deal of effort in applying an inferential test to a specific model. When
applying an inferential test (either the d-sep test or that based on SEM) the
question is: ‘Are the data consistent with this model?’. However, since we
can easily come up with a number of different reasonable models, and have
no idea whether there might be others, we are really at a stage in which we
want to ask: ‘Which models are consistent with the data and which aren’t?’.
It is analogous to the difference between testing whether a regression coeffi-
cient is zero and obtaining a confidence limit for the regression coefficient.

After transforming the original variables to their natural logarithms,
I gave these data to the Causal Inference algorithm. Figure 8.26 shows the
resulting undirected dependency graph for various rejection levels. The
undirected graph that results when the rejection level is low (0.05 or 0.10)
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can be rejected without even orienting it. This is because it predicts that
each of {seed weight, fruit diameter} is unconditionally d-separated from –
and therefore independent of – each of {canopy projection, number of fruit
produced, number of seeds dispersed}. Applying the d-sep test to only these
independent statements yields a �2 value of 27.18 with 12 degrees of
freedom ( p�0.007). If we then go to the second undirected graph,
obtained using rejection levels of 0.2 to 0.5, we can apply the orientation
phase of the algorithm. Until we get to a very high rejection level for this
phase (0.4) we always find that each unshielded pattern is a definite non-
collider. At a rejection level of 0.4 we are informed that fruit diameter is a
collider. Figure 8.27 shows the partially oriented acyclic graph based on the
middle undirected graph.

Despite the small sample size (60 observations) we have already dis-
covered quite a lot of information about the possible causal relationships
between these variables. There is no evidence that there are latent variables
that are common causes of more than two observed variables; if there were
then we would see three or more variables with a saturated pattern between
them. Remember that we are in an exploratory mode. We are looking for
possible models that accord with our available evidence about the correla-
tional shadows but we also want our model to accord with any previous bio-
logical knowledge that we might possess. For instance, consider the
relationship between the number of cherry fruits produced and the number
of seeds dispersed by the birds (number of fruits produced  — number of
seeds dispersed). Since seeds can’t be dispersed by birds before the fruit has
been produced, we can exclude the orientation: (number of fruits produced
← number of seeds dispersed). It is possible that the orientation is: (number
of fruits produced ↔ number of seeds dispersed), although it is difficult to
conceive of a latent variable that determines both how many fruits the tree
will produce and also how many of these fruits will be eaten by the birds.
However, if we accept this orientation involving a latent variable then we
must also exclude the orientation: (canopy projection o→ number of fruits
produced), since this would produce a collider. This would therefore force
us to accept the following orientation: (canopy projection←number of
fruits produced). Such an orientation disagrees not only with much empir-
ical evidence but also with the time ordering of the phenomenon, since the
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Figure 8.27. The final partially oriented graph that is produced based on
the middle undirected graph of Figure 8.26. #, number of.
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produced
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canopy is produced before the fruits are made. If we begin with the biolog-
ically reasonable hypothesis that the total photosynthetic capital of the tree,
of which the canopy projection area is a measure, determines both how
many fruit will be produced and the average size of each fruit, then we are
immediately led to the partially oriented directed acyclic graph in Figure
8.28.

Such a result, to me, is incredible. With five observed variables we
had a little over 59000 possible directed acyclic models. This algorithm,
combined with a few reasonable biological observations, reduced this huge
number to a few reasonable models. Since I know that the statistical power
to detect small non-zero correlations is not great with only 60 observa-
tions, I would not bet my salary on the accuracy of Figure 8.28, but I
would feel much more confident about proposing a model derived from
Figure 8.28 as a useful biological hypothesis to be tested with independent
data.

This is the real strength of these discovery algorithms. Unless pre-
existing theory is already quite solid, then proposing a complete causal
model from such theory often degenerates into asking: ‘If I were God, and
the world was a machine, then how would I construct it?’. Since few of us
are gods and the world is not really a machine, such ‘hypothesis generation’
can easily mask unbridled speculation. The discovery algorithms first show
us the correlational shadows that our data contain, which causal processes
might reasonably have cast them, and which causal processes were unlikely
to have cast these correlational shadows. This constrains our speculation,
forces us to consider different alternative models, and also forces us to expli-
citly justify any causal process that appears to contradict what the data seem
to say.

The next empirical example shows that we shouldn’t accept the
output of these discovery algorithms blindly. Their purpose is to help us to
develop useful causal hypotheses, not to replace the scientist with a com-
puter algorithm. In Chapters 3 and 4 I presented a path model relating
specific leaf area, leaf nitrogen content, stomatal conductance, net photo-
synthetic rate, and the CO2 concentration within the leaf. This model
(Figure 8.29A) was based on the pre-existing model of stomatal regulation
produced by Cowan and Farquhar (1977). When I apply the Causal
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Figure 8.28. The partially oriented graph that is retained as most
biologically plausible. #, number of.
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Inference algorithm to the empirical data32 the resulting partially oriented
graphs make no biological sense. At low rejection levels (0.2 and lower)
none of the suggested graphs fit the data. At higher rejection level (0.2 to
0.5) a graph (Figure 8.29B) is suggested that does produce a path model with
a non-significant MLX2 value but this graph contradicts some well-estab-
lished biological knowledge of leaf gas exchange. Note that in this graph
the net photosynthetic rate is causally independent of the CO2 concentra-
tion within the leaf, even though this is physically impossible. The amount
of CO2 within the leaf is determined by the rate at which it is diffusing
into the leaf across the concentration gradient from the higher outside
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32 I use only the 35 species that have a C3 photosynthetic system, and each variable is trans-
formed to its natural logarithm to ensure multivariate normality.

Figure 8.29. Model (A) is the one proposed in Chapter 3 based on
biological arguments. The partially oriented graph (B) is the output of
the Causal Inference algorithm when no constraints are placed on it.
The partially oriented graph (C) is the output of the Causal Inference
algorithm when simple constraints are placed on it based on well-
known physical laws.



concentration to the lower concentration within the leaf (i.e. stomatal con-
ductance) and the rate at which it is being removed from the intercellular
air by photosynthesis. The concentration within the leaf is therefore deter-
mined by the net rate at which it is being fixed by photosynthesis (by defi-
nition, the net photosynthetic rate) and the rate at which gases are diffusing
across the stomates (measured by the stomatal conductance).

Why would the Causal Inference algorithm produce such an erro-
neous output? The reason is almost surely because this biological process vio-
lates one of the assumptions of the algorithm; namely that the probability
distribution of these variables is faithful to the causal process that generated
it33. This means that independence or partial independence relationships are
assumed to be due to the way in which the variables are causally linked
together rather than on special numerical values of the strengths of the direct
causal relationships that manage to cancel each other. Imagine that you
glance out of the window and see a single person walking down the lane.
One hypothesis for this observation might be that there are really two people
but that one is positioned behind the other in such a way that she is perfectly
hidden by the person in front. A simpler, and more parsimonious, hypoth-
esis is that there is really only one person coming down the lane. Both
hypotheses are possible but the first requires that you are witnessing a very
special juxtaposition of distances, shapes and sizes of people. The illusion of
a single person would disappear as soon as any of those conditions change.
We could say that such special conditions are unfaithful to our general expec-
tations and so we would reject the hypothesis unless we had very good inde-
pendent reasons to believe that someone might be hiding due to such special
conditions. In the same way, these discovery algorithms assume that if we
observe an observational independence between two variables, then this
means that the two are causally independent. It is always possible that the two
variables only appear to be independent because positive and negative direct
and indirect relationships cancel each other out, but this would require a very
special balancing of causal effects. Just as with the example of two people
appearing to be a single person, unless we have good reasons for suspecting
such a curious observation, we would choose the more parsimonious expla-
nation.

In fact, the correlation coefficient between the ln-transformed net
photosynthetic rates and the ln-transformed internal CO2 concentrations in
these data was only 0.051 ( p�0.77). Therefore the line between these two
variables would be immediately removed when we are constructing the
undirected dependency graph. We know the net photosynthetic rate must
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be a cause of the amount of CO2 within the leaf and yet there appears to
be no relationship between the two variables in these data. The reason for
this apparent contradiction can be found in the Cowan and Farquhar (1977)
model of stomatal regulation upon which the path model in Figure 8.24A
is based. According to this theory, the stomates are regulated in order to
maintain the internal CO2 concentration at the ‘break point’; that point at
which carbon fixation is limited equally by the regeneration of Rubisco due
to ATP production from the light reaction of photosynthesis and the
amount of Rubisco available in the dark reaction of photosynthesis. In other
words, the overall correlation between net photosynthetic rate and internal
CO2 concentration is determined by two different causal paths. One path is
the direct effect of net photosynthetic rate in reducing the internal CO2
concentration (net photosynthesis→internal CO2). The other path is the
trek from stomatal conductance that is a common cause of both net photo-
synthetic rate and internal CO2 concentration (net photosynthesis←stom-
atal conductance→internal CO2). Increasing the stomatal conductance
increases the amount of CO2 that enters the leaf, thus increasing both the
photosynthetic rate and the internal CO2 concentration. Furthermore, in
order to maintain a constant internal CO2 concentration, the stomates must
ensure that the increase in internal CO2 due to diffusion through the sto-
mates is just enough to counter the decrease in CO2 that is caused by the
resulting increase in the net photosynthetic rate. By balancing these positive
and negative effects, such homeostatic control maintains a constant internal
CO2 concentration but also produces an unfaithful probability distribution.

Since the operational definition of net photosynthetic rate is the rate
at which CO2 is being removed from the air within the leaf, we have good
independent reasons to suspect that net photosynthetic rate will exert a direct
negative effect on the internal CO2 concentration. We can now apply the
Causal Inference algorithm again but add the constraint that stomatal con-
ductance and net photosynthetic rates must each remain as direct causes of
the internal CO2 concentration. This constraint is justified by simple physi-
cal laws of passive diffusion of gases across a concentration gradient. The
resulting graph is shown in Figure 8.29C. The Causal Inference algorithm has
suggested a partially oriented graph that is statistically equivalent to the path
model that was proposed based on the Cowan–Farquhar theory of stomatal
regulation. We have only to note that it is biologically more reasonable to
suppose that the leaf nitrogen concentration is caused by specific leaf mass
rather than the inverse34 and we recover the path model in its entirety.
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The assumption of faithfulness is really based on a parsimony argu-
ment. It says that, if the only causal information available is that obtained
from the observational data at hand and we have different possible causal
structures that are exactly equivalent in their predictions of (partial) inde-
pendence, then it is preferable to assume a causal structure whose indepen-
dence predictions are robust rather than to assume a causal structure whose
independence predictions require a special balancing of direct and indirect
causal effects. When we have good causal information exterior to the data
at hand then such information should be used. With small samples this is
especially important because low statistical power means that real, but weak,
effects might be incorrectly interpreted as independence.

8.18 Orienting edges in the undirected dependency graph
without assuming an acyclic causal structure

A recurring theme in science fiction stories is the Universal Translator; a
device that can infallibly translate back and forth between any set of lan-
guages. In the case of acyclic causal structures we had an imperfect, but still
quite serviceable, translation device. d-separation, applied to the directed
acyclic graph, could infallibly translate from the language of causality to the
language of probability distributions. We could not use it to translate infal-
libly backwards from a probability distribution to the causal graph because
different causal structures can generate the same joint probability distribu-
tion. This is why the discovery algorithms output a partially oriented acyclic
graph rather than a single DAG. Still, this is quite useful in reducing hypoth-
esis space down to a manageable set of possible DAGs. When we move on
to search algorithms for (possibly) cyclic causal processes then the problem
gets even more difficult because our translation device, d-separation, can’t
be generally applied to non-linear cyclic causal processes. None the less,
Richardson (1996b) has produced an algorithm that is provably correct for
cyclic causal structures (given population measures of association and faith-
fulness) under the assumption that the functional relationships between the
variables are linear and that there are no latent variables generating associa-
tions between more than two observed variables.

As you might have already feared, this algorithm is both more com-
plicated and requires some new definitions and notational conventions.
Taken one at a time, each part of the algorithm is still intuitively compre-
hensible. The algorithm is based on the notion of a partial ancestral graph
(PAG). A PAG is an extension of the partially oriented inducing path graph
of acyclic models that was used in the Causal Inference algorithm. Here are
the conditions for a graph to be a PAG:
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1. There is an edge between two variables, A and B, if and only if A
and B are d-connected given any subset of other observed variables
in the graph; i.e. if and only if there is an inducing path between A
and B. This is the same as for the graphs output from the Causal
Inference algorithm.

2. If there is an edge between A and B that is out of A with the nota-
tion A—*B (but not necessarily into B), then A is an ancestor of
B.

3. If there is an edge between A and B that is into B with the nota-
tion A*→B (but not necessarily out of A), then B is not an ances-
tor of A.

4. If there is an underlining at the middle variable of a triplet with
notation A*—*B*—*C then the edges do not collide at B.
Therefore B is an ancestor of either A or B but not of both.

5. If there is an edge from A to B and from C to B (A→B←C ) but B
is not a descendant of a common child of A and B, then B is doubly
underlined35; thus A→B–←C. This is the first big difference from
the POIPG graphs output from the Causal Inference algorithm. In
fact, such a condition is impossible in an acyclic causal structure as
will be explained in more detail below.

6. Any edge endpoint not marked in one of the above ways is left with
a small circle; thus A — means that the mark after the A is
unknown and could be any of A←, A— or A*—.

If you go over these points slowly then you will see that the only
major difference is in point 5. Let’s look more closely at it. To begin, let’s
look at what would happen if we applied the Causal Inference algorithm to
the causal structure, shown in Figure 8.30, containing a feedback loop36.

Figure 8.31 shows the development of the partially oriented graph.
The undirected dependency graph has no line between A and D because,
applying d-separation to the true graph in Figure 8.30, A and D are uncon-
ditionally d-separated. However, there is a line between A and C and
between D and B even though none appears in the true graph. This is not a
mistake. Remember that a line in the undirected dependency graph simply
means that the two variables joined by the line are d-connected given any
subset of other variables (i.e. that there is an inducing path between them).
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which the same variables are measured at different times and included in the same data set
without any explicit indexing of the time dimension. Richardson (1996b) has an extended
discussion of the interpretation of cyclic patterns in causal graphs.



A is always d-connected to C because there are two undirected paths given
the feedback relationship (A→B→C and A→B←C ), and so conditioning
on B (or {B,D}) will always leave one path open. The line between D and
B occurs for the same reason. Now, when we apply the orientation phase of
the Causal Inference algorithm to the undirected dependency graph, we find
that the two unshielded patterns (A—C—D and D—B—A) are non-
colliders. To see this, write out the two undirected paths between A and D:
A→B→C←D and A→B←C←D. The unshielded pattern A—C—D is a
collider (according the Causal Inference algorithm) if A and D are never d-
separated given C plus any possible subset of other observed variables (i.e.
{C} and {B,C}). Now, A and C are never d-separated given {C} because of
the undirected path A→B→C←D. However, given {B,C} then both undi-
rected paths are d-separated and so the Causal Inference algorithm would
declare the unshielded pattern (A—C—D) to be a definite non-collider.
The same result would occur for the unshielded pattern (A—C—D).
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Figure 8.30. A directed cyclic graph with a feedback relationship
between variables B and C.

Figure 8.31. The graph on the left is the undirected dependency graph
that results from the directed cyclic graph in Figure 8.30. The graph on
the right is the partially oriented inducing path graph.



This mistake made by the Causal Inference algorithm occurs
because of the feedback relationship between B and C. It could never occur
in an acyclic causal process. Yet this mistake is actually very informative
because it suggests a way of detecting feedback relationships. To see this we
have to go back to the algorithm used to construct the undirected depen-
dency graph.

In the algorithm for the undirected dependency graph we choose
two variables (X and Y ) and then look for a conditioning subset of other
observed variables that renders X and Y independent (thus d-separated). We
begin with the smallest such conditioning subset – the null subset contain-
ing no other variables – and test for independence of X and Y given this null
subset (i.e. unconditional independence). If this does not occur then we test
the first-order conditioning subsets, and so on. As soon as we find a condi-
tioning subset that renders X and Y independent then we remove the line
between them and stop. Let’s call the conditioning subset that renders X and
Y independent during the algorithm the ‘Separation set of X and Y ’, or
Sepset(X,Y ). Now, in an acyclic causal process in which the DAG has a col-
lider, for example X*→Z←*Y, then Z will never be a member of
Sepset(X,Y ) because any conditioning set that contains Z will make X and
Y d-connected. Furthermore, in an acyclic causal process of this type in
which a given variable is a non-collider, for example X*— Z —Y, then Z
will always be a member of Sepset(X,Y ). Therefore, given an unshielded
pattern (X—Z—Y ) and the assumption of no cyclic causal relationships, we
can orient this unshielded pattern simply by determining whether Z is a
member of Sepset(X,Y ). If Z is a member of Sepset(X,Y ) then Z is a non-
collider in the unshielded pattern; if not, then Z is a collider. Since
Sepset(X,Y ) is the smallest subset that d-separates X and Y there can be
other subsets that also d-separate X and Y. However, if Z is a collider along
X—Z—Y then neither Sepset(X,Y ) nor any other subset that d-separates
X and Y will ever contain Z in an acyclic graph. However, in a cyclic causal
process this is not true. Because the causal influence goes both ways in a
cyclic graph it is possible for Z to be absent from Sepset(X,Y ) given the
unshielded pattern X—Z—Y even though Z plus some other variables can
d-separate X and Y.

For instance, let’s look again Figure 8.31. There is an unshielded
pattern (A—B—D) and the conditioning sets that d-separate A and D are:
{null} – since A and D are unconditionally d-separated – and {B,C}37.
Sepset(A,D) is {null} because this is the smallest conditioning set. Since B
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is not in Sepset(A,D) this would normally mean that B is a collider if there
were no cycles. If there were no cycles then this would also mean that no
other set that d-separates A and D could contain B, yet {B,C} does d-
separate A and D. The discovery algorithm for cyclic causal structures uses
this fact. If, given an unshielded pattern X—Z—Y, Z appears in some
subsets of other variables that d-separate X and Y but not in others, then
there is a cyclic orientation.

Before presenting the full algorithm I should head off some poten-
tial confusion that could result if people compared my description of the
algorithms for the undirected dependency graph and the Causal Inference
algorithm with those published by Spirtes, Glymour and Scheines (1993).
In my descriptions I did not refer to Sepsets but these play an important
role in the original descriptions. I did this because, for acyclic causal pro-
cesses, the result is the same in the population, although the use of Sepsets
reduces the computational cost by one’s not having to retest for d-separation
during the orientation phases. If applied to causal processes having cyclic
structures, the result can be different. Figure 8.32 shows the resulting par-
tially oriented inducing path graphs that are obtained from the causal process
shown in Figure 8.30 when applying the Causal Inference algorithm as I
have presented it, and as Spirtes, Glymour and Scheines (1993) originally
presented it.

Notice that the unshielded patterns (A—B—D and A—C—D) are
oriented as non-colliders in my formulation and colliders in the original for-
mulation. This is because Sepset(A,D) is empty (a null set). In the
unshielded pattern A — B — D, B is not in Sepset(A,D) and so B is
therefore considered a collider in the original formulation. In my formula-
tion, given A — B — D, one must find that A and D are conditionally
associated given B plus any other subset of observed variables, not just
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Figure 8.32. The partially oriented inducing path graphs that result from
the two different formulations of the Causal Inference algorithm.



Subset(A,D). Since A and D are d-separated given {B,C}, then A —
 B — D is oriented as A — B — D. It is precisely when these two for-
mulations disagree that we have evidence for a feedback relationship. Now,
I give the Cyclic Causal Discovery (CCD) algorithm of Richardson.

8.19 The Cyclic Causal Discovery algorithm

1. Form the undirected dependency graph. As soon as a pair of vari-
ables (X,Y ) are found to be independent given a conditioning set
Q then let Sepset(X,Y )�Sepset(Y,X )�Q and go on to another
pair of variables. Orient each edge (X—Y ) between two variables
in the undirected dependency graph as (X — Y ).

2. For each unshielded pattern (X — Z — Y ) orient as
(X →Z← Y ) if Z is not in Sepset(X,Y ) and orient as (X —
oZ — Y ) if Z is in Sepset(X,Y ).

3. For each triplet of variables (A,X,Y ) such that X and Y are adjacent
(i.e. X — Y ) and A is not adjacent to either X or Y, then (i) if
Sepset(A,Y ) is not a subset38 of Sepset(A,X ) then orient X —*Y
as X←Y else (ii) if Sepset(A,X ) is not a subset of Sepset(A,Y ) but
A and X are d-connected given Sepset(A,Y ) then orient X —*Y
as X←Y.

4. Find each triplet of variables that are now oriented as (A→B←C ).
Now find those variables V that are local to A; the set of all such
variables is called Local(A). A variable V is local to A if either A*—
*V or A→Y←V. Next form a new set (T ) consisting of all vari-
ables in Local(A) except for B, C or those also in Sepset(A,C ). If
any subset of T d-separates A and C then orient as (A→B–←C ) and
record T plus Sepset(A,C ) plus B in new sets called
SupSepset(A,B,C ) and SupSepset(C,B,A). The double under-
line means that X and Y do not both collide at Z 39.

5. Find a quadruple of variables (A,B,C,D) such that B and D are adja-
cent and the following patterns exist: A→B–←C and either
A→D←C or A→D–←C. If such patterns exist then orient  — D
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38 A set is a subset of another set if every element in the first set is also in the second set. For
instance A�{X,Y,Z} is a subset of B�{W,X,Y,Z}.

39 The original formulation of this algorithm uses a dotted underline rather that a double
underline. Although this section appears quite complicated, the complications arise in an
effort to save computational time. Basically, this step simply looks for a pattern
(A*→B←*C ) such that B is not in Sepset(A,C ) but there is at least one subset of other
variables that includes B and that d-separated A and C. This is the clue needed to detect
a feedback relationship.



or B— D as B→D if D is not in SupSepset(A,B,C) and orient as
B*—D if D is in SupSepset(A,B,C ).

6. Find a quadruple of variables (A,B,C,D) such that B and D are adja-
cent, D is not adjacent to both A and C, and A→B–←C. If such
conditions exist then orient B — D or B— D as B→D if A and
C are not d-separated given SupSepset(A,B,C ) plus D.

This algorithm probably seems overwhelming. Since it is incorpo-
rated into the TETRAD III program you don’t have to understand it suffi-
ciently to actually program it, only well enough to have an intuitive
knowledge of what it does. The most important part is to be able to inter-
pret it. I’ll go over each section of the algorithm and provide an intuitive
explanation. Note, however, that this algorithm is the most general algo-
rithm of all those presented so far40. If the causal process is acyclic then this
algorithm will give the same output as the Causal Inference algorithm even
if the functional relationships are non-linear.

Section 1: This is simply the algorithm for constructing the undi-
rected dependency graph. If there is an edge between two variables (X,Y )
then there is an inducing path between them and no other variable, or set
of these other variables, can d-separate X and Y. The reason for construct-
ing Sepset(X,Y ) and Sepset(Y,X ) is simply so that we don’t have to keep
conducting the independence tests in the other sections of the algorithm.
We could have done this in the Causal Inference algorithm as well. In fact,
the original formulation of the Causal Inference algorithm, as implemented
in TETRAD II and TETRAD III does use separation sets. The separation
sets provide useful information because every variable in Sepset(X,Y ) is an
ancestor of either X or Y.

Section 2: This section is simply the algorithm for determining
whether variable Y in an unshielded pattern (X — Z — Y ) is a collider
(thus X →Z← Y ) or a non-collider (thus X — Z —Y ). Now that we
have Sepset(X,Y ) we don’t have to re-do all of the (conditional) indepen-
dence tests. If we see that Z is in Sepset(X,Y ) then Z is a non-collider and
if Z isn’t in Sepset(X,Y ) then it is a collider. This uses the fact (above) that
if Z is in Sepset(X,Y ) then Z is an ancestor of either X or Y. Therefore,
the orientation can’t be X →Z← Y because this would imply that Z was
a descendant of both X and Y. This also explains why causal processes having
feedback relationships like that shown in Figure 8.25 produce different
results when we apply my version of the Causal Inference algorithm and the
original version that uses separation sets. In such feedback processes a vari-

E X P L O R AT I O N,  D I S C O V E RY A N D E Q U I VA L E N C E

300

40 There are a few ‘propagation’ rules that can be added after the algorithm is finished. For
instance, X →Y — Z implies X →Y— Z.



able can be both an ancestor and a descendant at the same time. This is not
possible in an acyclic causal structure.

Section 3: We know that X and Y are adjacent (X —*Y ) and that
A is not adjacent to either X or Y by looking at the partially oriented graph.
We also know that those variables that d-separate A and Y are not a subset
of those variables that d-separate A and X; i.e. that A and X are still d-
connected given Sepset(A,Y ). Therefore X is not an ancestor of Y and we
can orient X —*Y as X←*Y.

Section 4: This section begins by looking for a triplet of variables
that has already been oriented as A→B←C in section 2 of the algorithm.
However, we have already seen that if there are feedback loops then a var-
iable can be both an ancestor and a descendant of another variable.
Therefore, this section tries to find some set of variables that d-separates A
and C while including B. Remember that if we see A→B←C then this
means that, in section 2, we had found A, B and C to form an unshielded
pattern and that B wasn’t a member of the separation set that d-separated A
and C. So we will have found two separation sets, one with B and one
without B, that d-separate A and C. This is the signal for a feedback loop.
Since this section looks for the smallest set that includes B and Sepset(A,C )
– i.e. Supsepset(A,B,C ) – this means that every variable in Supsepset
(A,B,C ) is an ancestor of A, B, or C. The double underline that is added
to B means that both A and C can’t both collide at B; some equivalent graphs
have A→B and C is not adjacent to B, while other equivalent graphs have
C→B and A is not adjacent to B.

Sections 5 and 6: Since every member of Supsepset(A,B,C ) is an
ancestor of A, B, or C we can now use this information to orient B — D.

The proof of the correctness of each section of this algorithm,
given the assumptions, is provided by Richardson (1996a,b). Let’s apply this
algorithm to the causal structure shown in Figure 8.30, reproduced as Figure
8.33.

Assuming that we have a very large sample size, so that we can
ignore errors in determining probabilistic independence due to sampling
variations, the undirected dependency graph, obtained after section 1, is
shown in Figure 8.34.

There are only two unshielded patterns (A — B — D and A —
 C — D). Since A and D are unconditionally d-separated the Sepset
(A,D) is empty; i.e. Sepset(A,D)�{null}. Therefore we orient these two
unshielded patterns as A→B←D and A→C←D. Figure 8.35 shows the par-
tially oriented ancestral graph after this step.

No changes are made after applying section 3 because the necessary
patterns don’t exist. When we apply section 4 we find that Sepset(A,D)�
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Figure 8.33. A directed cyclic graph with a feedback relationship
between variables B and C.

Figure 8.34. The undirected dependency graph, obtained after section
A of the Cyclic Causal Discovery algorithm.

Figure 8.35. The partially oriented graph that is obtained after orienting
based on the unshielded colliders.



{null} but that A and D are d-separated given {B,C}. Therefore we re-
orient A→B←D to be A→B–←D and re-orient A→C←D to be A→
C–←D. Next we construct Supsepset(A,B,D)�{B,C ) and Supsepset
(A,C,D)�{B,C}. The result is in Figure 8.36.

The double underlining means that A and D can’t both be ances-
tors of either B or C at the same time. Upon arriving at section 5 we see
that A→B–←D and A→C–←D and that B and C are adjacent. We can there-
fore go on and apply this section. Now Supsepset(A,B,D)�{B,C}
includes C and so the edge B — C is oriented as B— C and
Supsepset(A,C,D) also includes B and so the edge B— C is oriented as
B—C, meaning that B and C are each the other’s ancestor. The necessary
conditions are not met in section 6 and so no further changes are made. The
final partially oriented ancestral graph is shown in Figure 8.37 with the two
directed cyclic models that are equivalent to it.
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Figure 8.36. The partially oriented graph, obtained after section D of
the Cyclic Causal Discovery algorithm.

Figure 8.37. The partially oriented ancestral graph that results from the
Cyclic Causal Discovery algorithm is shown on the left followed by the
two equivalent cyclic graphs.



The last step is to devise a general discovery algorithm that is appli-
cable to acyclic or cyclic causal processes with linear or non-linear functional
relationships between the variables. In fact Richardson’s (1996b) Ph.D.
thesis provides just such an algorithm but, unfortunately, it is based on an
unproven (as yet!) conjecture of Spirtes (1995). The study of causal models
with feedback is an active area of research and, with luck, this chapter will
soon be out of date.

8.20 In conclusion . . .

Given the dim view of causality that is adopted by most empiricists, it is
ironic that the approach to causality taken in this book is almost, well . . .
empirical. Rather than defining causality, one looks for those properties of
relationships that scientists have deemed to call ‘causal’, and then develop a
mathematical language that possesses such properties. In time perhaps this
will lead to a comprehensive definition that can be accepted by everyone.
For myself, I view ‘causality’ as a relationship between events or classes of
events (i.e. variables) that possesses the properties of asymmetry, transitivity
and the Markovian condition41. I expect that as our mathematical language
of causality improves, we will be able to better express our scientific notions
of causality using mathematics and this should lead to better tests of causal
hypotheses as well as better discovery algorithms.

The various methods in this book all attempt to detect or test causal
relationships using observational data. I have not intended my book to be
an encyclopaedic treatment of the relationship between cause and correla-
tion – there is certainly much more to be said – but I hope that it will be
useful as you watch the correlational shadows dance across the screen of
nature’s Shadow Play.

Enjoy the show.
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Appendix

The following is a list of software programs useful for path analysis, structu-
ral equations modelling (SEM) or exploration of causal structures. The
inclusion of a program in this list is not an endorsement; I have not even
used many of the listed programs. Since new versions of these programs are
constantly being produced, you should visit the Internet websites before
choosing.

AMOS (a commercial structural equations program)
SmallWaters Corporation
1507 E. 53rd Street, no. 452
Chicago, IL 60615, USA
http://www.smallwaters.com/amos

EQS (a commercial structural equations program)
Multivariate Software, Inc.
4924 Balboa Blvd, Encino, CA 91316, USA
http://www.mvsoft.com

LISREL and PRELIS
Scientific Software International
7383 N. Lincoln Avenue, Suite 100,
Lincolnwood, IL 60712-1704, USA
http://www.ssicentral.com

Mx (a free software program for structural equations modelling)

Mx is very complete but is not as user-friendly as the others and requires that the
user enter command code. Both the program and the user’s manual can be down-
loaded from http://views.usu.edu/mx/
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Mplus (a commercial structural equations program)
11965 Venice Blvd, Suite 407
Los Angeles, CA 90066, USA
http://StatModel.com

CALIS – a procedure of SAS (a commercial statistical program of which
CALIS is a procedure for SEM).
SAS Institute, Cary, NC 27513–2414, USA.

SEPATH – a module of Statistica (a commercial statistical program of which
SEPATH is a module for SEM)
Statsoft,
2325 East 13th Street,
Tulsa, OK 74104, USA

TETRAD II (a program and manual for exploratory methods in causal
modelling, some of which are described in Chapter 8)
Lawrence Erlbaum Associates, Inc.
10 Industrial Avenue,
Mahwah, NJ 07430-2262, USA
orders@Leahq.mhs.compuserve.com

(Note that TETRAD III is freely available from
http://hss.cmu.edu/HTML/departments/philosophy/TETRAD/tetrad.html)

TOOLBOX: this is a set of DOS-executable programs that I have written for
various tasks in causal modelling that are not generally available in other programs.
The price is very modest. These programs can be obtained directly from me (Bill
Shipley, Department of Biology, University of Sherbrooke, Sherbrooke (Qc),
J1K 2R1, Canada, bshipley@courrier.usherb.ca). To use them from within
WINDOWS you have to first create a DOS window. These programs include:

• PARCOR: a program to calculate partial correlations (Pearson,
Spearman) of various orders and associated probabilities;

• PERMR: a program to calculate partial correlations of various
orders and associated probabilities using permutation methods.

• DGRAPH: a program to test path models without latent variables
using the d-sep test described in Chapter 3.

• EPA2: a program that performs the exploratory methods without
cyclic relationships, as described in Chapter 8, and also as described
by Shipley (1997).
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• TESTTET: an exploratory program to determine whether the
observed correlations or covariances between a set of four variables
provides evidence for an unmeasured common cause. This program
is based on the Vanishing Tetrad algorithm of Chapter 8.

• IDEN: a program to determine whether a measurement model is
identified based on Davis (1993), as described in Chapter 6.

• MULTICOV: a program to calculate covariance matrices from
hierarchical data of up to five levels, as described in Chapter 7. You
can use these covariance matrices to test multilevel models from
within commercial SEM programs.

Finally, you might want to join an Internet discussion group
(SEMNET) devoted to SEM. Many of the top statistical developers of
SEM methods are members and are always willing to answer questions
about the mechanics, statistics or philosophy of SEM. To join, visit
http://bama.ua.edu/archives/semnet.html
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