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Preface

This text is a result of many semesters of teaching introductory statistical
courses to engineering students at Duke University and the Georgia Institute
of Technology. Through its scope and depth of coverage, the text addresses the
needs of the vibrant and rapidly growing engineering fields, bioengineering
and biomedical engineering, while implementing software that engineers are
familiar with.

There are many good introductory statistics books for engineers on the mar-
ket, as well as many good introductory biostatistics books. This text is an at-
tempt to put the two together as a single textbook heavily oriented to computa-
tion and hands-on approaches. For example, the aspects of disease and device
testing, sensitivity, specificity and ROC curves, epidemiological risk theory,
survival analysis, and logistic and Poisson regressions are not typical topics
for an introductory engineering statistics text. On the other hand, the books
in biostatistics are not particularly challenging for the level of computational
sophistication that engineering students possess.

The approach enforced in this text avoids the use of mainstream statistical
packages in which the procedures are often black-boxed. Rather, the students
are expected to code the procedures on their own. The results may not be as
flashy as they would be if the specialized packages were used, but the student
will go through the process and understand each step of the program. The
computational support for this text is the MATLAB© programming environ-
ment since this software is predominant in the engineering communities. For
instance, Georgia Tech has developed a practical introductory course in com-
puting for engineers (CS1371 – Computing for Engineers) that relies on MAT-
LAB. Over 1,000 students take this class per semester as it is a requirement
for all engineering students and a prerequisite for many upper-level courses.

In addition to the synergy of engineering and biostatistical approaches, the
novelty of this book is in the substantial coverage of Bayesian approaches to
statistical inference.

v



vi Preface

I avoided taking sides on the traditional (classical, frequentist) vs. Bayesian
approach; it was my goal to expose students to both approaches. It is undeni-
able that classical statistics is overwhelmingly used in conducting and report-
ing inference among practitioners, and that Bayesian statistics is gaining in
popularity, acceptance, and usage (FDA, Guidance for the Use of Bayesian
Statistics in Medical Device Clinical Trials, 5 February 2010). Many examples
in this text are solved using both the traditional and Bayesian methods, and
the results are compared and commented upon.

This diversification is made possible by advances in Bayesian computation
and the availability of the free software WinBUGS that provides painless com-
putational support for Bayesian solutions. WinBUGS and MATLAB commu-
nicate well due to the free interface software MATBUGS. The book also relies
on stat toolbox within MATLAB.

The World Wide Web (WWW) facilitates the text. All custom-made MAT-
LAB and WinBUGS programs (compatible with MATLAB 7.12 (2011a) and
WinBUGS 1.4.3 or OpenBUGS 3.2.1) as well as data sets used in this book are
available on the Web:

http://springer.bme.gatech.edu/

To keep the text as lean as possible, solutions and hints to the majority of
exercises can be found on the book’s Web site. The computer scripts and ex-
amples are an integral part of the text, and all MATLAB codes and outputs
are shown in blue typewriter font while all WinBUGS programs are given in
red-brown typewriter font. The comments in MATLAB and WinBUGS codes
are presented in green typewriter font.

The three icons , , and are used to point to data sets, MATLAB
codes, and WinBUGS codes, respectively.

The difficulty of the material in the text necessarily varies. More difficult
sections that may be omitted in the basic coverage are denoted by a star, ∗.
However, it is my experience that advanced undergraduate bioengineering
students affiliated with school research labs need and use the “starred” mate-
rial, such as functional ANOVA, variance stabilizing transforms, and nested
experimental designs, to name just a few. Tricky or difficult places are marked

with Donald Knut’s “bend”
�

.
Each chapter starts with a box titled WHAT IS COVERED IN THIS CHAP-

TER and ends with chapter exercises, a box called MATLAB AND WINBUGS
FILES AND DATA SETS USED IN THIS CHAPTER, and chapter references.

The examples are numbered and the end of each example is marked with
�.



Preface vii

I am aware that this work is not perfect and that many improvements could
be made with respect to both exposition and coverage. Thus, I would welcome
any criticism and pointers from readers as to how this book could be improved.

Acknowledgments. I am indebted to many students and colleagues who
commented on various drafts of the book. In particular I am grateful to col-
leagues from the Department of Biomedical Engineering at the Georgia Insti-
tute of Technology and Emory University and their undergraduate and grad-
uate advisees/researchers who contributed with real-life examples and exer-
cises from their research labs.

Colleagues Tom Bylander of the University of Texas at San Antonio, John
H. McDonald of the University of Delaware, and Roger W. Johnson of the
South Dakota School of Mines & Technology kindly gave permission to use
their data and examples. I also acknowledge Mathworks’ statistical gurus Pe-
ter Perkins and Tom Lane for many useful conversations over the last several
years. Several MATLAB codes used in this book come from the MATLAB Cen-
tral File Exchange forum. In particular, I am grateful to Antonio Truillo-Ortiz
and his team (Universidad Autonoma de Baja California) and to Giuseppe
Cardillo (Merigen Research) for their excellent contributions.

The book benefited from the input of many diligent students when it was
used either as a supplemental reading or later as a draft textbook for a
semester-long course at Georgia Tech: BMED2400 Introduction to Bioengi-
neering Statistics. A complete list of students who provided useful comments
would be quite long, but the most diligent ones were Erin Hamilton, Kiersten
Petersen, David Dreyfus, Jessica Kanter, Radu Reit, Amoreth Gozo, Nader
Aboujamous, and Allison Chan.

Springer’s team kindly helped along the way. I am grateful to Marc Strauss
and Kathryn Schell for their encouragement and support and to Glenn Corey
for his knowledgeable copyediting.

Finally, it hardly needs stating that the book would have been considerably
less fun to write without the unconditional support of my family.

BRANI VIDAKOVIC

School of Biomedical Engineering
Georgia Institute of Technology

brani@bme.gatech.edu





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 The Sample and Its Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 A MATLAB Session on Univariate Descriptive Statistics . . . . . . . 10
2.3 Location Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Variability Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Displaying Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Multidimensional Samples: Fisher’s Iris Data and Body Fat

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Multivariate Samples and Their Summaries* . . . . . . . . . . . . . . . . . 33
2.8 Visualizing Multivariate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.9 Observations as Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.10 About Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Probability, Conditional Probability, and Bayes’ Rule . . . . . . . . . 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Events and Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Odds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4 Venn Diagrams* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 Counting Principles* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.6 Conditional Probability and Independence . . . . . . . . . . . . . . . . . . . . 78

3.6.1 Pairwise and Global Independence . . . . . . . . . . . . . . . . . . . . . 82
3.7 Total Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.8 Bayes’ Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.9 Bayesian Networks* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ix



x Contents

3.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4 Sensitivity, Specificity, and Relatives . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.1 Conditional Probability Notation . . . . . . . . . . . . . . . . . . . . . . 113
4.3 Combining Two or More Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4 ROC Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2 Discrete Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2.1 Jointly Distributed Discrete Random Variables . . . . . . . . . 138
5.3 Some Standard Discrete Distributions . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.1 Discrete Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.3.2 Bernoulli and Binomial Distributions . . . . . . . . . . . . . . . . . . 141
5.3.3 Hypergeometric Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.3.4 Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.3.5 Geometric Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.3.6 Negative Binomial Distribution . . . . . . . . . . . . . . . . . . . . . . . 152
5.3.7 Multinomial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.3.8 Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.4 Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.4.1 Joint Distribution of Two Continuous Random Variables 158

5.5 Some Standard Continuous Distributions . . . . . . . . . . . . . . . . . . . . . 161
5.5.1 Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.5.2 Exponential Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.5.3 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.5.4 Gamma Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.5.5 Inverse Gamma Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.5.6 Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.5.7 Double Exponential Distribution . . . . . . . . . . . . . . . . . . . . . . 168
5.5.8 Logistic Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.5.9 Weibull Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.5.10 Pareto Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.5.11 Dirichlet Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.6 Random Numbers and Probability Tables . . . . . . . . . . . . . . . . . . . . . 173
5.7 Transformations of Random Variables* . . . . . . . . . . . . . . . . . . . . . . . 174
5.8 Mixtures*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.9 Markov Chains*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189



Contents xi

6 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.2 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.2.1 Sigma Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.2.2 Bivariate Normal Distribution* . . . . . . . . . . . . . . . . . . . . . . . . 197

6.3 Examples with a Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . 199
6.4 Combining Normal Random Variables . . . . . . . . . . . . . . . . . . . . . . . . 202
6.5 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
6.6 Distributions Related to Normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.6.1 Chi-square Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.6.2 (Student’s) t-Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.6.3 Cauchy Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.6.4 F-Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.6.5 Noncentral χ2 , t, and F Distributions . . . . . . . . . . . . . . . . . . 216
6.6.6 Lognormal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.7 Delta Method and Variance Stabilizing Transformations* . . . . . . 219
6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

7 Point and Interval Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
7.2 Moment Matching and Maximum Likelihood Estimators . . . . . . . 230

7.2.1 Unbiasedness and Consistency of Estimators . . . . . . . . . . . 238
7.3 Estimation of a Mean, Variance, and Proportion . . . . . . . . . . . . . . . 240

7.3.1 Point Estimation of Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
7.3.2 Point Estimation of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 242
7.3.3 Point Estimation of Population Proportion. . . . . . . . . . . . . . 245

7.4 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
7.4.1 Confidence Intervals for the Normal Mean . . . . . . . . . . . . . 247
7.4.2 Confidence Interval for the Normal Variance . . . . . . . . . . . 249
7.4.3 Confidence Intervals for the Population Proportion . . . . . 253
7.4.4 Confidence Intervals for Proportions When X = 0 . . . . . . . 257
7.4.5 Designing the Sample Size with Confidence Intervals . . . 258

7.5 Prediction and Tolerance Intervals* . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.6 Confidence Intervals for Quantiles* . . . . . . . . . . . . . . . . . . . . . . . . . . 262
7.7 Confidence Intervals for the Poisson Rate* . . . . . . . . . . . . . . . . . . . . 263
7.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

8 Bayesian Approach to Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
8.2 Ingredients for Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
8.3 Conjugate Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
8.4 Point Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
8.5 Prior Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290



xii Contents

8.6 Bayesian Computation and Use of WinBUGS . . . . . . . . . . . . . . . . . 293
8.6.1 Zero Tricks in WinBUGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

8.7 Bayesian Interval Estimation: Credible Sets . . . . . . . . . . . . . . . . . . 298
8.8 Learning by Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
8.9 Bayesian Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
8.10 Consensus Means* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
8.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

9 Testing Statistical Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
9.2 Classical Testing Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

9.2.1 Choice of Null Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
9.2.2 Test Statistic, Rejection Regions, Decisions, and Errors

in Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
9.2.3 Power of the Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
9.2.4 Fisherian Approach: p-Values . . . . . . . . . . . . . . . . . . . . . . . . . 323

9.3 Bayesian Approach to Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
9.3.1 Criticism and Calibration of p-Values* . . . . . . . . . . . . . . . . . 327

9.4 Testing the Normal Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
9.4.1 z-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
9.4.2 Power Analysis of a z-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
9.4.3 Testing a Normal Mean When the Variance Is Not

Known: t-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
9.4.4 Power Analysis of t-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

9.5 Testing the Normal Variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
9.6 Testing the Proportion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
9.7 Multiplicity in Testing, Bonferroni Correction, and False

Discovery Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

10 Two Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
10.2 Means and Variances in Two Independent Normal Populations . 356

10.2.1 Confidence Interval for the Difference of Means . . . . . . . . 361
10.2.2 Power Analysis for Testing Two Means . . . . . . . . . . . . . . . . . 361
10.2.3 More Complex Two-Sample Designs . . . . . . . . . . . . . . . . . . . 363
10.2.4 Bayesian Test of Two Normal Means . . . . . . . . . . . . . . . . . . . 365

10.3 Testing the Equality of Normal Means When Samples Are
Paired . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
10.3.1 Sample Size in Paired t-Test . . . . . . . . . . . . . . . . . . . . . . . . . . 373

10.4 Two Variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
10.5 Comparing Two Proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

10.5.1 The Sample Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379



Contents xiii

10.6 Risks: Differences, Ratios, and Odds Ratios . . . . . . . . . . . . . . . . . . . 380
10.6.1 Risk Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
10.6.2 Risk Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
10.6.3 Odds Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

10.7 Two Poisson Rates* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
10.8 Equivalence Tests* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
10.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

11 ANOVA and Elements of Experimental Design . . . . . . . . . . . . . . . . 409
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
11.2 One-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

11.2.1 ANOVA Table and Rationale for F-Test . . . . . . . . . . . . . . . . 412
11.2.2 Testing Assumption of Equal Population Variances . . . . . 415
11.2.3 The Null Hypothesis Is Rejected. What Next? . . . . . . . . . . 416
11.2.4 Bayesian Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
11.2.5 Fixed- and Random-Effect ANOVA. . . . . . . . . . . . . . . . . . . . . 423

11.3 Two-Way ANOVA and Factorial Designs . . . . . . . . . . . . . . . . . . . . . . 424
11.4 Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
11.5 Repeated Measures Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

11.5.1 Sphericity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
11.6 Nested Designs* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
11.7 Power Analysis in ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
11.8 Functional ANOVA* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
11.9 Analysis of Means (ANOM)* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
11.10 Gauge R&R ANOVA* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
11.11 Testing Equality of Several Proportions . . . . . . . . . . . . . . . . . . . . . . 454
11.12 Testing the Equality of Several Poisson Means* . . . . . . . . . . . . . . . 455
11.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

12 Distribution-Free Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
12.2 Sign Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
12.3 Ranks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
12.4 Wilcoxon Signed-Rank Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
12.5 Wilcoxon Sum Rank Test and Wilcoxon–Mann–Whitney Test . . . 486
12.6 Kruskal–Wallis Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
12.7 Friedman’s Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
12.8 Walsh Nonparametric Test for Outliers* . . . . . . . . . . . . . . . . . . . . . . 495
12.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500



xiv Contents

13 Goodness-of-Fit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
13.2 Quantile–Quantile Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
13.3 Pearson’s Chi-Square Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
13.4 Kolmogorov–Smirnov Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

13.4.1 Kolmogorov’s Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
13.4.2 Smirnov’s Test to Compare Two Distributions . . . . . . . . . . 517

13.5 Moran’s Test* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
13.6 Departures from Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
13.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

14 Models for Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
14.2 Contingency Tables: Testing for Independence . . . . . . . . . . . . . . . . . 532

14.2.1 Measuring Association in Contingency Tables . . . . . . . . . . 537
14.2.2 Cohen’s Kappa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

14.3 Three-Way Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
14.4 Fisher’s Exact Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
14.5 Multiple Tables: Mantel–Haenszel Test . . . . . . . . . . . . . . . . . . . . . . . 548

14.5.1 Testing Conditional Independence or Homogeneity . . . . . 549
14.5.2 Conditional Odds Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

14.6 Paired Tables: McNemar’s Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
14.6.1 Risk Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
14.6.2 Risk Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
14.6.3 Odds Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
14.6.4 Stuart–Maxwell Test* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

14.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

15 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
15.2 The Pearson Coefficient of Correlation . . . . . . . . . . . . . . . . . . . . . . . . 572

15.2.1 Inference About ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
15.2.2 Bayesian Inference for Correlation Coefficients . . . . . . . . . 585

15.3 Spearman’s Coefficient of Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 586
15.4 Kendall’s Tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
15.5 Cum hoc ergo propter hoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
15.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596



Contents xv

16 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
16.2 Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600

16.2.1 Testing Hypotheses in Linear Regression . . . . . . . . . . . . . . . 608
16.3 Testing the Equality of Two Slopes* . . . . . . . . . . . . . . . . . . . . . . . . . . 616
16.4 Multivariable Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

16.4.1 Matrix Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
16.4.2 Residual Analysis, Influential Observations,

Multicollinearity, and Variable Selection∗ . . . . . . . . . . . . . . 625
16.5 Sample Size in Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
16.6 Linear Regression That Is Nonlinear in Predictors . . . . . . . . . . . . . 635
16.7 Errors-In-Variables Linear Regression* . . . . . . . . . . . . . . . . . . . . . . . 637
16.8 Analysis of Covariance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
16.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656

17 Regression for Binary and Count Data . . . . . . . . . . . . . . . . . . . . . . . . 657
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
17.2 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658

17.2.1 Fitting Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
17.2.2 Assessing the Logistic Regression Fit . . . . . . . . . . . . . . . . . . 664
17.2.3 Probit and Complementary Log-Log Links . . . . . . . . . . . . . 674

17.3 Poisson Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
17.4 Log-linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
17.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699

18 Inference for Censored Data and Survival Analysis . . . . . . . . . . . 701
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
18.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702
18.3 Inference with Censored Observations . . . . . . . . . . . . . . . . . . . . . . . . 704

18.3.1 Parametric Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
18.3.2 Nonparametric Approach: Kaplan–Meier Estimator. . . . . 706
18.3.3 Comparing Survival Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 712

18.4 The Cox Proportional Hazards Model . . . . . . . . . . . . . . . . . . . . . . . . . 714
18.5 Bayesian Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718

18.5.1 Survival Analysis in WinBUGS . . . . . . . . . . . . . . . . . . . . . . . . 720
18.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

19 Bayesian Inference Using Gibbs Sampling – BUGS Project . . . 733
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
19.2 Step-by-Step Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734
19.3 Built-in Functions and Common Distributions in WinBUGS. . . . 739
19.4 MATBUGS: A MATLAB Interface to WinBUGS . . . . . . . . . . . . . . . 740



xvi Contents

19.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
Chapter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747



Chapter 1
Introduction

Many people were at first surprised at my using the new words “Statistics” and “Sta-
tistical,” as it was supposed that some term in our own language might have expressed
the same meaning. But in the course of a very extensive tour through the northern
parts of Europe, which I happened to take in 1786, I found that in Germany they were
engaged in a species of political inquiry to which they had given the name of “Statis-
tics”. . . . I resolved on adopting it, and I hope that it is now completely naturalised and
incorporated with our language.

– Sinclair, 1791; Vol XX

WHAT IS COVERED IN THIS CHAPTER

• What is the subject of statistics?
• Population, sample, data
• Appetizer examples

The problems confronting health professionals today often involve funda-
mental aspects of device and system analysis, and their design and applica-
tion, and as such are of extreme importance to engineers and scientists.

Because many aspects of engineering and scientific practice involve non-
deterministic outcomes, understanding and knowledge of statistics is impor-
tant to any engineer and scientist. Statistics is a guide to the unknown. It is
a science that deals with designing experimental protocols, collecting, sum-
marizing, and presenting data, and, most importantly, making inferences and
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2 1 Introduction

aiding decisions in the presence of variability and uncertainty. For example,
R. A. Fisher’s 1943 elucidation of the human blood-group system Rhesus in
terms of the three linked loci C, D, and E, as described in Fisher (1947) or
Edwards (2007), is a brilliant example of building a coherent structure of new
knowledge guided by a statistical analysis of available experimental data.

The uncertainty that statistical science addresses derives mainly from two
sources: (1) from observing only a part of an existing, fixed, but large popula-
tion or (2) from having a process that results in nondeterministic outcomes. At
least a part of the process needs to be either a black box or inherently stochas-
tic, so the outcomes cannot be predicted with certainty.

A population is a statistical universe. It is defined as a collection of existing
attributes of some natural phenomenon or a collection of potential attributes
when a process is involved. In the case of a process, the underlying population
is called hypothetical, for obvious reasons. Thus, populations can be either
finite or infinite. A subset of a population selected by some relevant criteria is
called a subpopulation.

Often we think about a population as an assembly of people, animals, items,
events, times, etc., in which the attribute of interest is measurable. For exam-
ple, the population of all US citizens older than 21 is an example of a popula-
tion for which many attributes can be assessed. Attributes might be a history
of heart disease, weight, political affiliation, level of blood sugar, etc.

A sample is an observed part of a population. Selection of a sample is a
rich methodology in itself, but, unless otherwise specified, it is assumed that
the sample is selected at random. The randomness ensures that the sample is
representative of its population.

The sampling process depends on the nature of the problem and the popula-
tion. For example, a sample may be obtained via a retrospective study (usually
existing historical outcomes over some period of time), an observational study
(an observer monitors the process or population in real time), a sample sur-
vey, or a designed study (an observer makes deliberate changes in controllable
variables to induce a cause/effect relationship), to name just a few.

Example 1.1. Ohm’s Law Measurements. A student constructed a simple
electric circuit in which the resistance R and voltage E were controllable. The
output of interest is current I, and according to Ohm’s law it is

I = E
R

.

This is a mechanistic, theoretical model. In a finite number of measurements
under an identical R,E setting, the measured current varies. The population
here is hypothetical – an infinite collection of all potentially obtainable mea-
surements of its attribute, current I. The observed sample is finite. In the
presence of sample variability one establishes an empirical (statistical) model
for currents from the population as either
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I = E
R

+ε or I = ε
E
R

.

On the basis of a sample one may first select the model and then proceed with
the inference about the nature of the discrepancy, ε.
�

Example 1.2. Cell Counts. In a quantitative engineering physiology labora-
tory, a team of four students was asked to make a LabVIEW© program to
automatically count MC3T3-E1 cells in a hemocytometer (Fig. 1.1). This au-
tomatic count was to be compared with the manual count collected through
an inverted bright field microscope. The manual count is considered the gold
standard.

The experiment consisted of placing 10 µL of cell solutions at two levels
of cell confluency: 20% and 70%. There were n1 = 12 pairs of measurements
(automatic and manual counts) at 20% and n2 = 10 pairs at 70%, as in the
table below.

Fig. 1.1 Cells on a hemocytometer plate.

20% confluency
Automated 34 44 40 62 53 51 30 33 38 51 26 48
Manual 30 43 34 53 49 39 37 42 30 50 35 54

70% confluency
Automated 72 82 100 94 83 94 73 87 107 102
Manual 76 51 92 77 74 81 72 87 100 104

The students wish to answer the following questions:
(a) Are the automated and manual counts significantly different for a fixed

confluency level? What are the confidence intervals for the population differ-
ences if normality of the measurements is assumed?

(b) If the difference between automated and manual counts constitutes an
error, are the errors comparable for the two confluency levels?

We will revisit this example later in the book (Exercise 10.17) and see that
for the 20% confluency level there is no significant difference between the au-
tomated and manual counts, while for the 70% level the difference is signifi-
cant. We will also see that the errors for the two confluency levels significantly
differ. The statistical design for comparison of errors is called a difference of
differences (DoD) and is quite common in biomedical data analysis.
�
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Example 1.3. Rana Pipiens. Students in a quantitative engineering physiol-
ogy laboratory were asked to expose the gastrocnemius muscle of the northern
leopard frog (Rana pipiens, Fig. 1.2), and stimulate the sciatic nerve to observe
contractions in the skeletal muscle. Students were interested in modeling the
length–tension relationship. The force used was the active force, calculated by
subtracting the measured passive force (no stimulation) from the total force
(with stimulation).

Fig. 1.2 Rana pipiens.

The active force represents the dependent variable. The length of the mus-
cle begins at 35 mm and stretches in increments of 0.5 mm, until a maximum
length of 42.5 mm is achieved. The velocity at which the muscle was stretched
was held constant at 0.5 mm/sec.

Reading Change in Length (in %) Passive force Total force
1 1.4 0.012 0.366
2 2.9 0.031 0.498
3 4.3 0.040 0.560
4 5.7 0.050 0.653
5 7.1 0.061 0.656
6 8.6 0.072 0.740
7 10.0 0.085 0.865
8 11.4 0.100 0.898
9 12.9 0.128 0.959

10 14.3 0.164 0.994
11 15.7 0.223 0.955
12 17.1 0.315 1.019
13 18.6 0.411 0.895
14 20.0 0.569 0.900
15 21.4 0.751 0.905

The correlation between the active force and the percent change in length
from 35 mm is –0.0941. Why is this correlation so low?

The following model is found using linear regression (least squares):

F̂ = 0.0618+0.2084 ·δ−0.0163 ·δ2 +0.0003 ·δ3

− 0.1732 ·sin
(
δ

3

)
+0.1242 ·cos

(
δ

3

)
,
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where F̂ is the fitted active force and δ is the percent change. This model is
nonlinear in variables but linear in coefficients, and standard linear regres-
sion methodology is applicable (Chap. 16). The model achieves a coefficient of
determination of R2 = 87.16.

A plot of the original data with superimposed model fit is shown in Fig. 1.3a.
Figure 1.3b shows the residuals F − F̂ plotted against δ.
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Fig. 1.3 (a) Regression fit for active force. Observations are shown as yellow circles, while
the smaller blue circles represent the model fits. Dotted (blue) lines are 95% model confidence
bounds. (b) Model residuals plotted against the percent change in length δ.

Suppose the students are interested in estimating the active force for a
change of 12%. The model prediction for δ = 12 is 0.8183, with a 95% confi-
dence interval of [0.7867,0.8498].
�

Example 1.4. The 1954 Polio Vaccine Trial. One of the largest and most
publicized public health experiments was performed in 1954 when the ben-
efits of the Salk vaccine for preventing paralytic poliomyelitis was assessed.
To ensure that there was no bias in conducting and reporting, the trial was
blind to doctors and patients. In boxes of 50 vials, 25 had active vaccines and
25 were placebo. Only the numerical code known to researchers distinguished
the well-mixed vials in the box. The clinical trial involved a large number of
first-, second-, and third-graders in the USA.

The results were convincing. While the numbers of children assigned to
active vaccine and placebo were approximately equal, the incidence of polio in
the active group was almost four times lower than that in the placebo group.

Inoculated with Inoculated with
vaccine placebo

Total number of children inoculated 200,745 201,229
Number of cases of paralytic polio 33 115

On the basis of this trial, health officials recommended that every child
be vaccinated. Since the time of this clinical trial, the vaccine has improved;
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Salk’s vaccine was replaced by the superior Sabin preparation and polio is now
virtually unknown in the USA. A complete account of this clinical trial can be
found in Francis et al.’s (1955) article or Paul Meier’s essay in a popular book
by Tanur et al. (1972).

The numbers are convincing, but was it possible that an ineffective vaccine
produced such a result by chance?

In this example there are two hypothetical populations. The first consists
of all first-, second-, and third-graders in the USA who would be inoculated
with the active vaccine. The second population consists of US children of the
same age who would receive the placebo. The attribute of interest is the pres-
ence/absence of paralytic polio. There are two samples from the two popula-
tions. If the selection of geographic regions for schools was random, the ran-
domization of the vials in the boxes ensured that the samples were random.
�

The ultimate summary for quantifying a population attribute is a statis-
tical model. The statistical model term is used in a broad sense here, but a
component quantifying inherent uncertainty is always present. For example,
random variables, discussed in Chap. 5, can be interpreted as basic statistical
models when they model realizations of the attributes in a sample. The model
is often indexed by one, several, or sometimes even an infinite number of un-
known parameters. An inference about the model translates to an inference
about its parameters.

Data are the specific values pertaining to a population attribute recorded
from a sample. Often, the terms sample and data are used interchangeably.
The term data is used as both singular and plural. The singular mode relates
to a set, a collection of observations, while the plural is used when referring to
the observations. A single observation is called a datum.

The following table summarizes the fundamental statistical notions that
we discussed.

attribute Quantitative or qualitative property, feature(s) of interest
population Statistical universe; an existing or hypothetical totality of

attributes
sample A subset of a population

data Recorded values/realizations of an attribute in a sample
statistical model Mathematical description of a population attribute that

incorporates incomplete information, variability, and the
nondeterministic nature of the population

population parameter A component (possibly multivariate) in a statistical
model; the models are typically specified up to a param-
eter that is left unknown

The term statistics has a plural form but is used in the singular when it
relates to methodology. To avoid confusion, we note that statistics has another
meaning and use. Any sample summary will be called a statistic. For example,
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a sample mean is a statistic, and sample mean and sample range are statistics.
In this context, statistics is used in the plural.
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Chapter 2
The Sample and Its Properties

When you’re dealing with data, you have to look past the numbers.

– Nathan Yau

WHAT IS COVERED IN THIS CHAPTER

• MATLAB Session with Basic Univariate Statistics
• Numerical Characteristics of a Sample
• Multivariate Numerical and Graphical Sample Summaries
• Time Series
• Typology of Data

2.1 Introduction

The famous American statistician John Tukey once said, “Exploratory data
analysis can never be the whole story, but nothing else can serve as the foun-
dation stone – as the first step.” The term exploratory data analysis is self-
defining. Its simplest branch, descriptive statistics, is the methodology behind
approaching and summarizing experimental data. No formal statistical train-
ing is needed for its use. Basic data manipulations such as calculating aver-
ages of experimental responses, translating data to pie charts or histograms,
or assessing the variability and inspection for unusual measurements are all
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examples of descriptive statistics. Rather than focusing on the population
using information from a sample, which is a staple of statistics, descriptive
statistics is concerned with the description, summary, and presentation of the
sample itself. For example, numerical summaries of a sample could be mea-
sures of location (mean, median, percentiles, mode, extrema), measures of
variability (sample standard deviation/variance, robust versions of the vari-
ance, range of data, interquartile range, etc.), higher-order statistics (kth mo-
ments, kth central moments, skewness, kurtosis), and functions of descriptors
(coefficient of variation). Graphical summaries of samples involve various vi-
sual presentations such as box-and-whisker plots, pie charts, histograms, em-
pirical cumulative distribution functions, etc. Many basic data descriptors are
used in everyday data manipulation.

Ultimately, exploratory data analysis and descriptive statistics contribute
to the principal goal of statistics – inference about population descriptors – by
guiding how the statistical models should be set.

It is important to note that descriptive statistics and exploratory data
analysis have recently regained importance due to ever increasing sizes of
data sets. Some complex data structures require several terrabytes of memory
just to be stored. Thus, preprocessing, summarizing, and dimension-reduction
steps are needed to prepare such data for inferential tasks such as classifi-
cation, estimation, and testing. Consequently, the inference is placed on data
summaries (descriptors, features) rather than the raw data themselves.

Many data managing software programs have elaborate numerical and
graphical capabilities. MATLAB provides an excellent environment for data
manipulation and presentation with superb handling of data structures and
graphics. In this chapter we intertwine some basic descriptive statistics with
MATLAB programming using data obtained from real-life research laborato-
ries. Most of the statistics are already built-in; for some we will make a custom
code in the form of m-functions or m-scripts.

This chapter establishes two goals: (i) to help you gently relearn and re-
fresh your MATLAB programming skills through annotated sessions while, at
the same time, (ii) introducing some basic statistical measures, many of which
should already be familiar to you. Many of the statistical summaries will be
revisited later in the book in the context of inference. You are encouraged to
continuously consult MATLAB’s online help pages for support since many pro-
gramming details and command options are omitted in this text.

2.2 A MATLAB Session on Univariate Descriptive
Statistics

In this section we will analyze data derived from an experiment, step by step
with a brief explanation of the MATLAB commands used. The whole session
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can be found in a single annotated file carea.m available at the book’s Web
page.

The data can be found in the file cellarea.dat, which features mea-
surements from the lab of Todd McDevitt at Georgia Tech: http://www.bme.
gatech.edu/groups/mcdevitt/.

This experiment on cell growth involved several time durations and two
motion conditions. Here is a brief description:

Embryonic stem cells (ESCs) have the ability to differentiate into all somatic cell
types, making ESCs useful for studying developmental biology, in vitro drug screen-
ing, and as a cell source for regenerative medicine and cell-based therapies. A com-
mon method to induce differentiation of ESCs is through the formation of multicel-
lular spheroids termed embryoid bodies (EBs). ESCs spontaneously aggregate into
EBs when cultured on a nonadherent substrate; however, under static conditions,
this aggregation is uncontrolled and EBs form in various sizes and shapes, which
may lead to variability in cell differentiation patterns. When rotary motion is applied
during EB formation, the resulting population of EBs appears more uniform in size
and shape.

Fig. 2.1 Fluorescence microscopy image of cells overlaid with phase image to display in-
corporation of microspheres (red stain) in embryoid bodies (gray clusters) (courtesy of Todd
McDevitt).

After 2, 4, and 7 days of culture, images of EBs were acquired using phase-contrast
microscopy. Image analysis software was used to determine the area of each EB im-
aged (Fig. 2.1). At least 100 EBs were analyzed from three separate plates for both
static and rotary cultures at the three time points studied.

Here we focus only on the measurements of visible surface areas of cells
(in µm2) after growth time of 2 days, t = 2, under the static condition. The
data are recorded as an ASCII file cellarea.dat. Importing the data set
into MATLAB is done using the command
load(’cellarea.dat’);

given that the data set is on the MATLAB path. If this is not the case, use
addpath(’foldername’) to add to the search path foldername in which the file
resides. A glimpse at the data is provided by histogram command, hist:
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hist(cellarea, 100)

After inspecting the histogram (Fig. 2.2) we find that there is one quite
unusual observation, inconsistent with the remaining experimental measure-
ments.
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Fig. 2.2 Histogram of the raw data. Notice the unusual measurement beyond the point
12×105.

We assume that the unusual observation is an outlier and omit it from the
data set:

car = cellarea(cellarea ~= max(cellarea));

(Some formal diagnostic tests for outliers will be discussed later in the text.)
Next, the data are rescaled to more moderate values, so that the area is

expressed in thousands of µm2 and the measurements have a convenient order
of magnitude.

car = car/1000;
n = length(car); %n is sample size
%n=462

Thus, we obtain a sample of size n = 462 to further explore by descriptive
statistics. The histogram we have plotted has already given us a sense of the
distribution within the sample, and we have an idea of the shape, location,
spread, symmetry, etc. of observations.
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Next, we find numerical characteristics of the sample and first discuss its
location measures, which, as the name indicates, evaluate the relative location
of the sample.

2.3 Location Measures

Means. The three averages – arithmetic, geometric, and harmonic – are
known as Pythagorean means.

The arithmetic mean (mean),

X = X1 +·· ·+ Xn

n
= 1

n

n∑
i=1

Xi,

is a fundamental summary statistic. The geometric mean (geomean) is

n
√

X1 × X2 ×·· ·×Xn =
(

n∏
i=1

Xi

)1/n

,

and the harmonic mean (harmmean) is

n
1/X1 +1/X2 +·· ·1/Xn

= n∑n
i=1 1/Xi

.

For the data set {1,2,3} the mean is 2, the geometric mean is 3p6 = 1.8171,
and the harmonic mean is 3/(1/1 + 1/2 + 1/3) = 1.6364. In standard statistical
practice geometric and harmonic means are not used as often as arithmetic
means. To illustrate the contexts in which they should be used, consider sev-
eral simple examples.

Example 2.1. You visit the bank to deposit a long-term monetary investment
in hopes that it will accumulate interest over a 3-year span. Suppose that the
investment earns 10% the first year, 50% the second year, and 30% the third
year. What is its average rate of return? In this instance it is not the arithmetic
mean, because in the first year the investment was multiplied by 1.10, in the
second year it was multiplied by 1.50, and in the third year it was multiplied
by 1.30. The correct measure is the geometric mean of these three numbers,
which is about 1.29, or 29% of the annual interest. If, for example, the ratios
are averaged (i.e., ratio = new method/old method) over many experiments, the
geometric mean should be used. This is evident by considering an example.
If one experiment yields a ratio of 10 and the next yields a ratio of 0.1, an
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arithmetic mean would misleadingly report that the average ratio was near 5.
Taking a geometric mean will report a more meaningful average ratio of 1.
�

Example 2.2. Consider now two scenarios in which the harmonic mean should
be used.

(i) If for half the distance of a trip one travels at 40 miles per hour and for
the other half of the distance one travels at 60 miles per hour, then the average
speed of the trip is given by the harmonic mean of 40 and 60, which is 48; that
is, the total amount of time for the trip is the same as if one traveled the entire
trip at 48 miles per hour. Note, however, that if one had traveled for half the
time at one speed and the other half at another, the arithmetic mean, in this
case 50 miles per hour, would provide the correct interpretation of average.

(ii) In financial calculations, the harmonic mean is used to express the av-
erage cost of shares purchased over a period of time. For example, an investor
purchases $1000 worth of stock every month for 3 months. If the three spot
prices at execution time are $8, $9, and $10, then the average price the in-
vestor paid is $8.926 per share. However, if the investor purchased 1000 shares
per month, then the arithmetic mean should be used.
�

Median. The median1 is the middle of the sample sorted in numerical
order. In terms of order statistic, the median is defined as

Me =
{

X((n+1)/2), if n is odd,
(X(n/2) + X(n/2+1))/2, if n is even.

If the sample size is odd, then there is a single observation in the middle of
the ordered sample at the position (n+1)/2, while for the even sample sizes,
the ordered sample has two elements in the middle at positions n/2 and n/2+1
and the median is their average. The median is an estimator of location robust
to extremes and outliers. For instance, in both data sets, {−1,0,4,7,20} and
{−1,0,4,7,200}, the median is 4. The means are 6 and 42, respectively.

Mode. The most frequent (fashionable2) observation in the sample (if such
exists) is the mode of the sample. If the sample is composite, the observation
xi corresponding to the largest frequency f i is the mode. Composite samples

consist of realizations xi and their frequencies f i, as in
(

x1 x2 . . . xk
f1 f2 . . . fk

)
.

1 Latin: medianus = middle
2 Mode (fr) = fashion

Order Statistic. If the sample X1, . . . , Xn is ordered as X(1) ≤ X(2) ≤ ·· · ≤
X(n) so that X(1) is the minimum and X (n) is the maximum, then X(1), X(2), . . . X(n)
is called the order statistic. For example, if X1 = 2, X2 = −1, X3 = 10, X4 = 0,
and X5 = 4, then the order statistic is X(1) =−1, X(2) = 0, X(3) = 2, X(4) = 4, and
X(5) = 10.

org/publications/jse/datasets/fat.txt and featured in Penrose et al.
(1985). This data set can be found on the book’s Web page as well, as fat.dat.
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Mode may not be unique. If there are two modes, the sample is bimodal,
three modes make it trimodal, etc.

Trimmed Mean. As mentioned earlier, the mean is a location measure
sensitive to extreme observations and possible outliers. To make this measure
more robust, one may trim α ·100% of the data symmetrically from both sides
of the ordered sample (trim α/2 ·100% smallest and α/2 ·100% largest observa-
tions, Fig. 2.3b).

If your sample, for instance, is {1,2, 3,4, 5,6,7, 8,9,100}, then a 20%
trimmed mean is a mean of {2,3, 4,5, 6,7, 8,9}.

Here is the command in MATLAB that determines the discussed locations
for the cell data.

location = [geomean(car) harmmean(car) mean(car) ...
median(car) mode(car) trimmean(car,20)]

%location = 18.8485 15.4211 24.8701 17 10 20.0892

By applying α100% trimming, we end up with a sample of reduced size
[(1−α)100%]. Sometimes the sample size is important to preserve.

(a) (b) (c)

Fig. 2.3 (a) Schematic graph of an ordered sample; (b) Part of the sample from which α-
trimmed mean is calculated; (c) Modified sample for the winsorized mean.

Winsorized mean. A robust location measure that preserves sample size
is the winsorized mean. Similarly to a trimmed mean, a winsorized mean iden-
tifies outlying observations, but instead of trimming them the observations are
replaced by either the minimum or maximum of the trimmed sample, depend-
ing on if the trimming is done from below or above (Fig. 2.3c).

The winsorized mean is not a built-in MATLAB function. However, it can
be calculated easily by the following code:

alpha=20;
sa = sort(car);
sa(1:floor( n*alpha/200 )) = sa(floor( n*alpha/200 ) + 1);
sa(end-floor( n*alpha/200 ):end) = ...

sa(end-floor( n*alpha/200 ) - 1);
winsmean = mean(sa) % winsmean = 21.9632

Figure 2.3 shows schematic graphs of of a sample
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2.4 Variability Measures

Location measures are intuitive but give a minimal glimpse at the nature of
a sample. An important set of sample descriptors are variability measures,
or measures of spread. There are many measures of variability in a sample.
Gauss (1816) already used several of them on a set of 48 astronomical mea-
surements concerning relative positions of Jupiter and its satellite Pallas.

Sample Variance and Sample Standard Deviation. The variance of a
sample, or sample variance, is defined as

s2 = 1
n−1

n∑
i=1

(Xi − X )2.

Note that we use 1
n−1 instead of the “expected” 1

n . The reasons for this will
be discussed later. An alternative expression for s2 that is more suitable for
calculation (by hand) is

s2 = 1
n−1

(
n∑

i=1
(X 2

i )−n(X )2
)

,

see Exercises 2.6 and 2.7.
In MATLAB, the sample variance of a data vector x is var(x) or var(x,0)

Flag 0 in the argument list indicates that the ratio 1/(n−1) is used to calculate
the sample variance. If the flag is 1, then var(x,1) stands for

s2
∗ = 1

n

n∑
i=1

(Xi − X )2,

which is sometimes used instead of s2. We will see later that both estimators
have good properties: s2 is an unbiased estimator of the population variance
while s2

∗ is the maximum likelihood estimator. The square root of the sample
variance is the sample standard deviation:

s=
√

1
n−1

n∑
i=1

(Xi − X )2 .
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In MATLAB the standard deviation can be calculated by std(x)=std(x,0)

or std(x,1), depending on whether the sum of squares is divided by n−1 or by
n.

%Variability Measures
var(car) % standard sample variance, also var(car,0)

%ans = 588.9592
var(car,1) % sample variance with sum of squares

% divided by n
%ans = 587.6844

std(car) % sample standard deviation, sum of squares
% divided by (n-1), also std(car,0)

%ans = 24.2685
std(car,1) % sample standard deviation, sum of squares

% divided by n
%ans = 24.2422

sqrt(var(car)) %should be equal to std(car)
%ans = 24.2685

sqrt(var(car,1)) %should be equal to std(car,1)
%ans = 24.2422

Remark. When a new observation is obtained, one can update the sample
variance without having to recalculate it. If xn and s2

n are the sample mean
and variance based on x1, x2, . . . , xn and a new observation xn+1 is obtained,
then

s2
n+1 =

(n−1)s2
n + (xn+1 − xn)(xn+1 − xn+1)

n
,

where xn+1 = (nxn + xn+1)/(n+1).

MAD-Type Estimators. Another group of estimators of variability in-
volves absolute values of deviations from the center of a sample and are known
as MAD estimators. These estimators are less sensitive to extreme observa-
tions and outliers compared to the sample standard deviation. They belong to
the class of so-called robust estimators. The acronym MAD stands for either
mean absolute difference from the mean or, more commonly, median absolute
difference from the median. According to statistics historians (David, 1998),
both MADs were already used by Gauss at the beginning of the nineteenth
century.

MATLAB uses mad(car) or mad(a,0) for the first and mad(car,1) for the
second definition:

MAD0 =
1
n

n∑
i=1

|Xi − X |, MAD1 =median{|Xi −median{Xi}|}.
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A typical convention is to multiply the MAD1 estimator mad(car,1) by 1.4826,
to make it comparable to the sample standard deviation.

mad(car) % mean absolute deviation from the mean;
% MAD is usually referring to
% median absolute deviation from the median

%ans = 15.3328
realmad = 1.4826 * median( abs(car - median(car)))

%real mad in MATLAB is 1.4826 * mad(car,1)
%realmad = 10.3781

Sample Range and IQR. Two simple measures of variability, or rather
the spread of a sample, are the range R and interquartile range (IQR), in
MATLAB range and iqr. They are defined by the order statistic of the sample.
The range is the maximum minus the minimum of the sample, R = X(n)−X(1),
while IQR is defined by sample quantiles.

range(car) %Range, span of data, Max - Min
%ans = 212

iqr(car) %inter-quartile range, Q3-Q1
%ans = 19

If the sample is bell-shape distributed, a robust estimator of variance is
σ̂2 = (IQR/1.349)2 , and this summary was known to Quetelet in the first part
of the nineteenth century. It is a simple estimator, not affected by outliers (it
ignores 25% of observations in each tail), but its variability is large.

Sample Quantiles/Percentiles. Sample quantiles (in units between 0
and 1) or sample percentiles (in units between 0 and 100) are very important
summaries that reveal both the location and the spread of a sample. For ex-
ample, we may be interested in a point xp that partitions the ordered sample
into two parts, one with p ·100% of observations smaller than xp and another
with (1− p)100% observations greater than xp. In MATLAB, we use the com-
mands quantile or prctile, depending on how we express the proportion of the
sample. For example, for the 5, 10, 25, 50, 75, 90, and 95 percentiles we have
%5%, 10%, 25%, 50%, 75%, 90%, 95% percentiles are:
prctile(car, 100*[0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95] )
%ans = 7 8 11 17 30 51 67

The same results can be obtained using the command
qts = quantile(car,[0.05 0.1 0.25 0.5 0.75 0.9 0.95])
%qts = 7 8 11 17 30 51 67

In our dataset, 5% of observations are less than 7, and 90% of observations are
less than 51.

Some percentiles/quantiles are special, such as the median of the sample,
which is the 50th percentile. Quartiles divide an ordered sample into four
parts; the 25th percentile is known as the first quartile, Q1, and the 75th
percentile is known as the third quartile, Q3. The median is Q2, of course.3

3 The range is equipartitioned by a single median, two terciles, three quartiles, four quin-
tiles, five sextiles, six septiles, seven octiles, eight naniles, or nine deciles.
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In MATLAB, Q1=prctile(car,25); Q3=prctile(car,75). Now we can define the
IQR as Q3 −Q1:

prctile(car, 75)- prctile(car, 25) %should be equal to iqr(car).
%ans = 19

The five-number summary for univariate data is defined as (Min, Q1, Me,
Q3, Max).

z-Scores. For a sample x1, x2, . . . , xn the z-score is the standardized sample
z1, z2, . . . , zn, where zi = (xi − x)/s. In the standardized sample, the mean is
0 and the sample variance (and standard deviation) is 1. The basic reason
why standardization may be needed is to assess extreme values, or compare
samples taken at different scales. Some other reasons will be discussed in
subsequent chapters.

zcar = zscore(car);
mean(zcar)
%ans = -5.8155e-017
var(zcar)
%ans = 1

Moments of Higher Order. The term sample moments is drawn from
mechanics. If the observations are interpreted as unit masses at positions
X1, . . . , Xn, then the sample mean is the first moment in the mechanical sense
– it represents the balance point for the system of all points. The moments of
higher order have their corresponding mechanical interpretation. The formula
for the kth moment is

mk = 1
n

(X k
1 +·· ·+X k

n)= 1
n

n∑
i=1

X k
i .

The moments mk are sometimes called raw sample moments. The power k
mean is (mk)1/k, that is,

(
1
n

n∑
i=1

X k
i

)1/k

.

For example, the sample mean is the first moment and power 1 mean, m1 = X .
The central moments of order k are defined as
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µk = 1
n

n∑
i=1

(Xi −m1)k.

Notice that µ1 = 0 and that µ2 is the sample variance (calculated by var(.,1)

with the sum of squares divided by n). MATLAB has a built-in function moment

for calculating the central moments.

%Moments of Higher Orders
%kth (row) moment: mean(car.^k)

mean(car.^3) %third
%ans = 1.1161e+005
%kth central moment mean((car-mean(car)).^k)

mean( (car-mean(car)).^3 ) %ans=5.2383e+004
%is the same as

moment(car,3) %ans=5.2383e+004

Skewness and Kurtosis. There are many uses of higher moments in
describing a sample. Two important sample measures involving higher-order
moments are skewness and kurtosis.

Skewness is defined as

γn =µ3/µ3/2
2 =µ3/s3

∗

and measures the degree of asymmetry in a sample distribution. Positively
skewed distributions have longer right tails and their sample mean is larger
than the median. Negatively skewed sample distributions have longer left
tails and their mean is smaller than the median.

Kurtosis is defined as

κn =µ4/µ2
2 =µ4/s4

∗.

It represents the measure of “peakedness” or flatness of a sample distribution.
In fact, there is no consensus on the exact definition of kurtosis since flat but
fat-tailed distributions would also have high kurtosis. Distributions that have
a kurtosis of <3 are called platykurtic and those with a kurtosis of >3 are
called leptokurtic.
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%sample skewness mean(car.^3)/std(car,1)^3
mean( (car-mean(car)).^3 )/std(car,1)^3 %ans = 3.6769
skewness(car) %ans = 3.6769
%sample kurtosis
mean( (car-mean(car)).^4 )/std(car,1)^4 % ans = 22.8297
kurtosis(car)% ans = 22.8297

A robust version of the skewness measure was proposed by Bowley (1920)
as

γn
∗ = (Q3 −Me)− (Me−Q1)

Q3 −Q1
,

and ranges between –1 and 1. Moors (1988) proposed a robust measure of
kurtosis based on sample octiles:

κn
∗ = (O7 −O5)+ (O3 −O1)

O6 −O2
,

where Oi is the i/8×100 percentile (ith octile) of the sample for i = 1,2, . . . ,7. If
the sample is large, one can take Oi as X(bi/8×nc). The constant 1.766 is some-
times added to κ∗n as a calibration adjustment so that it is comparable with
the traditional measure of kurtosis for samples from Gaussian populations.

%robust skewness
(prctile(car, 75)+prctile(car, 25) - ...
2 * median(car))/(prctile(car, 75) - prctile(car, 25))
%0.3684

%robust kurtosis
(prctile(car,7/8*100)-prctile(car,5/8*100)+prctile(car,3/8*100)- ...

prctile(car,1/8*100))/(prctile(car,6/8*100)-prctile(car,2/8*100))
%1.4211

Coefficient of Variation. The coefficient of variation, CV, is the ratio

CV= s

X
.

The CV expresses the variability of a sample in the units of its mean. In other
words, a CV equal to 2 would mean that the variability is equal to 2 X . The
assumption is that the mean is positive. The CV is used when comparing the
variability of data reported on different scales. For example, instructors A and
B teach different sections of the same class, but design their own final exams
individually. To compare the effectiveness of their respective exam designs at
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creating a maximum variance in exam scores (a tacit goal of exam designs),
they calculate the CVs. It is important to note that the CVs would not be
related to the exam grading scale, to the relative performance of the students,
or to the difficulty of the exam.

%sample CV [coefficient of variation]
std(car)/mean(car)
%ans = 0.9758

The reciprocal of CV, X /s, is sometimes called the signal-to-noise ratio, and
it is often used in engineering quality control.

Grouped Data. When a data set is large and many observations are
repetitive, data are often recorded as grouped or composite. For example, the
data set

4 5 6 3 4 3 6 4 5 4 3
7 3 5 2 5 6 4 2 4 3 4
7 7 4 2 2 5 4 2 5 3 8

is called a simple sample, or raw sample, as it lists explicitly all observations.
It can be presented in a more compact form, as grouped data:

Xi 2 3 4 5 6 7 8
f i 5 6 9 6 3 3 1

where Xi are distinctive values in the data set with frequencies f i, and the
number of groups is k = 7. Notice that Xi = 5 appears six times in the simple
sample, so its frequency is f i = 6.

The function [xi fi]=simple2comp(a) provides frequencies fi for a list
xi of distinctive values in a.

a=[ 4 5 6 3 4 3 6 4 5 4 3 ...
7 3 5 2 5 6 4 2 4 3 4 ...
7 7 4 2 2 5 4 2 5 3 8];

[xi fi] = simple2comp( a )
% xi =
% 2 3 4 5 6 7 8
% fi =
% 5 6 9 6 3 3 1

Here, n =∑
i f i = 33.

When a sample is composite, the sample mean and variance are

X =
∑k

i=1 f i Xi

n
, s2 =

∑k
i=1 f i(Xi − X )2

n−1

for n =∑
i f i. By defining the mth raw and central sample moments as

X m =
∑k

i=1 f i X m
i

n
and µm =

∑k
i=1 f i(Xi − X )m

n−1
,
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one can express skewness, kurtosis, CV, and other sample statistics that are
functions of moments.

Diversity Indices for Categorical Data. If the data are categorical and
numerical characteristics such as moments and percentiles cannot be defined,
but the frequencies f i of classes/categories are given, one can define Shannon’s
diversity index:

H =
n logn−∑k

i=1 f i log f i

n
. (2.1)

If some frequency is 0, then 0log0 = 0. The maximum of H is logk; it is
achieved when all f i are equal. The normalized diversity index, EH = H/ log k,
is called Shannon’s homogeneity (equitability) index of the sample.

Neither H nor EH depends on the sample size.

Example 2.3. Homogeneity of Blood Types. Suppose the samples from
Brazilian, Indian, Norwegian, and US populations are taken and the frequen-
cies of blood types (ABO/Rh) are obtained.

Population O+ A+ B+ AB+ O– A– B– AB– total
Brazil 115 108 25 6 28 25 6 1 314
India 220 134 183 39 12 6 6 12 612
Norway 83 104 16 8 14 18 2 1 246
US 99 94 21 8 18 18 5 2 265

Which county’s sample is most homogeneous with respect to blood type at-
tribute?

br = [115 108 25 6 28 25 6 1];
in = [220 134 183 39 12 6 6 12];
no = [ 83 104 16 8 14 18 2 1];
us = [ 99 94 21 8 18 18 5 2];

Eh = @(f) (sum(f)*log(sum(f)) - ...
sum( f.*log(f)))/(sum(f)*log(length(f)))

Eh(br) % 0.7324
Eh(in) % 0.7125
Eh(no) % 0.6904
Eh(us) % 0.7306

Among the four samples, the sample from Brazil is the most homoge-
neous with respect to the blood types of its population as it maximizes the
statistic EH . See also Exercise 2.13 for an alternative definition of diver-
sity/homogeneity indices.
�
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2.5 Displaying Data

In addition to their numerical descriptors, samples are often presented in a
graphical manner. In this section, we discuss some basic graphical summaries.

Box-and-Whiskers Plot. The top and bottom of the “box” are the 25th
and 75th percentile of the data, respectively, with the distances between them
representing the IQR. The line inside the box represents the sample median. If
the median is not centered in the box, it indicates sample skewness. Whiskers
extend from the lower and upper sides of the box to the data’s most extreme
values within 1.5 times the IQR. Potential outliers are displayed with red “+”
beyond the endpoints of the whiskers.

The MATLAB command boxplot(X) produces a box-and-whisker plot for X .
If X is a matrix, the boxes are calculated and plotted for each column. Fig-
ure 2.4a is produced by

%Some Graphical Summaries of the Sample
figure;
boxplot(car)

Histogram. As illustrated previously in this chapter, the histogram is a
rough approximation of the population distribution based on a sample. It plots
frequencies (or relative frequencies for normalized histograms) for interval-
grouped data. Graphically, the histogram is a barplot over contiguous inter-
vals or bins spanning the range of data (Fig. 2.4b). In MATLAB, the typical
command for a histogram is [fre,xout] = hist(data,nbins), where nbins is
the number of bins and the outputs fre and xout are the frequency counts and
the bin locations, respectively. Given the output, one can use bar(xout,n) to
plot the histogram. When the output is not requested, MATLAB produces the
plot by default.

figure;
hist(car, 80)

The histogram is only an approximation of the distribution of measure-
ments in the population from which the sample is obtained.

There are numerous rules on how to automatically determine the number
of bins or, equivalently, bin sizes, none of them superior to the others on all
possible data sets. A commonly used proposal is Sturges’ rule (Sturges, 1926),
where the number of bins k is suggested to be

k = 1+ log2 n,

where n is the size of the sample. Sturges’ rule was derived for bell-shaped
distributions of data and may oversmooth data that are skewed, multimodal,
or have some other features. Other suggestions specify the bin size as h =
2 · IQR/n1/3 (Diaconis–Freedman rule) or, alternatively, h = (7s)/(2n1/3) (Scott’s
rule; s is the sample standard deviation). By dividing the range of the data by
h, one finds the number of bins.
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Fig. 2.4 (a) Box plot and (b) histogram of cell data car.

For example, for cell-area data car, Sturges’ rule suggests 10 bins, Scott’s
19 bins, and the Diaconis–Freedman rule 43 bins. The default nbins in MAT-
LAB is 10 for any sample size.

The histogram is a crude estimator of a probability density that will be dis-
cussed in detail later on (Chap. 5). A more esthetic estimator of the population
distribution is given by the kernel smoother density estimate, or ksdensity.
We will not go into the details of kernel smoothing at this point in the text;
however, note that the spread of a kernel function (such as a Gaussian ker-
nel) regulates the degree of smoothing and in some sense is equivalent to the
choice of bin size in histograms.

Command [f,xi,u]=ksdensity(x) computes a density estimate based on
data x. Output f is the vector of density values evaluated at the points in xi.
The estimate is based on a normal kernel function, using a window parameter
width that depends on the number of points in x. The default width u is re-
turned as an output and can be used to tune the smoothness of the estimate,
as is done in the example below. The density is evaluated at 100 equally spaced
points that cover the range of the data in x.

figure;
[f,x,u] = ksdensity(car);
plot(x,f)
hold on
[f,x] = ksdensity(car,’width’,u/3);
plot(x,f,’r’);
[f,x] = ksdensity(car,’width’,u*3);
plot(x,f,’g’);
legend(’default width’,’default/3’,’3 * default’)
hold off
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Empirical Cumulative Distribution Function. The empirical cumu-
lative distribution function (ECDF) Fn(x) for a sample X1, . . . , Xn is defined
as

Fn(x)= 1
n

n∑
i=1

1(Xi ≤ x) (2.2)

and represents the proportion of sample values smaller than x. Here 1(Xi ≤ x)
is either 0 or 1. It is equal to 1 if {Xi ≤ x} is true, 0 otherwise.

The function empiricalcdf(x,sample) will calculate the ECDF based on
the observations in sample at a value x.

xx = min(car)-1:0.01:max(car)+1;
yy = empiricalcdf(xx, car);
plot(xx, yy, ’k-’,’linewidth’,2)
xlabel(’x’); ylabel(’F_n(x)’)

In MATLAB, [f xf]=ecdf(x) is used to calculate the proportion f of the
sample x that is smaller than xf. Figure 2.5b shows the ECDF for the cell area
data, car.
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Fig. 2.5 (a) Smoothed histogram (density estimator) for different widths of smoothing ker-
nel; (b) Empirical CDF.

Q–Q Plots. Q–Q plots, short for quantile–quantile plots, compare the dis-
tribution of a sample with some standard theoretical distribution, such as
normal, or with a distribution of another sample. This is done by plotting the
sample quantiles of one distribution against the corresponding quantiles of the
other. If the plot is close to linear, then the distributions are close (up to a scale
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and shift). If the plot is close to the 45◦ line, then the compared distributions
are approximately equal. In MATLAB the command qqplot(X,Y) produces an
empirical Q–Q plot of the quantiles of the data set X vs. the quantiles of the
data set Y . If the data set Y is omitted, then qqplot(X) plots the quantiles of
X against standard normal quantiles and essentially checks the normality of
the sample.

Figure 2.6 gives us the Q–Q plot of the cell area data set against the normal
distribution. Note the deviation from linearity suggesting that the distribution
is skewed. A line joining the first and third sample quartiles is superimposed
in the plot. This line is extrapolated out to the ends of the sample to help
visually assess the linearity of the Q–Q display. Q–Q plots will be discussed in
more detail in Chap. 13.
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QQ Plot of Sample Data versus Standard Normal

Fig. 2.6 Quantiles of data plotted against corresponding normal quantiles, via qqplot.

Pie Charts. If we are interested in visualizing proportions or frequen-
cies, the pie chart is appropriate. A pie chart (pie in MATLAB) is a graphical
display in the form of a circle where the proportions are assigned segments.

Suppose that in the cell area data set we are interested in comparing pro-
portions of cells with areas in three regions: smaller than or equal to 15, be-
tween 15 and 30, and larger than 30. We would like to emphasize the propor-
tion of cells with areas between 15 and 30. The following MATLAB code plots
the pie charts (Fig. 2.7).

n1 = sum( car <= 15 ); %n1=213
n2 = sum( (car > 15 ) & (car <= 30) ); %n2=139
n3 = sum( car > 30 ); %n3=110
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% n=n1+n2+n3 = 462
% proportions n1/n, n2/n, and n3/n are
% 0.4610,0.3009 and 0.2381
explode = [0 1 0]
pie([n1, n2, n3], explode)
pie3([n1, n2, n3], explode)

Note that option explode=[0 1 0] separates the second segment from the
circle. The command pie3 plots a 3-D version of a pie chart (Fig. 2.7b).
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30%

24%
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(a) (b)

Fig. 2.7 Pie charts for frequencies 213, 139, and 110 of cell areas smaller than or equal to
15, between 15 and 30, and larger than 30. The proportion of cells with the area between 15
and 30 is emphasized.

2.6 Multidimensional Samples: Fisher’s Iris Data and
Body Fat Data

In the cell area example, the sample was univariate, that is, each measure-
ment was a scalar. If a measurement is a vector of data, then descriptive
statistics and graphical methods increase in importance, but they are much
more complex than in the univariate case. The methods for understanding
multivariate data range from the simple rearrangements of tables in which
raw data are tabulated, to quite sophisticated computer-intensive methods in
which exploration of the data is reminiscent of futuristic movies from space
explorations.

Multivariate data from an experiment are first recorded in the form of ta-
bles, by either a researcher or a computer. In some cases, such tables may
appear uninformative simply because of their format of presentation. By sim-
ple rules such tables can be rearranged in more useful formats. There are
several guidelines for successful presentation of multivariate data in the form
of tables. (i) Numbers should be maximally simplified by rounding as long as
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it does not affect the analysis. For example, the vector (2.1314757, 4.9956301,
6.1912772) could probably be simplified to (2.14, 5, 6.19); (ii) Organize the
numbers to compare columns rather than rows; and (iii) The user’s cognitive
load should be minimized by spacing and table lay-out so that the eye does not
travel long in making comparisons.

Fisher’s Iris Data. An example of multivariate data is provided by the cel-
ebrated Fisher’s iris data. Plants of the family Iridaceae grow on every conti-
nent except Antarctica. With a wealth of species, identification is not simple.
Even iris experts sometimes disagree about how some flowers should be classi-
fied. Fisher’s (Anderson, 1935; Fisher, 1936) data set contains measurements
on three North American species of iris: Iris setosa canadensis, Iris versicolor,
and Iris virginica (Fig. 2.8a-c). The 4-dimensional measurements on each of
the species consist of sepal and petal length and width.

(a) (b) (c)

Fig. 2.8 (a) Iris setosa, C. Hensler, The Rock Garden, (b) Iris virginica, and (c) Iris versicolor,
(b) and (c) are photos by D. Kramb, SIGNA.

The data set fisheriris is part of the MATLAB distribution and contains
two files: meas and species. The meas file, shown in Fig. 2.9a, is a 150×4
matrix and contains 150 entries, 50 for each species. Each row in the matrix
meas contains four elements: sepal length, sepal width, petal length, and petal
width. Note that the convention in MATLAB is to store variables as columns
and observations as rows.

The data set species contains names of species for the 150 measurements.
The following MATLAB commands plot the data and compare sepal lengths
among the three species.

load fisheriris
s1 = meas(1:50, 1); %setosa, sepal length
s2 = meas(51:100, 1); %versicolor, sepal length
s3 = meas(101:150, 1); %virginica, sepal length
s = [s1 s2 s3];
figure;
imagesc(meas)
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Fig. 2.9 (a) Matrix meas in fisheriris, (b) Box plots of Sepal Length (the first column in
matrix meas) versus species.

figure;
boxplot(s,’notch’,’on’,...

’labels’,{’setosa’,’versicolor’,’virginica’})

Correlation in Paired Samples. We will briefly describe how to find the cor-
relation between two aligned vectors, leaving detailed coverage of correlation
theory to Chap. 15.

Sample correlation coefficient r measures the strength and direction of
the linear relationship between two paired samples X = (X1, X2, . . . , Xn) and
Y = (Y1,Y2, . . . ,Yn). Note that the order of components is important and the
samples cannot be independently permuted if the correlation is of inter-
est. Thus the two samples can be thought of as a single bivariate sample
(Xi,Yi), i = 1, . . . , n.

The correlation coefficient between samples X = (X1, X2, . . . , Xn) and Y =
(Y1,Y2, . . . ,Yn) is

r =
∑n

i=1(Xi − X )(Yi −Y )
√ ∑n

i=1(Xi − X )2 ·∑n
i=1(Yi −Y )2

.

The summary Cov(X ,Y ) = 1
n−1

∑n
i=1(Xi − X )(Yi − Y ) =

1
n−1

(∑n
i=1 XiYi −nXY

)
is called the sample covariance. The corre-

lation coefficient can be expressed as a ratio:

r = Cov(X ,Y )
sX sY

,
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where sX and sY are sample standard deviations of samples X and Y .

Covariances and correlations are basic exploratory summaries for paired
samples and multivariate data. Typically they are assessed in data screening
before building a statistical model and conducting an inference. The correla-
tion ranges between –1 and 1, which are the two ideal cases of decreasing and
increasing linear trends. Zero correlation does not, in general, imply indepen-
dence but signifies the lack of any linear relationship between samples.

To illustrate the above principles, we find covariance and correlation be-
tween sepal and petal lengths in Fisher’s iris data. These two variables cor-
respond to the first and third columns in the data matrix. The conclusion is
that these two lengths exhibit a high degree of linear dependence as evident
in Fig. 2.10. The covariance of 1.2743 by itself is not a good indicator of this
relationship since it is scale (magnitude) dependent. However, the correlation
coefficient is not influenced by a linear transformation of the data and in this
case shows a strong positive relationship between the variables.

load fisheriris
X = meas(:, 1); %sepal length
Y = meas(:, 3); %petal length
cv = cov(X, Y); cv(1,2) %1.2743
r = corr(X, Y) %0.8718
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Fig. 2.10 Correlation between petal and sepal lengths (columns 1 and 3) in iris data set.
Note the strong linear dependence with a positive trend. This is reflected by a covariance of
1.2743 and a correlation coefficient of 0.8718.

In the next section we will describe an interesting multivariate data set
and, using MATLAB, find some numerical and graphical summaries.

Example 2.4. Body Fat Data. We also discuss a multivariate data set an-
alyzed in Johnson (1996) that was submitted to http://www.amstat.
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Fig. 2.11 Water test to determine body density. It is based on underwater weighing
(Archimedes’ principle) and is regarded as the gold standard for body composition assess-
ment.

Percentage of body fat, age, weight, height, and ten body circumference
measurements (e.g., abdomen) were recorded for 252 men. Percent of body fat
is estimated through an underwater weighing technique (Fig. 2.11).

The data set has 252 observations and 19 variables. Brozek and Siri in-
dices (Brozek et al., 1963; Siri, 1961) and fat-free weight are obtained by the
underwater weighing while other anthropometric variables are obtained using
scales and a measuring tape. These anthropometric variables are less intru-
sive but also less reliable in assessing the body fat index.

– Variable description
3–5 casen Case number

10–13 broz Percent body fat using Brozek’s equation: 457/density – 414.2
18–21 siri Percent body fat using Siri’s equation: 495/density – 450
24–29 densi Density (gm/cm3)
36–37 age Age (years)
40–45 weight Weight (lb.)
49–53 height Height (in.)
58–61 adiposi Adiposity index = weight/(height2) (kg/m2)
65–69 ffwei Fat-free weight = (1 – fraction of body fat) × weight, using Brozek’s

formula (lb.)
74–77 neck Neck circumference (cm)
81–85 chest Chest circumference (cm)
89–93 abdomen Abdomen circumference (cm)
97–101 hip Hip circumference (cm)

106–109 thigh Thigh circumference (cm)
114–117 knee Knee circumference (cm)
122–125 ankle Ankle circumference (cm)
130–133 biceps Extended biceps circumference (cm)
138–141 forearm Forearm circumference (cm)
146–149 wrist Wrist circumference (cm) “distal to the styloid processes”

Remark: There are a few false recordings. The body densities for cases 48,
76, and 96, for instance, each seem to have one digit in error as seen from

org/publications/jse/datasets/fat.txt and featured in Penrose et al.
(1985). This data set can be found on the book’s Web page as well, as fat.dat.
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the two body fat percentage values. Also note the presence of a man (case 42)
over 200 lb. in weight who is less than 3 ft. tall (the height should presumably
be 69.5 in., not 29.5 in.)! The percent body fat estimates are truncated to zero
when negative (case 182).

load(’\your path\fat.dat’)
casen = fat(:,1);
broz = fat(:,2);
siri = fat(:,3);
densi = fat(:,4);
age = fat(:,5);
weight = fat(:,6);
height = fat(:,7);
adiposi = fat(:,8);
ffwei = fat(:,9);
neck = fat(:,10);
chest = fat(:,11);
abdomen = fat(:,12);
hip = fat(:,13);
thigh = fat(:,14);
knee = fat(:,15);
ankle = fat(:,16);
biceps = fat(:,17);
forearm = fat(:,18);
wrist = fat(:,19);

We will further analyze this data set in this chapter, as well as in Chap. 16,
in the context of multivariate regression.
�

2.7 Multivariate Samples and Their Summaries*

Multivariate samples are organized as a data matrix, where the rows are ob-
servations and the columns are variables or components. One such data ma-
trix of size n× p is shown in Fig. 2.12.

The measurement xi j denotes the jth component of the ith observation.
There are n row vectors x1

′, x2
′,. . . , xn

′ and p columns x(1), x(2),. . . , x(n), so
that

X =




x1
′

x2
′

...xn
′


= [

x(1), x(2), . . . , x(n)
]
.

Note that xi = (xi1, xi2, . . . , xip)′ is a p-vector denoting the ith observation,
while x( j) = (x1 j , x2 j , . . . , xn j)′ is an n-vector denoting values of the jth vari-
able/component.
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Fig. 2.12 Data matrix X . In the multivariate sample the rows are observations and the
columns are variables.

The mean of data matrix X is a vector x, which is a p-vector of column
means

x =




1
n

∑n
i=1 xi1

1
n

∑n
i=1 xi2
...

1
n

∑n
i=1 xip



=




x1
x2
...

xp


 .

By denoting a vector of ones of size n×1 as 1, the mean can be written as
x = 1

n X ′′′ ·1, where X ′′′ is the transpose of X .
Note that x is a column vector, while MATLAB’s command mean(X) will

produce a row vector. It is instructive to take a simple data matrix and in-
spect step by step how MATLAB calculates the multivariate summaries. For
instance,

X = [1 2 3; 4 5 6];
[n p]=size(X) %[2 3]: two 3-dimensional observations
meanX = mean(X)’ %or mean(X,1), along dimension 1

%transpose of meanX needed to be a column vector
meanX = 1/n * X’ * ones(n,1)

For any two variables (columns) in X , x(i) and x( j), one can find the sam-
ple covariance:

si j =
1

n−1

(
n∑

k=1
xkixk j −nxi x j

)
.

All si js form a p× p matrix, called a sample covariance matrix and de-
noted by S.
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A simple representation for S uses matrix notation:

S = 1
n−1

(
X ′′′X − 1

n
X ′′′JX

)
.

Here J = 11′ is a standard notation for a matrix consisting of ones. If one
defines a centering matrix H as H = I− 1

n J, then S = 1
n−1 X ′′′HX . Here I is the

identity matrix.

X = [1 2 3; 4 5 6];
[n p]=size(X);
J = ones(n,1)*ones(1,n);
H = eye(n) - 1/n * J;
S = 1/(n-1) * X’ * H * X
S = cov(X) %built-in command

An alternative definition of the covariance matrix, S∗ = 1
n X ′′′HX , is coded

in MATLAB as cov(X,1). Note also that the diagonal of S contains sample
variances of variables since sii = 1

n−1
(∑n

k=1 x2
ki −nxi

2)= s2
i .

Matrix S describes scattering in data matrix X . Sometimes it is convenient
to have scalars as measures of scatter, and for that purpose two summaries of
S are typically used: (i) the determinant of S, |S|, as a generalized variance
and (ii) the trace of S, trS, as the total variation.

The sample correlation coefficient between the ith and jth variables is

ri j =
si j

si s j
,

where si =
√

s2
i = p

sii is the sample standard deviation. Matrix R with el-
ements ri j is called a sample correlation matrix. If R = I , the variables are
uncorrelated. If D = diag(si) is a diagonal matrix with (s1, s2, . . . , sp) on its
diagonal, then

S = DRD, R = D−1RD−1.

Next we show how to standardize multivariate data. Data matrix Y is a
standardized version of X if its rows y′i are standardized rows of X ,

Y =




y1
′

y2
′

...
yn

′


 , where yi = D−1(xi − x), i = 1, . . . , n.

Y has a covariance matrix equal to the correlation matrix. This is a multi-
variate version of the z-score For the two-column vectors from Y , y(i) and y( j),
the correlation ri j can be interpreted geometrically as the cosine of angle ϕi j
between the vectors. This shows that correlation is a measure of similarity
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because close vectors (with a small angle between them) will be strongly pos-
itively correlated, while the vectors orthogonal in the geometric sense will be
uncorrelated. This is why uncorrelated vectors are sometimes called orthogo-
nal.

Another useful transformation of multivariate data is the Mahalanobis
transformation. When data are transformed by the Mahalanobis transforma-
tion, the variables become decorrelated. For this reason, such transformed
data are sometimes called “sphericized.”

Z =




z1
′

z2
′

...
zn

′


 , where zi = S−1/2(xi − x), i = 1, . . . ,n.

The Mahalanobis transform decorrelates the components, so Cov(Z) is an
identity matrix. The Mahalanobis transformation is useful in defining the dis-
tances between multivariate observations. For further discussion on the mul-
tivariate aspects of statistics we direct the student to the excellent book by
Morrison (1976).

Example 2.5.
�

The Fisher iris data set was a data matrix of size 150×4, while
the size of the body fat data was 252×19. To illustrate some of the multivariate
summaries just discussed we construct a new, 5 dimensional data matrix from
the body fat data set. The selected columns are broz, densi, weight, adiposi,
and biceps. All 252 rows are retained.

X = [broz densi weight adiposi biceps];
varNames = {’broz’; ’densi’; ’weight’; ’adiposi’; ’biceps’};

varNames =
’broz’ ’densi’ ’weight’ ’adiposi’ ’biceps’

Xbar = mean(X)

Xbar = 18.9385 1.0556 178.9244 25.4369 32.2734

S = cov(X)

S =
60.0758 -0.1458 139.6715 20.5847 11.5455
-0.1458 0.0004 -0.3323 -0.0496 -0.0280

139.6715 -0.3323 863.7227 95.1374 71.0711
20.5847 -0.0496 95.1374 13.3087 8.2266
11.5455 -0.0280 71.0711 8.2266 9.1281

R = corr(X)
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R =
1.0000 -0.9881 0.6132 0.7280 0.4930
-0.9881 1.0000 -0.5941 -0.7147 -0.4871
0.6132 -0.5941 1.0000 0.8874 0.8004
0.7280 -0.7147 0.8874 1.0000 0.7464
0.4930 -0.4871 0.8004 0.7464 1.0000

% By ‘‘hand’’
[n p]=size(X);
H = eye(n) - 1/n * ones(n,1)*ones(1,n);
S = 1/(n-1) * X’ * H * X;
stds = sqrt(diag(S));
D = diag(stds);
R = inv(D) * S * inv(D);
%S and R here coincide with S and R
%calculated by built-in functions cov and cor.

Xc= X - repmat(mean(X),n,1); %center X
%subtract component means
%from variables in each observation.

%standardization
Y = Xc * inv(D); %for Y, S=R

%Mahalanobis transformation
M = sqrtm(inv(S)) %sqrtm is a square root of matrix

%M =
% 0.1739 0.8423 -0.0151 -0.0788 0.0046
% 0.8423 345.2191 -0.0114 0.0329 0.0527
% -0.0151 -0.0114 0.0452 -0.0557 -0.0385
% -0.0788 0.0329 -0.0557 0.6881 -0.0480
% 0.0046 0.0527 -0.0385 -0.0480 0.5550

Z = Xc * M; %Z has uncorrelated components
cov(Z) %should be identity matrix

Figure 2.13 shows data plots for a subset of five variables and the two
transformations, standardizing and Mahalanobis. Panel (a) shows components
broz, densi, weight, adiposi, and biceps over all 252 measurements. Note
that the scales are different and that weight has much larger magnitudes
than the other variables.

Panel (b) shows the standardized data. All column vectors are centered and
divided by their respective standard deviations. Note that the data plot here
shows the correlation across the variables. The variable density is negatively
correlated with the other variables.

Panel (c) shows the decorrelated data. Decorrelation is done by centering
and multiplying by the Mahalanobis matrix, which is the matrix square root
of the inverse of the covariance matrix. The correlations visible in panel (b)
disappeared.
�
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Fig. 2.13 Data plots for (a) 252 five-dimensional observations from Body Fat data where
the variables are broz, densi, weight, adiposi, and biceps. (b) Y is standardized X , and
(c) Z is a decorrelated X .

2.8 Visualizing Multivariate Data

The need for graphical representation is much greater for multivariate data
than for univariate data, especially if the number of dimensions exceeds three.

For a data given in matrix form (observations in rows, components in
columns), we have already seen a quite an illuminating graphical represen-
tation, which we called a data matrix.

One can extend the histogram to bivariate data in a straightforward man-
ner. An example of a 2-D histogram obtained by m-file hist2d is given in
Fig. 2.14a. The histogram (in the form of an image) shows the sepal and petal
lengths from the fisheriris data set. A scatterplot of the 2-D measurements
is superimposed.
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Fig. 2.14 (a) Two-dimensional histogram of Fisher’s iris sepal (X ) and petal (Y ) lengths. The
plot is obtained by hist2d.m; (b) Scattercloud plot – smoothed histogram with superimposed
scatterplot, obtained by scattercloud.m; (c) Kernel-smoothed and normalized histogram
obtained by smoothhist2d.m.
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Figures 2.14b-c show the smoothed histograms. The histogram in panel
(c) is normalized so that the area below the surface is 1. The smoothed his-
tograms are plotted by scattercloud.m and smoothhist2d.m (S. Simon
and E. Ronchi, MATLAB Central).

If the dimension of the data is three or more, one can gain additional in-
sight by plotting pairwise scatterplots. This is achieved by the MATLAB com-
mand gplotmatrix(X,Y,group), which creates a matrix arrangement of scat-
terplots. Each subplot in the graphical output contains a scatterplot of one
column from data set X against a column from data set Y .

In the case of a single data set (as in body fat and Fisher iris examples),
Y is omitted or set at Y=[ ], and the scatterplots contrast the columns of X .
The plots can be grouped by the grouping variable group. This variable can be
a categorical variable, vector, string array, or cell array of strings.

The variable group must have the same number of rows as X . Points with
the same value of group appear on the scatterplot with the same marker
and color. Other arguments in gplotmatrix(x,y,group,clr,sym,siz) specify the
color, marker type, and size for each group. An example of the gplotmatrix

command is given in the code below. The output is shown in Fig. 2.15a.

X = [broz densi weight adiposi biceps];
varNames = {’broz’; ’densi’; ’weight’; ’adiposi’; ’biceps’};
agegr = age > 55;
gplotmatrix(X,[],agegr,[’b’,’r’],[’x’,’o’],[],’false’);
text([.08 .24 .43 .66 .83], repmat(-.1,1,5), varNames, ...

’FontSize’,8);
text(repmat(-.12,1,5), [.86 .62 .41 .25 .02], varNames, ...

’FontSize’,8, ’Rotation’,90);

Parallel Coordinates Plots. In a parallel coordinates plot, the compo-
nents of the data are plotted on uniformly spaced vertical lines called compo-
nent axes. A p-dimensional data vector is represented as a broken line con-
necting a set of points, one on each component axis. Data represented as lines
create readily perceived structures. A command for parallel coordinates plot
parallelcoords is given below with the output shown in Fig. 2.15b.

parallelcoords(X, ’group’, age>55, ...
’standardize’,’on’, ’labels’,varNames)

set(gcf,’color’,’white’);

Figure 2.16a shows parallel cords for the groups age > 55 and age <= 55
with 0.25 and 0.75 quantiles.

parallelcoords(X, ’group’, age>55, ...
’standardize’,’on’, ’labels’,varNames,’quantile’,0.25)

set(gcf,’color’,’white’);

Andrews’ Plots. An Andrews plot (Andrews, 1972) is a graphical repre-
sentation that utilizes Fourier series to visualize multivariate data. With an
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Fig. 2.15 (a) gplotmatrix for broz, densi, weight, adiposi, and biceps; (b)
parallelcoords plot for X , by age>55.

observation (X1, . . . , X p) one associates the function

F(t)= X1/
p

2+ X2 sin(2πt)+ X3 cos(2πt)+ X4 sin(2 ·2πt)+ X5 cos(2 ·2πt)+ ...,

where t ranges from −1 to 1. One Andrews’ curve is generated for each multi-
variate datum – a row of the data set. Andrews’ curves preserve the distances
between observations. Observations close in the Euclidian distance sense are
represented by close Andrews’ curves. Hence, it is easy to determine which
observations (i.e., rows when multivariate data are represented as a matrix)
are most alike by using these curves. Due to the definition, this representa-
tion is not robust with respect to the permutation of coordinates. The first few
variables tend to dominate, so it is a good idea when using Andrews’ plots
to put the most important variables first. Some analysts recommend running
a principal components analysis first and then generating Andrews’ curves
for principal components. The principal components of multivariate data are
linear combinations of components that account for most of the variability in
the data. Principal components will not be discussed in this text as they are
beyond the scope of this course.

An example of Andrews’ plots is given in the code below with the output in
Fig. 2.16b.

andrewsplot(X, ’group’, age>55, ’standardize’,’on’)
set(gcf,’color’,’white’);

Star Plots. The star plot is one of the earliest multivariate visualization
objects. Its rudiments can be found in the literature from the early nineteenth
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Fig. 2.16 (a) X by age>55 with quantiles; (b) andrewsplot for X by age>55.

century. Similar plots (rose diagrams) are used in Florence Nightingale’s Notes
on Matters Affecting the Health, Efficiency and Hospital Administration of the
British Army in 1858 (Nightingale, 1858).

The star glyph consists of a number of spokes (rays) emanating from the
center of the star plot and connected at the ends. The number of spikes in the
star plot is equal to the number of variables (components) in the corresponding
multivariate datum. The length of each spoke is proportional to the magnitude
of the component it represents. The angle between two neighboring spokes is
2π/p, where p is the number of components. The star glyph connects the ends
of the spokes.

An example of the use of star plots is given in the code below with the
output in Fig. 2.17a.

ind = find(age>67);
strind = num2str(ind);
h = glyphplot(X(ind,:), ’glyph’,’star’, ’varLabels’,...

varNames,’obslabels’, strind);
set(h(:,3),’FontSize’,8); set(gcf,’color’,’white’);

Chernoff Faces. People grow up continuously studying faces. Minute and
barely measurable differences are easily detected and linked to a vast catalog
stored in memory. The human mind subconsciously operates as a super com-
puter, filtering out insignificant phenomena and focusing on the potentially
important. Such mundane characters as :), :(, :O, and >:p are readily
linked in our minds to joy, dissatisfaction, shock, or affection.

Face representation is an interesting approach to taking a first look at mul-
tivariate data and is effective in revealing complex relations that are not vis-
ible in simple displays that use the magnitudes of components. It can be used
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to aid in cluster analysis and discrimination analysis and to detect substantial
changes in time series.

Each variable in a multivariate datum is connected to a feature of a face.
The variable-feature links in MATLAB are as follows: variable 1 – size of face;
variable 2 – forehead/jaw relative arc length; variable 3 – shape of forehead;
variable 4 – shape of jaw; variable 5 – width between eyes; variable 6 – vertical
position of eyes; variables 7–13 – features connected with location, separation,
angle, shape, and width of eyes and eyebrows; and so on. An example of the
use of Chernoff faces is given in the code below with the output in Fig. 2.17b.

ind = find(height > 74.5);
strind = num2str(ind);
h = glyphplot(X(ind,:), ’glyph’,’face’, ’varLabels’,...
varNames,’obslabels’, strind);
set(h(:,3),’FontSize’,10); set(gcf,’color’,’white’);

 78  79  84  85

 87 246 247 248

249 250 251 252

  6  12  96

109 140 145

156 192 194

(a) (b)

Fig. 2.17 (a) Star plots for X ; (b) Chernoff faces plot for X .

2.9 Observations as Time Series

Observations that have a time index, that is, if they are taken at equally
spaced instances in time, are called time series. EKG and EEG signals, high-
frequency bioresponses, sound signals, economic indices, and astronomic and
geophysical measurements are all examples of time series. The following ex-
ample illustrates a time series.
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Example 2.6. Blowflies Time Series. The data set blowflies.dat con-
sists of the total number of blowflies (Lucilia cuprina) in a population under
controlled laboratory conditions. The data represent counts for every other
day. The developmental delay (from egg to adult) is between 14 and 15 days
for insects under the conditions employed. Nicholson (1954) made 361 bi-daily
recordings over a 2-year period (722 days), see Fig. 2.18a.
�

In addition to analyzing basic location, spread, and graphical summaries,
we are also interested in evaluating the degree of autocorrelation in time se-
ries. Autocorrelation measures the level of correlation of the time series with
a time-shifted version of itself. For example, autocorrelation at lag 2 would
be a correlation between X1, X2, X3, . . . , Xn−3, Xn−2 and X3, X4, . . . , Xn−1, Xn.
When the shift (lag) is 0, the autocorrelation is just a correlation. The concept
of autocorrelation is introduced next, and then the autocorrelation is calcu-
lated for the blowflies data.

Let X1, X2, . . . , Xn be a sample where the order of observations is impor-
tant. The indices 1,2, . . . , n may correspond to measurements taken at time
points t, t+∆t, t+2∆t, . . . , t+ (n− 1)∆t, for some start time t and time incre-
ments ∆t. The autocovariance at lag 0≤ k ≤ n−1 is defined as

γ̂(k)= 1
n

n−k∑
i=1

(Xi+k − X )(Xi − X ).

Note that the sum is normalized by a factor 1
n and not by 1

n−k , as one may
expect.

The autocorrelation is defined as normalized autocovariance,

ρ̂(k)= γ̂(k)
γ̂(0)

.

Autocorrelation is a measure of self-affinity of the time series with its own
shifts and is an important summary statistic. MATLAB has the built-in func-
tions autocov and autocorr. The following two functions are simplified ver-
sions illustrating how the autocovariances and autocorrelations are calcu-
lated.

function acv = acov(ts, maxlag)
%acov.m: computes the sample autocovariance function
% ts = 1-D time series
% maxlag = maximum lag ( < length(ts))
%usage: z = autocov (a,maxlag);
n = length(ts);
ts = ts(:) - mean(ts); %note overall mean
suma = zeros(n,maxlag+1);
suma(:,1) = ts.^2;
for h = 2:maxlag+1

suma(1:(n-h+1), h) = ts(h:n);
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suma(:,h) = suma(:,h) .* ts;
end
acv = sum(suma)/n; %note the division by n

%and not by expected (n-h)

function [acrr] = acorr(ts , maxlag)
acr = acov(ts, maxlag);
acrr = acr ./ acr(1);
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Fig. 2.18 (a) Bi-daily measures of size of the blowfly population over a 722-day period, (b)
The autocorrelation function of the time series. Note the peak at lag 19 corresponding to the
periodicity of 38 days.

Figure 2.18a shows the time series illustrating the size of the population
of blowflies over 722 days. Note the periodicity in the time series. In the auto-
correlation plot (Fig. 2.18b) the peak at lag 19 corresponding to a time shift of
38 days. This indicates a periodicity with an approximate length of 38 days in
the dynamic of this population. A more precise assessment of the periodicity
and related inference can be done in the frequency domain of a time series,
but this theory is beyond the scope of this course. Good follow-up references
are Brillinger (2001), Brockwell and Davis (2009), and Shumway and Stoffer
(2005). Also see Exercise 2.12.

2.10 About Data Types

The cell data elaborated in this chapter are numerical. When measurements
are involved, the observations are typically numerical. Other types of data
encountered in statistical analysis are categorical. Stevens (1946), who was
influenced by his background in psychology, classified data as nominal, ordi-
nal, interval, and ratio. This typology is loosely accepted in other scientific cir-
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cles. However, there are vibrant and ongoing discussions and disagreements,
e.g., Veleman and Wilkinson (1993). Nominal data, such as race, gender, po-
litical affiliation, names, etc., cannot be ordered. For example, the counties
in northern Georgia, Cherokee, Clayton, Cobb, DeCalb, Douglas, Fulton, and
Gwinnett, cannot be ordered except that there is a nonessential alphabetical
order of their names. Of course, numerical attributes of these counties, such
as size, area, revenue, etc., can be ordered.

Ordinal data could be ordered and sometimes assigned numbers, although
the numbers would not convey their relative standing. For example, data on
the Likert scale have five levels of agreement: (1) Strongly Disagree, (2) Dis-
agree, (3) Neutral, (4) Agree, and (5) Strongly Agree; the numbers 1 to 5 are
assigned to the degree of agreement and have no quantitative meaning. The
difference between Agree and Neutral is not equal to the difference between
Disagree and Strongly Disagree. Other examples are the attributes “Low” and
“High” or student grades A, B, C, D, and F. It is an error to treat ordinal data
as numerical. Unfortunately this is a common mistake (e.g., GPA). Sometimes
T-shirt-size attributes, such as “small,” “medium,” “large,” and “x-large,” may
falsely enter the model as if they were measurements 1, 2, 3, and 4.

Nominal and ordinal data are examples of categorical data since the values
fall into categories.

Interval data refers to numerical data for which the differences can be well
interpreted. However, for this type of data, the origin is not defined in a nat-
ural way so the ratios would not make sense. Temperature is a good example.
We cannot say that a day in July with a temperature of 100◦F is twice as hot
as a day in November with a temperature of 50◦F. Test scores are another ex-
ample of interval data as a student who scores 100 on a midterm may not be
twice as good as a student who scores 50.

Ratio data are at the highest level; these are usually standard numerical
values for which ratios make sense and the origin is absolute. Length, weight,
and age are all examples of ratio data.

Interval and ratio data are examples of numerical data.
MATLAB provides a way to keep such heterogeneous data in a single struc-

ture array with a syntax resembling C language.
Structures are arrays comprised of structure elements and are accessed by

named fields. The fields (data containers) can contain any type of data. Storage
in the structure is allocated dynamically. The general syntax for a structure
format in MATLAB is structurename(recordnumber).fieldname=data

For example,

patient.name = ’John Doe’;
patient.agegroup = 3;
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];
patient
%To expand the structure array, add subscripts.
patient(2).name = ’Ann Lane’;
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patient(2).agegroup = 2;
patient(2).billing = 208.50;
patient(2).test = [68 70 68; 118 118 119; 172 170 169];
patient

2.11 Exercises

2.1. Auditory Cortex Spikes. This data set comes from experiments in the
lab of Dr. Robert Liu of Emory University4 and concerns single-unit elec-
trophysiology in the auditory cortex of nonanesthetized female mice. The
motivating question is the exploration of auditory neural differences be-
tween female parents vs. female virgins and their relationship to cortical
response.
Researchers in Liu’s lab developed a restrained awake setup to collect sin-
gle neuron activity from both female parent and female naïve mice. Mul-
tiple trials are performed on the neurons from one mother and one naïve
animal.
The recordings are made from a region in the auditory cortex of the mouse
with a single tungsten electrode. A sound stimulus is presented at a time
of 200 ms during each sweep (time shown is 0–611 and 200 is the point at
which a stimulus is presented). Each sweep is 611 ms long and the dura-
tion of the stimulus tone is 10 to 70 ms. The firing times for mother and
naïve mice are provided in the data set spikes.dat, in columns 2 and 3.
Column 1 is the numbering from 1 to 611.
(a) Using MATLAB’s diff command, find the inter-firing times. Plot a his-
togram for both sets of interfiring times. Use biplot.m to plot the histograms
back to back.
(b) For inter-firing times in the mother’s response find descriptive statistics
similar to those in the cell area example.

2.2. On Average. It is an anecdotal truth that an average Australian has less
than two legs! Indeed, there are some Australians that have lost their leg(s);
thus the number of legs is less than twice the number of people. In this
exercise, we compare several sample averages.
A small company reports the following salaries: 4 employees at 20K, 3 em-
ployees at 30K, the vice-president at 200K, and the president at 400K. Cal-
culate the arithmetic mean, geometric mean, median, harmonic mean, and
mode. If the company is now hiring, would an advertising strategy in which
the mean salary is quoted be fair? If not, suggest an alternative.

2.3. Contraharmonic Mean and f -Mean. The contraharmonic mean for
X1, X2, . . . , Xn is defined as

4 http://www.biology.emory.edu/research/Liu/index.html
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C(X1, . . . , Xn)=
∑n

i=1 X2
i∑n

i=1 Xi
.

(a) Show that C(X1, X2) is twice the sample mean minus the harmonic
mean of X1, X2.
(b) Show that C(x, x, x, . . . , x)= x.
The generalized f -mean of X1, . . . , Xn is defined as

X f = f −1

(
1
n

n∑
i=1

f (Xi)

)
,

where f is suitably chosen such that f (Xi) and f −1 are well defined.
(c) Show that f (x) = x, 1

x , xk, log x gives the mean, harmonic mean, power k
mean, and geometric mean.

2.4. Mushrooms. The unhappy outcome of uninformed mushroom picking is
poisoning. In many cases, such poisoning is due to ignorance or a superfi-
cial approach to identification. The most dangerous fungi are Death Cap
(Amanita phalloides) and two species akin to it, A. verna and Destroying
Angel (A. virosa). These three toadstools cause the majority of fatal poison-
ing.
One of the keys to mushroom identification is the spore deposit. Spores of
Amanita phalloides are colorless, nearly spherical, and smooth. Measure-
ments in microns of 28 spores are given below:

9.2 8.8 9.1 10.1 8.5 8.4 9.3
8.7 9.7 9.9 8.4 8.6 8.0 9.5
8.8 8.1 8.3 9.0 8.2 8.6 9.0
8.7 9.1 9.2 7.9 8.6 9.0 9.1

(a) Find the five-number summary (Min,Q1, Me,Q3, Max) for the spore
measurement data.
(b) Find the mean and the mode.
(c) Find and plot the histogram of z-scores, zi = (Xi − X )/s.

2.5. Manipulations with Sums. Prove the following algebraic identities in-
volving sums, useful in demonstrating properties of some sample sum-
maries.

(a)
∑n

i=1(xi − x)= 0 (b) If y1 = x1+a, y2 = x2+a, . . . , yn = xn+
a, then

∑n
i=1(yi − y)2 =∑n

i=1(xi − x)2

(c) If y1 = c · x1, y2 = c · x2, . . . , yn =
c · xn, then

∑n
i=1(yi − y)2 =

c2 ∑n
i=1(xi − x)2

(d) If y1 = c ·x1+a, y2 = c ·x2+a, . . . , yn =
c·xn+a, then

∑n
i=1(yi−y)2 = c2 ∑n

i=1(xi−
x)2.

(e)
∑n

i=1(xi − x)2 =∑n
i=1 x2

i −n()2 (f)
∑n

i=1(xi − x)(yi − y) = ∑n
i=1 xi yi −

n(x)(y)
(g)

∑n
i=1(xi − a)2 = ∑n

i=1(xi − x)2 +
n(x−a)2

(h) For any constant a,
∑n

i=1(xi − x)2 ≤∑n
i=1(xi −a)2
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2.6. Emergency Calculation. Graduate student Rosa Juliusdottir reported
the results of an experiment to her advisor who wanted to include them
in his grant proposal. Before leaving to Reykjavik for a short vacation, she
left the following data in her advisor’s mailbox: sample size n = 12, sample
mean X = 15, and sample variance s2 = 34.
The advisor noted with horror that the last measurement X12 was wrongly
recorded. It should have been 16 instead of 4. It would be easy to fix X
and s2, but the advisor did not have the previous 11 measurements nor the
statistics training necessary to make the correction. Rosa was in Iceland,
and the grant proposal was due the next day. The advisor was desperate,
but luckily you came along.

2.7. Sample Mean and Standard Deviation After a Change. It is known
that y = 11.6, sy = 4.4045, and n = 15. The observation y12 = 7 is removed
and observation y13 was misreported; it was not 10, but 20. Find ynew and
sy(new) after the changes.

2.8. Surveys on Different Scales. We are interested in determining whether
UK voters (whose parties have somewhat more distinct policy positions
than those in the USA) have a wider variation in their evaluations of the
parties than voters in the USA. The problem is that the British election sur-
vey takes evaluations scored 0–10, while the US National Election Survey
gets evaluations scored 0–100. Here are two surveys.

UK 6 7 5 10 3 9 9 6 8 2 7 5
US 67 65 95 86 44 100 85 92 91 65

Using CV compare the amount of variation without worrying about the
different scales.

2.9. Merging Two Samples. Suppose X and s2
X are the mean and variance

of the sample X1, . . . , Xm and Y and s2
Y of the sample Y1, . . . ,Yn. If the two

samples are merged into a single sample, show that its mean and variance
are

mX +nY
m+n

and
1

m+n−1

[
(m−1)s2

X + (n−1)s2
Y + mn

m+n
(X −Y )2

]
.

2.10. Fitting the Histogram. The following is a demonstration of MATLAB’s
built-in function histfit on a simulated data set.

dat = normrnd(4, 1,[1 500]) + normrnd(2, 3,[1 500]);
figure; histfit(dat(:));

The function histfit plots the histogram of data and overlays it with the
best fitting Gaussian curve. As an exercise, take Brozek index broz from
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the data set fat.dat (second column) and apply the histfit command.
Comment on how the Gaussian curve fits the histogram.

2.11. QT Syndrome. The QT interval is a time interval between the start of the
Q wave and the end of the T wave in a heart’s electrical cycle (Fig. 2.19). It
measures the time required for depolarization and repolarization to occur.
In long QT syndrome, the duration of repolarization is longer than nor-
mal, which results in an extended QT interval. An interval above 440 ms is
considered prolonged. Although the mechanical function of the heart could
be normal, the electrical defects predispose affected subjects to arrhyth-
mia, which may lead to sudden loss of consciousness (syncope) and, in some
cases, to a sudden cardiac death.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

QT

Fig. 2.19 Schematic plot of ECG, with QT time between the red bars.

The data set QT.dat|mat was compiled by Christov et al. (2006) and is de-
scribed in http://www.biomedical-engineering-online.com/content/
5/1/31. It provides 548 QT times taken from 293 subjects. The subjects
include healthy controls (about 20%) and patients with various diagnoses,
such as myocardial infarction, cardiomyopathy/heart failure, bundle branch
block, dysrhythmia, myocardial hypertrophy, etc. The Q-onsets and T-wave
ends are evaluated by five independent experts, and medians of their esti-
mates are used in calculations of the QT for a subject.
Plot the histogram of this data set and argue that the data are reasonably
“bell-shaped.” Find the location and spread measures of the sample. What
proportion of this sample has prolonged QT?

2.12. Blowfly Count Time Series. For the data in Example 2.6 it was pos-
tulated that a major transition in the dynamics of blowfly population size
appeared to have occurred around day 400. This was attributed to biologi-
cal evolution, and the whole series cannot be considered as representative
of the same system. Divide the time series into two data segments with in-
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dices 1–200 and 201–361. Calculate and compare the autocorrelation func-
tions for the two segments.

2.13. Simpson’s Diversity Index. An alternative diversity measure to Shan-
non’s in (2.1) is the Simpson diversity index defined as

D = n2

∑k
i=1 f 2

i

.

It achieves its maximum k when all frequencies are equal; thus Simpson’s
homogeneity (equitability) index is defined as ED = D/k.
Repeat the calculations from Example 2.3 with Simpson’s diversity and ho-
mogeneity indices in place of Shannon’s. Is the Brazilian sample still the
most homogeneous, as it was according to Shannon’s EH index?

2.14. Speed of Light. Light travels very fast. It takes about 8 min to reach
Earth from the Sun and over 4 years to reach Earth from the closest star
outside the solar system. Radio and radar waves also travel at the speed of
light, and an accurate value of that speed is important to communicate with
astronauts and orbiting satellites. Because of the nature of light, it is very
hard to measure its speed. The first reasonably accurate measurements of
the speed of light were made by A. Michelson and S. Newcomb. The table
below contains 66 transformed measurements made by Newcomb between
July and September 1882. Entry 28, for instance, corresponds to the actual
measurement of 0.000024828 s. This was the amount of time needed for
light to travel approx. 4.65 miles.

28 22 36 26 28 28 26 24 32 30 27
24 33 21 36 32 31 25 24 25 28 36
27 32 34 30 25 26 26 25 –44 23 21
30 33 29 27 29 28 22 26 27 16 31
29 36 32 28 40 19 37 23 32 29 –2
24 25 27 24 16 29 20 28 27 39 23

You can download light.data|mat and read it in MATLAB.
If we agree that outlier measurements are outside the interval [Q1 −
2.5 IQR,Q3 + 2.5 IQR], what observations qualify as outliers? Make the
data “clean” by excluding outlier(s). For the cleaned data find the mean,
20% trimmed mean, real MAD, std, and variance.
Plot the histogram and kernel density estimator for an appropriately se-
lected bandwidth.

2.15. Limestone Formations in Jamaica. This data set contains 18 observa-
tions of nummulited specimens from the Eocene yellow limestone formation
in northwestern Jamaica ( limestone.dat). The use of faces to represent
points in k-dimensional space graphically was originally illustrated on this
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data set (Chernoff, 1973). Represent this data set graphically using Cher-
noff faces.

ID Z1 Z2 Z3 Z4 Z5 Z6 ID Z1 Z2 Z3 Z4 Z5 Z6
1 160 51 10 28 70 450 45 195 32 9 19 110 1010
2 155 52 8 27 85 400 46 220 33 10 24 95 1205
3 141 49 11 25 72 380 81 55 50 10 27 128 205
4 130 50 10 26 75 560 82 70 53 7 28 118 204
6 135 50 12 27 88 570 83 85 49 11 19 117 206

41 85 55 13 33 81 355 84 115 50 10 21 112 198
42 200 34 10 24 98 1210 85 110 57 9 26 125 230
43 260 31 8 21 110 1220 86 95 48 8 27 114 228
44 195 30 9 20 105 1130 87 95 49 8 29 118 240

2.16. Duchenne Muscular Dystrophy. Duchenne muscular dystrophy (DMD),
or Meryon’s disease, is a genetically transmitted disease, passed from a
mother to her children (Fig. 2.20). Affected female offspring usually suffer
no apparent symptoms and may unknowingly carry the disease. Male off-
spring with the disease die at a young age. Not all cases of the disease come
from an affected mother. A fraction, perhaps one third, of the cases arise
spontaneously, to be genetically transmitted by an affected female. This is
the most widely held view at present. The incidence of DMD is about 1
in 10,000 male births. The population risk (prevalence) that a woman is a
DMD carrier is about 3 in 10,000.

Fig. 2.20 Each son of a carrier has a 50% chance of having DMD and each daughter has a
50% chance of being a carrier.

From the text page download data set dmd.dat|mat|xls. This data set is
modified data from Percy et al. (1981) (entries containing missing values
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excluded). It consists of 194 observations corresponding to blood samples
collected in a project to develop a screening program for female relatives
of boys with DMD. The program was implemented in Canada and its goal
was to inform a woman of her chances of being a carrier based on serum
markers as well as her family pedigree. Another question of interest was
whether age should be taken into account. Enzyme levels were measured
in known carriers (67 samples) and in a group of noncarriers (127 samples).
The first two serum markers, creatine kinase and hemopexin (ck,h), are
inexpensive to obtain, while the last two, pyruvate kinase and lactate de-
hydroginase (pk,ld), are expensive.
The variables (columns) in the data set are

Column Variable Description
1 age Age of a woman in the study
2 ck Creatine kinase level
3 h Hemopexin
4 pk Pyruvate kinase
5 ld Lactate dehydroginase
6 carrier Indicator if a woman is a DMD carrier

(a) Find the mean, median, standard deviation, and real MAD of pyruvate
kinase level, pk, for all cases (carrier=1).
(b) Find the mean, median, standard deviation, and real MAD of pyruvate
kinase level, pk, for all controls (carrier=0).
(c) Find the correlation between variables pk and carrier.

(d) Use MATLAB’s gplotmatrix to visualize pairwise dependencies between
the six variables.
(e) Plot the histogram with 30 bins and smoothed normalized histogram
(density estimator) for pk. Use ksdensity.

2.17. Ashton’s Dental Data. The evolutionary status of fossils (Australop-
ithecinae, Proconsul, etc.) stimulated considerable discussion in the 1950s.
Particular attention has been paid to the teeth of the fossils, comparing
their overall dimensions with those of human beings and of the extant great
apes. As “controls” measurements have been taken on the teeth of three
types of modern man (British, West African native, Australian aboriginal)
and of the three living great apes (gorilla, orangutan, and chimpanzee).
The data in the table below are taken from Ashton et al. (1957), p. 565, who
used 2-D projections to compare the measurements. Andrews (1972) also
used an excerpt of these data to illustrate his methodology. The values in
the table are not the original measurements but the first eight canonical
variables produced from the data in order to maximize the sum of distances
between different pairs of populations.
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A. West African –8.09 0.49 0.18 0.75 –0.06 –0.04 0.04 0.03
B. British –9.37 –0.68 –0.44 –0.37 0.37 0.02 –0.01 0.05
C. Au. aboriginal –8.87 1.44 0.36 –0.34 –0.29 –0.02 –0.01 –0.05
D. Gorilla: male 6.28 2.89 0.43 –0.03 0.10 –0.14 0.07 0.08
E. Female 4.82 1.52 0.71 –0.06 0.25 0.15 –0.07 –0.10
F. Orangutan: Male 5.11 1.61 –0.72 0.04 –0.17 0.13 0.03 0.05
G. Female 3.60 0.28 –1.05 0.01 –0.03 –0.11 –0.11 –0.08
H. Chimpanzee: male 3.46 –3.37 0.33 –0.32 –0.19 –0.04 0.09 0.09
I. Female 3.05 –4.21 0.17 0.28 0.04 0.02 –0.06 –0.06
J. Pithecanthropus –6.73 3.63 1.14 2.11 –1.90 0.24 1.23 –0.55
K. pekinensis –5.90 3.95 0.89 1.58 –1.56 1.10 1.53 0.58
L. Paranthropus robustus –7.56 6.34 1.66 0.10 –2.23 –1.01 0.68 –0.23
M. Paranthropus crassidens –7.79 4.33 1.42 0.01 –1.80 –0.25 0.04 –0.87
N. Meganthropus paleojavanicus –8.23 5.03 1.13 –0.02 –1.41 –0.13 –0.28 –0.13
O. Proconsul africanus 1.86 –4.28 –2.14 –1.73 2.06 1.80 2.61 2.48

Andrews (1972) plotted curves over the range −π < t < π and concluded
that the graphs clearly distinguished humans, the gorillas and orangutans,
the chimpanzees, and the fossils. Andrews noted that the curve for a fos-
sil (Proconsul africanus) corresponds to a plot inconsistent with that of all
other fossils as well as humans and apes.
Graphically present this data using (a) star plots, (b) Andrews plots, and (c)
Chernoff faces.

2.18. Andrews Plots of Iris Data. Fisher iris data are 4-D, and Andrews plots
can be used to explore clustering of the three species (Setosa, Versicolor,
and Virginica). Discuss the output from the code below.

load fisheriris
andrewsplot(meas,’group’,species);

What species clearly separate? What species are more difficult to separate?

2.19. Cork Boring Data. Cork is the bark of the cork oak (Quercus suber L),
a noble tree with very special characteristics that grows in the Mediter-
ranean. This natural tissue has unique qualities: light weight, elasticity,
insulation and impermeability, fire retardancy, resistance to abrasion, etc.
The data measuring cork boring of trees given in Rao (1948) consist of
the weights (in centigrams) of cork boring in four directions (north, east,
south, and west) for 28 trees. Data given in Table 2.1 can also be found in

cork.dat|mat.
(a) Graphically display the data as a data plot, pairwise scatterplots, An-
drews plot, and Chernoff faces.
(b) Find the mean x and covariance matrix S for this data set. Find the
trace and determinant of S.
(c) Find the Mahalanobis transformation for these data. Check that the
covariance matrix for the transformed data is identity.

2.20. Balance. When a human experiences a balance disturbance, muscles
throughout the body are activated in a coordinated fashion to maintain an
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Table 2.1 Rao’s data. Weights of cork boring in four directions (north, east, south, west) for
28 trees.

Tree N E S W Tree N E S W
1 72 66 76 77 15 91 79 100 75
2 60 53 66 63 16 56 68 47 50
3 56 57 64 58 17 79 65 70 61
4 41 29 36 38 18 81 80 68 58
5 32 32 35 36 19 78 55 67 60
6 30 35 34 26 20 46 38 37 38
7 39 39 31 27 21 39 35 34 37
8 42 43 31 25 22 32 30 30 32
9 37 40 31 25 23 60 50 67 54
10 33 29 27 36 24 35 37 48 39
11 32 30 34 28 25 39 36 39 31
12 63 45 74 63 26 50 34 37 40
13 54 46 60 52 27 43 37 39 50
14 47 51 52 43 28 48 54 57 43

upright stance. Researchers at Lena Ting Laboratory for Neuroengineering
at Georgia Tech are interested in uncovering the sensorimotor mechanisms
responsible for coordinating this automatic postural response (APR). Their
approach was to perturb the balance of a human subject standing upon a
customized perturbation platform that translates in the horizontal plane.
Platform motion characteristics spanned a range of peak velocities (5 cm/s
steps between 25 and 40 cm/s) and accelerations (0.1 g steps between 0.2
and 0.4 g). Five replicates of each perturbation type were collected during
the experimental sessions. Surface electromyogram (EMG) signals, which
indicate the level of muscle activation, were collected at 1080 Hz from 11
muscles in the legs and trunk.
The data in balance2.mat are processed EMG responses to backward-
directed perturbations in the medial gastrocnemius muscle (an ankle plan-
tar flexor located on the calf) for all experimental conditions. There is 1 s of
data, beginning at platform motion onset. There are 5 replicates of length
1024 each collected at 12 experimental conditions (4 velocities crossed with
3 accelerations), so the data set is 3-D 1024×5×12.
For example, data(:,1,4) is an array of 1024 observations corresponding
to first replicate, under the fourth experimental condition (30 cm/s, 0.2 g).
Consider a fixed acceleration of 0.2g and only the first replicate. Form 1024
4-D observations (velocities 25, 30, 35, and 40 as variables) as a data ma-
trix. For the first 16 observations find multivariate graphical summaries
using MATLAB’s gplotmatrix, parallelcoords, andrewsplot, and glyphplot.

2.21. Cats. Cats are often used in studies about locomotion and injury recovery.
In one such study, a bundle of nerves in a cat’s legs were cut and then
surgically repaired. This mimics the surgical correction of injury in people.
The recovery process of these cats was then monitored. It was monitored
quantitatively by walking a cat across a plank that has force plates, as well
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as by monitoring various markers inside the leg. These markers provided
data for measures such as joint lengths and joint moments. A variety of
data was collected from three different cats: Natasha, Riga, and Korina.
Natasha (cat = 1) has 47 data entries, Riga (cat = 2) has 39 entries, and
Korina (cat = 3) has 35 entries.
The measurements taken are the number of steps for each trial, the length
of the stance phase (in milliseconds), the hip height (in meters), and the
velocity (in meters/second). The researchers observe these variables for dif-
ferent reasons. They want uniformity both within and between samples (to
prevent confounding variables) for steps and velocity. The hip height helps
monitor the recovery process. A detailed description can be found in Farrell
et al. (2009).
The data set, courtesy of Dr. Boris Prilutsky, School of Applied Physiology
at, Georgia Tech, is given as the MATLAB structure file cats.mat.
Form a data matrix
X = [cat.nsteps cat.stancedur cat.hipheight cat.velocity cat.cat];

and find its mean and correlation matrix. Form matrix Z by standardiz-
ing the columns of X (use zscore). Plot the image of the standardized data
matrix.

2.22. BUPA Liver Data. The BUPA liver disorders database (courtesy of
Richard Forsyth, BUPA Medical Research Ltd.) consists of 345 records of
male individuals. Each record has 7 attributes,

Attribute Name Meaning
1 mcv Mean corpuscular volume
2 alkphos Alkaline phosphotase
3 sgpt Alamine aminotransferase
4 sgot Aspartate aminotransferase
5 gammagt Gamma-glutamyl transpeptidase
6 drinks Number of half-pint equivalents

of alcoholic beverages drunk per day
7 selector Field to split the database

The first five variables are all blood tests that are thought to be sensitive to
liver disorders that might arise from excessive alcohol consumption.
The variable selector was used to partition the data into two sets, very
likely into a training and validation part.
Using gplotmatrix explore the relationship among variables 1 through 6
(exclude the selector).

2.23. Cell Circularity Data. In the lab of Dr. Todd McDevitt at Georgia Tech,
researchers wanted to elucidate differences between the “static” and “ro-
tary” culture of embrionic bodies (EBs) that were formed under both con-
ditions with equal starting cell densities. After 2, 4, and 7 days of cul-
ture, images of EBs were acquired using phase-contrast microscopy. Im-
age analysis software was used to determine the circularity (defined as
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4π(Area/Perimeter2)) of each EB imaged. A total of n = 325 EBs were an-
alyzed from three separate plates for both static and rotary cultures at the
three time points studied. The circularity measures were used to examine
differences in the shape of EBs formed under the two conditions as well as
differences in their variability.
The data set circ.dat|mat consists of six columns corresponding to six
treatments (2d, rotary), (4d, rotary), (7d, rotary), (2d, static), (4d, static),
and (7d, static). Note that this is not an example of multivariate data since
the columns are freely permutable, but rather six univariate data sets.
(a) For rotation and static 2d measurements, plot back-to-back histograms
( bihist.m) as well as boxplots.
(b) For static 7d measurements graph by pie chart (pie) the proportion of
EBs with circularity smaller than 0.75.

MATLAB FILES AND DATA SETS USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch2.Descriptive/

acorr.m, acov.m, ashton.m, balances.m, bat.m, bihist.m,
biomed.m, blowfliesTS.m, BUPAliver.m, carea.m, cats.m, cats1.m,
circular.m, corkrao.m, crouxrouss.m, crouxrouss2.m, diversity.m,
ecg.m, empiricalcdf.m, fisher1.m, grubbs.m, hist2d.m, histn.m,
lightrev.m, limestone.m, mahalanobis.m, meanvarchange.m,
multifat.m, multifatstat.m, mushrooms.m, myquantile.m, mytrimmean.m,
piecharts.m, scattercloud.m, simple2comp.m, smoothhist2D.m, spikes.m,
surveysUKUS.m

ashton.dat, balance2.mat, bat.dat, blowflies.dat|mat,
BUPA.dat|mat|xlsx, cats.mat, cellarea.dat|mat, circ.dat|mat,
coburn.mat, cork.dat|mat, diabetes.xls, dmd.dat|mat|xls, fat.dat,
light.dat, limestone.dat, QT.dat|mat, raman.dat|mat, spikes.dat
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Chapter 3
Probability, Conditional Probability, and
Bayes’ Rule

Misunderstanding of probability may be the greatest of all impediments to scientific
literacy.

– Stephen Jay Gould

WHAT IS COVERED IN THIS CHAPTER

• Events, Sample Spaces, and Classical Definition of Probability
• Probability of Unions and Intersections
• Independence of Events and Conditional Probability
• Total Probability and Bayes’ Rule

3.1 Introduction

If statistics can be defined as the science that studies uncertainty, then proba-
bility is the branch of mathematics that quantifies it. One’s intuition of chance
and probability develops at a very early age (Piaget and Inhelder, 1976). How-
ever, the formal, precise definition of probability is elusive. There are several
competing definitions for the probability of an event, but the most practical
one uses its relative frequency in a potentially infinite series of experiments.

Probability is a part of all introductory statistics programs for a good rea-
son: It is the theoretical foundation of statistics. The basic statistical concepts,
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random sample, sampling distributions, statistic, etc., require familiarity with
probability to be understood, explained, and applied.

Probability is critical for the development of statistical concepts. Despite
this fact, it will not be a focal point of this course for reasons of time. There is
a dangerous temptation to dwell on urns, black and white balls, and combina-
torics for so long that more important statistical concepts such as regression
or ANOVA fall into a zeitnot (a term used in chess to describe the pressure felt
from having little remaining time).

Many students taking a university-level introductory statistics course have
already been exposed to probability and statistics previously in their educa-
tion. With this in mind, we will use this chapter as a survey of probability
using a range of examples. The more important concepts of independence,
conditioning, and Bayes’ rule will be covered in more detail and repeatedly
used later in various contexts. Ross (2009) is recommended for a review and
comprehensive coverage.

3.2 Events and Probability

If an experiment has the potential to be repeated an infinite number of times,
then the probability of an outcome can be defined through its relative fre-
quency of appearing. For instance, if we rolled a die a number of times, we
could construct a table showing how many times each face came up. These
individual frequencies (ni) can be transformed into proportions or relative fre-
quencies by dividing them by the total number of tosses n : f i = ni/n. If we
were to see the outcome 
 in 53 out of 300 tosses, then that face’s propor-
tion, or relative frequency, would be f6 = 53/300 = 0.1767. As more tosses are
made, we would “expect” the proportion of
 to stabilize around 1

6 . The “exper-
iments” in the next example are often quoted in the literature on elementary
probability.

Example 3.1. Famous Coin Tosses. Buffon tossed a coin 4,040 times. Heads
appeared 2,048 times. K. Pearson tossed a coin 12,000 times and 24,000 times.
The heads appeared 6,019 times and 12,012, respectively. For these three
tosses the relative frequencies of heads are 2048/4040 ≈ 0.5049, 6019/12000≈
0.5016, and 12012/24000≈ 0.5005.
�

What if the experiments cannot be repeated? For example, what is the
probability that “Squiki” the guinea pig survives its first treatment by a par-
ticular drug? Or in the “experiment” of taking a statistics course this semester,
what is the probability of getting an A? In such cases we can define probability
subjectively as a measure of strength of belief. Here is another example.
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Example 3.2. Tutubalin’s Problem. In a desk drawer in the house of Mr. Jay
Parrino of Kansas City there is a coin, a 1913 Liberty Head nickel (Fig. 3.1).
What is the probability that the coin is heads up? This is an example where

Fig. 3.1 A gem-proof-condition 1913 Liberty Head nickel, one of only five known, and the
finest of the five. Collector Jay Parrino of Kansas City bought the elusive nickel for a record
$1,485,000, the first and only time an American coin has sold for over $1 million.

equal levels of uncertainty for the two sides lead to the subjective answer of
1/2.
�

The symmetry of the experiment led to the classical definition of proba-
bility. An ideal die is symmetric. All sides are “equiprobable.” When rolling
a fair die, the probability of outcome 
 is a ratio of the number of favorable
outcomes (in our example only one outcome is favorable) to the number of all
possible outcomes, 1/6.1

Among several possible ways to define probability, three are outlined below.

Frequentist. An event’s probability is the proportion of times that
we would expect the event to occur if the experiment were repeated a
large number of times.

Subjectivist. A subjective probability is an individual’s degree of be-
lief in the occurrence of an event.

Classical. An event’s probability is the ratio of the number of favor-
able outcomes to possible outcomes in a (symmetric) experiment.

A formal definition of probability is axiomatic (Kolmogorov, 1933) and is a
special case of measure theory in mathematics.

The events that are assigned probabilities can be considered as sets of out-
comes. The following table uses a rolling die experiment to introduce the set
notation among events.

1 This definition is criticized by philosophers because of the fallacy called a vicious circle in
definition (circulus vitiosus in definiendo). One defines the notion of probability in terms of
equiprobable outcomes.
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Term Description Example

Experiment
A phenomenon, action, or pro-
cedure where the outcomes
are uncertain

A single roll of a balanced six-
sided die

Sample space
Set of all possible outcomes in
an experiment S = {�,�,�,�,	,
}

Event A collection of outcomes; a
subset of S

A = {�} (3 dots show), B =
{�,�,	,
} (at least three
dots show), C = {�,�}

Probability
A number between 0 and 1 as-
signed to an event.

P(A) = 1
6 , P(B) = 4

6 = 2
3 ,

P(C)= 2
6 = 1

3

To understand the probabilities from the above table, consider a simple
MATLAB code that will simulate rolling a fair die. A random number from
(0,1) is generated and multiplied by 6. This becomes a random number be-
tween 0 and 6. When this number is rounded up to the closest integer, the
outcomes �,�,. . . ,
 are simulated. They are all equally likely. For example,
the outcome � comes from the original number, which is in the range (3,4),
and this interval is one-sixth part of (0,6). Formal justification of this fact re-
quires the concept of uniform distribution, which will be covered in Chap. 5.

0 20 40 60 80 100
One

Two

Three

Four

Five

Six

Trial Number

O
ut
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m

e

Fig. 3.2 MATLAB simulation of rolling a fair die. The first 100 outcomes
{4,6,6,5,1, . . . ,4,5,3} are shown.

The MATLAB code rollongdie1.m generates 50,000 outcomes and checks
the proportion of those equal to 3, probA, those outcomes greater than or equal
to 3, probB, and those smaller than 3, probC. The relative frequencies of these
outcomes tend to their theoretical probabilities of 1/6, 2/3, and 1/3. Figure 3.2
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shows the outcomes of the first 100 simulations described in the MATLAB
code below.

% rollingdie1.m
outcomes = []; %keep outcomes here
M=50000 %# of rolls
for i= 1:M

outcomes = [outcomes ceil( 6*rand )];
% ceil(6*rand) rounds up (takes ceiling) of random
% number from (0,6), thus the outcomes 1,2,3,4,5,and 6
% are equally likely

end
probA = sum((outcomes == 3))/M

% probA = 0.1692
probB = sum((outcomes >= 3))/M

% probB = 0.6693
probC = sum((outcomes < 3))/M

% probC = 0.3307

Events in an experiment are sets containing the elementary outcomes, that
is, distinctive outcomes of the experiment. Among all events in an experiment,
two are special: a sure event and an impossible event. A sure event occurs
every time an experiment is repeated and has a probability of 1. It consists
of all outcomes and is equal to the sample space of the experiment, S . An
impossible event never occurs when an experiment is performed and is usually
denoted as ;. It contains no elementary outcomes and its probability is 0.

For any event A, the probability that A will occur is a number between
0 and 1, inclusive:

0≤P(A)≤ 1.

Also,

P(;)= 0, and P(S )= 1.

The intersection A∩B of two events A and B occurs if both events A and
B occur. The key word in the definition of the intersection is and. The inter-
section of two events A∩B is often written as a product AB. We will use both
the ∩ and product notations.

The product of the events translates into the product of their probabilities
only if the events are independent. We will see later that relationship P(AB)=
P(A)P(B) is the definition of the independence of events A and B.
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Events are said to be mutually exclusive if they have no common elemen-
tary outcomes. In other words, it is impossible for both events to occur in a sin-
gle trial of the experiment. For mutually exclusive events, P(A ·B)=P(;)= 0.

In the die-toss example, events A = {�} and B = {�,�,	,
} are not mutu-
ally exclusive, since the elementary outcome {�} belongs to both of them. On
the other hand, the events A = {�} and C = {�,�} are mutually exclusive.

The union A∪B of two events A and B occurs if at least one of the events
A or B occurs. The key word in the definition of the union is or.

For mutually exclusive events, the probability that at least one of them
occurs is

P(A∪C)=P(A)+P(C).

For example, if the probability of event A = {�} is 1/6, and the probability of
the event C = {�,�} is 1/3, then the probability of A or C is

P(A∪C)=P(A)+P(C)= 1/6+1/3= 1/2.

The additivity property is valid for any number of mutually exclusive
events A1, A2, A3, . . . :

P(A1 ∪ A2 ∪ A3 ∪ . . . )=P(A1)+P(A2)+P(A3)+ . . . .

What is P(A∪B) if events A and B are not mutually exclusive?

For any two events A and B, the probability that either A or B will occur
is given by the inclusion-exclusion rule:

P(A∪B)=P(A)+P(B)−P(A ·B). (3.1)

If events A and B are exclusive, then P(A ·B) = 0, and we get the familiar
result P(A∪B)=P(A)+P(B).

The inclusion-exclusion rule can be generalized to unions of an arbitrary
number of events. For example, for three events A,B, and C, the rule is

P(A∪B∪C)=P(A)+P(B)+P(C)−P(A ·B)−P(A ·C)−P(B ·C)+P(A ·B ·C).

(3.2)

For every event defined on a space of elementary outcomes, S , we can
define a counterpart event called its complement. The complement Ac of an
event A consists of all outcomes that are in S but are not in A. The key word
in the definition of a complement is not. In our example, Ac consists of the
outcomes {�,�,�,	,
}.

Events A and Ac are mutually exclusive by definition. Consequently,
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P(A∪ Ac)=P(A)+P(Ac).

Since we also know from its definition that Ac includes all outcomes in the
sample space, S , that are not in A, so that S = A∪ Ac, it follows that

P(A)+P(Ac)=P(S )= 1.

For any pair of complementary events A and Ac,
P(A)+P(Ac)= 1, P(A)= 1−P(Ac), and P(Ac)= 1−P(A).

These equations simplify the solutions of some probability problems. If
P(Ac) is easier to calculate than P(A), then the equations above let us obtain
P(A) indirectly.

Having defined the complement, we can prove (3.1). The argument is easy
if event B is written as a union of two exclusive events, B = (B∩ Ac)∪ (A∩B).
From this and the additivity property,

P(B∩ Ac)=P(B)−P(A∩B).

Since A∪B is equal to a union of exclusive events, A∪B = A∪ (B∩ Ac), by the
additivity property of probability we obtain

P(A∪B)=P(A)+P(B∩ Ac)=P(A)+P(B)−P(A∩B).

This and some other probability properties are summarized in the table
below.

Property Notation

If event S will always occur, its probability is
1.

P(S )= 1

If event ; will never occur, its probability is 0. P(;)= 0

Probabilities are always between 0 and 1, in-
clusive.

0≤P(A)≤ 1

If A,B,C, . . . are all mutually exclusive then
P(A∪B∪C . . . ) can be found by addition.

P(A ∪ B ∪ C . . . ) = P(A) +
P(B)+P(C)+ . . .

The general addition rule for probabilities P(A ∪ B) = P(A) + P(B) −
P(A ·B)

Since A and Ac are mutually exclusive and
between them include all outcomes from S ,
P(A∪ Ac) is 1.

P(A∪ Ac) = P(A)+P(Ac) =
P(S ) = 1, and P(Ac)
= 1−P(A)
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Of particular importance in assessing the probability of composite events
are De Morgan’s laws which are simple algebraic relationships between events.
The laws are named after Augustus De Morgan, British mathematician and
logician (Fig. 3.3).

For any set of n events A1, A2, . . . , An,

(A1 ∪ A2 ∪·· ·∪ An)c = Ac
1 ∩ Ac

2 ∩·· ·∩ Ac
n,

(A1 ∩ A2 ∩·· ·∩ An)c = Ac
1 ∪ Ac

2 ∪·· ·∪ Ac
n.

De Morgan’s laws can be readily demonstrated using Venn diagrams, dis-
cussed in Sect. 3.4.

Fig. 3.3 Augustus De Morgan (1806–1871).

The following example shows how to apply De Morgan’s laws.

Example 3.3. Nanotubules and Cancer Cells. One technique of killing
cancer cells involves inserting microscopic synthetic rods called carbon nan-
otubules into the cell. When the rods are exposed to near-infrared light from a
laser, they heat up, killing the cell, while cells without rods are left unscathed
(Wong et al., 2005). Suppose that five nanotubules are inserted in a single
cancer cell. Independently of each other they become exposed to near-infrared
light with probabilities 0.2, 0.4, 0.3, 0.6, and 0.5. What is the probability that
the cell will be killed?

Let B be an event where a cell is killed and Ai an event where the ith
nanotubule kills the cell. The cell is killed if A1 ∪ A2 ∪ ·· · ∪ A5 happens. In
other words, the cell is killed if nanotubule 1 kills the cell, or nanotubule 2
kills the cell, etc. We consider the event where the cell is not killed and apply
De Morgan’s laws. De Morgan’s laws state that Ac

1 ∪ Ac
2 ∪·· ·∪ Ac

n = (A1 ∩ A2 ∩
·· ·∩ An)c,
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P(B) = 1−P(Bc)= 1−P((A1 ∪ A2 ∪·· ·∪ A5)c)= 1−P(Ac
1 ∩ Ac

2 ∩·· ·∩ Ac
5)

= 1− (1−0.2)(1−0.4)(1−0.3)(1−0.6)(1−0.5)= 0.9328.

Thus, the cancer cell will be killed with a probability of 0.9328.
�

Example 3.4.
�

As an example of the algebra of events and basic rules of prob-
ability, we derive the Bonferroni inequality. It will be revisited later in the text
when calculating the significance level in simultaneous testing of multiple hy-
potheses (p. 342).

The Bonferroni inequality states that for arbitrary events A1, A2, . . . , An,

P(A1 ∩ A2 ∩·· ·∩ An)≥P(A1)+P(A2)+·· ·+P(An)−n+1. (3.3)

Start with n events Ai, i = 1, . . . , n and the event Ac
1 ∪ Ac

2 ∪ ·· · ∪ Ac
n. The

probability of any union of events is always smaller than the sum of probabil-
ities of individual events:

P(Ac
1 ∪ Ac

2 ∪·· ·∪ Ac
n)≤P(Ac

1)+P(Ac
2)+·· ·+P(Ac

n).

De Morgan’s laws state that Ac
1 ∪ Ac

2 ∪·· ·∪ Ac
n = (A1 ∩ A2 ∩·· ·∩ An)c and

1−P((A1 ∩ A2 ∩·· ·∩ An)c)≤ (1−P(A1))+ (1−P(A2))+·· ·+ (1−P(An)),

leading to the inequality in (3.3).
�

Circuits. The application of basic probability rules involving unions, in-
tersections, and complements of events can be quite useful. An example is the
application in the reliability of a complex system consisting of many compo-
nents that work independently. If a complex system can be expressed as a con-
figuration of simple elements that are linked in a “serial” or “parallel” fashion,
the reliability of such a system can be calculated by knowing the reliabilities
of its constituents.

Let a system S consist of n constituent elements E1,E2, . . . ,En that can
be interconnected in either a serial or a parallel fashion (Fig. 3.4). Suppose
that elements Ei work in time interval T with probability pi and fail with
probability qi = 1− pi, i = 1, . . . , n. The following table gives the probabilities
of working for elements in S.

Connection Notation Works with prob Fails with prob
Serial E1 ∩E2 ∩·· ·∩En p1 p2 . . . pn 1− p1 p2 . . . pn

Parallel E1 ∪E2 ∪·· ·∪En 1− q1q2 . . . qn q1q2 . . . qn



68 3 Probability, Conditional Probability, and Bayes’ Rule

E1 E2 En

(a)

E1

E2

En

(b)

Fig. 3.4 (a) Serial connection modeled as E1∩E2 ∩·· ·∩En. (b) Parallel connection modeled
as E1 ∪E2 ∪·· ·∪En.

If the system has both serial and parallel connections, then the probabil-
ity of the system working can be found by the subsequent application of the
probabilities for the union and intersection of events.

Here is an example.

Example 3.5. Circuit. A complex system S is defined via

S = E1 ∩ [(E2 ∩E3)∪ (E4 ∩ (E5 ∪E6))]∩E7,

where the unreliable components Ei, i = 1, . . . ,7 work and fail independently.
The system is depicted in Fig. 3.5. The components are operational in some

E1

E2 E3

E4

E5

E6

E7

Fig. 3.5 Circuit E1 ∩ [(E2 ∩E3)∪ (E4 ∩ (E5 ∪E6))]∩E7.

fixed time interval [0,T] with probabilities given in the following table.
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Component E1 E2 E3 E4 E5 E6 E7
Probability of functioning well 0.9 0.5 0.3 0.1 0.4 0.5 0.8

We will find the probability that system S will work in [0,T] first analyt-
ically and then find an approximation by simulating the circuit in MATLAB
and WinBUGS.

To find the probability that system S works/fails, it is useful to create a
table with probabilities pi = P(component Ei works) and their complements
qi = 1− pi, i = 1, . . . ,7:

Component E1 E2 E3 E4 E5 E6 E7
pis 0.9 0.5 0.3 0.1 0.4 0.5 0.8
qis 0.1 0.5 0.7 0.9 0.6 0.5 0.2

and then calculate step by step the probabilities of subsystems that ulti-
mately add up to the final system. For example, we calculate the probability
of working/failing for S1 = E2 ∩E3, then S2 = E5 ∪E6, then S3 = E4 ∩S2, then
S4 = S1 ∪S3, and finally S = E1 ∩S4 ∩E7.

Component Probability of working Probability of failing
S1 = E2 ∩E3 ps1 = 0.5 ·0.3= 0.15 qs1 = 1−0.15= 0.85
S2 = E5 ∪E6 ps2 = 1−0.3= 0.7 qs2 = 0.6 ·0.5= 0.3
S3 = E4 ∩S2 ps3 = 0.1 ·0.7= 0.07 qs3 = 1−0.07= 0.93
S4 = S1 ∪S3 ps4 = 1−0.7905= 0.2095 qs4 = 0.85 ·0.93= 0.7905

S = E1 ∩S4 ∩E7 pS = 0.9 ·0.2095 ·0.8= 0.15084 qS = 1−0.15084= 0.84916

Thus the probability that the system will work in the time interval [0,T]
is 0.15084.

The MATLAB code that approximates this probability uses a random num-
ber generator to simulate the case where the simple elements “work” and bi-
nary operations to simulate intersections and unions. For example, the fact
that e1 is functioning well (working) with a probability of 0.9 is modeled by
e1 = rand < 0.9. Note that the left-hand side of the equation e1 = rand <
0.9 is a logical expression that takes values TRUE (numerical value 1) and
FALSE (numerical value 0). Given that the event {rand< 0.9} is true 90% of
the time, the value e1 represents the status of component E1. This will be 0
with a probability of 0.1 and 1 with a probability of 0.9. The unions and inter-
sections of e1, e2, . . . , en are modeled as (e1+e2+·· ·+en > 0) and e1∗e2∗·· ·∗en,
respectively. Equivalently, they can be modeled as max{e1, e2, . . . , en} and
min{e1, e2, . . . , en}. Indeed, the former is 1 if at least one ei is 1, and the latter
is 1 if all eis are 1, thus coding the union and the intersection.

To assess the probability that the system is operational, subsystems are
formed and gradually enlarged, identical to the method used to find the ana-
lytic solution ( circuit.m).
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% circuit.m
M=1000000;
s = 0;
for i = 1:M
e1 = rand < 0.9; e2 = rand < 0.5; e3 = rand < 0.3;
e4 = rand < 0.1; e5 = rand < 0.4; e6 = rand < 0.5;
e7 = rand < 0.8;
% ===============
s1 = min(e2,e3); % or s1 = e2*e3;
s2 = max(e5,e6); % or s2= e5+e6>0;
s3 = min(e4,s2); % or s3 = e4*s2;
s4 = max(s1,s3); % or s4 = s1+s3 > 0;
st = min([e1;s4;e7]); % or st=e1*s4*e7;
s = s + st;
end
works = s/M
fails = 1 - works

% works = 0.150944
% fails = 0.849056

Next we repeat this simulation in WinBUGS. There are many differences
between MATLAB and WinBUGS that go beyond the differences in the syntax.
In MATLAB we had an explicit loop to generate 106 runs; in WinBUGS this
is done via the Model>Update tool and is not a part of the code. Also, the eis in
MATLAB are 0 and 1; in WinBUGS they are 1 and 2 since the outcomes are
realizations of a categorical discrete random variable dcat, and this variable
is coded by nonnegative integers: 1, 2, 3, . . . . For this reason we adjusted the
probability of a system working as ps <- s - 1.

# circuit1.odc
model
for (i in 1:7)
e[i] ~ dcat(p[i,])

s1 <- min(e[2],e[3])
s2 <- max(e[5],e[6])
s3 <- min(e[4],s2)
s4 <- max(s1,s3)
s <- min( min(e[1],s4) , e[7] )
ps <- s-1

DATA IN:
list(
p = structure(.Data =
c(0.1,0.9, 0.5,0.5,

0.7,0.3, 0.9,0.1,
0.6,0.4, 0.5,0.5,
0.2,0.8) , .Dim = c(7,2) ) )
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INITS NONE, just ’gen inits’

The result of the simulations is close to the theoretical value.

mean sd MC error val2.5pc median val97.5pc start sample
ps 0.1508 0.3578 3.528E–4 0.0 0.0 1.0 10001 1000000

�
This is the first WinBUGS program in the text, and the reader is advised

to consult Chap. 19, which discusses how communication with the WinBUGS
program is structured and carried out. This comment has the mark “dangerous
bend” since many students initially find the BUGS interface and programming
intimidating.
�

3.3 Odds

Odds are alternative measures for the likelihood of events. If an event A has
a probability P(A), then the odds of A are defined as

Odds(A) = P(A)
P(Ac)

, P(A)= Odds(A)
Odds(A)+1

.

From the classical definition of probability P(A) = # of favorable for A
# in the sample space =

nA /n, the odds of A are defined as Odds(A) = nA /(n− nA). For instance, the
odds of event A = {
} are 1/(6−1), one in five.

In economic decision theory, epidemiology, game theory, and some other
areas, odds and odds ratios are preferred measures of quantifying and com-
paring events.

Example 3.6. The odds that the circuit S in Example 3.5 is working are
17.76%, since P(S)= 0.15084 and Odds(S) = 0.15084/(1−0.15084) = 0.17763.
�

3.4 Venn Diagrams*

Venn diagrams help in graphically presenting the algebra of events and in de-
termining the probability of composite events involving unions, intersections,
and complements. The diagrams are named after John Venn (Fig. 3.6), the
English logician who introduced the diagrams in his 1880 paper (Venn, 1880).

Venn diagrams connect sets and events in a graphical way – the events
are represented as circles (squares, rectangles) and the notions of unions, in-
tersections, complements, exclusiveness, implication, etc. among the events
translate directly to the corresponding relations among the geometric areas.
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Fig. 3.6 John Venn (1834–1923), English logician.

Exclusive events are represented by nonoverlapping circles, while the notion
of causality among the events translates to the subset relation. The geometric
areas representing the events are plotted in a large rectangle representing the
sample space (sure event).

Panels (a) and (b) in Fig. 3.7 show the union and intersection of events A
and B, while panel (c) shows the complement of event A.

  B  A   B  A   A

(a) (b) (c)

Fig. 3.7 (a) Union and (b) intersection of events A and B and (c) complement of event A.

It is possible to define more exotic operations with events. For example,
the difference between events A and B, denoted as A\B, is shown in Fig. 3.8a.
It is obvious from the diagram that A\B = A∩Bc. The symmetric difference
(or exclusive union) of events A and B, denoted as A∆B, is an event in which
either A or B happens, but not both (Fig. 3.8b). From the Venn diagram it is
easy to see that A∆B = (A∩Bc)∪ (B∩ Ac)= (A\B)∪ (B\A).

Sometimes, the evidence for more complex algebraic relations between
events can be established by Venn diagrams. Usually a Venn diagram of the
left-hand side in a relation is compared with the Venn diagram of the right-
hand side, and if the resulting sets coincide, we have a “proof.” Proofs of this
kind can be formalized with the help of mathematical logic and tautologies.

For example, one of De Morgan’s laws for three events, (A∪B∪C)c = Ac ∩
Bc ∩Cc, can be demonstrated by Venn diagrams. Panel (a) in Fig. 3.9 shows
A∪B∪C, while panel (b) shows Ac ∩Bc ∩Cc. It is obvious that the sets in the
two panels are complementary and De Morgan’s law is “demonstrated.”
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  B  A   B  A

(a) (b)

Fig. 3.8 Difference A\B and symmetric difference A∆B.

  A

  B   C

  A

  B   C

(a) (b)

Fig. 3.9 De Morgan’s Law: (A∪B∪C)c = Ac ∩Bc ∩Cc.

Likewise, if we want to demonstrate the distributive law A∪ (B∩C)= (A∪
B)∩ (A ∪ C), the Venn diagram argument is shown in Fig. 3.10a-c. The set
A∪ (B∩C) is shown in panel (a). Panels (b) and (c) show sets A∪B and A∪C,
respectively. Their intersection coincides with the set in panel (a).

  A

  B   C

  A

  B   C

  A

  B   C

(a) (b) (c)

Fig. 3.10 Distributive law among events, A∪ (B∩C)= (A∪B)∩ (A∪C).

In addition to algebraic relations among events, Venn diagrams can help
in finding the probability of the complex algebraic composition of events. The
probability can be informally connected with the area of a set in a Venn di-
agram, and this connection is extremely useful. For example, for the result
P(A ∪B∪C) = P(A)+ P(B)+P(C) −P(AB)−P(AC)− P(BC)+P(ABC), the for-
mal proof is quite involved. An informal “proof” based on areas in a Venn dia-
gram is simple and intuitive. The argument is as follows. If the probability is
thought of as an area, then the area of A∪B∪C can be obtained by adding the
areas of A, B, and C, respectively. However, by adding the three areas there
is an excess in the total area, and the regions counted multiple times should
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be subtracted. Thus areas of A∩B, A∩C, and B∩C are subtracted from the
sum P(A)+P(B)+P(C). In this subtraction, the area of A∩B∩C is subtracted
three times and should be “patched back.” Alternatively, one can think about
painting the set A∪B∪C with a single layer of paint, and the total amount of
paint used is the probability. Of course, the amount of paint needed to paint
the universal event S is 1. Although very informal, such a discursion can be
quite useful.

3.5 Counting Principles*

Many experiments can be modeled by a sample space with a finite number of
equally likely outcomes. We discussed the experiment of rolling a die, in which
the sample space had six equally likely outcomes. In finding the probability
of an event defined on this sample space we divided the number of outcomes
favorable to A by 6. For example, the event A = {�,�,
} (the number is even)
has a probability of 3/6=1/2. But what if 10 dice are simultaneously rolled and
we were interested in the probability that the sum of numbers will be equal
to 55? The problem here is to count how many of 610 = 60,466,176 possible
equally likely outcomes produce the sum of 55, and a simple inspection of the
sample space applicable for one or two dice is not feasible. In situations like
this, combinatorial and counting principles help. We will briefly illustrate the
most important principles and introduce mathematical notions (factorial, n-
choose-k, etc.) needed later in the course. A comprehensive coverage and a
wealth of examples can be found in Ross (2009).

We start with definitions and basic properties of factorials and n-choose-k
operations.

Factorial n! is defined as the product

n!= n(n−1)(n−2). . .2 ·1=
n∏

i=1
i.

For example, 5!= 5 ·4 ·3 ·2 ·1= 120. By definition 0!= 1.
An n-choose-k operation (or binomial coefficient) is defined as follows:

(
n
k

)
= n(n−1). . . (n−k+1)

k!
= n!

(n−k)!k!
.

As the name indicates, n-choose-k is the number of possible subsets of size k
from a set of n elements. For example, the number of different committees of
size 3 formed from a group of 8 students is

(8
3
) = 8×7×6

3×2×1 = 56. In MATLAB the
command for

(n
k
)

is nchoosek(n,k). For example, nchoosek(8,3) results in 56.
The following properties follow directly from the definition of

(n
k
)
:
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(
n
k

)
=

(
n

n−k

)
,

(
n
0

)
= 1 and

(
n
1

)
= n,

(
n
k

)
+

(
n

k+1

)
=

(
n+1
k+1

)
.

Fundamental Counting Principle . If an experiment consists of k
actions, and the ith action can be performed in ni different ways, then
the whole experiment can be performed in n1×n2×·· ·×nk different ways.
This is called the multiplication counting rule or fundamental counting
principle.

Example 3.7. Out of 15 items, 4 are defective. The items are inspected one by
one. What is the probability that the ninth item was the last defective one?

Consider the arrangement of 11 conforming and 4 defective items. The
number of all possible arrangements is

(15
4
) = (15

11
) = 1316, as one chooses 4

places out of 15 to place defective items or, equivalently, 11 places out of 15 to
place conforming items.

The number of favorable outcomes can be found by the multiplication rule.
Favorable outcomes are defined as follows: among the first-selected eight items
three are defective, the ninth position is occupied by a defective item, and none
of the remaining six items is defective:

(
8
3

)
×1×1= 56.

Note that the number of ways in which a defective item falls at the ninth
position, and the number of ways where six fair items occupy positions 10 to
15, are 1 each. Thus, the required probability is 56/1365= 0.041.
�

There is also an addition counting rule that mimics the additive property
of probability: If k events are exclusive and have n1,n2, . . . , nk outcomes, then
their union has n1+n2+·· ·+nk outcomes. If the events are not exclusive, this
rule is known as the inclusion-exclusion principle. For instance, if two events
are arbitrary, the inclusion-exclusion rule count for outcomes in their union is
n1 +n2 −n12, where n12 is the number of common outcomes. For three events
the inclusion-exclusion rule is n1 +n2 +n3 −n12 −n13 −n23 +n123; cf. (3.2).

If the population has N subjects and a sample of size n is needed, then
Table 3.1 summarizes the number of possible samples, given the sampling
policy and importance of ordering.
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We first introduce the necessary notation. When the order is important, the
samples are called variations or permutations. One can think about variations
as words in an alphabet, since for words the order of letters is important. By
the fundamental counting principle, the number of variations with repetitions
of N elements of length n is V

n
N = Nn since each of n places can be selected in

N ways. The number of variations without repetition of N elements of length
n is V n

N = N × (N −1)×·· ·× (N −n+1) = N(n), n ≤ N. Note that V N
N = N! is the

number of permutations of N distinct elements.
In combinations, the order in the sample is not important. If there is no

repetition of elements, then Cn
N = (N

n
)
. If the repetition is possible, then C

n
N =(N+n−1

n
)
.

Table 3.1 Number of variations/combinations when the selection of n from N elements is
done with/without the repetition.

Order important Order not important
(variations or permutations) (combinations)

Sampling w/ repetition V
n
N = Nn C

n
N = (N+n−1

n
)

Sampling w/o repetition V n
N = N(N −1). . . (N −n+1) Cn

N = (N
n
)
, n≤ N

The number of permutations of N distinctive elements is N!, but if among
N elements there are only k different elements, n1 of type 1, n2 of type 2, . . . ,
nk of type k, (n1+n2+·· ·+nk = N), then the number of different permutations
is

(
N

n1, n2, . . .nk

)
= N!

n1!n2! · · ·nk!
. (3.4)

The number in (3.4) is also called the multinomial coefficient.

Example 3.8. Probability by Counting. What is the probability that in a
six-digit licence plate of a randomly selected car

(a) All digits will be different?
(b) Exactly two digits will be equal?
(c) At least three digits will be different?
(d) There will be exactly two pairs of equal digits?
We assume that any digit from 0 to 9 can be at any of the six positions in

the six-digit plate number.
This example is solved by using the classical definition of probability. For

each event in (a)–(d), the number of favorable outcomes will be divided by the
number of possible outcomes. The number of all possible outcomes is common,
V

6
10 = 106.

(a) To find the number of favorable outcomes for the event where all digits
are different, consider forming a six-digit number position by position. For the
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first position there are ten digits available, for the second nine (the digit used
in the first position is eliminated as a choice for the second position), for the
third eight, etc., for the last five. By the fundamental counting principle, the
number of all favorable outcomes is the product 10×9×8×7×6×5= 10(6) =V 6

10,
and the probability is

10(6)

106 = 0.1512.

(b) Out of ten digits choose one and place it on any two positions out of six
available. This can be done in 10×(6

2
)= 150 ways. The remaining four positions

could be chosen in 9×8×7×6 ways. Thus, the number of favorable outcomes
is 150×9×8×7×6, and the required probability is 0.4536.

(c) The opposite event for “at least three digits are different” is “all digits
are the same” or “exactly two digits are the same,” and we will find its proba-
bility first. The number of cases where all digits are the same is ten, while the
number of cases where there are exactly two different digits is

(10
2
)× (26 −2).

Digits a and b can be selected in
(10

2
)

ways. Given the fixed selection, there
are 26 −2 words in alphabet {a, b} of length 6 where the words aaaaaa and
bbbbbb are excluded. The probability of “at least three different digits” is

1−
10+ (10

2
)
(26 −2)

106 = 1−0.0028= 0.9972.

(d) From ten digits first select two for the two pairs, and then an additional
two digits for the remaining two places. There are four different digits: a,b for
the two pairs and c,d for the remaining two places. The selection can be done
in

(10
2
)× (8

2
)

ways. Once selected, the digits can be arranged in
( 6
2,2,1,1

)= 6!
2!2!1!1!

ways, by using permutations with repetitions as in (3.4).
Thus, the probability is

(10
2
)
×

(8
2
)
× 6!

2! 2! 1! 1!

106 = 0.2268.

�

The following two important equations for probability calculation are a
direct consequence of the combinatorial properties discussed in this section.
They will be used later in the text when discussing the binomial and hyperge-
ometric distributions and their generalizations.

Multinomial and Multihypergeometric Trials. Suppose that an ex-
periment can result in m possible outcomes, A1, A2, . . . , Am, that have
probabilities P(A1) = p1, . . . ,P(Am) = pm, p1 +·· ·+ pm = 1. If the experi-
ment is independently repeated n times, then the probability that event
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A1 will appear exactly n1 times, A2 exactly n2 times, . . . , Am exactly nm
times (n1 +·· ·+nm = n) is

(
n

n1,n2, . . .nm

)
pn1

1 pn2
2 · · · pnm

m .

If a finite population of size m has k1 subjects of type 1, . . . , kp sub-
jects of type p, (k1+·· ·+kp = m), and n subjects are sampled at random,
then the probability that x1 will be of type 1, . . . , xp will be of type p
(x1 +·· ·+ xp = n), is

(k1
x1

)(k2
x2

)
· · ·

(kl
xl

)
(m

n
) .

3.6 Conditional Probability and Independence

Important contemporary applications of probability in bioengineering, medical
diagnostics, system biology, bioinformatics, etc. concern modeling and predic-
tion of causal relationships in complex systems. The methodologies include in-
fluence diagrams, Bayesian networks, Granger causality, and related methods
for which the notions of conditional probability, causality, and independence
are fundamental. In this section we discuss conditional probabilities and in-
dependence.

A conditional probability is the probability of one event if we have informa-
tion that another event, typically from the same sample space, has occurred.
In the die-toss example, the probability of event A = {�} is P(A)= 1

6 . But what
if we knew that event B = {�,�,	,
} occurred? There are only four possible
outcomes, only one of which is favorable for A. Thus, the probability of A given
B is 1

4 . The conditional probability of A given B is denoted as P(A|B).
In general, the conditional probability of an event A given that B has oc-

curred is equal to the probability of their intersection P(AB) divided by the
probability of the event that we are conditioning upon, P(B). Of course, event B
has to have a positive probability, P(B)> 0, because conditioning upon an event
of zero probability is equivalent to the indeterminacy 0/0, as 0≤P(AB)≤P(B):

P(A|B)= P(A ·B)
P(B)

, for P(B)> 0.
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Figure 3.11 gives a graphical description of the conditional probability
P(A|B). Once event A is conditioned by B, B “becomes the sample space” and
B’s Venn diagram expands by a factor of 1

P(B) . The intersection AB in the ex-
panded B becomes event A|B.

Fig. 3.11 Graphical illustration of conditional probability.

An event A is independent of B if the conditional probability of A given B
is the same as the probability of A alone.

Events A and B are independent if

P(A|B)=P(A). (3.5)

In the die-toss example, P(A) = 1
6 and P(A|B) = 1

4 . Therefore, events A
and B are not independent.

We saw that the probability of the union A∪B was P(A∪B)= P(A)+P(B)−
P(AB). Now we are ready to introduce the general rule for the probability of
an intersection.

The probability that events A and B will both occur is obtained by ap-
plying the multiplication rule:

P(A ·B)=P(A)P(B|A)=P(B)P(A|B), (3.6)

where P(A|B) and P(B|A) are conditional probabilities of A given B and
of B given A, respectively.

Only for independent events, equation (3.6) simplifies to

P(A ·B)=P(A)P(B). (3.7)
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Relationship (3.7) is also used to define independence, but (3.5) and (3.7) are
equivalent.

With the repeated application of the multiplication rule, one can easily
show

P(A1 A2 . . . An)=P(A1|A2 . . . An) P(A2|A3 . . . An) . . .P(An−1|An) P(An),

which is sometimes referred to as the chain rule. Here is one example of the
use of the chain rule.

Example 3.9. 3+3 Dose Escalation Scheme. In a dose finding stage of clini-
cal trials (Phase I) patients are given the drug at some dose, and if there is no
dose limiting toxicity (DLT), the dose is escalated. A version of the popular 3+3
method is implemented as follows. At a particular dose level three patients are
randomly selected and given the drug. If there is no DLT, the dose is escalated
to the next higher one. If there are two or more DLTs, the escalation process
is stopped. If there is exactly one DLT among the three patients, three new
patients are selected at random and given the drug at the same dose. If there
are no DLTs among these three new patients, the dose is escalated. If there is
at least one DLT, the escalation process is stopped.

Assume that 30 patients are available for the trial at some fixed dose. If
among them 4 will exhibit DLT at that dose, what is the probability that in
the described step of the 3+3 procedure the dose will be escalated?

We assume that patients are selected and given the drug one by one. De-
note by Ai the event that the ith patient will exhibit no DLT.

Then the dose will be escalated if the event

B = A1 A2 A3 ∪ Ac
1 A2 A3 A4 A5 A6 ∪ A1 Ac

2 A3 A4 A5 A6 ∪ A1 A2 Ac
3 A4 A5 A6

happens. Here, for example, the event A1 Ac
2 A3 A4 A5 A6 means that among

the first three subjects the second experienced DLT, and that in the second
group of three there was no DLT. Since the events A1 A2 A3, Ac

1 A2 A3 A4 A5 A6,
A1 Ac

2 A3 A4 A5 A6, and A1 A2 Ac
3 A4 A5 A6 are exclusive, the probability of their

union is the sum of probabilities:

P(B) = P(A1 A2 A3)+P(Ac
1 A2 A3 A4 A5 A6)

+P(A1 Ac
2 A3 A4 A5 A6)+P(A1 A2 Ac

3 A4 A5 A6).

For each of the probabilities the chain rule is needed. For example,

P(Ac
1 A2 A3 A4 A5 A6)= 0.0739,

since
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P(Ac
1) ·P(A2|Ac

1) ·P(A3|Ac
1 A2) ·P(A4|Ac

1 A2 A3)

·P(A5|Ac
1 A2 A3 A4) ·P(A6|Ac

1 A2 A3 A4 A5)

= 4
30

· 26
29

· 25
28

· 24
27

· 23
26

· 22
25

.

Thus,

P(B) = 26
30

· 25
29

· 24
28

+ 4
30

· 26
29

· 25
28

· 24
27

· 23
26

· 22
25

+ 26
30

· 4
29

· 25
28

· 24
27

· 23
26

· 22
25

+ 26
30

· 25
29

· 4
28

· 24
27

· 23
26

· 22
25

= 0.8620.

The dose will be escalated with probability 0.8620.
�

If counting rules are applied, the solution can be expressed as
(26

3
)(4

0
)

(30
3
) +

(26
2
)(4

1
)

(30
3
) ×

(24
3
)(3

0
)

(27
3
) .

�

The conditional odds of A given that B occurred is

Odds(A|B)= P(A|B)
P(Ac|B)

= P(AB)
P(AcB)

.

If events A and B are independent, then Odds(A|B)=Odds(A).
�

For two events A and B the notions of exclusiveness AB = ; and inde-
pendence P(AB)=P(A)P(B) are often considered equivalent by some students.
Their argument can be summarized as follows. If two events do not share out-
comes and their intersection is empty, then they must be independent. The
contrary is true. If the events are exclusive and none are impossible, then
they must be dependent. This can be demonstrated with the simple example
of a coin-flipping experiment.

If A denotes tails up and B denotes heads up, then A and B are exclusive
but dependent. If we have information that A happened, then we also have
complete information that B did not happen.

If the sample spaces are different and the events are well separated in
either time or space, their independence is intuitive. However, if the events
share the sample space, it could be difficult to discern whether or not they are
independent without resorting to the definition. The following example shows
this.

Example 3.10. Let an experiment consist of drawing a card at random from a
standard deck of 52 playing cards. Define events A and B as “the card is a ♠”
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and “the card is a queen.” Are the events A and B independent? By definition,
P(A ·B) = P(Q♠) = 1

52 . This is the product of P(♠) = 13
52 and P(Q) = 4

52 , and
events A and B in question are independent. In this situation, intuition pro-
vides no help. Now, pretend that the 2♥ is drawn and excluded from the deck
prior to the experiment. Events A and B become dependent since

P(A) ·P(B)= 13
51

· 4
51

6= 1
51

=P(A ·B).

�

The multiplication rule tells us how to find the probability for a composite
event (A ·B). The probability of (A ·B) is used in the general addition rule for
finding the probability of (A∪B).

Rule Notation

Definitions
The conditional probability of A given B is the
probability of event A if event B occurred. P(A|B)

A is independent of B if the conditional proba-
bility of A given B is the same as the uncondi-
tional probability of A.

P(A|B)=P(A)

Multiplication rule
The general multiplication rule for probabili-
ties.

P(A · B) = P(A)P(B|A) =
P(B)P(A|B)

For independent events only, the multiplication
rule is simplified. P(A ·B)=P(A)P(B)

3.6.1 Pairwise and Global Independence

If three events A,B, and C are such that any pair of them is exclusive,
i.e., AB = ;, AC = ;, or BC = ;, then the events are mutually exclusive,
ABC = ;. However, an analogous result does not hold for independence.
Even if the events are pairwise independent for all three pairs A,B; A,C;
and B,C, i.e., P(AB) = P(A)P(B), P(AC) = P(A)P(C), and P(BC) = P(B)P(C),
they may not be independent in their totality. That is, it could happen that
P(ABC) 6=P(A)P(B)P(C).

Here is one example of such a triple.
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Example 3.11. The four sides of a tetrahedron (regular three-sided pyramid
with four sides consisting of isosceles triangles) are denoted by 2, 3, 5, and
30, respectively. If the tetrahedron is “rolled,” the number on the bottom side
is the outcome of interest. The three events are defined as follows: A – the
number on the bottom side is even, B – the number is divisible by 3, and C
– the number is divisible by 5. The events are pairwise independent, but in
totality, they are dependent.
�

The algebra is simple here, but what is the intuition? The “trick” is that
events AB, AC, BC, and ABC all coincide. In other words, P(A|BC) = 1 even
though P(A|B)=P(A|C)=P(A).

The concept of independence/dependence is not transitive. At first glance,
it may seem incorrect. One may argue, “If A depends on B, and B depends on
C, then A should depend on C, right?” We can demonstrate that this reasoning
is not correct with a simple example.

Example 3.12. Take a standard deck of 52 playing cards and replace the Q♣
with Q♦. The deck still has 52 cards, two Q♦ and no Q♣. From that deck
draw a card at random and consider three events: A – the card is a queen, B
– the card is red, and C – the card is a ♥. It is easy to see that A and B are
dependent since P(AB)= 3/52 does not equal P(A)·P(B)= 4/52·27/52. Events B
and C are dependent as well since event C is contained in B, and P(BC)=P(C)
does not equal P(B) ·P(C). However, events A and C are independent since
P(AC)=P(Q♥)= 1

52 =P(A)P(C)= 13
52 · 4

52 .
�

3.7 Total Probability

The rule of total probability expresses the probability of an event A as the
weighted average of its conditional probabilities. The events that A is condi-
tioned upon need to be exclusive and should partition the sample space S .
Here are the definitions.

Events H1, H2, . . . , Hn form a partition of the sample space S if
(i) they are mutually exclusive (Hi ·H j =;, i 6= j) and
(ii) their union is the sample space S ,

⋃n
i=1 Hi =S .

The events H1, . . . , Hn are usually called hypotheses. By this definition it
follows that P(H1)+·· ·+P(Hn)= 1 (=P(S )).

Let the event of interest A happen under any of the hypotheses Hi with a
known (conditional) probability P(A|Hi). Assume, in addition, that the proba-



84 3 Probability, Conditional Probability, and Bayes’ Rule

bilities of hypotheses H1, . . . ,Hn are known. P(A) can then be calculated using
the rule of total probability.

Rule of Total Probability.

P(A)=P(A|H1)P(H1)+·· ·+P(A|Hn)P(Hn) (3.8)

Thus, the probability of A is a weighted average of the conditional proba-
bilities P(A|Hi) with weights given by P(Hi). Since His partition the sample
space, the sum of the weights is 1.

The proof is simple. From S = H1 ∪H2 ∪·· ·∪Hn it follows that

A = AS = A(H1 ∪H2 ∪·· ·∪Hn)= AH1 ∪ AH2 ∪·· ·∪ AHn

(Fig. 3.12). Events AHi are all exclusive and by applying the additivity prop-
erty,

P(A)=P(AH1)+P(AH2)+·· ·+P(AHn).

Since each P(AHi) is equal to P(A|Hi)P(Hi) by the multiplication rule (3.6),
the equality in (3.8) is true.

Fig. 3.12 A = A(H1∪H2∪·· ·∪Hn)= AH1∪AH2∪·· ·∪AHn, and the events AHi are exclu-
sive.

Example 3.13. Two-Headed Coin. Out of 100 coins in a box, one has heads
on both sides. The rest are standard fair coins. A coin is chosen at random
from the box. Without inspecting whether it is fair or two-headed, the coin is
flipped twice. What is the probability of getting two heads?

Let A be the event that both flips resulted in heads. Let H1 denote the
event (hypothesis) that a fair coin was chosen. Then, H2 = Hc

1 denotes the
hypothesis that the two-headed coin was chosen.

P(A) = P(A|H1)P(H1)+P(A|H2)P(H2)

= 1/4 ·99/100+1 ·1/100= 103/400= 0.2575.
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The probability of the two flips resulting in tails is 0.2475 (check this!),
which is slightly smaller than 0.2575. Is this an influence of the two-headed
coin?
�

The next example is an interesting interplay between conditional and un-
conditional independence solved by the rule of total probability.

Example 3.14. Accident Proneness. Imagine a population with two types
of individuals: N normal, and Nc accident prone. Suppose that 5/6 of these
people are normal, so that if we randomly select a person from this population
the probability that the chosen person will be normal is P(N) = 5/6. Let Ai be
the event that an individual has an accident in year i. For each individual Ai
is independent of A j whenever i 6= j.

The accident probability is different for the two classes of individuals,
P(Ai|N) = 0.01 and P(Ai|Nc) = 0.1. The chance of a randomly chosen indi-
vidual having an accident in a given year is

P(Ai)=P(Ai|N)P(N)+P(Ai|Nc)P(Nc)= 0.01×5/6+0.1×1/6= 0.025.

The probability that a randomly chosen individual has an accident in both the
first and second year follows from the rule of total probability and the fact that
A1 and A2 are independent for a given individual

P(A1 ∩ A2) = P(A1 ∩ A2|N)P(N)+P(A1 ∩ A2|Nc)P(Nc)

= P(A1|N)P(A2|N)P(N)+P(A1|Nc)P(A2|Nc)P(Nc)

= 0.01×0.01×5/6+0.1×0.1×1/6= 0.00175.

Note that

P(A2|A1)=P(A1 ∩ A2)P(A2)= 0.00175/0.025= 0.07 6= 0.025=P(A2).

Therefore A1 and A2 are not (unconditionally) independent!
�

3.8 Bayes’ Rule

Bayes’ rule is named after Thomas Bayes, a nonconformist priest from the
eighteenth century who was among the first to use conditional probabilities.
He first introduced “inverse” probabilities, which are the special case of what
is now called Bayes’ rule (Bayes, 1763). The general form was first used by
Laplace (1774). Recall that the multiplication rule states

P(AH)=P(A)P(H|A)=P(H)P(A|H).
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This simple identity in association with the rule of total probability is the
essence of Bayes’ rule.

Bayes’ Rule. Let the event of interest A happen under any of the
hypotheses Hi with a known (conditional) probability P(A|Hi). Assume,
in addition, that the probabilities of hypotheses H1, . . . , Hn are known
(prior probabilities). Then the conditional (posterior) probability of the
hypothesis Hi, i = 1,2, . . . , n, given that event A happened, is

P(Hi|A)= P(A|Hi)P(Hi)
P(A)

,

where

P(A)=P(A|H1)P(H1)+·· ·+P(A|Hn)P(Hn).

The proof is simple:

P(Hi|A)= P(AHi)
P(A)

= P(A|Hi)P(Hi)
P(A)

,

where P(A) is given by the rule of total probability.
Although Bayes’ rule is a simple formula for finding conditional probabili-

ties, it is a precursor for a coherent “statistical learning” that will be discussed
in the following chapters. It concerns the transition from prior probabilities
of hypotheses to the posterior probabilities once new information about the
sample space is obtained.

P(H) BAYES’ RULE−→ P(H|A)

Example 3.15. Many Flips of a Possibly Two-Headed Coin. Assume that
out of N coins in a box, one has heads on both sides, and the remaining N −1
are fair. Assume that a coin is selected at random from the box and, without
inspecting what kind of coin it was, flipped k times. Every time the coin lands
heads up. What is the probability that the two-headed coin was selected?

Let Ak denote the event where a randomly selected coin lands heads up k
times. The hypotheses are H1 – the coin is two-headed, and H2 – the coin is
fair. It is easy to see that P(H1) = 1/N and P(H2) = (N −1)/N. The conditional
probabilities are P(Ak|H1)= 1 for any k, and P(Ak|H2)= 1/2k.
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By the total probability rule,

P(Ak)= 2k +N −1
2kN

,

and by Bayes’ rule,

P(H1|Ak)= 2k

2k +N −1
.

For N =1,000,000 and k = 1,2, . . . ,40 the graph of posterior probabilities is
given in Fig. 3.13.
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Fig. 3.13 Posterior probability of a two-headed coin for N = 1,000,000 if in k flips k heads
appeared. The red dots show the posterior probabilities for k = 16 and k = 24, equal to 0.0615
and 0.9437, respectively.

Note that our prior probability P(H1)= 0.000001 jumps to a posterior prob-
ability of 0.9991 after observing 30 heads in a row. The code twoheaded.m

calculates the probabilities and plots the graph in Fig. 3.13. It is curious to
observe how nonlinear the change of posterior probability is. This probability
is quite stable for k up to 15 and after 25. The most rapid change is in the
range 16 ≤ k ≤ 24, where it increases from 0.0615 to 0.9437. This illustrates
the “learning” ability of Bayes’ rule.
�

Example 3.16. Prosecutor’s Fallacy. The prosecutor’s fallacy is a fallacy
commonly occurring in criminal trials but also in other various arguments
involving rare events. It consists of a subtle exchange of P(A|B) for P(B|A). We
will explain it in the context of Example 3.15. Assume that out of N =1,000,000
coins in a box, one is two-headed and “guilty.” Assume that a coin is selected at
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random from the box and, without inspection, flipped k = 15 times. All k = 15
times the coin lands heads up. Based on this evidence, the “prosecutor” claims
the selected coin is guilty since if it were “innocent,” the observed k = 15 heads
in a row would be extremely unlikely, with a probability of

(1
2
)15 ≈ 0.00003.

But in reality, the probability that the “guilty” coin was selected and flipped
is 1

1+999999/215 ≈ 0.03 and the prosecutor is accusing an “innocent” coin with a
probability of approx. 0.97.
�

Bayes’ rule is even more revealing if expressed in terms of odds.

The posterior odds of the hypothesis Hi are equal to the product of its
prior odds and Bayes’ factor (likelihood ratio),

Odds(Hi|A) = BF × Odds(Hi),

where BF=P(A|Hi)/P(A|Hc
i ).

Thus, the “updater” is Bayes’ factor BF, which represents the ratio of prob-
abilities of the evidence (event A) under Hi and Hc

i . All available information
from the experiment is contained in Bayes’ factor, and Bayesian “learning” in-
corporates this information in a coherent way by transforming the prior odds
to the posterior odds.

It is interesting to look at the log-odds equation

logOdds(Hi|A)= log BF+ logOdds(Hi).

If the prior log-odds logOdds(Hi) increase/decrease for a constant C, then the
posterior log-odds increase/decrease for the same constant, no matter what the
Bayes’ factor is. Likewise, if the log-Bayes factor increases/decreases for a con-
stant C, then the log posterior odds increase/decrease for the same constant,
no matter what the log prior odds are. This additivity property was used for
constructing nomograms for fast approximate calculation of odds mainly in a
medical context.

The log BF was also termed weight of evidence by Alan Turing, who used
similar techniques during the Second World War when breaking German
“Enigma Machine” codes.

Example 3.17. A Bridge Connection. Figure 3.14 shows a circuit S that
consists of components ei, i = 1, . . . ,7 which work (and fail) independently of
each other. Note that the connection of component e7 is neither parallel nor
serial. The components are operational in some time interval T with probabil-
ities given in the following table.

Component e1 e2 e3 e4 e5 e6 e7
Probability of component working 0.3 0.8 0.2 0.2 0.5 0.6 0.4
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Fig. 3.14 “Bridge” connection of e7.

We will calculate the posterior odds of e7 working, given the information
that circuit S is operational.

Assume two hypotheses, H1 – the component e7 is operational, and H2 =
Hc

1 – e7 is not operational. Under hypothesis H1, circuit S can be expressed as

S|H1 = e1 ∩ (e2 ∪ e4)∩ (e3 ∪ e5)∩ e6,

while under Hc
1 the expression is

S|Hc
1 = e1 ∩ ((e2 ∩ e3)∪ (e4 ∩ e5))∩ e6.

By calculations similar to that in Example 3.5 we find that P(S|H1)= 0.09072
and P(S|Hc

1)= 0.04392.
Note that P(H1)=P(e7 works)= 0.4 and P(H2)=P(Hc

1)= 0.6, so by the total
probability rule, P(S)= 0.06264. The prior odds of H1 are Odds(H1)= 0.4/0.6=
2/3, and Bayes’ factor is BF = P(S|H1)/ P(S|Hc

1) = 2.06557. The posterior odds
of H1 are Odds(H1|S)=BF ×Odds(H1)= 2.06557×2/3= 1.37705.

Thus, the odds of e7 working increased from 0.66667 to 1.30705, after
learning that the circuit is operational. See also bridge.m.
�

Example 3.18. Subsequent Transfers. In each of n boxes there are a white
and b black balls. A ball is selected at random from the first box and placed
into the second box. Then, from the second box another ball is selected at
random and transferred to the third box, and so on. Finally, from the (n−1)th
box a ball is selected at random and transferred to the nth box.

1
↗?↘

2
↗?↘

3
↗···↘

n
↗◦

(a) After this series of consecutive transfers, a ball is selected from the nth
box. What is the probability that this ball will be white?

(b) If the ball drawn from the fourth box was white, what is the probability
that the first ball transferred had been white as well?
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Let Ai denote the event that in the ith transfer the white ball was selected.
Then

P(An) = P(An|An−1)P(An−1)+P(An|Ac
n−1)P(Ac

n−1)

= a+1
a+b+1

P(An−1)+ a
a+b+1

P(Ac
n−1)

= a+P(An−1)
a+b+1

.

Since P(A1)= a
a+b , we find that

P(A2)=P(A3)= ·· · =P(An)= a
a+b

.

(b) By Bayes’ rule, P(A1|A4)= P(A4|A1)P(A1)
P(A4) =P(A4|A1).

Since

P(A4|A1) = P(A2 A3 A4|A1)+P(Ac
2 A3 A4|A1)+P(A2 Ac

3 A4|A1)+P(Ac
2 Ac

3 A4|A1)

= a+1
a+b+1

× a+1
a+b+1

× a+1
a+b+1

+ b
a+b+1

× a
a+b+1

× a+1
a+b+1

+ a+1
a+b+1

× b
a+b+1

× a
a+b+1

+ b
a+b+1

× b
a+b+1

× a
a+b+1

= (a+1)3 +2ab(a+1)+ab2

(a+b+1)3 .

�

3.9 Bayesian Networks*

We will discuss simple Bayesian networks in which the nodes are events.
Many events linked in a causal network form a Bayesian net. Graphically,
Bayesian networks are directed acyclic graphs (DAGs) where the nodes repre-
sent events and directed edges capture their hierarchy and dependence. Con-
sider a simple graph in Fig. 3.15.

A B

Fig. 3.15 A −→ B graph. A causes B or B is a consequence of A.

We would say that node A is a parent of B, B is a child of A, that A influ-
ences, or causes B, and B depends on A. This is captured by a directed edge
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(arrow) that leads from A to B. The term acyclic in DAG relates to the fact
that a closed loop of dependencies is not allowed. In other words, there does
not exist a path consisting of nodes A1, . . . , An such that

A −→ A1 −→ ·· · −→ An −→ A .

The independence of two nodes in a DAG depends on their relative position
in the graph as well as on the knowledge of other nodes (conditioning) in the
graph. The following simple example illustrates the influence of conditioning
on independence.

Example 3.19. Let A and B be outcomes of flips of two fair coins and C be an
event that the two outcomes coincide. Thus, P(A = H) = P(A = T) = 0.5 and
P(B = H)=P(B = T)= 0.5.

A −→ C ←− B

We are interested in P(C|A,B). Nodes A and B are marginally independent
(when we do not have evidence about C) but become dependent if the outcome
of C is known:

1
2
=P(A = T,B = T|C) 6=P(A = T|C)P(B = T|C)= 1

2
· 1
2

.

�

Hard evidence for a node A is evidence that the outcome of A is known.
Hard evidence about nodes is the information that we bring to the network,
and it affects the probabilities of other nodes.

Bayesian networks possess a so-called Markov property. The conditional
distribution of any node depends on its parental nodes. For instance, in the
network

A −→ B −→ C −→ D

P(C|A,B)=P(C|B) since B is a parental node of C.

Example 3.20. Alarm. Your house has a security alarm system. The house is
located in a seismically active area and the alarm system can be occasionally
set off by an earthquake. You have two neighbors, Mary and John, who do
not know each other. If they hear the alarm, they call you, but this is not
guaranteed. They also call you from time to time just to chat.

Denote by E,B, A, J, and M the events earthquake, burglary, alarm, John’s
call, and Mary’s call took place, and by Ec,Bc, Ac, Jc, and Mc the opposite
events. The DAG of the network is shown in Fig. 3.16.

The known (or elicited) conditional probabilities are as follows:
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B E

A

J M

Fig. 3.16 Alarm Bayesian network.

Bc B
0.999 0.001

Ec E
0.998 0.002

Ac A Condition
0.999 0.001 Bc Ec

0.71 0.29 Bc E
0.06 0.94 B Ec

0.05 0.95 B E
Jc J condition

0.95 0.05 Ac

0.10 0.90 A

Mc M condition
0.99 0.01 Ac

0.30 0.70 A
We are interested in P(J, M|B), i.e., the probability that both John and

Mary call, given the burglary.
�

We will first calculate this probability exactly and then find an approx-
imation using WinBUGS. If E∗ is either E or Ec and A∗ either A or Ac, we
have

P(J, M|B) = 1
P(B)

×P(B, J, M)= 1
P(B)

∑
E∗,A∗

P(B,E∗, A∗, J, M)

= 1
P(B)

{P(B,E)P(A|B,E)P(J, M|A)

+P(B,Ec)P(A|B,Ec)P(J, M|A)

+P(B,Ec)P(Ac|B,Ec)P(J, M|Ac)

+P(B,E)P(Ac|B,E)P(J, M|Ac)}.

Given A∗ (either Ac or A), P(J, M|A∗) = P(J|A∗)×P(M|A∗), since John and
Mary do not know each other, and their calls can be considered independent.
After substituting the probabilities with their numerical values from the ta-
bles above, we obtain

P(J, M|B) = 1
0.001

(0.001 ·0.002 ·0.95 ·0.90 ·0.70+0.001 ·0.998 ·0.94 ·0.90 ·0.70

+ 0.001 ·0.998 ·0.06 ·0.05 ·0.01+0.001 ·0.002 ·0.05 ·0.05 ·0.01)

= 0.5922.
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Thus, in the case of burglary, both John and Mary will call with probability of
0.5922.

First, we approximate P(M|B) by fixing hard evidence for a burglary. Win-
BUGS will use the code burglary =1 and burglary = 2 in the Data part to set
the evidence that the burglary did not take place or that it took place, respec-
tively. This is the only “hard evidence” here; all other nodes remain stochastic.
The use of values 1,2 instead of the expected 0,1 is dictated by the categorical
distribution dcat that takes only positive integers as realizations.

The WinBUGS code ( alarm.odc) is as follows:

model alarm
{
burglary ~ dcat(p.burglary[]);
earthquake ~ dcat(p.earthquake[]);
alarm ~ dcat(p.alarm[burglary, earthquake, ])
john ~ dcat(p.john[alarm,]);
mary ~ dcat(p.mary[alarm,]);
}

DATA
list(

p.earthquake=c(0.998, 0.002),
p.alarm = structure(.Data = c(0.999, 0.001,

0.71,0.29,
0.06,0.94,
0.05,0.95),
.Dim = c(2,2,2)),

p.john = structure(.Data = c(0.95,0.05,0.10,0.90),
.Dim = c(2,2)),

p.mary = structure(.Data = c(0.99,0.01,0.30,0.70),
.Dim = c(2,2)),

burglary = 2
)

INITS
list( earthquake = 1, alarm = 1, john = 1, mary = 1)

After 10,000 iterations, we obtain the mean value of M as EM = 2 · pM +1 ·
(1− pM)= 1.661, that is, P(M|B)= pM = 1.661−1= 0.661. Any of the 1s in the
initial values earthquake = 1, alarm = 1, john = 1, mary = 1 can be replaced
by 2, as this would not influence the final approximation.

Next, to estimate P(J|M,B), we change WinBUGS’ data by setting B = M =
2. This is hard evidence that a burglary occurred and Mary called.

DATA
list(

p.earthquake=c(0.998, 0.002),

This probability can be approximated in WinBUGS by simulation. Note
that P(J,M|B)=P(J|M,B)P(M|B) by the chain rule. The probabilities P(J|M,B)
and P(M|B) will be approximated separately.
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p.alarm = structure(.Data = c(0.999, 0.001,
0.71,0.29,
0.06,0.94,
0.05,0.95), .Dim = c(2,2,2)),

p.mary = structure(.Data = c(0.99,0.01,0.30,0.70), .Dim = c(2,2)),
burglary = 2,
mary=2
)

and change the initial values to

list(earthquake = 1, alarm = 1, john = 1)

After 10,000 iterations, the mean value of J is obtained as EJ = 2 · pJ +
(1p J)= 1.899. Then, P(J|M,B)= pJ = 0.899. Thus, the final result is

P(J, M|B)=P(J|M,B)P(M|B)= pJ · pM = 0.899 ·0.661= 0.5942

(which approximates 0.5922, from the exact probability calculation).
�

Bayesian networks can be useful in medical diagnostics if the conditional
probabilities of the nodes are known. Here is the celebrated “Asia” example.

Example 3.21. Asia. Lauritzen and Spiegelhalter (1988) discuss a fictitious
expert system for diagnosing a patient admitted to a chest clinic, who just re-
turned from a trip to Asia and is experiencing dyspnoea.2 A graphical model
for the underlying process is shown in Fig. 3.17, where each variable is binary.
The WinBUGS code is shown below with the conditional probabilities given as
in Lauritzen and Spiegelhalter (1988).

model Asia;
asia ~ dcat(p.asia);
smoking ~ dcat(p.smoking[]);
tuberculosis ~ dcat(p.tuberculosis[asia,]);
lung.cancer ~ dcat(p.lung.cancer[smoking,]);
bronchitis ~ dcat(p.bronchitis[smoking,]);
either <- max(tuberculosis,lung.cancer);
xray ~ dcat(p.xray[either,]);
dyspnoea ~ dcat(p.dyspnoea[either,bronchitis,])

DATA
list(asia = 2, dyspnoea = 2,

p.tuberculosis = structure(.Data = c(0.99,0.01,0.95,0.05),
.Dim = c(2,2)),

p.bronchitis = structure(.Data = c(0.70,0.30,0.40,0.60),
.Dim = c(2,2)),

p.smoking = c(0.50,0.50),

2 Difficulty in breathing, often associated with lung or heart disease and resulting in short-
ness of breath. Also called air hunger.
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Visit to Asia?

Has
Tuberculosis

Smoker?

Has
Bronchitis

Dyspnoea ?

Has Lung
Cancer

Tuberculosis
or Cancer

Positive
X-ray?

Fig. 3.17 Lauritzen and Spiegelhalter’s (1988) Asia Bayes net: a fictitious expert system
representing the diagnosis of a patient having just returned from a trip to Asia and showing
dyspnoea.

p.lung.cancer = structure(.Data = c(0.99,0.01,0.90,0.10),
.Dim = c(2,2)),

p.xray = structure(.Data = c(0.95,0.05,0.02,0.98),
.Dim = c(2,2)),

p.dyspnoea = structure(.Data = c(0.9,0.1,
0.2,0.8,
0.3,0.7,
0.1,0.9), .Dim = c(2,2,2)))

INITS
list(smoking = 1, tuberculosis = 1,

lung.cancer = 1, bronchitis = 1, xray = 1)

mean sd MC error val2.5pc median val97.5pc start sample
bronchitis 1.812 0.3904 0.003988 1.0 2.0 2.0 2001 10000
lung.cancer 1.099 0.2985 0.003345 1.0 1.0 2.0 2001 10000
smoking 1.618 0.4859 0.004976 1.0 2.0 2.0 2001 10000
tuberculosis 1.095 0.2928 0.002706 1.0 1.0 2.0 2001 10000
xray 1.224 0.4171 0.004132 1.0 1.0 2.0 2001 10000

The results should be interpreted as follows. If the patient who visited Asia
experiences dyspnoea (hard evidence in DATA: asia=2, dyspnoea = 2), then the
probabilities of bronchitis, lung cancer, being a smoker, tuberculosis, and a
positive xray, are 0.812, 0.099, 0.618, 0.095, and 0.224, respectively.
�
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3.10 Exercises

3.1. Event Differences. Recall that the difference between events A and B
was defined as A\B = A∩Bc. Using Venn diagrams demonstrate that
(a) A\(A\B)= A∩B and A\(B\A)= A,
(b) A\(B\C)= (A∩C) ∪ (A∩Bc).

3.2.

(a) Using MATLAB to count favorable outcomes, find the probability that
the selected number is divisible by at least one of 3, 5, or 7.
(b) Compare this probability with a naïve solution 1/3 + 1/5 + 1/7 - 1/15 -1/21
- 1/35 + 1/105 = 0.542857, and show that the naïve solution is correct!
(c) Is the naïve solution correct for {1,2, . . . , N} if N = 316?
(d) Is the naïve solution correct for any other N from {289,290, . . .340}? Plot
this probability for 289≤ N ≤ 340. Is there any symmetry in the plot?

3.3. A Complex Circuit. Figure 3.18 shows a circuit S that consists of iden-
tical components ei, i = 1, . . . ,13 that work (and fail) independently of each
other. Any component is operational in some fixed time interval with prob-
ability 0.8.

Fig. 3.18 Each of 13 independent components in the circuit is operational with probability
0.8.

(a) Calculate the probability that circuit S is operational.
(b) Write a MATLAB program that approximates the probability in (a) by
simulation.

Inclusion-Exclusion Principle in MATLAB. From the set {1,2,3, . . . ,315}
a number is selected at random.
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(c) Approximate the probability in (a) by WinBUGS simulations.

3.4. De Mere Paradoxes. In 1654 the Chevalier de Mere asked Blaise Pascal
(1623–1662) the following two questions:

(a) Why would it be advantageous in a game of dice to bet on the occurrence
of a 6 in 4 trials but not advantageous in a game involving two dice to bet
on the occurrence of a double 6 in 24 trials?

(b) In playing a game with three dice, why is a sum of 11 more advantageous
than a sum of 12 when both sums are the result of six configurations:
11: (1, 4, 6), (1, 5, 5), (2, 3, 6), (2, 4, 5), (3, 3, 5), (3, 4, 4);
12: (1, 5, 6), (2, 4, 6), (2, 5, 5), (3, 3, 6), (3, 4, 5), (4, 4, 4)?
How would you respond to the Chevalier?

3.5. Probabilities of Some Composite Events. Show that for arbitrary
events A,B,
(a) P(A∆B)=P(A∪B)−P(AB)=P(A)+P(B)−2P(AB);
(b) P(A∆B)≥ |P(A)−P(B)|.
(c) For arbitrary event C, P(AC∆BC)≤P(A∆B) and
(d) (P(A)+P(B)) 1

1+2P(AB)/(P(A)+P(B)) ≤P(A∪B)≤P(A)+P(B).

3.6. Deighton’s Novel. In his World War II historical novel Bomber Len
Dieghton argues that a pilot is “mathematically certain” to be shot down
in 50 missions if the probability of being shot down on each mission is 0.02.
(a) Assuming independence of outcomes in each mission, is Deighton’s rea-
soning correct?
(b) Find the probability of surviving all 50 missions without being shot
down?

3.7. Reliable System from Unreliable Components. NASA is asking you
to design a system that reliably performs a task on a space shuttle in the
next 3 years with probability of 0.999999 = 1− 10−6. In other words, the
probability of failing during the next three years should not exceed one in a
million. However, at your disposal you have components that in the next 3
years will fail with a probability of 0.2. Luckily, the weight and price of the
components are not an issue and you can combine/link them to increase the
system’s reliability.
(a) Should you link the components in a serial or parallel fashion to increase
the probability of reliable performance?
(b) What minimal number of components should be linked as in (a) to satisfy
NASA’s requirement of 0.999999 probability of reliable performance?

3.8. k-out-of-n Systems. Suppose that n independent components constitute
an engineering system. The system is called a k-out-of-n system if it works
only when k or more components are operational. This particular system
has four components that are operational with probabilities 0.1,0.8,0.5, and
0.4. If the system is a 2-out-of-4, what is the probability that it works?
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3.9. Number of Dominos. How many different dominos are a sample space if
the number of dots on the dominos ranges between (a) 0 and 3, (b) 0 and 8,
and (c) 0 and 16, inclusive?

3.10. Counting Protocols. Adel et al. (1993) applied various orders in drug
combination sequence studies in search of a cure for human endometrial
carcinoma. Four drugs A–D were evaluated for sequence-dependent inhibi-
tion of human tumor colony formation in soft agar.
(a) How many protocols are needed to evaluate all possible sequences of the
four drugs?
(b) How many protocols are possible when only two drugs out of four are to
be administered if the order of their administration is (i) important or (ii)
not important?
(c) A fifth drug, E, is introduced. If drugs A and E cannot be given sub-
sequent to each other because of cumulative toxicity concerns, how many
protocols are possible if the order of drug administration is to be evaluated?

3.11. Correlation Between Events. The correlation between events A and B
is defined as

Corr(A,B)= P(A∩B)−P(A)P(B)p
P(A)(1−P(A))

p
P(B)(1−P(B))

.

Show that Corr(A, A)= 1 and Corr(A,B)=Corr(Ac,Bc).

3.12. A Fair Gamble with a Possibly Loaded Coin. Suppose you have a coin
for which you do not know the probability of its landing heads up. You sus-
pect that the coin is loaded and that the probability of heads differs from
1/2.
(a) Can you emulate a fair coin by flipping the possibly biased one?
(b) Can you emulate the rolling of a fair die by flipping the possibly biased
coin?
Hint: You may need to flip the coin more than once.

3.13. Neural Signal. A neuron will fire at random at any moment in [0,T], with
a probability of p. If up to time t < T the neuron does not fire, what is the
probability that it will fire in the remaining time, (t,T]?

3.14. Guessing. Subjects in an experiment are told that either a red or a green
light will flash. Each subject is to guess which light will flash. The subject
is told that the probability of a red light is 0.7, independently of guesses.
Assume that the subject is a probability matcher, that is, guesses red with
a probability of 0.7 and green with a probability of 0.3.
(a) What is the probability that the subject will guess correctly?
(b) Given that a subject guesses correctly, what is the probability that the
light flashed red?
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3.15. Propagation of Genes. The following example shows how the ideas of
independence and conditional probability can be employed in studying ge-
netic evolution. Consider a single gene that has two forms, recessive (R) and
dominant (D). Each individual in the population has two genes in his/her
chromosomes and thus can be classified into the genotypes DD,RD, and
RR. If an individual is drawn at random from the nth generation, then
the probabilities of the three genotypes will be denoted by pn,2rn, and qn,
respectively. (Clearly, pn + qn +2 rn = 1.)
The problem is expressing the probabilities pn, qn, and rn in terms of ini-
tial probabilities p0, q0, and r0 and the method of reproduction. In random
Mendelian mating, a single gene from each parent is selected at random
and the selected pair determines the genotype of the offspring. These selec-
tions are carried independently of each other from generation to generation.
Let Mn be the event that R is chosen from the male and Fn be the event
that R is chosen from the counterpart female. Events Mn and Fn are inde-
pendent and have the same probability. Thus:

P(Mn) = P(RR)×P(Mn|RR)+P(RD)×P(Mn|RD)+P(DD)×P(Mn|DD)

= P(RR)×1+P(RD)×1/2+P(DD)×0

= qn +2rn/2

= qn + rn

by the rule of total probability.
By the independence of Mn and Fn,

qn+1 =P(Mn ∩Fn)=P(Mn) ·P(Fn)= (qn + rn)2.

Similarly,
pn+1 = (pn + rn)2

and
2rn+1 = 1− pn+1 − qn+1.

The above equations govern the propagation of genotypes in this popula-
tion.
Start with any initial probabilities p0, q0, and r0. (Say, 0.3, 0.3, and 0.2; re-
member to check: 0.3+0.3+2·0.2= 1.) Find iteratively (p1, q1, r1), (p2, q2, r2),
and (p3, q3,r3), and demonstrate that p1 = p2 = p3, q1 = q2 = q3, and
r1 = r2 = r3. The fact that the probabilities remain the same is known as the
Hardy–Weinberg law. It does not hold if other factors (mutation, selection,
dependence) are introduced into the model.

3.16. Easy Conditioning. Assume P(rain today) = 40%, P(rain tomorrow) =
50%, and P(rain today and tomorrow) = 30%. Given that it is raining today,
what is the chance that it will rain tomorrow?
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3.17. Eye Color. The eye color of a child is determined by a pair of genes, one
from each parent. If {b} and {B} denote blue- and brown-eyed genes, then a
child can inherit the following pairs: {bb}, {bB}, {Bb}, and {BB}. The {B} gene
is dominant, that is, the child will have brown eyes when the pairs are {Bb},
{bB}, or {BB} and blue eyes only for the {bb} combination. A parent passes
to a child either gene from his/her pair with equal probability.3

Megan’s parents are both brown-eyed, but Megan has blue eyes. Megan’s
brown-eyed sister is pregnant and her husband has blue eyes. What is the
probability that the baby will have blue eyes?

3.18. Dice. In rolling ten fair dice we have information that at least one 
 ap-
peared. What is the probability that there were at least two 
?

3.19. Inflation and Unemployment. Businesses commonly project revenues
under alternative economic scenarios. For a stylized example, inflation
could be high or low and unemployment could be high or low. There are
four possible scenarios, with the following assumed probabilities:

Scenario Inflation Unemployment Probability
1 High High 0.16
2 High Low 0.24
3 Low High 0.36
4 Low Low 0.24

(a) What is the probability of high inflation?
(b) What is the probability of high inflation if unemployment is high?
(c) Are inflation and unemployment independent?

3.20. Multiple Choice. A student answers a multiple choice examination ques-
tion that has four possible answers. Suppose that the probability that the
student knows the answer to a question is 0.80 and the probability that the
student guesses is 0.20. If the student guesses, the probability of guessing
the correct answer is 0.25.
(a) What is the probability that the fixed question will be answered cor-
rectly?
(b) If it is answered correctly, what is the probability that the student really
knew the correct answer?

3.21. Manufacturing Bayes. A factory has three types of machines producing
an item. The probabilities that the item is conforming if it is produced on
the ith machine are given in the following table:

3 This description is simplified, and in fact there are several genes affecting eye color and
the amount of yellow and black pigments in the iris, leading to shades of colors including
green and hazel.
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Type of machine Probability of item conforming
1 0.94
2 0.95
3 0.97

The total production is distributed among the machines as follows: 30% is
done on type 1, 50% on type 2, and 20% on type 3 machines. One item is
selected at random from the production.
(a) What is the probability that it is conforming?
(b) If it is conforming, what is the probability that it was produced on a
type 1 machine?

3.22. Stanley. Stanley takes an oral exam in statistics with several other stu-
dents. He needs to answer the questions from an examination card drawn
at random from the set of 20 cards. There are exactly 8 favorable cards
among the 20 to which Stanley knows the answers. Stanley will get a grade
of A if he knows the answers, that is, if he draws a favorable card. What is
the probability that Stanley will get an A if he draws the card standing in
line (a) first, (b) second, and (c) third?

3.23. Kokomo, Indiana. In Kokomo, IN, 65% of the people are conservative,
20% are liberal, and 15% are independent. Records show that in a particu-
lar election, 82% of conservatives voted, 65% of liberals voted, and 50% of
independents voted. If a person from the city is selected at random and it
is learned that she did not vote, what is the probability that the person is
liberal?

3.24. Mysterious Transfer. Of two bags, one contains four white balls and
three black balls and the other contains three white balls and five black
balls. One ball is randomly selected from the first bag and placed unseen in
the second bag.
(a) What is the probability that a ball now drawn from the second bag will
be black?
(b) If the second ball is black, what is the probability that a black ball was
transferred?

3.25. Two Masked Robbers. Two masked robbers try to rob a crowded bank
during the lunch hour, but the teller presses a button that sets off an alarm
and locks the front door. The robbers, realizing they are trapped, throw
away their masks and disappear into the chaotic crowd. Confronted with
40 people claiming they are innocent, the police give everyone a lie detector
test. Suppose that guilty people are detected with a probability of 0.85 and
innocent people appear to be guilty with a probability of 0.08. What is the
probability that Mr. Smith was one of the robbers given that the lie detector
says he is a robber?

3.26. Information Channel. One of the three words AAAA, BBBB, and CCCC
is transmitted via an information channel. The probabilities of these words
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being transmitted are 0.3, 0.5, and 0.2, respectively. Each letter is transmit-
ted and received correctly with a probability of 0.6, independently of other
letters. Since the channel is not perfect, the transmitted letter can change
to one of the other two letters with an equal probability of 0.2. What is
the probability that the word AAAA was submitted if the word ABCA is
received?

3.27. Quality Control. An automatic machine in a small factory produces metal
parts. Most of the time (90% according to long-term records), it produces
95% good parts, while the remaining parts have to be scrapped. Other
times, the machine slips into a less productive mode and only produces 70%
good parts. The foreman observes the quality of parts that are produced by
the machine and wants to stop and adjust the machine when she believes
that the machine is not working well. Suppose that the first dozen parts
produced are given by the sequence

s u s s s s s s s u s u

where s is satisfactory and u is unsatisfactory. After observing this se-
quence, what is the probability that the machine is in its productive state?
If the foreman wishes to stop the machine when the probability of “good
state” is under 0.7, when should she stop it?

3.28. Let’s Make a Deal. Monty Hall was the host of the once-popular tele-
vision game show Let’s Make a Deal. At certain times during the show,
a contestant was allowed to choose one of three identical doors A, B, and
C, behind only one of which was a valuable prize (a new car). After the
contestant picked a door (say, door A), Monty opened another door and
showed the contestant that there was no prize behind that door. (Monty
knew where the prize was and always chose a door where there was no
prize.) He then asked the contestant whether he wanted to stick with his
choice of door or switch to the remaining unopened door. Should the contes-
tant have switched doors? Did it matter?

3.29. Ternary Channel. A communication system transmits three signals,
s1, s2, or s3, with equal probabilities. The reception is corrupted by noise,
causing the transmission to be changed according to the following table of
conditional probabilities:

Received
s1 s2 s3

s1 0.75 0.1 0.15
Sent s2 0.098 0.9 0.002

s3 0.02 0.08 0.9

The entries in this table list the probability that s j is received, given that si
is sent, for i, j = 1,2,3. For example, if s1 is sent, the conditional probability
of receiving s3 is 0.15.
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(a) Compute the probabilities that s1, s2, and s3 are received.

(b) Compute the probabilities P(si sent |s j received ) for i, j = 1,2,3. (Com-
plete the table.)

Sent
s1 s2 s3

s1 0.8641
Received s2 0.0741

s3

3.30. Sprinkler Bayes Net. Suppose that a sprinkler (S) or rain (R) can make
the grass in your yard wet (W). The probability that the sprinkler was on
depends on whether the day was cloudy (C). The probability of rain also
depends on whether the day was cloudy. The DAG for events C,S,R, and W
is shown in Fig. 3.19.

C

S R

W

Fig. 3.19 Sprinkler Bayes net.

The conditional probabilities of the nodes are given in the following tables.

Cc C
0.5 0.5

Sc S Condition
0.50 0.50 Cc

0.90 0.10 C

Rc R Condition
0.80 0.20 Cc

0.20 0.80 C
Wc W Condition
1 0 Sc Rc

0.10 0.90 Sc R
0.10 0.90 S Rc

0.01 0.99 S R
Using WinBUGS, approximate the probabilities
(a) P(C|W), (b) P(S|W c), and (c) P(C|R,Wc).

3.31. Diabetes in Pima Indians. The Pima Indians have the world’s highest
reported incidence of diabetes. Since 1965, this population has participated
in a longitudinal epidemiological study of diabetes and its complications.
The examinations have included a medical history for diabetes and other
major health problems. A population of women who were at least 21 years
old, of Pima Indian heritage, and living near Phoenix, AZ was tested for
diabetes according to World Health Organization criteria.
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The following conditions (“events”), constructed from the database, can be
related to a randomly selected subject from this population.

Event Description
P Three or more pregnancies
A Older than the database median

age
O Heavier than the database me-

dian weight
D Diagnosis of diabetes
G High plasma glucose concentra-

tion in an oral glucose tolerance
test

I High 2-h serum insulin (µU /ml)
B High blood pressure

The DAG in Fig. 3.20 simplifies the proposal of Tom Bylander from the
University of Texas in San Antonio, who used Bayesian networks and the
Pima Indians Diabetes Database in a machine learning example.4

P A O

D

G I B

Fig. 3.20 Pima Indians diabetes Bayes net.

From 768 complete records relative frequencies are used to approximate
the conditional probabilities of the nodes. The probabilities are given in the
following tables.
Pc P

0.45 0.55
Ac A
0.5 0.5

Oc O
0.5 0.5

Dc D condition
0.95 0.05 Pc Ac Oc

0.67 0.33 Pc Ac O
0.59 0.41 Pc A Oc

0.40 0.60 Pc A O

Dc D condition
0.73 0.27 P AcOc

0.66 0.34 P Ac O
0.63 0.37 P A Oc

0.41 0.59 P A O

4 http://www.cs.utsa.edu/~bylander/cs6243/bayes-example.pdf
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Gc G condition
0.64 0.36 Dc

0.21 0.79 D

Ic I condition
0.49 0.51 Dc

0.52 0.48 D

Bc B condition
0.55 0.45 Oc Dc

0.58 0.42 Oc D
0.40 0.60 O Dc

0.49 0.51 O D
Suppose a female subject, older than 21, of Pima Indian heritage living
near Phoenix, AZ, was selected at random. Using WinBUGS, approximate
the probabilities (a) P(O|I), P(B|Oc,G), and P(G|B, Ac).

3.32. A Simplified Probabilistic Model of Visual Pathway. Our nervous
system consists of specialized cells called neurons that are connected to
one another in highly organized and specific ways. A neuron changes its
membrane voltage in response to an external stimulus or a signal from an
upstream neuron. For example, in the visual pathway, light excites photore-
ceptors in our eyes that are connected to more downstream neurons, and
the activities of this neuronal network eventually elicit visual perceptions.
The following diagram illustrates a simplified version of this connection (P
= photoreceptor cell; B = bipolar cell; R = retinal ganglion cell; L = lateral
geniculate nucleus ganglion cell, V = primary visual cortex simple cell):

Fig. 3.21 A simplified probabilistic model of visual pathway.

Let events S and Sc denote, respectively, the presence and absence of a
light stimulus in a small time interval ∆t. Let events P,B,R, and L mean
that the corresponding cells produce a response (fire) in the time interval
∆t. Suppose that the conditional probabilities of firing for three parallel
branches i = 1,2, and 3 are the same:

P(S)= 0.6
P(Pi|S)= 0.95 P(Pi|Sc)= 0.1
P(Bi|Pi)= 0.95 P(Bi|Pc

i )= 0.05
P(Ri|Bi)= 0.9 P(Ri|Bc

i )= 0.02
P(Li|Ri)= 0.8 P(Li|Rc

i )= 0.08
i = 1,2,3

In the schematic diagram in Fig. 3.21, three L ganglion cells, L1, L2, and
L3, connect to one simple cell in the primary visual cortex, V . Assume that
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input from at least one of the L cells is needed for the V simple cell to
respond with certainty. The V simple cell will not respond if the input there
from L cells is absent.
The following questions may need the support of WinBUGS.
(a) What is the probability of the V cell responding given that event S (light
stimulus present) has occurred?
(b) Assume that L1 and R3 have fired. What is the probability of S?
(c) Assume that V responded. What is the probability of S?

MATLAB AND WINBUGS FILES USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch3.Prob/

birthday.m, bridge.m, circuit.m, ComplexCircuit.m, demere.m, die.m,
inclusionexclusion.m, mistery.m, rollingdie1.m, rollingdie2.m,
sheriff.m, twoheaded.m,

alarm.odc, asia.odc, circuit1.odc, DeMere.odc,
misterioustransfers.odc, pima.odc, sprinkler.odc,
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Chapter 4
Sensitivity, Specificity, and Relatives

Poetry teaches us music, metaphor, condensation and specificity.

– Walter Mosley

WHAT IS COVERED IN THIS CHAPTER

• Definitions of Sensitivity, Specificity, Positive and Negative Predic-
tive Values, Likelihood ratio Positive and Negative, Measure of Agree-
ment.

• Combining Tests
• Performance of Tests: ROC Curves, Area Under ROC, Youden Index
• Two Examples: D-dimer and ADA

4.1 Introduction

This chapter introduces several notions fundamental for disease or device test-
ing. The sensitivity, specificity, and positive and negative predictive values of
a test are measures of the performance of a diagnostic test and are intimately
connected with probability calculations (estimations) and Bayes’ rule.

Although concepts such as “false positives,” “true negatives,” etc. are quite
intuitive, many students and even health professionals have difficulties in as-
sessing the associated probabilities. The following problem was posed by Cass-
cells et al. (1978) to 60 students and staff at an elite medical school: If a test
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to detect a disease whose prevalence is 1/1000 has a false positive rate of 5%,
what is the chance that a person found to have a positive result actually has
the disease, assuming you know nothing about the person’s symptoms or signs?

Assuming that the probability of a positive result given the disease is 1,
the answer to this problem is approximately 2%. Casscells et al. found that
only 18% of participants gave this answer. The most frequent response was
95%, presumably on the supposition that, because the error rate of the test is
5%, it must get 95% of results correct.

Examples of misconceptions of test precision measures, especially involv-
ing the sensitivity and positive predictive value, are abundant.

When a multiplicity of tests are possible and a researcher is to select the
“best” test, the receiver operating characteristic (ROC) curve methodology is
used. This methodology is especially useful in setting a threshold that sepa-
rates positive and negative outcomes of a test.

4.2 Notation

Suppose that n subjects are selected randomly from a given population. The
population may not be very general; it could be a specific segment of subjects
(patients in a hospital who were checked in 10+ days ago, subjects with a his-
tory of heart attack, etc.). Now suppose that the true disease status (disease
present/absent) in all subjects is determined via a gold-standard assessment
and that we are interested in evaluating a particular test for the disease as-
suming that the gold-standard results are always true. For example, in testing
for breast cancer (BC), a mammogram is used as a test while the battery of
numerous patient symptoms, medical history, and biopsy results are used as
a gold standard.

A positive test would not necessarily mean the disease is present but rather
would mean that the test says the disease is present. For instance, a patient’s
mammogram appears to show breast cancer. A true-positive test result not
only means that the test says the disease is present, but that the disease really
is present. In this case, a positive mammogram of a patient for which the gold
standard indicates BC would be a true positive. In the same context, false
positives, true negatives, and false negatives are defined in an obvious manner.

By classifying the patients with respect to the test results and the true
disease status, the following table can be constructed:

Disease (D) No disease (C) Total
Test positive (P) TP FP nP = TP + FP
Test negative (N) FN TN nN = FN + TN

Total nD = TP + FN nC = FP + TN n = nD + nC = nP + nN
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where

TP True positive (test positive, disease present)
FP False positive (test positive, disease absent)
FN False negative (test negative, disease present)
TN True negative (test negative, disease absent)
nP Total number of positives (TP + FP)
nN Total number of negatives (TN + FN)
nD Total number with disease present (TP + FN)
nC Total number without disease present (TN + FP)
n Total sample size (TP + FP + FN + TN)

The test’s effectiveness is measured by the number of true positives and true
negatives relative to the total number of cases. It turns out that these two
numbers are used to define two complementary measures of test performance:
sensitivity and specificity.

We will illustrate the defined numbers with the following example.

Example 4.1. BreastScreen Victoria. This 1994 study involved women who
participated in the BreastScreen Victoria initiative in Victoria, Australia,
where free biennial screenings for BC are provided to women aged 40 and
older. The data provided by Kavanagh at al. (2000) show that among 96,420
asymptomatic women, 5,401 had positive and 91,019 negative mammogram
results. The mammograms were read independently by two radiologists. In
the case of disagreement over whether to recall, a consensus was reached or
a third reader made the decision. The women were then recommended for
routine rescreen or referred for assessment. Assessment might include clini-
cal examination, further radiographs, ultrasound, or biopsy. After assessment,
women may have a cancer diagnosed, be recommended for routine rescreen-
ing, or be recommended for further assessment (early review). Out of 96,420
women, 665 were diagnosed with BC. Of those 665 diagnosed, the mammo-
gram was positive for 495 and negative for 160 women. The table summarizing
the data is below.

BC diagnosed BC not diagnosed Total
Mammogram positive 495 4906 5401
Mammogram negative 160 90859 91019

Total 665 95765 96420

�

Sensitivity is the ratio of the number of true positives and the number of
subjects with a disease, while specificity is the ratio of the number of true
negatives and the number of subjects without the disease. In the BC example
sensitivity is 495/665 = 75.57%, and specificity is 90859/95765 = 94.88%.

Both measures have to be reported since reporting only sensitivity or only
specificity reveals little information about the test. There are two extreme
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cases. Imagine a test that classifies all subjects as positive – trivially the sen-
sitivity is 100%. Since there are no negatives, the specificity is zero. Likewise,
a test that classifies all subjects as negative has a specificity of 100% and zero
sensitivity.

The following table summarizes the key notions:

Sensitivity (Se) Se = TP/(TP + FN) = TP/nD
Specificity (Sp) Sp = TN/(FP + TN) = TN/nC
Prevalence (Pre) (TP + FN)/(TP + FP + FN + TN)= nD/n
Positive predictive value (PPV) PPV = TP/(TP + FP) = TP/nP
Negative predictive value (NPV) NPV = TN/(TN + FN) = TN/nN
Likelihood ratio positive (LRP) LRP = Se/(1-Sp)
Likelihood ratio negative (LRN) LRN = (1-Se)/Sp
Apparent prevalence (APre) APre = nP/n
Concordance, agreement (Ag) Ag =(TP + TN)/n

The population prevalence of a disease is defined as the probability that a
randomly selected person from this population will have the disease. As the
table shows, the prevalence is estimated by (TP + FN)/(TP + FP + FN +TN) =
nD/n. For the Victoria BC data the prevalence is 665/96420 = 0.0069. This is
a valid estimator only if the table is a summary of a representative sample of
the population under analysis. In other words, the sample should have been
taken at random and the tabulation made subsequently. This is not the case
in many studies. The prevalence of some diseases in a general population is
often so small that insisting on a random sample would require huge sample
sizes in order to obtain a nonzero TP or FN table entries. When the table is
made from available cases and controls (convenience samples), the prevalence
for the population cannot be estimated from it.

Related quantity is the incidence of a disease in a population. It is defined
as the probability that a randomly selected person from the subset of people
not affected by the disease will develop the disease in a fixed time window
(week, month, year). While the prevalence relates to the magnitude, the inci-
dence provides information about the progression and dynamics of the disease.

One of the most important measures is the positive predictive value (PPV).
Based on the table it can be estimated as the proportion of true positives
among all positives, TP/nP. This is correct only if the population prevalence
is well estimated by nD/n, that is, if the table is representative of its popula-
tion. This is approximately the case for the Victoria BC data; the PPV is well
estimated by 495/5401= 0.0916.

If the table is constructed from a convenience sample, the prevalence (Pre)
would be external information, and the PPV is calculated as

PPV= Se×Pre
Se×Pre+ (1−Sp)× (1−Pre)

.
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This is simply the Bayes rule and will be discussed more in the next section.
Why is the PPV so important? Imagine an almost perfect test for a particu-

lar disease, with a sensitivity of 100% and specificity of 99%. If the prevalence
of the disease in the population is 10%, then among ten positives there would
be approx. one false positive. However, if the population prevalence is 1/10000,
then for each true positive there would be approx. 100 false positives.

The likelihood ratio positive, or Bayes factor positive, represents the odds
that a positive test result would be found in a patient with, vs. without, a
disease. The likelihood ratio negative, or Bayes factor negative, represents the
odds that a negative test result would be found in a patient without, vs. with,
a disease. For example:

Posttest disease odds = LRP ×pretest disease odds;

Posttest no-disease odds = LRN ×pretest no-disease odds.

4.2.1 Conditional Probability Notation

The definitions introduced in the previous section depend on the relative fre-
quencies in the observed tables, and they are empirical. The theoretical coun-
terparts are expressed in terms of probabilities. The analogy to this is the
interplay of the probability of an event A, P(A), which is theoretical, and rela-
tive frequency of the event nA/n, which is empirical.

Let T be the event that a subject tests positive and D,Dc the hypothesis
that the subject does/does not have the disease. The sensitivity is the condi-
tional probability P(T|D)=P(T∩D)/P(D) [which is estimated by (TP/n)/(nD/n)
= TP/nD]. Analogously, the specificity is P(Tc|Dc) = P(Tc ∩Dc)/P(Dc), which
is estimated by (TN/n)/(nC/n) = TN/nC. We have argued that P(D), the preva-
lence, cannot be estimated from the table unless the sample forming the table
is representative of the population. In the case of “convenience” samples, the
prevalence is evaluated separately or assumed known from other studies. If
the sample is randomly obtained from the population, the prevalence can be
estimated by nD/n. The probability of a positive test is in fact given by the rule
of total probability, P(T)=P(T|D)P(D)+P(T|Dc)P(Dc). Note that P(T) depends
on the prevalence and is estimated by nP/n for a table from a random sample.

Finally, the PPV and NPV are determined by Bayes’ rule. For example, the
PPV is

P(D|T)= P(T|D)P(D)
P(T)

= P(T|D)P(D)
P(T|D)P(D)+P(T|Dc)P(Dc)

.

The posttest disease odds ratio is LRP times the pretest odds ratio. Because of
this property, the LRP is in fact Bayes’ factor in the terminology of Chaps. 3
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and 8.

P(D|T)
P(Dc|T)

= P(T|D)P(D)
P(T)

/
P(T|Dc)P(Dc)

P(T)
= P(T|D)P(D)
P(T|Dc)P(Dc)

= P(T|D)
P(T|Dc)

× P(D)
P(Dc)

.

Thus, posterior disease odds = LRP × prior disease odds.
The above definitions are illustrated on an example where researchers

tested for acute pulmonary embolism.

Example 4.2. D-Dimer. When a vein or artery is injured and begins to leak
blood, a sequence of clotting steps and factors (called the coagulation cascade)
are activated by the body to limit the bleeding and create a blood clot to plug
the hole. During this process, threads of a protein called fibrin are produced.
These threads are cross-linked (chemically glued together) to form a fibrin net
that catches platelets and helps hold the forming blood clot together at the
site of the injury. Once the area has had time to heal, the body uses a protein
called plasmin to break the clot (thrombus) into small pieces so that it can be
removed. The fragments of the disintegrating fibrin in the clot are called fib-
rin degradation products (FDPs). One of the FDPs produced is D-dimer, which
consists of variously sized pieces of cross-linked fibrin. D-dimer is normally un-
detectable in the blood and is produced only after a clot has formed and is in
the process of being broken down. Measurement of D-dimer can indicate prob-
lems in the body’s clotting mechanisms. The data below consist of quantitative
plasma D-dimer levels among patients undergoing pulmonary angiography for
suspected pulmonary embolism (PE). The patients who exceed the threshold of
500 ng/mL are classified as positive for a PE. The gold standard for PE is the
pulmonary angiogram. Goldhaber et al. (1993), from Brigham and Women’s
Hospital at Harvard Medical School, considered a population of patients who
are suspected of PE based on a battery of symptoms. The summarized data for
173 patients are provided in the table below.

Acute PE No PE present Total
Test positive (D-dimer ≥ 500 ng/mL) 42 96 138
Test negative (D-dimer < 500 ng/mL) 3 32 35

Total 45 128 173

A simple MATLAB file sesp.m will calculate the sensitivity, specificity,
prevalence, positive and negative predictive values, and degree of agreement
between the test and gold-standard results.

function [se sp pre ppv npv ag] = sesp(tp, fp, fn, tn)
%D-dimer as a test for acute PE (Goldhaber et al, 1993)
% [s1, s2, p1, p2, p3, a, yi] = sesp(42,96,3,32)
%

n = tp+tn+fn+fp; %total sample size
np = tp + fp; %total positive
nn = tn + fn; %total negative
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nd = tp + fn; %total with disease
nc = tn + fp; %total control (without disease)
%--------------
se = tp/nd; %tp/(tp + fn):::sensitivity
sp = tn/nc; %tn/(tn + fp):::specificity
pre = nd/n; %(tp + fn)/(tp+tn+fn+fp):::prevalence
%only in for case when sample is random from the
% population of interest. Otherwise, the prevalence
% needed for calculating PPV and NPV is an input value
ppv = tp/np; %tp/(tp + fp):::positive predictive value
npv = tn/nn; %tn/(tn+fn):::negative predictive value
lrp = se/(1-sp); %:::likelihood ratio positive
lrn = (1-se)/sp; %:::likelihood ratio negative
ag = (tp+tn)/n; %:::agreement
yi = (se + sp - 1)/sqrt(2); %:::youden index
%---------------
disp(’ Se Sp Pre PPV NPV LRP Ag Yi’)
disp([se, sp, pre, ppv, npv, lrp, ag yi])

%spacing in disp depends on the font size.

For the D-dimer data, the result is

[a b c d e f g] = sesp(42,96,3,32);
Se Sp Pre PPV NPV LRP Ag Yi

0.9333 0.2500 0.2601 0.3043 0.9143 1.2444 0.4277 0.1296

Goldhaber et al. (1993) conclude: “The results of our study indicate that
quantitative plasma D-dimer levels can be useful in screening patients with
suspected PE who require pulmonary angiography. Plasma D-dimer values
less than 500 ng/mL may obviate the need for pulmonary angiography, partic-
ularly among medical patients for whom the clinical suspicion of PE is low. The
plasma D-dimer value, assayed using a commercially available enzyme-linked
immunosorbent assay kit, is a sensitive but nonspecific test for the presence
of acute PE.”
�

4.3 Combining Two or More Tests

Suppose that k independent tests for a particular condition are available and
that their sensitivities and specificities are Se1, Sp1, Se2, Sp2, . . . , Sek, Spk. If
these tests could be combined, what would be the sensitivity/specificity of the
combined test?

First, it is important to define how the tests are going to be combined.
There are two main strategies: parallel and serial. When the tests are as-
sumed independent, the calculations are similar to those in circuit problems
from Chap. 3, p. 68. Denote by Se and Sp the sensitivity and specificity of the
combined test, respectively.
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In the parallel strategy the combination is positive if at least one test is
positive and negative if all tests are negative. Then the sensitivity is calcu-
lated as the probability of a union and the specificity as the probability of an
intersection:

Parallel combination (Positive if at least 1 positive)
Se= 1− [(1−Se1)× (1−Se2)×·· ·× (1−Sek)]
Sp=Sp1 ×Sp2 ×·· ·×Spk

It is easy to see that in the parallel strategy the sensitivity is larger than any
individual sensitivity and the specificity smaller than any individual speci-
ficity.

In the serial strategy, the combination is positive if all tests are positive
and negative if at least one test is negative. Then the sensitivity is calculated
as the probability of an intersection and the specificity as the probability of a
union:

Serial combination (Positive if all positive)
Se=Se1 ×Se2 ×·· ·×Sek
Sp= 1−

[
(1−Sp1)× (1−Sp2)×·· ·× (1−Spk)

]

Here, the overall sensitivity is smaller than any individual sensitivity, while
the specificity is larger than any individual specificity.

There are other possible combinations as well as procedures that address
bias and correlation among the individual tests.

Example 4.3. Combining Two Tests for Sarcoidosis. Parikh et al. (2008)
provide an example of combining two tests for sarcoidosis. Sarcoidosis is an id-
iopathic multisystem granulomatous disease, where the diagnosis is made by
a combination of clinical, radiological, and laboratory findings. The gold stan-
dard is a tissue biopsy showing noncaseating granuloma. Ocular sarcoidosis
could present as anterior, intermediate, posterior, or panuveitis; but none of
these is pathognomonic. Therefore, one has to rely on ancillary testing to con-
firm the diagnosis.

An angiotensin-converting enzyme (ACE) test has a sensitivity of 73% and
a specificity of 83% to diagnose sarcoidosis. An abnormal gallium scan has a
sensitivity of 91% and a specificity of 84%. Though individually the specificity
of either test is not impressive, for the serial combination the specificity be-
comes

Sp= 1− (1−0.84)× (1−0.83)= 1− (0.16×0.17)= 0.97.

The combination sensitivity becomes 0.73×0.91 = 0.66. Note that the overall
specificity drastically improves, but at the expense of overall sensitivity.
�

The independence of tests in the previous example is a quite limiting as-
sumption. One may argue that two tests for the same disease are seldom in-
dependent by the very nature of the testing problem.
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In the following example, we show how to handle more complex batteries of
tests in which the tests could be dependent. The example considers two tests
and a parallel combination strategy, but it could be extended to any number of
tests and to more general combination strategies.

The approach is based on simulation since analytic solutions are typically
computationally involved.

Example 4.4. Simulation Approach. Suppose a testing procedure consists
of two tests given in a sequence. Test A has a sensitivity of 0.9 and a specificity
of 0.8. Test B has a sensitivity of 0.7 and a specificity of 0.9 for subjects who
tested negative in test A and a sensitivity of 0.95 and a specificity of 0.6 for
subjects who tested positive in test A.

Clearly, test A and test B are dependent. If a subject is declared positive
when the result of at least one of the two tests was positive (parallel link),
what is the overall sensitivity/specificity of the described testing procedure?
The population prevalence is considered known and is used in the simulation
of a patient’s status, but it does not affect the overall sensitivity/specificity.

Note that if a subject’s status s is equal to 0/1 when the disease is ab-
sent/present, then the result of a test is s*(rand < se) + (1-s)*(rand > sp)

for a known sensitivity and specificity, se, sp. The test outcome is binary, with
0/1 denoting a negative/positive test result.

The following MATLAB code ( simulatetesting2.m) considers 20,000
subjects from a population where the disease prevalence is 0.2. The estimated
sensitivity/specificity was 0.97/0.72, but simulation results may vary slightly
due to the random status of subjects.

nsubjects = 20000;
prevalence = 0.2;
se1 =0.9; sp1 = 0.8; %se/sp of test1
se20 =0.7; sp20 = 0.9; %se/sp of test2 if test1=0
se21 =0.95; sp21 = 0.6; %se/sp of test2 if test1=1

tests = [];
ss=[]; tp=0; fp=0; fn=0; tn=0;
for i = 1:nsubjects

%simulate a subject wp of disease equal to prevalence
s = (rand < prevalence);
%test the subject
test1=s*(rand < se1) + (1-s)*(rand>sp1); %test is 0 or 1
if (test1 == 0)

test2=s*(rand < se20) + (1-s)*(rand>sp20);
else

test2=s*(rand < se21) + (1-s)*(rand>sp21);
end
%test = test1*test2; %for serial
test = (test1 + test2 > 0); %for parallel
ss=[ss s]; %save subject’s status
tests = [tests test]; %save subject’s test
%building the test table
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tp = tp + test*s; %true positives
fp = fp + test*(1-s); %false positives
fn = fn + (1-test)*s; %false negatives
tn = tn + (1-test)*(1-s); %true negatives

end
% estimate overall Se/Sp from the table
sens = tp/(tp+fn)
spec = tn/(tn+fp)

�

Remark: In the previous discussion we assumed that a true disease status
was known and that a perfect gold standard test was available. In many cases
an error-free assessment does not exist but a reference test, with known sen-
sitivity SeR and specificity SpR , could be used. By taking this reference test
as a gold standard and by not accounting for its errors would lead to biases in
evaluating a new test. Staquet et al. (1981) provide a solution based on SeR ,
SpR , and concordance of results between the two tests.

Another approach approach to this problem is “discrepant resolution,” in
which the subjects for whom the reference and new test disagreed were sub-
jected to a third “resolver” test. Although commonly used, the resolver method
can be biased and can overestimate sensitivity and specificity of a new test
significantly (Hawkins et al., 2001; Qu and Hadgu, 1998).

4.4 ROC Curves

The receiver operating characteristic (ROC) curve was first used during World
War II for the analysis of radar signals before it was employed in signal de-
tection theory and, subsequently, in a range of fields where testing is critical.
It is defined as a graphical plot of sensitivity vs. (1 - specificity) for a bi-
nary classifier system as its discrimination threshold (value that separates
positives and negatives) varies.

Let us look at an ROC curve using the D-dimer example from the pre-
vious section. Mavromatis and Kessler (2001) report that in 18 publications
(between 1988 and 1998) concerning D-dimer testing, the reported cut point
for declaring the test positive ranged from 250 to 1000 ng/mL. What cut point
should be recommended? To increase the apparently low specificity in the pre-
vious D-dimer analysis, suppose that the threshold for testing positive is in-
creased from 500 to 650 ng/mL and that the data are distributed in the follow-
ing way:

Acute PE No PE present Total
Test positive (D-dimer ≥ 650 ng/mL) 31 33 64
Test negative (D-dimer < 650 ng/mL) 14 95 109

Total 45 128 173
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This new table results in the following sesp output:

[a b c d e f] = sesp(31,33,14,95);
Se Sp Pre PPV NPV LRP Ag Yi

0.6889 0.7422 0.2601 0.4844 0.8716 2.6721 0.7283 0.3048

Combining this with the output of the 500-ng/mL threshold, we get the
vectors 1-sp = [0 1-0.7422 1-0.25 1] and se = [0 0.6889 0.9333 1].
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Fig. 4.1 Rudimentary ROC curve for D-dimer data based on two thresholds.

The code RocDdimer.m plots this “rudimentary” ROC curve (Fig. 4.1).
The curve is rudimentary since it is based on only two tests. Note that points
(0,0) and (1,1) always belong to ROC curves. These two points correspond to
the trivial tests in which all patients test negative or all patients test posi-
tive. The area under the ROC curve (AUC), is a well-accepted measure of test
performance. The closer the area is to 1, the more unbalanced the ROC curve,
implying that both sensitivity and specificity of the test are high. It is inter-
esting that some researchers assign an academic scale to AUC as an informal
measure of test performance.
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AUC Performance
0.9–1.0 A
0.8–0.9 B
0.7–0.8 C
0.6–0.7 D
0.0–0.6 F

The following MATLAB program calculates AUC when the vectors csp = 1

- specificity and sensitivity are supplied.

function A = auc(csp, se)
%
% A = auc(csp,se) computes the area under the ROC curve
% where ’csp’ and ’se’ are vectors representing (1-specificity)
% and (sensitivity), used to plot the ROC curve
% The length of the vectors has to be the same

csp=csp(:); se = se(:);
if length(csp) ~= length(se)
error(’Input vectors (1-specificity) ...

and (sensitivity) should have the same length’)
end
A = sum((csp(2:end)-csp(1:end-1)) .* (se(2:end)+se(1:end-1))/2 );

For example, the AUC for the D-dimer ROC based on the two thresholds is
approx. 73%, a grade of C:

auc([0, 1-0.7422, 1-0.25, 1],[0 0.6889 0.9333 1])
ans = 0.7297

To choose the best test out of a multiplicity of tests obtained by changing
the threshold and generating the ROC curve, select the test corresponding to
the point in the ROC curve most distant from the diagonal. This point corre-
sponds to a Youden index

Y I = maxi
Sei +Spi −1p

2
,

where Sei and Spi are, respectively, the sensitivity and specificity for the ith
test. Thus, the Youden index is the distance of the most distant point (1−
Sp,Se) on the ROC curve from the diagonal. It ranges between 0 and

p
2/2.

In the D-dimer example, the Youden index for the test with a 500-ng/mL
threshold is 0.1296, compared to 0.3048 for the test with a 650-ng/mL thresh-
old. Between the two tests, the test with the 650-ng/mL threshold is preferred.

Example 4.5. ADA. Adenosine deaminase (ADA) is an enzyme involved in the
breakdown of adenosine to uric acid. ADA levels were found to be elevated in
the pleural fluid of patients with tuberculosis (TB) pleural effusion. Pleural
effusion is a very common clinical problem. It may occur in patients of pul-
monary TB, pneumonia, malignancy, congestive cardiac failure, cirrhosis of
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the liver, nephrotic syndrome, pulmonary infarction, and connective tissue dis-
orders. TB is one of the primary causes of pleural effusion. Numerous studies
have evaluated the usefulness of ADA estimation in the diagnosis of TB pleu-
ral effusion. However, the sensitivity and specificity of ADA estimation and
the cutoff level used for distinguishing TB pleural effusion from non-TB pleu-
ral effusion have varied between studies. The data (given in ROCTBCA.XLS

or ROC.mat) were collected by Dr. Mark Hopley of Chris-Hani Baragwanath
Hospital (CHB, the largest hospital in the world), with the goal of critically
evaluating the sensitivity and specificity of ADA estimation in the diagnosis
of TB pleural effusion.

The data set consists of three columns:
Column 1 contains ADA levels.
Column 2 is an indicator of TB. The indicator is “1” if the patient had

documented TB, zero otherwise.
Column 3 is an indicator of documented carcinoma. Six patients who had

both carcinoma and TB have been excluded from the analysis.
To create an empirical ROC curve, the following four steps are applied:

(i) The data are sorted according to the ADA level, with the largest values
first.

(ii) A column is created where each entry gives the total number of TB
patients with ADA levels greater than or equal to the ADA value for that
entry.

(iii) A column equivalent to that from step 2 is created for patients with
cancer.

(iv) Two new columns are created, containing the true positive frequency
(TPF) and false positive frequency (FPF) for each entry. The TPF is calculated
by taking the number of TB cases identified at or above the ADA level for
the current entry and dividing by the total number of TB cases. The FPF is
determined by taking the number of “false TB alarms” (cancer patients) at or
above that level and dividing by the total number of such non-TB patients.

This description can be simply coded in MATLAB thanks to the cumulative
summation (cumsum) command:

disp(’ROC Curve Example’)
set(0, ’DefaultAxesFontSize’, 16);
fs = 15;

% data file ADA.mat should be on path
load ’ADA.mat’

% columns in ADA.mat are:
% 1. ADA level (ordered decreasingly)
% 2. indicator of case TB
% 3. indicator of non-case CA

cumultruepos = cumsum(ada(:,2));
cumulfalsepos = cumsum(ada(:,3));

% these are true positives/false positives if the
% cut-level is from the sequence ada(:,1).

tpf = cumultruepos/cumultruepos(end); %sensitivity
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fpf = cumulfalsepos/cumulfalsepos(end); %1-specificity
plot(fpf,tpf) %ROC, sensitivity against (1-specificity)
xlabel(’1 - specificity’)
ylabel(’sensitivity’)
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Fig. 4.2 (a) ROC Curve for ADA data. (b) Youden index against ADA level.

Which ADA level should be recommended as a threshold? The Youden in-
dex for the ROC curve in Fig. 4.2a is 0.4910, which corresponds to ADA level of
37, Fig. 4.2b. For this particular threshold, the sensitivity and specificity are
0.8904 and 0.8039, respectively.

%youden index
yi = max((seth-cspth)/sqrt(2)) %0.4910
%ADA level corresponding to YI
ada((seth-cspth)/sqrt(2)== yi , 1) %37
% sensitivity/specificity at YI
seth((seth-cspth)/sqrt(2)== yi) %0.8904
1 - cspth((seth-cspth)/sqrt(2)== yi) %0.8039

�

4.5 Exercises

4.1. Stacked Auditory Brainstem Response. The failure of standard audi-
tory brainstem response (ABR) measures to detect small (<1 cm) acoustic
tumors has led to the use of enhanced magnetic resonance imaging (MRI)
as the standard to screen for small tumors. The study by Don et al. (2005)
investigated the suitability of the stacked ABR as a sensitive screening
alternative to MRI for small acoustic tumors (SATs). The objective of the
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study was to determine the sensitivity and specificity of the stacked ABR
technique for detecting SATs. A total of 54 patients were studied who had
MRI-identified acoustic tumors that were either <1 cm in size or undetected
by standard ABR methods, irrespective of size. There were 78 nontumor
normal-hearing subjects who tested as controls. The stacked ABR demon-
strated 95% sensitivity and 88% specificity. Recover the testing table.

4.2. Hypothyroidism. Low values of a total thyroxine (T4) test can be indica-
tive of hypothyroidism (Goldstein and Mushlin 1987). Hypothyroidism is
a condition in which the body lacks sufficient thyroid hormone. Since the
main purpose of the thyroid hormone is to “run the body’s metabolism,”
it is understandable that people with this condition will have symptoms
associated with a slow metabolism. Over five million Americans have this
common medical condition.
A total of 195 patients, among which 59 have confirmed hypothyroidism,
have been tested for the level of T4. If the patients with a T4 level ≤5 are
considered positive for hypothyroidism, the following table is obtained:

T4 value Hypothyroid Euthyroid Total
Positive, T4≤ 5 35 5 40
Negative, T4> 5 24 131 155

Total 59 136 195

However, if the thresholds for T4 are 6, 7, 8, and 9, the following tables are
obtained.

T4 value Hypothyroid Euthyroid Total
Positive, T4≤ 6 39 10 49
Negative, T4> 6 20 126 146

Total 59 136 195

T4 value Hypothyroid Euthyroid Total
Positive, T4≤ 7 46 29 75
Negative, T4> 7 13 107 120

Total 59 136 195

T4 value Hypothyroid Euthyroid Total
Positive, T4≤ 8 51 61 112
Negative, T4> 8 8 75 83

Total 59 136 195

T4 value Hypothyroid Euthyroid Total
Positive, T4≤ 9 57 96 153
Negative, T4> 9 2 40 42

Total 59 136 195
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Notice that you can improve the sensitivity by moving the threshold to a
higher T4 value; that is, you can make the criterion for a positive test less
strict. You can improve the specificity by moving the threshold to a lower
T4 value; that is, you can make the criterion for a positive test more strict.
Thus, there is a tradeoff between sensitivity and specificity.
(a) For the test that uses T4= 7 as the threshold, find the sensitivity, speci-
ficity, positive and negative predictive values, likelihood ratio, and degree
of agreement. You can use the code sesp.m.
(b) Using the given thresholds for the test to be positive, plot the ROC curve.
What threshold would you recommend? Explain your choice.
(c) Find the area under the ROC curve. You can use the code auc.m.

4.3. Alzheimer’s. A medical research team wished to evaluate a proposed
screening test for Alzheimer’s disease. The test was given to a random sam-
ple of 450 patients with Alzheimer’s disease and to an independent sample
of 500 subjects without symptoms of the disease.
The two samples were drawn from a population of subjects who are 65 years
old or older. The results are as follows:

Test result diagnosis Diagnosed Alzheimer’s, D No Alzheimer’s symptoms, Dc Total
Positive test T 436 5 441

Negative test Tc 14 495 509
Total 450 500 950

(a) Using the numbers from the table, estimate P(T|D) and P(Tc|Dc). Inter-
pret these probabilities in terms of the problem.
The probability of D (prevalence) is the rate of the disease in the rele-
vant population (≥ 65 y.o.) and is estimated to be 11.3% (Evans 1990). Find
P(D|T) (positive predicted value) using Bayes’ rule. You cannot find P(D|T)
using information from the table only – you need external info.

4.4. Test for Being a Duchenne Muscular Dystrophy Carrier. In Exercise
2.16 researchers used measures of pyruvate kinase and lactate dehydrogi-
nase to assess an individual’s carrier status. The following table closely
follows the authors’ report.

Woman carrier Woman not carrier Total
Test positive 56 6 62
Test negative 11 121 132

total 67 127 194

(a) Find the sensitivity, specificity, and degree of agreement.
The sample is not representative of the general population for which the
prevalence of carriers is 0.03%, or 3 in 10,000.
(b) With this information, find the PPV of the test, that is, the probability
that a woman is a DMD carrier if she tested positive.
(c) What is the PPV if the table was constructed from a random sample of
194 subjects from a general population?
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(d) Approximate the probability that among 15,000 women randomly se-
lected from a general population, at least 2 are DMD carriers.

4.5. Parkinson’s Disease Statistical Excursions. Parkinson’s disease or,
“shaking palsy,” is a brain disorder that causes muscle tremor, stiffness,
and weakness. Early symptoms of Parkinson’s disease include muscular
stiffness, a tendency to tire more easily than usual, and trembling that usu-
ally begins with a slight tremor in one hand, arm, or leg. This trembling is
worse when the body is at rest but will generally stop when the body is in
use, for example, when the hand becomes occupied by “pill rolling,” or when
the thumb and forefinger are rubbed together as if rolling a pill (Fig. 4.3).

Fig. 4.3 “Pill rolling” stops muscle tremors in early Parkinson’s disease.

In the later stages of Parkinson’s disease, the affected person loses the abil-
ity to control his or her movements and the intellect begins to decline, mak-
ing everyday activities hard to manage.

In a study by Schipper et al. (2008), 52 subjects, 20 with mild or moderate
stages of Parkinson’s disease and 32 age-matched controls, had whole blood
samples analyzed using the near-infrared (NIR) spectroscopy and Raman
spectroscopy methods. The data showed that the two independent biospec-
troscopy measurement techniques yielded similar and consistent results. In
differentiating Parkinson’s disease patients from the control group, Raman
spectroscopy resulted in eight false positives and four false negatives. NIR
spectroscopy resulted in four false positives and five false negatives.
(a) From the description above, construct tables for NIR spectroscopy and
Raman spectroscopy containing TP, FP, FN and TN.
(b) For both methods find the sensitivity and specificity. Assume that the
prevalence of Parkinson’s disease in the age group matching this group is
1/120 for the general population. For both methods, also find the PPV, that
is, the probability that a person who tested positive and was randomly se-
lected from the same age group in the general population has the disease if
no other clinical information is available.
(c) Mr. Smith is one of the 52 subjects in the study and he tested positive
under a Raman spectroscopy test. What is the probability that Mr. Smith
has the disease?
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4.6. Blood Tests in Diagnosis of Inflammatory Bowel Disease. Cabrera-
Abreu et al. (2004) explored the reliability of a panel of blood tests in screen-
ing for ulcerative colitis and Crohn’s disease. The subjects were 153 chil-
dren who were referred to a pediatric gastroenterology department with
possible inflammatory bowel disease (IBD). Of these, 103 were found to
have IBD (Crohn’s disease 60, ulcerative colitis 37, indeterminate colitis
6). The 50 without IBD formed the controls. Blood tests evaluated sev-
eral parameters including hemoglobin, platelet count, ESR, CRP, and al-
bumin. The optimal screening strategy used a combination of hemoglobin
and platelet count and “one of two abnormal” as the criterion for positivity.
This was associated with a sensitivity of 90.3% and a specificity of 80.0%.
(a) Construct a table with TP, FP, FN and TN rounded to the nearest inte-
ger.
(b) Find the prevalence and PPV if the prevalence can be assessed from the
table (the table is obtained from a random sample from the population of
interest).

4.7. Carpal Tunnel Syndrome Tests. Three commonly used tests for carpal
tunnel syndrome are Tinel’s sign, Phalen’s test, and the nerve conduction
velocity test. Tinel’s sign and Phalen’s test are both highly sensitive (0.97
and 0.92, respectively) and specific (0.91 and 0.88, respectively). The sensi-
tivity and specificity of the nerve conduction velocity test are 0.93 and 0.87,
respectively. Assume that the tests are independent.
Calculate the sensitivity and specificity of a combined test if combining is
done
(a) in a serial manner;
(b) in a parallel manner.
(c) Find PPV for tests from (a) and (b) if prevalence of carpal tunnel syn-
drome is approximately 50 cases per 1000 subjects in the general popula-
tion.

4.8. Hepatitic Scintigraphy. A commonly used imaging procedure for detect-
ing abnormalities in the liver is hepatitic scintigraphy. Drum and Christa-
copoulos (1972) reported data on 344 patients who underwent scintigraphy
and were later examined by autopsy, biopsy, or surgical inspection for a
gold-standard determination of the presence of liver pathology (parenchy-
mal, focal, or infiltrative disease). The table summarizes the experimental
results. Assume that this table is representative of the population of inter-
est for this study.

Liver disease (D) No liver disease (C) Total
Abnormal liver scan (P) 231 32 263
Normal liver scan (N) 27 54 81

total 258 86 344
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Find the sensitivity, specificity, prevalence, PPV, NPV, LRP, LRN, and con-
cordance. Interpret the meaning of a LRP.

4.9. Apparent Prevalence. When the disease status in a sample is not known,
the prevalence cannot be estimated directly. It is estimated using apparent
prevalence. There is a distinction between the true prevalence (Pre – the
proportion of a population with the disease) and apparent prevalence (APre
– the proportion of the population that tests positive for the disease). If the
estimators of sensitivity, specificity, and apparent prevalence are available,
show that the estimator of prevalence is

Pre= APre+Sp−1
Se+Sp−1

.

4.10. HAAH Improves the Test for Prostate Cancer. A new procedure
based on a protein called human aspartyl (asparaginyl) beta-hydroxylase,
or HAAH, adds to the accuracy of standard prostate-specific antigen (PSA)
testing for prostate cancer. The findings were presented at the 2008 Geni-
tourinary Cancers Symposium (Keith et al. 2008).
The research involved 233 men with prostate cancer and 43 healthy men,
all over 50 years old. Results showed that the HAAH test had an overall
sensitivity of 95% and specificity of 93%.
Compared to the sensitivity and specificity of PSA (about 40%), this test
may prove particularly useful for men with both low and high PSA scores.
In men with high PSA scores (4 to 10), the addition of HAAH information
could substantially decrease the number of unnecessary biopsies, according
to the authors.
(a) From the reported percentages, construct a table with true positives,
false positives, true negatives, and false negatives (tp, fp, tn, and fn).
You will need to round to the nearest integer since the specificity and sen-
sitivity were reported as integer percents.
(b) Suppose that for the men aged 50+ in the USA, the prevalence of
prostate cancer is 7%. Suppose Jim Smith is randomly selected from this
group and tested positive on the HAAH test. What is the probability that
Jim has prostate cancer?
(c) Suppose that Bill Schneider is a randomly selected person from the sam-
ple of n = 276 (= 233+43) subjects involved in the HAAH study. What is the
probability that Bill has prostate cancer if he tests positive and no other in-
formation is available? What do you call this probability? What is different
here from (b)?

4.11. Creatinine Kinase and Acute Myocardial Infraction. In a study of
773 patients, Radack et al. (1986) used an elevated serum creatinine ki-
nase concentration as a diagnostic test for acute myocardial infraction. The
following thresholds of a diagnostic test have been suggested: 481, 361,
241, and 121 IU/l; if the creatine kinase concentration exceeds the selected
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threshold, the test for myocardial infraction is considered positive. The gold
standard is dichotomized: myocardial infraction present (MIP) and myocar-
dial infraction not present (MINP). Assume that the sample of 773 subjects
is randomly selected from the population, so that the prevalence of the dis-
ease is estimated as 51/773.

MIP MINP Total
≥ 481 IU/l 9 14 23
< 481 IU/l 42 708 750
≥ 361 IU/l 15 26 41
< 361 IU/l 36 696 732
≥ 241 IU/l 22 50 72
< 241 IU/l 29 672 701
≥ 121 IU/l 28 251 279
< 121 IU/l 23 471 494
Total 51 722 773

(a) For the test that uses 361 IU/l as a threshold, find the sensitivity, speci-
ficity, PPV, NPV, LRP, and degree of agreement.
(b) Using given thresholds plot the ROC curve. What threshold would you
suggest?
(c) Find the area under the ROC curve.

4.12. Asthma. A medical research team wished to evaluate a proposed screening
test for asthma. The test was given to a random sample of 100 patients with
asthma and to an independent sample of 200 subjects without symptoms of
the disease.
The two samples were drawn from a population of subjects who were 50
years old or older. The results are as follows.

Test result Asthma, D No asthma, Dc Total
Positive test T 92 13 105

Negative test Tc 8 187 195
Total 100 200 300

(a) Using the numbers from the table, estimate the sensitivity and speci-
ficity. Interpret these proportions in terms of the problem, one sentence for
each.
(b) The probability of D (prevalence) as the rate of the disease in the rel-
evant population (≥ 50 y.o.) is estimated to be 6.3%. Find the PPV using
Bayes’ rule.
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MATLAB FILES AND DATA SETS USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch4.ROC/

auc.m, hypothyroidism.m, Kinaseandmi.m rocada.m, RocDdimer.m,
sesp.m, simulatetesting.m, simulatetseting2.m

ADA.mat, pasi.dat, roccreatine.vi, ROCTBCA.XLS
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Chapter 5
Random Variables

The generation of random numbers is too important to be left to chance.

– Robert R. Coveyou

WHAT IS COVERED IN THIS CHAPTER

• Definition of Random Variables and Their Basic Characteristics
• Discrete Random Variables: Bernoulli, Binomial, Poisson, Hyperge-

ometric, Geometric, Negative Binomial, and Multinomial
• Continuous Random Variables: Uniform, Exponential, Gamma, In-

verse Gamma, Beta, Double Exponential, Logistic, Weibull, Pareto, and
Dirichlet

• Transformation of Random Variables
• Markov Chains

5.1 Introduction

Thus far we have been concerned with random experiments, events, and their
probabilities. In this chapter we will discuss random variables and their prob-
ability distributions. The outcomes of an experiment can be associated with
numerical values, and this association will help us arrive at the definition of a
random variable.
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A random variable is a variable whose numerical value is determined by
the outcome of a random experiment.

Thus, a random variable is a mapping from the sample space of an experi-
ment, S , to a set of real numbers. In this respect, the term random variable is
a misnomer. The more appropriate term would be random function or random
mapping, given that X maps a sample space S to real numbers. We generally
denote random variables by capital letters X ,Y , Z, . . . .

Example 5.1. Three Coin Tosses. Suppose a fair coin is tossed three times.
We can define several random variables connected with this experiment. For
example, we can set X to be the number of heads, Y the difference between
the number of heads and the number of tails, and Z an indicator that heads
appeared, etc.

Random variables X , Y , and Z are fully described by their probability dis-
tributions, associated with the sample space on which they are defined.

For random variable X the possible realizations are 0 (no heads in three
flips), 1 (exactly one head), 2 (exactly two heads), and 3 (all heads). Fully de-
scribing random variable X amounts to finding the probabilities of all pos-
sible realizations. For instance, the realization {X = 2} corresponds to either
outcome in the event {HHT, HTH,THH}. Thus, the probability of X taking
value 2 is equal to the probability of the event {HHT, HTH,THH}, which is
equal to 3/8. After finding the probabilities for other outcomes, we determine
the distribution of random variable X :

X 0 1 2 3
Prob 1/8 3/8 3/8 1/8

.

�

The probability distribution of a random variable X is a table (assign-
ment, rule, formula) that assigns probabilities to realizations of X , or
sets of realizations.

Most random variables of interest to us will be the results of a random
sampling. There is a general classification of random variables that is based
on the nature of realizations they can take. Random variables that take values
from a finite or countable set are called discrete random variables. Random
variable X from Example 5.1 is an example of a discrete random variable.
Another type of random variable can take any value from an interval on a
real line. These are called continuous random variables. The results of mea-
surements are usually modeled by continuous random variables. Next, we will
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describe discrete and continuous random variables in a more structured man-
ner.

5.2 Discrete Random Variables

Let random variable X take discrete values x1, x2, . . . , xn, . . . with probabilities
p1, p2, . . . , pn, . . . ,

∑
n pn = 1. The probability distribution function (PDF) is

simply an assignment of probabilities to the realizations of X and is given by
the following table.

X x1 x2 · · · xn · · ·
Prob p1 p2 · · · pn · · · .

The probabilities pi sum up to 1:
∑

i pi = 1. It is important to emphasize
that discrete random variables can have an infinite number of realizations,
as long as the infinite sum of the probabilities converges to 1. The PDF for
discrete random variables is also called the probability mass function (PMF).
The cumulative distribution function (CDF)

F(x)= P(X ≤ x)=
∑

n:xn≤x
pn,

sums the probabilities of all realizations smaller than or equal to x. Fig-
ure 5.1a shows an example of a discrete random variable X with four values
and a CDF as the sum of probabilities in the range X ≤ x shown in yellow.

(a) (b)

Fig. 5.1 (a) An example of a cumulative distribution function for discrete random vari-
able X . The CDF is the sum of probabilities in the region X ≤ x (yellow). (b) Expectation as
a point of balance for “masses” p1, . . . , p4 located at the points x1, . . . , x4.

The expectation of X is given by

EX = x1 p1 +·· ·+ xn pn +·· · =
∑
n

xn pn

and is a weighted average of all possible realizations with their probabilities
as weights. Figure 5.1b illustrates the interpretation of the expectation as the
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point of balance for a system with weights p1, . . . , p4 located at the locations
x1, . . . , x4.

The distribution and expectation of a function g(X ) are simple when X is
discrete: one applies function g to realizations of X and retains the probabili-
ties:

g(X ) g(x1) g(x2) · · · g(xn) · · ·
Prob p1 p2 · · · pn · · ·

and
Eg(X )= g(x1)p1 +·· ·+ g(xn)pn +·· · =

∑
n

g(xn)pn.

The kth moment of a discrete random variable X is defined as EX k =∑
n xk

n pn, and the kth central moment is E(X − EX )k = ∑
n(xn −EX )k pn. The

first moment is the expectation and the second central moment is the vari-
ance, Var (X ) = E(X −EX )2. Thus, the variance for a discrete random variable
is

Var (X )=
∑
n

(xn −EX )2 pn.

The following properties are common for both discrete and continuous ran-
dom variables.

For any set of random variables X1, X2, . . . , Xn

E(X1 + X2 +·· ·+Xn)= EX1 +EX2 +·· ·+EXn. (5.1)

For any constant c, E(c)= c and EcX = cEX .
The independence of two random variables is defined via the indepen-

dence of events. Two random variables X and Y are independent if for
arbitrary intervals A and B, the events {X ∈ A} and {Y ∈ B} are indepen-
dent, that is, when

P(X ∈ A, Y ∈ B)=P(X ∈ A) ·P(Y ∈B),

holds.
If the random variables X1, X2, . . . , Xn are independent, then

E(X1 · X2 · · · · ·Xn) = EX1 ·EX2 · · · · ·EXn, and

Var (X1 + X2 +·· ·+Xn) = Var X1 +Var X2 +·· ·+Var Xn. (5.2)

For a constant c, Var (c)=0, and Var (cX )= c2Var X .

If X1, X2, . . . , Xn, . . . are independent and identically distributed random
variables, we will refer to them as i.i.d. random variables.
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The arguments behind these properties involve the linearity of the sums
(for discrete variables) and integrals (for continuous variables). The indepen-
dence of the Xis is critical for (5.2).

Moment-Generating Function. A particularly useful function for find-
ing moments and for more advanced operations with random variables is the
moment-generating function. For a random variable X , the moment-generating
function is defined as

mX (t)= EetX =
∑
n

pnetxn , (5.3)

which for discrete random variables has the form mX (t)=∑
n pnetxn . When the

moment generating function exists, it uniquely determines the distribution. If
X has distribution FX and Y has distribution FY , and if mX (t)= mY (t) for all
t, then it follows that FX = FY .

The name “moment generating” is motivated by the fact that the kth
derivative of mX (t) evaluated at 0 results in the kth moment of X , that is,
m(k)

X (t)=∑
n pnxk

netxn , and EX k = m(k)
X (0). For example, if

X 0 1 3
Prob 0.2 0.3 0.5

,

then mX (t)= 0.2+0.3 et+0.5 e3t. Since m′
X (t)= 0.3 et+1.5 e3t, the first moment

is EX = m′(0)= 0.3+1.5= 1.8. The second derivative is m′′
X (t)= 0.3 et+4.5 e3t,

the second moment is EX 2 = m′′(0)= 0.3+4.5= 4.8, and so on.
In addition to generating the moments, moment generating functions sat-

isfy

mX+Y (t)= mX (t) mY (t), (5.4)

mcX (t)= mX (ct),

which helps in identifying distributions of linear combinations of random vari-
ables whenever their moment-generating functions exist.

The properties in (5.4) follow from the properties of expectations. When
X and Y are independent, etX and etY are independent as well, and by (5.2)
Eet(X+Y ) = EetX etY = EetX ·EetY .

Example 5.2. Apgar Score. In the early 1950s, Dr. Virginia Apgar proposed
a method to assess the health of a newborn child by assigning a grade referred
to as the Apgar score (Apgar 1953). It is given twice for each newborn, once at
1 min after birth and again at 5 min after birth.

Possible values for the Apgar score are 0, 1, 2, · · · , 9, and 10. A child’s
score is determined by five factors: muscle tone, skin color, respiratory effort,
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strength of heartbeat, and reflex, with a high score indicating a healthy infant.
Let the random variable X denote the Apgar score of a randomly selected new-
born infant at a particular hospital. Suppose that X has a given probability
distribution:

X 0 1 2 3 4 5 6 7 8 9 10
Prob .002 .001 .002 .005 .02 .04 .17 .38 .25 .12 .01

.

The following MATLAB program calculates (a) EX , (b) Var (X ), (c) EX4, (d)
F(x), (e) P(X < 4), and (f) P(2< X ≤ 3):

X = 0:10;
p = [0.002 0.001 0.002 0.005 0.02 ...

0.04 0.17 0.38 0.25 0.12 0.01];
EX = X * p’ %(a) EX = 7.1600
VarX = (X-EX).^2 * p’ %(b) VarX = 1.5684
EX4 = X.^4 * p’ %(c) EX4 = 3.0746e+003
ps = [0 cumsum(p)];
Fx = @(x) ps( min(max( floor(x)+2, 1),12) ); %handle
Fx(3.45) %(d) ans = 0.0100
sum(p(X < 4)) %(e) ans = 0.0100
sum(p(X > 2 & X <= 3)) %(f) ans = 0.0050

Note that the CDF F is expressed as function handle Fx to a custom-made
function.
�

Example 5.3. Cells. Randomly observed circular cells on a plate have a diam-
eter D that is a random variable with the following PMF:

D 8 12 16
Prob 0.4 0.3 0.3

.

(a) Find the CDF for D.
(b) Find the PMF for the random variable A = D2π/4 (the area of a cell).

Show that EA 6= (ED)2π/4. Explain.
(c) Find the variance Var (A).
(d) Find the moment-generating functions mD(t) and mA(t). Find Var (A)

using its moment-generating function.
(e) It is known that a cell with D > 8 is observed. Find the probability of

D = 12 taking into account this information.
Solution:

(a)

FD(d)=





0, d < 8
0.4, 8≤ d < 12
0.7, 12≤ d < 16
1, d ≥ 16

(b)
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A 82π/4 122π/4 162π/4
Prob 0.4 0.3 0.3

A 16π 36π 64π
Prob 0.4 0.3 0.3

EA = 16π( 4
10 )+36π( 3

10 )+64π( 3
10 )= 364π

10 = 114.3540.
ED = 8( 4

10 )+12( 3
10 )+16( 3

10 )= 116/10= 11.6
(ED)2π

4 = 3364π
100 6= 364π

10 .
The expectation is a linear operator, and such a “plug-in” operation would

work only if the random variable A were a linear function of D, i.e., if A =
αD +β, EA = αED +β. In our case, A is quadratic in D, and “passing” the
expectation through the equation is not valid.

(c)

Var A = EA2 − (EA)2 = 1720π2 −1324.96π2 = 395.04π2,

since

A2 162π2 362π2 642π2

Prob 0.4 0.3 0.3

(e) When D > 8 is true, only two values for D are possible, 12 and 16. These
values are equally likely. Thus, the distribution for D|{D > 8} is

D|{D > 8} 12 16
Prob 0.3/0.6 0.3/0.6

,

and P(D = 12|D > 8) = 1/2. We divided 0.3 by 0.6 since P(D > 8) = 0.6. From
the definition of the conditional probability it follows that, P(D = 12|D > 8) =
P(D = 12,D > 8)/P(D > 8)=P(D = 12)/P(D > 8)= 0.3/0.6= 1/2.
�

There are important properties of discrete distributions in which the real-
izations x1, x2, . . . , xn are irrelevant and the focus is on the probabilities only,
for example, the measure of entropy. For a discrete random variable where the
probabilities are p = (p1, p2, . . . , pn) the (Shannon) entropy is defined as

H (p)=−
∑
i

pi log(pi).

Entropy is a measure of the uncertainty of a random variable and for finite
discrete distributions achieves its maximum when the probabilities of realiza-
tions are equal, p = (1/n,1/n, . . . ,1/n).

For the distribution in Example 5.2, the entropy is 1.5812.

and EA2 = 1720π2.
(d) mD(t) = EetD = 0.4e8t +0.3e12t +0.3e16t, and mA(t) = EetA = 0.4e16πt +

0.3e36πt +0.3e64πt.
From m′

A(t)= 6.4e16πt+10.8e36πt+19.2e64πt, and m′′
A(t)= 6.4e16πt+10.8e36πt+

19.2e64πt, we find m′
A(0) = 36.4π and m′′

A(0) = 1720π, leading to the result in
(c).
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ps = [.002 .001 .002 .005 .02 .04 .17 .38 .25 .12 .01]
entropy = @(p) -sum( p(p>0) .* log(p(p>0)))
entropy(ps) %1.5812

The maximum entropy for distributions with 11 possible realizations is 2.3979.

5.2.1 Jointly Distributed Discrete Random Variables

So far we have discussed probability distributions of a single random vari-
able. As we delve deeper into this subject, a two-dimensional extension will be
needed.

When two or more random variables constitute the coordinates of a random
vector, their joint distribution is often of interest. For a random vector (X ,Y )
the joint distribution function is defined via the probability of the event {X ≤
x,Y ≤ y},

F(x, y)=P(X ≤ x,Y ≤ y).

The univariate case P(a≤ X ≤ b)= F(b)−F(a) takes the bivariate form

P(a1 ≤ X ≤ a2,b1 ≤Y ≤ b2)= F(a2, b2)−F(a1, b2)−F(a2,b1)+F(a1, b1).

Marginal CDFs FX and FY are defined as follows: for X , FX (x) = F(x,∞)
and for Y as FY (y)= F(∞, y).

For a discrete bivariate random variable, the PMF is

p(x, y)=P(X = x,Y = y),
∑
x,y

p(x, y)= 1,

while for marginal random variables X and Y the PMFs are

pX (x)=
∑
y

p(x, y), pY (y)=
∑
x

p(x, y).

The conditional distribution of X given Y = y is defined as

pX |Y=y(x)= p(x, y)/pY (y),

and, similarly, the conditional distribution for Y given X = x is

pY |X=x(y)= p(x, y)/pX (x).

When X and Y are independent, for any “cell” (x, y), p(x, y) = P(X = x,Y =
y) = P(X = x)P(Y = y) = pX (x) pY (y), that is, the joint probability of (x, y)
is equal to the product of the marginal probabilities. If, on the other hand,
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p(x, y)= pX (x)pY (y) holds for every (x, y), then X and Y are independent. The
independence of two discrete random variables is fundamental for the infer-
ence in contingency tables (Chap. 14) and will be revisited later.

Example 5.4. The PMF of a two-dimensional discrete random variable is given
by the following table:

Y
5 10 15

X
1 0.1 0.2 0.3
2 0.25 0.1 0.05

The marginal distributions for X and Y are

X 1 2
Prob 0.6 0.4

and
Y 5 10 15
Prob 0.35 0.3 0.35

while the conditional distribution for X when Y = 10 and the conditional dis-
tribution for Y when X = 2 are

X |Y = 10 1 2
Prob 0.2/0.3 0.1/0.3

and
Y |X = 2 5 10 15
Prob 0.25/0.4 0.1/0.4 0.05/0.4

,

respectively.
Here X and Y are not independent since

0.1=P(X = 1,Y = 5) 6=P(X = 1)P(Y = 5)= 0.6 ·0.35= 0.21.

�

For two independent random variables X and Y , EXY = EX ·EY , that is,
the expectation of a product of random variables is equal to the product of
their expectations.

The covariance of two random variables X and Y is defined as

Cov(X ,Y )= E((X −EX ) · (Y −EY ))= EXY −EX ·EY .

For a discrete random vector (X ,Y ), EXY =∑
x
∑

y xyp(x, y), and the covari-
ance is expressed as

Cov(X ,Y )=
∑
x

∑
y

xyp(x, y)−
∑
x

xpX (x)
∑
y

ypY (y).

It is easy to see that the covariance satisfies the following properties:
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Cov(X , X )=Var (X ),

Cov(X ,Y )=Cov(Y , X ), and

Cov(aX +bY , Z)= aCov(X , Z)+bCov(Y , Z).

For (X ,Y ) from Example 5.4 the covariance between X and Y is −1. The
calculation is provided in the following MATLAB code. Note that the distribu-
tion of the product XY is found in order to calculate EXY .

X=[1 2]; pX=[0.6 0.4]; EX = X * pX’
%EX = 1.4000

Y=[5 10 15]; pY=[0.35 0.3 0.35]; EY = Y*pY’
%EY =10

XY =[5 10 15 20 30];
pXY=[0.1 0.2+0.25 0.3 0.1 0.05]; EXY=XY * pXY’

%EXY = 13
CovXY = EXY - EX * EY

%CovXY = -1

The correlation between random variables X and Y is the covariance nor-
malized by the standard deviations:

Corr(X ,Y )= Cov(X ,Y )p
Var X ·Var Y

.

In Example 5.4, the variances of X and Y are Var X = 0.24 and Var Y = 17.5.
Using these values, the correlation Corr(X ,Y ) is −1/

p
0.24 ·17.5 = −0.488.

Thus, the random components in (X ,Y ) are negatively correlated.

5.3 Some Standard Discrete Distributions

5.3.1 Discrete Uniform Distribution

A random variable X that takes values from 1 to n with equal probabilities
of 1/n is called a discrete uniform random variable. In MATLAB unidpdf and
unidcdf are the PDF and CDF of X , while unidinv is its quantile. For example,

unidpdf(1:5, 5)
%ans = 0.2000 0.2000 0.2000 0.2000 0.2000

unidcdf(1:5, 5)
%ans = 0.2000 0.4000 0.6000 0.8000 1.0000

are the PDF and CDF of the discrete uniform distribution on {1,2,3,4,5}. From∑n
i=1 i = n(n+1)/2, and

∑n
i=1 i2 = n(n+ 1)(2n+1)/6 one can derive EX = (n+
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1)/2 and Var X = (n2 − 1)/12. One of the important uses of discrete uniform
distribution is in nonparametric statistics (p. 482).

Example 5.5. Discrete Uniform: A Basis for Random Sampling. Suppose
that a population is finite and that we need a sample such that every subject
in the population has an equal chance of being selected.

If the population size is N and a sample of size n is needed, then if replace-
ment is allowed (each sampled object is recorded and then returned back to
the population), there would be Nn possible equally likely samples. If replace-
ment is not allowed or possible (all subjects in the selected sample are to be
different, that is, sampling is without replacement), then there would be

(N
n
)

different equally likely samples (see Sect. 3.5 for a definition of
(N

n
)
).

The theoretical model for random sampling is the discrete uniform distri-
bution. If replacement is allowed, each of {1,2, . . . , N} has a probability of 1/N
of being selected. In the case of no replacement, possible subsets of n subjects
can be indexed as {1,2, . . . ,

(N
n
)
} and each subset has a probability of 1/

(N
n
)

of
being selected.

In MATLAB, random sampling is achieved by the function randsample. If
the population has n indexed subjects (from 1 to n), the indices in a random
sample of size k are found as indices=randsample(n,k).

If it is possible to code the entire population as a vector population, then
taking a sample of size k is done by y=randsample(population,k).

The default is set to sampling without replacement. For sampling with
replacement, the flag for replacement should be ’true’. If the sampling is done
with replacement, it can be weighted with a nonnegative weight assigned to
each subject in the population: y=randsample(population,k,true,w). The size
of weight vector w should be the same as that of population.

For instance,

randsample([’A’ ’C’ ’G’ ’T’],50,true,[1 1.5 1.4 0.9])
%ans = GCCTAGGGCATCCAAGTCGCGGCCGAGAATCAACGTTGCAGTGCTCAAAT

�

5.3.2 Bernoulli and Binomial Distributions

A simple Bernoulli random variable Y is dichotomous with P(Y = 1) = p and
P(Y = 0) = 1− p for some 0 ≤ p ≤ 1 and is denoted as Y ∼ Ber(p). It is named
after Jakob Bernoulli (1654–1705) a prominent Swiss mathematician and as-
tronomer (Fig. 5.3a). Suppose that an experiment consists of n independent
trials (Y1, . . . ,Yn) in which two outcomes are possible (e.g., success or failure),
with P(success)=P(Y = 1)= p for each trial. If X = x is defined as the number
of successes (out of n), then X =Y1+Y2+·· ·+Yn and there are

(n
x
)

arrangements
of x successes and n−x failures, each having the same probability px(1−p)n−x.
X is a binomial random variable with the PMF
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pX (x)=
(
n
x

)
px(1− p)n−x, x = 0,1, . . . ,n.

This is denoted by X ∼ B in(n, p). From the moment-generating function
mX (t)= (pet + (1− p))n we obtain µ= EX = np and σ2 =Var X = np(1− p).

The cumulative distribution for a binomial random variable is not simpli-
fied beyond the sum, i.e., F(x)=∑

i≤x pX (i). However, interval probabilities can
be computed in MATLAB using binocdf(x,n,p), which computes the CDF at
value x. The PMF can also be computed in MATLAB using binopdf(x,n,p). In
WinBUGS, the binomial distribution is denoted as dbin(p,n). Note the oppo-
site order of parameters n and p.

Example 5.6. Left-Handed Families. About 10% of the world’s population is
left-handed. Left-handedness is more prevalent in men (1/9) than in women
(1/13). Studies have shown that left-handedness is linked to the gene LR-
RTM1, which affects the symmetry of the brain. In addition to its genetic
origins, left-handedness also has developmental origins. When both parents
are left-handed, a child has a probability of 0.26 of being left-handed.

Ten families in which both parents are left-handed and have a single child
are selected, and the ten children are inspected for left-handedness. Let X be
the number of left-handed among the inspected. What is the probability that
X

(a) Is equal to 3?
(b) Falls anywhere between 3 and 6, inclusive?
(c) Is at most 4?
(d) Is not less than 4?
(e) Would you be surprised if the number of left-handed children among

the ten inspected was eight? Why or why not?
The solution is given by the following annotated MATLAB script.

% Solution
disp(’(a) Bin(10, 0.26): P(X = 3)’);
binopdf(3, 10, 0.26)
% ans = 0.2563

disp(’(b) Bin(10, 0.26): P(3 <= X <= 6)’);
% using binopdf(x, n, p)

disp(’(b)-using PDF’); binopdf(3, 10, 0.26) + ...
binopdf(4, 10, 0.26) + binopdf(5, 10, 0.26)+ binopdf(6, 10, 0.26)
% using binocdf(x, n, p)

disp(’(b)-using CDF’); binocdf(6, 10, 0.26) - binocdf(2, 10, 0.26)
% ans = 0.4998
%(c) at most four i.e., X <= 4

disp(’(c) Bin(10, 0.26): P(X <= 4)’); binocdf(4, 10, 0.26)
% ans = 0.9096
%(d) not less than 4 is 4,5,...,10, or complement of <=3

disp(’(d) Bin(12, 0.7): P(X >= 4)’); 1-binocdf(3, 10, 0.26)
% ans = 0.2479

disp(’(e) Bin(10, 0.26): P(X = 8)’);
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binopdf(8, 10, 0.26)
% ans = 5.1459e-004
% Yes, this is a surprising outcome since the probability
% of this event is rather small, 0.0005.

Panels (a) and (b) in Fig. 5.2 show respectively the PMF and CDF for the
binomial B in(10,0.26) distribution.
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Fig. 5.2 Binomial B in(10,0.26) (a) PMF and (b) CDF.

�

How does one recognize that random variable X has a binomial distri-
bution?

(a) It allows an interpretation as the sum of “successes” in n Bernoulli
trials, for n fixed.

(b) The Bernoulli trials are independent.
(c) The Bernoulli probability p is constant for all n trials.

Next we discuss how to deal with a binomial-like framework in which con-
dition (c) is violated.

Generalized Binomial Sampling*. Suppose that n independent experi-
ments are performed and that an event A has a probability of pi of appearing
in the ith experiment.

We are interested in the probability that A appeared exactly k times in
the n experiments. The binomial setup is not directly applicable since the
probabilities of A differ from experiment to experiment. However, the bi-
nomial setup is useful as a hint on how to solve the general case. In the
binomial setup the probability of k events A in n experiments is equal to
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the coefficient of zk in the expansion of G(z) = (pz+ q)n. Indeed, (pz+ q)n =
pnq0zn +·· ·+

(n
k
)
pk qn−kzk +·· ·+npqn−1z+ p0qn.

�
The polynomial G(z) is called the probability-generating function. If X

is a discrete integer-valued random variable such that pn =P(X = n), then its
probability-generating function is defined as

GX (z)= EzX =
∑
n

pnzn.

Note that in the polynomial GX (z), the probability pn =P(X = n) is the coeffi-
cient of the power zn. Also, GX (ez) is the moment-generating function mX (z).

In the general binomial setup, the polynomial (pz+ q)n becomes

GX (z)= (p1z+ q1)× (p2z+ q2)×·· ·× (pnz+ qn)=
n∑

i=0
ai zi (5.5)

and the probability that there are k events A in n experiments is equal to
the coefficient ak of zk in the polynomial GX (z). This follows from the two
properties of G(z): (i) When X and Y are independent, GX+Y (z)=GX (z) GY (z),
and (ii) if X is a Bernoulli Ber(p), then GX (z)= pz+ q.

Example 5.7. System with Unreliable Components. Let S be a system
consisting of ten unreliable components that work and fail independently of
each other. The components are operational in some fixed time interval [0,T]
with the probabilities

ps =[0.5 0.3 0.2 0.5 0.6 0.4 0.2 0.4 0.7 0.8];

Let a random variable X represent the number of components that remain
operational after time T.

Find (a) the distribution for X and (b) EX and Var X .

ps =[0.5 0.3 0.2 0.5 0.6 0.4 0.2 0.4 0.7 0.8];
qs = 1- ps;
all = [ps’ qs’];
[m n]= size(all);
Gz = [1]; %initial
for i = 1:m

Gz = conv(Gz, all(i,:) );
% conv as polynomial multiplication

end
%at the end, Gz is the product of p_i x + q_i
%
sum(Gz) %the sum is 1
probs = Gz(end:-1:1);
k = 0:10
% probs=[0.0010 0.0117 0.0578 0.1547 0.2507 ...
% 0.2582 0.1716 0.0727 0.0188 0.0027 0.0002]
EX = k * probs’ %expectation 4.6
EX2 = k.^2 * probs’;
VX = EX2 - (EX)^2 %variance 2.12
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Note that in the above script we used the convolution operation conv to
multiply polynomials, as in

conv([2 -1],[1 3 2])
% ans = 2 5 1 -2,

which is interpreted as (2z−1) · (z2 +3z+2)= 2z3 +5z2 + z−2.
From the MATLAB calculations we find that the probability-generating

function G(z) from (5.5) is

G(z) = 0.00016128z10 +0.00268992z9 +0.01883264z8 +0.07273456z7 +
0.17155808z6 +0.25816544z5 +0.25070848z4 +0.15470576z3 +
0.05777184z2 +0.01170432z+0.00096768,

and the random variable X , the number of operational items, has the following
distribution (after rounding to four decimal places):

X 0 1 2 3 4 5 6 7 8 9 10
Prob 0.0010 0.0117 0.0578 0.1547 0.2507 0.2582 0.1716 0.0727 0.0188 0.0027 0.0002 .

The answers to (b) are EX = 4.6 and Var X = 2.12.
Note that a “solution” in which one finds the average of the component

probabilities, ps, as p̄ = 1
10 (0.5+ 0.3+ ·· · + 0.8) = 0.46, and then applies the

standard binomial calculation will lead to the correct expectation, 4.6, because
of linearity. However, the variance and probabilities for X would be different.
For example, the probability P(X = 4) would be binopdf(4,10,0.46)=0.2331,

while the correct value is 0.2507.
�

(a) (b)

Fig. 5.3 (a) Jacob Bernoulli (1654–1705), Swiss mathematician and astronomer. His mono-
graph Ars Conjectandi, published posthumously in 1713, contains his explorations in prob-
ability theory, states a form of the law of large numbers, and describes experiments that
we call now Bernoulli trials. (b) Siméon Denis Poisson (1781–1840), French mathematician
and physicist. His book Recherches sur la probabilité des jugements en matières criminelles
et matière civile, published in 1837, applies probability theory to the decisions of juries. It
introduces a discrete probability distribution, now known as the Poisson distribution.
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Example 5.8. Surviving Pairs.
�

Daniel Bernoulli (1700–1782), a nephew
of Jacob Bernoulli, posed and solved the following problem. If among N mar-
ried pairs there are m random deaths, what is the expected number of intact
marriages?

Suppose that there are N pairs of balls denoted by 1,1, 2,2, . . . , N,N. If
m balls are selected at random and removed, what is the expected number of
intact pairs? Consider the pair i. Define a Bernoulli random variable Yi equal
to 1 if pair i remains intact after the removal of m balls, and 0 otherwise. Then
the number of unaffected pairs Nm would be the sum of all Yi, for i = 1, . . . , N.

The probability that pair i is not affected by the removal of m balls is
(2N−2

m
)

(2N
m

) =
(2N−2)(2N−3)...(2N−2−m+2)(2N−2−m+1)

m!
2N(2N−1)...(2N−m+2)(2N−m+1)

m!

= (2N −m)(2N −m−1)
2N(2N −1)

,

and it is equal to EYi. If Nm is the number of unaffected pairs, then

Nm = Y1 +Y2 +·· ·+YN

ENm = EY1 +EY2 +·· ·+EYN = NEYi =
(2N −m)(2N −m−1)

2(2N −1)
.

For example, if among N = 1000 couples there are 100 random deaths,
then the expected number of unaffected couples is 902.4762. If among N =
1000 couples there are 1936 deaths, then a single couple is expected to remain
intact.

Even though Nm is the sum of N Bernoulli random variables Yi, each with
the same probability p = (2N−m)(2N−m−1)

2N(2N−1) , it does not have a binomial distribu-
tion due to the dependence among Yis.
�

5.3.3 Hypergeometric Distribution

Suppose a box contains m balls, k of which are white and m− k of which are
black. Suppose we randomly select and remove n balls from the box without
replacement, so that when sampling is finished, there are only m−n balls left
in the box. If X is the number of white balls in n selected, then the probability
that X = x is

pX (x)=
(k

x
)(m−k

n−x
)

(m
n
) , x ∈ {0,1, . . . ,min{n,k}}.

Random variable X is called hypergeometric and denoted by X ∼H G (m, k, n),
where m, k, and n are integer parameters.
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This PMF can be deduced by counting rules. There are
(m

n
)

different ways
of selecting the n balls from a box with a total of m balls. From these (each
equally likely), there are

(k
x
)

ways of selecting x white balls from the k white
balls in the box and, similarly,

(m−k
n−x

)
ways of choosing the black balls. The prob-

ability is the ratio of these two numbers. The PDF and CDF of H G (40,15,10)
are shown in Fig. 5.4.

It can be shown that the mean and variance for the hypergeometric distri-
bution are, respectively,

µ= nk
m

and σ2 =
(

nk
m

)(
m−k

m

)( m−n
m−1

)
.

The MATLAB commands for hypergeometric CDF, PDF, quantile, and a ran-
dom number are hygecdf, hygepdf, hygeinv, and hygernd. WinBUGS does not
have a built-in command for a hypergeometric distribution.

Example 5.9. CASES. In a group of 40 people, 15 are “CASES” and 25 are
“CONTROLS.” A sample of 10 subjects is selected [(A) with replacement and

%Solution
%(A) - with replacement (binomial case);
%Let X be the number of CASES. The event
%X is at least 2 is the complement of X <= 1.
disp(’(A) Bin(10, 15/40): P(X >= 2)’); 1 - binocdf(1, 10, 15/40)
% ans = 0.9363
% or
1 - binopdf(0, 10, 15/40) - binopdf(1, 10, 15/40)

% ans = 0.9363

%B - without replacement (hypergeometric case) hygecdf(x, m, k, n)
% where m size of population,
% k - number of cases among m, and n sample size.
disp(’(B) HyGe(40,15,10): P(X >=2)’); 1 - hygecdf(1, 40, 15, 10)
% ans = 0.9600, or
1 - hygepdf(0, 40, 15, 10)- hygepdf(1, 40, 15, 10)

% ans = 0.9600

�

Example 5.10. Capture-Recapture Models. Suppose that an unknown num-
ber m of animals inhabit a particular region. To assess the population size,
ecologists often apply the following capture-recapture scheme. They catch k
animals, tag them and release them back into the region. After some time,
when the tagged animals are expected to be mixed well with the untagged, a
second catch of size n is made. Suppose that x animals in the second sample
are found to be tagged.

If catching any animal is assumed equally likely, the number x of tagged
animals in the second sample is hypergeometric H G (m, k,n). Ecologists use

(B) without replacement]. Find the probability P(at least 2 subjects are CASES).
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Fig. 5.4 The PDF and CDF for hypergeometric distribution with m= 40,k = 15, and n = 10.

the observed ratio x/n as an approximation to k/m, from which m is estimated
as

m̂= k×n
x

.

A statistically better estimator of m (known as the Schnabel formula) is given
as

m̂= (k+1)× (n+1)
(x+1)

−1.

In epidemiology and public health capture-recapture methods use multi-
ple, routinely collected, computerized data sources to estimate various popu-
lation indices.

For example, Gjini et al (2004) investigated the number of matching
records of pneumococcal meningitis among adults in England by comparing
data from Hospital Episode Statistics (HES) and the Public Health Labora-
tory Services reconciled laboratory records (RLR). The time period covered
was April 1996 to December 1999. The authors found 646 records in RLR and
737 in HES, and matching based on demographic information was possible in
296 cases.

By the capture-recapture method the estimated incidence is m̂ = 646 ·
737/296 = 1608.5 ≈ 1609. If Schnabel’s formula is used, then m̂ ≈ 1607. Thus,
the total incidence of of pneumococcal meningitis in England between April
1996 to December 1999 is estimated to be 1607.
�
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For large m, the hypergeometric distribution is close to binomial. More
precisely, when m →∞ and k/m → p, the hypergeometric distribution with pa-
rameters (m,k,n) approaches a binomial with parameters (n, p) for any value
of x between 0 and n.

format long
disp(’(A)=(B) for large population’);
1 - binocdf(1, 10, 150000/400000) %ans = 0.936335370875895
1 - hygecdf(1, 400000, 150000, 10) %ans = 0.936337703719839

We will use the hypergeometric distribution later in the book, (i) in the
Fisher exact test (p. 546), and in Logrank test (p. 713).

5.3.4 Poisson Distribution

The PMF for the Poisson distribution is

pX (x)= λx

x!
e−λ, x= 0,1,2, . . . ,

which is denoted by X ∼ P oi(λ). This distribution is named after Simeon
Denis Poisson (1781–1840), French mathematician, geometer and physicist
(Fig. 5.3b).

From the moment-generating function mX (t)= exp{λ(et−1)} we have EX =
λ and Var X =λ; the mean and the variance coincide.

The sum of a finite independent set of Poisson variables is also Pois-
son. Specifically, if Xi ∼ P oi(λi), then Y = X1 + ·· · + Xk is distributed as
P oi(λ1 + ·· · +λk). If X1 ∼ P oi(λ1) and X2 ∼ P oi(λ2) are independent, then
the distribution of X1 given that X1+X2 = n is binomial B in

(
n, λ1

λ1+λ2

)
(Exer-

cise 5.5).
Furthermore, the Poisson distribution is a limiting form for a binomial

model, i.e.,

lim
n,np→∞,λ

(
n
x

)
px(1− p)n−x = 1

x!
λxe−λ. (5.6)

The MATLAB commands for Poisson CDF, PDF, quantile, and random num-
ber are poisscdf, poisspdf, poissinv, and poissrnd. In WinBUGS the Poisson
distribution is denoted as dpois(lambda).

Example 5.11. Poisson Model for EBs. After 7 days of aggregation, the mi-
croscopy images of 2000 embryonic bodies (EBs) are used to assess their sur-
face area size. The probability that the area of a randomly selected EB exceeds
the critical size Sc is 0.001.

(a) Find the probability that the areas of exactly three EBs exceed the
critical size.
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(b) Find the probability that the number of EBs exceeding the critical size
is between three and eight, inclusively.

We use a Poisson approximation to binomial probabilities since n is large,
p is small, and product np is moderate.

%Solution
disp(’Poisson(2): P(X=3)’); poisspdf(3, 2)
%ans= 0.1804

disp(’Poisson(2): P(3 <= X <= 8)’); poisscdf(8, 2)-poisscdf(2, 2)
%ans= 0.3231

Figure 5.5 shows the PMF and CDF of the P oi(2) distribution.
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Fig. 5.5 (Top) Poisson probability mass function. (Bottom) Cumulative distribution function
for λ= 2.

�

In the binomial sampling scheme, when n →∞ and p → 0, so that np →λ,
binomial probabilities converge to Poisson probabilities.

The following MATLAB simulation demonstrates the convergence. In the
binomial distribution n is increasing as 2,000, 200,000, 20,000,000 and p is
decreasing as 0.001, 0.00001, 0.0000001, so that np remains constant and
equal to 2. These binomial probabilities for X = 3 are compared to the Poisson
distribution with the parameter λ= 2.

disp(’P(X=3) for Bin(2000, 0.001), Bin(200000, 0.00001), ’);
disp(’ Bin(20000000, 0.0000001), and Poi(2) ’);
format long
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binopdf(3, 2000, 0.001) % 0.180537328031786
binopdf(3, 200000, 0.00001) % 0.180447946554779
binopdf(3, 20000000, 0.0000001) % 0.180447058859339
poisspdf(3, 2) % 0.180447044315484
format short

Example 5.12. Cold. Suppose that the number of times during a year that an
individual catches a cold can be modeled by a Poisson random variable with an
expectation of 4. Further, suppose that a new drug based on vitamin C reduces
this expectation to 3 (but the distribution still remains Poisson) for 90% of the
population but has no effect on the remaining 10% of the population. We will
calculate

(a) the probability that an individual taking the drug has two colds in a
year if they are part of the population that benefits from the drug;

(b) the probability that a randomly chosen individual has two colds in a
year if they take the drug; and

(c) the conditional probability that a randomly chosen individual is in that
part of the population that benefits from the drug, given that they had two
colds in the year during which they took the drug.

poisspdf(2,3) %(Cold (a))
%ans = 0.2240

poisspdf(2,3)*0.90 + poisspdf(2,4)*0.10 %(Cold (b))
%ans = 0.2163

poisspdf(2,3)*0.90/(poisspdf(2,3)*0.90 + ...
poisspdf(2,4)*0.10) %(Cold (c))

%ans = 0.9323

�

5.3.5 Geometric Distribution

Suppose that independent trials are repeated and that in each trial the prob-
ability of a success is equal to 0 < p < 1. We are interested in the number of
failures X before the first success. The number of failures is a random variable
with a geometric G e(p) distribution. Its PMF is given by

pX (x)= p(1− p)x, x= 0,1,2, . . . .

The expected value is EX = (1−p)/p and the variance is Var X = (1−p)/p2. The
moments can be found either directly or by the moment-generating function,
which is

mX (t)= p
1− (1− p)et .
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The geometric random variable possesses a “memoryless” property. That is,
if we condition on the event X ≥ m, for some nonnegative integer m, then for
n ≥ m, P(X ≥ n|X ≥ m) = P(X ≥ n− m) (Exercise 5.17). The MATLAB com-
mands for geometric CDF, PDF, quantile, and random number are geocdf,
geopdf, geoinv, and geornd. There are no special names for the geometric dis-
tribution in WinBUGS; the negative binomial can be used as dnegbin(p,1).

If instead of the number of failures before the first success (X ) one is inter-
ested in the total number of experiments until the first success (Y ), then the
relationship is simple: Y = X +1. In this formulation of the geometric distri-
bution, Y ∼G eom(p), EY = EX +1= 1/p, and Var Y =Var X = (1− p)/p2.

or ≤160 mg/dL, respectively. According to NHANES III, the prevalence of
CASES among white male Americans aged 20 or older (target population) is
p = 20%. Subjects are sampled (when the population is large, it is unimportant
if the sampling is done with or without replacement) until the first CASE is
found. The number of CONTROLS sampled before finding the first CASE is a
geometric random variable with parameter p = 0.2 (Fig. 5.6).

(a) Find the probability that seven CONTROLS will be sampled before we
come across the first CASE.

(b) Find the probability that the number of CONTROLS before the first
CASE will fall between four and eight, inclusively.

disp(’X ~ Geometric(0.2):P(X=7)’);
geopdf(7, 0.2)

%ans=0.0419
disp(’X ~ Geometric(0.2):P(4 <= X <= 8)’);
geocdf(8, 0.2) - geocdf(3,0.2)

%ans=0.2754

�

5.3.6 Negative Binomial Distribution

The negative binomial distribution was formulated by Montmort (1714). Sup-
pose we are dealing with independent trials again. This time we count the
number of failures observed until a fixed number of successes (r ≥ 1) occur. Let
p be the probability of success in a single trial.

If we observe r consecutive successes at the start of the experiment, then
the count of failures is X = 0 and P(X = 0)= pr .

If X = x, then we have observed x failures and r successes in x+ r tri-
als. There are

(x+r
x

)
different ways of arranging x failures in those x+ r tri-

als, but we can only be concerned with those arrangements in which the last

Example 5.13. CASES I. Let a subject constitute either a CASE or a CON-
TROL depending on whether the subject’s level of LDL cholesterol is >160 mg/dL
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Fig. 5.6 Geometric (Top) PMF and (Bottom) CDF for p = 0.2.

trial ended in a success. So there are really only
(x+r−1

x
)

equally likely arrange-
ments. For any particular arrangement the probability is pr(1−p)x. Therefore,
the PMF is

pX (x)=
(
r+ x−1

x

)
pr(1− p)x, x= 0,1,2, . . . .

Sometimes this PMF is stated with
(r+x−1

r−1
)

in place of the equivalent
(r+x−1

x
)
.

This distribution is denoted as X ∼N B(r, p).
From its moment-generating function

mX (t)=
(

p
1− (1− p)et

)r
,

the expectation of a negative binomial random variable is EX = r(1− p)/p and
its variance is Var X = r(1− p)/p2.

Since the negative binomial X ∼ N B(r, p) is a convolution (a sum) of r
independent geometric random variables, X =Y1 +Y2 +·· ·+Yr , Yi ∼G (p), the
mean and variance of X can be easily derived from the mean and variance
of its geometric components Yi, as in (5.1) and (5.2). Note also that mX (t) =
(mY (t))r , where mY (t) =

(
p

1−(1−p)et

)
is the moment-generating function of the

component Yi in the sum. This is a consequence of the fact that a moment-
generating function for a sum of independent random variables is the product
of the moment-generating functions of the components, see (5.4).

The distribution remains valid if r is not an integer, although an inter-
pretation involving r successes is lost. For an arbitrary nonnegative r, the
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distribution is called a generalized negative binomial or a Polya distribution.
The constant

(r+x−1
x

)
= (r+x−1)!

x!(r−1)! is replaced by Γ(r+x)
x!Γ(r) , keeping in mind that

Γ(n) = (n− 1)! when n is an integer. The generalized negative binomial dis-
tribution is used in ecology for inference about the abundance of species in
nature.

The MATLAB commands for negative binomial CDF, PDF, quantile, and
random number are nbincdf, nbinpdf, nbininv, and nbinrnd. In WinBUGS the
negative binomial distribution is denoted as dnegbin(p,r). Note the opposite
order of parameters r and p.

Example 5.14. CASES II. Assume as in Example 5.13 that the prevalence of
“CASES” in a large population is p = 20%. Subjects are sampled, one by one,
until seven CASES are found and then the sampling is stopped.

(a) What is the probability that the number of CONTROLS among all sam-
pled subjects will be 18?

(b) What is the probability of observing more than the “expected number”
of CONTROLS?

The number of CONTROLS X among all sampled subjects is a negative
binomial, X ∼N B(7,0.2).

P(X = 18)=
(
25+7−1

18

)
0.27(1−0.2)18= 0.0310.

Also, nbinpdf(18,7,0.2)=0.0310.
Thus, with a probability of 0.031 the number of CONTROLS sampled, be-

fore seven CASES are observed, is equal to 18.
(b) The expected number of CONTROLS is EX = 7 0.8

0.2 = 28. The probability
of X > EX is P(X > 28) = 1−P(X ≤ 28) = 1−∑28

x=0
(7+x−1

x
)
0.8x0.27 = 0.4328. In

MATLAB P(X > 28) is calculated as 1-nbincdf(28,7,0.20)=0.4328.
�

The tail probabilities of a negative binomial distribution can be expressed
by binomial probabilities. If X ∼N B(r, p), then

P(X > x)=P(Y < r),

where Y ∼B in(x+ r, p). In words, if we have not seen r successes after seing
x failures, then in x+ r experiments the number of successes will be less than
r. In part (b) of the previous example, r = 7, x = 28, and p = 0.20, so

1 - nbincdf(28, 7, 0.20) % 0.4328
binocdf(7-1, 28+7, 0.20) % 0.4328



5.3 Some Standard Discrete Distributions 155

5.3.7 Multinomial Distribution

The binomial distribution was developed by counting the occurrences two com-
plementary events, A and Ac, in n independent trials. Suppose, instead, that
each trial results in one of k > 2 mutually exclusive events, A1, . . . Ak, so that
S = A1 ∪ ·· ·∪ Ak. One can define the vector of random variables (X1, . . . , Xk)
where a component Xi counts how many times Ai appeared in n trials. The
defined random vector is called multinomial.

The probability mass function for (X1, . . . , Xk) is

pX1,...,Xk (x1, ..., xk)= n!
x1! · · ·xk!

p1
x1 · · · pk

xk ,

where p1 +·· ·+ pk = 1 and x1 +·· ·+ xk = n. Since pk = 1− p1 −·· ·− pk−1, there
are k−1 free parameters to characterize the multinomial distribution, which
is denoted by X = (X1, . . . , Xk) ∼M n(n, p1, . . . , pk).

The mean and variance of the component Xi are the same as in the bino-
mial case. It is easy to see that the marginal distribution for a component Xi
is binomial since the events A1, . . . , Ak can be grouped as Ai, Ac

i . Therefore,
E(Xi) = npi, Var (Xi) = npi(1− pi). The components Xi are dependent since
they sum up to n. For i 6= j, the covariance between Xi and X j is

Cov(Xi, X j)= EXi X j −EXiEX j =−npi p j . (5.7)

This is easy to verify if Xi and X j are represented as the sums of Bernoullis
Yi1+Yi2+·· ·+Yik and Yj1+Yj2+·· ·+Yjk, respectively. Since YimYjm = 0 (in a
single trial Ai and A j cannot occur simultaneously), it follows that

EXi X j = (n2 −n)pi p j .

Since EXiEX j = n2 pi p j , the covariance in (5.7) follows.
If X = (X1, X2, . . . , Xk) ∼ M n(n, p1, p2, . . . , pk), then X ′ = (X1 + X2, . . . , Xk)

∼M n(n, p1 + p2, . . . , pk). This is called the fusing property of the multinomial
distribution.

If X1 ∼ P oi(λ1), X2 ∼ P oi(λ2), . . . , Xn ∼ P oi(λn) are n independent Pois-
son random variables with parameters λ1, . . . ,λn, then the conditional distri-
bution of X1, X2, . . . , Xn, given that X1 + X2 +·· ·+ Xn = n, is M n(n, p1, . . . , pk),
where pi = λi/(λ1 +λ2 +·· ·+λn). This fact is used in modeling contingency ta-
bles with a fixed total and will be discussed in Chap. 14.

In MATLAB, the multinomial PMF is calculated by mnpdf(x,p), where x
is a 1× k vector of values, such that

∑k
i=1 xi = n, and p is a 1× k vector of

probabilities, such that
∑k

i=1 pi = 1.
For example,

%If n=2, Multinomial is Binomial
mnpdf([5 15],[0.6 0.4])

%ans = 0.0013
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% is the same as
binopdf(5, 5+15, 0.6)

%ans = 0.0013

Example 5.15. Suppose that the probabilities of blood groups in a particular
population are given as

O A B AB
0.37 0.39 0.18 0.06 .

If eight subjects are selected at random from this population, what is the
probability that

(a) (O, A,B, AB)= (3,4,1,0)?
(b) O = 5?
In (a), the probability is

factorial(8) /(factorial(3) * ...
factorial(4) * factorial(1) * factorial(0)) * ...
0.37^3 * 0.39^4 * 0.18^1 * 0.06^0

%ans = 0.0591
%or
mnpdf([3 4 1 0],[0.37 0.39 0.18 0.06])
%ans = 0.0591.

In (b), O ∼B in(8,0.37) and P(O = 3)= 0.2815.
�

5.3.8 Quantiles

Quantiles of random variables are defined as follows. A p-quantile (or 100× p
percentile) of random variable X is the value x for which F(x)= p, where F is
the cumulative distribution function for X . For discrete random variables this
definition is not unique and modification is needed:

F(x)=P(X ≤ x)≥ p and P(X ≥ x)≥ 1− p.

For example, the 0.05 quantile of a binomial distribution with parameters
n = 12 and p = 0.7 is x = 6 since P(X ≤ 6) = 0.1178 ≥ 0.05 and P(X ≥ 6) =
1−P(X ≤ 5)= 1−0.0386= 0.9614≥ 0.95. Binomial B in(12,0.7) and geometric
G (0.2) quantiles are shown in Fig. 5.7.

quab =[]; quag =[];
for p = 0.00:0.0001:1

quab = [quab binoinv(p, 12, 0.7)];
quag = [quag geoinv(p, 0.2)];

end
figure(1)
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plot([0.00:0.0001:1],quab,’k-’)
figure(2)
plot([0.00:0.0001:1],quag,’k-’)
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Fig. 5.7 (a) Binomial B in(12,0.7) and (b) geometric G (0.2) quantiles.

5.4 Continuous Random Variables

Continuous random variables take values within an interval (a,b) on a real
line R. The probability density function (PDF) f (x) fully specifies the variable.
The PDF is nonnegative, f (x) ≥ 0, and integrates to 1,

∫
R f (x) dx = 1. The

probability that X takes a value in an interval (a,b) (and for continuous r.v.
equivalently [a, b), (a,b], or [a, b]) is P[X ∈ (a,b)]= ∫ b

a f (x)dx.
The CDF is

F(x)=P(X ≤ x)=
∫ x

−∞
f (t)dt.

In terms of the CDF, P[X ∈ (a, b)]= F(b)−F(a).
The expectation of X is given by

EX =
∫

R
xf (x)dx.

The expectation of a function of a random variable g(X ) is

Eg(X )=
∫

R
g(x) f (x)dx.

The kth moment of a continuous random variable X is defined as EX k =∫
R xk f (x)dx, and the kth central moment is E(X−EX )k = ∫

R(x−EX )k f (x)dx. As
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in the discrete case, the first moment is the expectation and the second central
moment is the variance, σ2(X )= E(X −EX )2.

The moment-generating function of a continuous random variable X is

m(t)= EetX =
∫

R
etx f (x)dx.

Since m(k)(t)= ∫
R xk etx f (x)dx, EX k = m(k)(0).

Moment-generating functions are related to Laplace transforms of densi-
ties. Since the bilateral Laplace transform of f (x) is defined as

L (f )=
∫

R
e−tx f (x)dx,

it holds that m(−t)=L ( f ).
The entropy of a continuous random variable with a density f (x) is defined

as

H (X )=−
∫

R
f (x) log f (x)dx

whenever this integral exists. Unlike the entropy for discrete random vari-
ables, H (X ) can be negative and not necessarily invariant with respect to a
transformation of X .

Example 5.16. Markov’s Inequality. If X is a random variable that takes
only nonnegative values, then for any positive constant a

P(X ≥ a)≤ EX
a

. (5.8)

Indeed,

EX =
∫ ∞

0
xf (x)dx ≥

∫ ∞

a
xf (x)dx ≥

∫ ∞

a
af (x)dx = a

∫ ∞

a
f (x)dx = aP(X ≥ a).

An average mass of a single cell of E. coli bacterium is 665 fg (femtogram,
fg=10−15g). If a particular cell of E. coli is inspected, what can be said about
the probability that its weight will exceed 1000 fg? According to Markov’s in-
equality, this probability does not exceed 665/1000 = 0.665.
�

5.4.1 Joint Distribution of Two Continuous Random
Variables

Two random variables X and Y are jointly continuous if there exists a non-
negative function f (x, y) so that for any two-dimensional domain D,
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P((X ,Y ) ∈ D)=
∫ ∫

D
f (x, y)dxd y.

When such a two-dimensional density f (x, y) exists, it is a repeated partial
derivative of the cumulative distribution function F(x, y)=P(X ≤ x,Y ≤ y),

f (x, y)= ∂2F(x, y)
∂x ∂y

.

The marginal densities for X and Y are, respectively, fX (x) = ∫ ∞
−∞ f (x, y)dy

and fY (y) = ∫ ∞
−∞ f (x, y)dx. The conditional distributions of X when Y = y and

of Y when X = x are

f (x|y)= f (x, y)/ fY (y) and f (y|x)= f (x, y)/ fX (x).

The distributional analogy of the multiplication probability rule P(AB) =
P(A|B)P(B)= P(B|A)P(A) is

f (x, y)= f (x|y) fY (y)= f (y|x) fX (x).

When X and Y are independent, the joint density is the product of marginal
densities, f (x, y) = fX (x) fY (y). Conversely, if the joint density of (X ,Y ) can be
represented as a product of marginal densities, X and Y are independent.

The definition of covariance and the correlation for X and Y coincides with
the discrete case equivalents:

Cov(X ,Y )= EXY −EX ·EY and Corr(X ,Y )= Cov(X ,Y )p
Var (X ) ·Var (Y )

.

Here, EXY = ∫
R2 xyf (x, y)dxd y.

valve is one of the oldest cardiac valve prostheses in the world. The first aortic
valve replacement (AVR) with a Starr–Edwards metal cage and silicone ball
valve was performed in 1961. Follow-up studies have documented the excellent
durability of the Starr–Edwards valve as an AVR. Suppose that the durability
of the Starr–Edwards valve (in years) is a random variable X with density

f (x)=




ax2/100, 0< x< 10,
a(x−30)2/400, 10≤ x ≤ 30,
0, otherwise.

(a) Find the constant a.
(b) Find the CDF F(x) and sketch graphs of f and F.
(c) Find the mean and 60th percentile of X . Which is larger? Find the vari-

ance.
Solution: (a) Since 1= ∫

R f (x)dx,

Example 5.17. Durability of the Starr–Edwards Valve. The Starr–Edwards
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1=
∫ 10

0
ax2/100dx+

∫ 30

10
a(x−30)2/400dx = ax3/300 |10

0 +a(x−30)3/1200 |30
10.

This gives 1000a/300−0+0− (−20)3a/1200 = 10a/3+20a/3 = 10a = 1, that is,
a = 1/10. The density is

f (x)=




x2/1000, 0< x < 10,
(x−30)2/4000, 10≤ x≤ 30,
0, otherwise.

(b) The CDF is

F(x)=





0, x< 0,
x3/3000, 0< x < 10,
1+ (x−30)3/12000, 10≤ x≤ 30,
1, x≥ 30.

(c) The 60th percentile is a solution to the equation 1+(x−30)3/12000= 0.6 and
is x = 13.131313.... The mean is EX = 25/2, and the 60th percentile exceeds the
mean. EX2 = 180, thus the variance is Var X = 180− (25/2)2 = 95/4= 23.75.
�

Example 5.18. A two-dimensional random variable (X ,Y ) is defined by its den-
sity function, f (x, y)= 2xe−x−2y, x≥ 0, y≥ 0.

(a) Find the probability that random variable (X ,Y ) falls in the rectangle
0≤ X ≤ 1,1≤Y ≤ 2.

(b) Find the marginal distributions of X and Y .
(c) Find the conditional distribution of X |{Y = y} Does it depend on y?
Solution: (a) The joint density separates variables x and y, therefore

P(0≤ X ≤ 1, 1≤ Y ≤ 2)=
∫ 1

0
xe−xdx×

∫ 2

1
2e−2yd y.

Since
∫ 1

0
xe−xdx =−xe−x ∣∣1

0 +
∫ 1

0
e−xdx =−e−1 − e−1 +1= 1−2/e,

and
∫ 2

1
2e−2ydy=−e−2y ∣∣2

1 =−e−4 + e−2 = e2 −1
e4 .

then

P(0≤ X ≤ 1, 1≤Y ≤ 2)= e−2
e

× e2 −1
e4 ≈ 0.0309.
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(b) Since the joint density separates the variables, it is a product of
marginal densities f (x, y) = fX (x)× fY (y). This is an analytic way to state
that components X and Y are independent. Therefore, fX (x) = xe−x, x ≥ 0
and fY (y)= 2e2y, y≥ 0.

(c) The conditional densities for X |{Y = y} and Y |{X = x} are defined as

f (x|y)= f (x, y)/ fY (y) and f (y|x)= f (x, y)/ fX (x).

Because of independence of X and Y the conditional densities coincide with
the marginal densities. Thus, the conditional density for X |{Y = y} does not
depend on y.
�

5.5 Some Standard Continuous Distributions

In this section we list some popular, commonly used continuous distributions:
uniform, exponential, gamma, inverse gamma, beta, double exponential, lo-
gistic, Weibull, Pareto, and Dirichlet. The normal (Gaussian) distribution will
be just briefly mentioned here. Due to its importance, a separate chapter will
cover the details of the normal distribution and its close relatives: χ2, student
t, Cauchy, F, and lognormal distributions. Some other continuous distribu-
tions will be featured in the examples, exercises, and other chapters, such as
Maxwell and Rayleigh distributions.

5.5.1 Uniform Distribution

A random variable X has a uniform U (a,b) distribution if its density is given
by

fX (x)=
{ 1

b−a , a≤ x ≤ b,
0, else .

Sometimes, to simplify notation, the density can be written simply as

fX (x)= 1
b−a

1(a ≤ x≤ b).

Here, 1(A) is 1 if A is a true statement and 0 if A is false. Thus, for x < a or
x > b, fX (x)= 0, since 1(a≤ x≤ b)= 0.

The CDF of X is given by
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FX (x)=




0, x < a,
x−a
b−a , a ≤ x≤ b,
1, x > b.

The graphs of the PDF and CDF of a uniform U (−1,4) random variable are
shown in Fig. 5.8.

For a= 0 and b = 1, the distribution is called standard uniform.
If U is U (0,1), then X =−λ log(U) is an exponential random variable with

scale parameter λ.
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Fig. 5.8 (a) PDF and (b) CDF for uniform U (−1,4) distribution. The graphs are plotted
as (a) plot(-2:0.001:5, unifpdf(-2:0.001:5, -1, 4)) and (b) plot(-2:0.001:5,
unifcdf(-2:0.001:5, -1, 4)).

The sum of two independent standard uniforms is triangular,

fX (x)=




x, 0≤ x ≤ 1,
2− x, 1≤ x ≤ 2,
0, else .

This is sometimes called a “witch hat” distribution. The sum of n independent
standard uniforms is known as the Irwing–Hall distribution.

5.5.2 Exponential Distribution

The probability density function for an exponential random variable is

The expectation of X is EX = a+b
2 and the variance is Var X = (b− a)2/12.

The nth moment of X is given by EX n= 1
n+1

∑n
i=0 aibn−i. The moment-generating

function for the uniform distribution is m(t)= etb−eta

t(b−a) .
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fX (x)=
{
λe−λx, x ≥ 0,
0, else ,

where λ> 0 is called the rate parameter. An exponentially distributed random
variable X is denoted by X ∼ E (λ). Its moment-generating function is m(t) =
λ/(λ− t) for t < λ, and the mean and variance are 1/λ and 1/λ2, respectively.
The nth moment is EX n = n!

λn .
This distribution has several interesting features; for example, its failure

rate, defined as

λX (t)= fX (t)
1−FX (t)

,

is constant and equal to λ.
The exponential distribution has an important connection to the Poisson

distribution. Suppose we observe i.i.d. exponential variates (X1, X2, . . . ) and
define Sn = X1+·· ·+Xn. For any positive value t, it can be shown that P(Sn <
t < Sn+1) = pY (n), where pY (n) is the probability mass function for a Poisson
random variable Y with parameter λt.

Like a geometric random variable, an exponential random variable has the
memoryless property, P(X ≥ u+v|X ≥ u)=P(X ≥ v) (Exercise 5.17).

The median value, representing a typical observation, is roughly 70% of
the mean, showing how extreme values can affect the population mean. This
is explicitly shown by the ease in computing the inverse CDF:

p = F(x)= 1− e−λx ⇐⇒ x = F−1(p)=−1
λ

log(1− p).

The MATLAB commands for exponential CDF, PDF, quantile, and ran-
dom number are expcdf, exppdf, expinv, and exprnd. MATLAB uses the al-
ternative parametrization with 1/λ in place of λ. Thus, the CDF of random
variable X with E (3) distribution evaluated at x = 2 is calculated in MAT-
LAB as expcdf(2,1/3). In WinBUGS, the exponential distribution is coded as
dexp(lambda).

Example 5.19. Melanoma. The 5-year cancer survival rate in the case of ma-
lignant melanoma of the skin at stage IIIA is 78%. Assume that the survival
time T can be modeled by an exponential random variable with unknown rate
λ.

Using the given survival rate of 0.78, we first determine the parameter of
the exponential distribution – the rate λ.

Since P(T > t) = exp(−λt), P(T > 5) = 0.78 leads to exp{−5λ} = 0.78, with
solution λ=− 1

5 log(0.78), which can be rounded to λ= 0.05.
Next, we find the probability that the survival time exceeds 10 years, first

directly using the CDF,

P(T > 10)= 1−F(10)= 1−
(
1− e−0.05·10)

= 1p
e
= 0.6065,
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and then by MATLAB. One should be careful when parameterizing the expo-
nential distribution in MATLAB. MATLAB uses the scale parameter, a recip-
rocal of the rate λ.

1 - expcdf(10, 1/0.05)
%ans = 0.6065
%
%Figures of PDF and CDF are produced by

time=0:0.001:30;
pdf = exppdf(time, 1/0.05); plot(time, pdf, ’b-’);
cdf = expcdf(time, 1/0.05); plot(time, cdf, ’b-’);

This is shown in Fig. 5.9.
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Fig. 5.9 Exponential (a) PDF and (b) CDF for rate λ= 0.05.

�

5.5.3 Normal Distribution

As indicated in the introduction, due to its importance, the normal distribu-
tion is covered in a separate chapter. Here we provide a definition and list a
few important facts. The probability density function for a normal (Gaussian)
random variable X is given by

fX (x)= 1p
2π σ

exp
{
− (x−µ)2

2σ2

}
,

where µ is the mean and σ2 is the variance of X . This will be denoted as
X ∼N

(
µ,σ2)

.
For µ = 0 and σ = 1, the distribution is called the standard normal dis-

tribution. The CDF of a normal distribution cannot be expressed in terms of
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elementary functions and defines a function of its own. For the standard nor-
mal distribution the CDF is

Φ(x) =
∫ x

−∞
1p
2π

exp
{
− t2

2

}
dt.

The standard normal PDF and CDF are shown in Fig. 5.10a,b.
The moment-generating function is m(t) = exp{µt+σ2t2/2}. The odd cen-

tral moments E(X −µ)2k+1 are 0 because the normal distribution is symmetric
about the mean. The even moments are

E(X −µ)2k =σ2k (2k−1)!!,

where (2k−1)!!= (2k−1) · (2k−3) · · ·5 ·3 ·1.

−3 −2 −1 0 1 2 3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

PD
F

−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

C
D

F

(a) (b)

Fig. 5.10 Standard normal (a) PDF and (b) CDF Φ(x).

The MATLAB commands for normal CDF, PDF, quantile, and a random
number are normcdf, normpdf, norminv, and normrnd. In WinBUGS, the normal
distribution is coded as dnorm(mu,tau), where tau is a precision parameter, the
reciprocal of variance.

5.5.4 Gamma Distribution

The gamma distribution is an extension of the exponential distribution. Prior
to defining its density, we define the gamma function that is critical in normal-
izing the density. Function Γ(x) defined via the integral

∫ ∞
0 tx−1e−tdt, x > 0

is called the gamma function (Fig. 5.11a). If n is a positive integer, then
Γ(n)= (n−1)!. In MATLAB: gamma(x).

Random variable X has a gamma G a(r,λ) distribution if its PDF is given
by
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fX (x)=
{ λr

Γ(r) xr−1e−λx, x≥ 0,
0, else .

The parameter r > 0 is called the shape parameter, while λ > 0 is the rate
parameter. Figure 5.11b shows gamma densities for (r,λ)= (1,1/3), (2,2/3), and
(20,2).
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Fig. 5.11 (a) Gamma function, Γ(x). The red dots are values of the gamma function at inte-
gers, Γ(n)= (n−1)!; (b) Gamma densities: G a(1,1/3), G a(2,2/3), and G a(20,2).

The moment-generating function is m(t) = (λ/(λ− t))r , so in the case r = 1,
the gamma distribution becomes the exponential distribution. From m(t) we
have EX = r/λ and Var X = r/λ2.

If X1, . . . , Xn are generated from an exponential distribution with (rate) pa-
rameter λ, it follows from m(t) that Y = X1 +·· ·+ Xn is distributed as gamma
with parameters λ and n; that is, Y ∼G a(n,λ). More generally, if Xi ∼G a(ri,λ)
are independent, then Y = X1 +·· ·+ Xn is distributed as gamma with param-
eters λ and r = r1 + r2 +·· ·+ rn,; that is, Y ∼G a(r,λ) (Exercise 5.16).

Often, the gamma distribution is parameterized with 1/λ in place of λ,
and this alternative parametrization is used in MATLAB definitions. The CDF
in MATLAB is gamcdf(x,r,1/lambda), and the PDF is gampdf(x,r,1/lambda).
The function gaminv(p,r,1/lambda) computes the pth quantile of the Ga(r,λ)
random variable. In WinBUGS, G a(n,λ) is coded as dgamma(n,lambda).

5.5.5 Inverse Gamma Distribution

Random variable X is said to have an inverse gamma IG (r,λ) distribution
with parameters r > 0 and λ> 0 if its density is given by
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fX (x)=
{

λr

Γ(r)xr+1 e−λ/x, x ≥ 0,
0, else .

The mean and variance of X are EX = λ/(r−1), r > 1, and Var X = λ2/[(r −
1)2(r − 2)], r > 2, respectively. If X ∼ G a(r,λ), then its reciprocal X−1 is
IG (r,λ) distributed. We will see that in the Bayesian context, the inverse
gamma is a natural prior distribution for a scale parameter.

5.5.6 Beta Distribution

We first define two special functions: beta and incomplete beta. The beta func-
tion is defined as B(a,b) = ∫ 1

0 ta−1(1− t)b−1dt = Γ(a)Γ(b)/Γ(a+b). In MATLAB:
beta(a,b). An incomplete beta is B(x,a,b) = ∫ x

0 ta−1(1− t)b−1dt, 0 ≤ x ≤ 1. In
MATLAB, betainc(x,a,b) represents the normalized incomplete beta defined
as Ix(a,b)= B(x,a,b)/B(a,b).

The density function for a beta random variable is

fX (x)=
{ 1

B(a,b) xa−1(1− x)b−1, 0≤ x ≤ 1,
0, else ,

and B is the beta function. Because X is defined only in the interval [0,1],
the beta distribution is useful in describing uncertainty or randomness in pro-
portions or probabilities. A beta-distributed random variable is denoted by
X ∼ Be(a,b). The standard uniform distribution U (0,1) serves as a special
case with (a,b) = (1,1). The moments of beta distribution are

EX k = Γ(a+k)Γ(a+b)
Γ(a)Γ(a+b+k)

= a(a+1). . . (a+k−1)
(a+b)(a+b+1). . . (a+b+k−1)

so that E(X )= a/(a+b) and Var X = ab/[(a+ b)2(a+b+1)].
In MATLAB, the CDF for a beta random variable (at x ∈ (0,1)) is com-

puted as betacdf(x,a,b), and the PDF is computed as betapdf(x,a,b). The
pth percentile is betainv(p,a,b). In WinBUGS, the beta distribution is coded
as dbeta(a,b).

To emphasize the modeling diversity of beta distributions, we depict den-
sities for several choices of (a,b), as in Fig. 5.12.

If U1,U2, . . . ,Un is a sample from a uniform U (0,1) distribution, then
the distribution of the kth component in the ordered sample is beta, U(k) ∼
Be(k,n − k + 1), for 1 ≤ k ≤ n. Also, if X ∼ G (m,λ) and Y ∼ G (n,λ), then
X /(X +Y )∼Be(m,n).
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Fig. 5.12 Beta densities for (a, b) as (1/2, 1,2), (1,1), (2,2), (10,10), (1,5), (1, 0.4), (3,5), (50,
30), and (5000, 3000).

5.5.7 Double Exponential Distribution

A random variable X has double exponential DE (µ,λ) distribution if its den-
sity is given by

fX (x)= λ

2
e−λ|x−µ|, −∞< x<∞,λ> 0.

The expectation of X is EX =µ, and the variance is Var X = 2/λ2. The moment-
generating function for the double exponential distribution is

m(t)= λ2eµt

λ2 − t2 , |t| < λ.

The double exponential distribution is also known as the Laplace distribution.
If X1 and X2 are independent exponential E (λ), then X1 − X2 is distributed
as DE (0,λ). Also, if X ∼ DE (0,λ), then |X | ∼ E (λ). In MATLAB the double
exponential distribution is not implemented since it can be readily obtained
by folding the exponential distribution. In WinBUGS, DE (0,λ) is coded as
ddexp(lambda).
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5.5.8 Logistic Distribution

The logistic distribution is used for growth models in pharmacokinetics, re-
gression with binary responses, and neural networks, to list just a few model-
ing applications.

The logistic random variable can be introduced by a property of its CDF
expressed by a differential equation. Let F(x)= P(X ≤ x) be the CDF for which
F ′(x) = F(x)× (1−F(x)). One interpretation of this differential equation is as

follows. For a Bernoulli random variable 1(X ≤ x) =
{

1, X ≤ x
0, X > x , the change in

probability of 1 as a function of x is equal to its variance. The solution in the
class of CDFs is

F(x)= 1
1+ e−x = ex

1+ ex ,

which is called the logistic distribution. Its density is

f (x)= ex

(1+ ex)2 .

Graphs of f (x) and F(x) are shown in Fig. 5.13. The mean of the distribution
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Fig. 5.13 (a) Density and (b) CDF of logistic distribution. Superimposed (dotted red) is the
normal distribution with matching mean and variance, 0 and π2/3, respectively.

is 0 and the variance is π2/3. For a more general logistic distribution given by
the CDF

F(x)= 1
1+ e−(x−µ)/σ ,

the mean is µ, variance π2σ2/3, skewness 0, and kurtosis 21/5. For the higher
moments one can use the moment generating function
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m(t)= exp{µt}B (1−σt,1+σt) ,

where B is the beta function. In WinBUGS the logistic distribution is coded as
dlogis(mu,tau), where tau is the reciprocal of σ.

If X has a logistic distribution, then log(X ) has a log-logistic distribution
(also known as the Fisk distribution). The log-logistic distribution is used in
economics (population wealth distribution) and reliability.

The logistic distribution will be revisited in Chap. 17 where we deal with
logistic regression.

5.5.9 Weibull Distribution

The Weibull distribution is one of the most important distributions in survival
theory and engineering reliability. It is named after Swedish engineer and
scientist Waloddi Weibull (Fig. 5.14) after his publication in the early 1950s
(Weibull, 1951).

Fig. 5.14 Ernst Hjalmar Waloddi Weibull (1887–1979).

The density of the two-parameter Weibull random variable X ∼ W ei(r,λ)
is given as

f (x)=λrxr−1e−λxr
, x > 0.

The CDF is given as F(x)= 1− e−λxr
. Parameter r is the shape parameter and

λ is the rate parameter. Both parameters are strictly positive.
In this form, Weibull X ∼W ei(r,λ) is a distribution of Y r for Y exponential

E (λ).
In MATLAB the Weibull distribution is parameterized by a and r, as in

f (x)= a−rrxr−1e−(x/a)r
, x > 0. Note that in this parameterization, a is the scale

parameter and relates to λ as λ= a−r. So when a =λ−1/r , the CDF in MATLAB
is wblcdf(x,a,r), and the PDF is wblpdf(x,a,r). The function wblinv(p,a,r)

computes the pth quantile of the W ei(r,λ) random variable. In WinBUGS,
W ei(r,λ) is coded as dweib(r,lambda).
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The Weibull distribution generalizes the exponential distribution (r = 1)
and Rayleigh distribution (r = 2).

The mean of a Weibull random variable X is EX = Γ(1+1/r)
λ1/r = aΓ

(
1+ 1

r
)
, and

the variance is Var X = Γ(1+2/r)−Γ2(1+1/r)
λ2/r = a2(Γ

(
1+ 2

r
)−Γ2 (

1+ 1
r
)
). The kth mo-

ment is EX k = Γ(1+k/r)
λk/r = akΓ

(
1+ k

r

)
.

Figure 5.15 shows the densities of the Weibull distribution for r = 2 (blue),
r = 1 (red), and r = 1/2 (black). In all three cases, λ = 1/2. The values for the
scale parameter a=λ−1/r are

p
2,2, and 4, respectively.
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Fig. 5.15 Densities of Weibull distribution with r = 2 (blue), r = 1 (red), and r = 2 (black). In
all three cases, λ= 1/2.

5.5.10 Pareto Distribution

The Pareto distribution is named after the Italian economist Vilfredo Pareto.
Some examples in which the Pareto distribution provides an exemplary model
include wealth distribution in individuals, sizes of human settlements, visits
to encyclopedia pages, and file size distribution of Internet traffic that uses
the TCP protocol. A random variable X has a Pareto P a(c,α) distribution
with parameters 0< c <∞ and α> 0 if its density is given by

fX (x) =
{
α
c

( c
x
)α+1 , x ≥ c,

0, else .

The CDF is

FX (x) =
{

0, x < c,
1− ( c

x
)α , x≥ c.
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The mean and variance of X are EX = αc/(α− 1) and Var X = αc2/[(α−
1)2(α−2)]. The median is m= c ·21/α.

If X1, . . . , Xn are independent P a(c,α), then Y = 2c
∑n

i=1 ln(Xi) ∼ χ2 with
2n degrees of freedom.

In MATLAB one can specify the generalized Pareto distribution, which for
some selection of its parameters is equivalent to the aforementioned Pareto
distribution. In WinBUGS, the code is dpar(alpha,c) (note the permuted order
of parameters).

5.5.11 Dirichlet Distribution

The Dirichlet distribution is a multivariate version of the beta distribution in
the same way that the multinomial distribution is a multivariate extension of
the binomial. A random variable X = (X1, . . . , Xk) with a Dirichlet distribution
of (X ∼D ir(a1, . . . ,ak)) has a PDF of

f (x1, . . . , xk)= Γ(A)
∏k

i=1Γ(ai)

k∏
i=1

xi
ai−1,

where A =∑
ai, and x = (x1, . . . , xk)≥ 0 is defined on the simplex x1+·· ·+xk = 1.

Then

E(Xi)=
ai

A
, Var (Xi)=

ai(A−ai)
A2(A+1)

, and Cov(Xi, X j)=− aia j

A2(A+1)
.

The Dirichlet random variable can be generated from gamma random vari-
ables Y1, . . . ,Yk ∼ G a(a,b) as Xi = Yi/SY , i = 1, . . . , k, where SY = ∑

i Yi. Obvi-
ously, the marginal distribution of a component Xi is Be(ai, A − ai). This is
illustrated in the following MATLAB m-file that generates random Dirichlet
vectors.

function drand = dirichletrnd(a,n)
% function drand = dirichletrnd(a,n)
% a - vector of parameters 1 x m
% n - number of random realizations
% drand - matrix m x n, each column one realization.
%---------------------------------------------------
a=a(:);
m=size(a,1);
a1=zeros(m,n);
for i = 1:m

a1(i,:) = gamrnd(a(i,1),1,1,n);
end
for i=1:m
drand(i, 1:n )= a1(i, 1:n ) ./ sum(a1);
end



5.6 Random Numbers and Probability Tables 173

5.6 Random Numbers and Probability Tables

In older introductory statistics texts, many backend pages have been devoted
to various statistical tables. Several decades ago, many books of statistical
tables were published. Also, the most respected of statistical journals occa-
sionally published articles consisting of statistical tables.

In 1947 the RAND Corporation published the monograph A Million Ran-
dom Digits with 100,000 Normal Deviates, which at the time was a state-of-
the-art resource for simulation and Monte Carlo methods. The random dig-
its can be found at http://www.rand.org/monograph_reports/MR1418.
html.

These days, much larger tables of random numbers can be produced by
a single line of code, resulting in a set of random numbers that can pass a
battery of stringent randomness tests. With MATLAB and many other widely
available software packages, statistical tables and tables of random numbers
are now obsolete. For example, tables of binomial CDF and PDF for a specific
n and p can be reproduced by

disp(’binocdf(0:12, 12, 0.7)’);
binocdf(0:12, 12, 0.7)
disp(’binopdf(0:12, 12, 0.7)’);
binopdf(0:12, 12, 0.7)

We will show how to sample and simulate from a few distributions in MAT-
LAB and compare empirical means and variances with their theoretical coun-
terparts. The following annotated MATLAB code simulates from binomial,
Poisson, and geometric distributions and compares theoretical and empirical
means and variances.

%various_simulations.m
simu = binornd(12, 0.7, [1,100000]);
% simu is 10000 observations from Bin(12,0.7)

disp(’simu = binornd(12, 0.7, [1,100000]); 12*0.7 - mean(simu)’);

12*0.7 - mean(simu) %0.001069
%should be small since the theoretical mean is n*p

disp(’simu = binornd(12, 0.7, [1,100000]); ...
12 * 0.7 * 0.3 - var(simu)’);

12 * 0.7 * 0.3 - var(simu) %-0.008350
%should be small since the theoretical variance is n*p*(1-p)

%% Simulations from Poisson(2)
poi = poissrnd(2, [1, 100000]);
disp(’poi = poissrnd(2, [1, 100000]); mean(poi)’);
mean(poi) %1.9976
disp(’poi = poissrnd(2, [1, 100000]); var(poi)’);
var(poi) %2.01501
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%%% Simulations from Geometric(0.2)
geo = geornd(0.2, [1, 100000]);
disp(’geo = geornd(0.2, [1, 100000]); mean(geo)’);
mean(geo) %4.00281
disp(’geo = geornd(0.2, [1, 100000]); var(geo)’);
var(geo) %20.11996

5.7 Transformations of Random Variables*

When a random variable with known density is transformed, the result is
a random variable as well. The question is how to find its distribution. The
general theory for distributions of functions of random variables is beyond the
scope of this text, and the reader can find comprehensive coverage in Ross
(2010a, b).

We have already seen that for a discrete random variable X , the PMF of a
function Y = g(X ) is simply the table

g(X ) g(x1) g(x2) · · · g(xn) · · ·
Prob p1 p2 · · · pn · · ·

in which only realizations of X are transformed while the probabilities are
kept unchanged.

For continuous random variables the distribution of a function is more com-
plex. In some cases, however, looking at the CDF is sufficient.

In this section we will discuss two topics: (i) how to find the distribution for
a transformation of a single continuous random variable and (ii) how to ap-
proximate moments, in particular means and variances, of complex functions
of many random variables.

Suppose that a continuous random variable has a density fX (x) and that
a function g is monotone on the domain of f , with the inverse function
h, h = g−1. Then the random variable Y = g(X ) has a density

fY (y)= f (h(y))|h′(y)|. (5.9)

If g is not 1–1, but has k 1–1 inverse branches, h1,h2, . . . ,hk, then

fY (y)=
k∑

i=1
f (hi(y))|h′

i(y)|. (5.10)

An example of a non 1–1 function is g(x) = x2, for which inverse branches
h1(y)=p

y and h2(y)=−py are 1–1.
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Example 5.20. Let X be a random variable with an exponential E (λ) distribu-
tion, where λ > 0 is the rate parameter. Find the distribution of the random
variable Y =

p
X .

Here g(x)=p
x and g−1(y)= y2. The Jacobian is |g−1(y)′| = 2y, y≥ 0.

Thus,

fY (y)=λe−λy2 ·2y, y≥ 0,λ> 0,

which is known as the Rayleigh distribution.
An alternative approach to finding the distribution of Y is to consider the

CDF:

FY (y)=P(Y ≤ y)=P(
p

X ≤ y)=P(X ≤ y2)= 1− e−λy2

since X has the exponential distribution.
The density is now obtained by taking the derivative of FY (y),

fY (y)= (FY (y))′ = 2λye−λy2
, y≥ 0,λ> 0.

�

The distribution of a function of one or many random variables is an ul-
timate summary. However, the result could be quite messy and sometimes
the distribution lacks a closed form. Moreover, not all facets of the resulting
distribution may be of interest to researchers; sometimes only the mean and
variance are needed.

If X is a random variable with EX =µ and Var X =σ2, then for a function
Y = g(X ) the following approximation holds:

EY ≈ g(µ)+ 1
2

g′′(µ)σ2,

Var Y ≈ (
g′(µ)

)2
σ2. (5.11)

If n independent random variables are transformed as Y =
g(X1, X2, . . . , Xn), then

EY ≈ g(µ1,µ2, . . . ,µn)+ 1
2

n∑
i=1

∂2 g
∂x2 (µ1,µ2, . . . ,µn)σ2

i ,

Var Y ≈
n∑

i=1

(
∂g
∂xi

(µ1,µ2, . . . ,µn)
)2
σ2

i , (5.12)

where EXi =µi and Var Xi =σ2
i .
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The approximation for the mean EY is obtained by the second-order Tay-
lor expansion and is more precise than the approximation for the variance
Var Y , which is of the first order (“linearization”). The second-order ap-
proximation for Var Y is straightforward but involves third and fourth mo-
ments of Xs. Also, when the variables X1, . . . , Xn are correlated, the factor
2

∑
1≤i< j≤n

∂2 g
∂xi∂xj

(µ1, . . . ,µn)Cov(Xi, X j) should be added to the expression for
Var Y in (5.12).

If g is a complicated function, the mean EY is often approximated by a
first-order approximation, EY ≈ g(µ1,µ2, . . . ,µn), that involves no derivatives.

Example 5.21. String Vibrations. In string vibration, the frequency of the
fundamental harmonic is often of interest. The fundamental harmonic is pro-
duced by the vibration with nodes at the two ends of the string. In this case,
the length of the string L is half of the wavelength of the fundamental har-
monic. The frequency ω (in Hz) depends also on the tension of the string T,
and the string mass M,

ω= 1
2

√
T

ML
.

Quantities L,T, and M are measured imperfectly and are considered inde-
pendent random variables. The means and variances are estimated as follows:

Variable (unit) Mean Variance
L (m) 0.5 0.0001
T (N) 70 0.16

M (kg/m) 0.001 10−8

Approximate the mean µω and variance σ2
ω of the resulting frequency ω.

The partial derivatives

∂ω

∂T
= 1

4

√
1

TML
,

∂2ω

∂T2 =−1
8

√
1

T3ML
,

∂ω

∂M
=−1

4

√
T

M3L
,

∂2ω

∂M2 = 3
8

√
T

M5L
,

∂ω

∂L
=−1

4

√
T

ML3 ,
∂2ω

∂L2 = 3
8

√
T

ML5 ,

evaluated at the means µL = 0.5, µT = 70, and µM = 0.001, are
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∂ω

∂T
(µL,µT ,µM )= 1.3363,

∂2ω

∂T2 (µL,µT ,µM)=−0.0095,

∂ω

∂M
(µL,µT ,µM)=−9.3541 ·104,

∂2ω

∂M2 (µL,µT ,µM)= 1.4031 ·108,

∂ω

∂L
(µL,µT ,µM)=−187.0829,

∂2ω

∂L2 (µL,µT ,µM )= 561.2486,

and the mean and variance of ω are

µω ≈ 187.8117 and σ2
ω ≈ 91.2857 .

The first-order approximation for µω is 1
2

√
µT

µMµL
= 187.0829.

�

5.8 Mixtures*

In modeling tasks it is sometimes necessary to combine two or more random
variables in order to get a satisfactory model. There are two ways of combining
random variables: by taking the linear combination a1X1+a2X2+. . . for which
a density in the general case is often convoluted and difficult to express in a
finite form, or by combining densities and PMFs directly.

For example, for two densities f1 and f2, the density g(x) = ε f1(x)+ (1−
ε)f2(x) is a mixture of f1 and f2 with weights ε and 1− ε. It is important for
the weights to be nonnegative and add up to 1 so that g(x) remains a density.

Very popular mixtures are point mass mixture distributions that combine
a density function f (x) with a point mass (Dirac) function δx0 at a value x0.
The Dirac functions belong to a class of special functions. Informally, one may
think of δx0 as a limiting function for a sequence of functions

fn,x0 =
{

n, x0 − 1
2n < x< x0 + 1

2n ,
0, else,

when n →∞. It is easy to see that for any finite n, fn,x0 is a density since it
integrates to 1; however, the function domain shrinks to a singleton x0, while
its value at x0 goes to infinity.

For example, f (x)= 0.3δ0 +0.7× 1p
2π

exp{− x2

2 } is a normal distribution con-
taminated by a point mass at zero with a weight 0.3.
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5.9 Markov Chains*

chain models are popular. Here we give a basic definition and a few exam-
ples of Markov chains and provide references where Markov chains receive
detailed coverage.

A sequence of random variables X0, X1, . . . , Xn, . . . , with values in the set of
“states” S = {1,2, . . . }, constitutes a Markov chain if the probability of transi-
tion to a future state, Xn+1 = j, depends only on the value at the current state,
Xn = i, and not on any previous values Xn−1, Xn−2, . . . , X0. A popular way of
putting this is to say that in Markov chains the future depends on the present
and not on the past. Formally,

P(Xn+1 = j|X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = i)=P(Xn+1 = j|Xn = i)= pi j ,

where i0, i1, . . . , in−1, i, j are the states from S . The probability pi j is inde-
pendent of n and represents the transition probability from state i to state j.
In our brief coverage of Markov chains, we will consider chains with a finite
number of states, N.

For states S = {1,2, . . . , N}, the transition probabilities form an N ×N ma-
trix P= (pi j). Each row of this matrix sums up to 1 since the probabilities of all
possible moves from a particular state, including the probability of remaining
in the same state, sum up to 1:

pi1 + pi2 +·· ·+ pii +·· ·+ piN = 1.

The matrix P describes the evolution and long-time behavior of the Markov
chain it represents. In fact, if the distribution π(0) for the initial variable X0 is
specified, the pair π(0),P fully describes the Markov chain.

Matrix P2 gives the probabilities of transition in two steps. Its element p(2)
i j

is P(Xn+2 = j|Xn = i).
Likewise, the elements of matrix Pm are the probabilities of transition in

m steps,

p(m)
i j =P(Xn+m = j|Xn = i),

for any n ≥ 0 and any i, j ∈S .
If the distribution for X0 is π(0) =

(
π(0)

1 ,π(0)
2 , . . . ,π(0)

N

)
, then the distribution

for Xn is

π(n) =π(0)Pn. (5.13)

Of course, if the state X0 is known, X0 = i0, then π(0) is a vector of 0s except
at position i0, where the value is 1.

You may have encountered statistical jargon containing the term “Markov
chain.” In Bayesian calculations the acronym MCMC stands for Markov chain
Monte Carlo simulations, while in statistical models of genomes, hidden Markov
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For n large, the probability π(n) “forgets” the initial distribution at state
X0 and converges to π= limn→∞π(n). This distribution is called the stationary
distribution of a chain and satisfies

π=πP.

Result. If for a finite state Markov chain one can find an integer k so that all
entries in Pk are strictly positive, then stationary distribution π exist.

Example 5.22. Point Accepted Mutation. Point accepted mutation (PAM)
implements a simple theoretical model for scoring the alignment of protein se-
quences. Specifically, at a fixed position the rate of mutation at each moment
is assumed to be independent of previous events. Then the evolution of this
fixed position in time can be treated as a Markov chain, where the PAM ma-
trix represents its transition matrix. The original PAMs are 20×20 matrices
describing the evolution of 20 standard amino acids (Dayhoff et al. 1978). As
a simplified illustration, consider the case of a nucleotide sequence with only
four states (A, T, G, and C). Assume that in a given time interval ∆T the prob-
abilities that a given nucleotide mutates to each of the other three bases or
remains unchanged can be represented by a 4×4 mutation matrix M:

M =




A T G C
A 0.98 0.01 0.005 0.005
T 0.01 0.96 0.02 0.01
G 0.01 0.01 0.97 0.01
C 0.02 0.03 0.01 0.94




Consider the fixed position with the letter T at t= 0:

s0 = (0 1 0 0).

Then, at times ∆, 2∆, 10∆, 100∆, 1000∆, and 10000∆, by (5.13), the proba-
bilities of the nucleotides (A, T, G, C) are s1 = s0M,s2 = s0M2, s10 = s0M10,
s100 = s0M100,s1000 = s0M1000, and s10000 = s0M10000, as given in the following
table

∆ 2∆ 10∆ 100∆ 1000∆ 10000∆
A 0.0100 0.0198 0.0909 0.3548 0.3721 0.3721
T 0.9600 0.9222 0.6854 0.2521 0.2465 0.2465
G 0.0200 0.0388 0.1517 0.2747 0.2651 0.2651
C 0.0100 0.0193 0.0719 0.1184 0.1163 0.1163

�
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5.10 Exercises

5.1. Phase I Clinical Trials and CTCAE Terminology. In phase I clinical
trials a safe dosage of a drug is assessed. In administering the drug doctors
are grading subjects’ toxicity responses on a scale from 0 to 5. In CTCAE
(Common Terminology Criteria for Adverse Events, National Institute of
Health) Grade refers to the severity of adverse events. Generally, Grade 0
represents no measurable adverse events (sometimes omitted as a grade);
Grade 1 events are mild; Grade 2 are moderate; Grade 3 are severe; Grade
4 are life-threatening or disabling; Grade 5 are fatal. This grading system
inherently places a value on the importance of an event, although there
is not necessarily “proportionality" among grades (a “2" is not necessarily
twice as bad as a “1"). Some adverse events are difficult to “fit" into this
point schema, but altering the general guidelines of severity scaling would
render the system useless for comparing results between trials, which is an
important purpose of the system.
Assume that based on a large number of trials (administrations to patients
with Renal cell carcinoma), the toxicity of drug PNU (a murine Fab frag-
ment of the monoclonal antibody 5T4 fused to a mutated superantigen
staphylococcal enterotoxin A) at a particular fixed dosage, is modeled by
discrete random variable X ,

X 0 1 2 3 4 5
Prob 0.620 0.190 0.098 0.067 0.024 0.001

Plot the PMF and CDF and find EX and Var (X ).

5.2. Mendel and Dominance. Suppose that a specific trait, such as eye color
or left-handedness, in a person is dependent on a pair of genes and sup-
pose that D represents a dominant and d a recessive gene. Thus a person
having DD is pure dominant and dd is pure recessive while Dd is a hybrid.
The pure dominants and hybrids are alike in outward appearance. A child
receives one gene from each parent.
Suppose two hybrid parents have 4 children. What is the probability that 3
out of 4 children have outward appearance of the dominant gene.

5.3. Chronic Kidney Disease. Chronic kidney disease (CKD) is a serious con-
dition associated with premature mortality, decreased quality of life, and
increased health-care expenditures. Untreated CKD can result in end-stage
renal disease and necessitate dialysis or kidney transplantation. Risk fac-
tors for CKD include cardiovascular disease, diabetes, hypertension, and
obesity. To estimate the prevalence of CKD in the United States (overall and
by health risk factors and other characteristics), the CDC (CDC’s MMWR
Weekly, 2007; Coresh et al, 2003) analyzed the most recent data from the
National Health and Nutrition Examination Survey (NHANES). The total
crude (i.e., not age-standardized) CKD prevalence estimate for adults aged
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> 20 years in the United States was 17%. By age group, CKD was more
prevalent among persons aged > 60 years (40%) than among persons aged
40–59 years (13%) or 20–39 years (8%).
(a) From the population of adults aged > 20 years, 10 subjects are selected
at random. Find the probability that 3 of the selected subjects have CKD.
(b) From the population of adults aged > 60, 5 subjects are selected at ran-
dom. Find the probability that at least one of the selected have CKD.
(c) From the population of adults aged > 60, 16 subjects are selected at
random and it was found that 6 of them had CKD. From this sample of
16, subjects are selected at random, one-by-one with replacement, and in-
spected. Find the probability that among 5 inspected (i) exactly 3 had CKD;
(ii) at least one of the selected have CKD.
(d) From the population of adults aged > 60 subjects are selected at random
until a subject is found to have CKD. What is the probability that exactly 3
subjects are sampled.
(e) Suppose that persons aged > 60 constitute 23% of the population of
adults older than 20. For the other two age groups, 20–39 y.o., and 40–59
y.o., the percentages are 42% and 35%. Ten people are selected at random.
What is the probability that 5 are from the > 60-group, 3 from the 20–39-
group, and 2 from the 40-59 group.

5.4. Ternary channel. Refer to Exercise 3.29 in which a communication sys-
tem was transmitting three signals, s1,s2 and s3.
(a) If s1 is sent n = 1000 times, find an approximation to the probability of
the event that it was correctly received between 730 and 770 times, inclu-
sive.
(b) If s2 is sent n = 1000 times, find an approximation to the probability of
the event that the channel did not switch to s3 at all, i.e., if 1000 s2 signals
are sent not a single s3 was received. Can you use the same approximation
as in (a)?

5.5. Conditioning a Poisson. If X1 ∼ P oi(λ1) and X2 ∼ P oi(λ2) are in-
dependent, then the distribution of X1, given X1 + X2 = n, is binomial
B in (n,λ1/(λ1 +λ2)) .

5.6. Rh+ Plates. Assume that there are 6 plates with red blood cells, three are
Rh+ and three are Rh–.
Two plates are selected (a) with, (b) without replacement. Find the proba-
bility that one plate out of the 2 selected/inspected is of Rh+ type.
Now, increase the number of plates keeping the proportion of Rh+ fixed to
1/2. For example, if the total number of plates is 10000, 5000 of each type,
what are the probabilities from (a) and (b)?

5.7. Your Colleague’s Misconceptions About Density and CDF. Your col-
league thinks that if f is a probability density function for the continuous
random variable X , then f (10) is the probability that X = 10. (a) Explain to
your colleague why his/her reasoning is false.
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Your colleague is not satisfied with your explanation and challenges you
by asking, “If f (10) is not the probability that X = 10, then just what does
f (10) signify?" (b) How would you respond?
Your colleague now thinks that if F is a cumulative probability density func-
tion for the continuous random variable X , then F(5) is the probability that
X = 5. (c) Explain why your colleague is wrong.
Your colleague then asks you, “If F(5) is not the probability of X = 5, then
just what does F(5) represent?" (d) How would you respond?

5.8. Falls among elderly. Falls are the second leading cause of unintentional
injury death for people of all ages and the leading cause for people 60 years
and older in the United States. Falls are also the most costly injury among
older persons in the United States.
One in three adults aged 65 years and older falls annually.
(a) Find the probability that 3 among 11 adults aged 65 years and older will
fall in the following year.
(b) Find the probability that among 110,000 adults aged 65 years and older
the number of falls will be between 36,100 and 36,700, inclusive. Find the
exact probability by assuming a binomial distribution for the number of
falls, and an approximation to this probability via deMoivre’s Theorem.

5.9. Cell clusters in 3-D Petri dishes. The number of cell clusters in a 3-D
Petri dish has a Poisson distribution with mean λ= 5. Find the percentage
of Petri dishes that have (a) 0 clusters, (b) at least one cluster, (c) more than
8 clusters, and (d) between 4 and 6 clusters. Use MATLAB and poisspdf,
poisscdf functions.

5.10. Left-handed Twins. The identical twin of a left-handed person has a
76 percent chance of being left-handed, implying that left-handedness has
partly genetic and partly environmental causes. Ten identical twins of ten
left-handed persons are inspected for left-handedness. Let X be the number
of left-handed among the inspected. What is the probability that X
(a) falls anywhere between 5 and 8, inclusive;
(b) is at most 6;
(c) is not less than 6.
(d) Would you be surprised if the number of left-handed among the 10 in-
spected was 3? Why or why not?

5.11. Pot Smoking is Not Cool! A nationwide survey of seniors by the Univer-
sity of Michigan reveals that almost 70% disapprove of daily pot smoking
according to a report in “Parade," September 14, 1980. If 12 seniors are
selected at random and asked their opinion, find the probability that the
number who disapprove of smoking pot daily is
(a) anywhere from 7 to 9;
(b) at most 5;
(c) not less than 8.
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5.12. Emergency Help by Phone. The emergency hotline in a hospital tries
to answer questions to its patient support within 3 minutes. The probabil-
ity is 0.9 that a given call is answered within 3 minutes and the calls are
independent.
(a) What is the expected total number of calls that occur until the first call
is answered late?
(b) What is the probability that exactly one of the next 10 calls is answered
late?

5.13. Min of Three. Let X1, X2, and X3 be three mutually independent random
variables, with a discrete uniform distribution on {1,2,3}, given as P(Xi =
k)= 1/3 for k = 1,2 and 3.
(a) Let M = min{X1, X2, X3}. What is the distribution (probability mass
function) and cumulative distribution function of M?
(b) What is the distribution (probability mass function) and cumulative dis-
tribution function of random variable R =max{X1, X2, X3}−min{X1, X2, X3}.

5.14. Cystic Fibrosis in Japan. Some rare diseases including those of genetic
origin, are life-threatening or chronically debilitating diseases that are of
such low prevalence that special combined efforts are needed to address
them. An accepted definition of low prevalence is a prevalence of less than
5 in a population of 10,000. A rare disease has such a low prevalence in a
population that a doctor in a busy general practice would not expect to see
more than one case in a given year.
Assume that Cystic Fibrosis, which is a rare genetic disease in most parts
of Asia, has a prevalence of 2 per 10000 in Japan. What is the probability
that in a Japanese city of 15,000 there are
(a) exactly 3 incidences,
(b) at least one incidence,
of cystic fibrosis.

5.15. Random Variables as Models. Tubert-Bitter et al (1996) found that the
number of serious gastrointestinal reactions reported to the British Com-
mittee on Safety of Medicines was 538 for 9,160,000 prescriptions of the
anti-inflammatory drug Piroxicam.
(a) What is the rate of gastrointestinal reactions per 10,000 prescriptions?
(b) Using the Poisson model with the rate λ as in (a), find the probability of
exactly two gastrointestinal reactions per 10,000 prescriptions.
(c) Find the probability of finding at least two gastrointestinal reactions per
10,000 prescriptions.

5.16. Additivity of Gammas. If Xi ∼G a(ri,λ) are independent, prove that Y =
X1 +·· ·+ Xn is distributed as gamma with parameters r = r1 + r2 +·· ·+ rn
and λ; that is, Y ∼G a(r,λ).
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5.17. Memoryless property. Prove that the geometric distribution (P(X = x) =
(1− p)x p, x = 0,1,2, . . . ) and the exponential distribution (P(X ≤ x) = 1−
e−λx, x≥ 0,λ≥ 0) both possess the Memoryless Property, that is, they satisfy

P(X ≥ u+v|X ≥ u)=P(X ≥ v−u),u ≤ v.

5.18. Rh System. Rh antigens are transmembrane proteins with loops exposed
at the surface of red blood cells. They appear to be used for the transport
of carbon dioxide and/or ammonia across the plasma membrane. They are
named for the rhesus monkey in which they were first discovered. There
are a number of different Rh antigens. Red blood cells that are Rh positive
express the antigen designated as D. About 15% of the population do not
have RhD antigens and thus are Rh negative. The major importance of the
Rh system for human health is to avoid the danger of RhD incompatibility
between a mother and her fetus.
(a) From the general population 8 people are randomly selected and checked
for their Rh factor. Let X be the number of Rh negative among the eight
selected. Find P(X = 2).
(b) In a group of 16 patients, three members are Rh negative. Eight patients
are selected at random. Let Y be the number of Rh negative among the
eight selected. Find P(Y = 2).
(c) From the general population subjects are randomly selected and checked
for their Rh factor. Let Z be the number of Rh positive subjects before the
first Rh negative subject is selected. Find P(Z = 2).
(d) Identify the distributions of the random variables in (a), (b), and (c)?
(e) What are the expectations and variances for the random variables in (a),
(b), and (c)?

5.19. Blood Types. The prevalence of blood types in the US population is O+:
37.4%, A+: 35.7%, B+: 8.5%, AB+: 3.4%, O–: 6.6%, A–: 6.3%, B–: 1.5%, and
AB–: 0.6%.
(a) A sample of 24 subjects is randomly selected from the US population.
What is the probability that 8 subjects are O+. Random variable X de-
scribes the number of O+ subjects among 24 selected. Find EX and Var X .
(b) Among 16 subjects, eight are O+. From these 16 subjects, five are se-
lected at random as a group. What is the probability that among the five
selected at most two are O+.
(c) Use Poisson approximation to find the probability that among 500 ran-
domly selected subjects the number of AB– subjects is at least 1.
(d) Random sampling from the population is performed until the first sub-
ject with B+ blood type is found. What is the expected number of subjects
sampled?
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5.20. Variance of the Exponential. Show that for an exponential random vari-
able X with density f (x)=λe−λx, x ≥ 0, the variance is 1/λ2. (Hint: You can
use the fact that EX = 1/λ. To find EX2 you need to repeat the integration-
by-parts twice.)

5.21. Equipment Aging. Suppose that the lifetime T of a particular piece of
laboratory equipment (in 1000 hour units) is an exponentially distributed
random variable such that P(T > 10)= 0.8.
(a) Find the “rate” parameter, λ.
(b) What are the mean and standard deviation of the random variable T?
(c) Find the median, the first and third quartiles, and the inter-quartile
range of the lifetime T. Recall that for an exponential distribution, you can
find any percentile exactly.

5.22. A Simple Continuous Random Variable. Assume that the measured
responses in an experiment can be modeled as a continuous random vari-
able with density

f (x)=
{

c− x, 0≤ x≤ c
0, else

(a) Find the constant c and sketch the graph of the density f (x).
(b) Find the CDF F(x)=P(X ≤ x), and sketch its graph.
(c) Find E(X ) and Var (X ).
(d) What is P(X ≤ 1/2)?

5.23. 2-D Continuous Random Variable Question. A two dimensional ran-
dom variable (X ,Y ) is defined by its density function, f (x, y) = Cxe−xy, 0 ≤
x≤ 1; 0≤ y≤ 1.
(a) Find the constant C.
(b) Find the marginal distributions of X and Y .

5.24. Insulin Sensitivity. The insulin sensitivity (SI), obtained in a glucose
tolerance test is one of patient responses used to diagnose type II diabetes.
Leading a sedative lifestyle and being overweight are well-established risk
factors for type II diabetes. Hence, body mass index (BMI) and hip to waist
ratio (HWR = HIP/WAIST) may also predict an impaired insulin sensitivity.
In an experiment, 106 males (coded 1) and 126 females (coded 2) had their
SI measured and their BMI and HWR registered. Data ( diabetes.xls)
are available on the text web page. For this exercise you will need only the
8-th column of the data set, which corresponds to the SI measurements.
(a) Find the sample mean and sample variance of SI.
(b) A gamma distribution with parameters α and β seems to be an appro-
priate model for SI. What α, β should be chosen so that the EX matches the
sample mean of SI and Var X matches the sample variance of SI.
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(c) With α and β selected as in (b), simulate a random sample from gamma
distribution with a size equal to that of SI (n= 232). Use gamrnd. Compare
two histograms, one with the simulated values from the gamma model and
the second from the measurements of SI. Use 20 bins for the histograms.
Comment on their similarities/differences.
(d) Produce a Q–Q plot to compare the measured SI values with the model.
Suppose that you selected α= 3 and β= 3.3, and that dia is your data set.
Take n = 232 equally-spaced points between [0,1] and find their gamma
quantiles using gaminv(points,alpha,beta). If the model fits the data, these
theoretical quantiles should match the ordered sample.
Hint: The plot of theoretical quantiles against the ordered sample is called
a Q–Q plot. An example of producing a Q–Q plot in MATLAB is as follows:

xx = 0.5/232: 1/232: 1;
yy=gaminv(xx, 3, 3.3);
plot(yy, sort(dia(:,8)),’*’)
hold on
plot(yy, yy,’r-’)

5.25. Correlation Between a Uniform and its Power. Suppose that X has
uniform U (−1,1) distribution and that Y = X k.
(a) Show that for k even, Corr(X ,Y )= 0.
(b) Show that for arbitrary k, Corr(X ,Y )→ 0, when k →∞.

5.26. Precision of Lab Measurements. The error X in measuring the weight
of a chemical sample is a random variable with PDF.

f (x)=
{

3x2

16 , −2< x < 2
0, otherwise

(a) A measurement is considered to be accurate if |X | < 0.5. Find the proba-
bility that a randomly chosen measurement can be classified as accurate.
(b) Find and sketch the graph of the cumulative distribution function F(x).
(c) The loss in dollars which is caused by measurement error is Y = X2.
Find the mean of Y (expected loss).
(d) Compute the probability that the loss is less than $3.
(e) Find the median of Y .

5.27. Lifetime of Cells. Cells in the human body have a wide variety of life
spans. One cell may last a day; another a lifetime. Red blood cells (RBC)
have a lifespan of several months and cannot replicate, which is the price
RBCs pay for being specialized cells. The lifetime of a RBC can be modeled
by an exponential distribution with density f (t) = 1

β
e−t/β, where β = 4 (in

units of months). For simplicity, assume that when a particular RBC dies
it is instantly replaced by a newborn RBC of the same type. For example,
a replacement RBC could be defined as any new cell born approximately at
the time when the original cell died.
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(a) Find the expected lifetime of a single RBC. Find the probability that the
cell’s life exceeds 150 days. Hint: Days have to be expressed in units of β.
(b) A single RBC and its replacements are monitored over the period of
1 year. How many deaths/replacements are observed on average? What is
the probability that the number of deaths/replacements exceeds 5. Hint:
Utilize a link between Exponential and Poisson distributions. In simple
terms, if life- times are exponential with parameter β, then the number
of deaths/replacements in the time interval [0, t] is Poisson with parameter
λ= t/β. Time units for t and β have to be the same.
(c) Suppose that a single RBC and two of its replacements are monitored.
What is the distribution of their total lifetime? Find the probability that
their total lifetime exceeds 1 year. Hint: Consult the gamma distribution.
If n random variables are exponential with parameter β then their sum is
gamma-distributed with parameters α= n and β.
(d) A particular RBC is observed t = 2.2 months after its birth and is found
to still be alive. What is the probability that the total lifetime of this cell
will exceed 7.2 months?

5.28. Silver-coated Nylon Fiber. Silver-coated nylon fiber is used in hospitals
for its anti-static electricity properties, as well as for antibacterial and an-
timycotic effects. In the production of silver-coated nylon fibers, the extru-
sion process is interrupted from time to time by blockages occurring in the
extrusion dyes. The time in hours between blockages, T, has an exponential
E (1/10) distribution, where 1/10 is the rate parameter.
Find the probabilities that
(a) a run continues for at least 10 hours,
(b) a run lasts less than 15 hours, and
(c) a run continues for at least 20 hours, given that it has lasted 10 hours.
Use MATLAB and expcdf function. Be careful about the parametrization of
exponentials in MATLAB.

5.29. Xeroderma pigmentosum. Xeroderma pigmentosum (XP) was first de-
scribed in 1874 by Hebra et al. XP is the condition characterized as dry,
pigmented skin. It is a hereditary condition with an incidence of 1:250000
live births (Robbin et al., 1974). In a city with a population of 1000000,
find the distribution of the number of people with XP. What is the expected
number? What is the probability that there are no XP-affected subjects?

5.30. Failure Time. Let X model the time to failure (in years) of a Beckman
Coulter TJ-6 laboratory centrifuge. Suppose the PDF of X is f (x)= c/(3+x)3

for x≥ 0.
(a) Find the value of c such that f is a legitimate PDF.
(b) Compute the mean and median time to failure of the centrifuge.

5.31. Beta Fit. Assume that the fraction of impurities in a certain chemical
solution is modeled by a Beta Be(α,β) distribution with known parameter
α= 1. The average fraction of impurities is 0.1.
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(a) Find the parameter β.
(b) What is the standard deviation of the fraction of impurities?
(c) Find the probability that the fraction of impurities exceeds 0.25.

5.32. Uncorrelated but Possibly Dependent. Show that for any two random
variables X and Y with equal second moments, the variables Z = X+Y and
W = X −Y are uncorrelated. Note, that Z and W could be dependent.

5.33. Nights of Mr. Jones. If Mr. Jones had insomnia one night, the probability
that he would sleep well the following night is 0.6, otherwise he would have
insomnia. If he slept well one night, the probabilities of sleeping well or
having insomnia the following night would be 0.5 each.
On Monday night Mr. Jones had insomnia. What is the probability that he
had insomnia on the following Friday night.

5.34. Stationary Distribution of MC. Consider a Markov Chain with transi-
tion matrix

P=



0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


 .

(a) Show that all entries of P2 are strictly positive.
(b) Using MATLAB find P100 and guess what the stationary distribution
π = (π1,π2,π3) would be. Confirm your guess by solving the equation π =
πP, which gives the exact stationary distribution. Hint: The system π=πP
needs a closure equation π1 +π2 +π3 = 1.

5.35. Heat Production by a Resistor. Joule’s Law states that the amount of
heat produced by a resistor is

Q = I2 R T,

where
Q is heat energy (in Joules),
I is the current (in Amperes),
R is the resistance (in Ohms), and
T is duration of time (in seconds).
Suppose that in an experiment, I, R, and T are independent random vari-
ables with means µI = 10A, µR = 30Ω, and µT = 120sec. Suppose that the
variances are σ2

I = 0.01A2, σ2
R = 0.02Ω2, and σ2

T = 0.001sec2.
Estimate the mean µQ and the variance σ2

Q of the produced energy Q.
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Chapter 6
Normal Distribution

The adjuration to be normal seems shockingly repellent to me.

– Karl Menninger

WHAT IS COVERED IN THIS CHAPTER

• Definition of Normal Distribution. Bivariate Case
• Standardization. Quantiles of Normal Distribution. Sigma Rules
• Linear Combinations of Normal Random Variables
• Central Limit Theorem. de Moivre’s Approximation
• Distributions Related to Normal: Chi-Square, Wishart, t, F, Lognor-

mal, and Some Noncentral Distributions
• Transformations to Normality

6.1 Introduction

In Chaps. 2 and 5 we occasionally referred to a normal distribution either in-
formally (bell-shaped distributions/histograms) or formally, as in Sect. 5.5.3,
where the normal density and its moments were briefly introduced. This chap-
ter is devoted to the normal distribution due to its importance in statistics.
What makes the normal distribution so important? The normal distribution
is the proper statistical model for many natural and social phenomena. But
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192 6 Normal Distribution

even if some measurements cannot be modeled by the normal distribution (it
could be skewed, discrete, multimodal, etc.), their sample means would closely
follow the normal law, under very mild conditions. The central limit theorem
covered in this chapter makes it possible to use probabilities associated with
the normal curve to answer questions about the sums and averages in suf-
ficiently large samples. This translates to the ubiquity of normality – many
estimators, test statistics, and nonparametric tests covered in later chapters
of this text are approximately normal, when sample sizes are not small (typ-
ically larger than 20 to 30), and this asymptotic normality is used in a sub-
stantial way. Several other important distributions can be defined through a
normal distribution. Also, normality is a quite stable property – an arbitrary
linear combination of normal random variables remains normal. The property
of linear combinations of random variables preserving the distribution of their
components is not shared by any other probability law and is a characterizing
property of a normal distribution.

6.2 Normal Distribution

In 1738, Abraham de Moivre (Fig. 6.1a) developed the normal distribution as
an approximation to the binomial distribution, and it was subsequently used
by Laplace in 1783 to study measurement errors and by Gauss (Fig. 6.1b)
in 1809 in the analysis of astronomical data. The name normal came from
Quetelet (Fig. 6.1c), who demonstrated that many human characteristics dis-
tributed themselves in a bell-shaped manner (centered about the “average
man,” l’homme moyen), including such measurements as chest girths of 5,738
Scottish soldiers, the heights of 100,000 French conscripts, and the body
weight and height of people he measured. From his initial research on height
and weight has evolved the internationally recognized measure of obesity
called the Quetelet index (QI), or body mass index (BMI), QI = (weight in
kilograms)/(squared height in meters).

Table 6.1 provides frequencies of chest sizes of 5738 Scottish soldiers as
well as the relative frequencies. Using this now famous data set Quetelet
argued that many human measurements distribute as normal. Figure 6.2
gives a normalized histogram of Quetelet’s data set with superimposed nor-
mal density in which the mean and the variance are taken as the sample
mean (39.8318) and sample variance (2.04962).

The PDF for a normal random variable with mean µ and variance σ2 is

f (x) = 1p
2πσ2

e−
1

2σ2 (x−µ)2
, ∞< x<∞.

The distribution function is computed using integral approximation because
no closed form exists for the antiderivative of f (x); this is generally not a prob-
lem for practitioners because most software packages will compute interval
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(a) (b) (c)

Fig. 6.1 (a) Abraham de Moivre (1667–1754), French mathematician; (b) Johann Carl
Friedrich Gauss (1777–1855), German mathematician, astronomer, and physicist; (c) Lam-
bert Adolphe Quetelet (1796–1874), Belgian astronomer, mathematician, and sociometrist

Table 6.1 Chest sizes of 5738 Scottish soldiers, data compiled from the 13th edition of the
Edinburgh Medical Journal (1817).

Size Frequency Relative frequency (in %)
33 3 0.05
34 18 0.31
35 81 1.41
36 185 3.22
37 420 7.32
38 749 13.05
39 1073 18.70
40 1079 18.80
41 934 16.28
42 658 11.47
43 370 6.45
44 92 1.60
45 50 0.87
46 21 0.37
47 4 0.07
48 1 0.02

Total 5738 99.99

probabilities numerically. In MATLAB, normcdf(x, mu, sigma) and normpdf(x,

mu, sigma) calculate the CDF and PDF at x, and norminv(p, mu, sigma) com-
putes the inverse CDF at given probability p, that is, the p-quantile. Equiva-
lently, a normal CDF can be expressed in terms of a special function called the
error integral:

erf(x)= 2p
π

∫ x

0
e−t2

dt.

It holds that normcdf(x)= 1/2+1/2*erf(x/sqrt(2)).
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Fig. 6.2 Normalized bar plot of Quetelet’s data set. Superimposed is the normal density
with mean µ= 39.8318 and variance σ2 = 2.04962

A random variable X with a normal distribution will be denoted X ∼
N (µ,σ2).

In addition to software, CDF values are often given in tables. Such tables
contain only quantiles and CDF values for the standard normal distribution,
Z ∼ N (0,1), for which µ = 0 and σ2 = 1. Such tables are sufficient since an
arbitrary normal random variable X can be standardized to Z if its mean and
variance are known:

X ∼N (µ,σ2) 7→ Z = X −µ
σ

∼N (0,1).

For a standard normal random variable Z the PDF is denoted by φ, and
CDF by Φ,

Φ(x)=
∫ x

−∞
φ(t) dt =

∫ x

−∞
1p
2π

e−t2/2 dt. [normcdf(x)]

Suppose we are interested in the probability that a random variable X dis-
tributed as N (µ,σ2) falls between two bounds a and b, P(a < X < b). It is
irrelevant whether the bounds are included or not since the normal distribu-
tion is continuous and P(a< X < b)=P(a≤ X ≤ b). Also, any of the bounds can
be infinite.

In terms of Φ,
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µa b

X ∼ N (µ, σ
2)

0
a − µ

σ

b − µ

σ

Z ∼ N (0, 1)

(a) (b)

Fig. 6.3 Illustration of the relation P(a≤ X ≤ b)=P
(

a−µ
σ

≤ Z ≤ b−µ
σ

)

X ∼N (µ,σ2) :

P(a ≤ X ≤ b)=P
(

a−µ
σ

≤ Z ≤ b−µ
σ

)
=Φ

(
b−µ
σ

)
−Φ

( a−µ
σ

)
.

Figures 6.3 and 6.4 provide the illustration. In MATLAB:

normcdf((b-mu)/sigma) - normcdf((a - mu)/sigma)
%or equivalently

normcdf(b, mu, sigma) - normcdf(a, mu, sigma)

b − µ

σ

Φ

(

b − µ

σ

)

a − µ

σ

Φ

(

a− µ

σ

)

a − µ

σ

b − µ

σ

(a) (b) (c)

Fig. 6.4 Calculation of P(a ≤ X ≤ b) for X ∼ N (µ,σ2). (a) P(X ≤ b) = P(Z ≤ b−µ
σ

) =Φ
(

b−µ
σ

)
;

(b) P(X ≤ a)=P(Z ≤ a−µ
σ

)=Φ( a−µ
σ

)
; (c) P(a≤ X ≤ b) as the difference of the two probabilities

in (a) and (b).

Note that when the bounds are infinite, since Φ is a CDF,

Φ(−∞)= 0, and Φ(∞)= 1.
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Traditional statistics textbooks provide tables of cumulative probabilities
for the standard normal distribution, p = Φ(x), for values of x typically be-
tween –3 and 3 with an increment of 0.01. The tables have been used in two
ways: (i) directly, that is, for a given x the user finds p =Φ(x); and (ii) inversely,
given p, one finds approximately what x gives Φ(x) = p, which is of course a
p-quantile of the standard normal. Given the limited precision of the tables,
the results in direct and inverse uses have been approximate.

In MATLAB the tables can be reproduced by a single line of code:

x=(-3:0.01:3)’; tables=[x normcdf(x)]

Similarly, the normal p-quantiles zp defined as p =Φ(xp) can be tabulated as

probs=(0.005:0.005:0.995)’; tables=[probs norminv(probs)]

There are several normal quantiles that are frequently used in the construc-
tion of confidence intervals and tests; these are the 0.9, 0.95, 0.975, 0.99, 0.995,
and 0.9975 quantiles,

z0.9 = 1.28155≈ 1.28 z0.95 = 1.64485≈ 1.64 z0.975 = 1.95996≈ 1.96
z0.99 = 2.32635≈ 2.33 z0.995 = 2.57583≈ 2.58 z0.9975 = 2.80703≈ 2.81

For example, the 0.975 quantile of the normal is z0.975 = 1.96. This is
equivalent to saying that 95% of the area below the standard normal den-
sity φ(x) = 1p

2π
exp{−x2/2} lies between –1.96 and 1.96. Note that the shortest

interval containing 1−α probability is defined by quantiles zα/2 and z1−α/2 (see
Fig. 6.5 as an illustration for α = 0.05). Since the standard normal density is
symmetric about 0, zp =−z1−p.

z0.975 = 1.96

97.5%

z0.025 = −1.96

2.5%

z0.025 = −1.96

z0.975 = 1.96

95%

(a) (b) (c)

Fig. 6.5 (a) Normal quantiles (a) z0.975 = 1.96; (b) z0.025 =−1.96; and (c) 95% area between
quantiles –1.96 and 1.96.
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6.2.1 Sigma Rules

Sigma rules state that for any normal distribution, the probability that an
observation will fall in the interval µ±kσ for k = 1,2, and 3 is 68.27%,95.45%
and 99.73%, respectively. More precisely,

P(µ−σ< X < µ+σ)=P(−1< Z < 1)=Φ(1)−Φ(−1)= 0.682689 ≈ 68.27%
P(µ−2σ< X < µ+2σ)=P(−2< Z < 2)=Φ(2)−Φ(−2)= 0.954500 ≈ 95.45%
P(µ−3σ< X < µ+3σ)=P(−3< Z < 3)=Φ(3)−Φ(−3)= 0.997300 ≈ 99.73%

Did you ever wonder about the origin of the term Six Sigma? It does not
involve P(µ−6σ< X <µ+6σ) as one may expect.

The Six Sigma doctrine is a standard according to which an item with mea-
surement X ∼N (µ,σ2) should satisfy X < 6σ to be conforming if µ is allowed
to vary between −1.5σ and 1.5σ.

Thus effectively, accounting for the variability in the mean, the Six Sigma
constraint becomes

P(X <µ+4.5σ)= P(Z < 4.5)=Φ(4.5)= 0.99999660.

This means that only 3.4 items per million produced are allowed to exceed µ+
4.5σ (be defective). Such standard of quality was set by the Motorola company
in the 1980s, and it evolved into a doctrine for improving efficiency and quality
in management.

6.2.2 Bivariate Normal Distribution*

When the components of a random vector have a normal distribution, we say
that the vector has a multivariate normal distribution. For independent com-
ponents, the density of a multivariate distribution is simply the product of
the univariate densities. When components are correlated, the distribution in-
volves the covariance matrix that describes the correlation. Next we discuss
the bivariate normal distribution, which will be important later on, in the con-
text of correlation and regression.

The pair (X ,Y ) is distributed as bivariate normal N2(µX ,µY ,σ2
X ,σ2

Y ,ρ) if
the joint density is

f (x, y)=
1

2πσ1σ2
√

1−ρ2
exp

{
− 1

2(1−ρ2)

[
(x−µx)2

σ2
1

− 2ρ(x−µx)(y−µy)
σ1σ2

+ (y−µy)2

σ2
2

]}
. (6.1)

The parameters µX ,µY ,σ2
X ,σ2

Y , and ρ are

µX = E(X ),µY = E(Y ),σ2
X =Var (X ),σ2

Y =Var (Y ), and ρ =Corr(X ,Y ).

One can define bivariate normal distribution with a density as in (6.1) by
transforming two independent, standard normal random variables Z1 and Z2,
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X = µ1 +σX Z1,

Y = µ2 +ρσY Z1 +
√

1−ρ2σY Z2.

The marginal distributions in (6.1) are X ∼N (µX ,σ2
X ) and Y ∼N (µY ,σ2

Y ).
The bivariate normal vector (X ,Y ) has covariance a matrix

Σ=
(

σ2
X σXσYρ

σXσYρ σ2
Y

)
. (6.2)

The covariance matrix Σ is nonnegative definite. A sufficient condition for non-
negative definiteness in this case is |Σ| ≥ 0 (see also Exercise 6.2).

Figure 6.6a shows the density of a bivariate normal distribution with mean

µ=
(
µX
µY

)
=

(−1
2

)

and covariance matrix

Σ=
(

3 −0.9
−0.9 1

)
.

Figure 6.6b shows contours of equal probability.
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Fig. 6.6 (a) Density of bivariate normal distribution with mean mu=[-1 2] and covariance
matrix Sigma=[3 -0.9; -0.9 1]. (b) Contour plots of a density at levels [0.001 0.01
0.05 0.1]

Several properties of bivariate normal are listed below.
(i) If (X ,Y ) is bivariate normal, then aX + bY has a univariate normal

distribution.
(ii) If (X ,Y ) is bivariate normal, then (aX + bY , cX +dY ) is also bivariate

normal.
(iii) If the components in (X ,Y ) are such that Cov(X ,Y )=σXσYρ = 0, then

X and Y are independent.
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(iv) Any bivariate normal pair (X ,Y ) can be transformed into a pair
(U,V ) = (aX + bY , cX +dY ) such that U and V are independent. If σ2

X = σ2
Y ,

then one such transformation is U = X +Y , V = X −Y . For an arbitrary bi-
variate normal distribution, the rotation

U = X cosϕ−Y sinϕ

V = X sinϕ+Y cosϕ

makes components (U,V ) independent if the rotation angle ϕ satisfies

cot2ϕ=
σ2

X −σ2
Y

2σXσYρ
.

(v) If (X ,Y ) is bivariate normal, then the conditional distribution of Y when
X = x is normal with expectation and variance

µX +ρ σY

σX
(x−µX ), and σ2

Y (1−ρ2),

respectively. The linearity in x of the conditional expectation of Y will be the
basis for linear regression, covered in Chap. 16. Also, the fact that X = x is
known decreases the variance of Y , indeed σ2

Y (1−ρ2)≤σ2
Y .

6.3 Examples with a Normal Distribution

We provide two examples with typical calculations involving normal distribu-
tions, with solutions in MATLAB and WinBUGS.

Example 6.1. IgE Concentration. Total serum IgE (immunoglobulin E) con-
centration allergy tests allow for the measurement of the total IgE level in a
serum sample. Elevated levels of IgE are associated with the presence of an
allergy. An example of testing for total serum IgE is the PRIST (paper radioim-
munosorbent test). This test involves serum samples reacting with IgE that
has been tagged with radioactive iodine. The bound radioactive iodine, cal-
culated upon completion of the test procedure, is proportional to the amount
of total IgE in the serum sample. The determination of normal IgE levels in a
population of healthy nonallergic individuals varies by the fact that some indi-
viduals may have subclinical allergies and therefore have abnormal serum IgE
levels. The log concentration of IgE (in IU/ml) in a cohort of healthy subjects is
distributed as a normal N (9, (0.9)2) random variable. What is the probability
that in a randomly selected subject from the same cohort the log concentration
will

• Exceed 10 IU/ml?
• Be between 8.1 and 9.9 IU/ml?
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• Differ from the mean by no more than 1.8 IU/ml?
• Find the number x0 such that the IgE log concentration in 90% of the sub-

jects from the same cohort exceeds x0.
• In what bounds (symmetric about the mean) does the IgE log concentration

fall with a probability of 0.95?
• If the IgE log concentration is N (9,σ2), find σ so that

P(8≤ X ≤ 10)= 0.64.

Let X be the IgE log concentration in a randomly selected subject. Then
X ∼N (9,0.92). The solution is given by the following MATLAB code ( ige.m):

%(1)
%P(X>10)= 1-P(X <= 10)
1-normcdf(10,9,0.9) %or 1-normcdf((10-9)/0.9)
%ans = 0.1333
%(2)
%P(8.1 <= X <= 9.9)
%P((8.1-9)/0.9 <= Z <= (9.9-9)/0.9)
%P(-1 <= Z <= 1) ::: Note 1-sigma rule.
normcdf(9.9, 9, 0.9) - normcdf(8.1, 9, 0.9)
%or, normcdf((9.9-9)/0.9)-normcdf((8.1-9)/0.9)
%ans = 0.6827
%(3)
%P(9-1.8 <= X <= 9+1.8) = P(-2 <= Z <= 2)
%Note 2-sigma rule.
normcdf(9+1.8, 9, 0.9) - normcdf(9-1.8, 9, 0.9)
% ans = 0.9545
%(4)
%0.90 = P(X > x_0)=1-P(X <= x0)
%that is P(Z <= (x0-9)/0.9)=0.1
norminv(1-0.9, 9, 0.9)
%ans = 7.8466
%(5)
%P(9-delta <= X <= 9+delta)=0.95
[9-0.9*norminv(1-0.05/2), 9+0.9*norminv(1-0.05/2)]
%ans = 7.2360 10.7640
%(6)
%P(-1/sigma) <= Z <= 1/sigma)=0.64
%note that 0.36/2 + 0.64 + 0.36/2 = 1
1/norminv( 1 - 0.36/2 )
%ans = 1.0925

�

Example 6.2. Aplysia Nerves. In this example, easily solved analytically and
using MATLAB, we will show how to use WinBUGS and obtain an approxi-
mate solution. The analysis is not Bayesian; WinBUGS will simply serve as a
random number generator and the required probability and quantile will be
found approximately by simulation.
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Fig. 6.7 Sea slug (Aplysia) neuron stained with membrane dye. From the cover of the 28
January 2004 Journal of Neuroscience. Copyright 2004 Journal of Neuroscience

Characteristics of Aplysia nerves in response to extension were examined
in Koike (1987). Only the Aplysia nerve (Fig. 6.7) was easily elongated up to
about five times its resting or relaxing length without impairing propagation
of the action potential along the axon in the nerve. The conduction velocity
along the elongated nerve increased linearly in proportion to the nerve length
in a range from the relaxing length to about 1 to 1.5 times extension. For an
expansion factor of 1.5 the conducting velocity factors are normally distributed
with a mean of 1.4 and a standard deviation of 0.1. Using WinBUGS, we are
interested in finding

(a) the proportion of Aplysia nerves elongated by a factor of 1.5 for which
the conduction velocity factor exceeds 1.5;

(b) the proportion of Aplysia nerves elongated by a factor of 1.5 for which
the conduction velocity factor falls in the interval [1.35,1.61]; and

(c) the velocity factor x that is exceeded by 5% of Aplysia nerves elongated
by a factor of 1.5.

#aplysia.odc
model{
mu <- 1.4
stdev <- 0.1
prec<- 1/(stdev * stdev)
y ~ dnorm(mu, prec)
#a
propexceed <- step(y - 1.5)
#b
propbetween <- step(y-1.35)*step(1.61-y)
#c
#done in Sample Monitor Tool by
#selecting 95th percentile
}

There are no data to load; after the check model in Model>Specification go
directly to compile, and then to gen inits. Update 10,000 iterations, and set
in Sample Monitor Tool from Inference>Samples the nodes y, propexceed, and
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propbetween. For part (c) select the 95th percentile in Sample Monitor Tool un-
der percentiles. Finally, run the Update Tool for 1,000,000 updates and check
the results in Sample Monitor Tool by setting a star (*) in the node window and
looking at stats.

mean sd MC error val2.5pc median val97.5pc start sample
propbetween 0.6729 0.4691 4.831E-4 0.0 1.0 1.0 10001 1000000
propexceed 0.1587 0.3654 3.575E-4 0.0 0.0 1.0 10001 1000000

y 1.4 0.1001 1.005E-4 1.204 1.4 1.565 10001 1000000

Here is the same computation in MATLAB.

1-normcdf(1.5, 1.4, 0.1)
%ans = 0.1587

normcdf(1.61, 1.4, 0.1)-normcdf(1.35, 1.4, 0.1)
%ans = 0.6736

norminv(1-0.05, 1.4, 0.1)
%ans = 1.5645

�

6.4 Combining Normal Random Variables

Any linear combination of independent normal random variables is also nor-
mally distributed. Thus, we need only keep track of the mean and variance
of the variables involved in the linear combination, since these two param-
eters completely characterize the distribution. Let X1, X2, . . . , Xn be indepen-
dent normal random variables such that Xi ∼N (µi,σ2

i ); then for any selection
of constants a1,a2, . . . ,an

a1X1 +a2X2 +·· ·+an Xn =
n∑

i=1
ai Xi ∼N (µ,σ2),

where

µ= a1µ1 +a2µ2 +·· ·+anµn =
n∑

i=1
aiµi,

σ2 = a2
1σ

2
1 +a2

2σ
2
2 + . . .a2

nσ
2
n =

n∑
i=1

a2
iσ

2
i .
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Two special cases are important: (i) a1 = 1,a2 = −1 and (ii) a1 = ·· · = an =
1/n. In case (i) we have a difference of two normals; its mean is the difference
of the corresponding means and variance is a sum of two variances. Case (ii)
corresponds to the arithmetic mean of normals, X . For example, if X1, . . . , Xn
are i.i.d. N (µ,σ2), then the sample mean X = (X1 + ·· ·+ Xn)/n has a normal
N (µ,σ2/n) distribution. Thus, variances for Xis and X are related as

σ2
X
= σ2

n

or, equivalently, for standard deviations

σX = σp
n

.

Example 6.3. The Piston Production Error. The profile of a piston com-
prises a ring in which inner and outer radii X and Y are normal random vari-
ables, N (20,0.012) and N (30,0.022), respectively. The thickness D =Y − X is
the random variable of interest.

(a) Find the distribution of D.
(b) For a randomly selected piston, what is the probability that D will ex-

ceed 10.04?
(c) If D is averaged over a batch of n = 64 pistons, what is the probability

that D will exceed 10.04? Exceed 10.004?

sqrt(0.01^2 + 0.02^2) %0.0224
1-normcdf((10.04 - 10)/0.0224) %0.0371
1-normcdf((10.04 - 10)/(0.0224/sqrt(64))) %0
1-normcdf((10.004 - 10)/(0.0224/sqrt(64))) %0.0766

Compare the probabilities of events {D > 10.04} and {D > 10.04}. Why is
the probability of {D > 10.04} essentially 0, when the analogous probability for
an individual measure D is 3.71%?
�

Example 6.4. Diluting Acid. In a laboratory, students are told to mix 100 ml
of distilled water with 50 ml of sulfuric acid and 30 ml of C2H5OH. Of course,
the measurements are not exact. The water is measured with a mean of 100 ml
and a standard deviation of 4 ml, the acid with a mean of 50 ml and a standard
deviation of 2 ml, and C2H5OH with a mean of 30 ml and a standard deviation
of 3 ml. The three measurements are normally distributed and independent.

(a) What is the probability of a given student measuring out at least 103
ml of water?

(b) What is the probability of a given student measuring out between 148
and 157 ml of water plus acid?

(c) What is the probability of a given student measuring out a total of be-
tween 175 and 180 ml of liquid?
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1 - normcdf(103, 100, 4) %0.2266
normcdf(157, 150, sqrt(4^2 + 2^2)) ...

- normcdf(148, 150, sqrt(4^2 + 2^2)) %0.6139
normcdf(180, 180, sqrt(4^2 + 2^2 + 3^2 )) ...

- normcdf(175, 180, sqrt(4^2 + 2^2 + 3^2)) %0.3234

�

6.5 Central Limit Theorem

The central limit theorem (CLT) elevates the status of the normal distribu-
tion above other distributions. We have already seen that a linear combina-
tion of independent normals is the normal random variable itself. That is, if
X1, . . . , Xn

iid∼N (µ,σ2), then

n∑
i=1

Xi ∼N (nµ, nσ2), and X = 1
n

n∑
i=1

Xi ∼N

(
µ,
σ2

n

)
.

The CLT states that X1, . . . , Xn need not be normal in order for
∑n

i=1 Xi or,
equivalently, for X to be approximately normal. This approximation is quite
good for n as low as 30. As we said, variables X1, X2, . . . , Xn need not be normal
but must satisfy some conditions. For CLT to hold, it is sufficient for Xis to be
independent, equally distributed, and have finite variances and, consequently,
means. Other than that, the Xis can be arbitrary – skewed, discrete, etc. The
conditions of i.i.d. and finiteness of variances are sufficient – more precise
formulations of the CLT are beyond the scope of this course.

CLT. Let X1, X2, . . . , Xn be i.i.d. random variables with finite means µ
and variances σ2. Then,

n∑
i=1

Xi
approx∼ N (nµ, nσ2), and X = 1

n

n∑
i=1

Xi
approx∼ N

(
µ,
σ2

n

)
.

A special case of CLT involving Bernoulli random variables results in a
normal approximation to binomials because the sum of many i.i.d. Bernoullis
is at the same time exactly binomial and approximately normal. This approx-
imation is handy when n is very large.
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de Moivre (1738). Let X1, X2, . . . , Xn be independent Bernoulli Ber(p)
random variables with parameter p.

Then,

Y =
n∑

i=1
Xi

approx∼ N (np, npq)

and

P(k1 ≤Y ≤ k2)=Φ
(

k2 +1/2−npp
npq

)
−Φ

(
k1 −1/2−npp

npq

)
.

De Moivre’s approximation is good if both np and nq exceed 10 and n ex-
ceeds 30. If that is not the case, a Poisson approximation to binomial (p. 149)
could be better.

The factors 1/2 in de Moivre’s formula are continuity corrections. For ex-
ample, Y , which is discrete, is approximated with a continuous distribution.
P(Y ≤ k2 +1) and P(Y < k2 +1) are the same for a normal but not for a bino-
mial distribution for which P(Y < k2 +1) = P(Y ≤ k2). Likewise, P(Y ≥ k1 −1)
and P(Y > k1 −1) are the same for a normal but not for a binomial distribu-
tion for which P(Y > k1 −1) = P(Y ≥ k1). Thus, P(k1 ≤ Y ≤ k2) for a binomial
distribution is better approximated by P(k1 −1/2≤Y ≤ k2 +1/2).

All approximations used to be much more important in the era before mod-
ern computing power was available. MATLAB is capable of calculating ex-
act binomial probabilities for huge values of n, and for practical reasons de
Moivre’s approximation is obsolete. For example,

format long
binocdf(1999988765, 4000000000, 1/2)
%ans = 0.361195130797824
format short

However, the theoretical value of de Moivre’s approximation is significant
since many estimators and tests based on a binomial distribution can use well-
developed normal distribution machinery for an analysis beyond the compu-
tation.

The following MATLAB program exemplifies the CLT by averages of sim-
ulated uniform random variables.

% Central Limit Theorem Demo
figure;
subplot(3,2,1)
hist(rand(1, 10000),40) %histogram of 10000 uniforms
subplot(3,2,2)
hist(mean(rand(2, 10000)),40) %histogtam of 10000
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%averages of 2 uniforms
subplot(3,2,3)
hist(mean(rand(3, 10000)),40) %histogtam of 10000

%averages of 3 uniforms
subplot(3,2,4)
hist(mean(rand(5, 10000)),40) %histogtam of 10000

%averages of 5 uniforms
subplot(3,2,5)
hist(mean(rand(10, 10000)),40) %histogtam of 10000

%averages of 10 uniforms
subplot(3,2,6)
hist(mean(rand(100, 10000)),40)%histogtam of 10000

%averages of 100 uniforms
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Fig. 6.8 Convergence to normal distribution shown via averages of 1, 2, 3, 5, 10, and 100
independent uniform (0,1) random variables

Figure 6.8 shows the histograms of 10,000 simulations of averages of
k = 1,2,3,5,10, and 100 uniform random variables. It is interesting to see the
metamorphosis of a flat single uniform (k = 1), via a “witch hat distribution”
(k = 2), into bell-shaped distributions close to the normal. For additional sim-
ulation experiments see the script cltdemo.m.

Example 6.5. Is Grandpa’s Genetic Theory Valid? The domestic cat’s
wild appearance is increasingly overshadowed by color mutations, such as
black, white spotting, maltesing (diluting), red and tortoiseshell, shading, and
Siamese pointing. By favoring the odd or unusually colored and marked cats
over the “plain” tabby, people have consciously and unconsciously enhanced
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these color mutations over the course of domestication. Today, “colored” cats
outnumber the wild looking tabby cats, and pure tabbies are becoming rare.
Some may not be quite as taken by the coat of our domestic feline friends as
Jason’s grandpa is. He has a genetic theory that asserts that three-fourths of
cats with more than three colors in their fur are female. A total of n = 300
three-color cats (TCCs) are observed and 86 are found to be male. If Jason’s
grandpa’s genetic theory is true, then the number of male TCCs is binomial
B(300,0.25), with an expectation of 75 and variance of 56.25= 7.52.

(a) What is the probability that, assuming Jason’s grandpa’s theory, one
will observe 86 or more male cats? How does this finding support the theory?

(b) What is the probability that, assuming the independence of a cat’s fur
and gender, one will observe 86 or more male cats?

(c) What is the probability that one will observe exactly 75 male TCCs?

format long
1 - binocdf(85, 300, 0.25)

%ans = 0.08221654140000

1 - normcdf(85, 75, 7.5)
%ans = 0.09121121972587

1 - normcdf(86, 75, 7.5)
%ans = 0.07123337741399

1 - normcdf(85.5, 75, 7.5)
%ans = 0.08075665923377

1 - binocdf(85, 300, 0.5)
%ans = 0.99999999999998

binopdf(75, 300, 0.25)
%ans = 0.05312831515720

normcdf(75.5, 75, 7.5)-normcdf(74.5, 75, 7.5)
%ans = 0.05315292860073

�

Example 6.6. Avio Company. The Avio company sells 410 plane tickets for a
400-seater flight. Find the probability that the company overbooked the flight
if a person who bought a ticket shows up at the gate with a probability of 0.96.

Each sold ticket can be thought of as an “experiment” where “success”
means showing up at the gate for the flight. The number of people that show
up X is binomial B in(410,0.96). The following MATLAB script calculates the
normal approximation.

410*0.96
%ans = 393.6000
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sqrt(410*0.96*0.04)
%ans = 3.9679

1-normcdf((400.5-393.6)/3.9679)
%ans = 0.0410

Notice that in this case the normal approximation is not very good since the
exact binomial probability is 0.0329:

1-binocdf(400, 410, 0.96)
%ans = 0.0329

The reason is that the normal approximation works well when the prob-
abilities are not close to 0 or 1, and here 0.96 is quite close to 1 for a given
sample size of 410.

The Poisson approximation to the binomial performs better. The probabil-
ity of missing the flight is 1−0.96 = 0.04, and overbooking will happen if 9 or
fewer passengers miss the flight:

%prob that 9 or less fail to show
poisscdf(9, 0.04*410)

%ans = 0.0355

�

6.6 Distributions Related to Normal

Four distributions – chi-square χ2, Student’s t, F, and lognormal – are spe-
cially related to the normal distribution. This relationship is described in
terms of functions of independent standard normal variables. Let Z1, Z2, . . . , Zn
be n independent standard normal (mean 0, variance 1) random variables.
Then:

• The sum of squares Z2
1 +·· ·+Z2

n is chi-square distributed with n degrees
of freedom, χ2

n:

χ2
n ∼ Z2

1 +Z2
2 +·· ·+Z2

n.

• The ratio of a standard normal Z and the square root of an independent
chi-square χ2 random variable normalized by its number of degrees of free-
dom, has Student’s t distribution with n degrees of freedom, tn:
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tn ∼ Z√
χ2

n
n

.

• The ratio of two independent chi-squares normalized by their respective
numbers of degrees of freedom is distributed as an F:

Fm,n ∼ χ2
m/m
χ2

n/n
.

The degrees of freedom for F are m – numerator df and n – denominator
df.

• As the name indicates, the lognormal (“log-is-normal”) distribution is con-
nected to a normal distribution via a logarithm function. If X has a lognormal
disrtibution, then the distribution of Y = log X is normal.

A more detailed description of these four distributions follows next.

6.6.1 Chi-square Distribution

The probability density function for a chi-square random variable with param-
eter k, called the degrees of freedom, is

f (x)= (1/2)k/2 xk/2−1

Γ(k/2)
e−x/2, 0≤ x<∞.

The chi-square distribution (χ2) is a special case of the gamma distribution
with parameters r = k/2 and λ = 1/2. Its mean and variance are µ = k and
σ2 = 2k, respectively.

If Z ∼N (0,1), then Z2 ∼ χ2
1, that is, a chi-square random variable with one

degree of freedom. Furthermore, if U ∼ χ2
m and V ∼ χ2

n are independent, then
U +V ∼ χ2

m+n.
From these results it can be shown that if X1, . . . , Xn ∼ N (µ,σ2) and X is

the sample mean, then the sample variance s2 =∑
i(Xi − X )2/(n−1) is propor-

tional to a chi-square random variable with n−1 degrees of freedom:

(n−1)s2

σ2 ∼ χ2
n−1. (6.3)
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This result was proven first by German geodesist Helmert in 1875 (Fig. 6.11a).
The χ2 distribution was previously defined by Abbe and Bienaymé in the mid-
1800s.

�
The formal proof of (6.3) is beyond the scope of this text, but an intuition

can be obtained by inspecting

(n−1)s2

σ2 =
(

X1 − X
σ

)2

+
(

X2 − X
σ

)2

+·· ·+
(

Xn − X
σ

)2

= (Y1 −Y )2 + (Y2 −Y )2 +·· ·+ (Yn −Y )2,

where Yi are independent normal N (µ/σ,1).

(Y1 −Y )2 + (Y2 −Y )2 =
(

Y1 −Y2p
2

)2
= Z2

1, for Y = Y1 +Y2

2
,

(Y1 −Y )2 + (Y2 −Y )2 + (Y3 −Y )2 =
(

Y1 −Y2p
2

)2
+

(
Y1 +Y2 −2Y3p

6

)2
= Z2

1 +Z2
2,

for Y = Y1 +Y2 +Y3

3
,

etc.

Note that the right-hand sides are sums of squares of uncorrelated standard
normal variables.
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Fig. 6.9 χ2 distribution with 5, 10, and 20 degrees of freedom. A normal N (20,40) distri-
bution is superimposed to illustrate a good approximation to χ2

n by N (n,2n) for n large



6.6 Distributions Related to Normal 211

In MATLAB, the CDF and PDF for a χ2
k are chi2cdf(x,k) and chi2pdf(x,k),

respectively. The pth quantile of the χ2
k distribution is chi2inv(p,k).

Example 6.7. χ2
10 as a Sum of Ten Standard Normals. In this example

we demonstrate by simulation that the sum of squares of standard normal
random variates follows the χ2-distribution. In particular we compare Z2

1 +
Z2

2 +·· ·+Z2
10 with χ2

10.
Figure 6.10, produced by the code in nor2chi2.m, shows a normalized

histogram of the sums of squares of ten standard normals with a superimposed
χ2

10 density (above) and a Q–Q plot comparing the sorted generated sample
with χ2

10 quantiles (below). As expected, the simulated empirical distribution
is very close to the theoretical chi-square distribution.

figure;
subplot(2,1,1)
%form a matrix of standard normals 10 x 10000
%square the entries, sum up columnwise, to
% get a vector of 10000 chi2 with 10 df.
histn(sum(normrnd(0,1,[10, 10000]).^2),0, 1,30)
hold on

plot((0.1:0.1:30), chi2pdf((0.1:0.1:30),10),’r-’,’LineWidth’,2)
axis tight

subplot(2,1,2)
%check the Q-Q plot
xx = sum(normrnd(0,1,[10, 10000]).^2);
tt = 0.5/10000:1/10000:1;
yy = chi2inv(tt,10);
plot(sort(xx), yy,’*’)
hold on

plot(yy, yy,’r-’)

�

Example 6.8. Targeting Meristem Cells. A gene transfer system for meris-
tem cells can be developed on the basis of a ballistic approach (Sautter, 1993).
Instead of a macroprojectile, microtargeting uses the law of Bernoulli for ac-
celeration of highly uniform-sized gold particles. The particle is aimed at an
area as small as 150µm in diameter, which corresponds to the size of a meris-
tem. Suppose that a particle is fired at a meristem at the origin of a plane
coordinate system, with units in microns. The particle lands at (X ,Y ), where
X and Y are independent and each has a normal distribution with mean µ= 0
and variance σ2 = 102. The particle is successively delivered if it lands withinp

738µm of the target (origin). What is the probability of this event? The parti-
cle is successively delivered if X 2+Y 2 ≤ 738, or (X /10)2+ (Y /10)2 ≤ 7.38. Since
both X /10 and Y /10 have a standard normal distribution, random variable
(X /10)2 + (Y /10)2 is χ2

2-distributed. Since chi2cdf(7.38,2)=0.975, we conclude
that the particle is successfully delivered with a probability of 0.975.
�
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Fig. 6.10 Sum of 10 squared standard normals compared to χ2
10 distribution. Above: Nor-

malized histogram with superimposed χ2
10 density (red); Below: Q–Q-plot of sorted sums

against χ2
10 quantiles.

A multivariate version of the χ2 distribution is called a Wishart distribu-
tion. It is a distribution of random matrices that are symmetric and positive
definite. As such it is a proper model for normal covariance matrices, and we
will see later its use in Bayesian inference involving bivariate normal distri-
butions.

A p× p random matrix X has a Wishart distribution if its density is given
by

f (X )=
|X |(n−p−1)/2 exp{− 1

2 tr(Σ−1X )}

2np/2πp(p−1)/4|Σ|n/2 ∏p
i=1Γ

( n+1−i
2

) ,

where Σ is the scale matrix and n is the number of degrees of freedom. Oper-
ator tr is the trace of a matrix, that is, the sum of its diagonal elements, and
|Σ| and |X | are determinants of Σ and X , respectively.

For p = 1 and Σ= 1, the Wishart distribution is χ2
n. In MATLAB, it is pos-

sible to simulate from the Wishart distribution as wishrnd(Sigma,n). In Win-
BUGS, the Wishart distribution is coded as dwish(R[,],n), where the precision
matrix R is defined as Σ−1.
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6.6.2 (Student’s) t-Distribution

Random variable X has Student’s t-distribution with k degrees of freedom,
X ∼ tk, if its PDF is

fX (x)=
Γ

(
k+1

2

)

p
kπ Γ(k/2)

(
1+ x2

k

)− k+1
2

, −∞< x <∞.

The t distribution is similar in shape to the standard normal distribution ex-
cept for the fatter tails. If X ∼ tk, then EX = 0, k > 1 and Var X = k/(k−2), k >
2. For k = 1, the t-distribution coincides with the Cauchy distribution.

(a) (b) (c)

Fig. 6.11 (a) Friedrich Robert Helmert (1843–1917), (b) Jakob Lüroth (1844–1910), and (c)
William Sealy Gosset (1876–1937).

The t-distribution has an important role to play in statistical inference.
With a set of i.i.d. X1, . . . , Xn ∼N (µ,σ2), we can standardize the sample mean
using the simple transformation of Z = (X −µ)/σX =p

n(X −µ)/σ. However, if
the variance is unknown, by using the same transformation, except for sub-
stituting the sample standard deviation s for σ, we arrive at a t-distribution
with n−1 degrees of freedom:

t = X −µ
s/
p

n
∼ tn−1.

More technically, if Z ∼N (0,1) and Y ∼ χ2
k are independent, then t= Z/

p
Y /k ∼

tk. In MATLAB, the CDF at x for a t-distribution with k degrees of freedom is
calculated as tcdf(x,k), and the PDF is computed as tpdf(x,k). The pth per-
centile is computed with tinv(p,k). In WinBUGS, the t-distribution is coded
as dt(mu,tau,k), where tau is a precision parameter and k is the number of
degrees of freedom.

The t-distribution was originally found by German mathematician and as-
tronomer Jacob Lüroth (Fig. 6.11b) in 1876. William Sealy Gosset (Fig. 6.11c)
rediscovered the t-distribution in 1908 and published the results under the
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Fig. 6.12 Student’s t with 3 and 6 degrees of freedom. A standard normal distribution is
superimposed as the dashed line

pen name “Student.” He was a researcher for Guinness Brewery, which re-
portedly forbade any of their employees from publishing “company secrets.”

6.6.3 Cauchy Distribution

The Cauchy distribution a special case of the t-distribution; it is symmetric
and bell-shaped like the normal distribution, but with much fatter tails. In
fact, it is a popular distribution to use in nonparametric robust procedures
and simulations because the distribution is so spread out; it has no mean and
variance (none of the Cauchy moments exist). Physicists know this distribu-
tion as the Lorentz distribution. If X ∼C a(a, b), then X has a density

fX (x)= 1
π

b
b2 + (x−a)2 , −∞< x <∞.

The standard Cauchy C a(0,1) distribution coincides with the t-distribution
with 1 degree of freedom.

The Cauchy distribution is also related to the normal distribution. If Z1
and Z2 are two independent N (0,1) random variables, then their ratio C =
Z1/Z2 is Cauchy, C a(0,1). Finally, if Ci ∼ C a(ai, bi) for i = 1, . . . ,n, then Sn =
C1 +·· ·+Cn is Cauchy distributed with parameters aS =∑

i ai and bS =∑
i bi.

The consequence of this additivity is interesting. If one observes n Cauchy
C a(0,1) random variables Xi, i = 1, . . . ,n and takes the average X , the average
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is also Cauchy C a(0,1)! This means that for Cauchy, a single measurement is
as precise as the average of any number of measurements.

Here is a simple geometric example that leads to a Cauchy distribution.

Example 6.9. A ray passing through the point (−1,0) in R2 intersects the y-
axis at the coordinate (0,Y ). If the angle α between the ray and the positive
direction of the x-axis is uniform U (−π/2,π/2), what is the distribution for Y ?

Here Y = tanα, α= h(Y )= arctan(Y ) and h′(y)= 1
1+y2 .

The density for uniform U (−π/2,π/2) is constant 1/π if α ∈ (−π/2,π/2), and
0 else. From (5.9),

fY (y)= 1
π
|h′(y)| = 1

π

1
1+ y2 ,

which is a density of the Cauchy C a(0,1) distribution.
�

6.6.4 F-Distribution

Random variable X has an F-distribution with m and n degrees of freedom,
denoted as Fm,n, if its density is given by

fX (x)= mm/2nn/2

B(m/2,n/2)
xm/2−1(n+mx)−(m+n)/2, x> 0.

The CDF of an F-distribution is not of closed form, but it can be expressed
in terms of an incomplete beta function (p. 167) as

F(x)= 1− Iν(n/2, m/2), ν= n/(n+mx), x > 0.

The mean is given by EX = n/(n−2), n > 2, and the variance by Var X =
2n2(m+n−2)

m(n−2)2(n−4) , n> 4.
If X ∼ χ2

m and Y ∼ χ2
n are independent, then (X /m)/(Y /n) ∼ Fm,n. Because

of this representation, m and n are often called, respectively, the numerator
and denominator degrees of freedom. F and beta distributions are related.
If X ∼ Be(a, b), then bX /[a(1− X )] ∼ F2a,2b. Also, if X ∼ Fm,n, then mX /(n+
mX )∼Be(m/2,n/2).

The F-distribution is one of the most important distributions for statistical
inference; in introductory statistical courses, the test for equality of variances,
ANOVA, and multivariate regression are based on the F-distribution. For ex-
ample, if s2

1 and s2
2 are sample variances of two independent normal samples

with variances σ2
1 and σ2

2 and sizes m and n respectively, the ratio
s2

1/σ2
1

s2
2/σ2

2
is

distributed as Fm−1,n−1. The F-distribution is named after Sir Ronald Fisher,
who in fact tabulated not F but z = 1

2 logF. The F-distribution in its current
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Fig. 6.13 F5,10 PDF. t2 = 0:0.005:5; plot(t2, fpdf(t2, 5, 10))

form was first tabulated and used by George W. Snedecor, and the distribution
is sometimes called Snedecor’s F, or the Fisher–Snedecor F.

In MATLAB, the CDF at x for an F-distribution with m,n degrees of free-
dom is calculated as fcdf(x,m,n), and the PDF is computed as fpdf(x,m,n).
The pth percentile is computed with finv(p,m,n). Figure 6.13 provides a plot
of a F5,10 PDF.

6.6.5 Noncentral χ2, t, and F Distributions

Noncentral χ2, t, and F distributions are generalizations of standard χ2, t,
and F distributions. They are used mainly in the power analysis of tests and
sample size designs. For example, we will use noncentral t for power analysis
of one-sample and two-sample t tests later in the text.

Random variable χ2
n,δ has a noncentral χ2 distribution with n degrees of

freedom and parameter of noncentrality δ if it can be represented as

χ2
n,δ = Z1 +Z2 +·· ·+Zn−1 + Xn,

where Z1, Z2, . . . Zn−1, Xn are independent random variables. Random vari-
ables Z1, . . . , Zn−1 have a standard normal N (0,1) distribution while Xn is
distributed as N (δ,1). In MATLAB the noncentral χ2 is denoted as ncx2pdf,
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ncx2cdf, ncx2inv, ncx2stat, and ncx2rnd for PDF, CDF, quantile, descriptive
statistics, and random number generator.

Random variable tn,δ has a noncentral t distribution with n degrees of free-
dom and noncentrality parameter δ if it can be represented as

tn,δ =
X√
χ2

n/n
,

where X and χ2
n are independent, X ∼ N (δ,1), and χ2

n has a (central) χ2 dis-
tribution with n degrees of freedom. In MATLAB, functions nctpdf, nctcdf,
nctinv, nctstat, and nctrnd, stand for PDF, CDF, quantile, descriptive statis-
tics, and random number generator of the noncentral t.

Figure 6.14 plots the densities of noncentral t for values of the noncentral-
ity parameter −1,0, and 2. Noncentral t for δ= 0 is a standard t distribution.
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Fig. 6.14 Densities of noncentral t8,δ distribution for δ=−1,0,2

Random variable Fm,n,δ has a noncentral F-distribution with m,n degrees
of freedom and parameter of noncentrality δ if it can be represented as

Fm,n,δ =
χ2

m,δ/m

χ2
n/n

,

where χ2
m,δ and χ2

n are independent, with noncentral (δ) and standard χ2 dis-
tributions with m and n degrees of freedom, respectively. In MATLAB, func-
tions ncfpdf, ncfcdf, ncfinv, ncfstat, and ncfrnd, stand for the PDF, CDF,
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quantile, descriptive statistics, and random number generator of the noncen-
tral F.

The noncentral F will be used in Chap. 11 for power calculations in several
ANOVA designs.

6.6.6 Lognormal Distribution

A random variable X has a lognormal distribution with parameters µ and σ2,
X ∼L N (µ,σ2), if its density function is given by

f (x)= 1

x
p

2πσ
exp

{
− (log x−µ)2

2σ2

}
, x> 0.

If Y has a normal distribution, then X = eY is lognormal. Parameter µ is the
mean and σ is the standard deviation of the distribution for the normal ran-
dom variable log X , not the lognormal random variable X , and this can some-
times be confusing.

The moments of the lognormal distribution can be computed from the
moment-generating function of the normal distribution. The nth moment is
E(X n)= exp{nµ+n2σ2/2}, from which the mean and variance of X are

E(X )= exp{µ+σ2/2}, and Var (X )= exp{2(µ+σ2)}−exp{2µ+σ2}.

The median is exp{µ} and the mode is exp{µ−σ2}.
The lognormality is preserved under multiplication and division, i.e., the

products and quotients of lognormal random variables remain lognormally
distributed. If Xi ∼L N (µi,σ2

i ), then
∏n

i=1 Xi ∼L N (
∑n

i=1µi,
∑n

i=1σ
2
i ).

Several biomedical phenomena are well modeled by a lognormal distribu-
tion, for example, the age at onset of Alzheimer’s disease, latent periods of
infectious diseases, or survival time after diagnosis of cancer. For measure-
ment errors that are multiplicative, the convenient model is lognormal. More
applications and properties can be found in Crow and Shimizu (1988).

In MATLAB, the CDF of a lognormal distribution with parameters m
and s is evaluated at x as logncdf(x,m,s), and the PDF is computed as
lognpdf(x,m,s). The pth percentile is computed with logninv(p,m,s). Here the
parameter s stands for σ, not σ2. In WinBUGS, the lognormal distribution is
coded as dlnorm(mu,tau), where tau stands for the precision parameter 1

σ2 .

Example 6.10. Renner’s Honey Data. The content of hydroxymethylfurfurol
(HMF, mg

kg ) in 1573 honey samples (Renner, 1970) is well conforming to the log-

normal distribution. The data set renner.mat|dat contains the interval
midpoints (first column) and interval frequencies (second column). The param-
eter µ was estimated as −0.6084 and σ as 1.0040. The histogram and fitting
density are shown in Fig. 6.15 and the code is given in renner.m.
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Fig. 6.15 Normalized histogram of Renner’s honey data and lognormal distribution with
parameters µ=−0.6083 and σ2 = 1.00402 that fits data well

The goodness of such fitting procedures will be discussed in Chap. 13 more
formally. Note that µ and σ are the mean and standard deviation of the loga-
rithms of observations, not the observations themselves.

load ’renner.dat’
% mid-intervals, int. length = 0.25
rennerx = renner(:,1);
% frequencies in the interval
rennerf = renner(:,2);
n = sum(renner(:,2)); % sample size (n=1573)
bar(rennerx, rennerf./(0.25 * n))
hold on

m = sum(log(rennerx) .* rennerf)/n %m =-0.6083
s = sqrt( sum( rennerf .*(log(rennerx) - m).^2 )/n )
%s=1.0040

xx = 0:0.01:8;
yy = lognpdf(xx, m, s);
plot(xx, yy, ’r-’,’linewidth’,2)

�

6.7 Delta Method and Variance Stabilizing
Transformations*

The CLT states that for independent identically distributed random variables
X1, . . . , Xn with mean µ and finite variance σ2,
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p
n(X −µ) approx∼ N (0,σ2),

where the symbol approx∼ means distributed approximately as. Other than for a
finite variance, there are no restrictions on the type, distribution, or any other
feature of random variables Xi.

For a function g

p
n

(
g(X )− g(µ)

)
approx∼ N (0, g′(µ)2σ2).

The only restriction on g is that the derivative evaluated at µ must be
finite and nonzero.

This result is called the delta method and the proof, which uses a simple
Taylor expansion argument, will be omitted since it also uses facts concerning
the convergence of random variables not covered in the text.

Example 6.11. For n large

1/X approx∼ N

(
1
µ

,
σ2

µ4

)

(
X

)2 approx∼ N
(
µ2,4µ2σ2)

.

�

The delta method is useful for many asymptotic arguments. Now we focus on
the selection of the transformation g that stabilizes the variance.

Important statistical methodologies often assume that observations have
variances that are constant for all possible values of the mean. Observations
coming from a normal N (µ,σ2) distribution would satisfy this requirement
since σ2 does not depend on the mean µ. However, constancy of variances
with respect to the mean is rather an exception than the rule. For example,
if random variates from the exponential E (λ) distribution are generated, then
the variance σ2 = 1/λ2 depends on the mean µ= 1/λ, as σ2 = µ2.

For some important distributions we will find the transformation that will
“free” the variance from the influence of the mean. This will prove beneficial
for a range of inferential statistical procedures covered later in the text (confi-
dence intervals, testing hypotheses).

Suppose that the variance Var X =σ2
X (µ) can be expressed as a function of

the mean µ= EX . For Y = g(X ), Var Y ≈ [g′(µ)]2σ2
X (µ), see (5.12). The condi-

tion that the variance of Y is constant leads to a simple differential equation

[g′(µ)]2σ2
X (µ)= c2

with the following solution:
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g(x)= c
∫

dx
σX (x)

dx. (6.4)

This is the theoretical basis for many proposed variance stabilizing trans-
forms. Note that σX (x) in (6.4) is a function expressing the variance as a func-
tion of the mean.

Example 6.12. Stabilizing Variance. Suppose data are sampled from (a)
Poisson P oi(λ), (b) exponential E (λ), and (c) binomial B in(n, p) distributions.

In (a), the mean and variance are equal, σ2(µ)=µ (=λ), and (6.4) becomes

g(x)= c
∫

dxp
x

dx = 2c
p

x+d

for some constants c and d. Thus, as the variance stabilizing transformation
for Poisson observations one can take g(x)=p

x.
In (b) and (c), σ2(µ) = µ2 and σ2(µ) = µ− µ2/n, and, after solving the

integral in (6.4), one finds that the transformations are g(x) = log(x) and
g(x)= arcsin

p
x/n (Exercise 6.18).

�

Example 6.13. Box and Cox (1964) introduced a family of transformations, in-
dexed by a parameter λ, applicable to positive data X1, . . . , Xn:

Yi =
{

Xλ
i −1
λ , λ 6= 0

log Xi, λ= 0.
(6.5)

This transformation is mostly applied to responses in linear models exhibiting
nonnormality or heterogeneity of variances (heteroscedasticity). For properly
selected λ, transformed data Y1, . . . ,Yn may look “more normal” and amenable
to standard modeling techniques. The parameter λ is selected by maximizing,

(λ−1)
n∑

i=1
log Xi −

n
2

log

[
1
n

n∑
i=1

(Yi −Y )2
]

, (6.6)

where Yi are as given in (6.5) and Y = 1
n

∑n
i=1 Yi.

As an illustration, we apply the Box–Cox transformation to apparently
skewed data of pyruvate kinase concentrations.

Exercise 2.16 featured a multivariate data set dmd.dat in which the
fourth column gives pyruvate kinase concentrations in 194 female relatives
of boys with Duchenne muscular dystrophy (DMD). The distribution of this
measurement is skewed to the right (Fig. 6.16a). We will find the Box–Cox
transform to symmetrize the data (make it approximately normal). Panel (b)
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gives the values of likelihood in (6.6) for different values of λ. Note that (6.6)
is maximized for λ approximately equal to –0.15. Figure 6.16c gives the his-
togram for data transformed by the Box–Cox transformation with λ = −0.15.
The histogram is notably symmetrized. For details see boxcox.m.
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Fig. 6.16 (a) Histogram of row data of pyruvate kinase concentrations; (b) Log-likelihood is
maximized at λ=−0.15; and (c) Histogram of Box-Cox-transformed data.

�

6.8 Exercises

6.1. Standard Normal Calculations. Random variable X has a standard nor-
mal distribution. What is larger, P(|X | ≤ 0.7) or P(|X | ≥ 0.7)?

6.2. Nonnegative Definiteness of Σ Constrains ρ. Show that condition |Σ| ≥
0 for Σ in (6.2), implies −1≤ ρ ≤ 1.

6.3. Herrings. The alewife (Pomolobus pseudoharengus, Wilson 1811) grows
to a length of about 15 in., but adults average only about 10.5 in. long
and about 8 oz. in weight; 16,400,000 fish taken in New England in 1898
weighed about 8,800,000 lbs.

Fig. 6.17 Alewife fish.
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Assume that the length of an individual fish (Fig. 6.17) is normally dis-
tributed with mean 10.5 in. and standard deviation 1.6 in. and that the
weight is distributed as χ2 with 8 degrees of freedom.
(a) What percentage of the fish are between 10.5 and 13 in. long?
(b) What percentage of the fish weigh more than 10 oz.?
(c) Ten percent of the fish are longer than x. Find x.

6.4. Sea Urchins. In a laboratory experiment, researchers at Barry Univer-
sity, (Miami Shores, FL) studied the rate at which sea urchins ingested tur-
tle grass (Florida Scientist, Summer/Autumn 1991). The urchins starved
for 48 h, were fed 5-cm blades of green turtle grass. The mean ingestion
time was found to be 2.83 h and the standard deviation 0.79 h. Assume that
green turtle grass ingestion time for the sea urchins has an approximately
normal distribution.
(a) Find the probability that a sea urchin will require between 2.3 and 4 h
to ingest a 5-cm blade of green turtle grass.
(b) Find the time t∗ (hours) so that 95% of sea urchins take more than t∗

hours to ingest a 5-cm blade of green turtle grass.

6.5. Pyruvate Kinase for Controls Is Normal. Refer to Exercise 2.16. The
histogram for PK response for controls, X , is fairly bell-shaped (as much as
142 observations show), so you decided to fit it with a normal distribution,
N (12,42).
(a) How would you defend the choice of a normal model that allows for
negative values when the measured level is always positive?
(b) Find the probability that X falls between 4 and 20.
(c) Find the probability that X exceeds 20.
(d) Find the value x0 so that 93% of all PK measurements exceed x0.

6.6. Leptin. Leptin (from the Greek word leptos, meaning thin) is a 16-kDa
protein hormone that plays a key role in regulating energy intake and
energy expenditure, including the regulation (decrease) of appetite and
(increase) of metabolism. Serum leptin concentrations can be measured
in several ways. One approach is by using a radioimmunoassay in ve-
nous blood samples (Linco Research Inc., St Charles, MO). Several studies
have consistently found women to have higher serum leptin concentrations
than do men. For example, among US adults across a broad age range,
the mean serum leptin concentration in women is approximately normal
N (12.7 µg/L, (1.3 µg/L)2) and in men approximately normal N (4.6 µg/L,
(0.5 µg/L)2).
(a) What is the probability that the concentration of leptin in a randomly
selected US adult male exceeds 6 µ g/L? (b) What proportion of US women
have concentration of leptin in the interval 12.7±2 µ g/L? (c) What interval,
symmetric about the mean 12.7 µg/L, contains leptin concentrations of 95%
of adult US women?
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6.7. Pulse Rate. The pulse rate of 1-month-old infants has a mean of 115 beats
per minute and a standard deviation of 16 beats per minute.
(a) Explain why the average pulse rate in a sample of 64 1-month-old in-
fants is approximately normally distributed.
(b) Find the mean and the variance of the normal distribution in (a).
(c) Find the probability that the average pulse rate of a sample of 64 will
exceed 120.

6.8. Side Effects. One of the side effects of flooding a lake in northern boreal
forest areas1 (e.g., for a hydroelectric project) is that mercury is leaked from
the soil, enters the food chain, and eventually contaminates the fish. The
concentration of mercury in fish will vary among individual fish because
of differences in eating patterns, movements around the lake, etc. Suppose
that the concentrations of mercury in individual fish follows an approxi-
mately normal distribution with a mean of 0.25 ppm and a standard devia-
tion of 0.08 ppm. Fish are safe to eat if the mercury level is below 0.30 ppm.
What proportion of fish are safe to eat?
a. 63.1% b. 23.8% c. 73.4% d. 27.3% e. 37.9%

6.9. Macrolepiota Procera. The size of mushroom caps varies. While many
species of Marasmius and Collybia are only 12 to 20 mm (1/2 to 3/4 in.) in
diameter, some fungi are nearly 200 mm (8 in.) across. The cap diameter
of parasol mushroom (Macrolepiota procera, Fig. 6.18) is a normal random
variable with parameters µ= 230 mm and σ= 25 mm.

Fig. 6.18 Parasol mushroom Macrolepiota procera.

(a) What proportion of parasol caps has a diameter between 200 and
250 mm?
(b) Five percent of parasol caps are larger than x0 in diameter. Find x0.

6.10. Duration of Gestation in Humans. Altman (1980) quotes the following
incident from the UK: “In 1949 a divorce case was heard in which the sole

1 The northern boreal forest, sometimes also called the taiga or northern coniferous forest,
stretches unbroken from eastern Canada westward throughout the majority of Canada to
the central region of Alaska.
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evidence of adultery was that a baby was born 349 days after the husband
had gone abroad on military service. The appeal judges agreed that medi-
cal evidence was unlikely but scientifically possible.” So the appeal failed.
“Most people think that the husband was hard done by,” Altman adds.
So let us judge the judges. The reported mean duration of an uncomplicated
human gestation is between 266 and 288 days, depending on many factors
but mainly on the method of calculation. Assume that population mean
and standard deviations are µ = 280 and σ= 10 days, respectively. In fact,
smaller standard deviations have been reported, so 10 days is a conserva-
tive choice. The normal model fits the data reasonably well if the samples
are large.
Under the normal N (µ,σ2) model, find the probability that a gestation pe-
riod will be equal to or greater than 349 days.

6.11. Tolerance Design. Eggert (2005) provides the following engineering de-
sign question. A 5-inch-diameter pin will be assembled into a 5.005 inch
journal bearing. The pin manufacturing tolerance is specified to tpin = 0.003
inch. A minimum clearance fit of 0.001 inch is needed.
Determine tolerance required of the hole, thole, such that 99.9% of the
mates will exceed the minimum clearance. Assume that manufacturing
variations are normally distributed. The tolerance is defined as 3 standard
deviations.

6.12. Ulnar Variance. This exercise uses data reported in Jung et al. (2001),
who studied radiographs of the wrists of 120 healthy volunteers in order to
determine the normal range of ulnar variance, Fig. 6.19. The radiographs
had been taken in various positions under both unloaded (static) and loaded
(dynamic) conditions.

Fig. 6.19 Ulnar variance (UV) is measured here using the method of perpendiculars, in
which two lines are drawn perpendicular to the long axis of the radius. One line is drawn
on the ulnar-side articular surface of the radius, and the other is drawn on the ulnar carpal
surface. This image shows positive UV.

The ulnar variance in neutral rotation was modeled by normal distribution
with a mean of µ= 0.74 mm and standard deviation of σ= 1.46 mm.
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(a) What is the probability that a radiogram of a normal person will show
negative ulnar variance in neutral rotation (ulnar variance, unlike the sta-
tistical variance, can be negative)?
The researchers modeled the maximum ulnar variance (UVmax) as normal
N (1.52, 1.562) when gripping in pronation and minimum ulnar variance
(UVmin) as normal N (0.19, 1.432) when relaxed in supination.
(b) Find the probability that the mean dynamic range in ulnar variance,
C =UVmax −UV min, will exceed 1 mm.

6.13. Independence of Sample Mean and Standard Deviation in Normal
Samples. Simulate 1000 samples from the standard normal distribution,
each of size 100, and find their sample mean and standard deviation.
(a) Plot a scatterplot of sample means vs. the corresponding sample stan-
dard deviations. Are there any trends?
(b) Find the coefficient of correlation between sample means and standard
deviations from (a) arranged as two vectors. Is the coefficient close to zero?

6.14. Sonny and Multiple Choice Exam. An instructor gives a 100-question
multiple-choice final exam. Each question has 4 choices. In order to pass, a
student has to have at least 35 correct answers. Sonny decides to guess at
random on each question. What is the probability that Sonny will pass the
exam?

6.15. Amount of Liquid in a Bottle. Suppose that the volume of liquid in a
bottle of a certain chemical solution is normally distributed with a mean of
0.5 L and standard deviation of 0.01 L.
(a) Find the probability that a bottle will contain at least 0.48 L of liquid.
(b) Find the volume that corresponds to the 95th percentile.

6.16. Meristem Cells in 3-D. Suppose that a particle is fired at a cell sitting
at the origin of a spatial coordinate system, with units in microns. The
particle lands at (X ,Y , Z), where X ,Y , and Z are independent and each
has a normal distribution with a mean of µ = 0 and variance of σ2 = 250.
The particle is successfully delivered if it lands within 70µm of the origin.
Find the probability that the particle was not successfully delivered.

6.17. Glossina morsitans. Glossina morsitans (tsetse fly) is a large biting fly
that inhabits most of midcontinental Africa. This fly is infamous as the pri-
mary biological vector (the meaning of vector here is epidemiological, not
mathematical. A vector is any living carrier that transmits an infectious
agent) of trypanosomes, which cause human sleeping sickness. The data in
the table below are reported in Pearson (1914) and represent the frequen-
cies of length in microns of trypanosomes found in Glossina morsitans.

Microns 15 16 17 18 19 20 21 22 23 24 25
Frequency 7 31 148 230 326 252 237 184 143 115 130
Microns 26 27 28 29 30 31 32 33 34 35 Total
Frequency 110 127 133 113 96 54 44 11 7 2 2500
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The original data distinguished five different strains of trypanosomes, but it
seems that the summary data set, as shown in the table, can be well approx-
imated by a mixture of two normal distributions, p1N µ1,σ2

1)+p2N µ2,σ2
2).

Using MATLAB’s gmdistribution.fit identify the means of the two normal
components, as well as their weights in the mixture, p1 and p2. Plot the
normalized histogram and superimpose the density of the mixture. Data
can be found in glossina.mat.

6.18. Stabilizing Variance. In Example 6.12 it was stated that the variance
stabilizing transformations for exponential E (λ) and binomial B in(n, p)
distributions are g(x) = log(x) and g(x) = arcsin

√
x
n , respectively. Prove

these statements.

6.19. From Normal to Lognormal. Derive the density of a lognormal distribu-
tion by transforming X ∼N (0,1) into Y = exp{X }.

6.20. The Square of a Standard Normal. If X ∼ N (0,1), show that Y = X2

has a density of

fY (y)= 1p
2Γ

(1
2
) y1/2−1e−y/2, y≥ 0,

which is χ2 with 1 degree of freedom.

MATLAB FILES AND DATA SETS USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch6.Norm/

acid.m, aviocompany.m, boxcox.m, ch2itf.m, cltdemo.m, glossina.m,
histn.m, ige.m, meanvarind.m, norm2chi2.m, piston.m, plot2dnormal.m,
plotnct.m, quetelet.m, renner.m, tsetse.m

aplysia.odc

glossina.mat, renner.dat|mat



228 6 Normal Distribution

CHAPTER REFERENCES

Altman, D. G. (1980). Statistics and ethics in medical research: misuse of statistics is uneth-
ical. Br. Med. J., 281, 1182–1184.

Casella, G. and Berger, R. (2002). Statistical Inference. Duxbury Press, Belmont
Crow E. L. and Shimizu K. Eds., (1988). Lognormal Distributions: Theory and Application.

Dekker, New York.
Eggert, R. J. (2005). Engineering Design. Pearson - Prentice Hall, Englewood Cliffs
Jung, J. M., Baek, G. H., Kim, J. H., Lee, Y. H., and Chung, M. S. (2001). Changes in ulnar

variance in relation to forearm rotation and grip. J. Bone Joint Surg. Br., 83, 7, 1029–
1033, PubMed PMID: 11603517.

Koike, H. (1987). The extensibility of Aplysia nerve and the determination of true axon
length. J. Physiol., 390, 469–487.

Pearson, K. (1914). On the probability that two independent distributions of frequency are
really samples of the same population, with special reference to recent work on the
identity of trypanosome strains. Biometrika, 10, 1, 85–143.

Renner E. (1970). Mathematisch-statistische Methoden in der praktischen Anwendung.
Parey, Hamburg.

Sautter, C. (1993). Development of a microtargeting device for particle bombardment of
plant meristems. Plant Cell Tiss. Org., 33, 251–257.



Chapter 7
Point and Interval Estimators

A grade is an inadequate report of an inaccurate judgment by a biased and variable
judge of the extent to which a student has attained an undefined level of mastery of
an unknown proportion of an indefinite amount of material. [Dressel, P. L. (1957).
Facts and fancy in assigning grades. Basic College Quarterly, 2, 6–12]

WHAT IS COVERED IN THIS CHAPTER

• Moment Matching and Maximum Likelihood Estimators
• Unbiased and Consistent Estimators
• Estimation of Mean and Variance
• Confidence Intervals
• Estimation of Population Proportions
• Sample Size Design by Length of Confidence Intervals
• Prediction and Tolerance Intervals
• Intervals for the Poisson Rate

7.1 Introduction

One of the primary objectives of inferential statistics is estimation of popula-
tion characteristics (descriptors) on the basis of limited information contained
in a sample. The population descriptors are formalized by a statistical model,
which can be postulated at various levels of specificity: a broad class of models,
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a parametric family, or a fully specific unique model. Often, a functional or dis-
tributional form is fully specified but dependent on one or more parameters.
Such a model is called parametric. When the model is parametric, the task of
estimation is to find the best possible sample counterparts as estimators for
the parameters and to assess the accuracy of the estimators.

The estimation procedure follows standard rules. Usually, a sample is
taken and a statistic (a function of observations) is calculated. The value of
the statistic serves as a point estimator for the unknown population parame-
ter. For example, responses in political pools observed as sample proportions
are used to estimate the population proportion of voters in favor of a particu-
lar candidate. The associated model is binomial and the parameter of interest
is the binomial proportion in the population.

The estimators for a parameter can be given as a single value – point es-
timators or as interval estimators. For example, the sample mean is a point
estimator of the population mean. Confidence intervals and credible sets in a
Bayesian context are examples of interval estimators.

In this chapter we first discuss general methods for finding estimators and
then focus on estimation of specific population parameters: means, variances,
proportions, rates, etc. Some estimators are universal, that is, they are not con-
nected with any specific distribution. Universal estimators are a sample mean
for the population mean and a sample variance for the population variance.
However, for interval estimators and for Bayesian estimators, a knowledge of
sampling distribution is critical.

In Chap. 2 we learned about many sample summaries that are good es-
timators for their population counterparts; these will be discussed further in
this chapter. We have also seen some robust competitors based on order statis-
tics and ranks; these will be discussed further in Chap. 12.

The methods for how to propose an estimator for a population parameter
are discussed next. The methods will use knowledge of the form of popula-
tion distribution or, equivalently, distribution of sample summaries treated as
random variables.

7.2 Moment Matching and Maximum Likelihood
Estimators

We describe two approaches for devising point estimators: moment matching
and maximum likelihood.

Matching Estimation. Moment matching is a natural way to propose
an estimator. Theoretical moments of a random variable X with a density
specified up to a parameter, f (x|θ), are functions of that parameter:

EX k = h(θ).



7.2 Moment Matching and Maximum Likelihood Estimators 231

For example, if the measurements have a Poisson distribution P oi(λ), the
second moment EX2 is λ+λ2, which is a function of λ. Here, h(x)= x+ x2.

Suppose we obtained a sample X1, X2, . . . , Xn from f (x|θ). The empirical
counterparts for theoretical moments EX k are sample moments

X k = 1
n

n∑
i=1

X k
i .

By matching the theoretical and empirical moments, an estimator θ̂ is found
as a solution of the equation

X k = h(θ).

For example, for the exponential distribution E (λ), the first theoretical
moment is EX = 1/λ. An estimator for λ is obtained by solving the moment-
matching equation X = 1/λ, resulting in λ̂mm = 1/X . Moment-matching es-
timators are not unique; different theoretical and sample moments can be
matched. In the context of an exponential model, the second theoretical mo-
ment is EX2 = 2/λ2, leading to an alternative matching equation,

X2 = 2/λ2,

with the solution

λ̂mm = 2

X2
= 2n∑n

i=1 X2
i

.

The following simple MATLAB code simulates a sample of size 106 from an ex-
ponential distribution with rate parameter λ= 3 and then calculates moment-
matching estimators based on the first two moments.

Y = exprnd(1/3, 10e6, 1);
%parametrization in MATLAB is 1/lambda

1/mean(Y) %matching the first moment
ans = 2.9981

sqrt(2/mean(Y.^2)) %matching the second moment
ans = 2.9984

Example 7.1. Consider a sample from a gamma distribution with parameters
r and λ. It is known that for X ∼Ga(r,λ), E(X )= r

λ
, and Var X = EX2−(EX )2 =

r
λ2 . It is easy to see that

r = (EX )2

EX2 − (EX )2 and λ= EX
EX2 − (EX )2 .
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Thus, the moment matching estimators are

r̂mm = (X )2

X 2 − (X )2
and λ̂mm = X

X2 − (X )2
.

�

Matching estimation uses mostly moments, but any other statistic that
is (i) easily calculated from a sample and (ii) whose population counterpart
depends on parameter(s) of interest can be used in matching. For example,
the sample/population quantiles can be used.

Example 7.2. In one study, the highest 5-year survival rate (90%) for women
was for malignant melanoma of the skin. Assume that survival time T has an
exponential distribution with an unknown rate parameter λ. Using quantiles,
estimate λ.

From

P(T > 5)= 0.90 ⇒ exp{−5 ·λ}= 0.90

it follows that λ̂= 0.0211.
�

Maximum Likelihood. An alternative method, which uses a functional
form for distributions of measurements, is the maximum likelihood estimation
(MLE).

The MLE was first proposed and used by R. A. Fisher (Fig. 7.1) in the
1920s and remains one of the most popular tools in estimation theory and
broader statistical inference. The method can be formulated as an optimiza-
tion problem involving the search for extrema when the model is considered
as a function of parameters.

Suppose that the sample X1, . . . , Xn comes from a population with distribu-
tion f (x|θ) indexed by θ that could be a scalar or a vector of parameters. Ele-
ments of the sample are independent; thus the joint distribution of X1, . . . , Xn
is a product of individual densities:

f (x1, . . . , xn|θ)=
n∏

i=1
f (xi|θ).

When the sample is observed, the joint distribution remains dependent
upon the parameter,

L(θ|X1, . . . , Xn)=
n∏

i=1
f (Xi|θ), (7.1)



7.2 Moment Matching and Maximum Likelihood Estimators 233

and, as a function of the parameter, L is called the likelihood. The value
of the parameter θ that maximizes the likelihood L(θ|X1, . . . , Xn) is the
MLE, θ̂mle.

Fig. 7.1 Sir R. A. Fisher (1890–1962).

The problem of finding the maximum of L and the value θ̂mle at which L
is maximized is an optimization problem. In some cases the maximum can be
found directly or with the help of the log transformation of L. Other times
the procedure must be iterative and the solution is an approximation. In some
cases, depending on the model and sample size, the maximum is not unique or
does not exist.

In the most common cases, maximizing the logarithm of likelihood, log-
likelihood, is simpler than maximizing the likelihood directly. This is because
the product in L becomes the sum when a logarithm is applied:

`(θ|X1, . . . , Xn)= logL(θ|X1, . . . , Xn)=
n∑

i=1
log f (Xi|θ),

and finding an extremum of a sum is simpler. Since the logarithm is a mono-
tonically increasing function, the maxima of L and ` are achieved at the same
value θ̂mle (see Fig. 7.2 for an illustration).

Analytically,

θ̂mle = argmaxθ`(θ|X1, . . . , Xn),

and it can be found as a solution of

∂`(θ|X1, . . . , Xn)
∂θ

= 0 subject to
∂2`(θ|X1, . . . , Xn)

∂θ2 < 0.
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Fig. 7.2 Likelihood and log-likelihood of exponential distribution with rate parameter λ

when the sample X = [0.4,0.3,0.1,0.5] is observed. The MLE is 1/X = 3.077.

In simple terms, the MLE makes the first derivative (with respect to θ) of
the log-likelihood equal to 0 and the second derivative negative, which is a
condition for a maximum.

As an illustration, consider the MLE of λ in the exponential model, E (λ).
After X1, . . . , Xn is observed, the likelihood becomes

L(λ|X1, . . . , Xn)=
n∏

i=1
λe−λXi =λn exp

{
−λ

n∑
i=1

Xi

}
.

The likelihood L is obtained as a product of densities f (xi|λ) where the argu-
ments xis are fixed observations Xi. The product is taken over all observa-
tions, as in (7.1). We can search for the maximum of L directly, but since it is
a product of two terms involving λ, it is beneficial to look at the log-likelihood
instead.

The log-likelihood is

`(λ|X1, . . . , Xn)= n logλ−λ
n∑

i=1
Xi.

The equation to be solved is

∂`

∂λ
= n
λ
−

n∑
i=1

Xi = 0,

and the solution is λ̂mle = n∑n
i=1 Xi

= 1/X . The second derivative of the log-

likelihood, ∂2`
∂λ2 =− n

λ2 , is always negative; thus the solution λ̂mle maximizes `,
and consequently L. Figure 7.2 shows the likelihood and log-likelihood as func-
tions of λ. For sample X = [0.4,0.3,0.1,0.5] the maximizing λ is 1/X = 3.0769.
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Note that both the likelihood and log-likelihood are maximized at the same
value.

For the alternative parametrization of exponentials via a scale parameter,
as in MATLAB, f (x|λ)= 1

λ e−x/λ, the estimator is, of course, λ̂mle = X .
An important property of MLE is their invariance property.

Invariance Property of MLEs. Let θ̂mle be an MLE of θ and let η =
g(θ), where g is an arbitrary function. Then η̂mle = g(θ̂mle) is an MLE of
η.

For example, if the MLE for λ in the exponential distribution was 1/X , then
for a function of the parameter η=λ2 −sin(λ) the MLE is (1/X )2 −sin

(
1/X

)
.

In MATLAB, the function mle finds the MLE when inputs are data and
the name of a distribution with a list of options. The normal distribution is
the default. For example, parhat = mle(data) calculates the MLE for µ and σ
of a normal distribution, evaluated at vector data. One of the outputs is the
confidence interval. For example, [parhat, parci] = mle(data) returns MLEs
and 95% confidence intervals for the parameters. The confidence intervals,
as interval estimators, will be discussed later in this chapter. The command
[...] = mle(data,’distribution’,dist) computes parameter estimations for

the distribution specified by dist. Acceptable strings for dist are as follows:

’beta’ ’bernoulli’ ’binomial’
’discrete uniform’ ’exponential’ ’extreme value’
’gamma’ ’generalized extreme value’ ’generalized pareto’
’geometric’ ’lognormal’ ’negative binomial’
’normal’ ’poisson’ ’rayleigh’
’uniform’ ’weibull’

Example 7.3. MLE of Beta in MATLAB. The following MATLAB commands
show how to estimate parameters a and b in a beta distribution. We will simu-
late a sample of size 1000 from a beta Be(2,3) distribution and then from the
sample find MLEs of a and b.

a = betarnd( 2, 3,[1, 1000]);
thetahat = mle(a,’distribution’, ’beta’)
%thetahat = 1.9991 3.0267

�

It is possible to find the MLE using MATLAB’s mle command for distribu-
tions that are not on the list. The code is given at the end of Example 7.4in
which moment-matching estimators and MLEs for parameters in a Maxwell
distribution are compared.
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Example 7.4. Moment-Matching Estimators and MLEs in a Maxwell
Distribution. The Maxwell distribution models random speeds of molecules
in thermal equilibrium as given by statistical mechanics. A random variable
X with a Maxwell distribution is given by the probability density function

f (x|θ)=
√

2
π
θ3/2 x2 e−θx2/2, θ> 0, x> 0.

Assume that we observed velocities X1, . . . , Xn and want to estimate the
unknown parameter θ.

The following theoretical moments for the Maxwell distribution are avail-

able: the expectation EX = 2
√

2
πθ , the second moment EX2 = 3/θ, and the

fourth moment EX4 = 15/θ2. To find moment-matching estimators for θ the
theoretical moments are “matched” with their empirical counterparts X , X2 =
1
n

∑n
i=1 X2

i , and X4 = 1
n

∑n
i=1 X4

i , and the resulting equations are solved with
respect to θ :

X = 2

√
2
πθ

⇒ θ̂1 =
8

π(X )2
,

1
n

n∑
i=1

X2
i =

3
θ

⇒ θ̂2 =
3n∑n

i=1 X2
i

,

1
n

n∑
i=1

X4
i =

15
θ2 ⇒ θ̂3 =

√
15n∑n
i=1 X4

i
.

To find the MLE of θ we show that the log-likelihood has the form 3n
2 logθ−

θ
2
∑n

i=1 X2
i + part free of θ. The maximum of the log-likelihood is achieved at

θ̂MLE = 3n∑n
i=1 X2

i
, which is the same as the moment-matching estimator θ̂2.

Specifically, if X1 = 1.4, X2 = 3.1, and X3 = 2.5 are observed, the MLE
of θ is θ̂MLE = 9

17.82 = 0.5051. The other two moment-matching estimators are
θ̂1 = 0.4677 and θ̂3 = 0.5768.

In MATLAB, the Maxwell distribution can be custom-defined using the
function @:

maxwell = @(x,theta) sqrt(2/pi) * ...
theta.^(3/2) * x.^2 .* exp( - theta * x.^2/2);

mle([1.4 3.1 2.5], ’pdf’, maxwell, ’start’, rand)
%ans = 0.5051

�

In most cases, taking the log of likelihood simplifies finding the MLE. Here
is an example in which the maximization of likelihood was done without the
use of derivatives.
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Example 7.5. Suppose the observations X1 = 2, X2 = 5, X3 = 0.5, and X4 = 3
come from the uniform U (0,θ) distribution. We are interested in estimating
θ. The density for the single observation X is f (x|θ) = 1

θ1(0 ≤ x ≤ θ), and the
likelihood, based on n observations X1, . . . , Xn, is

L(θ|X1, . . . , Xn)= 1
θn ·1(0≤ X1 ≤ θ) ·1(0≤ X2 ≤ θ) · . . . ·1(0≤ Xn ≤ θ).

The product in the above expression can be simplified: if all Xs are less than
or equal to θ, then their maximum X(n) is less than θ as well. Thus,

1(0≤ X1 ≤ θ) ·1(0≤ X2 ≤ θ) · . . . ·1(0≤ Xn ≤ θ) = 1(X(n) ≤ θ).

Maximizing the likelihood now can be performed by inspection. In order to
maximize 1

θn , subject to X(n) ≤ θ, one should take the smallest θ possible, and
that θ is X(n) = max Xi. Therefore, θ̂mle = X(n), and in this problem, the esti-
mator is X(4) = X2 = 5.

An alternative estimator can be found by moment matching. One can show
(the arguments are beyond the scope of this book) that in estimating θ in
U (0,θ), only max Xi should be used. What is the distribution of max Xi?

We will find this distribution for general i.i.d. Xi, i = 1, . . . ,n, with CDF F(x)
and PDF f (x)= F ′(x).

The CDF is, by definition,

G(x)=P(max Xi ≤ x)=P(X1 ≤ x, X2 ≤ x, . . . , Xn ≤ x)=
n∏

i=1
P(Xi ≤ x)= (F(x))n.

The reasoning in the above equation is as follows. If the maximum is ≤ x,
then all Xi are ≤ x, and vice versa. The density for max Xi is g(x) = G′(x) =
nFn−1(x) f (x), and the first moment is

Emax Xi =
∫

R
x g(x) dx =

∫

R
x nFn−1(x) f (x)dx.

For the uniform distribution U (0,θ),

Emax Xi =
∫ θ

0
x ·n (x/θ)n−1 ·1/θdx = n

θn

∫ θ

0
xn dx = n

n+1
θ.

The expectation of the maximum Emax Xi is matched with the largest order
statistic in the sample, X(n). Thus, by solving the moment-matching equation,
one obtains an alternative estimator for θ, θ̂mm = n+1

n X(n). In this problem,
θ̂mm = 25/4= 6.25. For a Bayesian estimator, see Example 8.6.
�
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7.2.1 Unbiasedness and Consistency of Estimators

Based on a sample X1, . . . , Xn from a population with distribution f (x|θ), let
θ̂n = g(X1, . . . , Xn) be a statistic that estimates the parameter θ. The statistic
(estimator) θ̂n as a function of the sample is a random variable. As a random
variable, the estimator would have an expectation of Eθ̂n, a variance of Var θ̂n,
and its own distribution called a sampling distribution.

Example 7.6. Suppose we are interested in finding the proportion of subjects
with the AB blood group in a particular geographic region. This proportion,
θ, is to be estimated on the basis of the sample Y1,Y2, . . . ,Yn, each having a
Bernoulli Ber(θ) distribution taking values 1 and 0 with probabilities θ and
1−θ, respectively. The realization Yi = 1 indicates the presence of the AB group
in observation i. The sum X =∑n

i=1 Yi is by definition binomial B in(n,θ).
The estimator for θ is θ̂n = Y = X

n . It is easy to check that this estimator is
both moment matching (EYi = θ) and MLE (the likelihood is θ

∑
Yi (1−θ)n−∑

Yi ).
Thus θ̂n has a binomial distribution with rescaled realizations {0, 1/n, 2/n, . . . ,
(n−1)/n, 1}, that is,

P

(
θ̂n = k

n

)
=

(
n
k

)
θk(1−θ)n−k, k = 0,1, . . . ,n,

which is the estimator’s sampling distribution.
It easy to show, by referring to a binomial distribution, that the expectation

of θ̂n is 1/n times the expectation of the binomial, nθ,

Eθ̂n = 1
n
×nθ = θ,

and that the variance is

Var θ̂n =
(

1
n

)2
×nθ(1−θ)= θ(1−θ)

n
.

�

If Eθ̂n = θ, then the estimator θ̂ is called unbiased. The expectation is
taken with respect to the sampling distribution. The quantity

b(θ)= Eθ̂n −θ

is called the bias of θ̂.

The error in estimation can be assessed by various measures. The most
common is the mean squared error (MSE).
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The MSE is defined as

MSE(θ̂,θ)= E(θ̂n −θ)2.

The MSE represents the expected squared deviation of the estimator from
the parameter it estimates. This expectation is taken with respect to the sam-
pling distribution of θ̂n.

From the definition of MSE,

E(θ̂n −θ)2 = E(θ̂n −Eθ̂n +Eθ̂n −θ)2

= E(θ̂n −Eθ̂n)2 −2E(θ̂n −Eθ̂n)(Eθ̂n −θ)+ (Eθ̂n −θ)2

= E(θ̂n −Eθ̂n)2 + (Eθ̂n −θ)2.

Consequently, the MSE can be represented as a sum of the variance of the
estimator and its bias squared:

MSE(θ̂,θ)=Var θ̂+b(θ)2.

The square root of the MSE is sometimes used; it is called the root mean
squared error (RMSE). For example, in estimating the population proportion,
the estimator p̂ = X /n, for the X ∼B in(n, p) model, is unbiased, E( p̂)= p. Then
the MSE is Var ( p̂)= pq/n, and the RMSE is

√
pq/n. Note that the RMSE is a

function of the parameter. If parameter p is replaced by its estimator p̂, then
the RMSE becomes the standard error, s.e., of the estimator. For binomial p,
the standard error of p̂ is s.e.(p̂)=

√
p̂q̂/n.

Remark. The standard error (s.e.) of any estimator usually refers to a
sample counterpart of its RMSE (sample counterpart of standard deviation
for unbiased estimators). For example, if X1, X2, . . . , Xn are N (µ,σ2), then
s.e.(X )= s/

p
n.

Inspecting the variance (when the sample size increases) of an unbiased
estimator allows for checking its consistency. The consistency property is a
desirable property of estimators. Informally, it is defined as the convergence of
an estimator (in a stochastic sense) to the parameter it estimates.

If, for an unbiased estimator θ̂n, Var θ̂n → 0 when the sample size n→∞,
the estimator is called consistent.
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More advanced definitions of convergences of random variables, which are
beyond the scope of this text, are required in order to deduce more precise def-
initions of asymptotic unbiasedness and weak and strong consistency; there-
fore, these definitions will not be discussed here.

Example 7.7. Suppose that we are interested in estimating the parameter θ
in a population with a distribution of N (0,θ),θ > 0, and that the proposed
estimator, when the sample X1, X2, . . . , Xn is observed, is θ̂ = 1

n
∑n

i=1 X2
i .

It is easy to demonstrate that, when X ∼ N (0,θ), EX2 = θ and EX4 = 3θ2,
by representing X as

p
θZ for Z ∼N (0,1) and using the fact that EZ2 = 1 and

EZ4 = 3.
The estimator θ̂ = 1

n
∑n

i=1 X 2
i = X 2 is unbiased and consistent. Since Eθ̂ =

1
n

∑n
i=1EX2

i = 1
n nθ = θ, the estimator is unbiased. To show consistency, it is

sufficient to demonstrate that the variance tends to 0 as the sample size in-
creases. This is evident from

Var θ̂ = 1
n2

n∑
i=1
Var X2

i = 1
n2 3nθ2 = 3θ2

n
→ 0, when n →∞.

Alternatively, one may use the fact that 1
θ

∑n
i=1 X 2

i has a χ2
n distribution, so

that the sampling distribution of θ̂ is a scaled χ2
n, where the scaling factor is

1
nθ . The unbiasedness and consistency follow from Eχ2

n = n and Varχ2
n = 2n by

accounting for the scaling factor.
�

Some important examples of unbiased and consistent estimators are pro-
vided next.

7.3 Estimation of a Mean, Variance, and Proportion

7.3.1 Point Estimation of Mean

For a sample X1, . . . , Xn of size n we have already discussed the sample mean
X = 1

n
∑n

i=1 Xi as an estimator of location. A natural estimator of the popu-
lation mean µ is the sample mean µ̂ = X . The estimator X is an “optimal”
estimator of a mean in many different models/distributions and for many dif-
ferent definitions of optimality.

The estimator X varies from sample to sample. More precisely, X is a ran-
dom variable with a fixed distribution depending on the common distribution
of observations, Xi.
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The following is true for any distribution in the population as long as
EXi =µ and Var (Xi)=σ2 exist:

EX =µ, Var (X )= σ2

n
. (7.2)

The above equations are a direct consequence of independence in a sample
and imply that X is an unbiased and consistent estimator of µ.

If, in addition, we assume normality Xi ∼N (µ,σ2), then the sampling dis-
tribution of X is known exactly,

X ∼N

(
µ,
σ2

n

)
,

and the relations in (7.2) are apparent.

Chebyshev’s Inequality and Strong Law of Large Numbers*. There
are two general results in probability that theoretically justify the use of the
sample mean X to estimate the population mean, µ. These are Chebyshev’s
inequality and strong law of large numbers (SLLN). We will discuss these
results without mathematical rigor.

The Chebyshev inequality states that when X1, X2, . . . , Xn are i.i.d. ran-
dom variables with mean µ and finite variance σ2, the probability that X will
deviate from µ is small,

P(|X n −µ| ≥ ε)≤
σ2

nε2 ,

for any ε > 0. The inequality is a direct consequence of (5.8) with (X n −µ)2 in
place of X and ε2 in place of a.

To translate this to specific numbers, choose ε small, say 0.000001. Assume
that the Xis have a variance of 1. The Chebyshev inequality states that with
n larger than the solution of 1/(n×0.00000012)= 0.9999, the distance between
X n and µ will be smaller than 0.000001 with a probability of 99.99%. Admit-
tedly, n here is an experimentally unfeasible number; however, for any small
ε, finite σ2, and “confidence” close to 1, such n is finite.

The laws of large numbers state that, as a numerical sequence, X n con-
verges to µ. Care is needed here. The sequence X n is not a sequence of num-
bers but a sequence of random variables, which are functions defined on sam-
ple spaces S . Thus, direct application of a “calculus” type of convergence is
not appropriate. However, for any fixed realization from sample space S , the
sequence X n becomes numerical and a traditional convergence can be stated.
Thus, a correct statement for the so-called SLLN is
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P(X n → µ)= 1,

that is, conceived as an event,
{

X n → µ
}

is a sure event – it happens with a
probability of 1.

7.3.2 Point Estimation of Variance

We will obtain an intuition starting, once again, with a finite population:
y1, . . . , yN . The population variance is σ2 = 1

N
∑N

i=1(yi−µ)2, where µ= 1
N

∑N
i=1 yi

is the population mean.

If a sample X1, X2, . . . , Xn is observed, an estimator of σ2 is

σ̂2 = 1
n

n∑
i=1

(Xi −µ)2,

for µ known, or

σ̂2 = s2 = 1
n−1

n∑
i=1

(Xi − X )2,

for µ not known and estimated by X .

In the expression for s2 we divide by n−1 instead of the “expected” n in
order to ensure the unbiasedness of s2, Es2 =σ2. The proof is easy and does not
require any distributional assumptions, except that the population variance
σ2 is finite.

Note that by the definition of variance, E(Xi−µ)2 =σ2 and E(X−µ)2 =σ2/n.

(n−1)s2 =
n∑

i=1
(Xi − X )2

=
n∑

i=1
[(Xi −µ)− (X −µ)]2

=
n∑

i=1
(Xi −µ)2 −2n(X −µ)

n∑
i−1

(Xi −µ)+n(X −µ)2

=
n∑

i=1
(Xi −µ)2 −n(X −µ)2, since

n∑
i=1

(Xi −µ)= n(X −µ).

Then,
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E(s2) = 1
n−1

E(n−1)s2

= 1
n−1

E[
n∑

i=1
(Xi −µ)2 −n(X −µ)2]

= 1
n−1

(nσ2 −n
σ2

n
)

= 1
n−1

(n−1)σ2 =σ2.

When, in addition, the population is normal N (µ,σ2), then

(n−1)s2

σ2 ∼ χ2
n−1,

i.e., the statistic (n−1)s2

σ2 =∑n
i=1

(
Xi−X
σ

)2
has a χ2 distribution with n−1 degrees

of freedom (see Eq. 6.3 and related discussion).
For a sample from a normal distribution, unbiasedness of s2 is an easy con-

sequence of the representation s2 ∼ σ2

n−1χ
2
n−1 and Eχ2

n−1 = (n−1). The variance
of s2 is

Var s2 =
(
σ2

n−1

)2

×Varχ2
n−1 =

2σ4

n−1
(7.3)

since Varχ2
n−1 = 2(n−1). Unlike the unbiasedness result, Es2 =σ2, which does

not require a normality assumption, the result in (7.3) is valid only when ob-
servations come from a normal distribution.

Figure 7.3 indicates that the empirical distribution of normalized sample
variances is close to a χ2 distribution. We generated M = 100000 samples of
size n = 8 from a normal N (0,52) distribution and found sample variances s2

for each sample. The sample variances are multiplied by n−1= 7 and divided
by σ2 = 25. The histogram of such rescaled sample variances is plotted and the
density of a χ2 distribution with 7 degrees of freedom is superimposed in red.
The code generating Fig. 7.3 is given next.

M=100000; n = 8;
X = 5 * randn([n, M]);
ch2 = (n-1) * var(X)/25;

histn(ch2,0,0.4,30)
hold on
plot( (0:0.1:30), chi2pdf((0:0.1:30), n-1),’r-’)
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Fig. 7.3 Histogram of normalized sample variances (n−1)s2/σ2 obtained from M = 100000
independent samples from N (0,52), each of size n= 8. The density of a χ2 distribution with
7 degrees of freedom is superimposed in red.

The code is quite efficient since a for-end loop is avoided. The simulated
object X is an n×M matrix consisting of M columns (samples) of length n. The
operator var(X) acts on columns of X producing M sample variances.

Several Robust Estimators of the Standard Deviation*. Suppose
that a sample X1, . . . , Xn is observed and normality is not assumed. We dis-
cuss two estimators of the standard deviation that are calibrated by the nor-
mal distribution but quite robust with respect to outliers and deviations from
normality.
�

Gini’s mean difference is defined as

G = 2
n(n−1)

∑
1≤i< j≤n

|Xi − X j |.

The statistic G
p
π

2 is an estimator of the standard deviation and is more robust
to outliers than the standard statistic s.

Another proposal by Croux and Rousseeuw (1992) involves absolute differ-
ences as in Gini’s mean difference estimator but uses kth-order statistic rather
than the average. The estimator of σ is

Q = 2.2219 {|Xi − X j|, i < j}(k), where k =
(
bn/2c+1

2

)
.
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The constant 2.2219 is needed for the calibration of the estimator, so that if the
sample is a standard normal, then Q = 1. In calculating Q, all

(n
2
)

differences
|Xi−X j | are ordered, and the kth in rank is selected and multiplied by 2.2219.
This choice of k requires an additional multiplicative correction factor n/(n+
1.4) for n odd, or n/(n+3.8) for n even.

MATLAB scripts ginimd.m and crouxrouss.m evaluate the estimator.
The algorithm is naïve and uses a double loop to evaluate G and Q. The
evaluation breaks down for sample sizes of less than 500 because of memory
problems. A smarter algorithm that avoids looping is implemented in versions
ginimd2.m and crouxrouss2.m. In these versions, the sample size can go up to
6000.

In the following MATLAB session we demonstrate the performance of ro-
bust estimators of the standard deviation. If 1000 standard normal random
variates are generated and one value is replaced with a clear outlier, say
X1000 = 20, we will explore the influence of this outlier to estimators of the
standard deviation. Note that s is quite sensitive and the outlier inflates the
estimator by almost 20%. The robust estimators are affected as well, but not
as much as s.

x =randn(1, 1000);
x(1000)=20;
std(x)
% ans = 1.1999
s1 = ginimd2(x)
%s1 =1.0555
s2 = crouxrouss2(x)
%s2 =1.0287
iqr(x)/1.349
%ans = 1.0172

There are many other robust estimators of the variance/standard devia-
tion. Good references containing extensive material on robust estimation are
Wilcox (2005) and Staudte and Sheater (1990).

7.3.3 Point Estimation of Population Proportion

It is natural to estimate the population proportion p by a sample proportion.
The sample proportion is the MLE and moment-matching estimator for p.

Sample proportions use a binomial distribution as the theoretical model.
Let X ∼B in(n, p), where parameter p is unknown. The MLE of p based on a
single observation X is obtained by maximizing the likelihood

(
n
X

)
pX (1− p)n−X
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or the log-likelihood

factor free of p+ X log(p)+ (n− X ) log(1− p).

The maximum is obtained by solving

(factor free of p+ X log(p)+ (n− X ) log(1− p))′ = 0
X
p
− n− X

1− p
= 0,

which after some algebra gives the solution p̂mle = X
n .

In Example 7.6 we argued that the exact distribution for X /n is a rescaled
binomial and that the statistic is unbiased, with the variance converging to
0 when the sample size increases. These two properties define a consistent
estimator.

7.4 Confidence Intervals

Whenever the sampling distribution of a point estimator θ̂n is continuous, then
necessarily P(θ̂n = θ) = 0. In other words, the probability that the estimator
exactly matches the parameter it estimates is 0.

Instead of the point estimator, one may report two estimators, L = L(X1, . . . ,
Xn) and U = U(X1, . . . , Xn), so that the interval [L,U] covers θ with a proba-
bility of 1−α, for small α. In this case, the interval [L,U] will be called a
(1−α)100% confidence interval for θ.

For the construction of a confidence interval for a parameter, one needs to
know the sampling distribution of the associated point estimator. The lower
and upper interval bounds L and U depend on the quantiles of this distribu-
tion. We will derive the confidence interval for the normal mean, normal vari-
ance, population proportion, and Poisson rate. Many other confidence inter-
vals, including differences, ratios, and some functions of statistics, are tightly
connected to testing methodology and will be discussed in subsequent chap-
ters.

Note that when the population is normal and X1, . . . , Xn is observed, the
exact sampling distributions of

Z = X −µ
σ/
p

n
and

t = X −µ
s/
p

n
= X −µ
σ/
p

n
× 1√

(n−1)s2

σ2 /(n−1)
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are standard normal and Student tn−1, respectively.

The expression for t is shown as a product to emphasize the construction of a
t-distribution from a standard normal (in blue) and χ2 (in red), as in p. 208).

When the population is not normal but n is large, both statistics Z and t
have an approximate standard normal distribution due to the CLT.

Wa saw that the point estimator for the population proportion (of “suc-
cesses”) is the sample proportion p̂ = X /n, where X is the number of successes
in n trials. The statistic X /n is based on a binomial sampling scheme in which
X has exactly a binomial B in(n, p) distribution. Using this exact distribution
would lead to confidence intervals in which the bounds and confidence levels
were discretized. The normal approximation to the binomial (CLT in the form
of de Moivre’s approximation) leads to

p̂ approx∼ N

(
p,

p(1− p)
n

)
, (7.4)

and the confidence intervals for the population proportion p would be based
on normal quantiles.

7.4.1 Confidence Intervals for the Normal Mean

Let X1, . . . , Xn be a sample from a N (µ,σ2) distribution where the parameter
µ is to be estimated and σ2 is known.

Starting from the identity

P(−z1−α/2 ≤ Z ≤ z1−α/2)= 1−α

and the fact that X has a N (µ, σ
2

n ) distribution, we can write

P

(
−z1−α/2

σp
n
+µ≤ X ≤ z1−α/2

σp
n
+µ

)
= 1−α;

see Fig. 7.4a for an illustration. Simple algebra gives

X − z1−α/2
σp
n
≤µ≤ X + z1−α/2

σp
n

, (7.5)

which is a (1−α)100% confidence interval.
If σ2 is not known, then a confidence interval with the sample standard

deviation s in place of σ can be used. The z quantiles are valid for large n, but
for small n (n < 40) we use tn−1 quantiles, since the sampling distribution for
X−µ
s/
p

n is tn−1. Thus, for σ2 unknown,
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X − tn−1,1−α/2
sp
n
≤µ≤ X + tn−1,1−α/2

sp
n

(7.6)

is the confidence interval for µ of level 1−α.
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Fig. 7.4 (a) When σ2 is known, X has a normal N (µ,σ2/n) distribution and P(µ−z1−α/2
σp
n ≤

X ≤ µ+ z1−α/2
σp
n ) = 1−α, leading to confidence interval (7.5). (b) If σ2 is not known and s2

is used instead, then X−µ
s/
p

n is tn−1, leading to the confidence interval in (7.6).

Below is a summary of the above-stated intervals.

The (1−α) 100% confidence interval for an unknown normal mean µ on
the basis of a sample of size n is

[
X − z1−α/2

σp
n

, X + z1−α/2
σp
n

]

when the variance σ2 is known and
[

X − tn−1,1−α/2
sp
n

, X + tn−1,1−α/2
sp
n

]

when the variance σ2 is not known and s2 is used instead.

Interpretation of Confidence Intervals. What does a “confidence of
95%” mean? A common misconception is that it means that the unknown mean
falls in the calculated interval with a probability of 0.95. Such a probability
statement is valid for credible sets in the Bayesian context, which will be dis-
cussed in Chap. 8.

The interpretation of the (1−α) 100% confidence interval is as follows.
If a random sample from a normal population is selected a large number of
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times and the confidence interval for the population mean µ is calculated, the
proportion of such intervals covering µ approaches 1−α.

The following MATLAB code illustrates this. The code samples M = 10000
times a random sample of size n = 40 from a normal population with a mean
of µ = 10 and a variance of σ2 = 42 and calculates a 95% confidence interval.
It then counts how many of the intervals cover the mean µ, cover = 1, and, fi-
nally, finds their proportion, covers/M. The code was run consecutively several
times and the following empirical confidences were obtained: 0.9461, 0.9484,
0.9469, 0.9487, 0.9502, 0.9482, 0.9502, 0.9482, 0.9530, 0.9517, 0.9503, 0.9514,
0.9496, 0.9515, etc., clearly scattering around 0.95. Figure 7.5a plots the be-
havior of the coverage proportion when simulations range from 1 to 10,000.
Figure 7.5b plots the first 100 intervals in the simulation and their position
with respect to µ= 10. The confidence intervals in simulations 17, 37, 47, 58,
78, and 82 fail to cover µ.

M=10000; %simulate M times
n = 40; % sample size
alpha = 0.05; %1-alpha = confidence
tquantile = tinv(1-alpha/2, n-1);
covers =[];
for i = 1:M

X = 10 + 4*randn(1,n); %sample, mean=10, var =16
xbar = mean(X); s = std(X);
LB = xbar - tquantile * s/sqrt(n);
UB = xbar + tquantile * s/sqrt(n);
% cover=1 if the interval covers population mean 10
if UB < 10 | LB > 10

cover = 0;
else

cover = 1;
end

covers =[covers cover]; %saves cover history
end
sum(covers)/M %proportion of intervals covering the mean

7.4.2 Confidence Interval for the Normal Variance

Earlier (p. 209) we argued that the sampling distribution of (n−1)s2

σ2 was χ2

with n−1 degrees of freedom. From the definition of χ2
n−1 quantiles,

1−α=P(χ2
n−1,α/2 ≤ χ2

n−1 ≤ χ2
n−1,1−α/2),

as in Fig. 7.6. Replacing χ2
n−1 with (n−1)s2

σ2 , we get
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Fig. 7.5 (a) Proportion of intervals covering the mean plotted against the iteration number,
as in plot(cumsum(covers)./(1:length(covers)) ). (b) First 100 simulated intervals.
The intervals 17, 37, 47, 58, 78, and 82 fail to cover the true mean.

1−α=P
(
χ2

n−1,α/2 ≤
(n−1)s2

σ2 ≤χ2
n−1,1−α/2

)
.

0 χ
2
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1 − α

α/2 α/2

Fig. 7.6 Confidence interval for normal variance σ2 is derived from P(χ2
n−1,α/2 ≤ (n −

1)s2/σ2 ≤χ2
n−1,1−α/2)= 1−α.

Simple algebra with the above inequalities (taking the reciprocal of all
three parts, being careful about the direction of the inequalities, and multi-
plying everything by (n−1)s2) gives
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(n−1)s2

χ2
n−1,1−α/2

≤σ2 ≤ (n−1)s2

χ2
n−1,α/2

.

The (1−α) 100% confidence interval for an unknown normal variance is
[

(n−1)s2

χ2
n−1,1−α/2

,
(n−1)s2

χ2
n−1,α/2

]
. (7.7)

Remark. If the population mean µ is known, then s2 is calculated as
1
n

∑n
i=1(Xi −µ)2, and the χ2 quantiles gain one degree of freedom (n instead

of n−1). This makes the confidence interval a bit tighter.

Example 7.8. Amanita muscaria. With its bright red, sometimes dinner-
plate-sized caps, the fly agaric (Amanita muscaria) is one of the most striking
of all mushrooms (Fig. 7.7a). The white warts that adorn the cap, the white
gills, a well-developed ring, and the distinctive volva of concentric rings dis-
tinguish the fly agaric from all other red mushrooms. The spores of the mush-
room print white, are elliptical, and have a (maximal) diameter in the range
of 7 to 13 µm (Fig. 7.7b).

(a) (b)

Fig. 7.7 Amanita muscaria and its spores. (a) Fly agaric or Amanita muscaria. (b) Spores
of Amanita muscaria.

Measurements of the diameter X of spores for n= 51 mushrooms are given
in the following table:

10 11 12 9 10 11 13 12 10 11
11 13 9 10 9 10 8 12 10 11
9 10 7 11 8 9 11 11 10 12

10 8 7 11 12 10 9 10 11 10
8 10 10 8 9 10 13 9 12 9
9
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Assume that the measurements are normally distributed with mean µ and
variance σ2, but both parameters are unknown. The sample mean and vari-
ances are X = 10.098 , s2 = 2.1702, and s = 1.4732. Also, the confidence inter-
val would use an appropriate t-quantile, in this case tinv(1-0.05/2, 51-1) =

2.0086.

The 95% confidence interval for the population mean, µ, is
[
10.098−2.0086× 1.4732p

51
, 10.098+2.0086× 1.4732p

51

]
= [9.6836,10.5124].

Thus, the unknown mean µ belongs to the interval [9.6836,10.5124] with con-
fidence 95%. That means that if the sample is obtained many times and for
each sample the confidence interval is calculated, 95% of the intervals would
contain µ.

To find, say, the 90% confidence interval for the population variance, σ2, we
need χ2 quantiles, chi2inv(1-0.10/2, 51-1) = 67.5048, and chi2inv(0.10/2,

51-1) = 34.7643. According to (7.7), the interval is

[(51−1)×2.1702/67.5048, (51−1)×2.1702/34.7643]= [1.6074,3.1213].

Thus, the interval [1.6074,3.1213] covers the population variance σ2 with a
confidence of 90%.
�

Example 7.9. An alternative confidence interval for the normal variance is
possible. Since by the CLT s2 approx∼ N

(
σ2, 2σ4

n−1

)
(Can you explain why?),

when n is not small, an approximate (1−α)100% confidence interval for σ2 is
[

s2 − z1−α/2 ·
p

2 s2
p

n−1
, s2 + z1−α/2 ·

p
2 s2

p
n−1

]
.

In Example 7.8, s2 = 2.1702 and n = 51. A 90% confidence interval for the
variance was [1.6074,3.1213]. By normal approximation,

s2 = 2.1702; n=51; alpha = 0.1;
[s2 - norminv(1-alpha/2)*sqrt(2)* s2/sqrt(n-1), ...
s2 + norminv(1-alpha/2)*sqrt(2)* s2/sqrt(n-1)]

%ans = 1.4563 2.8841

The interval [1.4563,2.8841] is shorter, compared to the standard con-
fidence interval [1.6074,3.1213] obtained using χ2 quantiles, as 1.4278 <
1.5139. Insisting on equal-probability tails does not lead to the shortest in-
terval since the χ2 distribution is asymmetric. In addition, the approximate
interval is centered at s2. Why, then, is this interval not used? The coverage
probability of a CLT-based interval is smaller than the nominal 1−α, and un-
less n is large (>100, say), this discrepancy can be significant (Exercise 7.26).
�
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7.4.3 Confidence Intervals for the Population Proportion

The sample proportion p̂ = X
n has a range of optimality properties (unbiased-

ness, consistency); however, its realizations are discrete. For this reason confi-
dence intervals for p are obtained using the normal approximation, or connec-
tions of binomial with other continuous distributions, such as F.

Recall that for n large and np or nq not small (>10), binomial X can
be approximated by a N (np,npq) distribution. This approximation leads to
X
n

approx∼ N
(
p, pq

n
)
.

Note, however, that the standard deviation of p̂,
√

pq
n , is not known (it

depends on p), and for the confidence interval one uses a plug-in estimator√
p̂q̂
n instead.

Let p be the population proportion and p̂ the observed sample propor-
tion. Assume that the smaller number np

q , nq
p is larger than 10. Then the

(1−α)100% confidence interval for unknown p is

[
p̂− z1−α/2

√
p̂ q̂
n

, p̂+ z1−α/2

√
p̂ q̂
n

]
.

This interval is known as the Wald interval (Wald and Wolfowitz, 1939).

The Wald interval is used most frequently but its performance is subop-
timal and even poor when p is close to 0 or 1. Figure 7.8a demonstrates
the performance of Wald’s 95% confidence interval for n = 20 and p rang-
ing from 0.05 to 0.95 with a step of 0.01. The plot is obtained by simula-
tion ( waldsimulation.m). For each (“true”) p, 100,000 binomial proportions
are simulated, the Wald confidence intervals calculated, and the proportion
of those intervals containing p is plotted. Notice that for nominal 95% con-
fidence, the actual coverage probability may be much smaller, depending on
true p.

Unless the sample size n is very large, the Wald interval should not be
used. The performance of Wald’s interval can be improved by continuity cor-
rections:

[
p̂− 1

2n
− z1−α/2

√
p̂ q̂
n

, p̂+ 1
2n

+ z1−α/2

√
p̂ q̂
n

]
.

Figure 7.8b shows the coverage probability of Wald’s corrected interval.
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Fig. 7.8 (a) Simulated coverage probability for Wald’s confidence interval for the true bi-
nomial proportion p ranging from 0.05 to 0.95, and n = 20. For each p, 100,000 binomial
proportions are simulated, the Wald confidence intervals calculated, and the proportion of
those containing p plotted. (b) The same as (a), but for the corrected Wald interval.

There is a range of intervals that have a performance superior to Wald’s
interval. An overview of several alternatives is provided next.

Adjusted Wald Interval. The adjusted Wald interval (Agresti and Coull,
1998) uses p∗ = X+2

n+4 as an estimator of the proportion. Adding “two successes
and two failures” was proposed by Wilson (1927).

[
p∗ − z1−α/2

√
p∗q∗

n+4
, p∗ + z1−α/2

√
p∗q∗

n+4

]
.

We will see in the next chapter that Wilson’s proposal p∗ has a Bayesian jus-
tification (p. 289).

Wilson Score Interval. The Wilson score interval is another adjustment to
the Wald interval based on the so-called Wilson-score test (Wilson, 1927; Hogg
and Tanis, 2001):


 1

1+ z2/n


 p̂+ z2

2n
− z

√
p̂ q̂
n

+ z2

4n2


 ,

1
1+ z2/n


 p̂+ z2

2n
+ z

√
p̂ q̂
n

+ z2

4n2





 ,

where z is z1−α/2. This interval can be easily obtained by solving the inequality

|p̂− p| ≤ z1−α/2

√
p(1− p)

n
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with respect to p. After squaring the left- and right-hand sides and some alge-
bra one gets the quadratic inequality

p2

(
1+

z2
1−α/2

n

)
− p

(
2p̂+

z2
1−α/2

n

)
+ p̂2 ≤ 0,

for which the solution coincides with Wilson’s score interval.

Clopper–Pearson Interval. The Clopper–Pearson confidence interval (Clop-
per and Pearson, 1934) does not use normal approximation but, rather, an ex-
act link between binomial and F distributions. For 0 < X < n, the (1−α) ·100%
Clopper–Pearson confidence interval is

[
X

X + (n− X +1)F∗ ,
(X +1)F∗∗

n− X + (X +1)F∗∗

]
,

where F∗ is the (1−α/2)-quantile of the Fν1,ν2 -distribution with ν1 = 2(n−X+1)
and ν2 = 2X and F∗∗ is the (1−α/2)-quantile of the Fν1,ν2 -distribution with
ν1 = 2(X +1) and ν2 = 2(n−X ). When X = 0, the interval is [0,1− (α/2)1/n] and
for X = n, [(α/2)1/n,1].

Anscombe’s ArcSin Interval. For X ∼ B in(n, p) Anscombe (1948) showed
that if p∗ = X+3/8

n+3/4 , then the quantity

2
p

n(arcsin
√

p∗ −arcsin
p

p)

has an approximately standard normal distribution. From this result it follows
that

[
sin2

(
arcsin

√
p∗ − z1−α/2

2
p

n

)
, sin2

(
arcsin

√
p∗ + z1−α/2

2
p

n

)]

is the (1−α)100% confidence interval for p.

The following example shows the comparative performance of different
confidence intervals for the population proportion.

Example 7.10. Cyclosporine Reversal Study. An interesting case study in-
volved research on the therapeutic benefits of cyclosporine on patients with
chronic inflammatory bowel disease (Crohn’s disease). In a double-blind clin-
ical trial, researchers reported (Brynskov et al., 1989) that out of 37 patients
with Crohn’s disease resistant to standard therapies, 22 improved after a
3-month period. This proportion was significantly higher than that for the
placebo group (11/34). The study was published in the New England Journal
of Medicine.

However, at the 6-month follow-up, no significant differences were found
between the treatment group and the control. In the cyclosporine group, 30
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patients did not improve, compared to 23 out of 34 in the placebo group
(Brynskov et al., 1991). Thus, the proportion of patients who benefited in
the cyclosporine group dropped from p̂1 = 22/37 = 59.46% at the 3-month to
p̂2 = 7/37 = 18.92% at the 6-month follow-up. The researchers state: “We con-
clude that a short course of cyclosporin treatment does not result in long-term
improvement in active chronic Crohn’s disease.”

To illustrate the performance of several introduced confidence intervals for
the population proportion, we will find Wald’s, Wilson’s, Wilson score, Clopper–
Pearson’s, and Arcsin 95% confidence intervals for the proportion of patients
who benefited in the cyclosporine group at the 3-month and 6-month follow-
ups. Calculations are performed in MATLAB.

%Cyclosporine Clinical Trials
%
n = 37; %number of subjects in cyclosporine group
% three months
X1 = 22; p1hat = X1/n; q1hat = 1-p1hat;
% six months
X2 = 7; p2hat = X2/n; q2hat = 1- p2hat;
%===============================
%Wald Intervals
W3 = [p1hat - norminv(0.975) * sqrt( p1hat * q1hat / n), ...

p1hat + norminv(0.975) * sqrt( p1hat * q1hat / n)]
W6 = [p2hat - norminv(0.975) * sqrt( p2hat * q2hat / n), ...

p2hat + norminv(0.975) * sqrt( p2hat * q2hat / n)]
%W3 = 0.4364 0.75279
%W6 = 0.06299 0.31539
%==================================
% Wilson Intervals

p1hats = (X1+2)/(n+4); q1hats = 1-p1hats;
p2hats = (X2+2)/(n+4); q2hats = 1- p2hats;

Wi3 = [p1hats - norminv(0.975)*sqrt( p1hats * q1hats/(n+4)), ...
p1hats + norminv(0.975) * sqrt( p1hats * q1hats/(n+4))];

Wi6 = [p2hats - norminv(0.975)*sqrt( p2hats * q2hats/(n+4)), ...
p2hats + norminv(0.975) * sqrt( p2hats * q2hats/(n+4))];

% Wi3 = 0.43457 0.73617
% Wi6 = 0.092815 0.34621
%==========================
%Wilson Score Intervals
z=norminv(0.975);
Wis3 = [ 1/(1 + z^2/n) * (p1hat + z^2/(2 * n) - ...

z * sqrt( p1hat * q1hat / n + z^2/(4 * n^2))), ...
1/(1 + z^2/n) * (p1hat + z^2/(2 * n) + ...
z * sqrt( p1hat * q1hat / n + z^2/(4 * n^2)))];

Wis6 = [ 1/(1 + z^2/n) * (p2hat + z^2/(2 * n) - ...
z * sqrt( p2hat * q2hat / n + z^2/(4 * n^2))), ...
1/(1 + z^2/n) * (p2hat + z^2/(2 * n) + ...
z * sqrt( p2hat * q2hat / n + z^2/(4 * n^2)))];

%Wis3 = 0.43486 0.73653
%Wis6 = 0.0948 0.34205
%=========================
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% Clopper-Pearson Intervals
Fs = finv(0.975, 2*(n-X1 + 1), 2*X1);
Fss = finv(0.975, 2*(X1+1), 2*(n-X1));
CP3 = [ X1/(X1 + (n-X1+1).*Fs), ...

(X1+1).*Fss./(n - X1 + (X1+1).*Fss)];

Fs = finv(0.975, 2*(n-X2 + 1), 2*X2);
Fss = finv(0.975, 2*(X2+1), 2*(n-X2));
CP6 = [ X2/(X2 + (n-X2+1).*Fs), ...

(X2+1).*Fss./(n - X2 + (X2+1).*Fss)];
%CP3 = 0.421 0.75246
%CP6 = 0.079621 0.35155
%==========================================
% Anscombe ARCSIN intervals
%
p1h = (X1 + 3/8)/(n + 3/4); p2h = (X2 + 3/8)/(n + 3/4);

AA3 = [(sin(asin(sqrt(p1h))-norminv(0.975)/(2*sqrt(n))))^2, ...
(sin(asin(sqrt(p1h))+norminv(0.975)/(2*sqrt(n))))^2];

AA6 = [(sin(asin(sqrt(p2h))-norminv(0.975)/(2*sqrt(n))))^2, ...
(sin(asin(sqrt(p2h))+norminv(0.975)/(2*sqrt(n))))^2];

%AA3 = 0.43235 0.74353
%AA6 = 0.085489 0.3366

Figure 7.9 shows the pairs of confidence intervals at the 3- and 6-month
follow-ups. Wald’s intervals are in black, Wilson’s in red, the Wilson score in
green, Clopper–Pearson’s in magenta, and ArcSin in blue. Notice that for all
methods, the confidence intervals at the 3- and 6-month follow-ups are well
separated, suggesting a significant change in the proportions. There are differ-
ences among the intervals, in their centers and lengths, for a particular time
of follow-up. However, as Fig. 7.9 indicates, these differences are not large.
�

How does one find the confidence interval for the probability of success if
in n trials no successes have been observed?

7.4.4 Confidence Intervals for Proportions When X = 0

When the binomial probability is small, then it is not unusual that out of n tri-
als no successes have been observed. How do we find a (1−α)100% confidence
interval in such a case? The Clopper–Pearson interval is possible for X = 0,
and it is given by [0,1− (α/2)1/n].

An alternative interval can be established from the following considera-
tion. Note that (1− p)n is the probability of no success in n trials, and this
probability is at least α:

(1− p)n ≥α.
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Fig. 7.9 Confidence intervals at 3- and 6-month follow-ups. Wald’s intervals are in black,
Wilson’s in red, the Wilson Score in green, Clopper–Pearson’s in magenta, and ArcSin in
blue.

Since n log(1− p)≥ log(α) and log(1− p)≈−p, then

p ≤− log(α)/n.

This is a basis for the so-called 3/n rule: 95% confidence interval for p is [0,3/n]
if no successes have been observed since − log(0.05) = 2.9957 ≈ 3. By symme-
try, the 95% confidence interval for p when n successes are observed in n
experiments is [1−3/n,1]. When n is small, this rule leads to intervals that
are too wide to be useful. See Exercise 7.29 for a comparison of the Clopper–
Pearson and 3/n-rule intervals. We will argue in the next chapter that in the
case where no successes are observed, one should approach the inference in a
Bayesian manner.

7.4.5 Designing the Sample Size with Confidence Intervals

In all previous examples it was assumed that we had data in hand. Thus,
we looked at the data after the sampling procedure had been completed. It
is often the case that we have control over what sample size to adopt before
the sampling. How large should the sample be? A sample that is too small
may affect the validity of our statistical conclusions. On the other hand, an
unnecessarily large sample wastes money, time, and resources.

The length L of the (1−α)100% confidence interval is L = 2z1−α/2σ/
p

n for
the normal mean and L = 2z1−α/2

√
p̂(1− p̂)/n for the population proportion.
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The sample size n is determined by solving the above equations when L is
fixed.

(i) Sample size for estimating the mean: σ2 is known:

n≥
4z2

1−α/2σ
2

L2 ,

where L is the length of the interval.
(ii) Sample size for estimating the proportion:

n ≥
4z2

1−α/2 p̂(1− p̂)

L2 ,

where p̂ is the sample proportion.
Designing the sample size usually precedes the sampling. In the ab-

sence of data, p̂ is our best guess. In the absence of any information, the
most conservative choice is p̂ = 0.5.

It is possible to express L2 in the units of variance of observations, σ2, for
the normal and p(1− p) for the Bernoulli distribution. Therefore, it is suffi-
cient to state that L/σ is 1/2, for example, or that L/

√
p(1− p) is 1/4, and the

required sample size can be calculated.

Example 7.11. Cholesterol Level. Suppose you are designing a cholesterol
study experiment and would like to estimate the mean cholesterol level of all
students on a large metropolitan campus. You plan to take a random sample of
n students and measure their cholesterol levels. Previous studies have shown
that the standard deviation is 25, and you intend to use this value in planning
your study.

If a 99% confidence interval with a total length not exceeding 12 is desired,
how many students should you include in your sample?

Sol. For a 99% confidence level, the normal 0.995 quantile is needed, z0.995 =
2.58. Then, n ≥ 4·2.57582·252

122 = 115.1892, and the sample size is 116 since
115.1892 should be rounded to the closest larger integer.
�

The margin of error is defined as half of the length of a 95% confidence interval
for unknown proportion, location, scale, or some other population parameter
of interest.

In popular use, however, margin of error is usually connected with public
opinion polls and represents the quantifiable sampling error built into well-
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designed sampling schemes. For estimating the true proportion of voters fa-
voring a particular candidate, an approximate 95% confidence interval is

[
p̂−1.96

√
p̂ q̂/n, p̂+1.96

√
p̂ q̂/n

]
,

where p̂ is the sample proportion of voters favoring the candidate, q̂ = 1− p̂,
1.96 is the normal 97.5 percentile, and n is the sample size. Since p̂ q̂ ≤ 1/4,
the margin of error, 1.96

√
p̂ q̂/n, is usually conservatively rounded to 1p

n .
For example, if a survey of n = 1600 voters yields that 52% favor a particu-

lar candidate, then the margin of error can be estimated as 1/
p

1600 = 1/40 =
0.025= 2.5% and is independent of the realized proportion of 52%.

However, if the true proportion is not close to 1/2, the precision of the mar-
gin of error can be improved by selecting a less conservative upper bound on
p̂ q̂. For example, if a survey of n = 1600 citizens yields that 16% of them fa-
vor policy P, the margin of error can be estimated as 1.96 ·

p
0.2 ·0.8/1600 ≈

1/50 = 0.02 = 2% if we are sure that the true proportion of citizens supporting
policy P does not exceed 20%.

7.5 Prediction and Tolerance Intervals*

In addition to confidence intervals for the parameters, a researcher may be
interested in predicting future observations. This leads to prediction intervals.

We will exemplify the prediction interval for predicting future observations
from a normal population N (µ,σ2) once X1, . . . , Xn have been observed. De-
note the future observation by Xn+1.

Consider X and Xn+1. These two random variables are independent and
their difference has a normal distribution,

X − Xn+1 ∼N (0,σ2/n+σ2),

thus, Z = X−Xn+1
σ
p

1+1/n
has a standard normal distribution. This leads to (1−α)100%

prediction intervals for Xn+1:

If σ2 is known, then

[
X − z1−α/2 σ

√
1+ 1

n
, X + z1−α/2 σ

√
1+ 1

n

]
.

If σ2 is not known, then
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[
X − tn−1,1−α/2 s

√
1+ 1

n
, X + tn−1,1−α/2 s

√
1+ 1

n

]
.

Note that prediction intervals contain the factor
√

1+ 1
n in place of

√
1
n

in matching confidence intervals for the normal population mean. When n is
large, the prediction interval can be substantially larger than the confidence
interval. This is because the uncertainty about the future observation has two
parts: (1) uncertainty about its mean plus (2) uncertainty about the individual
response.

Tolerance intervals place bounds on fixed portions of population distribu-
tions with a specified confidence. For example, the question What interval will
contain 95% of the population measurements with 99% confidence? is answered
by a tolerance interval. The ends of a tolerance interval are called tolerance
limits. A manufacturer of medical devices might be interested in the propor-
tion of production for which a particular dimension falls within a given range.
For normal populations, the two-sided interval is defined as

[X −ks, X +ks], k =

√√√√ (n2 −1) z2
1−γ/2

n χ2
n−1,α

(7.8)

and interpreted as follows. With a confidence of 1−α, the proportion of 1−γ
of population measurements will fall between the lower and upper bounds in
(7.8).

Example 7.12. For sample size n = 20, X = 12, s = 0.1, confidence 1−α= 99%,
and proportion 1−γ = 95%, the tolerance factor k is calculated as in the fol-
lowing MATLAB script:

n=20;
z = norminv(1-0.05/2) %proportion of 1-0.05=0.95

%z = 1.9600
xi = chi2inv(0.01, n-1) %confidence 1-0.01=0.99

%xi = 7.6327
k = sqrt( (n^2-1) * z^2/(n * xi) )

%k = 3.1687
[12-k*0.1 12+k*0.1]

%11.6831 12.3169
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and the tolerance interval is [11.6831,12.3169].
�

7.6 Confidence Intervals for Quantiles*

The confidence interval for a normal quantile is based on a noncentral t dis-
tribution. Let X1, . . . , Xn be a sample of size n with the sample mean X and
sample standard deviation s.

It is of interest to find a confidence interval on the population’s pth quan-
tile, µ+ zp ×σ, with a confidence level of 1−α.

The confidence interval is given by [L,U], where

L = X + s ·nct(α/2,n−1,
p

n · zp)/
p

n,

U = X + s ·nct(1−α/2,n−1
p

n · zp)/
p

n,

and nct(q,d f , nc) is the q-quantile of the noncentral t distribution (p. 217)
with d f the degrees of freedom and noncentrality parameter nc.

The confidence intervals for quantiles can be based on order statistics when
normality is not assumed. For example, instead of declaring the confidence
interval for the mean, one should report the confidence interval on the median
if the normality of the data is a concern. Let X(1), X(2), . . . , X(n) be the order
statistics of the sample. Then a (1−α)100% confidence interval for the median
Me is

X(h) ≤ Me ≤ X(n−h+1).

The value of h is usually given by tables. For large n (n > 40) a good approxi-
mation for h is an integer part of

n− z1−α/2
p

n−1
2

.

As an illustration, if n = 300, the 95% confidence interval for the median is
[X(132), X(169)] since

n = 300;
h = floor( (n - 1.96 * sqrt(n) - 1)/2 )
% h = 132
n - h + 1

% ans = 169
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7.7 Confidence Intervals for the Poisson Rate*

Recall that an observation X coming from P oi(λ) has both a mean and a vari-
ance equal to the rate parameter, EX = Var X = λ, and that Poisson random
variables are “additive in the rate parameter”:

X1, X2, . . . , Xn ∼P oi(λ) ⇒ nX =
n∑

i=1
Xi ∼P oi(nλ). (7.9)

The asymptotically shortest Wald-type (1 −α)100% interval for λ is ob-
tained using the fact that Z =

√
n
λ (X −λ) is approximately the standard nor-

mal. The inequality
√

n
λ

|X −λ| ≤ z1−α/2

leads to

λ2 −λ
(
2X +

z2
1−α/2

n

)
+ (X )2 ≤ 0,

which solves to

X +

z2
1−α/2

2n
− z1−α/2

√
X
n

+
z2

1−α/2

4n2 , X +
z2

1−α/2

2n
+ z1−α/2

√
X
n

+
z2

1−α/2

4n2


 .

Other Wald-type intervals are derived from the fact that
p

X−
p
λp

1/(4n)
is approx-

imately the standard normal. Variance stabilizing, modified variance stabiliz-
ing, and recentered variance stabilizing (1−α)100% confidence intervals are
given as (Barker, 2002)


X − z1−α/2

√
X
n

, X + z1−α/2

√
X
n


 ,


X +

z2
1−α/2

4n
− z1−α/2

√
X
n

, X +
z2

1−α/2

4n
+ z1−α/2

√
X
n


 ,


X +

z2
1−α/2

4n
− z1−α/2

√
X +3/8

n
, X +

z2
1−α/2

4n
+ z1−α/2

√
X +3/8

n


 .

An alternative approach is based on the link between Poisson and χ2 dis-
tributions. Namely, if X ∼P oi(λ), then
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P(X > x)=P(Y < 2λ), for Y ∼ χ2
2x

and the (1−α)100% confidence interval for λ when X is observed is
[

1
2
χ2

2X ,α/2,
1
2
χ2

2(X+1),1−α/2

]
,

where χ2
2X ,α/2 and χ2

2(X+1),1−α/2 are α/2 and 1−α/2 quantiles of the χ2 dis-
tribution with 2X and 2(X + 1) degrees of freedom, respectively. Due to the
additivity property (7.9), the confidence interval changes slightly for the case
of an observed sample of size n, X1, X2, . . . , Xn. One finds S =∑n

i=1 Xi, which is
a Poisson with parameter nλ and proceeds as in the single-observation case.
The interval obtained is for nλ and the bounds should be divided by n to get
the interval for λ:

[
1

2n
χ2

2S,α/2,
1

2n
χ2

2(S+1),1−α/2

]
.

Example 7.13. Counts of α-Particles. Rutherford et al. (1930, pp. 171–172)
provide descriptions and data on an experiment by Rutherford and Geiger
(1910) on the collision of α-particles emitted from a small bar of polonium with
a small screen placed at a short distance from the bar. The number of such
collisions in each of 2608 eight-minute intervals was recorded. The distance
between the bar and screen was gradually decreased so as to compensate for
the decay of radioactive substance.

X 0 1 2 3 4 5 6 7 8 9 10 11 ≥ 12
Frequency 57 203 383 525 532 408 273 139 45 27 10 4 2

It is postulated that because of the large number of atoms in the bar and
the small probability of any of them emitting a particle, the observed frequen-
cies should be well modeled by a Poisson distribution.

%Rutherford.m
X=[ 0 1 2 3 4 5 6 7 8 9 10 11 12 ];
fr=[ 57 203 383 525 532 408 273 139 45 27 10 4 2];
n = sum(fr); %number of experiments//time intervals
rfr = fr./n; %relative frequencies %n=2608
xbar = X * rfr’ ; %lambdahat = xbar = 3.8704
tc = X * fr’; %total number of counts tc = 10094
%Recentered Variance Stabilizing

[xbar + (norminv(0.975))^2/(4*n) - ...
norminv(0.975) * sqrt(( xbar + 3/8)/n )...

xbar + (norminv(0.975))^2/(4*n) + ...
norminv(0.975) * sqrt( (xbar+ 3/8)/n )]

% 3.7917 3.9498
% Poisson/Chi2 link

[1/(2 *n) * chi2inv(0.025, 2 * tc) ...
1/(2 * n) * chi2inv(0.975, 2*(tc + 1))]
% 3.7953 3.9467
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The estimator for λ is λ̂ = X = 3.8704, the Wald-type recentered variance
stabilizing interval is [3.7917,3.9498], and the Pearson/chi-square link confi-
dence interval is [3.7953,3.9467]. The intervals are very close to each other
and quite tight due to the large sample size.
�

Sample Size for Estimating λ. Assume that we are interested in esti-
mating the Poisson rate parameter λ from the sample X1, . . . , Xn. Chen (2008)
provided a simple way of finding the sample size n necessary for λ̂= 1

n
∑n

i=1 Xi
to satisfy

P({|λ̂−λ| < εa} or {|λ̂/λ−1| < εr})> 1−δ

for δ,εr, and εa small. The minimal sample size is

n > εr

εa

ln2− lnδ
(1+εr) ln(1+εr)−εr

.

For example, the sample size needed to ensure that the absolute error is
less than 0.5 or that the relative error is less than 5% with a probability of
0.99 is n = 431.

delta = 0.01; epsa =0.5; epsr = 0.05;
n = epsr/epsa * log(2/delta)/((1+epsr)*log(1+epsr)-epsr)
% n = 430.8723

Note that both tolerable relative and absolute errors, εr and εa, need to be
specified since the precision criterion involves the probability of a union.

7.8 Exercises

7.1. Tricky Estimation. A publisher gives the proofs of a new book to two
different proofreaders, who read it separately and independently. The first
proofreader found 60 misprints, the second proofreader found 70 misprints,
and 50 misprints were found by both. Estimate how many misprints remain
undetected in the book? Hint: Refer to Example 5.10.

7.2. Laplace’s Rule of Succession. Laplace’s Rule of Succession states that if
an event appeared X times out of n trials, the probability that it will appear
in a future trial is X+1

n+2 .
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(a) If X+1
n+2 is taken as an estimator for binomial p, compare the MSE of this

estimator with the MSE of the traditional estimator, p̂ = X
n .

(b) Represent MSE from (a) as the sum of the estimator’s variance and the
bias squared.

7.3. Neurons Fire in Potter’s Lab. The data set neuronfires.mat was
compiled by student Ravi Patel while working in Professor Steve Potter’s
lab at Georgia Tech. It consists of 989 firing times of a cell culture of neu-
rons. The recorded firing times are time instances when a neuron sent a
signal to another linked neuron (a spike). The cells, from the cortex of an
embryonic rat brain, were cultured for 18 days on multielectrode arrays.
The measurements were taken while the culture was stimulated at the
rate of 1 Hz. It was postulated that firing times form a Poisson process;
thus interspike intervals should have an exponential distribution.
(a) Calculate the interspike intervals T using MATLAB’s diff command.
Check the histogram for T and discuss its resemblance to the exponential
density. By the moment matching estimator argue that exponential param-
eter λ is close to 1.
(b) According to (a), the model for interspike intervals is T ∼ E (1). You are
interested in the proportion of intervals that are shorter than 3, T ≤ 3. Find
this proportion from the theoretical model E (1) and compare it to the esti-
mate from the data. For the theoretical model, use expcdf and for empirical
data use sum(T <= 3)/length(T).

X –1 0 1
Prob θ 2θ 1−3θ

(a) What is the possible range for θ?
(b) What is the MLE for θ.
(c) How would the MLE look like for a sample of size n?

7.5. MLE for Two Continuous Distributions. Find the MLE for parameter
θ if the model for observations X1, X2, . . . , Xn, is

(a) f (x|θ)= θ

x2 , 0< θ ≤ x;

(b) f (x|θ)= θ−1
xθ

, x≥ 1, θ > 1.

7.6. Match the Moment. The geometric distribution (X is the number of fail-
ures before the first success) has a probability mass function of

f (x|p)= qx p, x= 0,1,2, . . . .

7.4. The MLE in a Discrete Case.A sample −1,1,1,0,−1,1,1,1,0,1,1,0,−1,1,1
was observed from a population with a probability mass function of
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Suppose X1, X2, . . . , Xn are observations from this distribution. It is known
that EXi = 1−p

p . What would you report as the moment-matching estimator
if the sample X1 = 2, X2 = 6, X3 = 1 were observed?
What is the MLE for p?

7.7. Weibull Distribution. The two-parameter Weibull distribution is given
by the density

f (x)= aλaxa−1e−(λx)a
, a > 0,λ> 0, x≥ 0,

with mean and variance

EX = Γ(1+1/a)
λ

, and Var X = 1
λ2

[
Γ(1+2/a)−Γ(1+1/a)2

]
.

Assume that the “shape” parameter a is known and equal to 1/2.
(a) Propose two moment-matching estimators for λ.
(b) If X1 = 1, X2 = 3, X3 = 2, what are the values of the estimator?

Hint: Recall that Γ(n)= (n−1)!

7.8. Rate Parameter of Gamma. Let X1, . . . , Xn be a sample from a gamma
distribution given by the density

f (x)= λaxa−1

Γ(a)
e−λx, a > 0,λ> 0, x≥ 0,

where shape parameter a is known and rate parameter λ is unknown and
of interest.
(a) Find the MLE of λ.
(b) Using the fact that X1 + X2 + ·· · + Xn is also gamma distributed with
parameters na and λ, find the expected value of MLE from (a) and show
that it is a biased estimator of λ.
(c) Modify the MLE so that it is unbiased. Compare MSEs for the MLE and
the modified estimator.

7.9. Estimating the Parameter of a Rayleigh Distribution. If two random
variables X and Y are independent of each other and normally distributed
with variances equal to σ2, then the variable R =

p
X2 +Y 2 follows the

Rayleigh distribution with scale parameter σ. An example of such a vari-
able would be the distance of darts from the target in a dart-throwing game
where the deviations in the two dimensions of the target plane are inde-
pendent and normally distributed. The Rayleigh random variable R has a
density
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f (r) = r
σ2 exp

{
− r2

2σ2

}
, r ≥ 0,

ER = σ

√
π

2
ER2 = 2σ2.

(a) Find the two moment-matching estimators of σ.
(b) Find the MLE of σ.
(c) Assume that R1 = 3,R2 = 4,R3 = 2, and R4 = 5 are Rayleigh-distributed
random observations representing the distance of a dart from the center.
Estimate the variance of the horizontal error, which is theoretically a zero-
mean normal.
(d) In Example 5.20, the distribution of a square root of an exponential
random variable with a rate parameter λ was Rayleigh with the following
density:

f (r)= 2λrexp{−λr2}.

To find the MLE for λ, can you use the MLE for σ from (b)?

7.10. Monocytes Among Blood Cells. Eisenhart and Wilson (1943) report the
number of monocytes in 100 blood cells of a cow in 113 successive weeks.

Monocytes Frequency Monocytes Frequency
0 0 7 12
1 3 8 10
2 5 9 11
3 13 10 7
4 19 11 3
5 13 12 2
6 15 13+ 0

(a) If the underlying model is Poisson, what is the estimator of λ?
(b) If the underlying model is Binomial B in(100, p), what is the estimator
of p?
(c) For the models specified in (a) and (b) find theoretical or “expected” fre-
quencies.
Hint: Suppose the model predicts P(X = k) = pk, k = 0,1, . . . ,13. The ex-
pected frequency of X = k is 113× pk.

7.11. Estimation of θ in U (0,θ). Which of the two estimators in Example 7.5 is
unbiased? Find the MSE of both estimators. Which one has a smaller MSE?

7.12. Estimating the Rate Parameter in a Double Exponential Distribu-
tion. Let X1, . . . , Xn follow double exponential distribution with density

f (x|θ)= θ

2
e−θ|x|, −∞< x<∞, θ > 0.
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For this distribution, EX = 0 and Var (X ) = EX2 = 2/θ2. The double expo-
nential distribution, also known as Laplace’s distribution, is a ubiquitous
model in statistics. For example, it models the difference of two exponential
variates, or absolute value of an exponential random variable, etc.
(a) Find a moment-matching estimator for θ.
(b) Find the MLE of θ.
(c) Evaluate the two estimators from (a) and (b) for a sample X1 =−2, X2 =
3, X3 = 2 and X4 =−1.

7.13. Reaction Times I. A sample of 20 students is randomly selected and
given a test to determine their reaction time in response to a given stim-
ulus. Assume that individual reaction times are normally distributed. If
the mean reaction time is determined to be X = 0.9 (in seconds) and the
standard deviation is s = 0.12, find
(a) The 95% confidence interval for the unknown population mean µ;
(b) The 98.5% confidence interval for the unknown population mean µ;
(c) The 95% confidence interval for the unknown population variance σ2.

7.14. Reaction Times II. Under the conditions in the previous problem, assume
that the population standard deviation was known to be σ= 0.12. Find
(a) The 98.5% confidence interval for the unknown mean µ;
(b) The sample size necessary to produce a 95% confidence interval for µ of
length 0.07.

7.15. Toxins. An investigation on toxins produced by molds that infect corn
crops was performed. A biochemist prepared extracts of the mold culture
with organic solvents and then measured the amount of toxic substance
per gram of solution. From 11 preparations of the mold culture the follow-
ing measurements of the toxic substance (in milligrams) were obtained: 3,
2, 5, 3, 2, 6, 5, 4.5, 3, 3, and 4.
Compute a 99% confidence interval for the mean weight of toxic substance
per gram of mold culture. State the assumption you make about the popu-
lation.

7.16. Bias of s2
∗∗. For a sample X1, . . . , Xn from a N (µ,σ2) population, find the

bias of s2
∗ = 1

n
∑

i(Xi − X )2 as an estimator of variance σ2.

7.17. COPD Patients. Acute exacerbations of disease symptoms in patients
with chronic obstructive pulmonary disease (COPD) often lead to hospital-
ization and impose a great financial burden on the health care system. The
study by Ghanei et al. (2007) aimed to determine factors that may predict
rehospitalization in COPD patients.
A total of 157 COPD patients were randomly selected from all COPD pa-
tients admitted to the chest clinic of Baqiyatallah Hospital during the year
2006. Subjects were followed for 12 months to observe the occurrence of any
disease exacerbation that might lead to hospitalization. Over the 12-month
period, 87 patients experienced disease exacerbation. The authors found
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significant associations between COPD exacerbation and monthly income,
comorbidity score, and depression using logistic regression tools. We are
not interested in these associations in this exercise, but we are interested
in the population proportion of all COPD patients that experienced disease
exacerbation over a 12-month period, p.
(a) Find an estimator of p based on the data available. What is an approxi-
mate distribution of this estimator?
(b) Find the 90% confidence interval for the unknown proportion p.
(c) How many patients should be sampled and monitored so that the 90%
confidence interval as in (b) does not exceed 0.03 in length.
(d) The hospital challenges the claim by the local health system authorities
that half of the COPD patients experience disease exacerbation in a 1-year
period, claiming that the proportion is significantly higher. Can the hospital
support their claim based on the data available? Use α = 0.05. Would you
reverse the decision if α were changed to 10%?

7.18. Right to Die. A Gallup Poll estimated the support among Americans for
“right to die” laws. In the survey, 1528 adults were asked whether they
favor voluntary withholding of life-support systems from the terminally ill.
The results: 1238 said YES.
(a) Find the 99% confidence interval for the percentage of all adult Ameri-
cans who are in favor of “right to die” laws.
(b) If the margin of error1 is to be smaller than 0.01, what sample size is
needed to achieve this requirement? Assume p̂ = 0.8.

7.19. Exponentials Parameterized by the Scale. A sample X1, . . . , Xn was
selected from a population that has an exponential E (λ) distribution with
a density of f (x|λ)= 1

λ e−
x
λ , x ≥ 0,λ> 0. We are interested in estimating the

parameter λ.
(a) What are the moment-matching and MLE estimators of λ based on
X1, . . . , Xn?
(b) Two independent observations Y1 ∼ E (λ/2) and Y2 ∼ E (2λ) are available.
Combine them (make a specific linear combination) to obtain an unbiased
estimator of λ. What is the variance of the proposed estimator?
(c) Two independent observations Z1 ∼ E (1.1λ) and Z2 ∼ E (0.9λ) are avail-
able. An estimator of λ in the form λ̂= pZ1+(1−p)Z2, 0≤ p ≤ 1 is proposed.
What p minimizes the magnitude of bias of λ̂? What p minimizes the vari-
ance of λ̂?

7.20. Bias in Estimator for Exponential λ Distribution. If the exponen-
tial distribution is parameterized with λ as the scale parameter, f (x|λ) =
1
λ exp{−x/λ}, x ≥ 0,λ > 0, (as in MATLAB), then λ̂ = X is an unbiased es-
timator of λ. However, if it is parameterized with λ as a rate parameter,
f (x|λ)=λexp{−λx}, x ≥ 0,λ> 0, then λ̂= 1/X is biased. Find the bias of this

1 There are several definitions for margin of error, the most common one is half of the length
of a 95% confidence interval.
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estimator. Hint: Argue that 1/
∑n

i=1 Xi has an inverse gamma distribution
with parameters n and λ and take the expectation.

7.21. Yucatan Miniature Pigs. Ten adult male Yucatan miniature pigs were
exposed to various durations of constant light (“Lighting”), then sacri-
ficed after experimentally controlled time delay (“Survival”), as described
in Dureau et al. (1996). Following the experimental protocol, entire eyes
were fixed in Bouin’s fixative for 3 days. The anterior segment (cornea, iris,
lens, ciliary body) was then removed and the posterior segment divided into
five regions: Posterior pole (including optic nerve head and macula) (“P”),
nasal (“N”), temporal (“T”), superior (“S”), and inferior (“I”). Specimens were
washed for 2 days, embedded in paraffin, and subjected to microtomy per-
pendicular to the retinal surface. Every 200µm, a 10-µm-thick section was
selected and 20 sections were kept for each retinal region. Sections were
stained with hematoxylin. The outer nuclear layer (ONL) thickness was
measured by an image-analyzing system (Biocom, Les Ulis, France), and
three measures were performed for each section at regularly spaced inter-
vals, so that 60 measures were made for each retinal region. The experi-
mental protocol for 11 animals was as follows (Lighting and Survival times
are in weeks).

Animal Lighting duration Survival time
Control 0 0

1 1 12
2 2 10
3 4 0
4 4 4
5 4 6
6 8 0
7 8 4
8 8 8
9 12 0

10 12 4

The data set pigs.mat contains the data structure pigs with

Observe the data pigs.pc and argue that it deviates from normality by us-
ing MATLAB’s qqplot. Transform pigs.pc as x = (pigs.pc - 14)/(33 -14),
to confine x between 0 and 1 and assume a beta Be(a,a) distribution. The
MLE for a is complex (involves a numerical solution of equations with
digamma functions) but the moment matching estimator is straightfor-
ward.
Find a moment-matching estimator for a.

pigs.pc, pigs.p1,...,pigs.p10, representing the posterior pole measure-
ments for the 11 animals. This data set and complete data yucatanpigs.dat
can be found on the book’s Web site page.
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7.22. Computer Games. According to Hamilton (1990), certain computer games
are thought to improve spatial skills. A mental rotations test, measuring
spatial skills, was administered to a sample of school children after they
had played one of two types of computer game. Construct 95% confidence
intervals based on the following mean scores, assuming that the children
were selected randomly and that the mental rotations test scores had a
normal distribution in the population.
(a) After playing the “Factory” computer game: X = 22.47, s= 9.44, n = 19.
(b) After playing the “Stellar” computer game: X = 22.68, s= 8.37, n = 19.
(c) After playing no computer game (control group): X = 18.63, s= 11.13,n =
19.

7.23. Effectiveness in Treating Cerebral Vasospasm. In a study on the ef-
fectiveness of hyperdynamic therapy in treating cerebral vasospasm, Pritz
et al. (1996) reported on the therapy where success was defined as clinical
improvement in terms of neurological deficits. The study reported 16 suc-
cesses out of 17 patients. Using the methods discussed in the text find 95%
confidence intervals for the success rate. Does any of the methods produce
an upper bound larger than 1?

7.24. Alcoholism and the Blyth–Still Confidence Interval. Genetic mark-
ers were observed for a group of 50 Caucasian alcoholics in a study that
aimed at determining whether alcoholism has (in part) a genetic basis. The
antigen (marker) B15 was present in 5 alcoholics. Find the Blyth–Still 99%
confidence interval for the proportion of Caucasian alcoholics having this
antigen.

If either p or q is close to 0, then a precise (1−α)100% confidence in-
terval for the unknown proportion p was proposed by Blyth and Still
(1983). For X ∼B in(n, p),
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7.25. Spores of Amanita phalloides. Exercise 2.4 provides measurements in µm
of 28 spores of the mushroom Amanita phalloides.
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Assuming a normality of measurements, find
(a) A point estimator for the unknown population variance σ2. What is the
sampling distribution of the point estimator?
(b) A 90% confidence interval for the population variance;
(c) (By MATLAB) the minimal sample size that ensures that the upper
bound U of the 90% confidence interval for the variance is at most 30%
larger than the lower bound L, that is, U /L ≤ 1.3.
(d) Miller (1991) showed that the coefficient of variation in a normal sample
of size n has an approximately normal distribution:

s/X approx∼ N

(
σ

µ
,

1
n−1

(
σ

µ

)2 [
1
2
+

(
σ

µ

)2])
.

Based on this asymptotic distribution, a (1−α)100% confidence interval for
the population coefficient of variation σ

µ is approximately
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This approximation works well if n exceeds 10 and the coefficient of vari-
ation is less than 0.7. Find the 95% confidence interval for the population
coefficient of variation σ/µ.

7.26. CLT-Based Confidence Interval for Normal Variance. Refer to Exam-
ple 7.9. Using MATLAB, simulate a normal sample with mean 0 and vari-
ance 1 of size n = 50 and find if a 95% confidence interval for the population
variance contains a 1 (the true population variance). Check this coverage
for a standard confidence interval in (7.7) and for a CLT-based interval from
Example 7.9. Repeat this simulation M = 10000 times, keeping track of the
number of successful coverages. Show that the interval (7.7) achieves the
nominal coverage, while the CLT-based interval has a smaller coverage of
about 2%. Repeat the simulation for sample sizes of n= 30 and n= 200.

7.27. Stent Quality Control. A stent is a tube or mechanical scaffold used
to counteract significant decreases in vessel or duct diameter by acutely
propping open the conduit (Fig. 7.10). Stents are often used to alleviate
diminished blood flow to organs and extremities beyond an obstruction in
order to maintain an adequate delivery of oxygenated blood.
In the production of stents, the quality control procedure aims to identify
defects in composition and coating. Precision z-axis measurements (10 nm
and greater) are obtained along with surface roughness and topographic
surface finish details using a laser confocal imaging system (an example
is the Olympus LEXT OLS3000). Samples of 50 stents from a production
process are selected every hour. Typically, 1% of stents are nonconforming.
Let X be the number of stents in the sample of 50 that are nonconforming.
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Fig. 7.10 A stent used to restore blood flow following a heart attack, in a procedure called
percutaneous coronary intervention.

A production problem is suspected if X exceeds its mean by more than three
standard deviations.
(a) Find the critical value for X that will implicate the production problem.
(b) Find an approximation for the probability that in the next-hour batch of
50 stents, the number X of nonconforming stents will be critical, i.e., will
raise suspicions that the process might have a problem.
(c) Suppose now that the population proportion of nonconforming stents, p,
is unknown. How would one estimate p by taking a 50-stent sample? Is the
proposed estimator unbiased?
(d) Suppose now that a batch of 50 stents produced X = 1. Find the 95%
confidence interval for p.

7.28. Right to Die. A Gallup poll was taken to estimate the support among
Americans for “right to die” laws. In the survey, 1528 adults were asked
whether they favor voluntary withholding of life-support systems from the
terminally ill; 1238 said yes. One is interested in conducting a similar study
on a university campus.
If the margin of error is to be smaller than 2%, what sample size is needed
to achieve that requirement. Assume p̂ = 0.8.

7.29. Clopper–Pearson and 3/n-Rule Confidence Intervals. Using MAT-
LAB compare the performance of Clopper–Pearson and 3/n-rule confidence
intervals when X = 0. Use α = 0.001,0.005,0.01,0.05,0.1 and n = 10 : 10 :
200. Which interval is superior and under what conditions?

7.30. Seventeen Pairs of Rats, Carbon Tetrachloride, and Vitamin B. In
a widely cited experiment by Sampford and Taylor (1959), 17 pairs of rats
were formed by selecting pairs from the same litter. All rats were given
carbon tetrachloride, and one rat from each pair was treated with vitamin
B12, while the other served as a control. In 7 of 17 pairs, the treated rat
outlived the control rat.
(a) Based on this experiment, estimate the population proportion p of pairs
in which the treated rat would outlive the control rat.



7.8 Exercises 275

(b) If the estimated proportion in (a) is the “true” population probability,
what is the chance that in an independent replication of this experiment
one will get exactly 7 pairs (out of 17) in which the treated rat outlives the
control.
(c) Find the 95% confidence interval for the unknown p. Does the interval
contain 1/2? What does p = 1/2 mean in the context of this experiment, and
what do you conclude from the confidence interval.
Would the conclusion be the same if in 140 out of 340 pairs the treated rat
outlived the control?
(d) The length of the 95% confidence interval based on n = 17 in (c) may be
too large. What sample size (number of rat pairs) is needed so that the 95%
confidence interval has a length of `= 0.2?

7.31. Hemocytometer Counts. A set of 1600 squares on a hemocytometer is
inspected and the number of cells is counted in each square. The number of
squares with a particular count is given in the table below:

Count 0 1 2 3 4 5 6 7
# Squares 5 24 77 139 217 262 251 210
Count 8 9 10 11 12 13 14 15
# Squares 175 108 63 36 20 9 2 1

Assume that the count has a Poisson distribution P oi(λ) and find an esti-
mator of λ.

7.32. Predicting Alkaline Phosphatase. Refer to BUPA liver disorder data,
BUPA.dat|mat|xlsx. The second column gives measurements of alka-

line phosphatase among 345 male individuals affected by liver disorder. If
variable X represents the logarithm of this measurement, its distribution
is symmetric and bell-shaped, so it can be assumed normal. From the data,
X = 4.21 and s2 = 0.0676.
Suppose that a new patient with liver disorder just checked in. Find the
95% prediction interval for his log-level of alkaline phosphatase?
(a) Assume that the population variance is known and equal to 1/15.
(b) Assume that the population variance is not known.
(c) Compare the interval in (b) with a 95% confidence interval for the popu-
lation mean. Why is the interval in (b) larger?
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MATLAB FILES AND DATA SETS USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch7.Estim/

AmanitaCI.m, arcsinint.m, bickellehmann.m, clopperint.m,
CLTvarCI.m, confintscatterpillar.m, crouxrouss.m, crouxrouss2.m,
cyclosporine.m, dists2.m, ginimd.m, ginimd2.m, lfev.m, MaxwellMLE.m,
MixtureModelExample.m, muscaria.m, plotlike.m, Rutherford.m,
simuCI.m, tolerance.m, waldsimulation.m

neuronfires.mat
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Chapter 8
Bayesian Approach to Inference

Bayesian: Breeding a statistician with a clergyman to produce the much sought honest
statistician.

– Anonymous

WHAT IS COVERED IN THIS CHAPTER

• Bayesian Paradigm
• Likelihood, Prior, Marginal, Posterior, Predictive Distributions
• Conjugate Priors. Prior Elicitation
• Bayesian Computation
• Estimation, Credible Sets, Testing, Bayes Factor, Prediction

8.1 Introduction

Several paradigms provide a basis for statistical inference; the two most dom-
inant are the frequentist (sometimes called classical, traditional, or Neyman–
Pearsonian) and Bayesian. The term Bayesian refers to Reverend Thomas
Bayes (Fig. 8.1), a nonconformist minister interested in mathematics whose
posthumously published essay (Bayes, 1763) is fundamental for this kind of
inference. According to the Bayesian paradigm, the unobservable parameters
in a statistical model are treated as random. Before data are collected, a prior
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distribution is elicited to quantify our knowledge about the parameter. This
knowledge comes from expert opinion, theoretical considerations, or previous
similar experiments. When data are available, the prior distribution is up-
dated to the posterior distribution. This is a conditional distribution that in-
corporates the observed data. The transition from the prior to the posterior is
possible via Bayes’ theorem.

The Bayesian approach is relatively modern in statistics; it became influ-
ential with advances in Bayesian computational methods in the 1980s and
1990s.

Fig. 8.1 The Reverend Thomas Bayes (1702–1761), nonconformist priest and mathemati-
cian. His Essay Towards Solving a Problem in the Doctrine of Chances, presented to the
Royal Society after his death, contains a special case of what is now known as Bayes’ theo-
rem.

Before launching into a formal exposition of Bayes’ theorem, we revisit
Bayes’ rule for events (p. 86). Prior to observing whether an event A has ap-
peared or not, we set the probabilities of n hypotheses, H1,H2, . . . ,Hn, un-
der which event A may appear. We called them prior probabilities of the hy-
potheses, P(H1), . . . ,P(Hn). Bayes’ rule showed us how to update these prior
probabilities to the posterior probabilities once we obtained information about
event A. Recall that the posterior probability of the hypothesis Hi, given the
evidence about A, was

P(Hi|A)= P(A|Hi)P(Hi)
P(A)

.

Therefore, Bayes’ rule gives a recipe for updating the prior probabilities of
events to their posterior probabilities once additional information from the ex-
periment becomes available. The focus of this chapter is on how to update prior
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knowledge about a model; however, this knowledge (or lack of it) is expressed
in terms of probability distributions rather than by events.

Suppose that before the data are observed, a description of the population
parameter θ is given by a probability density π(θ). The process of specifying
the prior distribution is called prior elicitation. The data are modeled via the
likelihood, which depends on θ and is denoted by f (x|θ). Bayes’ theorem up-
dates the prior π(θ) to the posterior π(θ|x) by incorporating observations x
summarized via the likelihood:

π(θ|x)= f (x|θ)π(θ)
m(x)

. (8.1)

Here, m(x) normalizes the product f (x|θ)π(θ) to be a density and is a constant
once the prior is specified and the data are observed. Given the data x and the
prior distribution, the posterior distribution π(θ|x) summarizes all available
information about θ.

Although the equation in (8.1) is referred to as a theorem, there is nothing
to prove there. Recall that the probability of intersection of two events A and B
was calculated as P(AB) = P(A|B)P(B) = P(B|A)P(B) [multiplication rule in
(3.6)]. By analogy, the joint distribution of X and θ, h(x,θ), would have two
representations depending on the order of conditioning:,

h(x,θ)= f (x|θ)π(θ)=π(θ|x)m(x),

and Bayes’ theorem just solves this equation with respect to the posterior
π(θ|x).

To summarize, Bayes’ rule updates the probabilities of events when new
evidence becomes available, while Bayes’ theorem provides the recipe for up-
dating prior distributions of model’s parameters once experimental observa-
tions become available.

P(hypothesis) BAYES’ RULE−→ P(hypothesis|evidence)
π(θ) BAYES’ THEOREM−→ π(θ|data)

The Bayesian paradigm has many advantages, but the two most important
are that (i) the uncertainty is expressed via the probability distribution and
the statistical inference can be automated; thus it follows a conceptually sim-
ple recipe embodied in Bayes’ theorem; and (ii) available prior information is
coherently incorporated into the statistical model describing the data.
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The FDA guidelines document (FDA, 2010) recommends the use of a
Bayesian methodology in the design and analysis of clinical trials for medi-
cal devices. This document eloquently outlines the reasons why a Bayesian
methodology is recommended.

• Valuable prior information is often available for medical devices because of their
mechanism of action and evolutionary development.

• The Bayesian approach, when correctly employed, may be less burdensome than a
frequentist approach.

• In some instances, the use of prior information may alleviate the need for a larger
sized trial. In some scenarios, when an adaptive Bayesian model is applicable, the
size of a trial can be reduced by stopping the trial early when conditions warrant.

• The Bayesian approach can sometimes be used to obtain an exact analysis when
the corresponding frequentist analysis is only approximate or is too difficult to imple-
ment.

• Bayesian approaches to multiplicity problems are different from frequentist ones
and may be advantageous. Inferences on multiple endpoints and testing of multiple
subgroups (e.g., race or sex) are examples of multiplicity.

• Bayesian methods allow for great flexibility in dealing with missing data.

In the context of clinical trials, an unlimited look at the accumulated data
when sampling is of a sequential nature will not affect the inference. In the
frequentist approach, interim data analyses affect type I errors. The ability to
stop a clinical trial early is important from the moral and economic viewpoints.
Trials should be stopped early due to both futility, to save resources or stop
an ineffective treatment, and superiority, to provide patients with the best
possible treatments as fast as possible.

Bayesian models facilitate meta-analysis. Meta-analysis is a methodology
for the fusion of results of related experiments performed by different re-
searchers, labs, etc. An example of a rudimentary meta-analysis is discussed
in Sect. 8.10.

8.2 Ingredients for Bayesian Inference

A density function for a typical observation X that depends on an unknown
(possibly multivariate) parameter θ is called a model and denoted by f (x|θ).
As a function of θ, f (x|θ) = L(θ) is called the likelihood. If a sample x =
(x1, x2, . . . , xn) is observed, the likelihood takes a familiar form, L(θ|x1, . . . , xn)=∏n

i=1 f (xi|θ). This form was used in Chap. 7 to produce MLEs for θ.
Thus both terms model and likelihood are used to describe the distribution

of observations. In the standard Bayesian inference the functional form of f is
given in the same manner as in the classical parametric approach; the func-
tional form is fully specified up to a parameter θ. According to the generally
accepted likelihood principle, all information from the experimental data is
summarized in the likelihood function, f (x|θ)= L(θ|x1, . . . , xn).
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For example, if each datum X |θ were assumed to be exponential with the
rate parameter θ and X1 = 2, X2 = 3, and X3 = 1 were observed, then full in-
formation about the experiment would be given by the likelihood

θe−2θ×θe−3θ ×θe−θ = θ3e−6θ.

This model is θ3 exp
{−θ∑3

i=1 Xi
}

if the data are kept unspecified, but in the
likelihood function the expression

∑3
i=1 Xi is treated as a constant term, as

was done in the maximum likelihood estimation (p. 233).
The parameter θ, with values in the parameter space Θ, is not directly

observable and is considered a random variable. This is the key difference
between Bayesian and classical approaches. Classical statistics consider the
parameter to be a fixed number or vector of numbers, while Bayesians express
the uncertainty about θ by considering it as a random variable. This random
variable has a distribution π(θ) called the prior distribution. The prior distri-
bution not only quantifies available knowledge, but it also describes the un-
certainty about a parameter before data are observed. If the prior distribution
for θ is specified up to a parameter τ, π(θ|τ), then τ is called a hyperparameter.
Hyperparameters are parameters of a prior distribution, and they are either
specified or may have their own priors. This may lead to a hierarchical struc-
ture of the model where the priors are arranged in a hierarchy.

The previous discussion can be summarized as follows:

The goal in Bayesian inference is to start with prior information on the
parameter of interest, θ, and update it using the observed data. This is
achieved via Bayes’ theorem, which gives a simple recipe for incorporat-
ing observations x in the distribution of θ, π(θ|x), called the posterior
distribution. All information about θ coming from the prior distribution
and the observations are contained in the posterior distribution. The pos-
terior distribution is the ultimate summary of the parameter and serves
as the basis for all Bayesian inferences.

According to Bayes’ theorem, to find π(θ|x), we divide the joint distribution
of X and θ (h(x,θ) = f (x|θ)π(θ)) by the marginal distribution for X , m(x),
which is obtained by integrating out θ from the joint distribution h(x,θ):

m(x)=
∫

Θ
h(x,θ)dθ =

∫

Θ
f (x|θ)π(θ)dθ.

The marginal distribution is also called the prior predictive distribution. Thus,
in terms of the likelihood and the prior distribution only, the Bayes theorem
can be restated as

π(θ|x)= f (x|θ)π(θ)∫
Θ f (x|θ)π(θ)dθ

.
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The integral in the denominator is a main hurdle in Bayesian computation
since for complex likelihoods and priors it could be intractable.

The following table summarizes the notation:

Likelihood, model f (x|θ)

Prior distribution π(θ)

Joint distribution h(x,θ) = f (x|θ)π(θ)

Marginal distribution m(x) =
∫
Θ f (x|θ)π(θ)dθ

Posterior distribution π(θ|x) = f (x|θ)π(θ)/m(x)

We illustrate the above concepts by discussing a few examples in which
one can find the posterior distribution explicitly. Note that the marginal dis-
tribution has the form of an integral, and in many cases these integrals cannot
be found in a finite form. It is fair to say that the number of likelihood/prior
combinations that lead to an explicit posterior is rather limited. However, in
the general case, one can evaluate the posterior numerically or, as we will see
later, simulate a sample from the posterior distribution. All of the above, ad-
mittedly abstract, concepts will be exemplified by several worked-out models.
We start with the most important model in which both the likelihood and prior
are normal.

Example 8.1. Normal Likelihood with Normal Prior. The normal likeli-
hood and normal prior combination is important because it is frequently used
in practice. Assume that an observation X is normally distributed with mean
θ and known variance σ2. The parameter of interest, θ, is normally distributed
as well, with its parameters µ and τ2. Parameters µ and τ2 are hyperparam-
eters, and we will consider them given. Starting with our Bayesian model of
X |θ ∼ N (θ,σ2) and θ ∼ N (µ,τ2), we will find the marginal and posterior dis-
tributions. Before we start with a derivation of the posterior and marginal, we
need a simple algebraic identity:

A(x−a)2 +B(x−b)2 = (A+B)(x− c)2 + AB
A+B

(a− b)2, for c = Aa+Bb
A+B

. (8.2)

We start with the joint distribution of (X ,θ), which is the product of two
distributions:

h(x,θ)= 1p
2πσ2

exp
{
− 1

2σ2 (x−θ)2
}

× 1p
2πτ2

exp
{
− 1

2τ2 (θ−µ)2
}

.

�
The exponent in the joint distribution h(x,θ) is
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− 1
2σ2 (x−θ)2 − 1

2τ2 (θ−µ)2,

which, after applying the identity in (8.2), can be expressed as

−σ
2 +τ2

2σ2τ2

(
θ−

(
τ2

σ2 +τ2 x+ σ2

σ2 +τ2µ

))2

− 1
2(σ2 +τ2)

(x−µ)2. (8.3)

Note that the exponent (8.3) splits into two parts, one containing θ and the
other θ-free. Accordingly the joint distribution h(x,θ) splits into the product of
two densities. Since h(x,θ) can be represented in two ways, as f (x|θ)π(θ) and
as π(θ|x)m(x), by analogy to P(AB) = P(A|B)P(B) = P(B|A)P(A), and since
we started with f (x|θ)π(θ), the exponent in (8.3) corresponds to π(θ|x)m(x).
Thus, the marginal distribution simply resolves to X ∼ N (µ,σ2 +τ2) and the
posterior distribution of θ comes out to be

θ|X ∼N

(
τ2

σ2 +τ2 X + σ2

σ2 +τ2µ,
σ2τ2

σ2 +τ2

)
.

�

Bellow is a specific example of our first Bayesian inference.

Example 8.2. Jeremy’s IQ. Jeremy, an enthusiastic bioengineering student,
posed a statistical model for his scores on a standard IQ test. He thinks that,
in general, his scores are normally distributed with unknown mean θ (true
IQ) and a variance of σ2 = 80. Prior (and expert) opinion is that the IQ of
bioengineering students in Jeremy’s school, θ, is a normal random variable,
with mean µ = 110 and variance τ2 = 120. Jeremy took the test and scored
X = 98. The traditional estimator of θ would be θ̂ = X = 98. The posterior
is normal with a mean of 120

80+120 ×98+ 80
80+120 ×110 = 102.8 and a variance of

80×120
80+120 = 48. We will see later that the mean of the posterior is Bayes’ estimator
of θ, and a Bayesian would estimate Jeremy’s IQ as 102.8.
�

If n normal variates, X1, X2, . . . , Xn, are observed instead of a single obser-
vation X , then the sample is summarized as X and the Bayesian model for θ
is essentially the same as that for the single X , but with σ2/n in place of σ2.
In this case, the likelihood and the prior are

X |θ ∼N

(
θ,
σ2

n

)
and θ ∼N (µ,τ2),

producing

θ|X ∼N

(
τ2

σ2

n +τ2
X +

σ2

n
σ2

n +τ2
µ,

σ2

n τ2

σ2

n +τ2

)
.
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Notice that the posterior mean

τ2

σ2

n +τ2
X +

σ2

n
σ2

n +τ2
µ

is a weighted average of the MLE X and the prior mean µ with weights w =
nτ2/(σ2+nτ2) and 1−w =σ2/(σ2+nτ2). When the sample size n increases, the
contribution of the prior mean to the estimator diminishes as w → 1. On the
other hand, when n is small and our prior opinion about µ is strong (i.e., τ2 is
small), the posterior mean remains close to the prior mean µ. Later, we will
explore several more cases in which the posterior mean is a weighted average
of the MLE for the parameter and the prior mean.

Example 8.3. Suppose n = 10 observations are coming from N (θ,102). Assume
that the prior on θ is N (20,20). For the observations
{2.944,−13.361,7.143,16.235,−6.917,8.580,12.540,−15.937,−14.409,5.711}
the posterior is N (6.835,6.667). The three densities are shown in Fig. 8.2.
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Fig. 8.2 The likelihood centered at MLE X = 0.2529, N (0.2529,102/10) (blue), N (20,20)
prior (red), and posterior for data {2.9441,−13.3618, . . . ,5.7115} (green).

�
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8.3 Conjugate Priors

A major technical difficulty in Bayesian analysis is finding an explicit posterior
distribution, given the likelihood and prior. The posterior is proportional to the
product of the likelihood and prior, but the normalizing constant, marginal
m(x), is often difficult to find since it involves integration.

In Examples 8.1 and 8.3, where the prior is normal, the posterior distribu-
tion remains normal. In such cases, the effect of likelihood is only to “update”
the prior parameters and not to change the prior’s functional form. We say that
such priors are conjugate with the likelihood. Conjugacy is popular because of
its mathematical convenience; once the conjugate pair likelihood/prior is iden-
tified, the posterior is found without integration. The normalizing marginal
m(x) is selected such that f (x|θ)π(θ) is a density from the same class to which
the prior belongs. Operationally, one multiplies “kernels” of likelihood and pri-
ors, ignoring all multiplicative terms that do not involve the parameter. For
example, a kernel of gamma G a(r,λ) density f (θ|r,λ) = λrθr−1

Γ(r) e−λθ would be
θr−1e−λθ . We would write: f (θ|r,λ) ∝ θr−1e−λθ, where the symbol ∝ stands
for “proportional to.” Several examples in this chapter involve conjugate pairs
(Examples 8.4 and 8.6).

In the pre-Markov chain Monte Carlo era, conjugate priors were exten-
sively used (and overused and misused) precisely because of this computa-
tional convenience. Today, the general agreement is that simple conjugate
analysis is of limited practical value since, given the likelihood, the conjugate
prior has limited modeling capability.

There are quite a few instances of conjugacy. The following table lists sev-
eral important cases. For practice you may want to derive the posteriors in
Table 8.1. It is recommended that you consult Chap. 5 on functional forms of
densities involved in the Bayesian model.

Example 8.4. Binomial Likelihood with Beta Prior. An easy, yet impor-
tant, example of a conjugate structure is the binomial likelihood and beta
prior. Suppose that we observed X from a binomial B in(n, p) distribution,

f (x|θ)=
(
n
x

)
px(1− p)n−x,

and that the population proportion p is the parameter of interest. If the prior
on p is beta Be(α,β) with hyperparameters α and β and density

π(p)= 1
B(α,β)

pα−1(1− p)β−1,

the posterior is proportional to the product of the likelihood and the prior

π(p|x)= C · px(1− p)n−x · pα−1(1− p)β−1 = C · px+α−1(1− p)n−x+β−1
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Table 8.1 Some conjugate pairs. Here X stands for a sample of size n, X1, . . . , Xn. For func-
tional expressions of the densities and their moments refer to Chap. 5

Likelihood Prior Posterior

X |θ∼N (θ,σ2) θ ∼N (µ,τ2) θ|X ∼N
(

τ2

σ2+τ2 X + σ2

σ2+τ2 µ, σ2τ2

σ2+τ2

)

X |θ∼B in(n,θ) θ ∼Be(α,β) θ|X ∼Be(α+ x,n− x+β)

X |θ∼P oi(θ) θ ∼G a(α,β) θ|X∼G a(
∑

i Xi +α, n+β).

X |θ∼N B(m,θ) θ ∼Be(α,β) θ|X∼Be(α+mn,β+∑n
i=1 xi)

X ∼G a(n/2,1/(2θ)) θ ∼IG (α,β) θ|X ∼IG (n/2+α, x/2+β)

X |θ∼U (0,θ) θ ∼P a(θ0,α) θ|X∼P a(max{θ0, X1, . . . , Xn},α+n)

X |θ∼N (µ,θ) θ ∼IG (α,β) θ|X ∼IG (α+1/2,β+ (µ−X )2/2)

X |θ∼G a(ν,θ) θ ∼G a(α,β) θ|X ∼G a(α+ν,β+ x)

for some constant C. The normalizing constant C is free of p and is equal to
(n

x)
m(x)B(α,β) , where m(x) is the marginal distribution.

By inspecting the expression px+α−1(1−p)n−x+β−1, it is easy to see that the
posterior density remains beta; it is Be(x+α,n− x+β), and that normalizing
constant resolves to C = 1/B(x+α, n− x+β). From the equality of constants, it
follows that

(n
x
)

m(x)B(α,β)
= 1

B(x+α, n− x+β)
,

and one can express the marginal

m(x)=
(n

x
)
B(x+α,n− x+β)

B(α,β)
,

which is known as a beta-binomial distribution.
�

8.4 Point Estimation

The posterior is the ultimate experimental summary for a Bayesian. The pos-
terior location measures (especially the mean) are of great importance. The
posterior mean is the most frequently used Bayes estimator for a parameter.
The posterior mode and median are alternative Bayes estimators.
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The posterior mode maximizes the posterior density in the same way that
the MLE maximizes the likelihood. When the posterior mode is used as an
estimator, it is called the maximum posterior (MAP) estimator. The MAP esti-
mator is popular in some Bayesian analyses in part because it is computation-
ally less demanding than the posterior mean or median. The reason for this is
simple; to find a MAP, the posterior does not need to be fully specified because
argmaxθπ(θ|x) = argmaxθ f (x|θ)π(θ), that is, the product of the likelihood and
the prior as well as the posterior are maximized at the same point.

Example 8.5. Binomial-Beta Conjugate Pair. In Example 8.4 we argued
that for the likelihood X |θ ∼B in(n,θ) and the prior θ ∼Be(α,β), the posterior
distribution is Be(x+α,n− x+β). The Bayes estimator of θ is the expected
value of the posterior

θ̂B = α+ x
(α+ x)+ (β+n− x)

= α+ x
α+β+n

.

This is actually a weighted average of the MLE, X /n, and the prior mean
α/(α+β),

θ̂B = n
α+β+n

· X
n

+ α+β
α+β+n

· α

α+β .

Notice that, as n becomes large, the posterior mean approaches the MLE,
because the weight n

n+α+β tends to 1. On the other hand, when α or β or both
are large compared to n, the posterior mean is close to the prior mean. Because
of this interplay between n and prior parameters, the sum α+β is called the
prior sample size, and it measures the influence of the prior as if additional
experimentation was performed and α+β trials have been added. This is in
the spirit of Wilson’s proposal to “add two failures and two successes” to an
estimator of proportion (p. 254). Wilson’s estimator can be seen as a Bayes
estimator with a beta Be(2,2) prior.

Large α indicates a small prior variance (for fixed β, the variance of
Be(α,β) is proportional to 1/α2) and the prior is concentrated about its mean.
�

In general, the posterior mean will fall between the MLE and the prior
mean. This was demonstrated in Example 8.1. As another example, suppose
we flipped a coin four times and tails showed up on all four occasions. We are
interested in estimating the probability of showing heads, θ, in a Bayesian
fashion. If the prior is U (0,1), the posterior is proportional to θ0(1−θ)4, which
is a beta Be(1,5). The posterior mean shrinks the MLE toward the expected
value of the prior (1/2) to get θ̂B = 1/(1+5) = 1/6, which is a more reasonable
estimator of θ than the MLE. Note that the 3/n rule produces a confidence
interval for p of [0,3/4], which is too wide to be useful (Sect. 7.4.4).
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Example 8.6. Uniform/Pareto Model. In Example 7.5 we had the observa-
tions X1 = 2, X2 = 5, X3 = 0.5, and X4 = 3 from a uniform U (0,θ) distribution.
We are interested in estimating θ in a Bayesian fashion. Let the prior on θ

be Pareto P a(θ0,α) for θ0 = 6 and α = 2. Then the posterior is also Pareto
P a(θ∗,α∗) with θ∗ = max{θ0, X(n)} = max{6,5} = 6, and α∗ = α+n = 2+4 = 6.
The posterior mean is α∗θ∗

α∗−1 = 36/5= 7.2, and the median is θ∗ ·21/α∗ = 6 ·21/6 =
6.7348.

Figure 8.3 shows the prior (dashed red line) with the prior mean as a
red dot. After observing X1, . . . , X4, the posterior mode did not change since
the elicited θ0 = 6 was larger than max Xi = 5. However, the posterior has a
smaller variance than the prior. The posterior mean is shown as a green dot,
the posterior median as a black dot, and the posterior (and prior) mode as a
blue dot.
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Fig. 8.3 Pareto P a(6,2) prior (dashed red line) and P a(6,6) posterior (solid blue line). The
red dot is the prior mean, the green dot is the posterior mean, the black dot is the posterior
median, and the blue dot is the posterior (and prior) mode.

�

8.5 Prior Elicitation

Prior distributions are carriers of prior information that is coherently incorpo-
rated via Bayes’ theorem into an inference. At the same time, parameters are
unobservable, and prior specification is subjective in nature. The subjectivity
of specifying the prior is a fundamental criticism of the Bayesian approach.
Being subjective does not mean that the approach is nonscientific, as critics
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of Bayesian statistics often insinuate. On the contrary, vast amounts of scien-
tific information coming from theoretical and physical models, previous exper-
iments, and expert reports guides the specification of priors and merges such
information with the data for better inference.

In arguing about the importance of priors in Bayesian inference, Garth-
white and Dickey (1991) state that “expert personal opinion is of great poten-
tial value and can be used more efficiently, communicated more accurately,
and judged more critically if it is expressed as a probability distribution.”

In the last several decades Bayesian research has also focused on priors
that were noninformative and robust; this was in response to criticism that
results of Bayesian inference could be sensitive to the choice of a prior.

For instance, in Examples 8.4 and 8.5 we saw that beta distributions are
an appropriate family of priors for parameters supported in the interval [0,1],
such as a population proportion. It turns out that the beta family can express
a wide range of prior information. For example, if the mean µ and variance
σ2 for a beta prior are elicited by an expert, then the parameters (a, b) can be
determined by solving µ= a/(a+b) and σ2 = ab/[(a+b)2(a+b+1)] with respect
to a and b:

a=µ
(
µ(1−µ)
σ2 −1

)
, and b = (1−µ)

(
µ(1−µ)
σ2 −1

)
. (8.4)

If a and b are not too small, the shape of a beta prior resembles a normal
distribution and the bounds [µ−2σ,µ+2σ] can be used to describe the range of
likely parameters. For example, an expert’s claim that a proportion is unlikely
to be higher than 90% can be expressed as µ+2σ= 0.9.

In the same context of estimating the proportion, Berry and Stangl (1996)
suggest a somewhat different procedure:

(i) Elicit the probability of success in the first trial, p1, and match it to the
prior mean α/(α+β).

(ii) Given that the first trial results in success, the posterior mean is α+1
α+β+1 .

Match this ratio with the elicited probability of success in a second trial, p2,
conditional upon the first trial’s resulting in success. Thus, a system

p1 =
α

α+β and p2 =
α+1

α+β+1

is obtained that solves to

α= p1(1− p2)
p2 − p1

and β= (1− p1)(1− p2)
p2 − p1

. (8.5)

See Exercise 8.12 for an application.
If one has no prior information, many noninformative choices are possible

such as invariant priors, Jeffreys’ priors, default priors, reference priors, and
intrinsic priors, among others. Informally speaking, a noninformative prior
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is one which is dominated by the likelihood, or that is “flat” relative to the
likelihood.

Popular noninformative choices are the flat prior π(θ) = C for the location
parameter (mean) and π(θ)= 1/θ for the scale/rate parameter. A vague prior for
the proportion is p−1(1−p)−1, 0< p < 1. These priors are not proper probability
distributions, that is, they are not densities because their integrals are not
finite. However, Bayes’ theorem usually leads to posterior distributions that
are proper densities and on which Bayesian analysis can be carried out.

Fig. 8.4 Sir Harold Jeffreys, (1891–1989).

Jeffreys’ priors (named after Sir Harold Jeffreys, Fig. 8.4) are obtained
from a particular functional of a density (called Fisher information), and they
are also examples of vague and noninformative priors. For a binomial pro-
portion Jeffreys’ prior is proportional to p−1/2(1− p)−1/2, while for the rate of
exponential distribution λ Jeffreys’ prior is proportional to 1/λ. For a normal
distribution, Jeffreys’ prior on the mean is flat, while for the variance σ2 it is
proportional to 1

σ2 .

Example 8.7. If X1 = 1.7, X2 = 0.6, and X3 = 5.2 come from an exponential
distribution with a rate parameter λ, find the Bayes estimator if the prior on
λ is 1

λ .

The likelihood is λ3e−λ
∑3

i=1 Xi and the posterior is proportional to

1
λ
×λ3e−λ

∑3
i=1 Xi =λ3−1e−λ

∑
Xi ,

which is recognized as gamma Ga
(
3,

∑3
i=1 Xi

)
. The Bayes estimator, as a mean

of this posterior, coincides with the MLE, λ̂= 3∑3
i=1 Xi

= 1
X
= 1/2.5= 0.4.

�

An applied approach to prior selection was taken by Spiegelhalter et al.
(1994) in the context of biomedical inference and clinical trials. They recom-
mended a community of priors elicited from a large group of experts. A crude
classification of community priors is as follows.
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(i) Vague priors – noninformative priors, in many cases leading to posterior
distributions proportional to the likelihood.

(ii) Skeptical priors – reflecting the opinion of a clinician unenthusiastic
about the new therapy, drug, device, or procedure. This may be a prior of a
regulatory agency.

(iii) Enthusiastic or clinical priors – reflecting the opinion of the proponents
of the clinical trial, centered around the notion that a new therapy, drug, de-
vice, or procedure is superior. This may be the prior of the industry involved
or clinicians running the trial.

For example, the use of a skeptical prior when testing for the superiority
of a new treatment would be a conservative approach. In equivalence tests,
both skeptical and enthusiastic priors may be used. The superiority of a new
treatment should be judged by a skeptical prior, while the superiority of the
old treatment should be judged by an enthusiastic prior.

8.6 Bayesian Computation and Use of WinBUGS

If the selection of an adequate prior is the major conceptual and modeling
challenge of Bayesian analysis, the major implementational challenge is com-
putation. When the model deviates from the conjugate structure, finding the
posterior distribution and the Bayes rule is all but simple. A closed-form solu-
tion is more the exception than the rule, and even for such exceptions, lucky
mathematical coincidences, convenient mixtures, and other tricks are needed
to uncover the explicit expression.

If classical statistics relies on optimization, Bayesian statistics relies on
integration. The marginal needed to normalize the product f (x|θ)π(θ) is an
integral

m(x)=
∫

Θ
f (x|θ)π(θ)dθ,

while the Bayes estimator of h(θ) is a ratio of integrals,

δπ(x)=
∫

Θ
h(θ)π(θ|x)dθ =

∫
Θ h(θ) f (x|θ)π(θ)dθ∫
Θ f (x|θ)π(θ)dθ

.

The difficulties in calculating the above Bayes rule derive from the facts
that (i) the posterior may not be representable in a finite form and (ii) the in-
tegral of h(θ) does not have a closed form even when the posterior distribution
is explicit.

The last two decades of research in Bayesian statistics has contributed to
broadening the scope of Bayesian models. Models that could not be handled
before by a computer are now routinely solved. This is done by Markov chain
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Monte Carlo (MCMC) methods, and their introduction to the field of statistics
revolutionized Bayesian statistics.

The MCMC methodology was first applied in statistical physics (Metropo-
lis et al., 1953). Work by Gelfand and Smith (1990) focused on applications of
MCMC to Bayesian models. The principle of MCMC is simple: One designs a
Markov chain that samples from the target distribution. By simulating long
runs of such a Markov chain, the target distribution can be well approximated.
Various strategies for constructing appropriate Markov chains that simulate
the desired distribution are possible: Metropolis–Hastings, Gibbs sampler,
slice sampling, perfect sampling, and many specialized techniques. These are
beyond the scope of this text, and the interested reader is directed to Robert
(2001), Robert and Casella (2004), and Chen et al. (2000) for an overview and
a comprehensive treatment.

In the examples that follow we will use WinBUGS for doing Bayesian infer-
ence when the models are not conjugate. Chapter 19 gives a brief introduction
to the front end of WinBUGS. Three volumes of examples are a standard addi-
tion to the software; in the Examples menu of WinBUGS, see Spiegelhalter et
al. (1996). It is recommended that you go over some of those examples in detail
because they illustrate the functionality and modeling power of WinBUGS. A
wealth of examples on Bayesian modeling strategies using WinBUGS can be
found in the monographs of Congdon (2001, 2003, 2005) and Ntzoufras (2009).

The following example is a WinBUGS solution of Example 8.2.

Example 8.8. Jeremy’s IQ in WinBUGS. We will calculate a Bayes estima-
tor for Jeremy’s true IQ, θ, using simulations in WinBUGS. Recall that the
model was X ∼ N (θ,80) and θ ∼ N (100,120). WinBUGS uses precision in-
stead of variance to parameterize the normal distribution. Precision is sim-
ply the reciprocal of the variance, and in this example, the precisions are
1/120 = 0.00833 for the prior and 1/80 = 0.0125 for the likelihood. The Win-
BUGS code is as follows:

Jeremy in WinBUGS
model{
x ~ dnorm( theta, 0.0125)
theta ~ dnorm( 110, 0.008333333)
}
DATA
list(x=98)
INITS
list(theta=100)

Here is the summary of the MCMC output. The Bayes estimator for θ is
rounded to 102.8. It is obtained as a mean of the simulated sample from the
posterior.

mean sd MC error val2.5pc median val97.5pc start sample
theta 102.8 6.943 0.01991 89.18 102.8 116.4 1001 100000
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Because this is a conjugate normal/normal model, the exact posterior dis-
tribution, N (102.8,48), was easy to find, (Example 8.2). Note that in these
simulations, the MCMC approximation, when rounded, coincides with the ex-
act posterior mean. The MCMC variance of θ is 6.9432 ≈ 48.2, which is close
to the exact posterior variance of 48.
�

Another widely used conjugate pair is Poisson–gamma pair.

Example 8.9. Poisson–Gamma Conjugate Pair. Let X1, . . . , Xn, given θ are
Poisson P oi(θ) with probability mass function

f (xi|θ)= θxi

xi!
e−θ,

and θ ∼G (α,β) is given by π(θ)∝ θα−1e−βθ. Then

π(θ|X1, . . . , Xn)=π(θ|
∑

Xi)∝ θ
∑

Xi+α−1e−(n+β)θ,

which is G (
∑

i Xi +α,n+β). The mean is E(θ|X )= (
∑

Xi +α)/(n+β), and it can
be represented as a weighted average of the MLE and the prior mean:

Eθ|X = n
n+β

∑
Xi

n
+ β

n+β
α

β
.

Let us apply the above equation in a specific example. Let a rare disease
have an incidence of X cases per 100,000 people, where X is modeled as Pois-
son, X |λ ∼ P oi(λ), where λ is the rate parameter. Assume that for different
cohorts of 100,000 subjects, the following incidences are observed: X1 = 2,
X2 = 0, X3 = 0, X4 = 4, X5 = 0, X6 = 1, X7 = 3, and X8 = 2. The ex-
perts indicate that λ should be close to 2 and our prior is λ∼G a(0.2,0.1). We
matched the mean, since for a gamma distribution the mean is 0.2/0.1= 2 but
the variance 0.2/0.12 = 20 is quite large, thereby expressing our uncertainty.
By setting the hyperparameters to 0.02 and 0.01, for example, the variance of
the gamma prior would be even larger. The MLE of λ is λ̂mle = X = 3/2. The
Bayes estimator is

λ̂B = 8
8+0.1

3/2+ 0.1
8+0.1

2= 1.5062.

Note that since the prior was not informative, the Bayes estimator is quite
close to the MLE.
�

Example 8.10. Uniform/Pareto Model in WinBUGS. In Example 8.6 we
found that a posterior distribution of θ, in a uniform U (0,θ) model with a
Pareto P a(6,2) prior, was Pareto P a(6,6). From the posterior we found the
mean, median, and mode to be 7.2, 6.7348, and 6, respectively. These are rea-
sonable estimators of θ as location measures of the posterior.
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Uniform with Pareto in WinBUGS
model{
for (i in 1:n){

x[i] ~ dunif(0, theta);
}

theta ~ dpar(2,6)
}
DATA
list(n=4, x = c(2, 5, 0.5, 3) )
INITS
list(theta= 7)

Here is the summary of the WinBUGS output. The posterior mean was
found to be 7.196 and the median 6.736. Apparently, the mode of the posterior
was 6, as is evident from Fig. 8.5. These approximations are close to the exact
values found in Example 8.6.

Fig. 8.5 Output from Inference>Samples>density shows MCMC approximation to the
posterior distribution.

mean sd MC error val2.5pc median val97.5pc start sample
theta 7.196 1.454 0.004906 6.025 6.736 11.03 1001 100000

�

8.6.1 Zero Tricks in WinBUGS

Although the list of built-in distributions for specifying the likelihood or the
prior in WinBUGS is rich (p. 742), sometimes we encounter densities that are
not on the list.

How do we set the likelihood for a density that is not built into WinBUGS?
There are several ways, the most popular of which is the so-called zero

trick. Let f be an arbitrary model and `i = log f (xi|θ) the log-likelihood for the
ith observation. Then
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n∏
i=1

f (xi|θ)=
n∏

i=1
e`i =

n∏
i=1

(−`i)0e−(−`i)

0!
=

n∏
i=1

P oi(0,−`i).

The WinBUGS code for a zero trick can be written as follows.

Example 8.11. This example finds the Bayes estimator of parameter θ in a

Maxwell distribution with a density of f (x|θ)=
√

2
π θ

3/2 x2 e−θx2/2, x≥ 0, θ > 0.
The moment-matching estimator and the MLE have been discussed in Exam-
ple 7.4. For a sample of size n = 3, X1 = 1.4, X2 = 3.1, and X3 = 2.5 the MLE of
θ was θ̂MLE = 0.5051. The same estimator was found by moment matching when
the second moment was matched. The Maxwell density is not implemented in
WinBUGS and we will use a zero trick instead.

#Estimation of Maxwell’s theta
#Using the zero trick
model{

for (i in 1:n){
zeros[i] <- 0
lambda[i] <- -llik[i] + 10000
zeros[i] ~ dpois(lambda[i])
llik[i] <- 1.5 * log(theta)-0.5 * theta * pow(x[i],2)

}
theta ~ dgamma(0.1, 0.1) #non-informative choice

}
DATA
list(n=3, x=c(1.4, 3.1, 2.5))
INITS
list(theta=1)

mean sd MC error val2.5pc median val97.5pc start sample
theta 0.5115 0.2392 8.645E-4 0.1559 0.4748 1.079 1001 100000

Note that the Bayes estimator with respect to a noninformative prior
dgamma(0.1, 0.1) is 0.5115.
�

for (i in 1:n){
zeros[i] <- 0
lambda[i] <- -llik[i] + 10000

# Since lambda[i] needs to be positive as
# a Poisson rate, an arbitrary constant C
# can be added; here we added C = 10000.

zeros[i] ~ dpois(lambda[i])
llik[i] <- ... write the log-likelihood function here
}
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8.7 Bayesian Interval Estimation: Credible Sets

The Bayesian term for an interval estimator of a parameter is credible set.
Naturally, the measure used to assess the credibility of an interval estimator
is the posterior distribution. Students learning concepts of classical confidence
intervals often err by stating that “the probability that a particular confidence
interval [L,U] contains parameter θ is 1−α.” The correct statement seems
more convoluted; one generates data from the underlying model many times
and, for each generated data set, calculates the confidence interval. The pro-
portion of confidence intervals covering the unknown parameter “tends to”
1−α. The Bayesian interpretation of a credible set C is arguably more natural:
the probability of a parameter belonging to set C is 1−α. A formal definition
follows.

Assume set C is a subset of parameter space Θ. Then C is a credible set
with credibility (1−α)100% if

P(θ ∈C|X )= E(I(θ ∈C)|X )=
∫

C
π(θ|x)dθ ≥ 1−α.

If the posterior is discrete, then the integral is a sum (using the counting mea-
sure) and

P(θ ∈C|X )=
∑
θi∈C

π(θi|x)≥ 1−α.

This is the definition of a (1−α)100% credible set. For a fixed posterior dis-
tribution and a (1−α)100% “credibility,” a credible set is not unique. We will
consider two versions of credible sets: highest posterior density (HPD) and
equal-tail credible sets.

HPD Credible Sets. For a given credibility level (1−α)100%, the shortest
credible set has obvious appeal. To minimize size, the sets should correspond
to the highest posterior probability density areas.

Definition 8.1. The (1−α)100% HPD credible set for parameter θ is a set C,
a subset of parameter space Θ of the form

C = {θ ∈Θ|π(θ|x)≥ k(α)},

where k(α) is the largest constant for which

P(θ ∈ C|X )≥ 1−α.

Geometrically, if the posterior density is cut by a horizontal line at the
height k(α), the credible set C is the projection on the θ-axis of the part of the
line that lies below the density (Fig. 8.6).
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Fig. 8.6 Highest posterior density (HPD) (1−α)100% Credible Set (blue). The area in yellow
is 1−α.

Example 8.12. Jeremy’s IQ, Continued. Recall Jeremy, the enthusiastic bio-
engineering student from Example 8.2 who used Bayesian inference in mod-
eling his IQ test scores. For a score of X he was using a N (θ,80) likelihood,
while the prior on θ was N (110,120). After the score of X = 98 was recorded,
the resulting posterior was normal N (102.8,48).

Here, the MLE is θ̂ = 98, and a 95% confidence interval is [98−1.96
p

80, 98+
1.96

p
80] = [80.4692,115.5308]. The length of this interval is approx. 35. The

Bayesian counterparts are θ̂ = 102.8, and [102.8−1.96
p

48, 102.8+1.96
p

48]=
[89.2207,116.3793]. The length of the 95% credible set is approx. 27. The
Bayesian interval is shorter because the posterior variance is smaller than
the likelihood variance; this is a consequence of the presence of prior informa-
tion. Figure 8.7 shows the credible set (in blue) and the confidence interval (in
red).
�

From the WinBUGS output table in Jeremy’s IQ estimation example (p. 294)
the 95% credible set is [89.18,116.4].

mean sd MC error val2.5pc median val97.5pc start sample
theta 102.8 6.943 0.01991 89.18 102.8 116.4 1001 100000

Other posterior quantiles that lead to credible sets of different “credibil-
ity” levels can be specified in Sample Monitor Tool under Inference>Samples in
WinBUGS. The credible sets from WinBUGS are HPD only if the posterior is
symmetric and unimodal.

Equal-Tail Credible Sets. HPD credible sets may be difficult to find
for asymmetric posterior distributions, such as gamma, Weibull, etc. Much
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Fig. 8.7 HPD 95% credible set based on a density of N (102.8,48) (blue). The interval in
red is a 95% confidence interval based on the observation X = 98 and likelihood variance
σ2 = 80.

simpler are equal-tail credible sets for which the tails have a probability of α/2
each for a credibility of 1−α. An equal-tail credible set may not be the shortest
set, but to find it we need only α/2 and 1−α/2 quantiles of the posterior. These
two quantiles are the lower and upper bounds [L,U]:

∫ L

−∞
π(θ|x) dθ =α/2,

∫ ∞

U
π(θ|x)dθ = 1−α/2.

Note that WinBUGS gives posterior quantiles from which one can directly es-
tablish several equal-tail credible sets (95%, 90%, 80%, and 50%) by selecting
appropriate pairs of percentiles in the Sample Monitor Tool.

Example 8.13. Bayesian Amanita muscaria. Recall that in Example 7.8
(p. 251) observations were summarized by X = 10.098 and s2 = 2.1702, which
are classical estimators of population parameters: mean µ and variance σ2.
We also obtained the 95% confidence interval for the population mean as
[9.6836,10.5124] and the 90% confidence interval for the population variance
as [1.6074,3.1213].

By assuming noninformative priors for the mean and variance, we use
WinBUGS to find Bayesian counterparts of the estimators and confidence in-
tervals. As we pointed out, the mean is a location parameter, and noninforma-
tive priors should be “flat.” WinBUGS allows for flat priors, mu∼dflat(), but
any prior with a large variance (or small precision) is a possibility. We take
a normal prior with a variance of 10,000. The inverse gamma distribution is
traditionally used for a prior on variance; thus, for precision as a reciprocal of
variance, the gamma prior is appropriate. As we discussed earlier, gamma dis-
tributions with small parameters will have a large variance, thereby making
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the prior vague/noninformative. We selected prec∼dgamma(0.001, 0.001) as a
noninformative choice. This prior is noninformative because it is essentially
flat; its variance is 0.001/(0.001)2 = 1000 (p. 166). The WinBUGS program is
simple:

model{
for ( i in 1:n ){

amuscaria[i] ~ dnorm( mu, prec )
}
mu ~ dnorm(0, 0.00001)
prec ~ dgamma(0.001, 0.001)
sig2 <- 1/prec

}
DATA
list(n=51,amuscaria=c(10,11,12,9,10,11,13,12,10,11,11,13,9,10,

9,10,8,12,10,11,9,10,7,11,8,9,11,11,10,12,10,8,7,11,12,
10,9,10,11,10,8,10,10,8,9,10,13,9,12,9,9) )

INITS
list( mu =0, prec = 1 )

In WinBUGS’ Sample Monitor Tool we asked for 2.5% and 97.5% poste-
rior percentiles, which gives a 95% credible set and 5% and 95% posterior
percentiles for the 90% credible set. The lower/upper bounds of the credible
sets are given in boldface and the sets are [9.684,10.51] for the mean and
[1.607,3.123] for the variance. The credible set for the mean is both HPD and
equal-tail, but the credible set for the variance is only an equal-tail.

mean sd MC error val2.5pc val5pc val95pc val97.5pc start sample
mu 10.1 0.2106 2.004E-4 9.684 9.752 10.44 10.51 1001 100000
prec 0.4608 0.09228 9.263E-5 0.2983 0.3202 0.6224 0.6588 1001 100000
sig2 2.261 0.472 4.716E-4 1.518 1.607 3.123 3.353 1001 100000

�

8.8 Learning by Bayes’ Theorem

We start with an example.

Example 8.14. Freireich et al. (1963) conducted a remission maintenance ther-
apy to compare 6-MP with placebo for prolonging the duration of remission in
leukemia. From 42 patients affected with acute leukemia, but in a state of
partial or complete remission, 21 pair was formed. One randomly selected pa-
tient from each pair was assigned the maintenance treatment 6-MP, while the
other patient received a placebo. Investigators monitored which patient stayed
in remission longer. If that was a patient from the 6-MP treatment arm, this
was recorded as a “success” (S), otherwise it was a “failure” (F).

The results are given in the following table:
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Pair 1 2 3 4 5 6 7 8 9 10
Outcome S F S S S F S S S S

11 12 13 14 15 16 17 18 19 20 21
S S S F S S S S S S S

The goal is to estimate p – the probability of success. Suppose we got in-
formation only on 10 first subjects: 8 successes and 2 failures. When the prior
on p is uniform, and the likelihood binomial, the posterior is proportional to
p8(1− p)2 ×1, which is a beta Be(9,3).

Suppose now that the remaining 11 observations became available (10 suc-
cesses and 1 failure). If the posterior from the first stage serves as a prior in
the second stage, the updated posterior is proportional to p10(1−p)1×p8(1−p)2

which is a beta Be(19,4).
By sequentially updating prior we arrived to the same posterior as if all

observations were available at the first place (18 successes and 3 failures).
With a uniform prior, this would lead to the same beta Be(19,4) posterior. The
final posterior would be the same even if the updating was done observation-
by-observation.

This exemplified the learning ability of Bayes’ theorem.

Suppose that observations x1, . . . , xn from the model f (x|θ) are available
and that prior on θ is π(θ). Then the posterior is

π(θ|x)= f (x|θ)π(θ)∫
f (x|θ)π(θ)dθ

,

where x= (x1, . . . , xn) and f (x|θ)=∏n
i=1 f (xi|θ).

Suppose an additional observation xn+1 was collected. Then

π(θ|x, xn+1)= f (xn+1|θ)π(θ|x)∫
f (xn+1|θ)π(θ|x)dθ

.

Bayes’ theorem updates inference in a natural way: the posterior based on
previous observations serves as a new prior.

8.9 Bayesian Prediction

Up to now we have been concerned with Bayesian inference about population
parameters. We are often faced with the problem of predicting a new obser-
vation Xn+1 after X1, . . . , Xn from the same population have been observed.
Assume that the prior for parameter θ is elicited. The new observation would
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have a likelihood of f (xn+1|θ), while the observed sample X1, . . . , Xn will lead
to a posterior of θ, π(θ|X1, . . . , Xn).

Then, the posterior predictive distribution for Xn+1 can be obtained from
the likelihood after integrating out parameter θ using the posterior distribu-
tion,

f (xn+1|X1, . . . , Xn)=
∫

Θ
f (xn+1|θ)π(θ|X1, . . . , Xn) dθ,

where Θ is the domain for θ. Note that the marginal distribution also in-
tegrates out the parameter, but using the prior instead of the posterior,
m(x) = ∫

Θ f (x|θ)π(θ) dθ. For this reason, the marginal distribution is some-
times called the prior predictive distribution.

The prediction for Xn+1 is the expectation EXn+1, taken with respect to the
predictive distribution,

X̂n+1 =
∫

R
xn+1 f (xn+1|X1, . . . , Xn) dxn+1,

while the predictive variance,
∫
R(xn+1− X̂n+1)2 f (xn+1|X1, . . . , Xn) dxn+1, can be

used to express the precision of the prediction.

Example 8.15. Consider the exponential distribution E (λ) for a random vari-
able X representing a survival time of patients affected by a particular dis-
ease. The density for X is f (x|λ)=λexp{−λx}, x≥ 0.

Suppose that the prior for λ is gamma G a(α,β) with a density of π(λ) =
βα

Γ(α) λ
α−1 exp{−βλ}, λ≥ 0.

The likelihood, after observing a sample X1, . . . , Xn from E (λ) population,
is

λe−λX1 · · · · ·λe−λXn =λn exp

{
−λ

n∑
i=1

Xi

}
,

and the posterior is proportional to

λn+α−1 exp{−(
n∑

i=1
Xi +β)λ},

which can be recognized as a gamma G a(α+ n,β+∑n
i=1 Xi) distribution and

completed as

π(λ|X1, . . . , Xn)=
(
∑n

i=1 Xi +β)n+α

Γ(n+α)
λn+α−1 exp{−(

n∑
i=1

Xi +β)λ}, λ≥ 0.

The predictive distribution for a new Xn+1 is
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f (xn+1|X1, . . . , Xn) =
∫ ∞

0
λexp{−λxn+1}π(λ|X1, . . . , Xn)dλ

=
(n+α)(

∑n
i=1 Xi +β)n+α

(
∑n

i=1 Xi +β+ xn+1)n+α+1 , xn+1 > 0.

The expected value for a new observation (a Bayesian prediction) is

X̂n+1 =
∫ ∞

0
xn+1 f (xn+1|X1, . . . , Xn)dxn+1 =

∑n
i=1 Xi +β
n+α−1

.

One can show that the variance of the new observation is

σ̂2
Xn+1

=
∫ ∞

0
(xn+1 − X̂n+1)2 f (xn+1|X1, . . . , Xn)dxn+1 =

(
∑n

i=1 Xi +β)2(n+α)

(n+α−1)2(n+α−2)
.

For example, if X1 = 2.1, X2 = 5.5, X3 = 6.4, X4 = 8.7, X5 = 4.9, X6 = 5.1,
and X7 = 2.3 are the observations, and α = 2 and β = 1, then X̂8 = 9/2 and
σ̂2

X8
= 729/28= 26.0357. Figure 8.8 shows the posterior predictive distribution

(solid blue line), observations (crosses), and prediction for the new observation
(blue dot). The position of the mean of the data, X = 5, is shown as a dotted
red line.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Fig. 8.8 Bayesian prediction (blue dot) based on the sample (black crosses) X = [2.1,
5.5, 6.4, 8.7, 4.9, 5.1, 2.3] from the exponential distribution E (λ). The parameter
λ is given a gamma G a(2,1) distribution and the resulting posterior predictive distribution
is shown as a solid blue line. The position of the sample mean is plotted as a dotted red line.

�
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Example 8.16. To find the Bayesian prediction in WinBUGS, one simply sam-
ples a new observation from a likelihood that has updated parameters. In the
WinBUGS program below that implements Example 8.15, the observations
are read within the for loop. However, if a new variable is simulated from the
same likelihood, this is done for the current version of the parameter λ and the
mean of simulations approximates the posterior mean of the new observation.

model{
for (i in 1:7){

X[i] ~ dexp(lambda)
}
lambda ~ dgamma(2,1)
Xnew ~ dexp(lambda)
}
DATA
list(X = c(2.1, 5.5, 6.4, 8.7, 4.9, 5.1, 2.3))
INITS
list(lambda=1, Xnew=1)

The output is

mean sd MC error val2.5pc median val97.5pc start sample
Xnew 4.499 5.09 0.005284 0.1015 2.877 18.19 1001 100000
lambda 0.25 0.08323 8.343E-5 0.1142 0.2409 0.4378 1001 100000

Note that the posterior mean for Xnew is well approximated, 4.499 ≈ 4.5,
and that the standard deviation sd = 5.09 is close to

p
26.0357= 5.1025.

�

8.10 Consensus Means*

Suppose that several labs are reporting measurements of the same quantity
and that a consensus mean should be calculated. This problem appears in
interlaboratory studies, as well as in multicenter clinical trials and various
meta-analyses. In this section we provide a Bayesian solution to this problem
and compare it with some classical proposals.

Let Yi j, i = 1, . . . ,k; j = 1, . . . ,nk be measurements made at k laboratories,
where ni measurements come from lab i. Let n = ∑

i ni be the total sample
size.

We are interested in estimating the mean that would properly incorporate
information coming from all the labs, the so-called consensus mean. Why is
the solution not trivial and what is wrong with the average Y = 1/n

∑
i
∑

j Yi j?
There is nothing wrong, under the proper conditions: (a) variabilities

within the labs must be equal and (b) there must be no variability between
the labs.

When (a) is relaxed, proper pooling of the lab sample means is done via a
Graybill–Deal estimator:
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Y gd =
∑k

i=1ωiY i
∑k

i=1ωi
, ωi =

ni

s2
i

.

When both conditions (a) and (b) are relaxed, there are many competing
classical estimators. For example, the Schiller–Eberhardt estimator is given
by

Y se =
∑k

i=1ωiY i
∑k

i=1ωi
, ωi =

1
s2

i /ni + s2
b

,

where s2
b is an estimator of the variance between the labs, s2

b = ( ȳmax− ȳmin)2
12 .

The Mandel–Paule is the same as the Schiller–Eberhardt estimator but with
s2

b obtained iteratively.
The Bayesian approach is conceptually simple. Individual means as ran-

dom variables are generated from a single distribution. The mean of this dis-
tribution is the consensus mean. In somewhat convoluted wording, the con-
sensus mean is the mean of a hyperprior placed on the individual means.

Example 8.17. Selenium in Milk Powder. The data on selenium in non-
fat milk powder selenium.dat are adapted from Witkovsky (2001). Four
independent measurement methods are applied. The Bayes estimator of the
consensus mean is 108.8.

In the WinBUGS program below, the individual means theta[i] have a t-
prior with location mu, precision tau, and 5 degrees of freedom. The choice of
t-prior, instead of the usual normal, is motivated by robustness considerations.

model{
for (i in 1:n)

{
sel[i] ~ dnorm( theta[lab[i]], prec[lab[i]])
}

for (i in 1:k)
{
theta[i] ~ dt(mu, tau,5) #individual means
prec[i] ~ dgamma(0.0001, 0.0001)
sigma2[i] <- 1/prec[i]
}

mu ~ dt(0,0.0001,5) #consensus mean
tau ~ dgamma(0.0001,0.0001)
si2 <-1/tau
}

DATA
list(lab=c(1,1,1,1,1,1,1,1, 2,2,2,2,2,2,2,2,2,2,2,2,
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3,3,3,3,3,3,3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4),
sel = c(
115.7, 113.5, 103.3, 119.1, 114.2, 107.3, 91.2, 104.4,
108.6, 109.1, 107.2, 111.5, 100.6, 106.3, 105.9, 109.7,

111.1, 107.9, 107.9, 107.9,
107.6, 107.26,109.7, 109.7, 108.5, 106.5, 110.2, 108.3,

110.5, 108.5, 108.8, 110.1, 109.4, 112.4,
118.7, 109.7, 114.7, 105.4, 113.9, 106.3, 104.8, 106.3),

k=4, n=42)

INITS
list( mu=1, tau=1, prec=c(1,1,1,1), theta=c(1,1,1,1) )

mean sd MC error val2.5pc median val97.5pc start sample
mu 108.8 0.6499 0.003674 107.6 108.9 110.0 5001 500000
si2 0.7252 9.456 0.02088 1.024E-4 0.01973 4.875 5001 500000
theta[1] 108.8 0.8593 0.003803 107.0 108.9 110.5 5001 500000
theta[2] 108.7 0.6184 0.004188 107.2 108.7 109.7 5001 500000
theta[3] 108.9 0.4046 0.00311 108.1 108.9 109.7 5001 500000
theta[4] 108.9 0.7505 0.003705 107.6 108.9 110.7 5001 500000

Next, we compare the Bayesian estimator with the classical Graybill–Deal
and Schiller–Eberhardt estimators, 108.8892 and 108.7703, respectively. The
Bayesian estimator falls between the two classical ones. A 95% credible set for
the consensus mean is [107.6, 110].

lab1=[115.7, 113.5, 103.3, 119.1, 114.2, 107.3, 91.2, 104.4];
lab2=[108.6, 109.1, 107.2, 111.5, 100.6, 106.3, 105.9, 109.7,...

111.1, 107.9, 107.9, 107.9];
lab3=[107.6, 107.26,109.7, 109.7, 108.5, 106.5, 110.2, 108.3,...

110.5, 108.5, 108.8, 110.1, 109.4, 112.4];
lab4=[118.7, 109.7, 114.7, 105.4, 113.9, 106.3, 104.8, 106.3];

m = [mean(lab1) mean(lab2) mean(lab3) mean(lab4)];
s = [std(lab1) std(lab2) std(lab3) std(lab4) ];
ni=[8 12 14 8]; k=length(m);

%Graybill-Deal Estimator
wei = ni./s.^2; %weights
m_gd = sum(m .* wei)/sum(wei) %108.8892

%Schiller-Eberhardt Estimator
z = sort(m);
sb2 = (z(k)-z(1))^2/12;
wei = 1./(s.^2./ni + sb2);%weights
m_se = sum(m .* wei)/sum(wei) %108.7703

�

Borrowing Strength and Vague Priors. As popularly stated, this model
allows for borrowing strength in the estimation of both the means θi and the
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variances σ2
i . Even if some labs have extremely small sample sizes (as low as

n = 1), the lab variances can be estimated through pooling via a hierarchical
model structure. The prior distributions above are “vague,” which is appropri-
ate when prior information in the form of expert opinion or historic data is not
available.

Analyses conducted using vague priors can be considered objective and are
generally accepted by classical statisticians. When prior information is avail-
able in the form of a mean and variance of µ, it can be included by simply
changing the mean and variance of its prior, in our case the normal distribu-
tion. It is well known that Bayesian rules are sensitive with respect to changes
in hyperparameters in light-tailed priors (e.g., normal priors). If more robust-
ness is required, a t distribution with a small number of degrees of freedom
can be substituted for the normal prior.

Note that the consensus mean is the estimator of the mean of a hyperprior
on θis, µ. Via WinBUGS’ MCMC sampling we get a full posterior distribution
of µ as the ultimate summary information.

8.11 Exercises

8.1. Exponential Lifetimes. A lifetime X (in years) of a particular device is
modeled by an exponential distribution with unknown rate parameter θ.
The lifetimes of X1 = 5, X2 = 6, and X3 = 4 are observed. Assume that an
expert familiar with this type of device suggests that θ has an exponential
distribution with a mean of 3.
(a) Write down the MLE of θ for those observations.
(b) Elicit a prior according to the expert assumptions.
(c) For the prior in (b), find the posterior. Is the problem conjugate?
(d) Find the Bayes estimator θ̂Bayes, and compare it with the MLE from (a).
Discuss.
(e) Check if the following WinBUGS program gives an estimator of λ close
to the Bayes estimator in (d):

model{
for (i in 1:n){

X[i] ~ dexp(lambda)
}

lambda ~ dexp(1/3)
#note that dexp is parameterized
#in WinBUGS by the rate parameter

}

DATA
list(n=3, X=c(5,6,4))
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INITS
list(lambda=1)

8.2. Uniform/Pareto. Suppose X = (X1, . . . , Xn) is a sample from U (0,θ). Let θ
have a Pareto P a(θ0,α) distribution. Show that the posterior distribution
is P a(max{θ0, x1, . . . , xn} α+n).

8.3. Nylon Fibers. Refer to Exercise 5.28, where times (in hours) between
blockages of the extrusion process, T, had an exponential E (λ) distribution.
Suppose that the rate parameter λ is unknown, but there are three mea-
surements of interblockage times, T1 = 3, T2 = 13, and T3 = 8.
(a) Estimate parameter λ using the moment-matching procedure. Write
down the likelihood and find the MLE.
(b) What is the Bayes estimator of λ if the prior is π(λ)= 1p

λ
, λ> 0.

(c) Using WinBUGS find the Bayes estimator and 95% credible set if the
prior is lognormal with parameters µ= 10 and τ= 1

σ2 = 0.0001.
Hint: In (b) the prior is not a proper distribution, but the posterior is. Iden-
tify the posterior from the product of the likelihood from (a) and the prior.

8.4. Gamma–Inverse Gamma. Let X ∼ G a
( n

2 , 1
2θ

)
, so that X /θ is χ2

n. Let θ ∼
IG (α,β). Show that the posterior is IG (n/2+α, x/2+β).
Hint: The likelihood is proportional to xn/2−1

(2θ)n/2 e−x/(2θ) and the prior to βα

θα+1 e−β/θ.
Find their product and match the distribution for θ. There is no need to find
the marginal distribution and apply Bayes’ theorem since the problem is
conjugate.

8.5. Negative Binomial–Beta. If X = (X1, . . . , Xn) is a sample from N B(m,θ)
and θ ∼ Be(α,β), show that the posterior for θ is a beta Be(α+ mn,β+∑n

i=1 xi) distribution.

8.6. Poisson–Gamma Marginal. In Example 8.9 on p. 295, show that the
marginal distribution is a generalized negative binomial.

8.7. Exponential–Improper. Find a Bayes estimator for θ if a single ob-
servation X was obtained from a distribution with a density of f (x|θ) =
θexp{−θx}, x> 0,θ > 0. Assume priors (a) π(θ)= 1 and (b) π(θ)= 1/θ.

8.8. Normal Precision–Gamma. Suppose X = −2 was observed from a pop-
ulation distributed as N

(
0, 1

θ

)
and one wishes to estimate the parameter

θ. (Here θ is the reciprocal of the variance σ2 and is called a precision pa-
rameter. Precision parameters are used in WinBUGS to parameterize the
normal distribution). An MLE of θ does exist, but one may be tempted to
estimate θ as 1/σ̂2, which is troublesome since there is a single observation.
Suppose the analyst believes that the prior on θ is G a(1/2,1).
(a) What is the MLE of θ?
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(b) Find the posterior distribution and the Bayes estimator of θ. If the prior
on θ is G a(r,λ), can you represent the Bayes estimator as the weighted
average (sum of weights = 1) of the prior mean and the MLE?
(c) Find a 95% equal-tail credible set for θ. Use MATLAB to evaluate the
quantiles of the posterior distribution.
(d) Using WinBUGS, numerically find the Bayes estimator from (b) and
credible set from (c).
Hint. The likelihod is proportional to θ1/2e−θx2/2 while the prior is propor-
tional to θr−1e−λθ.

8.9. Bayes Estimate in a Discrete Case. Refer to the likelihood and data in
Exercise 7.4, p. 266.
(i) If the prior for θ is

θ 1/12 1/6 1/4
Prob 0.3 0.3 0.4

find the posterior and the Bayes estimator.
(b) What would the Bayes estimator look like for a sample of size n?

8.10. Histocompatibility. A patient who is waiting for an organ transplant
needs a histocompatible donor who matches the patient’s human leukocyte
antigen (HLA) type. For a given patient, the number of matching donors per
1000 National Blood Bank records is modeled as Poisson with an unknown
rate λ. If a randomly selected group of 1000 records showed exactly one
match, estimate λ in a Bayesian fashion.
For λ assume the following:
(a) Gamma G a(2,1) prior;
(b) Flat prior λ= 1, for λ> 0;
(c) Invariance prior π(λ)= 1

λ , for λ> 0;
(d) Jeffreys’ prior π(λ)= 1p

λ
, for λ> 0.

Note that the priors in (b)–(d) are not proper densities (the integrals are
not finite); nevertheless, the resulting posteriors are proper.
Hint: In all cases (a)–(d), the posterior is gamma. Write the product
λ1

1! exp{−λ} ×π(λ) and match the gamma parameters. The first part of the
product is the likelihood when exactly one matching donor was observed.

8.11. Neurons Fire in Potter’s Lab 2. Data set neuronfires.mat consisting
of 989 firing times in a cell culture of neurons was analyzed in Exercise 7.3.
From this data set the count of firings in consecutive 20-ms time intervals
was recorded:

20 19 26 20 24 21 24 29 21 17
23 21 19 23 17 30 20 20 18 16
14 17 15 25 21 16 14 18 22 25
17 25 24 18 13 12 19 17 19 19
19 23 17 17 21 15 19 15 23 22
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It is believed that the counts are Poisson distributed with unknown param-
eter λ. An expert believes that the number of counts in the 20-ms interval
should be about 15.
(a) What is the likelihood function for these 50 observations?
(b) Using the information the expert provided elicit an appropriate gamma
prior. Is such a prior unique?
(c) For the prior suggested in (b) find the Bayes estimator of λ. How does
this estimator compare to the MLE?
(d) Suppose now that the prior is lognormal with a mean of 15 (one pos-
sible choice is µ = log(15)− 1/2 = 2.2081 and σ2 = 1, for example). Using
WinBUGS, find the Bayes estimator for λ. Recall that WinBUGS uses the
precision parameter τ= 1/σ2 instead of σ2.

8.12. Eliciting a Beta Prior I. This exercise is based on an example from Berry
and Stangl (1996). An important prognostic factor in the early detection of
breast cancer is the number of axillary lymph nodes. The surgeon will gen-
erally remove between 5 and 30 nodes during a traditional axillary dissec-
tion. We are interested in making an inference about the proportion of all
nodes affected by cancer and consult the surgeon in order to elicit a prior.
The surgeon indicates that the probability of a selected node testing positive
is 0.05. However, if the first node tested positive, the second will be found
positive with an increased probability of 0.2.
(a) Using Eqs. (8.5), elicit a beta prior that reflects the surgeon’s opinion.
(b) If in a particular case two out of seven nodes tested positive, what is the
Bayes estimator of the proportion of affected nodes when the prior in (a) is
adopted.

8.13. Eliciting a Beta Prior II. A natural question for the practitioner in the
elicitation of a beta prior is to specify a particular quantile. For example,
we are interested in eliciting a beta prior with a mean of 0.8 such that the
probability of exceeding 0.9 is 5%. Find hyperparameters a and b for such
a prior. Hint: See file belicitor.m

8.14. Eliciting a Weibull Prior. Assume that the average recovery time for pa-
tients with a particular disease enters a statistical model as a parameter θ
and that prior π(θ) needs to be elicited. Assume further that the functional
form of the prior is Weibull W ei(r,λ) so the elicitation amounts to speci-
fying hyperparameters r and λ. A clinician states that the first and third
quartiles for θ are Q1 = 10 and Q3 = 20 (in days). Elicit the prior.
Hint: The CDF for the prior is Π(θ)= 1− e−λθ

r
, which with conditions on Q1

and Q3 lead to two equations – e−λθ
r = 0.75 and e−λθ

r = 0.25. Take the log
twice to obtain a system of two equations with two unknowns r and logλ.

8.15. Bayesian Yucatan Pigs. Refer to Example 7.21 (Yucatan Pigs). Using
WinBUGS, find the Bayesian estimator of a and plot its posterior distribu-
tion.
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8.16. Eliciting a Normal Prior. We elicit a normal prior N (µ,σ2) from an
expert who can specify percentiles. If the 20th and 70th percentiles are
specified as 2.7 and 4.8, respectively, how should µ and σ be elicited?
Hint: If xp is the pth quantile (100%pth percentile), then xp = µ+ zpσ.
A system of two equations with two unknowns is formed with zps as
norminv(0.20) = -0.8416 and norminv(0.70) = 0.5244.

8.17. Is the Cloning of Humans Moral? A recent Gallup poll estimates that
about 88% of Americans oppose human cloning. Results are based on tele-
phone interviews with a randomly selected national sample of n = 1000
adults, aged 18 and older. In these 1000 interviews, 882 adults opposed the
cloning of humans.
(a) Write a WinBUGS program to estimate the proportion p of people op-
posed to human cloning. Use a noninformative prior for p.
(b) Pretend that the original poll had n = 1062 adults, i.e., results for
62 adults are missing. Estimate the number of people opposed to cloning
among the 62 missing in the poll.

8.18. Poisson Observations with Truncated Normal Rate. A sample aver-
age of n = 15 counting observations was found to be X = 12.45. Assume that
each count comes from a Poisson P oi(λ) distribution. Using WinBUGS find
the Bayes estimator of λ if the prior on λ is a normal N (0,102) constrained
to λ≥ 1.
Hint: nX =∑

Xi is Poisson P oi(nλ).

8.19. Counts of Alpha Particles. In Example 7.13 we analyzed data from the
experiment of Rutherford and Geiger on counting α-particles.
The counts, given in the table below, can be well modeled by Poisson distri-
bution.

X 0 1 2 3 4 5 6 7 8 9 10 11 ≥ 12
Frequency 57 203 383 525 532 408 273 139 45 27 10 4 2

(a) Find sample size n and sample mean X . In calculations for X take ≥ 12
as 12.
(b) Elicit a gamma prior for λ with rate parameter β= 5 and shape param-
eter α selected in such a way that the prior mean is 7.
(c) Find the Bayes estimator of λ using the prior from (b). Is the problem
conjugate? Use the fact that

∑n
i=1 Xi ∼P oi(nλ).

(d) Write a WinBUGS script that simulates the Bayes estimator for λ and
compare its output with the analytic solution from (c).

8.20. Rayleigh Estimation by Zero Trick. Referring to Exercise 7.9, find the
Bayes estimator of σ2 in a Rayleigh distribution using WinBUGS.
Since the Rayleigh distribution is not on the list of WinBUGS distribu-
tions, one may use a Poisson zero trick with a negative log-likelihood
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as negloglik[i] <- C + log(sig2) + pow(r[i],2)/(2 * sig2), where sig2 is
the parameter and r[i] are observations.
Since σ is a scale parameter, it is customary to put an inverse gamma on
σ2. This can be achieved by putting a gamma prior on 1/σ2, as in
sig2 <- 1/isig2

isig2∼dgamma(0.1, 0.1)

where the choice of dgamma(0.1, 0.1) is noninformative.

8.21. Predictions in a Poisson/Gamma Model. For a sample X1, . . . , Xn from
a Poisson P oi(λ) distribution and a gamma Ga(α,β) prior on λ,
(i) Prove that the marginal distribution is a generalized negative binomial,
and identify its parameters.
(b) Show that the posterior predictive distribution for Xn+1 is also a gen-
eralized negative binomial. Identify its parameters and find the prediction
X̂4 for X1 = 4, X2 = 5, and X3 = 4.2, α= 2 and β= 1. Support your findings
with a WinBUGS simulation.

8.22. Estimating Chemotherapy Response Rates. An oncologist believes
that 90% of cancer patients will respond to a new chemotherapy treatment
and that it is unlikely that this proportion will be below 80%. Elicit a beta
prior that models the oncologist’s beliefs.
Hint: µ= 0.9, µ−2σ= 0.8, and use Eqs. (8.4).
During the trial, in 30 patients treated, 22 responded. What are the likeli-
hood and posterior distributions.
(a) Using MATLAB, plot the prior, likelihood, and posterior in a single fig-
ure.
(b) Using WinBUGS, find the Bayes estimator of the response rate and com-
pare it to the posterior mean.
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MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch8.Bayes/

BAint.m, belicitor.m, betaplots.m, HPDfigure.m, jeremy.m,
nornorplot.m, ParetoUni.m, Predictive.m, selenium.m, [dir] matbugs

copd.odc, ExeTransplant.odc, histocompatibility.odc, jeremy.odc|txt,
jeremyminimal.odc, metalabs1.odc, metalabs2.odc, muscaria.odc,
neurons.odc, pareto.odc, poistrunorm.odc, predictiveexample.odc,
rayleigh.odc, rutherford.odc, selenium.odc, ztmaxwell.odc

selenium.dat
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Chapter 9
Testing Statistical Hypotheses

If one in twenty does not seem high enough odds, we may, if we prefer it, draw the line
at one in fifty (the 2 percent point), or one in a hundred (the 1 percent point). Personally,
the writer prefers to set a low standard of significance at the 5 percent point, and ignore
entirely all results which fail to reach this level. A scientific fact should be regarded as
experimentally established only if a properly designed experiment rarely fails to give
this level of significance.

– Ronald Aylmer Fisher

WHAT IS COVERED IN THIS CHAPTER

• Basic Concepts in Testing: Hypotheses, Errors of the First and Sec-
ond Kind, Rejection Regions, Significance Level, p-value, Power

• The Bayesian Approach to Testing
• Testing the Mean in a Normal Population: z and t Tests
• Testing the Variance in a Normal Population
• Testing the Population Proportion
• Multiple Testing, Bonferroni Correction, and False Discovery Rate

9.1 Introduction

The two main tasks of inferential statistics are parameter estimation and test-
ing statistical hypotheses. In this chapter we will focus on the latter. Although
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the expositions on estimation and testing are separate, the two inference tasks
are highly related, as it is possible to conduct testing by inspecting confidence
intervals or credible sets. Both tasks can be unified via the so-called decision-
theoretic approach in which both the estimator and the selection of a hypothe-
sis represent an optimal action given the model, observations, and loss (utility)
function.

Generally, any claim made about one or more populations of interest con-
stitutes a statistical hypothesis. These hypotheses usually involve population
parameters, the nature of the population, the relation between the popula-
tions, and so on. For example, we may hypothesize that:

• The mean of a population, µ, is 2, or
• Two populations have the same variances, or
• A population is normally distributed, or
• The means in four populations are the same, or
• Two populations are independent, and so on.

Procedures leading to either the acceptance or rejection1 of statistical hypothe-
ses are called statistical tests.

We will discuss two approaches: the frequentist (classical) approach, which
is based on the Neyman–Pearson lemma, and the Bayes approach, which as-
signs probabilities to hypotheses directly.

The Neyman–Pearson lemma is technical [details can be found in Casella
and Berger (1990)], and the testing procedure based on it will be formulated
as an algorithm (testing “recipe”). In fact, this recipe is a mix of Neyman–
Pearson’s and Fisherian approaches that takes the best from both: a frame-
work for power analysis from the Neyman–Pearsonian approach and better
sensitivity to the observations from the Fisherian method.

In the Bayesian framework, one simply finds and reports the probability
that a particular hypothesis is true given the observations. The competing
hypotheses are assigned probabilities and those with the larger probability
are selected. Frequentist tests do not assign probabilities to hypotheses di-
rectly but rather to the statistic on which the test is based. This point will
be emphasized later, since the p-values are often mistaken for probabilities of
hypotheses.

We start by discussing the terminology and algorithm of the frequentist
testing framework.

1 Some authors recommend avoiding the use of jargon such as accept and reject in the testing
context. The equivalent but conservative wording for accept would be: there is not enough
statistical evidence to reject. We will use the terms “reject” and “do not reject” when appro-
priate, leaving the careful wording to practicing statisticians who could be liable for the
undesirable consequences of their straightforward recommendations.
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9.2 Classical Testing Problem

9.2.1 Choice of Null Hypothesis

The usual starting point in statistical testing is the formulation of statisti-
cal hypotheses. There will be at least (in most cases, exactly) two competing
hypotheses. The hypothesis that reflects the current state of nature, adopted
standard, or believed truth is denoted by H0 (null hypothesis). The competing
hypothesis H1 is called the alternative or research hypothesis. Sometimes, the
alternative hypothesis is denoted by Ha.

It is important which of the two hypotheses is assigned to be H0 since
the subsequent testing procedure depends on this assignment. The following
“rule” describes the choice of H0 and hints at the reason why it is termed the
null hypothesis.

Rule: We want to establish an assertion about a population with sub-
stantive support obtained from the data. The negation of the assertion
is taken to be the null hypothesis H0, and the assertion itself is taken to
be the research or alternative hypothesis H1. In this context, the term
null can be interpreted as a void research hypothesis.

The following example illustrates several hypothetical testing scenarios.

Example 9.1. (a) A biomedical engineer wants to determine whether a new
chemical agent provides a faster reaction than the agent currently in use. The
new agent is more expensive, so the engineer would not recommend it unless
its faster reaction is supported by experimental evidence. The reaction times
are observed in several experiments prepared with the new agent. If the re-
action time is denoted by the parameter θ, then the two hypotheses can be
expressed in terms of that parameter. It is assumed that the reaction speed
of the currently used agent is known, θ = θ0. Null hypothesis H0: The new
agent is not faster (θ = θ0). Alternative hypothesis H1: The new agent is faster
(θ > θ0).

(b) A state labor department wants to determine if the current rate of un-
employment varies significantly from the forecast of 8% made 2 months ago.
Null hypothesis H0: The current rate of unemployment is 8%. Alternative hy-
pothesis H1: The current rate of unemployment differs from 8%.

(c) A biomedical company claims that a new treatment is more effective
than the standard treatment for prolonging the lives of terminal cancer pa-
tients. The standard treatment has been in use for a long time, and from re-
ports in medical journals the mean survival period is known to be 5.2 years.
Null hypothesis H0: The new treatment is as effective as the standard one,
that is, the survival time θ is equal to 5.2 years. Alternative hypothesis H1:
The new treatment is more effective than the standard one, i.e., θ > 5.2.
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(d) Katz et al. (1990) examined the performance of 28 students taking the
SAT who answered multiple-choice questions without reading the referred
passages. The mean score for the students was 46.6 (out of 100), with a stan-
dard deviation of 6.8. The expected score in random guessing is 20. Null hy-
pothesis H0: The mean score is 20. Alternative hypothesis H1: The mean score
is larger than 20.

(e) A pharmaceutical company claims that its best-selling painkiller has a
mean effective period of at least 6 hours. Experimental data found that the
average effective period was actually 5.3 hours. Null hypothesis H0: The best-
selling painkiller has a mean effective period of 6 hours. Alternative hypoth-
esis H1: The best-selling painkiller has a mean effective period of less than
6 hours.

(f) A pharmaceutical company claims that its generic drug has a mean
AUC response equivalent to that of the innovative (brand name) drug. The
regulatory agency considers two drugs bioequivalent if the population means
in their AUC responses differ for no more than δ.

Null hypothesis H0: The difference in mean responses in AUC between
the generic and innovative drugs is either smaller than −δ or larger than δ.
Alternative hypothesis H1: The absolute difference in the mean responses is
smaller than δ, that is, the generic and innovative drugs are bioequivalent.
�

When H0 is stated as H0 : θ= θ0, the alternative hypothesis can be any of

θ < θ0, θ 6= θ0, θ > θ0.

The first and third alternatives are one-sided while the middle one is two-
sided. Usually the context of the problem indicates which one-sided alterna-
tive is appropriate. For example, if the pharmaceutical industry claims that
the proportion of patients allergic to a particular drug is p = 0.01, then either
p 6= 0.01 or p > 0.01 is a sensible alternative in this context, especially if the
observed proportion p̂ exceeds 0.01.

In the context of the bioequivalence trials, the research hypothesis H1
states that the difference between the responses is “tolerable,” as in (f). There,
H0 :µ1 −µ2 <−δ or µ1 −µ2 > δ and the alternative is H1 :−δ≤µ1 −µ2 ≤ δ.

9.2.2 Test Statistic, Rejection Regions, Decisions, and
Errors in Testing

Famous and controversial Cambridge astronomer Sir Fred Hoyle (1915–2001)
once said: “I don’t see the logic of rejecting data just because they seem in-
credible.” The calibration of the credibility of data is done with respect to some
theory or model; instead of rejecting data, the model should be questioned.
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Suppose that a hypothesis H0 and its alternative H1 are specified, and a
random sample from the population under research is obtained. As in the es-
timation context, an appropriate statistic is calculated from the random sam-
ple. Testing is carried out by evaluating the realization of this statistic. If the
realization appears unlikely (under the assumption stipulated by H0), H0 is
rejected, since the experimental support for H0 is lacking.

If a null hypothesis is rejected when it is actually true, then a type I error,
or error of the first kind, is committed. If, on the other hand, an incorrect null
hypothesis is not rejected, then a type II error, or error of the second kind, is
committed. It is customary to denote the probability of a type I error as α and
the probability of a type II error as β.

This is summarized in the table below:

decide H0 decide H1

true H0 Correct action Type I error
probability 1−α α

true H1 Type II error Correct action
probability β power= 1−β

We will also use the notation α= P(H1|H0) to denote the probability that hy-
pothesis H1 is decided when in fact H0 is true. Analogously, β= P(H0|H1).

A good testing procedure minimizes the probabilities of errors of the first
and second kind. However, minimizing both errors at the same time for a
fixed sample size is impossible. Controlling the errors is a tradeoff; when α

decreases, β increases, and vice versa. For this and other practical reasons, α
is chosen from among several typical values: 0.01, 0.05, and 0.10.

Sometimes within testing problems there is no clear dichotomy: the estab-
lished truth versus the research hypothesis, and both hypotheses may seem to
be research hypotheses. For instance, the statements “The new drug is safe”
and “The new drug is not safe” are both research hypotheses. In such cases H0
is selected in such a way that the type I error is more severe than the type II
error. If the hypothesis “The new drug is not safe” is chosen as H0, then the
type I error (rejection of a true H0, “use unsafe drug”) is more serious (at least
for the patient) than the type II error (keeping a false H0, “do not use a safe
drug”).

That is another reason why α is fixed as a small number; the probability of
a more serious error should be controlled. The practical motivation for fixing a
few values for α was originally the desire to keep the statistical tables needed
to conduct a given test brief. This reason is now outdated since the “tables” are
electronic and their brevity is not an issue.
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9.2.3 Power of the Test

Recall that α = P(reject H0|H0 true) and β = P(reject H1|H1 true) are the
probabilities of first- and second-type errors. For a specific alternative H1, the
probability P(reject H0|H1true) is the power of the test.

Power = 1−β ( = P(reject H0|H1true) )

In plain terms, the power is measured by the probability that the test will
reject a false H0. To find the power, the alternative must be specific. For in-
stance, in testing H0 : θ = 0 the alternative H1 : θ = 2 is specific but H1 : θ > 0
is not. A specific alternative is needed for the evaluation of the probability
P(reject H0|H1 true). The specific null and alternative hypotheses lead to the
definition of effect size, a quantity that researchers want to set as a sensitivity
threshold for a test.

Usually, the power analysis is prospective in nature. One plans the sample
size and specifies the parameters in H0 and H1. This allows for the calculation
of an error of the second kind, β, and the power as 1−β. This prospective power
analysis is desirable and often required. In the real world of research and
drug development, for example, no regulating agency will support a proposed
clinical trial if the power analysis was not addressed.

The test protocols need sufficient sample sizes for the test to be sensitive
enough to discrepancies from the null hypotheses. However, the sample sizes
should not be unnecessarily excessive because of financial and ethical consid-
erations (expensive sampling, experiments that involve laboratory animals).
Also, overpowered tests may detect the effects of sizes irrelevant from a medi-
cal or engineering standpoint.

The calculation of the power after data are observed and the test was con-
ducted (retrospective power) is controversial (Hoenig and Heisey, 2001). After
the sampling is done, more information is available. If H0 was not rejected, the
researcher may be interested in knowing if the sampling protocol had enough
power to detect effect sizes of interest. Inclusion of this new information in the
power calculation and the perception that the goal of retrospective analysis
is to justify the failure of a test to reject the null hypothesis lead to the con-
troversy referred to earlier. Some researchers argue that retrospective power
analysis should be conducted in cases where H0 was rejected “in order not to
declare H1 true if the test was underpowered.” However, this argument only
emphasizes the need for the power analysis to be done beforehand. Calculat-
ing effect sizes from the collected data may also lead to a low retrospective
power of well-powered studies.
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9.2.4 Fisherian Approach: p-Values

A lot of information is lost by reporting only that the null hypothesis should or
should not be rejected at some significance level. Reporting a measure of sup-
port for H0 is much more desirable. For this measure of support, the p-value
is routinely reported despite the controversy surrounding its meaning and
use. The p-value approach was favored by Fisher, who criticized the Neyman–
Pearsonian approach for reporting only a fixed probability of errors of the first
kind, α, no matter how strong the evidence against H0 was. Fisher also crit-
icized the Neyman–Pearsonian paradigm for its need for an alternative hy-
pothesis and for a power calculation that depended on unknown parameters.

A p-value is the probability of obtaining a value of the test statistic as
extreme or more extreme (from the standpoint of the null hypothesis)
than that actually obtained, given that the null hypothesis is true.

Equivalently, the p-value can be defined as the lowest significance level at
which the observed statistic would be significant.

Advantage of Reporting p-values. When a researcher reports a p-value
as part of their research findings, users can judge the findings according to the
significance level of their choice.

Decisions from a p-value:
• If the p-value is less than α: reject H0.
• If the p-value is greater than α: do not reject H0.

In the Fisherian approach, α is not connected to the error probability; it is
a significance level against which the p-value is judged. The most frequently
used value for α is 5%, though values of 1% or 10% are sometimes used as
well. The recommendation of α = 0.05 is attributed to Fisher (1926), whose
“one-in-twenty” quote is provided at the beginning of this chapter.

A hypothesis may be rejected if the p-value is less than 0.05; however, a
p-value of 0.049 is not the same evidence against H0 as a p-value of 0.000001.
Also, it would be incorrect to say that for any nonsmall p-value the null hy-
pothesis is accepted. A large p-value indicates that the model stipulated under
the null hypothesis is merely consistent with the observed data and that there
could be many other such consistent models. Thus, the appropriate wording
would be that the null hypothesis is not rejected.

Many researchers argue that the p-value is strongly biased against H0 and
that the evidence against H0 derived from p-values not substantially smaller
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than 0.05 is rather weak. In Sect. 9.3.1 we discuss the calibration of p-values
against Bayes factors and errors in testing.

The p-value is often confused with the probability of H0, which it is not.
It is the probability that the test statistic will be more extreme than observed
when H0 is true. If the p-value is small, then an unlikely statistic has been
observed that casts doubt on the validity of H0.

9.3 Bayesian Approach to Testing

In previous tests it was customary to formulate H0 as H0 : θ = 0 versus H1 :
θ > 0 instead of H0 : θ ≤ 0 versus H1 : θ > 0, as one may expect. The reason was
that we calculated the p-value under the assumption that H0 is true, and this
is why a precise null hypothesis was needed.

Bayesian testing is conceptually straightforward: The hypothesis with a
higher posterior probability is selected.

Assume that Θ0 and Θ1 are two nonoverlapping sets for parameter θ. We
assume that Θ1 =Θc

0, although arbitrary nonoverlapping sets Θ0 and Θ1 are
easily handled. Let θ ∈Θ0 be the statement of the null hypothesis H0 and let
θ ∈Θ1 =Θc

0 be the same for the alternative hypothesis H1:

H0 : θ ∈Θ0 H1 : θ ∈Θ1.

Bayesian tests amount to a comparison of posterior probabilities of Θ0 and
Θ1, the regions corresponding to the two competing hypotheses.

If π(θ|x) is the posterior probability, then the hypothesis corresponding to
the larger of

p0 =P(H0|X )=
∫

Θ0

π(θ|x)dθ,

p1 =P(H1|X )=
∫

Θ1

π(θ|x)dθ

is accepted. Here P(Hi|X ) is the notation for the posterior probability of hy-
pothesis Hi, i = 0,1.

Conceptually, this approach differs from frequentist testing where the p-
value measures the agreement of data with the model postulated by H0, but
not the probability of H0.

Example 9.2. We return to Jeremy (Examples 8.2 and 8.8) and consider the
posterior for the parameter θ, N (102.8,48). Jeremy claims he had a bad day
and his true IQ is at least 105. The posterior probability of θ ≥ 105 is
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p0 =P(θ ≥ 105|X )=P
(
Z ≥ 105−102.8p

48

)
= 1−Φ(0.3175)= 0.3754,

less than 1/2, so his claim is rejected.
�

We represent the prior and posterior odds in favor of the hypothesis H0,
respectively, as

π0

π1
= P(H0)
P(H1)

and
p0

p1
= P(H0|X )
P(H1|X )

.

The Bayes factor in favor of H0 is the ratio of the corresponding posterior to
prior odds:

Bπ
01(x)= P(H0|X )

P(H1|X )

/P(H0)
P(H1)

= p0/p1

π0/π1
. (9.1)

In the context of Bayes’ rule in Chap. 3 we discussed the Bayes factor (p. 88).
Its meaning here is analogous: the Bayes factor updates the prior odds of hy-
potheses to their posterior odds, after an experiment was conducted.

Example 9.3. Jeremy continued: The posterior odds in favor of H0 are 0.3754
1−0.3754 =

0.4652, less than 1.
�

�
When the hypotheses are simple (i.e., H0 : θ = θ0 versus H1 : θ= θ1) and the

prior is just the two-point distribution π(θ0) = π0 and π(θ1) = π1 = 1−π0, then
the Bayes factor in favor of H0 becomes the likelihood ratio:

Bπ
01(x)= P(H0|X )

P(H1|X )

/P(H0)
P(H1)

= f (x|θ0)π0

f (x|θ1)π1
/
π0

π1
= f (x|θ0)

f (x|θ1)
.

If the prior is a mixture of two priors, ξ0 under H0 and ξ1 under H1, then
the Bayes factor is the ratio of two marginal (prior-predictive) distributions
generated by ξ0 and ξ1. Thus, if π(θ)=π0ξ0(θ)+π1ξ1(θ), then

Bπ
01(x)=

∫
Θ0

f (x|θ)π0ξ0(θ)dθ∫
Θ1

f (x|θ)π1ξ1(θ)dθ
π0
π1

= m0(x)
m1(x)

.

As noted earlier, the Bayes factor measures the relative change in prior
odds once the evidence is collected. Table 9.1 offers practical guidelines for
Bayesian testing of hypotheses depending on the value of the log-Bayes factor.
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One could use Bπ
01(x), but then a≤ logB10(x)≤ b becomes −b ≤ logB01(x)≤−a.

Negative values of the log-Bayes factor are handled by using, in an obvious
way, symmetry and changed wording.

Table 9.1 Treatment of H0 according to log-Bayes factor values.

Value Meaning
0 ≤ logB10(x)≤ 0.5 Evidence against H0 is poor

0.5≤ logB10(x)≤ 1 Evidence against H0 is substantial

1 ≤ logB10(x)≤ 2 Evidence against H0 is strong

logB10(x)> 2 Evidence against H0 is decisive

Suppose X |θ ∼ f (x|θ) is observed and we are interested in testing

H0 : θ = θ0 v.s. H1 : θ 6= θ0.

�
If the priors on θ are continuous distributions, Bayesian testing of precise

hypotheses in the manner we just discussed is impossible. With continuous
priors and subsequently continuous posteriors, the probability of a singleton
θ = θ0 is always 0, and the precise hypothesis is always rejected.

The Bayesian solution is to adopt a prior where θ0 has a probability (a
distribution with point mass at θ0) of π0 and the rest of the probability is
spread by a distribution ξ(θ) that is the prior under H1. Thus, the prior on θ is
a mixture of the point mass at θ0 with a weight π0 and a continuous density
ξ(θ) with a weight of π1 = 1−π0. One can show that the marginal density for
X is

m(x)=π0 f (x|θ0)+π1m1(x),

where m1(x)= ∫
f (x|θ)ξ(θ)dθ.

The posterior probability of the null hypothesis uses this marginal distri-
bution and is equal to

π(θ0|x)= f (x|θ0)π0/m(x)= f (x|θ0)π0

π0 f (x|θ0)+π1m1(x)
=

(
1+ π1

π0
· m1(x)

f (x|θ0)

)−1
.

There is an alternate way of testing the precise null hypothesis in a
Bayesian fashion. One could test the hypothesis H0 : θ = θ0 against the two-
sided alternative by credible sets for θ. If θ0 belongs to a 95% credible set for
θ, then H0 is not rejected. One-sided alternatives can be accommodated as
well by one-sided credible sets. This approach is natural and mimics testing
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by confidence intervals; however, the posterior probabilities of hypotheses are
not calculated.

Testing Using WinBUGS. WinBUGS generates samples from the poste-
rior distribution. Testing hypotheses is equivalent to finding the relative fre-
quencies of a posterior sample falling in competing regions Θ0 and Θ1. For
example, if

H0 : θ ≤ 1 versus H1 : θ > 1

is tested in the WinBUGS program, the command ph1<-step(theta-1) will cal-
culate the proportion of the simulated chain falling in Θ1, that is, satisfying
θ > 1. The step(x) is equal to 1 if x≥ 0 and 0 if x < 0.

9.3.1 Criticism and Calibration of p-Values*

In a provocative article, Ioannidis (2005) states that many published research
findings are false because statistical significance by a particular team of re-
searchers is found. Ioannidis lists several reasons: “. . . a research finding is
less likely to be true when the studies conducted in a field are smaller; when ef-
fect sizes are smaller; when there is a greater number and lesser pre-selection
of tested relationships; where there is greater flexibility in designs, defini-
tions, outcomes, and analytical modes; when there is greater financial and
other interest and prejudice; and when more teams are involved in a scien-
tific field in case of statistical significance.” Certainly great responsibility for
an easy acceptance of research (alternative) hypotheses can be attributed to
the p-values. There are many objections to the use of raw p-values for testing
purposes.

Since the p-value is the probability of obtaining the statistic as large or
more extreme than observed, when H0 is true, the p-values measure how con-
sistent the data are with H0, and they may not be a measure of support for a
particular H0.

�
Misinterpretation of the p-value as the error probability leads to a

strong bias against H0. What is the posterior probability of H0 in a test for
which the reported p-value is p? Berger and Sellke (1987) and Sellke et al.
(2001) show that the minimum Bayes factor (in favor of H0) for a null hypoth-
esis having a p-value of p is −e p log p. The Bayes factor transforms the prior
odds π0/π1 into the posterior odds p0/p1, and if the prior odds are 1 (H0 and
H1 equally likely a priori, π0 =π1 = 1/2), then the posterior odds of H0 are not
smaller than −e p log p for p < 1/e ≈ 0.368:

p0

p1
≥−ep log p, p < 1/e.
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By solving this inequality with respect to p0, we obtain a posterior proba-
bility of H0 as

p1 ≥
1

1+ (−e p log p)−1 ,

which also has a frequentist interpretation as a type I error, α(p). Now, the
effect of bias against H0, when judged by the p-value, is clearly visible. The
type I error, α, always exceeds (1+ (−e p log p)−1)−1.

It is instructive to look at specific numbers. Assume that a particular test
yielded a p-value of 0.01, which led to the rejection of H0 “with decisive evi-
dence.” However, if a priori we do not have a preference for either H0 or H1,
the posterior odds of H0 always exceed 12.53%. The frequentist type I error
or, equivalently, the posterior probability of H0 is never smaller than 11.13%
– certainly not strong evidence against H0.

Figure 9.1 (generated by SBB.m) compares a p-value (dotted line) with a
lower bound on the Bayes factor (red line) and a lower bound on the probability
of a type I error α (blue line).
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Fig. 9.1 Calibration of p-values. A p-value (dotted line) is compared with a lower bound on
the Bayes factor (red line) and a lower bound on the frequentist type I error α (blue line).
The bound on α is also the lower bound on the posterior probability of H0 when the prior
probabilities for H0 and H1 are equal. For the p-value of 0.05, the type I error is never
smaller than 0.2893, while the Bayes factor in favor of H0 is never smaller than 0.4072.

sbb = @(p) - exp(1) * p .* log(p);
alph = @(p) 1./(1 + 1./(-exp(1)*p.*log(p)) );
%
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pp = 0.0001:0.001:0.15
plot(pp, pp, ’:’, ’linewidth’,lw)
hold on
plot(pp, sbb(pp), ’r-’,’linewidth’,lw)
plot(pp, alph(pp), ’-’,’linewidth’,lw)

The interested reader is directed to Berger and Sellke (1987), Schervish
(1996), and Goodman (1999a,b, 2001), among many others, for a constructive
criticism of p-values.

9.4 Testing the Normal Mean

In testing the normal mean we will distinguish two cases depending on
whether the population variance is known (z-test) or not known (t-test).

9.4.1 z-Test

Let us assume that we are interested in testing the null hypothesis H0 :µ=µ0
on the basis of a sample X1, . . . , Xn from a normal distribution N (µ,σ2), where
the variance σ2 is assumed known. Situations in which the population mean
is unknown but the population variance is known are rare, but not unrealis-
tic. For example, a particular measuring equipment has well-known precision
characteristics but might not be calibrated.

We know that X ∼ N (µ,σ2/n) and that Z = X−µ0
σ/
p

n is the standard normal
distribution if the null hypothesis is true, that is, if µ = µ0. This statistic, Z,
is used to test H0, and the test is called a z-test. Statistic Z is compared to
quantiles of the standard normal distribution.

The test can be performed using either (i) the rejection region or (ii) the
p-value.

(i) The rejection region depends on the level α and the alternative hy-
pothesis. For one-sided hypotheses the tail of the rejection region follows
the direction of H1. For example, if H1 : µ > 2 and the level α is fixed,
the rejection region is [z1−α,∞). For the two-sided alternative hypothesis
H1 : µ 6= µ0 and significance level of α, the rejection region is two-sided,
(−∞, zα/2]∪ [z1−α/2,∞). Since the standard normal distribution is symmetric
about 0 and zα/2 = −z1−α/2, the two-sided rejection region is sometimes given
as (−∞,−z1−α/2]∪ [z1−α/2,∞).

The test is now straightforward. If statistic Z is calculated from the ob-
servations X1, . . . , Xn falls within the rejection region, the null hypothesis is
rejected. Otherwise, we say that hypothesis H0 is not rejected.

(ii) As discussed earlier, the p-value gives a more refined analysis in testing
than the “reject–do not reject” decision rule. The p-value is the probability of
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the rejection-region-like area cut by the observed Z (and, in the case of a two-
sided alternative, by −Z and Z) where the probability is calculated by the
distribution specified by the null hypothesis.

The following table summarizes the z-test for H0 :µ=µ0 and Z = X−µ0
σ/
p

n :

Alternative α-level rejection region p-value (MATLAB)
H1 :µ>µ0 [z1−α,∞) 1-normcdf(z)

H1 :µ 6=µ0 (−∞, zα/2]∪ [z1−α/2,∞) 2*normcdf(-abs(z))

H1 :µ<µ0 (−∞, zα] normcdf(z)

9.4.2 Power Analysis of a z-Test

The power of a test is found against a specific alternative, H1 : µ= µ1. In a z-
test, the variance σ2 is known and µ0 and µ1 are specified by their respective
H0 and H1.

The power is the probability that a z-test of level α will detect the effect of
size e and thus, reject H0. The effect size is defined as e = |µ0−µ1|

σ
.

Usually µ1 is selected such that effect e has a medical or engineering rele-
vance.

Power of the z-test for H0 :µ=µ0 when µ1 is the actual mean.
• One-sided test:

1−β=Φ
(
zα+

|µ0 −µ1|
σ/
p

n

)
=Φ

(
−z1−α+

|µ0 −µ1|
σ/
p

n

)

• Two-sided test:

1−β = Φ

(
−z1−α/2 +

(µ0 −µ1)
σ/
p

n

)
+Φ

(
−z1−α/2 +

(µ1 −µ0)
σ/
p

n

)

≈ Φ

(
−z1−α/2 +

|µ0 −µ1|
σ/
p

n

)

Typically the sample size is selected prior to the experiment. For example,
it may be of interest to decide how many respondents to interview in a poll or
how many tissue samples to process. We already selected sample sizes in the
context of interval estimation to achieve a given interval size and confidence
level.
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In a testing setup, consider a problem of testing H0 :µ=µ0 using X from a
sample of size n. Let the alternative have a specific value µ1, i.e., H1 :µ=µ1(>
µ0). Assume a significance level of α= 0.05. How large should n be so that the
power 1−β is 0.90?

Recall that the power of a test is the probability that a false null will be
rejected, P(reject H0|H0 false). The null is rejected when X > µ0 +1.645 · σp

n .

We want the power of 0.90 leading to P(X > µ0 +1.645 · σp
n |µ=µ1)= 0.90, that

is,

P

(
X −µ1

σ/
p

n
> µ0 −µ1

σ/
p

n
+1.645

)
= 0.9.

Since P(Z > −1.282) = 0.9, it follows that µ0−µ1
σ/
p

n = 1.282 − 1.645 ⇒ n =
8.567·σ2

(µ1−µ0)2 .
In general terms, if we want to achieve the power 1−β within the signifi-

cance level of α for the alternative µ = µ1, we need n ≥ (z1−α+z1−β)2σ2

(µ0−µ1)2 observa-
tions. For two-sided alternatives α is replaced by α/2.

The sample size for fixed α, β, σ, µ0, and µ1 is

n = σ2

(µ0 −µ1)2 (z1−α+ z1−β)2,

where σ is either known or estimated from a pilot experiment. If the
alternative is two-sided, then z1−α is replaced by z1−α/2. In this case, the
sample size is approximate.

If σ is not known and no estimate exists, one can elicit the effect size, e =
|µ0−µ1|/σ, directly. This number is the distance between the competing means
in units of σ. For example, for e = 1/2 we would like to find a sample size
such that the difference between the true and postulated mean equal to σ/2 is
detectable with a probability of 1−β.

9.4.3 Testing a Normal Mean When the Variance Is Not
Known: t-Test

To test a normal mean when the population variance is unknown, we use the
t-test. We are interested in testing the null hypothesis H0 :µ= µ0 against one
of the alternatives H1 : µ >, 6=,< µ0 on the basis of a sample X1, . . . , Xn from
the normal distribution N (µ,σ2) where the variance σ2 is unknown.
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If X and s are the sample mean and standard deviation, then under H0

(which states that the true mean is µ0), the statistic t= X−µ0
s/
p

n has a t distribu-
tion with n−1 degrees of freedom, see arguments on p. 247.

The test can be performed either using (i) the rejection region or (ii) the
p-value. The following table summarizes the test.

Alternative α-level rejection region p-value (MATLAB)
H1 :µ>µ0 [tn−1,1−α,∞) 1-tcdf(t, n-1)

H1 :µ 6=µ0 (−∞, tn−1,α/2]∪ [tn−1,1−α/2,∞) 2*tcdf(-abs(t),n-1)
H1 :µ<µ0 (−∞, tn−1,α] tcdf(t, n-1)

It is sometimes argued that the z-test and the t-test are an unnecessary
dichotomy and that only the t-test should be used. The population variance in
the z-test is assumed “known,” but this can be too strong an assumption. Most
of the time when µ is not known, it is unlikely that the researcher would have
definite knowledge about the population variance. Also, the t-test is more con-
servative and robust (to deviations from the normality) than the z-test. How-
ever, the z-test has an educational value since the testing process and power
analysis are easily formulated and explained. Moreover, when the sample size
is large, say, larger than 100, the z, and t-tests are practically indistinguish-
able, due to the CLT.

Example 9.4. The Moon Illusion. Kaufman and Rock (1962) stated
that the commonly observed fact that the moon near the horizon appears
larger than does the moon at its zenith (highest point overhead) could be ex-
plained on the basis of the greater apparent distance of the moon when at the
horizon. The authors devised an apparatus that allowed them to present two
artificial moons, one at the horizon and one at the zenith. Subjects were asked
to adjust the variable horizon moon to match the size of the zenith moon or
vice versa. For each subject the ratio of the perceived size of the horizon moon
to the perceived size of the zenith moon was recorded. A ratio of 1.00 would in-
dicate no illusion, whereas a ratio other than 1.00 would represent an illusion.
(For example, a ratio of 1.50 would mean that the horizon moon appeared to
have a diameter 1.50 times that of the zenith moon.) Evidence in support of
an illusion would require that we reject H0 :µ= 1.00 in favor of H1 :µ> 1.00.

Obtained ratio: 1.73 1.06 2.03 1.40 0.95 1.13 1.41 1.73 1.63 1.56

For these data,

x = [1.73, 1.06, 2.03, 1.40, 0.95, 1.13, 1.41, 1.73, 1.63, 1.56];
n = length(x)
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t = (mean(x)-1)/(std(x)/sqrt(n))
% t= 4.2976

crit = tinv(1-0.05, n-1)
% crit=1.8331. RR = (1.8331, infinity)

pval = 1-tcdf(t, n-1)
% pval = 9.9885e-004 < 0.05

As evident from the MATLAB output, the data do not support H0, and H0 is
rejected.

A Bayesian solution implemented in WinBUGS is provided next. Each
parameter in a Bayesian model should be given a prior distribution. Here
we have two parameters, the mean µ, which is the population ratio, and
σ2, the unknown variance. The prior on µ is normal with mean 0 and vari-
ance 1/0.00001 = 100000. We also restricted the prior to be on the nonneg-
ative domain (since no negative ratios are possible) by WinBUGS option
mu∼dnorm(0,0.00001)I(0,). Such a large variance makes the normal prior es-
sentially flat over µ≥ 0. This means that our prior opinion on µ is vague, and
the adopted prior is noninformative.

The prior on the precision, 1/σ2, is gamma with parameters 0.0001 and
0.0001. As we argued in Example 8.13, this selection of hyperparameters
makes the gamma prior essentially flat, and we are not injecting any prior
information about the variance.

model{
for (i in 1:n){
X[i] ~ dnorm(mu, prec)
}
mu ~ dnorm(0, 0.00001) I(0, )
prec ~ dgamma(0.0001, 0.0001)
sigma <- 1/sqrt(prec)
#TEST
prH1 <- step(mu - 1)
}
DATA
list(n=10, X=c(1.73, 1.06, 2.03, 1.40, 0.95,

1.13, 1.41, 1.73, 1.63, 1.56) )

INITS
list(mu = 0, prec = 1)

mean sd MC error val2.5pc median val97.5pc start sample
mu 1.463 0.1219 1.26E-4 1.219 1.463 1.707 1001 100000
prH1 0.999 0.03115 3.188E-5 1.0 1.0 1.0 1001 100000
sigma 0.3727 0.101 1.14E-4 0.2344 0.354 0.6207 1001 100000

�

Note that the MCMC output produced P(H0)= 0.001 and P(H1)= 0.999 and
the Bayesian solution agrees with the classical. Moreover, the posterior proba-
bility of hypothesis H0 of 0.001 is quite close to the p-value of 0.000998, which
is often the case when the priors in the Bayesian model are noninformative.
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Example 9.5. Hypersplenism and White Blood Cell Count. Hypersplenism
is a disorder that causes the spleen to rapidly and prematurely destroy blood
cells. In the general population the count of white blood cells (per mm3) is
normal with a mean of 7200 and standard deviation of σ= 1500.

It is believed that hypersplenism decreases the leukocyte count. In a sam-
ple of 16 persons affected by hypersplenism, the mean white blood cell count
was found to be X = 5213. The sample standard deviation was s= 1682.

Using WinBUGS find the posterior probability of H1 and estimate the
mean and variance in the affected population. The program in WinBUGS will
operate on the summaries X and s since the original data are not available.
The sample mean is normal and the precision (reciprocal of the variance) of
the mean is n times the precision of a single observation. In this case, knowl-
edge of the population standard deviation σ will guide the setting of an in-
formative prior on the precision. To keep the numbers manageable, we will
express the counts in 1000s, and X and s will be coded as 5.213 and 1.682, re-
spectively. Since s = 1.682, s2 = 2.8291, prec = 0.3535, it is tempting to set the
prior on the precision as precx∼dgamma(0.3535,1) or precx∼dgamma(3.535,10)
since the mean of these priors will match the observed precision. However, this
would be a “data-built” prior in the spirit of the empirical Bayes approach. We
will use the fact that in the population σ was 1.5 and we will elicit the prior
precx∼dgamma(4.444,10) since 1/1.52 = 0.4444.

model {
precxbar <- n * precx
xbar ~ dnorm(mu, precxbar)
mu ~ dnorm(0, 0.0001) I(0, )

# sigma = 1.5, s^2 = 2.25, prec = 0.4444
# X gamma(a,b) -> EX=a/b, Var X = a/b^2

precx ~ dgamma(4.444, 10 )
indh1 <- step(7.2 - mu)
sigx <- 1/sqrt(precx)
}

DATA
list(xbar = 5.213, n=16)

INITS
list(mu=1.000, precx=1.000)

mean sd MC error val2.5pc median val97.5pc start sample
indh1 0.9997 0.01643 3.727E-5 1.0 1.0 1.0 1001 200000
mu 5.212 0.4263 9.842E-4 4.367 5.212 6.064 1001 200000
sigx 1.644 0.4486 0.001081 1.032 1.561 2.749 1001 200000

Note that the posterior probability of H1 is 0.9997 and this hypothesis is a
clear winner.
�
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9.4.4 Power Analysis of t-Test

When an experiment is planned, the data are not available. Even if the vari-
ance is unknown, as in the case of a t-test, it is elicited, or the difference
|µ0−µ1| is expressed in units of standard deviation. Thus, in preexperimental
planning the power analysis applicable to the z-test is also applicable to the
t-test.

Once the data are available and the test is performed, the sample mean
and sample variance are available and it becomes possible to assess the power
retrospectively. We have already discussed controversies surrounding retro-
spective power analyses.

In a retrospective evaluation of the power it is not recommended to replace
|µ0−µ1| by |µ0−X |, as is sometimes done, but to simply update the elicited σ2

with the observed variance. When σ is replaced by s, the expressions for find-
ing the power involve t and noncentral t distributions. Here is an illustration.

Example 9.6. Suppose we are testing H0 : µ = 10 versus H1 : µ > 10, at a level
α= 0.05. A sample of size n = 20 gives X = 12 and s = 5. We are interested in
finding the power of the test against the alternative H1 :µ= 13.

The exact power is P(t ∈ RR|t∼ nct(d f = n−1,ncp = (µ1 −µ0)
p

n/σ)), since
under H1, t has a noncentral t distribution with n−1 degrees of freedom and
a noncentrality parameter (µ1−µ0)

p
n

σ . “RR” denotes the rejection region.

n=20; Xb=12; mu0 = 10; s=5; mu1= 13; alpha=0.05;
pow1 = nctcdf( -tinv(1-alpha, n-1), n-1,-abs(mu1-mu0)*sqrt(n)/s)
% or pow1=1-nctcdf(tinv(1-alpha, n-1),n-1,abs(mu1-mu0)*sqrt(n)/s)
% pow1 = 0.8266
%
pow = normcdf(-norminv(1-alpha) + abs(mu1-mu0)*sqrt(n)/s)
% or pow = 1-normcdf(norminv(1-alpha)-abs(mu1-mu0)*sqrt(n)/s)
% pow = 0.8505

For a large sample size the power calculated as in the z-test approximates
the exact power, but from the “optimistic” side, that is, by always overestimat-
ing it. In this MATLAB script we find a power of approx. 85%, which in an
exact calculation (as above) drops to 82.66%.

For the two-sided alternative H1 :µ 6= 10 the exact power decreases,

pow2 = nctcdf(tinv(1-alpha/2, n-1), n-1,-abs(mu1-mu0)*sqrt(n)/s) ...
-nctcdf(tinv(1-alpha/2, n-1), n-1, abs(mu1-mu0)*sqrt(n)/s)

%pow2 =0.7210

When easy calculation of the noncentral t CDF is not available, a good
approximation for the power is
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1−Φ




tn−1,α−|µ1 −µ0|
p

n/s√
1+ t2

n−1,1−α
2(n−1)


 .

In our example,

1-normcdf((tinv(1-alpha,n-1)- ...
(mu1-mu0)/s * sqrt(n))/sqrt(1 + (tinv(1-alpha,n-1))^2/(2*n-2)))

%ans = 0.8209

�

Following is the summary of retrospective power calculations for the t-test.

Power of the t-test for H0 :µ=µ0, when µ1 is the actual mean.
• One-sided test:

1−β= 1-nctcdf
(
tn−1,1−α, n−1,

|µ1 −µ0|
s/
p

n

)

• Two-sided test:

1−β= nctcdf
(
tn−1,1−α/2, n−1,

−|µ1 −µ0|
s/
p

n

)
−

nctcdf
(
tn−1,1−α/2, n−1,

|µ1 −µ0|
s/
p

n

)

Here nctcdf(x,df,δ) is the CDF of a noncentral t distribution, with df
degrees of freedom and noncentrality parameter δ, evaluated at x. In
MATLAB this function is nctcdf(x,df,delta).

9.5 Testing the Normal Variances

When we discussed the estimation of the normal variance (Sect.7.3.2), we ar-
gued that the statistic (n− 1)s2/σ2 had a χ2 distribution with n− 1 degrees
of freedom. The test for the normal variance is based on this statistic and its
distribution.

Suppose we want to test H0 : σ2 = σ2
0 versus H1 : σ2 6= (<,>)σ2

0. The test
statistic is

χ2 = (n−1)s2

σ2
0

.
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The testing procedure at the α level can be summarized by

Alternative α-level rejection region p-value (MATLAB)
H1 :σ>σ0 [χ2

n−1,1−α,∞) 1-chi2cdf(chi2,n-1)

H1 :σ 6=σ0 [0,χ2
n−1,α/2]∪ [χ2

n−1,1−α/2,∞) 2*chi2cdf(min(chi2,1/chi2),n-1)
H1 :σ<σ0 [0,χ2

n−1,α] chi2cdf(chi2,n-1)

The power of the test against the specific alternative is the probability of
the rejection region evaluated as if H1 were a true hypothesis. For example, if
H1 :σ2 >σ2

0, and specifically if H1 :σ2 =σ2
1, σ2

1 >σ2
0, then the power is

1−β=P
(

(n−1)s2

σ2
0

≥ χ2
1−α,n−1|H1

)
= P

(
(n−1)s2

σ2
1

·
σ2

1

σ2
0
≥ χ2

1−α,n−1|H1

)

= P

(
χ2 ≥

σ2
0

σ2
1
χ2

1−α,n−1

)
,

or in MATLAB:
power=1-chi2cdf(sigmasq0/sigmasq1*chi2inv(1-alpha,n-1),n-1).

For the one-sided alternative in the opposite direction and for the two-sided al-
ternative, finding the power is analogous. The sample size necessary to achieve
a preassigned power can be found by trial and error or by using MATLAB’s
function fzero.

LDL-C Levels. A new handheld device for assessing cholesterol levels in the
blood has been presented for approval to the FDA. The variability of measure-
ments obtained by the device for people with normal levels of LDL cholesterol
is one of the measures of interest. A calibrated sample of size n= 224 of serum
specimens with a fixed 130-level of LDL-C is measured by the device. The
variability of measurements is assessed.

(a) If s2 = 2.47 was found, test the hypothesis that the population variance
is 2 (as achieved by a clinical computerized Hitachi 717 analyzer, with enzy-
matic, colorimetric detection schemes) against the one-sided alternative. Use
α= 0.05.

(b) Find the power of this test against the specific alternative, H1 :σ2 = 2.5.
(c) What sample size ensures the power of 90% in detecting the effect

σ2
0/σ2

1 = 0.8 significant.
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n = 224; s2 = 2.47; sigmasq0 = 2; sigmasq1 = 2.5; alpha = 0.05;
%(a)
chisq = (n-1)*s2 /sigmasq0

%test statistic chisq = 275.4050.
%The alternative is H_1: sigma2 > 2

chi2crit = chi2inv( 1-alpha, n-1 )
%one sided upper tail RR = [258.8365, infinity)

pvalue = 1 - chi2cdf(chisq, n-1) %pvalue = 0.0096
%(b)
power = 1-chi2cdf(sigmasq0/sigmasq1 * chi2inv(1-alpha, n-1), n-1 )

%power = 0.7708
%(c)
ratio = sigmasq0/sigmasq1 %0.8
pf = @(n) 1-chi2cdf( ratio * chi2inv(1-alpha, n-1), n-1 ) - 0.90;
ssize = fzero(pf, 300) %342.5993 approx 343

9.6 Testing the Proportion

When discussing the CLT, in particular the de Moivre theorem, we saw that
the binomial distribution could be well approximated with the normal if n
were large and np(1− p) > 5. The sample proportion p̂ thus has an approxi-
mately normal distribution with mean p and variance p(1− p)/n.

Suppose that we are interested in testing H0 : p = p0 versus one of the
three possible alternatives. When H0 is true, the test statistic

Z = p̂− p0√
p0(1− p0)/n

has a standard normal distribution. Thus the testing procedure can be sum-
marized in the following table:

Alternative α-level rejection region p-value (MATLAB)
H1 : p > p0 [z1−α,∞) 1-normcdf(z)

H1 : p 6= p0 −∞, zα/2]∪ [z1−α/2,∞) 2*normcdf(-abs(z))

H1 : p < p0 (−∞, zα] normcdf(z)

Using the normal approximation one can derive that the power against the
specific alternative H1 : p = p1 is

Φ

[√
p0(1− p0)
p1(1− p1)

(
zα+

|p1 − p0|
p

n√
p0(1− p0)

)]
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for the one-sided test. For the two-sided test zα is replaced by zα/2. The sample
size needed to find the effect |p0 − p1| significant (1−β)100% of the time (the
test would have a power of 1−β) is

n =
p0(1− p0)

(
z1−α/2 + z1−β

√
p1(1−p1)
p0(1−p0)

)2

(p0 − p1)2 .

Example 9.7. Proportion of Hemorrhagic-type Strokes Among Ameri-
can Indians. The study described in the American Heart Association news
release of September 22, 2008 included 4,507 members of 13 American In-
dian tribes in Arizona, Oklahoma, and North and South Dakota. It found that
American Indians have a stroke rate of 679 per 100,000, compared to 607 per
100,000 for African Americans and 306 per 100,000 for Caucasians. None of
the participants, ages 45 to 74, had a history of stroke when they were re-
cruited for the study from 1989 to 1992. Almost 60% of the volunteers were
women.

During more than 13 years of follow-up, 306 participants suffered a first
stroke, most of them in their mid-60s when it occurred. There were 263 strokes
of the ischemic type – caused by a blockage that cuts off the blood supply to
the brain – and 43 hemorrhagic (bleeding) strokes.

It is believed that in the general population one in five of all strokes is
hemorrhagic.

(a) Test the hypothesis that the proportion of hemorrhagic strokes in the
population of American Indians that suffered a stroke is lower than the na-
tional proportion of 0.2.

(b) What is the power of the test in (a) against the alternative H1 : p = 0.15?
(c) What sample size ensures a power of 90% in detecting p = 0.15, if H0

states p = 0.2?
Since 306×0.2> 10, a normal approximation can be used.

z = (43/306 - 0.2)/sqrt(0.2 *(1- 0.2)/306)
% z = -2.6011

pval = normcdf(z)
% pval = 0.0046

Since the exact distribution is binomial and the p-value is the probability
of observing a number of hemorrhagic strokes less than or equal to 43, we are
able to calculate this p-value exactly:

pval = binocdf(43, 306, 0.2)
%pval = 0.0044
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Note that the p-value of the normal approximation (0.0046) is quite close
to the p-value of the exact test (0.0044).

%(b)
p0=0.2; p1=0.15; alpha=0.05; n=306;
power = normcdf( sqrt(p0*(1-p0)/(p1*(1-p1))) * ...

(norminv(alpha) + abs(p1-p0)*sqrt(n)/sqrt( p0*(1-p0)) ) )
%0.728

%(c)
beta = 0.1;
ssize = p0*(1-p0) * (norminv(1-alpha) + norminv(1-beta)*...

sqrt( p1*(1-p1)/( p0 * (1-p0))))^2/(p0 - p1)^2
%497.7779 approx 498

The Bayesian test requires a prior on population proportion p. We select
a beta prior with parameters 1 and 4 so that Ep = 1/(1+4) = 0.2 matches the
mean under H0.

model{
X ~ dbin(p, n)
p ~ dbeta(1,4)
pH1 <- step(0.2-p)

}
DATA
list(n=306, X=43)
#Generate Inits

The output variable pH1 gives the posterior probability of the hypothesis
H1 : p < 0.2.

mean sd MC error val2.5pc median val97.5pc start sample
p 0.1415 0.01974 1.9158E-5 0.1051 0.1407 0.1823 1001 1000000
pH1 0.9967 0.05694 5.675E-5 1.0 1.0 1.0 1001 1000000

If we wanted to be noninformative in eliciting a prior for p, several choices
for such a prior are available. For example, the prior could be uniform,
dbeta(1,1), but the differences in WinBUGS’ output are minimal:

mean sd MC error val2.5pc median val97.5pc start sample
p 0.1428 0.01987 6.337E-5 0.1061 0.1421 0.184 1001 100000

test 0.00402 0.06328 1.942E-4 0.0 0.0 0.0 1001 100000

Another noninformative choice is dbeta(0.5,0.5) (Jeffreys’ prior, p. 292).
�

Example 9.8. Savage’s Disparity. A Bayesian inference is conditional. It is
based on data observed and not on data that could possibly be observed, or
on the manner in which the sampling was conducted. This is not the case in
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classical testing, and the argument first put forth by Jimmie Savage at the
Purdue Symposium in 1962 emphasizes the difference.

Suppose a coin is flipped 12 times and 9 heads and 3 tails are obtained. Let
p be the probability of heads. We are interested in testing whether the coin is
fair against the alternative that it is more likely to come heads up, or

H0 : p = 1/2 vs. H1 : p > 1/2.

The p-value for this test is the probability that one observes 9 or more
heads if the coin is fair (under H0).

Consider the following two scenarios:
(A) Suppose that the number of flips n = 12 was decided a priori. Then the

number of heads X is binomial and under H0 (fair coin) the p-value is

P(X ≥ 9)= 1−∑8
k=0

(12
k
)
pk(1− p)12−k = 1−binocdf(8,12,0.5)= 0.0730.

At a 5% significance level H0 is not rejected
(B) Suppose that the flipping is carried out until 3 tails have appeared.

Let us call tails “success” and heads “failures.” Then, under H0, the number of
failures (heads) Y is a negative binomial N B(3,1/2) and the p-value is

P(Y ≥ 9)= 1−∑8
k=0

(3+k−1
k

)
(1− p)3 pk = 1−nbincdf(8,3,1/2)= 0.0327.

At a 5% significance level H0 is rejected.
Thus, two Fisherian tests recommend opposite actions for the same data

simply because of how the sampling was conducted.
Note that in (A) and (B) the likelihoods are proportional to p9(1− p)3, and

for a fixed prior on p there is no difference in any Bayesian inference.
Edwards et al. (1963) note that “. . . the rules governing when data collec-

tion stops are irrelevant to data interpretation. It is entirely appropriate to
collect data until a point has been proven or disproven, or until the data col-
lector runs out of time, money, or patience.”
�

9.7 Multiplicity in Testing, Bonferroni Correction, and
False Discovery Rate

Recall that when testing a single hypothesis H0, a type I error is made if it
is rejected, even if it is actually true. The probability of making a type I error
in a test is usually controlled to be smaller than a certain level of α, typically
equal to 0.05.

When there are several null hypotheses, H01, H02, . . . , H0m, and all of them
are tested simultaneously, one may want to control the type I error at some
level α as well. In this scenario a type I error is then made if at least one
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true hypothesis in the family of hypotheses being tested is rejected. Because it
pertains to the family of hypotheses, this significance level is called the fami-
lywise error rate (FWER).

If the hypotheses in the family are independent, then

FWER= 1− (1−αi)m,

where FWER and αi are overall and individual significance levels, respec-
tively.

For arbitrary, possibly dependent, hypotheses, the Bonferroni inequality
translates to

FWER≤ mαi.

Suppose m = 15 tests are conducted simultaneously. If an individual αi =
0.05, then FWER = 1−0.9515 = 0.5367. This means that the chance of claim-
ing a significant result when there should not be one is larger than 1/2. For
possibly dependent hypotheses the upper bound of FWER is 0.75.

Bonferroni: To control FWER ≤ α reject all H0i among
H01, H02, . . . , H0m for which the p-value is less than α/m.

Thus, if for n = 15 arbitrary hypotheses we want an overall significance
level of FWER≤ 0.05, then the individual test levels should be set to 0.05/15 =
0.0033.

Testing for significance with gene expression data from DNA microarray
experiments involves simultaneous comparisons of hundreds or thousands of
genes and controlling the FWER by the Bonferroni method would require very
small individual αis. Setting such small α levels decreases the power of indi-
vidual tests (many false H0 are not rejected) and the Bonferroni correction is
considered by many practitioners as overly conservative. Some call it a “panic
approach.”

Remark. If, in the context of interval estimation, k simultaneous interval
estimates are desired with an overall confidence level (1−α)100%, one can
construct each interval with confidence level (1−α/k)100%, and the Bonferroni
inequality insures that the overall confidence is at least (1−α)100%.

The Bonferroni–Holm method is an iterative procedure in which individ-
ual significance levels are adjusted to increase power and still control the
FWER. One starts by ordering the p-values of all tests for H01, H02, . . . , H0m
and then compares the smallest p-value to α/m. If that p-value is smaller
than α/m, then reject that hypothesis and compare the second ranked p-value
to α/(m−1). If this hypothesis is rejected, proceed to the third ranked p-value
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Fig. 9.2 Carlo Emilio Bonferroni (1892–1960).

and compare it with α/(m−2). Continue doing this until the hypothesis with
the smallest remaining p-value cannot be rejected. At this point the proce-
dure stops and all hypotheses that have not been rejected at previous steps
are accepted.

For example, assume that five hypotheses are to be tested with a FWER of
0.05. The five p-values are 0.09, 0.01, 0.04, 0.012, and 0.004. The smallest of
these is 0.004. Since this is less than 0.05/5, hypothesis four is rejected. The
next smallest p-value is 0.01, which is also smaller than 0.05/4. So this hy-
pothesis is also rejected. The next smallest p-value is 0.012, which is smaller
than 0.05/3, and this hypothesis is rejected. The next smallest p-value is 0.04,
which is not smaller than 0.05/2. Therefore, the hypotheses with p-values of
0.004, 0.01, and 0.012 are rejected while those with p-values of 0.04 and 0.09
are not rejected.

The false discovery rate paradigm (Benjamini and Hochberg, 1995) consid-
ers the proportion of falsely rejected null hypotheses (false discoveries) among
the total number of rejections.

Controlling the expected value of this proportion, called the false discovery
rate (FDR), provides a useful alternative that addresses low-power problems
of the traditional FWER methods when the number of tested hypotheses is
large. The test statistics in these multiple tests are assumed independent or
positively correlated. Suppose that we are looking at the result of testing m
hypotheses among which m0 are true. In terms of the table, V denotes the
number of false rejections, and the FWER is P(V ≥ 1).

H0 not rejected H0 rejected Total
H0 true U V m0
H1 true T S m1

Total W R m

If R denotes the number of rejections (declared significant genes, discov-
eries) then V /R, for R > 0, is the proportion of false rejected hypotheses. The
FDR is

E

(
V
R

∣∣∣R > 0
)
P(R > 0).
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Let p(1) ≤ p(2) ≤ ·· · ≤ p(m) be the ordered, observed p-values for the m hy-
potheses to be tested. Algorithmically, the FDR method finds k such that

k =max
{
i|p(i) ≤ (i/m)α

}
. (9.2)

The FWER is controlled at the α level if the hypotheses corresponding to
p(1), . . . , p(k) are rejected. If no such k exists, no hypothesis from the family
is rejected. When the test statistics in the multiple tests are possibly neg-
atively correlated as well, the FDR is modified by replacing α in (9.2) with
α/(1+1/2+·· ·+1/m). The following MATLAB script ( FDR.m) finds the criti-
cal p-value p(k). If p(k) = 0, then no hypothesis is rejected.
function pk = FDR(p,alpha)
%Critical p-value pk for FDR <= alpha.
%All hypotheses with p-value less than or equal
%to pk are rejected.
%if pk = 0 no hypothesis is to be rejected
m = length(p); %number of hypotheses
po = sort(p(:)); %ordered p-values
i = (1:m)’; %index
pk = po(max(find( po < i./m * alpha)));
%critical p-value
if ( isempty(pk)==1 )

pk=0;
end

Suppose that we have 1000 hypotheses and all hypotheses are true. Then
their p-values look like a random sample from the uniform U (0,1) distribu-
tion. About 50 hypotheses would have a p-value of less than 0.05. However,
for all reasonable FDR levels (0.05–0.2) p(k) = 0, as it should be since we do
not want false discoveries.
p = rand(1000,1);
[FDR(p, 0.05), FDR(p, 0.2), FDR(p, 0.6), FDR(p, 0.92)]
%ans = 0 0 0.0022 0.0179

9.8 Exercises

9.1. Public Health. A manager of public health services in an area downwind
of a nuclear test site wants to test the hypothesis that the mean amount
of radiation in the form of strontium-90 in the bone marrow (measured in
picocuries) for citizens who live downwind of the site does exceed that of
citizens who live upwind from the site. It is known that “upwinders” have
a mean level of strontium-90 of 1 picocurie. Measurements of strontium-90
radiation for a sample of n = 16 citizens who live downwind of the site were
taken, giving X = 3. The population standard deviation is σ= 4.
Test the (research, alternative) hypothesis that downwinders have a higher
strontium-90 level than upwinders. Assume normality and use a signifi-
cance level of α= 0.05.
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(a) State H0 and H1.
(b) Calculate the appropriate test statistic.
(c) Determine the critical region of the test.
(d) State your decision.
(e) What would constitute a type II error in this setup? Describe in one
sentence.

9.2. Testing IQ. We wish to test the hypothesis that the mean IQ of the stu-
dents in a school system is 100. Using σ = 15, α = 0.05, and a sample of 25
students the sample value X is computed. For a two-sided test find:
(a) The range of X for which we would accept the hypothesis.
(b) If the true mean IQ of the students is 105, find the probability of falsely
accepting H0 :µ= 100.
(c) What are the answers in (a) and (b) if the alternative is one-sided, H1 :
µ> 100?

9.3. Bricks. A purchaser of bricks suspects that the quality of bricks is deterio-
rating. From past experience, the mean crushing strength of such bricks is
400 pounds. A sample of n = 100 bricks yielded a mean of 395 pounds and
standard deviation of 20 pounds.
(a) Test the hypothesis that the mean quality has not changed against the
alternative that it has deteriorated. Choose α= .05.
(b) What is the p-value for the test in (a).
(c) Assume that the producer of the bricks contested your findings in (a)
and (b). Their company suggested constructing the 95% confidence interval
for µ with a total length of no more than 4. What sample size is needed to
construct such a confidence interval?

9.4. Soybeans. According to advertisements, a strain of soybeans planted on
soil prepared with a specific fertilizer treatment has a mean yield of 500
bushels per acre. Fifty farmers who belong to a cooperative plant the soy-
beans. Each uses a 40-acre plot and records the mean yield per acre. The
mean and variance for the sample of 50 farms are x = 485 and s2 = 10045.
Use the p-value for this test to determine whether the data provide suffi-
cient evidence to indicate that the mean yield for the soybeans is different
from that advertised.

9.5. Great White Shark. One of the most feared predators in
the ocean is the great white shark Carcharodon carcharias. Although it
is known that the white shark grows to a mean length of 14 ft. (record:
23 ft.), a marine biologist believes that the great white sharks off the
Bermuda coast grow significantly longer due to unusual feeding habits. To
test this claim a number of full-grown great white sharks are captured off
the Bermuda coast, measured, and then set free. However, because the cap-
ture of sharks is difficult, costly, and very dangerous, only five are sampled.
Their lengths are 16, 18, 17, 13, and 20 ft.
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(a) What assumptions must be made in order to carry out the test?
(b) Do the data provide sufficient evidence to support the marine biologist’s
claim? Formulate the hypotheses and test at a significance level of α= 0.05.
Provide solutions using both a rejection-region approach and a p-value ap-
proach.
(c) Find the power of the test against the alternative H1 :µ= 17.
(d) What sample size is needed to achieve a power of 0.95 in testing the
above hypothesis if µ1 −µ0 = 3 and α = 0.05. Assume that the previous
experiment was a pilot study to assess the variability in data and adopt
σ= 2.5.
(e) Provide a Bayesian solution using WinBUGS with noninformative priors
on µ and σ2. Compare with classical results and discuss.

9.6. Serum Sodium Levels. A data set concerning the National Quality Con-
trol Scheme, Queen Elizabeth Hospital, Birmingham, referenced in An-
drews and Herzberg (1985), provides the results of analysis of 20 sam-
ples of serum measured for their sodium content. The average value for
the method of analysis used is 140 ppm.

140 143 141 137 132 157 143 149 118 145
138 144 144 139 133 159 141 124 145 139

Is there evidence that the mean level of sodium in this serum is different
from 140 ppm?

9.7. Weight of Quarters. The US Department of Treasury claims that the
procedure it uses to mint quarters yields a mean weight of 5.67 g with a
standard deviation of 0.068 g. A random sample of 30 quarters yielded a
mean of 5.643 g. Use a 0.05 significance to test the claim that the mean
weight is 5.67 g.
(a) What alternatives make sense in this setup? Choose one sensible alter-
native and perform the test.
(b) State your decision in terms of accept–reject H0.
(c) Find the p-value and confirm your decision from the previous bullet in
terms of the p-value.
(d) Would you change the decision if α were 0.01?

9.8. Dwarf Plants. A genetic model suggests that three-fourths of the plants
grown from a cross between two given strains of seeds will be of the dwarf
variety. After breeding 200 of these plants, 136 were of the dwarf variety.
(a) Does this observation strongly contradict the genetic model?
(b) Construct a 95% confidence interval for the true proportion of dwarf
plants obtained from the given cross.
(c) Answer (a) and (b) using Bayesian arguments and WinBUGS.

9.9. Eggs in a Nest. The average number of eggs laid per nest per season for
the Eastern Phoebe bird is a parameter of interest. A random sample of
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70 nests was examined and the following results were obtained (Hamilton,
1990),

Number of eggs/nest 1 2 3 4 5 6
Frequency f 3 2 2 14 46 3

Test the hypothesis that the true average number of eggs laid per nest by
the Eastern Phoebe bird is equal to five versus the two-sided alternative.
Use α= 0.05.

9.10. Penguins. Penguins are popular birds, and the Emperor penguin (Apten-
odytes forsteri) is the most popular penguin of all. A researcher is interested
in testing that the mean height of Emperor penguins from a small island is
less than µ= 45 in., which is believed to be the average height for the whole
Emperor penguin population. The measurements of height of 14 randomly
selected adult birds from the island are

41 44 43 47 43 46 45 42 45 45 43 45 47 40

State the hypotheses and perform the test at the level α= 0.05.

9.11. Hypersplenism and White Blood Cell Count. In Example 9.5, the be-
lief was expressed that hypersplenism decreased the leukocyte count and
a Bayesian test was conducted. In a sample of 16 persons affected by hy-
persplenism, the mean white blood cell count (per mm3) was found to be
X = 5213. The sample standard deviation was s= 1682.
(a) With this information test H0 : µ= 7200 versus the alternative H1 : µ<
7200 using both rejection region and p-value. Compare the results with
WinBUGS output.
(b) Find the power of the test against the alternative H1 :µ= 5800.
(c) What sample size is needed if in a repeated study a difference of |µ1 −
µ0| = 600 is to be detected with a power of 80%? Use the estimate s= 1682.

9.12. Jigsaw. An experiment with a sample of 18 nursery-school children in-
volved the elapsed time required to put together a small jigsaw puzzle. The
times were as follows:

3.1 3.2 3.4 3.6 3.7 4.2 4.3 4.5 4.7
5.2 5.6 6.0 6.1 6.6 7.3 8.2 10.8 13.6

(a) Calculate the 95% confidence interval for the population mean.
(b) Test the hypothesis H0 : µ = 5 against the two-sided alternative. Take
α= 10%.

9.13. Anxiety. A psychologist has developed a questionnaire for assessing levels
of anxiety. The scores on the questionnaire range from 0 to 100. People who
obtain scores of 75 and greater are classified as anxious. The questionnaire
has been given to a large sample of people who have been diagnosed with
an anxiety disorder, and scores are well described by a normal model with
a mean of 80 and a standard deviation of 5. When given to a large sample
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of people who do not suffer from an anxiety disorder, scores on the ques-
tionnaire can also be modeled as normal with a mean of 60 and a standard
deviation of 10.
(a) What is the probability that the psychologist will misclassify a nonanx-
ious person as anxious?
(b) What is the probability that the psychologist will erroneously label a
truly anxious person as nonanxious?

9.14. Aptitude Test. An aptitude test should produce scores with a large
amount of variation so that an administrator can distinguish between per-
sons with low aptitude and those with high aptitude. The standard test
used by a certain university has been producing scores with a standard de-
viation of 5. A new test given to 20 prospective students produced a sample
standard deviation of 8. Are the scores from the new test significantly more
variable than scores from the standard? Use α= 0.05.

9.15. Rats and Mazes. Eighty rats selected at random were taught to run a new
maze. All of them finally succeeded in learning the maze, and the number
of trials to perfect the performance was normally distributed with a sample
mean of 15.4 and sample standard deviation of 2. Long experience with
populations of rats trained to run a similar maze shows that the number of
trials to attain success is normally distributed with a mean of 15.
(a) Is the new maze harder for rats to learn than the older one? Formulate
the hypotheses and perform the test at α= 0.01.
(b) Report the p-value. Would the decision in (a) be different if α= 0.05?
(c) Find the power of this test for the alternative H1 :µ= 15.6.
(d) Assume that the above experiment was conducted to assess the standard
deviation, and the result was 2. You wish to design a sample size for a new
experiment that will detect the difference |µ0 −µ1| = 0.6 with a power of
90%. Here α= 0.01, and µ0 and µ1 are postulated means under H0 and H1,
respectively.

9.16. Hemopexin in DMD Cases I. Refer to data set dmd.dat|mat|xls from
Exercise 2.16. The measurements of hemopexin are assumed normal.
(a) Form a 95% confidence interval for the mean response of hemopexin h

in a population of all female DMD carriers (carrier=1).
Although the level of pyruvate kinase seems to be the strongest single pre-
dictor of DMD, it is an expensive measure. Instead, we will explore the level
of hemopexin, a protein that protects the body from oxidative damage. The
level of hemopexin in a general population of women of the same age range
as that in the study is believed to be 85.
(b) Test the hypothesis that the mean level of hemopexin in the population
of women DMD carriers significantly exceeds 85. Use α = 5%. Report the
p-value as well.
(c) What is the power of the test in (b) against the alternative H1 :µ1 = 89.
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(d) The data for this exercise come from a study conducted in Canada. If you
wanted to replicate the test in the USA, what sample size would guarantee
a power of 99% if H0 were to be rejected whenever the difference from the
true mean was 4, (|µ0−µ1| = 4)? A small pilot study conducted to assess the
variability of hemopexin level estimated the standard deviation as s= 12.
(e) Find the posterior probability of the hypothesis H1 : µ > 85 using Win-
BUGS. Use noninformative priors. Also, compare the 95% credible set for µ
that you obtained with the confidence interval in (a).
Hint: The commands

%file dmd.mat should be on path
load ’dmd.mat’; hemo = dmd( dmd(:,6)==1, 3);

will distill the levels of hemopexin in carrier cases.

9.17. Retinol and a Copper-Deficient Diet. The liver is the main storage site
of vitamin A and copper. Inverse relationships between copper and vita-
min A liver concentrations have been suggested. In Rachman et al. (1987)
the consequences of a copper-deficient diet on liver and blood vitamin A
storage in Wistar rats was investigated. Nine animals were fed a copper-
deficient diet for 45 days from weaning. Concentrations of vitamin A were
determined by isocratic high-performance liquid chromatography using UV
detection. Rachman et al. (1987) observed in the liver of the rats fed a
copper-deficient diet a mean level of retinol [in micrograms/g of liver] was
X = 3.3 and s= 1.4. It is known that the normal level of retinol in a rat liver
is µ0 = 1.6.
(a) Find the 95% confidence interval for the mean level of liver retinol in the
population of copper-deficient rats. Recall that the sample size was n= 9.
(b) Test the hypothesis that the mean level of retinol in the population of
copper-deficient rats is µ0 = 1.6 versus a sensible alternative (either one-
sided or two-sided), at the significance level α = 0.05. Use both rejection
region and p-value approaches.
(c) What is the power of the test in (b) against the alternative H1 : µ= µ1 =
2.4. Comment.
(d) Suppose that you are designing a new, larger study in which you are
going to assume that the variance of observations is σ2 = 1.42, as the lim-
ited nine-animal study indicated. Find the sample size so that the power of
rejecting H0 when an alternative H1 :µ= 2.1 is true is 0.80. Use α= 0.05.
(e) Provide a Bayesian solution using WinBUGS.

9.18. Aniline. Organic chemists often purify organic compounds by a method
known as fractional crystallization. An experimenter wanted to prepare
and purify 5 grams of aniline. It is postulated that 5 grams of aniline would
yield 4 grams of acetanilide. Ten 5-gram quantities of aniline were individ-
ually prepared and purified.
(a) Test the hypothesis that the mean dry yield differs from 4 grams if the
mean yield observed in a sample was X = 4.21. The population is assumed
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normal with known variance σ2 = 0.08. The significance level is set to α =
0.05.
(b) Report the p-value.
(c) For what values of X will the null hypothesis be rejected at the level
α= 0.05?
(d) What is the power of the test for the alternative H1 :µ= 3.6 at α= 0.05.
(e) If you are to design a similar experiment but would like to achieve a
power of 90% versus the alternative H1 : µ = 3.6 at α = 0.05, what sample
size would you recommended?

9.19. DNA Random Walks. DNA random walks are numerical transcriptions
of a sequence of nucleotides. The imaginary walker starts at 0 and goes
one step up (s = +1) if a purine nucleotide (A, G) is encountered, and one
step down (s =−1) if a pyramidine nucleotide (C, T) is encountered. Peng et
al. (1992) proposed identifying coding/noncoding regions by measuring the
irregularity of associated DNA random walks. A standard irregularity mea-
sure is the Hurst exponent H, an index that ranges from 0 to 1. Numerical
sequences with H close to 0 are irregular, while the sequences with H close
to 1 appear more smooth.
Figure 9.3 shows a DNA random walk in the DNA of a spider monkey (Ate-
les geoffroyi). The sequence is formed from a noncoding region and has a
Hurst exponent of H = 0.61.
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Fig. 9.3 A DNA random walk formed by a noncoding region from the DNA of a spider
monkey. The Hurst exponent is 0.61.

A researcher wishes to design an experiment in which n nonoverlapping
DNA random walks of a fixed length will be constructed, with the goal of
testing to see if the Hurst exponent for noncoding regions is 0.6.
The researcher would like to develop a test so that an effect e = |µ0 −µ1|/σ
will be detected with a probability of 1−β = 0.9. The test should be two-
sided with a significance level of α = 0.05. Previous analyses of noncoding
regions in the DNA of various species suggest that exponent H is approx-



9.8 Exercises 351

imately normally distributed with a variance of approximately σ2 = 0.032.
The researcher believes that |µ0 −µ1| = 0.02 is a biologically meaningful
difference. In statistical terms, a 5%-level test for H0 : µ = 0.6 versus the
alternative H1 : µ = 0.6±0.02 should have a power of 90%. The preexperi-
mentally assessed variance σ2 = 0.032 leads to an effect size of e = 2/3.
(a) Argue that a sample size of n = 24 satisfies the power requirements.
The experiment is conducted and the following 24 values for the Hurst ex-
ponent are obtained:

H =[0.56 0.61 0.62 0.53 0.54 0.60 0.56 0.59 ...
0.60 0.60 0.62 0.60 0.58 0.57 0.61 0.64 ...
0.60 0.61 0.58 0.59 0.55 0.59 0.60 0.65 ];

% [mean(H) std(H)] %%% 0.5917 0.0293

(b) Using the t-test, test H0 against the two-sided alternative at the level
α= 0.05 using both the rejection-region approach and the p-value approach.
(c) What is the retrospective power of your test? Use the formula with a
noncentral t-distribution and s found from the sample.

9.20. Binding of Propofol. Serum protein binding is a limiting factor in the ac-
cess of drugs to the central nervous system. Disease-induced modifications
of the degree of binding may influence the effect of anesthetic drugs.
The protein binding of propofol, an intravenous anaesthetic agent that is
highly bound to serum albumin, has been investigated in patients with
chronic renal failure. Protein binding was determined by the ultrafiltration
technique using an Amicon Micropartition System, MPS-1.
The mean proportion of unbound propofol in healthy individuals is 0.96,
and it is assumed that individual proportions follow a beta distribution,
Be(96,4). Based on a sample of size n = 87 of patients with chronic renal
failure, the average proportion of unbound propofol was found to be 0.93
with a sample standard deviation of 0.12.
(a) Test the hypothesis that the mean proportion of unbound propofol in a
population of patients with chronic renal failure is 0.96 versus the one-sided
alternative. Use α = 0.05 and perform the test using both the rejection-
region approach and the p-value approach. Would you change the decision
if α= 0.01?
(b) Even though the individual measurements (proportions) follow a beta
distribution, one can use the normal theory in (a). Why?

9.21. Improvement of Surgical Procedure. In a disease in which the post-
operative mortality is usually 10%, a surgeon devises a new surgical tech-
nique. He tries the technique on 15 patients and has no fatalities.
(a) What is the probability of the surgeon having no fatalities in treating 15
patients if the mortality rate is 10%.
(b) The surgeon claims that his new surgical technique significantly im-
proves the survival rate. Is his claim justified?
(c) What is the minimum number of patients the surgeon needs to treat
without a single fatality in order to convince you that his procedure is a
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significant improvement over the old technique? Specify your criteria and
justify your answer.

9.22. Cancer Therapy. Researchers in cancer therapy often report only the
number of patients who survive for a specified period of time after treat-
ment rather than the patients’ actual survival times. Suppose that 40%
of the patients who undergo the standard treatment are known to survive
5 years. A new treatment is administered to 200 patients, and 92 of them
are still alive after a period of 5 years.
(a) Formulate the hypotheses for testing the validity of the claim that the
new treatment is more effective than the standard therapy.
(b) Test with α = 0.05 and state your conclusion; use the rejection-region
method.
(c) Perform the test by finding the p-value.

9.23. Is the Cloning of Humans Moral? Gallup Poll estimates that 88% Amer-
icans believe that cloning humans is morally unacceptable. Results are
based on telephone interviews with a randomly selected national sample
of n= 1000 adults, aged 18 and older.
(a) Test the hypothesis that the true proportion is 0.9, versus the two-sided
alternative, based on the Gallup data. Use α= 0.05.
(b) Does 0.9 fall in the 95% confidence interval for the proportion.
(c) What is the power of this test against the specific alternative p = 0.85?

9.24. Smoking Illegal? In a recent Gallup poll of Americans, less than a third
of respondents thought smoking in public places should be made illegal, a
significant decrease from the 39% who thought so in 2001.
The question used in the poll was: Should smoking in all public places be
made totally illegal? In the poll, 497 people responded and 154 answered
yes. Let p be the proportion of people in the US voting population support-
ing the idea that smoking in public places should be made illegal.
(a) Test the hypothesis H0 : p = 0.39 versus the alternative H1 : p < 0.39 at
the level α= 0.05.

(b) What is the 90% confidence interval for the unknown population propor-
tion p? In terms of the Gallup pollsters, what is the “margin of error”?

9.25. Spider Monkey DNA. An 8192-long nucleotide sequence segment taken
from the DNA of a spider monkey (Ateles geoffroyi) is provided in the file

dnatest.m.
Find the relative frequency of adenine p̂A as an estimator of the overall
population proportion, pA .
Find a 99% confidence interval for pA and test the hypothesis H0 : pA = 0.2
versus the alternative H1 : pA > 0.2. Use α= 0.05.
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MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch9.Testing/

chi2test1.m, dnarw.m, dnatest.m FDR.m, hemopexin1.m, hemoragic.m,
moon.m, powers.m, SBB.m, testexa.m

hemopexin.odc, hemorrhagic.odc, hypersplenism.odc, moonillusion.odc,
retinol.odc, spikes.odc, systolic.odc

dnadat.mat|txt, spid.dat
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Chapter 10
Two Samples

Given a choice between two theories, take the one which is funnier.

– Blore’s Razor

WHAT IS COVERED IN THIS CHAPTER

• Testing the Equality of Normal Means and Variances
• A Bayesian Approach to a Two-Sample Problem
• Paired t-Test
• Testing the Equality of Two Proportions
• Risk Jargon: Risk Differences, Ratios, and Odds Ratios
• Two Poisson Means
• Equivalence Testing

10.1 Introduction

A two-sample inference is one of the most common statistical procedures used
in practice. For example, a colloquial use of “t-test” usually refers to the com-
parison of means from two independent normal populations rather than a
single-sample t-test. In this chapter we will test the equality of two normal
means for independent and dependent (paired) populations as well as the
equality of two variances and proportions. In the context of comparing pro-
portions, we will discuss the risk and odds ratios. In testing the equality of
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means in independent normal populations, we will distinguish two cases: (i)
when the underlying population variances are the same and (ii) when no as-
sumption about the variances is made. In this second case the population vari-
ances may be different, or even equal, but simply no assumption about their
equality enters the test. Each of the tests involves the difference or ratio of
the parameters (means, proportions, variances), and for each difference/ratio
we provide the (1−α)100% confidence interval. For selected tests we will in-
clude the power analysis. This chapter is intertwined with parallel Bayesian
solutions whenever appropriate.

It is important to emphasize that the normality of populations and large
samples for the proportions (for the CLT to hold) are critical for some tests.
Later in the text, in Chap. 12, we discuss distribution-free counterpart tests
that relax the assumption of normality (sign test, Wilcoxon signed rank test,
Wilcoxon Mann Whitney test) at the expense of efficiency if the normality
holds.

10.2 Means and Variances in Two Independent Normal
Populations

We start with an example that motivates the testing of two population means.

Example 10.1. Lead Exposure. It is hypothesized that blood levels of lead
tend to be higher for children whose parents work in a factory that uses lead
in the manufacturing process. Researchers examined lead levels in the blood
of 12 children whose parents worked in a battery manufacturing factory. The
results for the “case children” X11, X12, . . . , X1,12 were compared to those of the
“control” sample X21, X22, . . . , X2,15 consisting of 15 children selected randomly
from families where the parents did not work in a factory that used lead. It is
assumed that the measurements are independent and come from normal pop-
ulations. The resulting sample means and sample standard deviations were
X1 = 0.015, s1 = 0.004, X2 = 0.006, and s2 = 0.006.

Obviously, the sample mean for the “case” children is higher than the sam-
ple mean in the control sample. But is this difference significant?

To state the problem in more general terms, we assume that two samples
X11, X12, . . . , X1,n1 and X21, X22, . . . , X2,n2 are observed from populations with
normal N (µ1,σ2

1) and N (µ2,σ2
2) distributions, respectively.

We are interested in testing the hypothesis H0 :µ1 =µ2 versus the alterna-
tive H1 :µ1 >, 6=,<µ2 at a significance level α.

For the lead exposure example, the null hypothesis being tested is that the
parents’ workplace has no effect on their children’s lead concentration, that is,
the two population means will be the same:

H0 :µ1 =µ2.
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Here the populations are defined as all children that are exposed or nonex-
posed. The alternative hypothesis H1 may be either one- or two-sided. The
two-sided alternative is simply H1 : µ1 6= µ2, the population means are not
equal, and the difference can go either way. The choice of one-sided hypothesis
should be guided by the problem setup, and sometimes by the observations. In
the context of this example, it would not make sense to take the one-sided al-
ternative as H1 :µ1 <µ2 stating that the concentration in the exposed group is
smaller than that in the control. In addition, X1 = .015 and X2 = .006 are ob-
served. Thus, the sensible one-sided hypothesis in this context is H1 :µ1 >µ2.

There are two testing scenarios of population means that depend on an
assumption about associated population variances.

Scenario 1: Variances unknown but assumed equal. In this case, the
joint σ2 is estimated by both s2

1 and s2
2. The weighted average of s2

1 and s2
2

with weights w and 1−w, depending on group sample sizes n1 and n2,

s2
p =

(n1 −1)s2
1 + (n2 −1)s2

2

n1 +n2 −2
= n1 −1

n1 +n2 −2
s2

1 +
n2 −1

n1 +n2 −2
s2

2 = ws2
1 + (1−w)s2

2,

is called the pooled sample variance and it better estimates the population
variance than any individual s2. The square root of s2

p is called the pooled
sample standard deviation and is denoted by sp. One can show that when H0
is true, that is, when µ1 =µ2, the statistic

t = X1 − X2

sp
√

1/n1 +1/n2
(10.1)

has Student’s t distribution with df= n1 +n2 −2 degrees of freedom.

Scenario 2: No assumption about the variances. In this case, when H0
is true, i.e., when µ1 =µ2, the statistic

t = X1 − X2√
s2

1/n1 + s2
2/n2

has a t distribution with approximately

df=
(s2

1/n1 + s2
2/n2)2

(s2
1/n1)2/(n1 −1)+ (s2

2/n2)2/(n2 −1)
(10.2)

degrees of freedom. This is a special case of the so-called Welch–Satterthwaite
formula, which approximates the degrees of freedom for a linear combination
of chi-square distributions (Satterthwaite 1946, Welch 1948).

For both scenarios:
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Alternative α-level rejection region p-value
H1 :µ1 >µ2 [td f ,1−α,∞) 1-tcdf(t, df)

H1 :µ1 6=µ2 (−∞, tdf,α/2]∪ [td f ,1−α/2,∞) 2*tcdf(-abs(t), df)

H1 :µ1 <µ2 (−∞, td f ,α] tcdf(t, df)

When the population variances are known, the proper statistic is Z:

Z = X1 − X 2√
σ2

1/n1 +σ2
2/n2

,

with a normal N (0,1) distribution, and the proper statistical analysis involves
normal quantiles as in the z-test. Given the fact that in realistic examples the
variances are not known when the means are tested, the z-test is mainly used
as an asymptotic test.

When sample sizes n1 and n2 are large, the z-statistic can be used instead
of t even if the variances are not known, due to the CLT. This approximation
was more interesting in the past when computing was expensive, but these
days one should always use a t-test for any sample size, as long as the popula-
tion variances are not known.

In Example 10.1, the variances are not known. We may assume that they
are either equal or possibly not equal based on the nature of the experiment,
sampling, and some other nonexperimental factors. However, we may also for-
mally test whether the population variances are equal prior to deciding on the
testing scenario.

We briefly interrupt our discussion of testing the equality of means with an
exposition of how to test the equality of variances in two normal populations.

Testing the Equality of Two Normal Variances. Selecting the “scenario”
for testing the equality of normal means requires an assumption about the
associated variances. This assumption can be guided by an additional test for
the equality of two normal variances prior to testing the means. The variance-
before-the-means testing is criticized mainly on the grounds that tests for vari-
ances are not as robust (with respect to deviations from normality) compared
to the test for means, especially when the sample sizes are small or unbal-
anced. Although we agree with this criticism, it should be noted that choosing
the scenario seldom influences the resulting inference, except maybe in the
borderline cases. See also discussion on p. 416. When in doubt, one should
not make the assumption about variances and should use a more conservative
scenario 2.

Suppose the samples X11, X12, . . . , X1,n1 and X21, X22, . . . , X2,n2 come from
normal populations with distributions of N (µ1,σ2

1) and N (µ2,σ2
2), respec-

tively. To choose the strategy for testing the means, the following test of vari-
ances with the two-sided alternative is helpful:
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H0 :σ2
1 =σ2

2 versus H1 :σ2
1 6=σ2

2.

The testing statistic is the ratio of sample variances, F = s2
1/s2

2, that has an F
distribution with n1 −1 and n2 −1 degrees of freedom when H0 is true. The
decision can be made based on a p-value that is equal to

p = 2 * min( fcdf(F, n1-1, n2-1), 1-fcdf(F, n1-1, n2-1) )

Remark. We note that the most popular method (recommended in many
texts) for calculating the p-value in two-sided testing uses either the expres-
sion 2*fcdf(F,n1-1,n2-1) or 2*(1-fcdf(F,n1-1,n2-1)), depending on whether
F<1 or F>1. Although this approach leads to a correct p-value most of the time,
it could lead to a p-value that exceeds 1 when the observed values of F are
close to 1. This is clearly wrong since the p-value is a probability. Exercise 10.4
describes such a case.

MATLAB has a built-in function, vartest2, for testing the equality of two
normal variances.

Guided by the outcome of this test, either we assume that the population
variances are the same and for testing the equality of means use a t-statistic
with a pooled standard deviation and df= n1+n2−2 degrees of freedom, or we
use the t-test without making an assumption about the population variances
and the degrees of freedom determined by the Welch–Satterthwaite formula
in (10.2).

Next we summarize the test for both the one- and two-sided alternatives.
When H0 : σ2

1 = σ2
2 and F = s2

1/s2
2, the following table summarizes the test of

the equality of normal variances against the one- or two-sided alternatives.
Let df1 = n1 −1 and df2 = n2 −1.

Alternative α-level rejection region p-value
H1 :σ2

1 >σ2
2 [Fd f1,d f2,1−α,∞) 1-fcdf(F,df1,df2)

H1 :σ2
1 6=σ2

2 [0,Fd f1,d f2,α/2]∪ [Fd f1,d f2,1−α/2,∞) 2*min( fcdf(F,df1,df2),
(1-fcdf(F,df1,df2))

H1 :σ2
1 <σ2

2 [0,Fd f1,d f2,α] fcdf(F,df1,df2)

The F-test for testing the equality of variances assumes independent sam-
ples. Glass and Hopkins (1984, Sect. 13.9) gave a test statistic for testing the
equality of variances obtained from paired samples with a correlation coeffi-
cient r. The test statistic has a t distribution with n−2 degrees of freedom,

t=
s2

1 − s2
2

2s1s2
√

(1− r2)/(n−2)
,
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where s2
1,s2

2 are the two sample variances, n is the number of pairs of obser-
vations, and r is the correlation between the two samples. This test is first
discussed in Pitman (1939).

Example 10.2. In Example 10.1, the F-statistic for testing the equality of vari-
ances is 0.4444 and the hypothesis of equality of variances is not rejected at a
significance level of α= 0.05; the p-value is 0.18.

n1 = 12; X1bar = 0.010; s1 = 0.004; %exposed
n2 = 15; X2bar = 0.006; s2 = 0.006; %non-exposed
Fstat = s1^2/s2^2

% Fstat = 0.4444
%The p-value is
pval = 2*min(fcdf(Fstat,n1-1,n2-1), 1-fcdf(Fstat,n1-1,n2-1))

% pval = 0.1825

�

Back to Testing Two Normal Means. Guided by the previous test we as-
sume that the population variances are the same, and for the original problem
of testing the means we use the t-statistic normalized by the pooled standard
deviation. The test statistic is

t= X1 − X2

sp
√

1/n1 +1/n2
, where sp =

√
(n1 −1)s2

1 + (n2 −1)s2
2

n1 +n2 −2
,

and it is t-distributed with n1 +n2 −2 degrees of freedom.

sp = sqrt( ((n1-1)*s1^2 + (n2-1)*s2^2 )/(n1 + n2 - 2))
% sp =0.0052

df= n1 + n2 - 2 %%df = 25
tstat = (X1bar - X2bar)/(sp * sqrt(1/n1 + 1/n2))

% tstat=1.9803
pvalue = 1 - tcdf(tstat, n1+n2-2)

% pvalue = 0.0294 approx 3%

The null hypothesis is rejected at the 5% level since 0.0294< 0.05.
Suppose that one wants to test H0 using rejection regions. Since the al-

ternative hypothesis is one-sided and right-tailed, as µ1 −µ2 > 0, the rejection
region is RR = [tn1+n2−2,1−α,∞).

tinv(1-0.05, df) %ans =1.7081

By rejection-region arguments, the hypothesis H0 is rejected since t >
tn1+n2−2,1−α, that is, the observed value of statistic t= 1.9803 exceeds the crit-
ical value 1.7081.
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10.2.1 Confidence Interval for the Difference of Means

Sometimes we might be interested in the (1−α)100% confidence interval for
the difference of the population means. Such confidence intervals are easy to
obtain and they depend, as do the tests, on the assumption about population
variances. In general, the interval is

[
X1 − X2 − td f ,1−α/2 s∗, X 1 − X2 + td f ,1−α/2 s∗

]
,

where for the equal variance case df = n1 + n2 − 2 and s∗ = sp
√

1/n1 +1/n2
and for no assumption about the population variances case df is the Welch–

Satterthwaite value in (10.2) and s∗ =
√

s2
1/n1 + s2

2/n2.
For the lead exposure example, the 95% confidence interval for µ1 −µ2 is

[−0.00016,0.0082]:

sp=sqrt(((n1-1)*s1^2 + (n2-1)*s2^2 )/(n1+n2-2)) % sp = 0.0052
df = n1 + n2 - 2 % df = 25
LB=X1bar-X2bar-tinv(0.975,df)*sp*sqrt(1/n1+1/n2) % LB =-0.00016
UB=X1bar-X2bar+tinv(0.975,df)*sp*sqrt(1/n1+1/n2) % UB = 0.0082

Note that this interval barely covers 0. A test for the equality of two
means against the two-sided alternative can be conducted by inspecting the
confidence interval for their difference. For a two-sided test of level α one
finds the (1−α)100% confidence interval, and if this interval contains 0, the
null hypothesis is not rejected. What may be concluded from the interval
[−0.00016,0.0082] is the following. If instead of the one-sided alternative that
was found to be significant at the 5% level (the p-value was about 3%) one car-
ried out the test against the two-sided alternative, the test of the same level
would fail to reject H0.
�

MATLAB’s toolbox “stats” has a built-in function, ttest2, that performs
two sample t-tests.

10.2.2 Power Analysis for Testing Two Means

In testing H0 : µ1 = µ2 against the two-sided alternative H1 : µ1 6= µ2, for the
specific alternative |µ1 −µ2| =∆, an approximation of power is

1−β=Φ


zα/2 +

∆√
σ2

1
n1

+ σ2
2

n2


+1−Φ


z1−α/2 +

∆√
σ2

1
n1

+ σ2
2

n2


 . (10.3)
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If the alternative is one-sided, say H1 : µ1 > µ2, then ∆ = µ1 −µ2 and the
power is

1−β= 1−Φ


z1−α−

∆√
σ2

1
n1

+ σ2
2

n2


=Φ


zα+

∆√
σ2

1
n1

+ σ2
2

n2


 . (10.4)

The approximation is good if n1 and n2 are large, but for small to moderate
values of n1 and n2 it tends to overestimate the power.

Equations (10.3) and (10.4) are standardly used but are somewhat obsolete
since the noncentral t distribution (p. 217) needed for an exact power is readily
available.

We state the formulas in terms of MATLAB code:

In testing the equality of means in two normal populations using in-
dependent samples, H0 : µ1 = µ2, versus the one-sided alternative, the
group sample size for fixed α,β is

n≥ 2σ2

|µ1 −µ2|2
(z1−α+ z1−β)2,

where σ2 is the common population variance. If the alternative is two-
sided, then z1−α is replaced by z1−α/2. In that case, the sample size is
approximate.

It is assumed that the group sample sizes are equal, i.e., that the total
sample size is N = 2n. If the variances are not the same, then

n≥
σ2

1 +σ2
2

|µ1 −µ2|2
(z1−α+ z1−β)2.

1 - nctcdf(tinv(1-alpha/2,n1+n2-2), ...
n1+n2-2,Delta/(sp*sqrt(1/n1+1/n2)))...

+ nctcdf(tinv(alpha/2,n1+n2-2), ...
n1+n2-2,Delta/(sp*sqrt(1/n1+1/n2)))

For the one-sided alternative H1 :µ1 >µ2 the code is

1 - nctcdf(tinv(1-alpha,n1+n2-2), ...
n1+n2-2,Delta/(sp*sqrt(1/n1+1/n2)))
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In the context of Example 10.1 let us find the power of the test against the
alternative H1 :µ1 −µ2 = 0.005.

The power for a one-sided α-level test against the alternative H1 :µ1−µ2 =
0.005(=∆) is given in (10.4). The normal approximation is used and s2

1 and s2
2

are plugged into the place of σ2
1 and σ2

2.

power = 1-normcdf(norminv(1-0.05)-0.005/sqrt(s1^2/n1+s2^2/n2) )
%power= 0.8271

power = normcdf(norminv(0.05)+0.005/sqrt(s1^2/n1+s2^2/n2) )
%power= 0.8271

Thus the power is about 83%. This is an approximation and normal ap-
proximation tends to overestimate the power. The exact power is about 81%,

power=1-nctcdf(tinv(1-0.05,n1+n2-2),...
n1+n2-2,0.005/sqrt(s1^2/n1+s2^2/n2))

%power = 0.8084

We plan to design a future experiment to test the same phenomenon. When
data are collected and analyzed, we would like for the α= 5% test to achieve a
power of 1−β= 90% against the specific alternative H1 :µ1−µ2 = 0.005. What
sample size will be necessary? Since determining the sample size to meet a
preassigned power and precision is prospective in nature, we assume that the
previous data were obtained in a pilot study and that σ2

1 and σ2
2 are “known”

and equal to the observed s2
1 and s2

2. The sample size formula is

n=
(σ2

1 +σ2
2)(z1−α+ z1−β)2

∆2 ,

which in MATLAB gives

ssize = (s1^2 + s2^2)*(norminv(0.95)+norminv(0.9))^2/(0.005^2)
% ssize = 17.8128 approx 18 each

The number of children is 18 per group if one wishes for the sample sizes
to be the same, n1 = n2. In the following section we discuss the design with
n2 = k × n1, for some k. Such designs can be justified by different costs of
sampling, where the meaning of “cost” may be more general than only the
financial one.

10.2.3 More Complex Two-Sample Designs

Suppose that we are interested in testing the equality of normal population
means when the underlying variances in the two populations are σ2

1 and σ2
2,

and not necessarily equal. Also assume that the desired proportion of sample
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sizes to be determined is k = n2/n1, that is, n2 = k×n1. This proportion may be
dictated by the cost of sampling or by the abundance of the populations. When
equal group samples are desired, then k = 1,

n1 =
(σ2

1 +σ2
2/k)(z1−α/2+ z1−β)2

|µ1 −µ2|2
, n2 = k×n1. (10.5)

As before, µ1, µ2, σ2
1, and σ2

2 are unknown, and in the absence of any data,
one can express |µ1 −µ2|2 in units of σ2

1 +σ2
2/k to elicit the effect size, d2.

However, if preliminary or historic samples are available, then µ1, µ2, σ2
1,

and σ2
2 can be estimated by X1, X2, s2

1, and s2
2, respectively, and plugged into

formula (10.6).

Example 10.3. Two Amanitas. Suppose that two independent samples of
m = 12 and n = 15 spores of A. pantherina (“Panther”) and A. rubescens
(“Blusher”), respectively, are only a pilot study. It was found that the means
are X1 = 6.3 and X2 = 7.5 with standard deviations of s1 = 2.12 and s2 = 1.94.
All measures are in µm. Suppose that Blushers are twice as common as Pan-
thers.

Determine the sample sizes for future study that will find the difference
obtained in the preliminary samples to be significant at the level α = 0.05
with a power of 1−β= 0.90.

Here, based on the abundance of mushrooms, 2n1 = n2 and k = 2. Substi-
tuting X 1, X2, s2

1, and s2
2 into (10.6), one gets

n1 =
(2.122 +1.942/2)(z0.975 + z0.9)2

|6.3−7.5|2 = 46.5260≈ 47.

Here, the effect size was |6.3 − 7.5|/
p

2.122 +1.942/2 = 0.4752, which corre-
sponds to d = 0.4752

p
2.

�

The “plug-in” principle applied in the above example is controversial. Pro-
ponents argue that in the absence of any information on µ1, µ2, σ2

1, and σ2
2, the

most “natural” procedure is to use their MLEs, X1, X 2, s2
1, and s2

2. Opponents
say that one is looking for a sample size that will find the pilot difference to
be significant at a level α with a preassigned power. They further argue that,
due to routinely small sample sizes in pilot studies, the estimators for popula-
tion means and variances can be quite unreliable. This unreliability is further
compounded by taking the ratios and powers in calculating the sample size.

Remark. Cochran and Cox (1957) proposed a method of testing two normal
means with unequal variances according to which the rejection region is based
on a linear combination of t quantiles,
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f1−α =
(s2

1/n1)tn1−1,1−α+ (s2
2/n2)tn2−1,1−α

s2
1/n1 + s2

2/n2
,

for one-sided alternatives. For two-sided alternative 1−α is replaced by 1−α/2.
This test is conservative, with the achieved level of significance smaller than
the stated α.

10.2.4 Bayesian Test of Two Normal Means

Bayesian testing of two means simply analyzes the posterior distribution of
the means difference, given the priors and the data. We will illustrate a
Bayesian approach for a simple noninformative prior structure.

Let X11, X12, . . . , X1,n1 and X21, X22, . . . , X2,n2 be samples from normal
N (µ1,σ2

1) and N (µ2,σ2
2) distributions, respectively. We are interested in the

posterior distribution of θ = µ2 −µ1 when σ2
1 = σ2

2 = σ2. If the priors on µ1
and µ2 are flat, π(µ1) = π(µ2) = 1, and the prior on the common σ2 is nonin-
formative, π(σ2)= 1/σ2, then the posterior of θ, after integrating out σ2, is a t
distribution. That is to say, if X1 and X2 are the sample means and sp is the
pooled standard deviation, then

t = θ− (X2 − X1)

sp
√

1/n1 +1/n2
(10.6)

has a t distribution with n1 + n2 −2 degrees of freedom (Box and Tiao, 1992,
p. 103). Compare (10.6) with the distribution in (10.1). Although the two distri-
butions coincide, they are conceptually different; (10.1) is the sampling distri-
bution for the difference of sample means, while (10.6) gives the distribution
for the difference of parameters.

In this case, the results of Bayesian inference coincide with frequentist re-
sults on the estimation of θ, the confidence/credible intervals for θ and testing,
as is usually the case when the priors are noninformative.

When σ2
1 and σ2

2 are not assumed equal and each has its own noninfor-
mative prior, finding the posterior in the previous model coincides with the
Behrens–Fisher problem and the posterior is usually approximated (Patil’s
approximation, Box and Tiao, 1992, p. 107; Lee, 2004, p. 145).

When MCMC and WinBUGS are used in testing two normal means, we
may entertain more flexible models. The testing becomes quite straightfor-
ward. Next, we provide an example.

Example 10.4. Microdamage in Bones. Bone is a hierarchical composite
material that provides our bodies with mechanical support and facilitates
mobility, among other functions. Figure 10.1 shows the structure of bone
tubecules. Damage in bone, in the form of microcracks, occurs naturally dur-
ing daily physiological loading. The normal bone remodeling process repairs
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this microdamage, restoring, if not improving, biomechanical properties. Nu-
merous studies have shown that microdamage accumulates as we age due to
impaired bone remodeling. This accumulation contributes to a reduction in
bone biomechanical properties such as strength and stiffness by disrupting
the local tissue matrix.

In order to better understand the role of microdamage in bone tissue ma-
trix properties as we age, a study was conducted in the lab of Dr. Robert Guld-
berg at Georgia Institute of Technology. The interest was in changes in micro-
damage progression in human bone between young and old female donors.

Fig. 10.1 Bone tubecules.

The data showing the score of normalized damage events are shown in the
table below. There were n1 = 13 donors classified as young (≤45 years old and
n2 = 17 classified as old (>45 years old). To calculate the microdamage pro-
gression score, the counts of damage events (extensions, surface originations,
widenings, and combinations) are normalized to the bone area and summed
up.

Young Old
0.790 1.264 1.374 1.327
0.944 1.410 0.601 1.325
0.958 1.160 1.029 2.012
1.011 0.179 1.264 1.026
0.714 1.183 1.130
0.256 1.856 0.605
0.406 1.899 0.870
0.135 0.486 0.820
0.316 0.813

Assuming that the microdamage scores are normally distributed, test the
hypothesis of equality of population means (young and old) against the one-
sided alternative.
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#microdamage.odc
model{
for (i in 1:n){
score[i] ~ dnorm(mu[age[i]], prec[age[i]])
}

mu[1] ~ dnorm(0, 0.00001)
mu[2] ~ dnorm(0, 0.00001)
prec[1] ~ dgamma(0.001, 0.001)
prec[2] ~ dgamma(0.001, 0.001)
d <- mu[1] - mu[2]
r <- prec[1]/prec[2]
ph1 <- step(-d) #ph1=1 if d < 0
ph0 <- 1-ph1
}

DATA
list(n=30,score=c(0.790, 0.944, 0.958, 1.011, 0.714, 0.256, 0.406,

0.135, 0.316, 0.179, 1.264, 1.410, 1.160, 1.374,
0.601, 1.029, 1.264, 1.183, 1.856, 1.899, 0.486,
0.813, 0.820, 1.327, 1.325, 2.012, 1.026, 1.130,
0.605, 0.870),

age = c(1,1,1,1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2))

INITS
list( mu = c(1,1), prec=c(1,1))

mean sd MC error val2.5pc median val97.5pc start sample
d –0.4194 0.1771 5.438E-4 –0.7688 –0.4192 –0.071 1001 100000
mu[1] 0.7339 0.1326 4.099E-4 0.4703 0.7338 0.9968 1001 100000
mu[2] 1.153 0.118 3.685E-4 0.9188 1.153 1.389 1001 100000
ph0 0.01011 0.1 3.112E-4 0.0 0.0 0.0 1001 100000
ph1 0.9899 0.1 3.112E-4 1.0 1.0 1.0 1001 100000
r 1.244 0.7517 0.002553 0.3456 1.071 3.155 1001 100000

The posterior probability of H1 is 0.9899, thus H0 is rejected. Note that
the credible interval for the difference d is all negative, suggesting that the
two-sided test would be significant (in Bayesian terms). The ratio of precisions
(and variances) r has a credible set that contains 1; thus the variances could
be assumed equal. This assumption has no bearing on the Bayesian procedure
(unlike the classical approach).
�

10.3 Testing the Equality of Normal Means When
Samples Are Paired

When comparing two treatments it is desirable that the experimental units be
as alike as possible so that the difference in responses can be attributed chiefly
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to the treatment. If many relevant factors (age, gender, body mass index, pres-
ence of risk factors, and so on) vary in an uncontrolled manner, a large portion
of variability in the response can be attributed to these factors rather than the
treatments.

The concept of pairing, matching, or blocking is critical to eliminate nui-
sance variability and obtain better experimental designs. Consider a sample
consisting of paired elements, so that every element from population 1 has
its match from population 2. A sample from population 1, X11, X12, . . . , X1,n, is
thus paired with a sample from population 2, X21, X22, . . . , X2,n, so that a pair
(X1i, X2i) represents the ith observation. Usually, observations in a pair are
taken on the same subject (pretest–posttest, placebo–treatment) or on depen-
dent subjects (brother–sister, two subjects with matching demographic char-
acteristics, etc.). The examples are numerous, but most applications involve
subjects with measurements taken at two different time points, during two
different treatments, and so on. Sometimes this matching is called “blocking.”

It is usually assumed that the samples come from normal populations
with possibly different means µ1 and µ2 (subject to test) and with unknown
variances σ2

1 and σ2
2. As linear combinations of normals, the differences di =

X1i − X2i are also normal,

di ∼N (µ1 −µ2,σ2
1 +σ2

2 −2 ·σ12),

where σ12 is the covariance, E [(X1 −EX1)(X2 −EX2)] . Define

t= d
sd /

p
n

, (10.7)

where d is an average of the differences di and sd is the sample standard
deviation of the differences. Here, the sample size n relates to the number of
pairs and not the total number of observations, which is 2n.

Note that one can express sd as
√

s2
1 + s2

2 −2s12 , where s12 is the estimator
of covariance between the samples:

s12 =
1

n−1

n∑
i=1

(X1i − X1)(X2i − X 2).

For example, in MATLAB,

x1 = [2 4 5 6 5 7 8];
x2 = [6 8 6 5 3 4 2];
d = x1 - x2;
sd = std(d)

%ans =3.6904

co=cov(x1, x2)
%co = 3.9048 -2.7857
% -2.7857 4.1429
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sqrt(co(1,1) + co(2,2) - 2 * co(1,2))
%ans =3.6904

We remark that the assumption of equality of population variances is not
necessary since we operate with the differences, and the population variance
of the differences, σ2

d =σ2
1 +σ2

2 −2σ12, is unknown.
We are interested in testing the means, H0 :µ1 =µ2, versus one of the three

alternatives H1 : µ1 >, 6=,< µ2. Under H0 the test statistic t has a t distribu-
tion with n−1 degrees of freedom. Thus, the test coincides with the one-sample
t-test, where the sample consists of all differences and where H0 is the hypoth-
esis that the mean in the population of differences is equal to 0. The popular
name for this test is the paired t-test, which can be summarized as follows:

Alternative α-level rejection region p-value
H1 :µ1 >µ2 [tn−1,1−α,∞) 1-tcdf(t, n-1)

H1 :µ1 6=µ2 (−∞, tn−1,α/2]∪ [tn−1,1−α/2,∞) 2*tcdf(-abs(t), n-1)

H1 :µ1 <µ2 (−∞, tn−1,α] tcdf(t, n-1)

One can generalize this test to testing H0 : µ1 −µ2 = d0 versus the appro-
priate one- or two-sided alternative. The only modification needed is in the
t-statistic (10.7), which now takes the form

t= d−d0

sd /
p

n
,

which under H0 has a t distribution with n−1 degrees of freedom.
If δ = µ1 −µ2 is the difference between the population means, then the

(1−α)100% confidence interval for δ is

[
d− tn−1,1−α/2

sdp
n , d+ tn−1,1−α/2

sdp
n

]
.

Since matching (blocking) the observations eliminates the variability be-
tween the subjects entering the inference, the paired t-test is preferred to a
two-sample t-test whenever such a design is possible. For example, the case-
control study design selects one observation or experimental unit as the “case”
variable and obtains as “matched controls” one or more additional observa-
tions or experimental units that are similar to the case, except for the vari-
able(s) under study. When the treatments are assigned after subjects have
been paired, this assignment should be random to avoid any potential system-
atic influences.
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Example 10.5. Psoriasis. Woo and McKenna (2003) investigated the effect
of broadband ultraviolet B (UVB) therapy and topical calcipotriol cream used
together on areas of psoriasis. One of the outcome variables is the Psoriasis
Area and Severity Index (PASI), where a lower score is better. The following
table gives PASI scores for 20 subjects measured at baseline and after 8 treat-
ments. Do these data provide sufficient evidence, at a 0.05 level of significance,
to indicate that the combination therapy reduces PASI scores?

Subject Baseline After 8 treatments Subject Baseline After 8 treatments
1 5.9 5.2 11 11.1 11.1
2 7.6 12.2 12 15.6 8.4
3 12.8 4.6 13 9.6 5.8
4 16.5 4.0 14 15.2 5.0
5 6.1 0.4 15 21.0 6.4
6 14.4 3.8 16 5.9 0.0
7 6.6 1.2 17 10.0 2.7
8 5.4 3.1 18 12.2 5.1
9 9.6 3.5 19 20.2 4.8

10 11.6 4.9 20 6.2 4.2

The data set is available as pasi.dat|xls|mat.
We will import the data into MATLAB and test the hypothesis that the

PASI significantly decreased after treatment at a significance of α= 0.05. We
will also find a 95% confidence interval for the difference between the popula-
tion means δ=µ1 −µ2.

baseline = [5.9 7.6 12.8 16.5 6.1 14.4 6.6 5.4 ...
9.6 11.6 11.1 15.6 9.6 15.2 21 5.9 10 12.2 20.2 6.2];

after = [5.2 12.2 4.6 4 0.4 3.8 1.2 3.1 3.5 4.9 ...
11.1 8.4 5.8 5 6.4 0 2.7 5.1 4.8 4.2];

d = baseline - after;
n = length(d);
dbar = mean(d) %dbar = 6.3550
sdd= sqrt(var(d)) %sdd = 4.9309
tstat = dbar/(sdd/sqrt(n)) %tstat = 5.7637

% Test using RR
critpt = tinv(0.95, n-1) %critpt = 1.7291

% Rejection region (1.7291, infinity). Reject H_0 since
% tstat=5.7637 falls in the rejection region.
% Test using the p-value

p_value = 1-tcdf(tstat, n-1) %p_value = 7.4398e-006
% Reject H_0 at the level alpha=0.05
% since the p_value = 0.00000744 < 0.05.

alpha = 0.05
LB = dbar - tinv(1-alpha/2, n-1)*(sdd/sqrt(n))

% LB = 4.0472
UB = dbar + tinv(1-alpha/2, n-1)*(sdd/sqrt(n))
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% UB = 8.6628
% 95% CI is [4.0472, 8.6628]

Alternatively, if one uses d1=after-baseline, then care must be taken about
the “direction” of H1 and p-value calculations. The rejection region will be
(−∞,−1.7291) and the 95% confidence interval [−8.6628,−4.0472].
A Bayesian solution is given next.

model{
for(i in 1:n){
d[i] <- baseline[i] - after[i]
d[i] ~ dnorm(mu, prec)
}
mu ~ dnorm(0, 0.00001)
pH1 <- step(mu-0)
prec ~ dgamma(0.001, 0.001)
sigma2 <- 1/prec;
sigma <- 1/sqrt(prec)
}

DATA
list(n=20,
baseline = c(5.9, 7.6, 12.8, 16.5, 6.1, 14.4, 6.6,
5.4, 9.6, 11.6 ,11.1, 15.6, 9.6, 15.2, 21, 5.9,
10, 12.2, 20.2, 6.2),

after = c(5.2, 12.2, 4.6, 4, 0.4 , 3.8, 1.2, 3.1, 3.5,
4.9, 11.1, 8.4, 5.8, 5, 6.4, 0, 2.7, 5.1, 4.8, 4.2))

INITS
list(mu=0, prec=1)

mean sd MC error val2.5pc median val97.5pc start sample
pH1 1.0 0.0 3.162E-13 1.0 1.0 1.0 1001 100000
mu 6.352 1.169 0.003657 4.043 6.351 8.666 1001 100000
prec 0.04108 0.01339 4.498E-5 0.01927 0.03959 0.07149 1001 100000
sigma 5.142 0.8912 0.003126 3.74 5.026 7.203 1001 100000
sigma2 27.23 10.0 0.03528 13.99 25.26 51.88 1001 100000

Let us compare the classical and Bayesian solutions. The estimator for the
difference between population means is 6.3550 in the classical case and 6.352
in the Bayesian case. The standard deviations of the difference are close as
well: the classical is 4.9309/

p
20= 1.1026 and the Bayesian is 1.169.

The 95% confidence interval for the difference is [4.0472,8.6628], while the
95% credible set is [4.043,8.666].

The posterior probability of H1 is approx. 1, while the classical p-value
(support for H0) is 0.000007439.

This closeness of results is expected given that the priors mu∼dnorm(0,0.00001)
and prec∼dgamma(0.001,0.001) are noninformative.
�
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Next, we provide an example in which the measurements are taken on dif-
ferent subjects, but the subjects are matched with respect to some characteris-
tics that may influence the response. Because of this matching, the sample is
considered paired. This is often done when the application of both treatments
to a single subject is either impossible or leads to biased responses.

Example 10.6. IQ-Test Pairing. In a study concerning memorizing verbal
sentences, children were first given an IQ test. The two lowest-scoring children
were randomly assigned, one to a “noun-first” task, the other to a “noun-last”
task. The two next-lowest IQ children were similarly assigned, one to a “noun-
first” task, the other to a “noun-last” task, and so on until all children were
assigned. The data (scores on a word-recall task) are shown here, listed in
order from lowest to highest IQ score:

Noun-first 12 21 12 16 20 39 26 29 30 35 38 34
Noun-last 10 12 23 14 16 8 16 22 32 13 32 35

If µ1 and µ2 are population means corresponding to “noun-first” and “noun-
last” tasks, we will test the hypothesis H0 : µ1 −µ2 = 0 against the two-sided
alternative. The significance level is set to α= 5%.

Note that the two samples are not independent since the pairing is based
on an ordered joint attribute, children’s IQ scores. Thus, even though the sub-
jects in the two groups are different, the paired t-test is appropriate.

% Noun First Example
disp(’Noun First Example’)
nounfirst = [12 21 12 16 20 39 26 29 30 35 38 34];
nounlast = [10 12 23 14 16 8 16 22 32 13 32 35];
d=nounfirst - nounlast;
dbar = mean(d)

%dbar = 6.5833
sd = std(d)

%sd = 11.0409
n = length(d)

%n = 12
t = dbar/(sd/sqrt(n))

%t = 2.0655
pval = 2 * (1-tcdf(t, n-1))

%pval = 0.0633

The null hypothesis is not rejected against the two-sided alternative H1 :
µ1 6=µ2 at the 5% level. However, for the one-sided alternative, in this case H1 :
µ1 >µ2, the p-value would be less than 5% and the null would be rejected. The
testing is equivalent to a one-sample t-test against the alternative µ1−µ2 > 0.

pval = 1-tcdf(t, n-1)
%pval = 0.0316

�
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10.3.1 Sample Size in Paired t-Test

If in the paired t-test context the variance of the differences, σ2
d , were known,

then

Z = d−d∗

σd /
p

n

would have a standard normal distribution. Thus, to achieve a power of 1−β
by an α-level test against the alternative H1 : µ1 −µ2 = d∗, the one-sided test
would require

n ≥
σ2

d (z1−α+ z1−β)2

(d∗)2 (10.8)

observations. For the two sided alternative, the standard normal quantile z1−α
should be replaced by z1−α/2.

Example 10.7. Suppose that the study is to be designed for assessing the effect
of a blood-pressure-lowering drug in middle-aged men. Each subject will have
his systolic blood pressure (SBP) taken at the onset of the trial and after a
14-day regimen with the drug. In previous studies of related drugs, the vari-
ance of difference between the two measurements was found to be 300 (mm
Hg)2. The new drug would be of interest if it reduced the SBP by 5 mm Hg or
more.

What sample size is needed so that a 5% level test detects a difference of
5 mm Hg at least 90% of time?

Direct application of (10.8) with σ2
d = 300, d∗ = 5, α = 0.05, and β = 0.1

gives a sample size of 103 subjects.

n = (300 * (norminv(0.95) + norminv(0.9))^2 )/(5^2)
% 102.7662

�

10.4 Two Variances

We have already seen the test for equality of variances from two normal pop-
ulations when we discussed testing the equality of two independent normal
means.

We will not repeat the summary table (p. 359) but will talk about how to
find a confidence interval for the ratio of population variances, conduct power
analyses, and provide some Bayesian considerations.

Let s2
1 and s2

2 be sample variances based on samples X11, X12, . . . , X1,n1 and
X21, X22, . . . , X2,n2 from normal populations N (µ,σ2

1) and N (µ2,σ2
2), respec-
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tively. The fact that the sampling distribution of
s2

1
σ2

1
/

s2
2
σ2

2
is F with df1 = n1 −1

and df2 = n2 −1 degrees of freedom was used in testing the equality of vari-
ances. The same statistic and its sampling distribution lead to a (1−α)100%
confidence interval for σ2

1/σ2
2, as

[
s2

1/s2
2

Fn1−1,n2−1,1−α/2
,

s2
1/s2

2

Fn1−1,n2−1,α/2

]
.

This follows from

P

(
Fn2−1,n1−1,α/2 ≤

s2
2

σ2
2

/ s2
1

σ2
1
≤ Fn2−1,n1−1,1−α/2

)
= 1−α (10.9)

and the property of F quantiles,

Fm,n,α = 1
Fn,m,1−α

.

Power Analysis for the Test of Two Variances∗. If F = s2
1/s2

2 is ob-
served, and n1 and n2 are sample sizes, Desu and Raghavarao (1990) provide
an approximation of the power of the test for the variance ratio,

1−β≈Φ−1

(√
2(n1 −1)(n2 −2)

n1 +n2 −2
| log(F)|− z1−α

)
, (10.10)

where z1−α is the 1−α-quantile of the standard normal distribution. If the
alternative is two-sided, the quantile z1−α/2 is used instead of z1−α.

The sample size necessary to achieve a power of 1−β if the effect eff =
σ2

1/σ2
2 6= 1 is to be detected by a test of level α is

n =
( z1−α+ z1−β

log(eff)

)2
+2. (10.11)

This size is for each sample, so the total number of observations is 2n. If un-
equal sample sizes are desired, the reader is referred to Zar (1996) and Desu
and Raghavarao (1990).

Example 10.8. In the context of Example 10.1, we approximate the power of
the two-sided, 5% level test of equality of variances against the specific alter-
native H1 : σ2

1/σ2
2 = 1.8. Recall that the group sample sizes were n1 = 12 and

n2 = 15. According to (10.10),
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n1 = 12; n2=15; alpha = 0.05; F = 1.8;
normcdf( sqrt(2 * (n1-1)*(n2 -2)/(n1 + n2 -2 )) ...

* abs(log(F)) - norminv(1-alpha/2) )
% 0.5112

and the power is about 51%.
Next we find the retrospective power of the test in Example 10.2.

n1 = 12; n2=15; alpha = 0.05;
s12 = 0.004^2; s22 = 0.006^2;
F=s12^2/s22^2; %0.1975
normcdf( sqrt(2 * (n1-1)*(n2 -2)/(n1 + n2 -2 )) ...

* abs(log(F)) - norminv(1-alpha/2) )
% 0.9998

The retrospective power of the test is quite high, 99.98%.
If the lead exposure trial from Example 10.1 is to be repeated, we will

find the sample size that would guarantee that an effect of size 1.5 would be
detected with a power of 90% in a two-sided 5% level test. Here the effect is
defined as the ratio of population variances that is different than 1 and of
interest to detect.

alpha = 0.05; beta = 0.1; eff = 1.5;
n = ( (norminv(1-alpha/2) + norminv(1-beta))/log(eff))^2 + 2
% n=66 (65.9130)

Therefore, each group will need 66 children.
�

A Noninformative Bayesian Solution. If the priors on the parameters
are noninformative π(µ1) = π(µ2) = 1,π(σ2

1) = 1/σ2
1, and π(σ2

2) = 1/σ2
2, one can

show that the posterior distribution of (σ2
1/σ2

2)/(s2
1/s2

2) is F with n2−1 and n1−1
degrees of freedom. Since

σ2
1/σ2

2

s2
1/s2

2
=

s2
2

σ2
2

/ s2
1

σ2
1

,

the posterior distribution for
σ2

1/σ2
2

s2
1/s2

2
(σ2

1,σ2
2 random variables and s2

1, s2
2 con-

stants) and a sampling distribution of
s2

2
σ2

2

/ s2
1
σ2

1
(s2

1, s2
2 random variables and

σ2
1,σ2

2 constants) coincide. Thus, a credible set based on this posterior coin-
cides with a confidence interval by taking into account relation (10.9).

If the priors on the parameters are more general, then the MCMC method
can be used.

Example 10.9. The Discovery of Argon. Lord Rayleigh, following an obser-
vation by Henry Cavendish, performed a series of experiments measuring the
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density of nitrogen and realized that atmospheric measurements gave con-
sistently higher results than chemical measurements (that is, measurements
from ammonia, oxides of nitrogen, etc.). This discrepancy of the order of 1/100 g
was too large to be explained by the measurement error, which was of the order
of approx. 2/10,000 g. Rayleigh postulated that atmospheric nitrogen contains
a heavier constituent, which led to the discovery of argon in 1895 (Ramsay
and Rayleigh). Rayleigh’s data, published in the Proceedings of the Royal Soci-
ety in 1893 and 1894, are given in the table below and shown as back-to-back
histograms (Fig. 10.2).

6 4 2 0 2 4 6
2.3

2.3

2.3

2.31

2.31

2.31

2.31

Fig. 10.2 Back-to-back histogram of Rayleigh’s measurements. Measurements from the air
are given on the left-hand side, while the measurements obtained from chemicals are on the
right.

From air 2.31035 2.31026 2.31024 2.31012
2.31027 2.31017 2.30986 2.31010
2.31001 2.31024 2.31010 2.31028

From chemicals 2.30143 2.29890 2.29816 2.30182
2.29869 2.29940 2.29849 2.29889

Assume that measurements are normal with means µ1 and µ2 and vari-
ances σ2

1 and σ2
2, respectively.

Using WinBUGS and noninformative priors on the normal parameters,
find 95% credible sets for

(a) θ =µ1 −µ2 −0.01 and

(b) ρ = σ2
2

σ2
1
.

(c) Estimate the posterior probability of ρ > 1.
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We are particularly interested in (b) and (c) since Fig. 10.2 indicates that
the variability in the measurements obtained from chemicals is much higher
than in measurements obtained from the air.

The WinBUGS file argon.odc solves (a)–(c).

#Discovery of Argon
model{
for(i in 1:n1) {

fromair[i] ~ dnorm(mu1, prec1)
}

for (j in 1:n2){
fromchem[j] ~ dnorm(mu2, prec2)
}

mu1 ~ dflat()
mu2 ~ dflat()
prec1 ~ dgamma(0.0001, 0.0001)
prec2 ~ dgamma(0.0001, 0.0001)
theta <- mu1 - mu2 - 0.01
sig2air <- 1/prec1
sig2chem <- 1/prec2
rho <- sig2chem/sig2air
ph1 <- step(rho - 1)
}

DATA
list(n1=12, n2 = 8,

fromair = c(2.31035, 2.31026, 2.31024, 2.31012, 2.31027,
2.31017, 2.30986, 2.31010, 2.31001,
2.31024, 2.31010, 2.31028),

fromchem = c(2.30143, 2.29890, 2.29816, 2.30182,
2.29869, 2.29940,
2.29849, 2.29889) )

INITS
list(mu1 = 0, mu2 = 0, prec1 = 10, prec2 = 10)

mean sd MC error val2.5pc median val97.5pc start sample
ph1 0.786 0.4101 4.473E-4 0.0 1.0 1.0 1001 1000000
rho 2.347 2.333 0.002684 0.4456 1.736 7.925 1001 1000000
theta 6.971E-4 0.002683 2.584E-6 –0.004626 6.983E-4 0.006017 1001 1000000

It is instructive to compare a frequentist test for the variance ratio with
WinBUGS output. The statistic F = s2

1/s2
2 = 0.0099 is strongly significant with

a p-value of the order 10−9. At the same time, the posterior probability of ρ > 1,
a Bayesian equivalent to the F test, is only 0.786. The posterior probability
of ρ ≤ 1 is 0.214. Also, the 95% credible set for ρ contains 1. Even though a
Bayesian would favor the hypothesis ρ > 1, the evidence against ρ ≤ 0 is not
as strong as in the classical approach.
�
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10.5 Comparing Two Proportions

Comparing two population proportions is arguably one of the most important
tasks in statistical practice. For example, statistical support in clinical tri-
als for new drugs, procedures, or medical devices almost always contains tests
and confidence intervals involving two proportions: proportions of positive out-
comes in control and treatment groups, proportions of readings within toler-
ance limits for proposed and currently approved medical devices, or propor-
tions of cancer patients for which new and old treatment regimes manifested
drug toxicity, to list just a few.

Sample proportions involve binomial distributions, and if sample sizes are
not too small, the CLT implies their approximate normality.

Let X1 ∼ B in(n1, p1) and X2 ∼ B in(n2, p2) be the observed numbers of
“events” and p̂1 and p̂2 be the sample proportions. Then the difference p̂1 −
p̂2 = X1/n1 − X2/n2 has an approximately normal distribution (when n1 and
n2 are not too small, say, >20) with mean p1− p2 and variance p1(1− p1)/n1+
p2(1− p2)/n2.

A Wald-type confidence interval can be constructed using this normal ap-
proximation. Specifically, the (1−α)100% confidence interval for the population
proportion difference p1 − p2 is

[
p̂1 − p̂2 − z1−α/2

√
p̂1(1− p̂1)

n1
+ p̂2(1− p̂2)

n2
,

p̂1 − p̂2 + z1−α/2

√
p̂1(1− p̂1)

n1
+ p̂2(1− p̂2)

n2

]
.

In testing H0 : p1 = p2 against one of the alternatives, the test statistic is

Z = p̂1 − p̂2√
p̂(1−p̂)

n1
+ p̂(1−p̂)

n2

= p̂1 − p̂2
√

p̂(1− p̂)
√

1
n1

+ 1
n2

,

where

p̂ = X1 + X2

n1 +n2
= n1

n1 +n2
p̂1 +

n2

n1 +n2
p̂2

is the pooled sample proportion. The pooled sample proportion is used since
under H0 the population proportions coincide and this common parameter
should be estimated by all available data. By the CLT, the statistic Z has an
approximately standard normal N (0,1) distribution.
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Alternative α-level rejection region p-value
H1 : p1 > p2 [z1−α,∞) 1-normcdf(z)

H1 : p1 6= p2 (−∞, zα/2]∪ [z1−α/2,∞) 2*normcdf(-abs(z))

H1 : p1 < p2 (−∞, zα] normcdf(z)

Example 10.10. Vasectomies and Prostate Cancer. Several studies have
been conducted to analyze the relationship between vasectomy and prostate
cancer. The study by Giovannucci et al. (1993) states that of 21,300 men who
had not had a vasectomy, 69 were found to have prostate cancer, while of
22,000 men who had a vasectomy, 113 were found to have prostate cancer.
Formulate hypotheses and perform a test at the 1% level.

x1=69; x2 = 113; n1 = 21300; n2 = 22000;
p1hat = x1/n1; p2hat = x2/n2; phat = (x1 + x2)/(n1 + n2);
z=(p1hat - p2hat)/(sqrt(phat*(1-phat))*sqrt(1/n1 + 1/n2))
% z = -3.0502

pval = normcdf(-3.0502)
% pval = 0.0011

We tested H0 : p1 = p2 versus H1 : p1 < p2, where p1 is the proportion
of subjects with prostate cancer in the population of all subjects who had a
vasectomy, while p2 is the proportion of subjects with prostate cancer in the
population of all subjects who did not have a vasectomy. Since the p-value was
0.0011, we concluded that vasectomy is a significant risk factor for prostate
cancer.
�

10.5.1 The Sample Size

The sample size required for a two-sided α-level test to detect the difference
δ= |p1 − p2|, with a power of 1−β, is

n ≥ (z1−α/2 + z1−β)2 ×2p(1− p)
δ2 ,

where p = (p1 + p2)/2. The sample size n is for each group, so that the total
number of observations is 2n. If the alternative is one-sided, z1−α/2 is replaced
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by z1−α. This formula requires some preliminary knowledge about p. In the
absence of any information about the proportions, the most conservative choice
for p is 1/2.

Example 10.11. An investigator believes that a control group would have an
annual event rate of 30% and that the treatment would reduce this rate to
20%. She wants to design a study to be one-sided with a significance level of
α= 0.05 and a power of 1−β= 0.85. The necessary sample size per group is

n = 2 *(norminv(1-0.05)+norminv(1-0.15))^2 *0.25*(1-0.25)/0.1^2
% n = 269.5988

This number is rounded to 270, so that the total sample size is 2×270= 540.
More precise sample sizes are

n′ =

(
z1−α/2

√
2p(1− p)+ z1−β

√
p1(1− p1)+ p2(1− p2)

)2

δ2 ,

with z1−α/2 replaced by z1−α for the one-sided alternative.
Casagrande et al. (1978) propose a correction to n′ as

n′′ = n′/4×
(
1+

√
1+ 4

n′δ

)2

,

while Fleiss et al. (1980) suggest n′′′ = n′ + 2
δ .

In all three scenarios, however, preliminary knowledge about p1 and p2 is
needed.

%Sample Size for Each Group:
n1 = (norminv(1-0.05) * sqrt(2 * 0.25 * 0.75)+ ...

norminv(1-0.15) * sqrt(0.3*0.7+0.2*0.8))^2/0.1^2
%n1 = 268.2064
%Casagrande et al. 1978
n2 = n1/4 * (1 + sqrt(1 + 4/(n1 * 0.1)))^2
%n2 =287.8590
%Fleiss et al. 1980
n3 = n1 + 2/0.1
%n3 = 288.2064

The outputs n′, n′′, and n′′′ are rounded to 267, 288, and 289, so that the
total sample sizes are 534, 576, and 578, respectively.
�

10.6 Risks: Differences, Ratios, and Odds Ratios

In epidemiological and population disease studies it is often the case that the
findings are summarized as a table
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Disease present (D) No disease present (C) Total
Exposed (E) a b n1 = a+b

Nonexposed (Ec) c d n2 = c+d
Total m1 = a+ c m2 = b+d n= a+b+ c+d

In clinical trial studies, the risk factor status (E/Ec) can be replaced by a treat-
ment/control or new treatment/old treatment, while the disease status (D/Dc)
can be replaced by a improvement/nonimprovement.

Remark. In the context of epidemiology, the studies leading to tabulated
data can be prospective and retrospective. In a prospective study, a group of
n disease-free individuals is identified and followed over a period of time. At
the end of the study, the group, typically called the cohort, is assessed and
tabulated with respect to disease development and exposure to the risk factor
of interest.

In a retrospective study, groups of m1 individuals with the disease (cases)
and m2 disease-free individuals (controls) are identified and their prior expo-
sure histories are assessed. In this case, the table summarizes the numbers of
exposure to the risk factor under consideration among the cases and controls.

10.6.1 Risk Differences

Let p1 and p2 be the population risks of a disease for exposed and nonex-
posed (control) subjects. These are probabilities that the subjects will develop
the disease during the fixed interval of time for the two groups, exposed and
nonexposed.

Let p̂1 = a/n1 be an estimator of the risk of a disease for exposed subjects
and p̂2 = c/n2 be an estimator of the risk of that disease for control subjects.

The (1−α)100% confidence interval for the risk difference coincides with
the confidence interval for the difference of proportions from p. 378:

p̂1 − p̂2 ± z1−α/2

√
p̂1(1− p̂1)

n1
+ p̂2(1− p̂2)

n2
.

Sometimes, better precision is achieved by a confidence interval with con-
tinuity corrections:
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[
p̂1 − p̂2 ± (1/(2n1)+1/(2n2))− z1−α/2

√
p̂1(1− p̂1)

n1
+ p̂2(1− p̂2)

n2
,

p̂1 − p̂2 ± (1/(2n1)+1/(2n2))+ z1−α/2

√
p̂1(1− p̂1)

n1
+ p̂2(1− p̂2)

n2

]
,

where the sign of the correction factor 1/(2n1)+1/(2n2) is taken as “+” if p̂1 −
p̂2 < 0 and as “−” if p̂1− p̂2 > 0. The recommended sample sizes for the validity
of the interval should satisfy min{n1 p1(1− p1),n2 p2(1− p2)} ≥ 10. For large
sample sizes, the difference between “continuity-corrected” and uncorrected
intervals is negligible.

10.6.2 Risk Ratio

The risk ratio in a population is the quantity R = p1/p2. It is estimated by
r = p̂1/p̂2. The empirical distribution of r does not have a simple form, and,
moreover, it is typically skewed (Fig. 10.3b). If the logarithm is taken, the risk
ratio is “symmetrized,” the log ratio is equivalent to the difference between
logarithms, and, given the independence of populations, the CLT applies. It is
evident in Fig. 10.3c that the log risk ratios are well approximated by a normal
distribution.
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Fig. 10.3 Two samples of size 10,000 are generated from B in(80,0.21) and B in(60,0.25)
populations and risks p̂1 and p̂2 are estimated for each pair. The panels show histograms of
(a) risk differences, (b) risk ratios, and (c) log risk ratios.

The following MATLAB code ( simulrisks.m) simulates 10,000 pairs
from B in(80,0.21) and B in(60,0.25) populations representing exposed and



10.6 Risks: Differences, Ratios, and Odds Ratios 383

nonexposed subjects. From each pair risks are assessed and histograms of risk
differences, risk ratios, and log risk ratios are shown in Fig. 10.3a–c.

disexposed = binornd(60, 0.25, [1 10000]);
disnonexposed = binornd(80, 0.21, [1 10000]);
p1s = disexposed/60; p2s =disnonexposed/80;
figure; hist(p1s - p2s, 25)
figure; hist(p1s./p2s, 25)
figure; hist( log( p1s./p2s ), 25 )

10.6.3 Odds Ratios

For a particular proportion, p, the odds are defined as p
1−p . For two proportions

p1 and p2, the odds ratio is defined as O = p1/(1−p1)
p2/(1−p2) , and its sample counterpart

is o= p̂1/(1−p̂1)
p̂2/(1−p̂2) .

As evident in Fig. 10.4, the odds ratio is symmetrized by the log trans-
formation, and it is the log domain where the normal approximations are

used. The sample standard deviation for log o is slog o =
√

1
a + 1

b + 1
c + 1

d , and
the (1−α)100% confidence interval for the log odds ratio is

[
log o− z1−α/2

√
1
a
+ 1

b
+ 1

c
+ 1

d
, log o+ z1−α/2

√
1
a
+ 1

b
+ 1

c
+ 1

d

]
.

Of course, the confidence interval for the odds ratio is obtained by taking
the exponents of the bounds:

[
exp

{
log o− z1−α/2

√
1
a
+ 1

b
+ 1

c
+ 1

d

}
, exp

{
log o+ z1−α/2

√
1
a
+ 1

b
+ 1

c
+ 1

d

}]
.

Many authors argue that only odds ratios should be reported and used
because of their superior properties over risk differences and risk ratios (Ed-
wards, 1963; Mosteller, 1968). For small sample sizes replacing counts a,b, c,
and d by a+1/2,b+1/2, c+1/2, and d+1/2 leads to a more stable inference.
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Fig. 10.4 For the data leading to Fig. 10.3, the histograms of (a) odds ratios and (b) log odds
ratios are shown.

Risk difference Relative risk Odds ratio
Parameter D = p1 − p2 R = p1/p2 O = p1/(1−p1)

p2/(1−p2)

Estimator d = p̂1 − p̂2 r = p̂1/p̂2 o = p̂1/(1− p̂1)
p̂2/(1− p̂2)

St. deviation sd =
√

p1 q1
n1

+ p2 q2
n2

slog r =
√

q1
n1 p1

+ q2
n2 p2

slogo =
√

1
a + 1

b + 1
c + 1

d

Interpretation of values for RR and OR are provided in the following table:

Value in Effect of exposure
[0,0.4) Strong benefit
[0.4,0.6) Moderate benefit
[0.6,0.9) Weak benefit
[0.9,1.1] No effect
(1.1,1.6] Weak hazard
(1.6,2.5] Moderate hazard
> 2.5 Strong hazard

Example 10.12. Framingham Data. The table below gives the coronary
heart disease status after 18 years, by level of systolic blood pressure (SBP).
The levels of SBP ≥ 165 are considered as an exposure to a risk factor.

SBP (mmHg) Coronary disease No coronary disease Total
≥ 165 95 201 296
< 165 173 894 1067
Total 268 1095 1363

Find 95% confidence intervals for the risk difference, risk ratio, and odds ratio.
The function risk.m calculates confidence intervals for risk differences, risk
ratios, and odds ratios and will be used in this example.
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function [rd rdl rdu rr rrl rru or orl oru] = risk(a, b, c, d, alpha)
%--------
% | Disease No disease Total
% --------------------------------------------------------
% Exposed | a b | n1
% Nonexposed | c d | n2
% --------------------------------------------------------
if nargin < 5
alpha=0.05;
end
%--------
n1 = a + b;
n2 = c + d;
hatp1 = a/n1; hatp2 = c/n2;
%-------risk difference (rd) and CI [rdl, rdu] ---------
rd = hatp1 - hatp2;
stdrd = sqrt(hatp1 * (1-hatp1)/n1 + hatp2 * (1- hatp2)/n2 );
rdl = rd - norminv(1-alpha/2) * stdrd;
rdu = rd + norminv(1-alpha/2) * stdrd;
%----------risk ratio (rr) and CI [rrl, rru] -----------
rr = hatp1/hatp2;
lrr = log(rr);
stdlrr = sqrt(b/(a * n1) + d/(c*n2));
lrrl = lrr - norminv(1-alpha/2)*stdlrr;
rrl = exp(lrrl);
lrru = lrr + norminv(1-alpha/2)*stdlrr;
rru = exp(lrru);
%---------odds ratio (or) and CI [orl, oru] ------------
or = ( hatp1/(1-hatp1) )/(hatp2/(1-hatp2))
lor = log(or);
stdlor = sqrt(1/a + 1/b + 1/c + 1/d);
lorl = lor - norminv(1-alpha/2)*stdlor;
orl = exp(lorl);
loru = lor + norminv(1-alpha/2)*stdlor;
oru = exp(loru);

The solution is:

[rd rdl rdu rr rrl rru or orl oru] = risk(95,201,173,894)

%rd = 0.1588
%[rdl, rdu] = [0.1012, 0.2164]

%rr = 1.9795
%[rrl, rru]= [1.5971, 2.4534]

%or = 2.4424
%[orl, oru] = [1.8215, 3.2750]

�

Example 10.13. Retrospective Analysis of Smoking Habits. This exam-
ple is adopted from Johnson and Albert (1999), who use data collected in a
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study by Dorn (1954). A sample of 86 lung-cancer patients and a sample of
86 controls were questioned about their smoking habits. The two groups were
chosen to represent random samples from a subpopulation of lung-cancer pa-
tients and an otherwise similar population of cancer-free individuals. Of the
cancer patients, 83 out of 86 were smokers; among the control group, 72 out
of 86 were smokers. The scientific question of interest was to assess the dif-
ference between the smoking habits in the two groups. Uniform priors on the
population proportions were used as a noninformative choice.

model{
for(i in 1:2){

r[i] ~ dbin(p[i],n[i])
p[i] ~ dunif(0,1)

}
RD <- p[1] - p[2]
RD.gt0 <- step(RD)

RR <- p[1]/p[2]
RR.gt1 <- step(RR - 1)

OR <- (p[1]/(1-p[1]))/(p[2]/(1-p[2]))
OR.gt1 <- step(OR - 1)
}

DATA
list(r=c(83,72),n=c(86,86))
INITS

#Generate Inits

mean sd MC error val2.5pc median val97.5pc start sample
OR 5.818 4.556 0.01398 1.556 4.613 17.29 1001 100000
OR.gt1 0.9978 0.04675 1.469E-4 1.0 1.0 1.0 1001 100000
RD 0.125 0.0455 1.478E-4 0.0385 0.1237 0.2179 1001 100000
RD.gt0 0.9978 0.04675 1.469E-4 1.0 1.0 1.0 1001 100000
RR 1.153 0.06276 2.038E-4 1.044 1.148 1.291 1001 100000
RR.gt1 0.9978 0.04675 1.469E-4 1.0 1.0 1.0 1001 100000
p[1] 0.9546 0.02209 7.06E-5 0.9022 0.958 0.9873 1001 100000
p[2] 0.8296 0.03991 1.26E-4 0.7444 0.8322 0.9002 1001 100000

Note that 95% credible sets for the risk ratio and odds ratio are above 1,
and that the set for the risk difference does not contain 0. By all three mea-
sures the proportion of smokers among subjects with cancer is significantly
larger than the proportion among the controls. In Bayesian testing the hy-
potheses H′

1 : p1 > p2, H′′
1 : p1/p2 > 1, and H′′′

1 : p1
1−p1

/
p2

1−p2
> 1 have posterior

probabilities of 0.9978 each. Therefore, in this retrospective study, smoking
status is indicated as a significant risk factor for lung cancer.
�
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10.7 Two Poisson Rates*

There are several methods for devising confidence intervals on differences or
the ratios of two Poisson rates. We will focus on the method for the ratio that
modifies well-known binomial confidence intervals.

Let X1 ∼ P oi(λ1t1) and X2 ∼ P oi(λ2t2) be two Poisson counts with rates
λ1 and λ2 observed during time intervals of length t1 and t2.

We are interested the confidence interval for the ratio λ=λ1/λ2.
Since X1, given the sum X1 + X2 = n, is binomial B in(n, p) with p =
λ1 t1

λ1 t1+λ2 t2
(Exercise 5.5), the strategy is to find the confidence interval for p

and, from its confidence bounds LBp and UBp, work out the bounds for the
ratio λ.

LBλ =
LBp

1−LBp

t2

t1
UBλ =

UBp

1−UBp

t2

t1
.

For finding the LBp and UBp several methods are covered in Chap. 7. Note
that there p̂ = X1/n and n = X1 + X2.

The design question can be addressed as well, but the “sample size” for-
mulation needs to be expressed in terms of sampling durations t1 and t2.
The sampling time frames t1 and t2, if assumed equal, can be determined on
the basis of elicited precision for the confidence interval and preliminary esti-
mates of the rates. Let λ1 and λ2 be preexperimental assessments of the rates
and let the precision be elicited in the form of (a) the length of the interval
UBλ−LBλ = w or (b) the ratio of the bounds UBλ/LBλ = w.

Then, for achieving (1−α)100% confidence with an interval of length w,
the sampling time frame required is

(a)

t (= t1 = t2)=
z2

1−α/2

(
1/λ1 +1/λ2

)

arcsin
(
λ2
λ1

× w
2

)

and
(b)

t (= t1 = t2)=
4z2

1−α/2

(
1/λ1 +1/λ2

)

log2(w)
.

Example 10.14. Wire Failures. Price and Bonett (2000) provide an exam-
ple with data from Gardner and Ringlee (1968), who found that bare wire
had X1 = 69 failures in a sample of t1 = 1079.6 thousand foot-years, and a
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polyethylene-covered tree wire had X2 = 12 failures in a sample of t2 = 467.9
thousand foot-years. We are interested in a 95% confidence interval for the
ratio of population failure rates.

The associated MATLAB file ratiopoissons.m calculates the 95% confi-
dence interval for the ratio λ = λ1/λ2 using Wilson’s proposal (“add two suc-
cesses and two failures”). There, p̂ = (X1 + 2)/(n+ 4), and the interval for p
is [0.7564,0.9141]. After transforming the bounds to the λ domain, the final
interval is [1.3461,4.6147].

�

%CI for Ratio of Two Poissons
X1=69; t1 = 1079.6;
X2=12; t2=467.9;
n=X1 + X2;
phat = X1/n; %0.8519
phat1 = (X1 +2)/(n + 4); %0.8353
qhat1 = 1 - phat1; %0.1647

% Agresti-Coull CI for prop was selected.
LBp=phat1-norminv(0.975)*sqrt(phat1*qhat1/(n+4)) %0.7564
UBp=phat1+norminv(0.975)*sqrt(phat1*qhat1/(n+4)) %0.9141
LBlam = LBp/(1 - LBp) * t2/t1; %back to lambda
UBlam = UBp/(1 - UBp) * t2/t1;
[LBlam, UBlam] %[1.3461 4.6147]
%Frame size in Poisson Sampling

lambar1 = 69/1079.6; %0.0639
lambar2 = 12/467.9; %0.0256
w = 2;

td =4* norminv(0.995)^2 *(1/lambar1+1/lambar2)/...
(asin(lambar2/lambar1 * w/2)); %3511.8

tr = 4 * norminv(0.995)^2 *...
( 1/lambar1 + 1/lambar2 )/(log(w))^2; %3018.1

Cox (1953) gives an approximate test and confidence interval for the ratio
that uses an F distribution. He shows that the statistic

F = t1λ1

t2λ2

X2 +1/2
X1 +1/2

has an approximate F distribution with 2X1+1 and 2X2+1 degrees of freedom.
From this, an approximate (1−α)100% confidence interval for λ1/λ2 is

[
t2

t1

X1 +1/2
X2 +1/2

F2X1+1,2X2+1,α/2,
t2

t1

X1 +1/2
X2 +1/2

F2X1+1,2X2+1,1−α/2

]
.

Suppose we want to replicate this study using a new shipment of each type
of wire. We want to estimate the failure rate ratio with 99% confidence and
UBλ/LBλ = 2. Using λ1 = 69/1079.6= 0.0691 and λ2 = 12/467.9= 0.0833 as our
planning estimates of λ1 and λ2 , we would sample t = 4(2.5758)2 (1/0.0691+1/0.0833)

log2(2)
=

3018 foot-years from each shipment. If we want to complete the study in k
years, then we would sample 3018/k linear feet of wire from each shipment.



10.8 Equivalence Tests* 389

In the context of Example 10.14, the 95% confidence interval for the ratio λ1/λ2
is [1.3932,4.7497].

%Cox
LBlamc= t2/t1*(X1+1/2)/(X2+1/2)*finv(0.025, 2*X1+1, 2*X2+1);
UBlamc= t2/t1*(X1+1/2)/(X2+1/2)*finv(0.975, 2*X1+1, 2*X2+1);
[LBlamc, UBlamc] %1.3932 4.7497

Note that this interval does not contain 1, which is equivalent to a rejection
of H0 :λ1 =λ2 in a test against the two-sided alternative, at the level α= 0.05.

The test of H0 :λ1 =λ2 can be conducted using the statistic

F = t1

t2

X2 +1/2
X1 +1/2

,

which under H0 has an F distribution with d f1 = 2X1 +1 and d f2 = 2X2 +1
degrees of freedom.

Alternative α-level rejection region p-value
H1 :λ1 < λ2 [Fd f1,d f2,1−α,∞) 1-fcdf(F,df1,df2)
H1 :λ1 6= λ2 [0,Fd f1,d f2,α/2]∪ [Fd f1,d f2,1−α/2,∞) 2*fcdf(min(F,1/F),df1,df2)
H1 :λ1 > λ2 [0,Fd f1,d f2,α] fcdf(F,df1,df2)

In Example 10.14, the failure rate λ1 for the bare wire is found to be sig-
nificantly larger (p-value of 0.00066) than that of polyethylene-covered wire,
λ2.

%test against H_1: lambda1 > lambda2
pval =fcd(t1/t2*(X2+1/2)/(X1+1/2), 2*X1 + 1, 2*X2 + 1)
%6.6417e-004

10.8 Equivalence Tests*

In standard testing of two means, the goal is to show that one population mean
is significantly smaller, larger, or different than the other. The null hypothesis
is that there is no difference between the means. By not rejecting the null,
the equality of means is not established – the test simply did not find enough
statistical evidence for the alternative hypothesis. Absence of evidence is not
evidence of absence.

In many situations (drug and medical procedure testing, device perfor-
mance, etc.), one wishes to test the equivalence hypothesis, which states that
the population means or population proportions differ for no more than a small
tolerance value preset by a regulatory agency. If, for example, manufacturers
of a generic drug are able to demonstrate bioequivalence to the brand-name
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product, they do not need to conduct costly clinical trials in order to demon-
strate the safety and efficacy of their generic product. More importantly, es-
tablished bioequivalence protects the public from unsafe or ineffective drugs.

In this kind of inference it is desired that “no difference” constitutes the
research hypothesis H1 and that significance level α relates to the probability
of falsely rejecting the hypothesis that there is a difference when in fact the
means are equivalent. In other words, we want to control the type I error and
design the power properly in this context.

In drug equivalence testing typical measurements are the area under the
concentration curve (AUC) or maximum concentration (Cmax). The two drugs
are bioequivalent if the population means of the AUC and Cmax are sufficiently
close.

Let ηT denote the population mean AUC for the generic (test) drug and let
ηR denote the population mean for the brand-name (reference) drug.

We are interested in testing

H0 : ηT /ηR < δL or ηT /ηR > δU versus H1 : δL ≤ ηT /ηR ≤ δU ,

where δL and δU are the lower and upper tolerance limits, respectively. The
FDA recommends δL = 4/5 and δU = 5/4 (FDA, 2001).

This hypothesis can be tested in the domain of original measurements
(Berger and Hsu, 1996) or after taking the logarithm. This second approach
is more common in practice since (i) AUC and Cmax measurements are con-
sistent with the lognormal distribution (the pharmacokinetic rationale based
on multiplicative compartmental models) and (ii) normal theory can be applied
to logarithms of observations. The FDA also recommends a log-transformation
of data by providing three rationales: clinical, pharmacokinetic, and statistical
(FDA, 2001, Appendix D).

Since for lognormal distributions the mean η is connected with the param-
eters of the associated normal distribution, µ and σ2 (p. 218), by assuming
equal variances we get ηT = exp{µT +σ2/2} and ηR = exp{µR+σ2/2}. The equiv-
alence hypotheses for the log-transformed data now take the form

H0 :µT −µR ≤ θL or µT −µR ≥ θU , versus H1 : θL < µT −µR < θU ,

where θL = log(δL) and θU = log(δU ) are known constants. Note that if δU =
1/δL, then the bounds θL and θU are symmetric about zero, θL =−θU .

Equivalence testing is an active research area and many classical and
Bayesian solutions exist, as dictated by experimental designs in practice. The
monograph by Wellek (2010) provides comprehensive coverage. We focus only
on the case of testing the equivalence of two population means when unknown
population variances are the same.

TOST. Schuirmann (1981) proposed two one-sided tests (TOSTs) for testing
bioequivalence. Two t-statistics are calculated:
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tL = X T − X R −θL

sp
√

1/n1 +1/n2
and tU = X T − X R −θU

sp
√

1/n1 +1/n2
,

where X T and X R are test and reference means, n1 and n2 are test and ref-
erence sample sizes, and sp is the pooled sample standard deviation, as on
p. 357. Note that here, the test statistic involves the acceptable bounds θL
and θU in the numerator, unlike the standard two-sample t-test, where the
numerator would be X T − X R .

The TOST is now carried out as follows.

(i) Using the statistic tL, test H′
0 : µT −µR = θL versus H′

1 : µT −µR > θL.

(ii) Using the statistic tU , test H′′
0 :µT −µR = θU versus H′′

1 : µT −µR < θU .

(iii) Reject H0 at level α, that is, declare the drugs equivalent if both hypotheses H′
0

and H′′
0 are rejected at level α, that is, if

tL > tn1+n2−2,1−α and tU < tn1+n2−2,α.

Equivalently, if pL and pU are the p-values associated with statistics tL and tU , H0
is rejected when max{pL, pU }<α.

Westlake’s Confidence Interval. An equivalent methodology to test for
equivalence is Westlake’s confidence interval (Westlake, 1976). Bioequivalence
is established at significance level α if a t-interval of confidence (1−2α)100%
is contained in the interval (θL,θU ):

[
X T − X R − tn1+n2−2,1−α sp

√
1/n1 +1/n2,

X T − X R + tn1+n2−2,1−α sp
√

1/n1 +1/n2

]
∈ (θL,θU ).

Here, the usual tn1+n2−2,1−α/2 is replaced by tn1+n2−2,1−α, and Westlake’s
interval coincides with the standard (1− 2α)100% confidence interval for a
difference of normal means.

Example 10.15. Equivalence of Generic and Brand-Name Drugs. A
manufacturer wishes to demonstrate that their generic drug for a particular
metabolic disorder is equivalent to a brand-name drug. One indication of the
disorder is an abnormally low concentration of levocarnitine, an amino acid
derivative, in the plasma. Treatment with the brand-name drug substantially
increases this concentration.
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A small clinical trial is conducted with 43 patients, 18 in the brand-name
drug arm and 25 in the generic drug arm. The following increases in the log-
concentration of levocarnitine are reported.

Increase for 7 8 4 6 10 10 5 7 9 8
brand-name drug 6 7 8 4 6 10 8 9

Increase for 6 7 5 9 5 5 3 7 5 10
generic drug 2 5 8 4 4 8 6 11 7 5

5 5 7 4 6

The FDA declares that bioequivalence among the two drugs can be estab-
lished if the difference in response to the two drugs is within two units of the
log-concentration. Assuming that the log-concentration measurements follow
normal distributions with equal population variance, can these two drugs be
declared bioequivalent within a tolerance of ±2 units?

brandname = [7 8 4 6 10 10 5 7 9 ...
8 6 7 8 4 6 10 8 9 ];

generic = [6 7 5 9 5 5 3 7 5 ...
10 8 5 8 4 4 8 6 11 ...
7 5 5 5 7 4 6 ];

xbar1 = mean(brandname) %7.3333
xbar2 = mean(generic) %6.2000

s1 = std(brandname) %1.9097
s2 = std(generic) %1.9791

n1 = length(brandname) %18
n2 = length(generic) %25

%
sp = sqrt( ((n1-1)*s1^2 + (n2-1)*s2^2)/(n1 + n2 - 2)) % 1.9506
tL = (xbar1 - xbar2 -(-2))/(sp * sqrt( 1/n1 + 1/n2 )) % 5.1965
tU = (xbar1 - xbar2 - 2 )/(sp * sqrt( 1/n1 + 1/n2 )) %-1.4373
pL = 1-tcdf(tL, n1+ n2 - 2) %2.9745e-006
pU = tcdf(tU, n1 + n2 - 2) %0.0791
max(pL, pU) %0.0791 > 0.05, no equivalence

alpha = 0.05;
[xbar1-xbar2 - tinv(1-alpha, n1+n2-2)*sp*sqrt(1/n1+1/n2),...

xbar1-xbar2 + tinv(1-alpha, n1+n2-2)*sp*sqrt(1/n1+1/n2)]
% 0.1186 2.1481
% (0.1186, 2.1481) is not contained in (-2,2), no equivalence

Note that the equivalence of the two drugs was not established. The TOST
did not simultaneously reject null hypotheses H′

0 and H′′
0 , or, equivalently,

Westlake’s interval failed to be fully included in the preset tolerance interval
(−2,2).

Bayesian solution is conceptually straightforward. One finds the posterior
distribution for the difference of the means, and evaluates the probability of
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this difference falling in the interval (−2,2). The posterior probability of (−2,2)
should be close to 1 (say, 0.95) in order to declare equivalence.

model{
for(i in 1:n) {
increase[i] ~ dnorm(mu[type[i]], prec)
}

mu[1] ~ dnorm( 10, 0.00001)
mu[2] ~ dnorm( 10, 0.00001)
mudiff <- mu[1]-mu[2]
prec ~ dgamma(0.001, 0.001)
probint <- step( mudiff + 2) * step(2 - mudiff)
}

DATA
list( n=43, increase = c(7, 8, 4, 6, 10, 10, 5, 7, 9,

8, 6, 7, 8, 4, 6, 10, 8, 9, 6, 7, 5, 9, 5, 5, 3, 7, 5,
10, 8, 5, 8, 4, 4, 8, 6, 11, 7, 5, 5, 5, 7, 4, 6 ),

type = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2))

INITS
list( mu = c(10, 10), prec = 1)

mean sd MC error val5.0pc median val95.0pc start sample
mudiff 1.133 0.6179 6.238E-4 0.117 1.133 2.147 10001 1000000

probint 0.9213 0.2693 2.766E-4 0.0 1.0 1.0 10001 1000000

The Bayesian analysis closely matches the findings by TOST and West-
lake’s interval. Note that the posterior probability of the tolerance interval
(−2,2) is 0.9213, short of 0.95. Also, the 90% credible set (0.117,2.147) is close
to Westlake’s interval (0.1186,2.1481). This closeness is a consequence of non-
informative priors on the means and precision.
�

10.9 Exercises

10.1. Testing Piaget. Two groups of elementary school students are taught
mathematics by two different methods: traditional (group 1) and small
group interactive teaching by discovery based on Piagetian theory (group 2).
The results of a learning test are analyzed to test the difference in mean
scores using the two methods. Group 1 had 16 students while group 2 had
14 students and the scores are given below.

Groups Scores
Traditional 80, 69, 85, 87, 74, 85, 95, 84, 87, 86, 82, 91, 79, 100, 83, 85
Piagetian 100, 89, 87, 76, 93, 68, 99, 100, 78, 99, 100, 74, 76, 97
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Test the hypothesis that the methods have no influence on test scores
against the alternative that the students in group 2 have significantly
higher scores. Take α= .05.

10.2. Smoking and COPD. It is well established that long-term cigarette
smoking is associated with the activation of a cascade of inflammatory
responses in the lungs that lead to tissue injury and dysfunction. This is
manifested clinically as chronic obstructive pulmonary disease (COPD). It
is believed that smoking causes approx. 80 to 90% of COPD cases.
Nine life-long nonsmoking healthy volunteers (5 men and 4 women; mean
age 22.0±1.9 years [±SD]) and 11 healthy volunteers (5 men and 6 women;
mean age 23.4±0.9 years) with a 2.0±1.2 pack-year cigarette smoking his-
tory were recruited from students attending the University of Illinois at
Chicago. No participants had a history of chronic respiratory tract disor-
ders, including asthma and COPD, and denied symptoms of acute respira-
tory illness within 4 weeks preceding the study.
The study by Garey et al. (2004) have found various summaries involv-
ing proteins, nitrite, and other inflammatory cascade signatures in exhaled
breath condensate (EBC). Average nitrite concentration in EBC of non-
smokers was found to be X1 = 16156 (nmol/L) and the sample standard
deviation was s1 = 7029 (nmol/L). For smokers the mean nitrite concentra-
tion was X2 = 24672 (nmol/L) with sample standard deviation s2 = 7534
(nmol/L).
Assuming that the population variances are the same, test the hypothesis
that the nitrite concentration in EBC for smokers and nonsmokers are the
same versus the one-sided alternative. Use α= 5%.

10.3. Noradrenergic Activity. Although loss of noradrenergic neurons in the
locus ceruleus has been consistently demonstrated postmortem in Alzheim-
er’s disease, several studies suggest that indices of central noradrenergic
activity increase with the severity of Alzheimer’s disease in living patients.
The research by Elrod et al. (1997) estimated the effect of Alzheimer’s dis-
ease severity on central noradrenergic activity by comparing the CSF nore-
pinephrine concentrations of subjects with Alzheimer’s disease in early
and advanced stages. Lumbar punctures were performed in 29 subjects
with Alzheimer’s disease of mild or moderate severity and 17 subjects with
advanced Alzheimer’s disease. Advanced Alzheimer’s disease was defined
prospectively by a mini-mental state score of less than 12. Norepinephrine
was measured by radioenzymatic assay, and it is assumed that the mea-
surements followed a normal distribution.
The CSF norepinephrine concentration for Alzheimer’s-free subjects has a
mean of 170 pg/ml. The patients with advanced Alzheimer’s disease had a
mean CSF norepinephrine concentration of 279 pg/ml, with a sample stan-
dard deviation of 122, while in those with mild to moderate severity the
mean was 198 pg/ml with a standard deviation of 89. In both cases normal-
ity is assumed.
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(a) Let µ1 and µ2 be the population means for CSF norepinephrine concen-
tration for patients with advanced and mild-to-moderate severity, respec-
tively. Test the hypotheses H′

0 : µ1 = 170 and H′′
0 : µ2 = 170 based on the

available information.
(b) Test the hypothesis that the population variances are the same, H0 :
σ2

1 =σ2
2, versus the two-sided alternative.

(c) Test the hypothesis H0 : µ1 = µ2. Choose the type of t-test based on the
decision in (b).
In all cases use α= 0.05.

10.4. Testing Variances. Consider the following annotated MATLAB file.

%The two samples x and y are:
x = [0.34 0.52 -0.67 -0.98 -2.46 0.05 1.12 ...

1.80 -0.51 0.88 0.29 0.29 0.66 0.06 -0.29];
y = [0.70 -0.61 -1.09 1.68 -0.62 -0.57 0.41];

%Test the equality of population variances
%against the two sided alternative.
%The built-in MATLAB function
[h p]=vartest2(x, y)
gives: %h=0 (choose H0) and p-value p=0.9727.

(a) Find the p-value using MATLAB code in the table on p. 359. Does it
coincide with the vartest2 result?
(b) Show that F = s2

1/s2
2 > 1. In such a case the standard recommendation

is to calculate the two-sided p-value as p = 2 * (1 - fcdf(F,n1-1, n2-1)),
where n1=length(x) and n2=length(y). Show that for the samples from this
exercise, this “p-value” exceeds 1. Can you explain what the problem is?

10.5. Mating Calls. In a study of mating calls in the gray treefrogs Hyla
hrysoscelis and Hyla versicolor, Gerhart (1994) reports that in a location
in Lousiana the following data on the length of male advertisement calls
have been collected:

Sample Average SD of Duration
size duration duration range

Hyla chrysoscelis 43 0.65 0.18 0.36–1.27
Hyla versicolor 12 0.54 0.14 0.36–0.75

The two species cannot be distinguished by external morphology, but H.
chrysoscelis are diploids while H. versicolor are tetraploids. The triploid
crosses exhibit high mortality in larval stages, and if they attain sexual
maturity, they are sterile. Females responding to the mating calls try to
avoid mismatches.
Based on the data summaries provided, test whether the length of call is a
discriminatory characteristic? Use α= 0.05.



396 10 Two Samples

10.6. Fatigue. According to the article “Practice and fatigue effects on the pro-
gramming of a coincident timing response,” published in the Journal of Hu-
man Movement Studies in 1976, practice under fatigued conditions distorts
mechanisms that govern performance. An experiment was conducted using
15 college males who were trained to make a continuous horizontal right-
to-left arm movement from a microswitch to a barrier, knocking over the
barrier coincident with the arrival of a clock’s second hand to the 6 o’clock
position. The absolute value of the difference between the time, in millisec-
onds, that it took to knock over the barrier and the time for the second hand
to reach the 6 o’clock position (500 ms) was recorded. Each participant per-
formed the task five times under prefatigue and postfatigue conditions, and
the sums of the absolute differences for the five performances were recorded
as follows:

Absolute time differences
(ms)

Subject Prefatigue Postfatigue
1 158 91
2 92 59
3 65 215
4 98 226
5 33 223
6 89 91
7 148 92
8 58 177
9 142 134

10 117 116
11 74 153
12 66 219
13 109 143
14 57 164
15 85 100

An increase in the mean absolute time differences when the task is per-
formed under postfatigue conditions would support the claim that practice
under fatigued conditions distorts mechanisms that govern performance.
Assuming the populations to be normally distributed, test this claim at
level α= 0.01.

10.7. Mosaic Virus. A single leaf is taken from each of 11 different tobacco
plants. Each leaf is then divided in half and given one of two preparations
of mosaic virus. Researchers wanted to examine if there was a difference in
the mean number of lesions from the two preparations.
Here are the raw data:
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Plant Prep 1 Prep 2
1 18 14
2 20 15
3 6 9
4 13 11

(a) Is this experiment in accordance with a paired t-test setup?
(b) Test the hypothesis that the difference between the two population
means, µ1 −µ2, is significantly positive. Use α= 0.05.

10.8. Dopamine β-hydroxylase Activity. Postmortem brain specimens from
nine chronic schizophrenic patients and nine controls were assayed for ac-
tivity of dopamine β-hydroxylase (DBH), the enzyme responsible for the
conversion of dopamine to norepinephrine (Wyatt et al., 1975).
The means and standard deviations of DBH activity in the hippocampus
part of the brain are provided in the table. Assume that the data come from
two normally distributed and independent populations.

Schizophrenic Control
subjects subjects

Sample size n1 = 9 n2 = 9
Sample mean X1 = 35.5 X2 = 39.8
Sample standard deviation s1 = 6.93 s2 = 8.16

(a) Test to determine if the mean activity is significantly lower for the
schizophrenic subjects than for the control subjects. Use α= 0.05.
(b) Construct a 99% confidence interval for the mean difference in enzyme
activity between the two groups.
Solve the above in two ways: (i) by assuming that σ1 = σ2 and (ii) without
such an assumption.
Wyatt et al. (1975) report that one of the control subjects with low DBH
activity had unusually long death-to-morgue time (27 hours) and suggested
excluding the subject from the study. The data for controls after exclusion
were n2 = 8, X2 = 41.2, and s2 = 7.52. Repeat the test in (a) and (b) with
these control data.

10.9. 5-HIAA Levels. A rare and slow-growing form of cancer, carcinoid tu-
mors, may develop anywhere in the body where neuroendocrine (hormone-
producing) cells exist. Serotonin is one of the key body chemicals released
by carcinoid tumors that are associated with carcinoid syndrome. The 5-
hydroxyindoleacetic acid (5-HIAA) test is a 24-hour urine test that is spe-
cific to carcinoid tumors. Elevated levels of 5-HIAA, a byproduct of sero-
tonin decomposition, can be detected from a urine sample.
Ross and Roberts (1985) provide results of a case/control study of a mor-
phologically specific type of carcinoid disorder that involves the mural and
valvular endocardium on the right side of the heart, known as carcinoid
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heart disease. Out of a total of 36 subjects they investigate, urinary excre-
tion of 5-hydroxyindoleacetic acid (5-HIAA) was measured on 28 subjects,
16 cases with carcinoid hearth disease and 12 controls. The data (level of
5-HIAA in milligrams per 24 hours), also discussed in Dawson–Saunders
and Trapp (1994), are provided in the table below.

Patients 263 288 432 890
450 1270 220 350
283 274 580 285
524 135 500 120

Controls 60 119 153 588
124 196 14 23

43 854 400 73

Assuming that the data come from respective normal distributions, com-
pare the means of the two populations in both a classical and a Bayesian
fashion. For the Bayes model use noninformative priors.

10.10. Stress, Diet, and Acids. In the study “Interrelationships Between Stress,
Dietary Intake, and Plasma Ascorbic Acid During Pregnancy,” discussed by
Walpole et al. (2007, p. 359), the plasma ascorbic acid levels of pregnant
women were compared for smokers versus nonsmokers. Thirty-two healthy
women, between 15 and 32 years old, in the last 3 months of pregnancy
were selected for the study. Eight of the women were smokers. Prior to the
lab tests, the participants were told to avoid food and vitamin supplements.
From the blood samples, the following plasma ascorbic acid values of each
subject were determined in milligrams per 100 ml:

Plasma ascorbic acid values
Nonsmokers Smokers

0.97 1.06 0.48
0.72 0.86 0.71
1.00 0.85 0.98
0.81 0.58 0.68
0.62 0.57 1.18
1.32 0.64 1.36
1.24 0.98 0.78
0.99 1.09 1.64
0.90 0.92
0.74 0.78
0.88 1.24
0.94 1.18

(a) Using WinBUGS, test the hypothesis of equality of levels of plasma
ascorbic acid for the two populations. Use noninformative priors on pop-
ulation means and variances (precisions).
(b) Compare the results in (a) with a classical two-sample t-test with no
assumption of equality of variances.
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10.11. A. pantherina and A. rubescens. Making spore prints is an enormous
help in identifying genera and species of mushrooms. To make a spore print,
mushroom fans take a fresh, mature cap and lay it on a clean piece of glass.
Left overnight or possibly longer the cap should give you a good print.
The Amanitas Family is one that has the most poisonous (A. phalloides,
A. verna, A. virosa, A. pantherina, etc.), as well as the most delicious (A. ce-
sarea, A. rubescens) species. Two independent samples of m= 12 and n = 15
spores of A. pantherina (“Panther”) and A. rubescens (“Blusher”), respec-
tively, were analyzed. In both species of mushrooms the spores are smooth
and elliptical and the largest possible measurement was taken (great axis
of the ellipse). It was found that the means were X1 = 6.3 microns and
X2 = 7.5 microns with standard deviations of s1 = 2.12 µm and s2 = 1.94
µm.
(a) A researcher is interested in testing the hypothesis that the population
mean sizes of spores for these two mushrooms, µ1 and µ2, are the same,
versus the two-sided alternative. Use α= 0.05.
(b) What sample sizes are needed so that the researcher should be able to
reject the null hypothesis of no effect (no difference between the population
means) with power 1−β= 0.9 versus the “medium” standardized effect size
of d = 0.5? The significance α is, as in (a), 0.05.

10.12. Blood Volume in Infants. The total blood volume of normal newborn in-
fants was estimated by Schücking (1879) who took into account the addition
of placental blood to the circulation of the newborn infant when clamping
of he umbilical cord is delayed. Demarsh et al. (1942) further studied the
importance of early and late clamping. For 16 babies in whom the cord was
clamped early the total blood (as a percentage of weight) on the third day
was

13.8 8.0 8.4 8.8 9.6 9.8 8.2 8.0
10.3 8.5 11.5 8.2 8.9 9.4 10.3 12.6

For 16 babies in whom the cord was not clamped until the placenta began
to descend, the corresponding figures were

13.8 8.0 8.4 8.8 9.6 9.8 8.2 8.0
10.3 8.5 11.5 8.2 8.9 9.4 10.3 12.6

(a) Do these two samples provide evidence of a significant difference be-
tween the blood volumes? Perform the test at α= 0.05.
(b) Using WinBUGS find the posterior probability of the hypothesis that
there is no difference in blood volumes. Use noninformative priors.

10.13. Biofeedback. In the past, many bodily functions were thought to be be-
yond conscious control. However, recent experimentation suggests that it
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may be possible for a person to control certain bodily functions if that per-
son is trained in a program of biofeedback exercises. An experiment is con-
ducted to show that blood pressure levels can be consciously reduced in
people trained in this program. The blood pressure measurements (in mil-
limeters of mercury) listed in the table represent readings before and after
the biofeedback training of five subjects.

Subject Before After
1 137 130
2 201 180
3 167 150
4 150 153
5 173 162

(a) If we want to test whether the mean blood pressure decreases after the
training, what are the appropriate null and alternative hypotheses?
(b) Perform the test in (a) with α= 0.05.
(c) What assumptions are needed to assure the validity of the results?

10.14. Hypertension. Dernellis and Panaretou (2002) examined a small number
of subjects with hypertension and healthy control subjects. One of the vari-
ables of interest was the aortic stiffness index. Measures of this variable
were calculated from the aortic diameter evaluated by M-mode echocardio-
graphy and blood pressure measured by a sphygmomanometer. Generally,
physicians wish to reduce aortic stiffness. From n1 = 15 patients with hy-
pertension (group 1), the mean aortic stiffness index was X1 = 16.16 with
a standard deviation of s1 = 4.29. In the n2 = 16 control subjects (group 2),
the mean aortic stiffness index was X2 = 10.53 with a standard deviation
of s2 = 3.33.
(a) Test the hypothesis that the population mean aortic stiffness indices for
the two groups differ (use the two-sided alternative). Perform the test by
both the rejection-region and p-value methods. Take α = 0.05 and assume
that the population variances are the same.
(b) What is the (observed, retrospective)1 power of this test versus the spe-
cific alternative ∆= |µ2 −µ1| = 3. Keep α= 0.05.
(c) Pretend that this study is only a pilot study needed to design more elab-
orate clinical trials of the same type. What group sample sizes are needed
to assure a 99% power versus the fixed alternative ∆= |µ2 −µ1| = 3?

10.15. Hemopexin in DMD Cases II. Refer to Exercises 2.16 and 9.16 and data
set dmd.dat|mat|xls.
(a) Form a 95% confidence interval for the difference in mean responses
of hemopexin h in two populations: population 1 consisting of all women

1 Attributes observed and retrospective stand for the power analysis of a test that has al-
ready been performed. The procedure is the same as for the prospective analysis but elicited
σs are replaced by observed estimators s.
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who are not DMD carriers (carrier=0) and population 2 consisting of all
women who are DMD carriers (carrier=1).
(b) It is believed that the mean level of hemopexin in the population of
women DMD carriers exceeds the mean level in women noncarriers by 10.
Test the one-sided alternative that the mean levels of hemopexin for the
two populations differ by more than 10, that is, H0 : µ1 −µ2 = −10 versus
H1 : µ1 −µ2 < −10. Use α = 5%. Report the p-value as well. Compare the
population variances prior to deciding how to test the difference of means.
Hint: In testing the hypothesis H0 : µ1 −µ2 = C, the associated t-statistic
has as its numerator X1 − X2 −C instead of X1 − X 2.

10.16. Risk of Stroke. Abbott et al. (1986) evaluate the risk of stroke among
smokers and nonsmokers in a 12-year prospective Honolulu Hearth Pro-
gram study. The data are given in the table below.

Stroke yes Stroke no total
Smoker 171 3264 3435

Nonsmoker 117 4320 4437
Total 288 7584 7872

Estimate
(a) the risk difference and find the 95% confidence interval for the popula-
tion risk difference,
(b) the risk ratio and find the 95% confidence interval for the population
risk ratio, and
(c) the odds ratio and find the 95% confidence interval for the population
odds ratio.

10.17. Cell Counts. Refer to Example 1.2 and assume that data is approximately
normal.
(a) Do automated and manual counts significantly differ for a fixed conflu-
ency level? Use a paired t-test with a two-sided alternative at significance
level α= 0.05.
(b) What are 95% confidence intervals for the population differences?
(c) If the difference between automated and manual counts constitutes an
error, are the errors comparable for the two confluency levels? This is a
DoD (difference-of-differences) test and is equivalent to a two-sample t-test
when measurements are the differences. Use the two-sided alternative and
α= 0.05.

10.18. Impulses from Crayfish. The crayfish is utilized in numerous neuro-
science labs in order to explore the role of the central pattern generator
in locomotion. In an experiment with crayfish, you design glass electrodes
to record from the abdominal ganglia nerves that contribute to the return
and power strokes of the swimmerets. What this means is that the nerves
you are recording from contain the motor output signals that tell the swim-
merets to move water around their abdomen anterior or posterior. In the
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experimental setup, glass extracellular electrodes are used to measure the
action potentials or voltage waveform. Because this is a CPG, you normally
expect bursting activity, but when you suction onto the nerve cord, you no-
tice what seems to be regular spiking. A spike detector was applied on the
voltage time trace and the interspike intervals recorded. The data were ob-
tained under two treatments. (1) Drug: Carbachol (also known as carbamyl-
choline), a drug that binds and activates the acetylcholine receptor, was
added to possibly induce faster spiking; and (2) control group. The data files

carbachol.dat and control.dat containing the respective interspike
times can be found at the book’s Web site. Also, you can load both files by
importing frankdata.mat or frankdata.xls. All interspike time mea-
surements are given in seconds. (Thanks to Dr. Frank Lin for the data and
description.)
(a) Find fundamental descriptive statistics for both samples carbachol
and control. Is Gaussianity a reasonable assumption for the two popu-
lations?
(b) Find the 95% confidence interval for the population mean interspike
time in the control case.
(c) It is believed that the spiking in the control population has a frequency
of 5 Hz. Test this hypothesis by testing that the mean population interspike
time is 0.2, versus the proper one-sided alternative. Use both RR and p-
value approaches; α= 0.05.
(d) Test the hypothesis that the mean interspike time in the control and
carbachol populations are the same versus the one-sided alternative that
states that carbachol increases the frequency of spikes (decreases the inter-
spike times); α= 0.05.
(e) Do (b) and (c) in a Bayesian fashion building on spikes.odc, which
contains control data and hints on how to set the priors. Compare and dis-
cuss the 95% confidence interval from (b) and the 95% credible set from
BUGS. Compare tests, the p-value from (c), and the probability of H0 from
WinBUGS.

10.19. Aerobic Capacity. The peak oxygen intake per unit of body weight, called
the aerobic capacity of an individual performing a strenuous activity, is a
measure of work capacity. For comparative study, measurements of aero-
bic capacities are recorded (Frisancho, 1975) for a group of 20 Peruvian
Highland natives and for a group of 10 Peruvian lowlanders acclimatized
as adults to high altitudes. The measurements are taken on a bicycle er-
gometer at high altitude (ml kg−1 min−1).

Peruvian Peruvian Lowlanders
highland natives acclimatized as adults

Sample mean 46.3 38.0
Sample st. deviation 5.0 5.2
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(a) Test the hypothesis that the population mean aerobic capacities are the
same versus the one-sided alternative. Assume an equality of population
variances and take α= 0.05.
(b) If you were to repeat this experiment, what sample size (per group)
would give you a power of 90% to detect the difference between the means
of magnitude 4, if you assumed that the common population variance was
σ2 = 52 = 25? The level of the test, α, is to be kept at 5%.

10.20. Cataract and Diabetes. Hiller and Kahn (1976) consider diabetes as a
risk factor for cataracts and provide the results of a case/control study.

Diabetes Cataract cases No cataract Total
Present 56 84 140
Absent 552 1927 2479
Total 608 2011 2619

Find 95% confidence intervals for the risk difference, risk ratio, and odds
ratio.

10.21. Beginnings of Antiseptic Surgeries. Sir Joseph Lister (1827–1912),
Professor of Surgery at Glasgow University, influenced by Pasteur’s ideas,
found that a wound wrapped in bandages treated by Carbolic acid (phenol)
would often not become infected. Here are Lister’s data on treating open
fractures and amputations:

Period Carbolic acid Results
1864–1866 No Treated 34 patients, 19 recovered and 15 died
1867–1870 Yes Treated 40 patients, 34 recovered and 6 died

(a) Find and interpret the risk difference, risk ratio, and odds ratio.
(b) Find a 95% confidence intervals for the parameters estimated in (a).

10.22. Reaction Times. Researchers are interested in reactions times to differ-
ent color light stimuli, specifically, green and red. A randomized design is
proposed – each subject is given a number of trials, such as GGRRGRRG,
etc. As a measurement of reaction time for a subject we report an average
speed of reaction to each color. The table below contains the measurements.

Subject X (red) Y (green)
1 18 22
2 16 20
3 23 29
4 30 35
5 32 27
6 30 29
7 31 33
8 25 29
9 27 31

10 21 24
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Are the reaction times to red and green lights the same? Use a two-sided
alternative and α= 0.05.

10.23. Gamma Globulin and Aspirin. A clinical trial of gamma globulin in the
treatment of children with Kawasaki syndrome randomized approximately
half of the patients to receive gamma globulin. The standard treatment
for Kawasaki syndrome was a regimen of aspirin; nevertheless, about one
quarter of these patients developed coronary abnormalities, even under the
standard treatment. The outcome of interest was the development of coro-
nary abnormalities (CA) over a 7-week period. The following 2× 2 table
summarizes the results of the trial.

Treatment group CA = 1 CA = 0 Total
GG = 1, A = 0 5 78 83
GG = 0, A = 1 21 63 84

Total 26 141 167

Find the 95% confidence interval for the (a) risk difference, (b) risk ratio,
and (c) odds ratio.

10.24. High/Low Protein Diet in Rats. Armitage and Berry (1994, p. 111)
report data on the weight gain of 19 female rats between 28 and 84 days
after birth. The rats were placed on diets with high (12 animals) and low (7
animals) protein content.

High protein Low protein
134 70
146 118
104 101
119 85
124 107
161 132
107 94
83

113
129
97

123

We want to test the hypothesis on dietary effect. Did a low protein diet
result in significantly lower weight gain?
(a) What test should be used?
(b) Perform the test at an α= 0.05 level.
(c) What sample size is needed (per diet) if σ2

1 =σ2
2 = 450 and we are inter-

ested in detecting the difference ∆= |µ1−µ2| = 20 as a significant deviation
from H0 95% of the time (power = 0.95). Use α= 0.05.

10.25. Spider Monkey DNA. In the context of Exercise 9.25
(a) Test that proportion pA is significantly smaller than pT .
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(b) Demonstrate that proportions pG and pC are not significantly different.
Use α= 0.05.
Hint: Since this is a multinomial model, the variance for difference p̂A −
p̂T needed for Z statistic is Var ( p̂A − p̂T ) = pA(1− pA)/n+ pT (1− pT )/n+
2pA pT /n. Under H0 from (a) both pA and pT are estimated by ( p̂A + p̂T )/2
which leads to Z =p

n( p̂A − p̂T )/
√

p̂A + p̂T .

10.26. PBSC versus BM for Unrelated Donor Allogeneic Transplants. We
are interested in determining whether bone marrow (BM) is equivalent to
peripheral blood stem cells (PBSC) in myeloablative unrelated donor trans-
plantation, using the data from Eapen et al. (2007). The greater graft-
versus-host disease burden of PBSC might make clinicians less likely to
use PBSC in this context.
By using equivalence margins of ±10%, and proportions of relapse within
6 months, test whether PBSC and BM are equivalent at level α= 0.05.

Method Number of patients Relapsed after 6 months
BM 583 93 (16%)

PBSC 328 58 (18%)

Hint: By mimicking Example 10.15 devise a TOST using a normal approx-
imation to the binomial:

zL = p̂BM − p̂PB − (−δ)√
p̂BM (1−p̂BM )

n1
+ p̂PB(1−p̂PB)

n2

, pL = 1−Φ(zL);

zU = p̂BM − p̂PB −δ√
p̂BM (1−p̂BM )

n1
+ p̂PB(1−p̂PB)

n2

, pU =Φ(zU );

p−value = max{pL, pU }.

10.27. Hydrogels. It has been demonstrated that poly(ethylene glycol) diacrylate
(PEG-DA)-based hydrogels could serve as direct cell carriers for engineer-
ing soft orthopedic tissues. Recent studies have also shown that PEG-DA
can be rendered degradable by introducing an enzyme-sensitive peptide se-
quence into the polymer chains.
The data from Dr. Temenoff ’s lab at Georgia Tech represent proportions of
surviving cells after gel degradation by the enzyme, a bacterial collagenase,
in durations of 30 and 60 minutes.
It is postulated that the proportions of live cells after 30 minutes and
60 minutes of exposure to the enzyme are equivalent
The data collected in eight independent experiments represent the number
of cells alive among the total number of cells recovered, as in the table
below.
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30 minutes 60 minutes
Alive Total Alive Total

20250 44250 40500 69750
51000 126000 42750 76500
77250 100500 78750 155250
39000 58500 42750 67500

Form ratios alive/total for the two durations. The ratios could be as-
sumed as approximately normal given the large number of cells recov-
ered. Show that H0 : µ1 = µ2 is not rejected against one- or two-sided al-
ternatives. This, however, is not an evidence of equivalence. Test the hy-
pothesis of equivalence with equivalence margins θU = −θL = 0.1, that is,
H0 :µ1 −µ2 <−0.1 or µ1 −µ2 > 0.1 versus H1 :−0.1<µ1 −µ2 < 0.1.
Use a Westlake interval and α= 0.05.

MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch10.Two/

argon.m, dnatest2.m, equivalence1.m, hemoc.m, hemopexin2.m,
leadexposure.m, miammt.m, microdamage.m, neanderthal.m, nounfirst.m,
piaget.m, plazmaacid.m, ratiopoissons.m, risk.m, schizo.m,
simulrisks.m, temenoff.m

argon.odc, braintissue.odc, cancerprop.odc, equivalence.odc,
microdamage.odc, plasma1.odc, plasma2.odc, psoriasis.odc, spikes.odc,
stressacids.odc,

carbachol.dat, lice.xls, pasi.dat|mat|xls
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Chapter 11
ANOVA and Elements of Experimental
Design

Design is art optimized to meet objectives.

– Shimon Shmueli

WHAT IS COVERED IN THIS CHAPTER

• ANOVA Model Formulation
• Contrasts and Multiple Comparisons
• Factorial Designs
• Randomized Block Designs and Repeated Measures Designs
• Nested Designs
• Sample Sizes in ANOVA
• Functional ANOVA
• Analysis of Means (ANOM)
• Gauge R&R ANOVA
• Testing Equality of Proportions and Poisson Means

11.1 Introduction

In Chap. 10 we discussed the test of equality of means from two populations,
H0 : µ1 = µ2. Under standard assumptions (normality and independence) the
proper test statistic had t-distribution, and several tests (equal/different vari-
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ances, paired/unpaired samples) shared the common name “two-sample t-
tests.”

Many experimental protocols involve more than two populations. For ex-
ample, an experimenter may be interested in comparing the sizes of cells
grown under several experimental conditions. At first glance it seems that
we can apply the t-test on all possible pairs of means. This “solution” would
not be satisfactory since the probability of type I error for such a procedure
is unduly large. For example, if the equality of four means is tested by test-
ing the equality of

(4
2
) = 6 different pairs, each at the level of 5%, then the

probability of finding a significant difference when in fact all means are equal
is about 26.5%. We already discussed in Sect. 9.7 the problems of controlling
type I error in multiple tests.

An appropriate procedure for testing hypotheses of equality of several
means is the analysis of variance (ANOVA). ANOVA is probably one of the
most frequently used statistical procedures, and the reasoning behind it is
applicable to several other, seemingly different, problems.

11.2 One-Way ANOVA

ANOVA is an acronym for Analysis of Variance. Even though we are testing for
differences among population means, the variability among the group means
and the variability of the data within the treatment group are compared. This
technique of separating the total variability in data to between and within
variabilities is due to Fisher (1918, 1921).

Suppose we are interested in testing the equality of k means µ1, . . . ,µk char-
acterizing k independent populations P1, . . . ,Pk. From the ith population P i
a sample

yi1, yi2, . . . , yini

of size ni is taken. Let N =∑k
i=1 ni be the total sample size. The responses yi j

are modeled as

yi j =µi +εi j, 1≤ j ≤ ni; 1≤ i ≤ k, (11.1)

where εi j represents the “error” and quantifies the stochastic variability of
difference between observation yi j and the mean of the corresponding popu-
lation, µi. Sometimes the µis are called treatment means, with index i repre-
senting one of the treatments.

We are interested in testing whether all population means µi are equal,
and the procedure is called one-way ANOVA. The assumptions underlying one-
way ANOVA are as follows:

(i) All populations are normally distributed;
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(ii) The variances in all populations are the same and constant (assumption
of homoscedasticity);

(iii) The samples are mutually independent.
That can be expressed by the requirement that all yi j in (11.1) must be

i.i.d. normal N (µi,σ2) or, equivalently, all εi js must be i.i.d. normal N (0,σ2).

Normal population
1 2 . . . k

Population mean µ1 µ2 . . . µk
Common variance σ2 σ2 . . . σ2

If the sample sizes are the same, i.e., n1 = n2 = ·· · = nk = N/k, then the
ANOVA is called balanced. It is often the case that many experiments are
designed as a balanced ANOVA. During an experiment it may happen that a
particular measurement is missing due to a variety of reasons, resulting in an
unbalanced layout. Balanced designs are preferable since they lead to simpler
computations and interpretations.

In terms of model (11.1), the null hypothesis to be tested is

H0 :µ1 =µ2 = ·· · =µk,

and the alternative is

H1 : (H0)c (or µi 6=µ j , for at least one pair i, j.

Note that the alternative H1 ≡ (H0)c is any negation of H0. Thus, for exam-
ple, µ1 >µ2 =µ3 = ·· · =µk or µ1 =µ2 6=µ3 =µ4 = ·· · =µk are valid alternatives.
Later we will discuss how to assess the alternative if H0 is rejected.

One can reparameterize the population mean µi as µi = µ+αi. Simply
speaking, the treatment mean is equal to the mean common for all treatments
(called grand mean µ) plus the effect of the population group (treatment effect)
αi. The hypotheses now can be restated in terms of treatment effects:

H0 :α1 =α2 = ·· · =αk = 0.

The alternative is H1: Not all αis are equal to 0.
The representation µi = µ+ αi is not unique. We usually assume that∑

iαi = 0. This is an identifiability assumption needed to ensure the unique-
ness of the decomposition µi = µ+αi. Indeed, by adding and subtracting any
number c, µi becomes µ+αi = (µ+ c)+ (αi − c) = µ′ +α′, and uniqueness is
assured by

∑
iαi = 0. This kind of constraint is sometimes called sum-to-zero

(STZ) constraint. There are other ways to ensure uniqueness; a sufficient as-
sumption is, for example, α1 = 0. In this case µ= µ1 becomes the reference or
baseline mean. Before providing the procedure for testing H0, which is sum-
marized in the ANOVA table below, we review the notation.
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yi j jth observation from treatment i
yi Sample mean from the treatment i
y Average of all observations
µi Population treatment mean
µ Population grand mean
αi ith treatment effect
ni Size of ith sample
k Number of treatments
N Total sample size

11.2.1 ANOVA Table and Rationale for F-Test

The ANOVA table displays the data summaries needed for inference about the
ANOVA hypothesis. It also provides an estimator of the variance in measure-
ments and assesses the goodness of fit of an ANOVA model.

The variability in data follows the so-called fundamental ANOVA identity
in which the total sum of squares (SST) is represented as a sum of the treat-
ment sum of squares (SSTr) and the sum of squares due to error (SSE):

SST = SSTr+SSE = SSBetween +SSWithin,
k∑

i=1

ni∑
j=1

(yi j − y)2 =
k∑

i=1
ni(yi − y)2 +

k∑
i=1

ni∑
j=1

(yi j − yi)
2.

The standard output from most statistical software includes degrees of
freedom (DF), mean sum of squares, F ratio, and the corresponding p-value:

Source DF Sum of squares Mean squares F p
Treatment k−1 SSTr MSTr = SSTr/(k−1) MSTr/MSE P(Fk−1,N−k > F)

Error N −k SSE MSE = SSE/(N −k)
Total N −1 SST

The null hypothesis is rejected if the F-statistic is large compared to the
(1−α) quantile of an F distribution with k−1 and N−k degrees of freedom. A
decision can also be made by looking at the p-value.

Rationale. The mean square error, MSE, is an unbiased estimator of σ2.
Indeed,
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MSE = 1
N −k

k∑
i=1

ni∑
j=1

(yi j − yi)
2 = 1

N − k

k∑
i=1

[
(ni −1)

1
ni −1

ni∑
j=1

(yi j − yi)
2

]

= 1
N −k

k∑
i=1

(ni −1)s2
i , and

E(MSE)= 1
N −k

k∑
i=1

(ni −1)E(s2
i )= 1

N −k

k∑
i=1

(ni −1)σ2 =σ2.

On the other hand, mean square error due to treatments,

MSTr = SSTr
k−1

= 1
k−1

k∑
i=1

ni(yi − y)2,

is an unbiased estimator of σ2 only when H0 is true, that is, when all µi are
the same. This follows from the fact that

E(MSTr)=σ2 +
∑

i ni(αi)2

k−1
,

where αi = µi − µ is the population effect of treatment i. Since under H0
α1 = α2 = ·· · = αk = 0, the E(MSE) is equal to σ2, and MSTr is an unbiased
estimator of variance. When H0 is violated, not all αi are 0, or, equivalently,∑
α2

i > 0. Thus, the ratio MSTr/MSE quantifies the departure from H0, and
large values of this ratio are critical.

Example 11.1. Coagulation Times. To illustrate the one-way ANOVA we
work out an example involving coagulation times that is also considered by
Box et al. (2005). Twenty-four animals are randomly allocated to 4 different
diets, but the numbers of animals allocated to different diets are not the same.
The blood coagulation time is measured for each animal. Does diet type sig-
nificantly influence the coagulation time? The data and MATLAB solution are
provided next.

times = [62, 60, 63, 59, 63, 67, 71, 64, 65, 66, 68, 66, ...
71, 67, 68, 68, 56, 62, 60, 61, 63, 64, 63, 59];

diets = {’dietA’,’dietA’,’dietA’,’dietA’,’dietB’,’dietB’,...
’dietB’,’dietB’,’dietB’,’dietB’,’dietC’,’dietC’,’dietC’,...
’dietC’,’dietC’,’dietC’,’dietD’,’dietD’,’dietD’,’dietD’,...
’dietD’,’dietD’,’dietD’,’dietD’};

[p,table,stats] = anova1(times, diets,’on’)

% p = 4.6585e-005
% table =
%’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’
%’Groups’ [228] [ 3] [ 76] [13.5714] [4.6585e-005]
%’Error’ [112] [20] [5.6000] [] []
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%’Total’ [340] [23] [] [] []
%
%stats =
% gnames: 4x1 cell
% n: [4 6 6 8]
% source: ’anova1’
% means: [61 66 68 61]
% df: 20
% s: 2.3664

dietA dietB dietC dietD

60

65

70

(a) (b)

Fig. 11.1 (a) ANOVA table and (b) boxplots, as outputs of the anova1 procedure on the
coagulation times data.

From the ANOVA table we conclude that the null hypothesis is not tenable,
the diets significantly affect the coagulation time. The p-value is smaller than
0.5 ·10−4 which indicates strong support for H1.

The ANOVA table featured in the output and Fig. 11.1a is a standard way
of reporting the results of an ANOVA procedure. The SS column in the ANOVA
table restates the fundamental ANOVA identity SSTr+SSE = SST as 228+
112 = 340. The degrees of freedom for treatments, k− 1, and the error, n−
k, are additive and their sum is total number of degrees of freedom, n− 1.
Here, 3+20 = 23. The column with mean square errors is obtained when the
sums of squares are divided by their corresponding degrees of freedom. The
ratio F = MSTr/MSE is the test statistic distributed as F with (3, 20) degrees
of freedom. The observed F = 13.5714 exceeds the critical value finv(0.95,

3, 20)=3.0984, and H0 is rejected. Recall that the rejection region is always
right-tailed, in this case [3.0984,∞). The p-value is 1-fcdf(13.5714, 3, 20)=

4.6585e-005. Figure 11.1b shows boxplots of the coagulation times by the diet
type.
�

Since the entries in ANOVA table are interrelated, it is possible to recover
a table from only a few entries (e.g., Exercises 11.4, 11.7, and 11.14).
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11.2.2 Testing Assumption of Equal Population Variances

There are several procedures that test for the fulfillment of ANOVA’s condition
of homoscedasticity, that is, the condition that the variances are the same and
constant over all treatments.

A reasonably sensitive and simple procedure is Cochran’s test.

11.2.2.1 Cochran’s Test.

Cochran’s test rejects the hypothesis that k populations have the same vari-
ance if the statistic

C = s2
max

s2
1 +·· ·+ s2

k

is large. Here, s2
1, . . . ,s2

k are sample variances in k samples, and smax is the
largest of s2

1, . . . ,s2
k. Cochran’s test is implemented by Cochtest.m (Trujillo-

Ortiz and Hernandez-Walls, MATLAB Central, File ID: #6431).

11.2.2.2 Levene’s Test.

Levene’s test (Levene, 1960) hinges on the statistic

L =
(N −k)

∑k
i=1 ni(Zi· −Z··)2

(k−1)
∑k

i=1
∑ni

j=1(Zi j −Zi·)2
,

where Zi j = |yi j − yi·|. To enhance the robustness of the procedure, the sam-
ple means could be replaced by the group medians, or trimmed means. The
hypothesis H0 :σ1 =σ2 = ·· · =σk is rejected at level α if L > Fk−1,N−k,α.

11.2.2.3 Bartlett’s Test.

Another popular test for homoscedasticity is Bartlett’s test. The statistic

B =
(N −k) log s2

p −
∑k

i=1(ni −1)log s2
i

1+ 1
3(k−1) × (

∑k
i=1

1
ni−1 − 1

N−k )
,

where s2
p is the pooled sample variance

(n1−1)s2
1+···+(nk−1)s2

k
N−k , has an approx-

imately χ2
k−1 distribution. Large values of B are critical, i.e., reject H0 if

B > χ2
k−1,α, where α is the significance level.
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In MATLAB, Bartlett’s test is performed by the vartestn(X) command
for samples formatted as columns of X, or as vartestn(X, group) for vec-
tor X, where group membership of Xs is determined by the vector group.
Bartlett’s test is the default. Levene’s test is invoked by optional argument,
vartestn(...,’robust’). In the context of Example 11.1, Bartlett’s and Lev-
ene’s tests are performed in MATLAB as

% Coagulation Times: Testing Equality of Variances
[pval stats]=vartestn(times’, diets’,’on’) %Bartlet
% pval = 0.6441
% chisqstat: 1.6680
% df: 3

[pval stats]=vartestn(times’, diets’,’on’,’robust’) %Levene
% pval = 0.6237
% fstat: 0.5980
% df: [3 20]

According to these tests the hypothesis of equal treatment variances is not
rejected. Cochran’s test agrees with Bartlett’s and Levene’s, giving a p-value
of 0.6557.
Remark. As mentioned in the case of comparing the two means (p. 358), the
variances-before-means type procedures are controversial. A celebrated statis-
tician George E. P. Box criticized checking assumptions of equal variances be-
fore testing the equality means, arguing that comparisons of means are quite
robust procedures compared to a non-robust variance comparison (Box, 1953).
Aiming at Bartlett’s test in particular, Box summarized his criticism as fol-
lows: “To make the preliminary test on variances is rather putting to sea in a
rowing boat to find out whether conditions are sufficiently calm for an ocean
liner to leave port!”

11.2.3 The Null Hypothesis Is Rejected. What Next?

When H0 is rejected, the form for the alternative is not obvious as in the case
of two means, and thus one must further explore relationships between the
individual means. We will discuss two posttest ANOVA analyses: (i) tests for
contrasts and (ii) pairwise comparisons. They both make sense only if the null
hypothesis is rejected; if H0 is not rejected, then both tests for contrasts and
pairwise comparisons are trivial.

11.2.3.1 Contrasts

A contrast is any linear combination of the population means,



11.2 One-Way ANOVA 417

C = c1µ1 + c2µ2 +·· ·+ ckµk,

such that
∑k

i=1 ci = 0.
For example, if µ1, . . . ,µ5 are means of k = 5 populations, the linear com-

binations (i) 2µ1 −µ2 −µ4, (ii) µ3 −µ2, (iii) µ1 +µ2 +µ3 −µ4 −2µ5, etc. are all
contrasts since 2−1+0−1+0= 0, 0−1+1+0+0= 0, and 1+1+1−1−2= 0.

In the ANOVA model, yi j = µi + εi j, i = 1, . . . ,k; j = 1, . . . ,ni, sample treat-
ment means yi = 1

ni

∑ni
j=1 yi j are the estimators of the population treatment

means µi. Let N = n1 + ·· · + nk be the total sample size and s2 = MSE the
estimator of variance.

The test for a contrast

H0 :
k∑

i=1
ciµi = 0 versus H1 :

k∑
i=1

ciµi <, 6=,> 0 (11.2)

is based on the test statistic that involves sample contrast ci yi

t=
∑k

i=1 ci yi

s

√
∑k

i=1
c2

i
ni

that has a t-distribution with N − k degrees of freedom. Here, Ĉ =
∑k

i=1 ci yi is an estimator of contrast C and s2 ∑k
i=1

c2
i

ni
is the sample vari-

ance of Ĉ.

The (1−α)100% confidence interval for the contrast is




k∑
i=1

ci yi − tN−k,1−α/2 · s ·

√√√√ k∑
i=1

c2
i

ni
,

k∑
i=1

ci yi + tN−k,1−α/2 · s ·

√√√√ k∑
i=1

c2
i

ni


 .

Sometimes, contrast tests are called single-degree F-tests because of the
link between t- and F-distributions. Recall that if random variable X has a
t-distribution with n degrees of freedom, then X2 has an F-distribution with
1 and n degrees of freedom. Thus, the test of contrast in (11.2) against the
two-sided alternative can equivalently be based on the statistic
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F =
(∑k

i=1 ci yi
)2

s2 ∑k
i=1

c2
i

ni

,

which has an F-distribution with 1 and N − k degrees of freedom. This F-test
is good only for two-sided alternatives since the direction of deviation from H0
is lost by squaring the t-statistic.

Example 11.2. As an illustration, let us test the hypothesis H0 :µ1 +µ2 = µ3 +
µ4 in the context of Example 11.1. The above hypothesis is a contrast since
it can be written as

∑
i ciµi = 0 with c = (1,1,−1,−1). The following MATLAB

code tests the contrast against the one-sided alternative and also finds the
95% confidence interval for

∑
i ciµi.

m = stats.means %[p,table,stats] = anova1(times, diets)
%from Example Coagulation Times

c = [ 1 1 -1 -1 ];
L = c(1)*m(1) + c(2)*m(2)+c(3)*m(3) + c(4)*m(4) %L=-2
LL= m * c’ %LL=-2
stdL = stats.s * sqrt(c(1)^2/4+c(2)^2/6+c(3)^2/6+c(4)^2/8)
%stdL = 1.9916

t = LL/stdL %t =-1.0042

%test H_o: mu * c’ = 0 H_1: mu * c’ < 0
% p-value
tcdf(t, 23) %0.1629

%or 95% confidence interval for population contrast
[LL - tinv(0.975, 23)*stdL, LL + tinv(0.975, 23)*stdL]
% -6.1200 2.1200

The hypothesis H0 : µ1 +µ2 = µ3 +µ4 is not rejected, and the p-value is
0.1629. Also, the confidence interval for µ1 +µ2 −µ3 −µ4 is [−6.12,2.12].
�

Orthogonal Contrasts*. Two or more contrasts are called orthogonal if
their sample counterpart contrasts are uncorrelated. Operationally, two con-
trasts c1µ1 + c2µ2 +·· ·+ ckµk and d1µ1 +d2µ2 +·· ·+dkµk are orthogonal if in
addition to

∑
i ci =

∑
i di = 0, the condition c1d1 + c2d2 +·· ·+ ckdk =

∑
i cidi = 0

holds. For unbalanced designs the condition is
∑

i cidi/ni = 0.
If there are k treatments, only k−1 mutually orthogonal contrasts can be

constructed. Any additional contrast can be expressed as a linear combination
of the original k−1 contrasts. For example, if

Treatments
Contrast 1 2 3 4
C1 1 –1 –1 1
C2 1 0 0 –1
C3 0 1 –1 0
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then the contrast (1,−1,−3,3) is 2C1 −C2 + C3. Any set of k − 1 orthogonal
contrasts perfectly partitions the SSTr. If SSC = (

∑
ci yi )2∑

i c2
i /ni

then

SSTr = SSC1 +SSC2 +·· ·+SSCk−1.

This gives a possibility of simultaneous testing of any subset ≤ k − 1 of or-
thogonal contrasts. Of particular interest are orthogonal contrasts sensitive
to polynomial trends among the ordered and equally spaced levels of a factor.
The requirement is that the design is balanced. For example, if k = 4,

Equispaced levels
Contrast 1 2 3 4
CLinear –3 –1 1 3
CQuadratic 1 –1 –1 1
CCubic –1 3 –1 3

11.2.3.2 Pairwise Comparisons

After rejecting H0, an assessment of H1 can be conducted by pairwise compar-
isons. As the name suggests, this is a series of tests for all pairs of means in k
populations. Of course, there are

(k
2
)= k(k−1)

2 different tests.
A common error in doing pairwise comparisons is to perform k(k−1)

2 two-
sample t-tests. The tests are dependent and the significance level α for simul-
taneous comparisons is difficult to control. This is equivalent in spirit to si-
multaneously testing multiple hypotheses and adjusting the significance level
of each test to control overall significance level (p. 342). For example, for k = 5,
the Bonferroni procedure will require α= 0.005 for individual comparisons in
order to control the overall significance level at 0.05, clearly a conservative
approach.

Tukey (1952, unpubl. IMS address; 1953, unpubl. mimeograph) proposed a
test designed specifically for pairwise comparisons sometimes called the “hon-
estly significant difference test.” The Tukey method is based on the so-called
studentized range distribution with quantiles q. The quantile used in a test
or a confidence interval is qν,k,1−α, with α being the overall significance level
(or (1−α)100% overall confidence), k the number of treatments, and ν the er-
ror degrees of freedom, N − k. The difference between two means µi and µ j is
significant if

|yi − yj | > qν,k,1−α
sp
n

, (11.3)
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where s =
p

MSE and n is the treatment sample size for a balanced
design. If the design is not balanced, then replace n in (11.3) by the har-
monic mean of nis, nh = k∑k

i=1 1/ni
(Tukey–Kramer procedure).

The function qtukey(v,k,p) (Trujillo-Ortiz and Hernandez-Walls, MAT-
LAB Central #3469) approximates Tukey’s quantiles for inputs v = N − k, k,
and p = 1−α.

In biomedical experiments it is often the case that one treatment is consid-
ered a control and the only comparisons of interest are pairwise comparisons
of all treatments with the control, forming a total of k−1 comparisons. This is
sometimes called the many-to-one procedure and it was developed by Dunnett
(1955).

Let µ1 be the control mean. Then for i = 2, . . . ,k the mean µi is different
than µ1 if

|yi − y1| > dν,k−1,α
s√

1/ni +1/n1
,

where α is a joint significance test for k−1 tests, and ν= N−k. The critical val-
ues dν,k−1,α are available from the table at http://springer.bme.gatech.
edu/dunnett.pdf.

It is recommended that the control treatment have more observations than
other treatments. A discussion on the sample size necessary to perform Dun-
nett’s comparisons can be found in Liu (1997).

Example 11.3. In the context of Example 11.1 (Coagulation Times), let us
compare the means using the Tukey procedure. This is a default for MAT-
LAB’s command multcompare applied on the output stats in [p, table, stats]

= anova1(times, diets). The multcompare command produces an interactive
visual position for all means with their error bars and additionally gives an
output with a confidence interval for each pair. If the confidence interval con-
tains 0, then the means are not statistically different, according to Tukey’s
procedure. For example, the 95% Tukey confidence interval for µ2 − µ3 is
[−5.8241,1.8241], and the means µ2 and µ3 are “statistically the same.” On
the other hand, Tukey’s 95% interval for µ1 −µ3 is [−11.2754,−2.7246], indi-
cating that µ1 is significantly smaller than µ3.

multcompare(stats) %[p,table,stats] = anova1(times, diets)
%Compares means: 1-2; 1-3; 1-4; 2-3; 2-4; 3-4
%ans =
% 1.0000 2.0000 -9.2754 -5.0000 -0.7246
% 1.0000 3.0000 -11.2754 -7.0000 -2.7246
% 1.0000 4.0000 -4.0560 0 4.0560
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% 2.0000 3.0000 -5.8241 -2.0000 1.8241
% 2.0000 4.0000 1.4229 5.0000 8.5771
% 3.0000 4.0000 3.4229 7.0000 10.5771

We can also find the Tukey’s confidence intervals by using qtukey.m. For
example, the 95% confidence interval for µ1 −µ2 is

m=stats.means;
%1-2
[m(1)-m(2) - qtukey(20,4,0.95)*stats.s*sqrt(1/2 *(1/4+1/6)) ...
m(1)-m(2) ...
m(1)-m(2) + qtukey(20,4,0.95)*stats.s*sqrt(1/2*(1/4+1/6))]

% -9.3152 -5.0000 -0.6848
% Compare to: -9.2754 -5.0000 -0.7246 from multcompare

Although close to the output of multcompare, this interval differs due to a
coarser approximation algorithm in qtukey.m.
�

�
In addition to Tukey and Dunnett, there is a range of other multiple com-

parison procedures. For example, Bonferroni is easy but too conservative.
Since there are

(k
2
)

pairs among k means, replacing α by α∗ =α/
(k
2
)

would con-
trol all the comparisons at level α. Scheffee’s multiple comparison procedure
provides a simultaneous 1−α-level confidence interval for all linear combi-
nations of population means and as a special case all pairwise differences.
Scheffee’s (1−α)100% confidence interval for µi −µ j is given by

|yi − yj|± s

√
(k−1)Fα,k−1,n−k

(
1
ni

+ 1
n j

)
.

Sidak’s multiple comparison confidence intervals are

|yi − yj |± tn−k,α∗/2 s

√(
1
ni

+ 1
n j

)
,

where α∗ = 1−(1−α)
2

k(k−1) . Note that Sidak’s comparisons are just slightly less
conservative than Bonferroni’s for which the α∗ = α/

(k
2
)
. Since (1−α)m = 1−

mα+m(m−1)
2 α2−. . . , Sidak’s 1−(1−α)

2
k(k−1) is approx. α/

(k
2
)
, which is Bonferroni’s

choice.

11.2.4 Bayesian Solution

Next we provide a Bayesian solution for the same problem. In the Win-
BUGS code ( anovacoagulation.odc) we stipulate that the data are normal
with means equal to the grand mean, plus the effect of diet, mu[i]<-mu0 +
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alpha[diets[i]]. The priors on alpha[i] are noninformative and depend on
the selection of identifiability constraint. Here the code uses sum-to-zero, a
STZ constraint that fixes one of the αs, while the rest are given standard non-
informative priors for the location. For example, α1 is fixed as −(α2 +·· ·+αk),
which explains the term sum-to-zero. Another type of constraints that ensures
model identifiability is corner or CR constraint. In this case “corner” value α1
is set to 0. Then the treatment 1 is considered as a baseline category.

The grand mean mu0 is given a noninformative prior as well.
The parameter tau is a precision, that is, a reciprocal of variance. Tradi-

tionally, the noninformative prior on the precision is gamma with small pa-
rameters, in this case dgamma(0.001,0.001). From tau, the standard deviation
is calculated as sigma<-sqrt(1/tau). Thus, the highlights of the code are (i)
the indexing of alpha via diets[i], (ii) the identifiability constraints, and (iii)
the choice of noninformative priors.

model{
for (i in 1:ntotal){
times[i] ~ dnorm( mu[i], tau )
mu[i] <- mu0 + alpha[diets[i]]
}
#alpha[1] <- 0.0; #CR Constraint
alpha[1] <- -sum( alpha[2:a] ); #STZ Constraint

mu0 ~ dnorm(0, 0.0001)
alpha[2] ~ dnorm(0, 0.0001)
alpha[3] ~ dnorm(0, 0.0001)
alpha[4] ~ dnorm(0, 0.0001)
tau ~ dgamma(0.001, 0.001)
sigma <- sqrt(1/tau)
}

DATA

list(ntotal = 24, a=4,
times =c(62, 60, 63, 59, 63, 67, 71, 64, 65, 66,

68, 66, 71, 67, 68, 68, 56, 62, 60, 61, 63, 64, 63, 59),
diets = c(1,1,1,1, 2,2,2,2,2,2, 3,3,3,3,3,3, 4,4,4,4,4,4,4,4) )

INITS
list( mu0=0, alpha = c(NA,0,0,0), tau=1)

mean sd MC error val2.5pc median val97.5pc start sample
alpha[1] –3.001 1.03 0.002663 –5.039 –3.002 –0.9566 1001 100000
alpha[2] 1.999 0.893 0.003573 0.2318 1.999 3.774 1001 100000
alpha[3] 4.001 0.8935 0.003453 2.232 4.002 5.779 1001 100000
alpha[4] –2.999 0.8178 0.003239 –4.61 –2.999 –1.382 1001 100000
mu0 64.0 0.5248 0.00176 62.96 64.0 65.03 1001 100000
sigma 2.462 0.4121 0.001717 1.813 2.408 3.422 1001 100000
tau 0.1783 0.05631 2.312E-4 0.08539 0.1724 0.3043 1001 100000
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Figure 11.2a summarizes the posteriors of treatment effects, α1, . . . ,α4,
as boxplots. Once the simulation for ANOVA is completed in WinBUGS, this
graphical output becomes available under Inference>Compare tab.

(a) (b)

Fig. 11.2 (a) WinBUGS output from Inference>Compare. Boxplots of posterior realiza-
tions of treatment effects alpha. (b) Matrix of correlations among components of alpha.

WinBUGS can also estimate the correlations between the treatment ef-
fects. The correlation matrix below and its graphical representation (Fig. 11.2b)
are outputs from Inference>Correlations.

alpha[1] alpha[2] alpha[3] alpha[4]

alpha[1] 1.0 –0.4095 –0.4056 –0.3694
alpha[2] –0.4095 1.0 –0.3059 –0.2418
alpha[3] –0.4056 –0.3059 1.0 –0.2476
alpha[4] –0.3694 –0.2418 –0.2476 1.0

Note that off-diagonal correlations are negative, as expected because of
STZ constraint.

Expand the WinBUGS code anovacoagulation.odc to accommodate the
six differences diff12 <- alpha[1]-alpha[2],. . . , diff34 <- alpha[3]-alpha[4].
Compare credible sets for the differences with MATLAB’s multcompare output.

11.2.5 Fixed- and Random-Effect ANOVA

In Example 11.1 (Coagulation Times) the levels of the factor are fixed: dietA,
. . . , dietD. Such ANOVAs are called fixed-effect ANOVAs. Sometimes, the
number of factor levels is so large that a random subset is selected and serves
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as a set of levels. Then the inference is not concerned with these specific ran-
domly selected levels but with the population of levels. For example, in mea-
suring the response in animals to a particular chemical in food, a researcher
may believe that the type of animal may be a factor. He/she would select a ran-
dom but small number of different species as the levels of the factor. Inference
about this factor would be translated to all potential species. In measuring
the quality of healthcare, the researcher may have several randomly selected
cities in the USA as the levels of the factor. For such models, the effects αi, i =
1, . . . ,k are assumed normal N (0,σ2

α), and the ANOVA hypothesis is equiva-
lent to H0 : σ2

α = 0. Thus, for the random-effect model, E(MSTr) = σ2 +σ2
α, as

opposed to the fixed-effect case, E(MSTr)=σ2 + n
k−1

∑k
i=1α

2
i .

If s2
1 = MSTr, then in random effect ANOVA the variance components are

estimated as:

σ̂2 = s2 = MSE, and σ̂2
α =

s2
1 − s2

n
.

Thus testing H0 : σ2
α = 0 is based on s2

1/s2 = MSTr/MSE, which has an F-
distribution with k−1, N − k degrees of freedom. Operationally, the random-
effect and fixed-effect ANOVAs coincide, and the same ANOVA table can be
used. The two differ mostly in the interpretation of the inference and the
power analysis. Gauge R&R ANOVA in Sec. 11.10 is an example of a random-
effect ANOVA.

11.3 Two-Way ANOVA and Factorial Designs

Many experiments involve two or more factors. For each combination of factor
levels an experiment is performed and the response recorded. We will discuss
only factorial designs with two factors; the interested reader is directed to
Kutner et al. (2004) for a comprehensive treatment of multifactor designs and
incomplete factorial designs.

Denote the two factors by A and B and assume that factor A has a levels
and B has b levels. Then for each a× b combination of levels we perform the
experiment n ≥ 1 times. Measurements at fixed levels of A and B are called
replicates. Such a design will be called a factorial design. When factors are
arranged in a factorial design, they are called crossed. If the number of repli-
cates is the same for each cell (fixed levels for A and B), then the design is
called balanced. We will be interested not only in how the factors influence the
response, but also if the factors interact.

Suppose that the responses yi jk are obtained under the ith level of factor A
and the jth level of factor B. For each cell (i, j) one obtains ni j replicates, and
yi jk is the kth replicate. The model for yi jk is

yi jk =µ+αi +β j + (αβ)i j +εi jk, i = 1, . . . ,a; j = 1, . . . ,b; k = 1, . . . ,ni j. (11.4)
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Thus, the observation yi jk is modeled as the grand mean µ, plus the influence
of factor A, αi, plus the influence of factor B, β j , plus the interaction term
(αβ)i j , and, finally, plus the random error εi jk. As in the one-way ANOVA,
the errors εi jk are assumed independent normal with zero mean and constant
variance σ2 for all i, j, and k.

To ensure the identifiability of decomposition in (11.4) restrictions on αis,
β js, and (αβ)i js need to be imposed. Standardly, it is assumed that

a∑
i=1

αi = 0,
b∑

j=1
β j = 0,

a∑
i=1

(αβ)i, j = 0,
b∑

j=1
(αβ)i, j = 0,

although different restrictions are possible, as we will see in the Bayesian
models.

In two-factor factorial design there are three hypotheses to be tested:
effects of factor A,

H′
0 :α1 =α2 = ·· · =αa = 0 versus H′

1 = (H′
0)c,

effects of factor B,

H′′
0 :β1 =β2 = ·· · =βb = 0 versus H′′

1 = (H′′
0)c,

and the interaction of A and B,

H′′′
0 : (αβ)11 = (αβ)12 = ·· · = (αβ)ab = 0 versus H′′′

1 = (H′′′
0 )c.

The variability in observations follows the fundamental ANOVA identity
in which the total sum of squares (SST) is represented as a sum of the A-
treatment sum of squares (SSA), a sum of the B-treatment sum of squares
(SSB), the interaction sum of squares (SSAB), and the sum of squares due to
error (SSE). For a balanced design in which the number of replicates in all
cells is n,

SST = SSA+SSB+SSAB+SSE

=
a∑

i=1

b∑
j=1

n∑
k=1

(yi jk − y...)
2

= bn
a∑

i=1
(yi.. − y...)2 +an

b∑
j=1

(y. j. − y...)
2 +n

a∑
i=1

b∑
j=1

(yi j. − yi.. − y. j. + y...)
2

+
a∑

i=1

b∑
j=1

n∑
k=1

(yi jk − yi j.)
2.
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Here,

y... =
1

abn

a∑
i=1

b∑
j=1

n∑
k=1

yi jk, yi.. =
1

bn

b∑
j=1

n∑
k=1

yi jk,

y. j. =
1

an

a∑
i=1

n∑
k=1

yi jk, and yi j. =
1
n

n∑
k=1

yi jk.

The point estimator for αi effects is α̂i = yi.. − y..., for β j effects it is β̂ j = y. j. −
y..., and for the interaction (αβ)i j it is �(αβ)i j = yi j. − yi.. − y. j. + y... .

The degrees of freedom are partitioned according to the ANOVA identity as
abn−1= (a−1)+(b−1)+(a−1)(b−1)+ab(n−1). Outputs in standard statistical
packages include degrees of freedom (DF), mean sum of squares, F-ratios and
their p-values.

Source DF SS MS F p-value
Factor A a−1 SSA MSA = SSA

a−1 FA = MSA
MSE P(Fa−1,ab(n−1) > FA )

Factor B b−1 SSB MSB = SSB
b−1 FB = MSB

MSE P(Fb−1,ab(n−1) > FB)
A × B (a−1)(b−1) SSAB MSAB = SSAB

(a−1)(b−1) FAB = MSAB
MSE P(F(a−1)(b−1),ab(n−1) > FAB)

Error ab(n−1) SSE MSE = SSE
ab(n−1)

Total abn−1 SST

FA , FB, and FAB are test statistics for H′
0, H′′

0 , and H′′′
0 , and their large

values are critical. The rationale for these tests follows from the following
expected values:

E(MSE)=σ2, E(MSA)=σ2 + nb
a−1

a∑
i=1

α2
i , E(MSB)=σ2 + na

b−1

b∑
j=1

β2
j , and

E(MSAB)=σ2 + n
(a−1)(b−1)

a∑
i=1

b∑
j=1

(αβ)2
i j .

Example 11.4. Insulin Therapy. Insulin has anti-inflammatory effects, as
evaluated by its ability to reduce plasma concentrations of cytokines. The cy-
tokine content in several organs after endotoxin (lipopolysaccharide, LPS) ex-
posure and the effect of hyperinsulinaemia was examined in a porcine model
(Brix-Christensen et al., 2005). All animals (35 to 40 kg) were subject to gen-
eral anaesthesia and ventilated for 570 minutes. There were two possible in-
terventions:

LPS: Lipopolysaccharide infusion for 180 minutes.
HEC: Hyperinsulinemic euglycemic clamp in 570 minutes (from start). In-

sulin was infused at a constant rate and plasma glucose was clamped at a
certain level by infusion of glucose.
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LPS induces a systemic inflammation (makes the animals sick) and HEC
acts as a treatment. There were four experimental cells: (1) only anaesthesia
(no HEC, no LPS), (2) HEC, (3) LPS, and (4) HEC and LPS.

The responses are levels of interleukin-10 (IL-10) in the kidney after
330 minutes have elapsed. The table corresponds to a balanced design n = 8,
although the original experiment was unbalanced with ten animals in group 1,
nine in group 2, ten in group 3, and nine in group 4.

No HEC Yes HEC
7.0607 4.7510 3.0693 2.1102

No LPS 2.6168 2.9530 1.6489 3.1004
4.3489 3.6137 2.9160 4.1170
3.6356 5.6969 2.9149 3.0229
3.6911 4.5554 2.4159 1.8944
4.3933 3.8447 3.1493 3.5133

Yes LPS 6.0513 1.3590 4.4462 4.6254
4.2559 2.1449 2.8545 3.8967

%insulin.m
data2 = [... %columns: IL10 LPS HEC
7.0607 1 1; 2.6168 1 1; 4.3489 1 1;...
3.6356 1 1; 4.7510 1 1; 2.9530 1 1;...
3.6137 1 1; 5.6969 1 1; 3.0693 1 2;...
1.6489 1 2; 2.9160 1 2; 2.9149 1 2;...
2.1102 1 2; 3.1004 1 2; 4.1170 1 2;...
3.0229 1 2; 3.6911 2 1; 4.3933 2 1;...
6.0513 2 1; 4.2559 2 1; 4.5554 2 1;...
3.8447 2 1; 1.3590 2 1; 2.1449 2 1;...
2.4159 2 2; 3.1493 2 2; 4.4462 2 2;...
2.8545 2 2; 1.8944 2 2; 3.5133 2 2;...
4.6254 2 2; 3.8967 2 2];

IL10 = data2(:,1); LPS=data2(:,2); HEC=data2(:,3);
[p table stats terms] = anovan( IL10, {LPS,HEC}, ...

’varnames’,{’LPS’,’HEC’}, ’model’,’interaction’)

The resulting ANOVA table provides the test for the two factors and their
interaction.

Source DF SS MS F p-value
LPS 1 0.0073 0.0073 0.0051 0.9436
HEC 1 7.2932 7.2932 5.0532 0.0326
LPS*HEC 1 2.1409 2.1409 1.4834 0.2334
Error 28 40.4124 1.4433
Total 31 49.8539

Note that factor LPS is insignificant. The associated F statistic is 0.0051
with p-value of 0.9436. The interaction (LPS*HEC) is insignificant as well
(p-value of 0.2334), while HEC is significant (p-value of 0.0326).
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Next, we generate the interaction plots.

%insulin.m continued
cell11 = mean(data2( 1: 8,1)) %L1 H1
cell12 = mean(data2( 9:16,1)) %L1 H2
cell21 = mean(data2(17:24,1)) %L2 H1
cell22 = mean(data2(25:32,1)) %L2 H2

figure;
plot([1 2],[cell11 cell12],’o’,’markersize’,10, ...

’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’r’)
hold on
plot([1 2],[cell11 cell12],’r-’, ’linewidth’,3)
plot([1 2],[cell21 cell22],’o’,’markersize’,10, ...

’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’)
plot([1 2],[cell21 cell22],’k-’, ’linewidth’,3)
title(’Lines for LPS=1 (red) and LPS = 2 (black)’)
xlabel(’HEC’)

figure;
plot([1 2],[cell11 cell21],’o’,’markersize’,10, ...

’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’r’)
hold on
plot([1 2],[cell11 cell21],’r-’,’linewidth’,3)
plot([1 2],[cell12 cell22],’o’,’markersize’,10, ...

’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’)
plot([1 2],[cell12 cell22],’k-’,’linewidth’,3)
title(’Lines for HEC=1 (red) and HEC = 2 (black)’)
xlabel(’LPS’)
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Fig. 11.3 Interaction plots of LPS against HEC (left) and HEC against LPS (right) to explore
the additivity of the model.

Figure 11.3 presents treatment mean plots, also known as interaction
plots. The x-axis contains the levels of the factors, in this case both factors
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have levels 1 and 2. The y-axis contains the means of response (IL-10). The
circles in both plots correspond to the cell means.

For example, in Fig. 11.3a x-axis has two levels of factor HEC. The means
of IL-10 for LPS=1 are connected by the red line, while the means for LPS=2
are connected by the black line. When the lines on the plots are approximately
parallel, the interaction between the factors is absent. Thus, the interaction
plots serve as exploratory tools to check if the interaction term should be in-
cluded in the ANOVA model. Note that some interaction between LPS and
HEC is present (the lines are perfectly parallel); however, this interaction was
found not statistically significant (p-value of 0.2334).

Next, we visualize the ANOVA fundamental identity.

%insulin.m continued
SSA = table{2,2}; SSB = table{3,2}; SSAB=table{4,2};
SSE=table{5,2}; SST = table{6,2};

%Display the budget of Sums of Squares
H=figure;
set(H,’Position’,[400 400 400 400]);
y=[0 0 1 1];
hold on
h1=fill([0 SST SST 0],y,’c’);
y=y+1;
h2=fill([0 SSA SSA 0],y,’y’);
h3=fill([0 SSB SSB 0]+SSA,y,’r’);
h4=fill([0 SSAB SSAB 0]+SSA+SSB,y,’g’);
h5=fill([0 SSE SSE 0]+SSA+SSB+SSAB,y,’b’);
y=y+1;
h6=fill([0 SST SST 0],y,’w’);
hold off
legend([h1 h2 h3 h4 h5],’SST’,’SSA’,’SSB’,’SSAB’,’SSE’,...

’Location’,’NorthWest’)
title(’Sums of Squares’)

Figure 11.4 shows the budget of sums of squares in this design. It is graph-
ical representation of SST = SSA + SSB+ SSAB+ SSE. It shows the con-
tributions to the total variability by the factors, their interaction and the er-
ror. Note that the sum of squares attributed to LPS (in yellow) is not visi-
ble in the plot. This is because its relative contribution to SST is very small,
0.0073/49.8539< 0.00015.

The ANOVA table and both Figs. 11.3 and 11.4 are generated by file
insulin.m. For a Bayesian solution of this example consult insulin.odc.

�



430 11 ANOVA and Elements of Experimental Design

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3
Sums of Squares

 

 

SST
SSA
SSB
SSAB
SSE

Fig. 11.4 Budget of sums of squares for Insulin example.

11.4 Blocking

In many cases the design can account for the variability due to subjects or to
experimental runs and focus on the variability induced by the treatments that
constitute the factor of interest.

Example 11.5. Blocking by Rats. A researcher wishes to determine whether
or not four different testing procedures produce different responses to the con-
centration of a particular poison in the blood of experimental rats. To mini-
mize the influence of rat-to-rat variability, the biologist selects four rats from
the same litter. Each of the four rats is given the same dose of poison per gram
of body weight and then samples of their blood are tested by the four test-
ing methods administered in random order. There are 4 different litters each
containing 4 rats for a total of 16 animals involved.

concentration = [9.3 9.4 9.2 9.7 9.4 9.3 9.4 9.6 ...
9.6 9.8 9.5 10.0 10.0 9.9 9.7 10.2];

procedure = [1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4];
litter = [1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4];
[p,table,stats,terms]=anovan(concentration,{procedure,litter},...
’varnames’,char(’Procedure’,’Rat’))

%p = 1.0e-003 *
%
% 0.8713
% 0.0452
%
%table =
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% ’Source’ ’Sum Sq.’ ’d.f.’ ’Singular?’ ’Mean Sq.’
% ’Procedure’ [0.3850] [ 3] [ 0] [ 0.1283]
% ’Rat’ [0.8250] [ 3] [ 0] [ 0.2750]
% ’Error’ [0.0800] [ 9] [ 0] [ 0.0089]
% ’Total’ [1.2900] [15] [ 0] []
%
% ’F’ ’Prob>F’
% [14.4375] [8.7127e-004]
% [30.9375] [4.5233e-005]
% [] []
% [] []

In the above code, procedure is the factor of interest and litter is the block-
ing factor. Note that both the procedure and litter factors are highly signifi-
cant at levels 0.0008713 and 0.0000452, respectively. We are interested in sig-
nificant differences between the levels of procedure factor, but not between the
litters or individual animals. However, it is desirable that the blocking factor
turns out to be significant since in that case we will have accounted for sig-
nificant variability attributed to blocks and separated it from the variability
attributed to the test procedures. This makes the test more accurate.

To emphasize the benefits of blocking, we provide a nonsolution by treating
this problem as a one-way ANOVA layout. This time, we fail to find any signif-
icant difference between the testing procedures (p-value 0.2196). Clearly, this
approach is incorrect on other grounds: the condition of independence among
the treatments, required for ANOVA, is violated.

[p,table,stats] = anova1(concentration,procedure)

%p = 0.2196
%
%table =
%’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’
%’Groups’ [0.3850] [ 3] [0.1283] [1.7017] [0.2196]
%’Error’ [0.9050] [12] [0.0754] [] []
%’Total’ [1.2900] [15] [] [] []

�

In many cases the blocking is done by batches of material, animals from
the same litter, by matching the demographic characteristics of the patients,
etc. The repeated measures design is a form of block design where the blocking
is done by subjects, individual animals, etc.

11.5 Repeated Measures Design

Repeated measures designs represent a generalization of the paired t-test to
designs with more than two groups/treatments. In repeated measures designs
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the blocks are usually subjects, motivating the name “within-subject ANOVA”
that is sometimes used. Every subject responds at all levels of the factor of
interest, i.e., treatments. For example, in clinical trials, the subjects’ responses
could be taken at several time instances.

Such designs are sometimes necessary and have many advantages. The
most important advantage is that the design controls for the variability be-
tween the subjects, which is usually not of interest. In simple words, subjects
serve as their own controls, and the variability between them does not “leak”
into the variability between the treatments. Another advantage is operational.
Compared with factorial designs, repeated measures need fewer participants.

In the repeated measures design the independence between treatments
(experimental conditions) is violated. Naturally, the responses of a subject are
dependent on each other across treatments.

ANOVA Table for Repeated Measures

Subject 1 2 . . . n Treatment total
Treatment

1 y11 y12 · · · y1n y1·
2 y21 y22 · · · y2n y2·
· · · · · · · · ·
k yk1 yk2 · · · ykn yk·

Subject total y·1 y·2 · · · y·n y··

The ANOVA model is

yi j =µ+αi +β j +εi j, i = 1, . . . ,k; j = 1, . . . ,n,

in which the hypothesis H0 :αi = 0, i = 1, . . . ,k, is of interest.

SST = SSBetweenSub jects +SSWithinSub jects = SSB+ [SSA+SSE].

Equivalently,

The degrees of freedom are split as

kn−1= (n−1)+n(k−1)= (n−1)+ [(k−1)+ (n−1) · (k−1)].

The ANOVA table is

..

k∑
i=1

n∑
j=1

(yi j − y..)
2 = k

n∑
j=1

(y. j − y..)
2+

k∑
i=1

n∑
j=1

(yi j − y. j)
2

= k
n∑

j=1
(y. j − y..)

2+
[

n
k∑

i=1
(yi. − y..)

2+
k∑

i=1

n∑
j=1

(yi j − yi. − y. j + y..)
2

]
.

In the repeated measures design, total sum of squares SST= ∑k
i=1

∑n
j=1(yi j−

y..)2 partitions in the following way:
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Source DF SS MS F p

Factor A k−1 SSA MSA = SSA
k−1 FA = MSA

MSE P(Fk−1,(k−1)(n−1) > FA )
Subjects B n−1 SSB MSB = SSB

n−1 FB = MSB
MSE P(Fn−1,(k−1)(n−1) > FB)

Error (k−1)(n−1) SSE MSE = SSE
(k−1)(n−1)

Total kn−1 SST

The test statistic for Factor A (H0 : αi = 0, i = 1, . . . ,k) is FA = MSA/MSE
for which the p-value is p = P(Fk−1,(k−1)(n−1) > FA). Usually we are not inter-
ested in FB = MSB/MSE; however, its significance would mean that blocking
by subjects is efficient in accounting for some variability thus making the in-
ference about Factor A more precise.

Example 11.6. Kidney Dialysis. Eight patients each underwent three differ-
ent methods of kidney dialysis (Daugridas and Ing, 1994). The following values
were obtained for weight change in kilograms between dialysis sessions:

Patient Treatment 1 Treatment 2 Treatment 3
1 2.90 2.97 2.67
2 2.56 2.45 2.62
3 2.88 2.76 1.84
4 1.73 1.20 1.33
5 2.50 2.16 1.27
6 3.18 2.89 2.39
7 2.83 2.87 2.39
8 1.92 2.01 1.66

Test the null hypothesis that there is no difference in mean weight change
among treatments. Use α= 0.05.

%dialysis.m
weich=[ 2.90 2.97 2.67 ;...

2.56 2.45 2.62 ;...
2.88 2.76 1.84 ;...
1.73 1.20 1.33 ;...
2.50 2.16 1.27 ;...
3.18 2.89 2.39 ;...
2.83 2.87 2.39 ;...
1.92 2.01 1.66 ];

subject=[1 2 3 4 5 6 7 8 ...
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8];

treatment = [1 1 1 1 1 1 1 1 ...
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3];

[p table stats terms] = ...
anovan(weich(:),{subject, treatment},’varnames’,...
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{’Subject’ ’Treatment’} )

%’Source’ ’Sum Sq.’ ’d.f.’ ’Mean Sq.’ ’F’ ’Prob>F’
%’Subject’ [5.6530] [ 7] [0.8076] [11.9341][6.0748e-005]
%’Treatment’ [1.2510] [ 2] [0.6255] [ 9.2436][ 0.0028]
%’Error’ [0.9474] [14] [0.0677] [] []
%’Total’ [7.8515] [23] [] [] []

SST = table{5,2}; SSE = table{4,2};
SSTr = table{3,2}; SSBl = table{2,2};
SSW = SST - SSBl;

Since the hypothesis of equality of treatment means is rejected (p-val =
0.0028), one may look at the differences of treatment effects to find out which
means are different. Command multcompare(stats,’dimension’,2) will per-
form multiple comparisons along the second dimension, Treatment, and pro-
duces:
%1.0000 2.0000 -0.1917 0.1488 0.4892
%1.0000 3.0000 0.2008 0.5413 0.8817
%2.0000 3.0000 0.0521 0.3925 0.7329

This output is interpreted as α1 −α2 ∈ [−0.1917,0.4892], α1 −α3 ∈ [0.2008,
0.8817] and α2 −α3 ∈ [0.0521,0.7329] with simultaneous confidence of 95%.
Thus, by inspecting which interval contains 0 we conclude that treatment
means 1 and 2 are not significantly different, while the mean for treatment
3 is significantly smaller from the means for treatments 1 or 2. For a Bayesian
solution consult dialysis.odc.
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Fig. 11.5 Budget of sums of squares for Kidney Dialysis example.

Figure 11.5 shows the budget of sums of squares. Note that the SSTr and
SSE comprise SSW (Sum of Squares Within), while SSBl (variability due to
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subjects) is completely separated from SSTr and SSE. If the blocking by sub-
jects is ignored and the problem is considered as a one-way ANOVA, the sub-
ject variability will be a part of SSE leading to wrong inference about the
treatments (Exercise 11.16).
�

11.5.1 Sphericity Tests

Instead of the independence condition, as required in ANOVA, another condi-
tion is needed for repeated measures in order for an inference to be valid. This
is the condition of sphericity or circularity. In simple terms, the sphericity as-
sumption requires that all pairs of treatments be positively correlated in the
same way. Another way to express sphericity is that variances of all pairwise
differences between treatments are the same.

When an F-test in a repeated measures scenario is performed, many sta-
tistical packages (such as SAS, SPSS) automatically generate corrections for
violations of sphericity. Examples are the Greenhouse–Geisser, the Huynh–
Feldt, and lower-bound corrections. These packages correct for sphericity by
altering the degrees of freedom, thereby altering the p-value for the observed
F-ratio.

Opinions differ about which correction is the best, and this depends on
what one wants to control in the analysis. An accepted universal choice is to
use the Greenhouse–Geisser correction, εGG . Violation of sphericity is more
serious when εGG is smaller. When εGG > 0.75 Huynh–Feldt correction εHF is
recommended.

An application of Greenhouse–Geisser’s and Huynh–Feldt’s corrections,
εGG and εHF , respectively, is provided in the script bellow ( circularity.m)
in the context of Example 11.16.

weich=[ 2.90 2.97 2.67 ; 2.56 2.45 2.62 ;...
2.88 2.76 1.84 ; 1.73 1.20 1.33 ;...
2.50 2.16 1.27 ; 3.18 2.89 2.39 ;...
2.83 2.87 2.39 ; 1.92 2.01 1.66 ];

n = size(weich,1); %number of subjects, n=8
k = size(weich,2); %number of treatments, k=3
Sig = cov(weich); %covariance matrix of weich
md = trace(Sig)/k; %mean of diagonal entries of Sig
ma = mean(mean(Sig)); %mean of all components in Sig
mr = mean(Sig’); %row means of Sig
A = (k*(md-ma))^2;
B = (k-1)*(sum(sum(Sig.^2))-2*k*sum(mr.^2)+k^2*ma^2);
epsGG = A/B %Greenhouse-Geisser epsilon 0.7038
epsHF = (n*(k-1)*epsGG-2)/((k-1)*((n-1)-(k-1)*epsGG))

%Huynh-Feldt epsilon 0.8281
%Corrections based on Trujillo-Ortiz et al. functions
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%epsGG.m and epsHF.m available on MATLAB Central.
F = 9.2436; %F statistic for testing treatment differences
p = 1-fcdf(F,k-1,(n-1)*(k-1)) %original pvalue 0.0028
%
padjGG = 1-fcdf(F,epsGG*(k-1),epsGG*(n-1)*(k-1)) %0.0085
padjHF = 1-fcdf(F,epsHF*(k-1),epsHF*(n-1)*(k-1)) %0.0053

Note that both degrees of freedom in the F statistic for testing the treat-
ments are multiplied by correction factors, which increased the original p-
value. In this example the corrections for circularity did not change the orig-
inal decision of rejection of hypothesis H0 stating the equality of treatment
effects.

11.6 Nested Designs*

In the factorial design two-way ANOVA, two factors are crossed. This means
that at each level of factor A we get measurements under all levels of factor B,
that is, all cells in the design are nonempty. In Example 11.4, two factors,
HEC and LPS, given at two levels each (“yes” and “no”), form a 2×2 table with
four cells. The factors are crossed, meaning that for each combination of levels
we obtained observations. Sometimes this is impossible to achieve due to the
nature of the experiment.

Suppose, for example, that four diets are given to mice and that we are
interested in the mean concentration of a particular chemical in the tissue.
Twelve experimental animals are randomly divided into four groups of three
and each group put on a particular diet. After 2 weeks the animals are sac-
rificed and from each animal the tissue is sampled at five different random
locations. The factors “diet” and “animal” cannot be crossed. After a single di-
etary regime, taking measurements on an animal requires its sacrifice, thus
repeated measures designs are impossible.

The design is nested, and the responses are

yi jk =µ+αi +β j(i) +εi jk, i = 1, . . . ,4; j = 1, . . . ,3; k = 1, . . . ,5,

where µ is the grand mean, αi is the effect of the ith diet, and β j(i) is the effect
of animal j, which is nested within treatment i.

For a general balanced two-factor nested design,

yi jk =µ+αi +β j(i) +εi jk, i = 1, . . . ,a; j = 1, . . . ,b; k = 1, . . . ,n,

the identifiability constraints are
∑a

i=1αi = 0, and for each i,
∑b

j=1β j(i) = 0. The
ANOVA identity SST = SSA+SSB(A)+SSE is
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a∑
i=1

b∑
j=1

n∑
k=1

(yi jk − y...)
2

= bn
a∑

i=1
(yi.. − y...)

2 +n
a∑

i=1

b∑
j=1

(yi j. − y...)
2 +

a∑
i=1

b∑
j=1

n∑
k=1

(yi jk − yi j.)
2.

The degrees of freedom are partitioned according to the ANOVA identity
as abn−1= (a−1)+a(b−1)+ab(n−1). The ANOVA table is

Source DF SS MS
A a−1 SSA MSA = SSA

a−1
B(A) b−1 SSB MSB = SSB

a(b−1)
Error ab(n−1) SSE MSE = SSE

ab(n−1)
Total abn−1 SST

Notice that the table does not provide the F-statistics and p-values. This
is because the inferences differ depending on whether the factors are fixed or
random.

The test for the main effect H0 : all αi = 0 is based on F = MSA/MSE if
both factors A and B are fixed, and on F = MSA/MSB(A) if at least one of the
factors is random. The test H0 : all β j(i) = 0 is based on F = MSB(A)/MSE in
both cases. In the mouse-diet example, factor B (animals) is random.

Example 11.7. Suppose that the data for the mouse-diet study are given as

Diet 1 2 3 4
Animal 1 2 3 1 2 3 1 2 3 1 2 3

k = 1 65 68 56 74 69 73 65 67 72 81 76 77
k = 2 71 70 55 76 70 77 74 59 63 75 72 69
k = 3 63 64 65 79 80 77 70 61 64 77 79 74
k = 4 69 71 68 81 79 79 69 66 69 75 82 79
k = 5 73 75 70 72 68 68 73 71 70 80 78 66

There are 12 mice in total, and the diets are assigned 3 mice each. On each
mouse 5 measurements are taken. As we pointed out, this does not constitute
a design with crossed factors since, for example, animal 1 under diet 1 differs
from animal 1 under diet 2. Rather, the factor animal is nested within the
factor diet. The following script is given in nesta.m.

yijk =[...
65 68 56 74 69 73 65 67 72 81 76 77 ;...
71 70 55 76 70 77 74 59 63 75 72 69 ;...
63 64 65 79 80 77 70 61 64 77 79 74 ;...
69 71 68 81 79 79 69 66 69 75 82 79 ;...
73 75 70 72 68 68 73 71 70 80 78 66 ];
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a = 4;
b = 3;
n = 5;

%matrices of means (y..., y_i.., y_ij.)
yddd = mean(mean(yijk)) * ones(n, a*b)
yijd = repmat(mean(yijk), n, 1)
%yidd---------------------

m=mean(yijk);
mm=reshape(m’, b, a);
c=mean(mm);
d=repmat(c’,1,b);
e=d’;

yidd = repmat(e(:)’,n,1)

SST = sum(sum((yijk - yddd).^2) ) %2.3166e+003
SSA = sum(sum((yidd - yddd).^2) ) %1.0227e+003
SSB_A = sum(sum((yijd - yidd).^2) ) %295.0667
SSE = sum(sum((yijk - yijd).^2) ) %998.8

MSA = SSA/(a-1) %340.9111
MSB_A = SSB_A/(a * (b-1)) %36.8833
MSE = SSE/(a * b * (n-1)) %20.8083

%A fixed B(A) random //// 0r A random B(A) random
FArand = MSA/MSB_A %9.2430
pa = 1- fcdf(FArand, a-1, a*(b-1)) %0.0056
%
FB_A = MSB_A/MSE %1.7725
pb_a = 1- fcdf(FB_A, a*(b-1), a*b*(n-1)) %0.1061

Figure 11.6 shows the budget of sums of squares for this example.
From the analysis we conclude that the effects of factor A (diet) were sig-

nificant (p = 0.0056), while the (specific) effects of factor B (animal) were not
significant (p = 0.1061).
�

Remarks. (1) Note that the nested model does not have the interaction term.
This is because the animals are nested within the diets. (2) If the design is
not balanced, the calculations are substantially more complex and regression
model should be used whenever possible.

11.7 Power Analysis in ANOVA

To design a sample size for an ANOVA test, one needs to specify the signif-
icance level, desired power, and a precision. Precision is defined in terms of
ANOVA variance σ2 and population treatment effects αi coming from the null
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Fig. 11.6 The budget of sums of squares for the mouse-diet study.

hypothesis H0 :α1 =α2 = ·· · =αk = 0. It quantifies the extent of deviation from

H0 and usually is a function of the ratio
∑

niα
2
i

σ2 .
Under H0, for a balanced design, the test statistic F has an F-distribution

with k−1 and N − k = k(n−1) degrees of freedom, where k is the number of
treatments and n the number of subjects at each level.

However, if H0 is not true, the test statistic has a noncentral F-distribution
with k−1 and k(n−1) degrees of freedom and a noncentrality parameter λ=
n

∑
iα

2
i

σ2 .
An alternative way to set the precision is via Cohen’s effect size, which

for ANOVA takes the form f 2 = 1/k
∑

i α
2
i

σ2 . Note that Cohen’s effect size and
noncentrality parameter are connected via

λ= N f 2 = nkf 2.

Since determining the sample size is a prospective task, information about σ2

and αi may not be available. In the context of ANOVA Cohen (1988) recom-
mends effect sizes of f 2 = 0.12 as small, f 2 = 0.252 as medium, and f 2 = 0.42

as large.

The power in ANOVA is, by definition,

1−β= P(Fnc(k−1, N −k,λ)> F−1(1−α, k−1, N −k)), (11.5)

where Fnc(k − 1, N − k,λ) is a random variable with a noncentral F-
distribution with k−1 and N − k degrees of freedom and noncentrality
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parameter λ. The quantity F−1(1−α,k−1, N − k) is the 1−α percentile
(a cut point for which the upper tail has a probability α) of a standard
F-distribution with k−1 and N − k degrees of freedom.

The interplay among the power, sample size, and effect size is illustrated
by the following example.

Example 11.8. Suppose k = 4 treatment means are to be compared at a signif-
icance level of α= 0.05. The experimenter is to decide how many replicates n
to run at each level, so that the null hypothesis is rejected with a probability
of at least 0.9 if f 2 = 0.0625 or if

∑
iα

2
i is equal to σ2/4.

For n= 60, i.e., N = 240, the power is calculated in a one-line command:

1-ncfcdf(finv(1-0.05, 4-1, 4*(60-1)), 4-1, 4*(60-1), 15) %0.9122

Here we used λ= nkf 2 = 60×4×0.0625= 15.
One can now try different values of n (group sample sizes) to achieve

the desired power; this change affects only two arguments in Eq. (11.5):
k(n−1) and λ= nkf 2. Alternatively, one can use MATLAB’s built in function
fzero(fun,x0) which tries to find a zero of fun near some initial value x0.

k=4; alpha = 0.05; f2 = 0.0625;
f = @(n) 1-ncfcdf( finv(1-alpha, k-1,k*n-k),k-1,k*n-k, n*k*f2 ) - 0.90;
ssize = fzero(f, 100) %57.6731
%Sample size of n=58 (per treatment) ensures the power of 90% for
%the effect size f^2=0.0625.

Thus, sample size of n = 58 will ensure the power of 90% for the specified
effect size. The function fzero is quite robust with respect to specification of
the initial value; in this case the initial value was n = 100.

If we wanted to plot the power for different sample sizes (Fig. 11.7), the
following simple MATLAB script would do it. The inputs are the k number
of treatments and the significance level α. The specific alternative H1 is such
that

∑
iα

2
i =σ2/4, so that λ= n/4.

k=4; %number of treatments
alpha = 0.05; %significance level
y=[]; %set values of power for n
for n=2:100
y =[y 1-ncfcdf(finv(1-alpha, k-1, k*(n-1)), ...

k-1, k*(n-1), n/4)];
end
plot(2:100, y,’b-’,’linewidth’,3)
xlabel(’Group sample size n’); ylabel(’Power’)

In the above analysis, the total sample size is N = k×n = 240.
�
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Fig. 11.7 Power for n ≤ 100 (size per group) in a fixed-effect ANOVA with k = 4 treatments
and α= 0.05. The alternative H1 is defined as

∑
iα

2
i =σ2/4 so that the parameter of noncen-

trality λ is equal to n/4.

Sample Size for Multifactor ANOVA. A power analysis for multifactor
ANOVA is usually done by selecting the most important factor and evaluating
the power for that factor. Operationally, this is the same as the previously
discussed power analysis for one-way ANOVA, but with modified error degrees
of freedom to account for the presence of other factors.

Example 11.9. Assume two-factor, fixed-effect ANOVA. The test for factor A at
a = 4 levels is to be evaluated for its power. Factor B is present and has b = 3
levels. Assume a balanced design with 4×3 cells, with n = 20 subjects in each
cell. The total number of subjects in the experiment is N = 3×4×20= 240.

For α = 0.05, a medium effect size f 2 = 0.0625, and λ = N f 2 = 20×4×3×
0.0625= 15, the power is 0.9121.

1-ncfcdf(finv(1-0.05, 4-1, 4*3*(20-1)), 4-1, 4*3*(20-1), 15) %0.9121

Alternatively, if the cell sample size n is required for a specified power we
can use function fzero.

a=4; b=3; alpha = 0.05; f2=0.0625;
f = @(n) 1-ncfcdf( finv(1-alpha, a-1,a*b*(n-1)), ...

a-1, a*b*(n-1), a*b*n*f2) - 0.90;
ssize = fzero(f, 100) %19.2363
%sample size of 20 (by rounding 19.2363 up) ensures 90% power
%given the effect size and alpha

�
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Sample Size for Repeated Measures Design. In a repeated measures
design, each of the k treatments is applied to every subject. Thus, the total
sample size is equal to a treatment sample size, N = n. Suppose that ρ is the
correlation between scores for any two levels of the factor and it is assumed
constant. Then the power is calculated by Eq. (11.5), where the noncentrality
parameter is modified as

λ=
n

∑
iα

2
i

(1−ρ)σ2 = nkf 2

1−ρ .

Example 11.10. Suppose that n= 25 subjects go through k = 3 treatments and
that a correlation between the treatments is ρ = 0.6. This correlation comes
from the experimental design; the measures are repeated on the same sub-
jects. Then for the medium effect size ( f = 0.25 or f 2 = 0.0625) the achieved
power is 0.8526.

n=25; k=3; alpha=0.05; rho=0.6;
f = 0.25; %medium effect size f^2=0.0625
lambda = n * k * f^2/(1-rho) %11.7188
power = 1-ncfcdf( finv(1-alpha, k-1, (n-1)*(k-1)),...

k-1, (n-1)*(k-1), lambda) %0.8526

If the power is specified at 85% level, then the number of subjects is ob-
tained as

k=3; alpha=0.05; rho=0.6; f=0.25;
pf = @(n) 1-ncfcdf( finv(1-alpha, k-1, (n-1)*(k-1)),...

k-1, (n-1)*(k-1), n*k*f^2/(1-rho) ) - 0.85;
ssize = fzero(pf, 100) %24.8342 (n=25 after rounding)

�

Often the sphericity condition is not met. This happens in longitudinal
studies (repeated measures taken over time) where the correlation between
measurements on days 1 and 2 may differ from the correlation between days
1 and 4, for example. In such a case, average correlation ρ is elicited and used;
however, all degrees of freedom in central and noncentral F, as well as λ, are
multiplied by sphericity parameter ε.

Example 11.11. Suppose, as in Example 11.10, that n = 25 subjects go through
k = 3 treatments, and that an average correlation between the treatments is
ρ = 0.6. If the sphericity is violated and parameter ε is estimated as ε = 0.7,
the power of 85.26% from Example 11.10 drops to 74.64%.

n=25; k=3; alpha=0.05; barrho=0.6; eps=0.7;
f = 0.25;
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lambda = n * k * f^2/(1-barrho) %11.7188
power = 1-ncfcdf( finv(1-alpha, eps*(k-1), eps*(n-1)*(k-1)),...

eps * (k-1), eps*(n-1)*(k-1), eps*lambda) %0.7464

If the power is to remain at 85% level, then the number of subjects should
increase from 25 to 32.
k=3; alpha=0.05; barrho=0.6; eps=0.7; f = 0.25;
pf = @(n) 1-ncfcdf( finv(1-alpha, eps*(k-1), eps*(n-1)*(k-1)),...

eps*(k-1), eps*(n-1)*(k-1), eps*n * k * f^2/(1-barrho) ) - 0.85;
ssize = fzero(pf, 100) %31.8147

�

11.8 Functional ANOVA*

Functional linear models have become popular recently since many responses
are functional in nature. For example, in an experiment in neuroscience, ob-
servations could be functional responses, and rather than applying the experi-
mental design on some summary of these functions, one could use the densely
sampled functions as data.

We provide a definition for the one-way case, which is a “functionalized”
version of standard one-way ANOVA.

Suppose that for any fixed t ∈ T ⊂ R, the observations y are modeled by a
fixed-effect ANOVA model:

yi j(t)=µ(t)+αi(t)+εi j(t), i = 1, . . . ,k, j = 1, . . . , ni;
k∑

i=1
ni = N, (11.6)

where εi j(t) are independent N (0,σ2) errors. When i and j are fixed, we as-
sume that functions µ(t) and αi(t) are square-integrable functions. To ensure
the identifiability of treatment functions αi, one typically imposes

(∀t)
∑
i
αi(t)= 0. (11.7)

In real life the measurements y are often taken at equidistant times tm.
The standard least square estimators for µ(t) and αi(t)

µ̂(t) = y(t)= 1
n

∑
i, j

yi j(t), (11.8)

α̂i(t) = yi(t)− y(t), (11.9)

where yi(t) = 1
ni

∑
j yi j(t), are obtained by minimizing the discrete version of

LMSSE [for example, Ramsay and Silverman (1997) p. 141],

LMSSE =
∑

t

∑
i, j

[yi j(t)− (µ(t)+αi(t))]2, (11.10)
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subject to the constraint (∀t)
∑

i niαi(t)= 0.
The fundamental ANOVA identity becomes a functional identity,

SST(t)=SSTr(t)+SSE(t), (11.11)

with SST(t) = ∑
i,l[yil (t)− y(t)]2, SSTr(t) = ∑

i ni[yi(t)− y(t)]2, and SSE(t) =∑
i,l[yil(t)− yi(t)]2.

For each t, the function

F(t)= SSTr(t)/(k−1)
SSE(t)/(N −k)

(11.12)

is distributed as noncentral Fk−1,N−k

(∑
i niα

2
i (t)

σ2

)
. Estimation of µ(t) and α j(t)

is straightforward, and estimators are given in Eqs. (11.8).
The testing of hypotheses involving functional components of the stan-

dard ANOVA method is hindered by dependence and dimensionality problems.
Testing requires dimension reduction and this material is beyond the scope of
this book. The interested reader can consult Ramsay and Silverman (1997)
and Fan and Lin (1998).

Example 11.12. FANOVA in Tumor Physiology. Experiments carried out
in vitro with tumor cell lines have demonstrated that tumor cells respond to
radiation and anticancer drugs differently, depending on the environment. In
particular, available oxygen is important. Efforts to increase the level of oxy-
gen within tumor cells have included laboratory rats with implanted tumors
breathing pure oxygen. Unfortunately, animals breathing pure oxygen may
experience large drops in blood pressure, enough to make this intervention
too risky for clinical use.

Mark Dewhirst, Department of Radiation Oncology at Duke University,
sought to evaluate carbogen (95% pure oxygen and 5% carbon dioxide) as a
breathing mixture that might improve tumor oxygenation without causing
a drop in blood pressure. The protocol called for making measurements on
each animal over 20 minutes of breathing room air, followed by 40 minutes
of carbogen breathing. The experimenters took serial measurements of oxy-
gen partial pressure (PO2), tumor blood flow (LDF), mean arterial pressure
(MAP), and heart rate. Microelectrodes, inserted into the tumors (one per ani-
mal), measured PO2 at a particular location within the tumor throughout the
study period. Two laser Doppler probes, inserted into each tumor, provided
measurements of blood flow. An arterial line into the right femoral artery al-
lowed measurement of MAP. Each animal wore a face mask for administration
of breathing gases (room air or carbogen). [See Lanzen et al. (1998) for more
information about these experiments.]

Nine rats had tumors transplanted within the quadriceps muscle (which
we will denote by TM). For comparison, the studies also included eight rats
with tumors transplanted subcutaneously (TS) and six rats without tumors
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(N) in which measurements were made in the quadriceps muscle. The data
are provided in oxigen.dat.
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Fig. 11.8 PO2 measurements. Notice that despite a variety of functional responses and a
lack of a simple parametric model, at time t∗ = 20′ the pattern generally changes.

Figure 11.8 show some of the data (PO2). The plots show several features,
including an obvious rise in PO2 at the 20-minute mark among some of the
animals. No physiologic model exists that would characterize the shapes of
these profiles mathematically. The primary study question concerned evaluat-
ing the effect of carbogen breathing on PO2. The analysis was complicated by
the knowledge that there may be acute changes in PO2 after carbogen breath-
ing starts. The primary question of interest is whether the tumor tissue be-
haves differently than normal muscle tissue or whether a tumor implanted
subcutaneously responds to carbogen breathing differently than tumor tissue
implanted in muscle tissue in the presence of acute jumps in PO2.
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The analyses concern inference on changes in some physiologic measure-
ments after an intervention. The problem for the data analysis is how best to
define “change” to allow for the inference desired by the investigators.

From a statistical modeling point of view, the main issues concern building
a flexible model for the multivariate time series yi j of responses and providing
for formal inference on the occurrence of change at time t∗ and the “equality”
of the PO2 profiles. From the figures it is clear that the main challenge arises
from the highly irregular behavior of responses. Neither physiologic consid-
erations nor any exploratory data analysis motivates any parsimonious para-
metric form. Different individuals seem to exhibit widely varying response
patterns. Still, it is clear from inspection of the data that for some response
series a definite change takes place at time t∗.
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Fig. 11.9 Functional ANOVA estimators.

Figure 11.9 shows the estimators of components in functional ANOVA. One
can imagine from the figure that adding µ(t) and α2(t) will lead to a relatively
horizontal expected profile for group i, each fitted curve canceling the other to
some extent. Files micePO2.m and fanova.m support this example.
�

11.9 Analysis of Means (ANOM)*

Some statistical applications, notably in the area of quality improvement, in-
volve a comparison of treatment means to determine which are significantly
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different from their overall average. For example, a biomedical engineer might
run an experiment to investigate which of six concentrations of an agent pro-
duces different output, in the sense that the average measurement for each
concentration differs from the overall average.

Questions of this type are answered by the analysis of means (ANOM),
which is a method for making multiple comparisons that is sometimes referred
to as a “multiple comparison with the weighted mean”. The ANOM answers
different question than the ANOVA; however, it is related to ANOVA via mul-
tiple tests involving contrasts (Halperin et al., 1955; Ott, 1967)

The ANOM procedure consists of multiple testing of k hypotheses H0i :αi =
0, i = 1, . . . ,k versus the two sided alternative. Since the testing is simultane-
ous, the Bonferroni adjustment to the type I error is used. Here αi are, as in
ANOVA, k population treatment effects µi−µ, i = 1, . . . ,k which are estimated
as

α̂i = yi − y,

in the usual ANOVA notation. Population effect αi can be represented via the
treatment means as

αi = µi −µ=µi −
µ1 +·· ·+µk

k

= −1
k
µ1 −·· ·− 1

k
µi−1 +

(
1− 1

k

)
µi −·· ·− 1

k
µk .

Since the constants c1 =−1/k, . . . , ci = 1−1/k, . . . , ck =−1/k sum up to 0, α̂i is
an empirical contrast,

α̂i = yi −
y1 +·· ·+ yk

k

= −1
k

y1 −·· ·− 1
k

yi−1 +
(
1− 1

k

)
yi −·· ·− 1

k
yk,

with standard deviation (as in p. 417),

sα̂i = s

√√√√ k∑
j=1

c2
j

n j
= s

√√√√ 1
ni

(
1− 1

k

)2
+ 1

k2

∑
j 6=i

1
n j

.

Here ni are treatment sample sizes, N = ∑k
i=1 ni is the total sample size, and

s=
p

MSE.
All effects α̂i falling outside the interval

[−sα̂i × tN−k,1−α/(2k), sα̂i × tN−k,1−α/(2k)],

or equivalently, all treatment means yi falling outside of the interval
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[y− sα̂i × tN−k,1−α/(2k), y+ sα̂i × tN−k,1−α/(2k)],

correspond to rejection of H0i : αi = µi −µ = 0. The Bonferroni correction 1−
α/(2k) in the t-quantile tN−k,1−α/(2k) controls the significance of the procedure
at level α (p. 342).

Example 11.13. We revisit Example 11.1 (Coagulation Times) and perform
an ANOM analysis. In this example y1 = 61, y2 = 66, y3 = 68, and y4 = 61.
The grand mean is y = 64. Standard deviations for α̂ are sα̂1 = 0.9736, sα̂2 =
0.8453, sα̂3 = 0.8453, and sα̂4 = 0.7733, while the t-quantile corresponding to
α = 0.05 is t1−0.05/8,20 = 2.7444. This leads to ANOM bounds, [61.328,66.672],
[61.680,66.320], [61.680,66.320], and [61.878,66.122].

Only the second treatment mean y2 = 66 falls in its ANOM interval
[61.680, 66.320], see Fig. 11.10 (generated by anomct.m). Consequently, the
second population mean µ2 is not significantly different from the grand mean
µ.
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Fig. 11.10 ANOM analysis in example Coagulation Times. Blue line is the overall mean,
red lines are the ANOM interval bounds, while green dots are the treatment means. Note
that only the second treatment mean falls in its interval.

�

11.10 The Capability of a Measurement System (Gauge
R&R ANOVA)*

The gauge R&R methodology is concerned with the capability of measur-
ing systems. Over time gauge R&R methods have evolved, and now two ap-
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proaches have become widely accepted: (i) the average and range method, also
known as the AIAG method, and (ii) the ANOVA method. We will focus on
the ANOVA method and direct interested readers to Montgomery (2005) for
comprehensive coverage of the topic.

In a typical gauge R&R study, several operators measure the same parts in
random order. Most studies involve two to five operators and five to ten parts.
There are usually several trial repetitions, which means that an operator per-
forms multiple measurements on the same part.

The ANOVA method of analyzing measurement data provides not only
the estimates for repeatability or equipment variation, reproducibility or ap-
praiser variation, and part-to-part variation, but also accounts for possible
interaction components.

We first define several key terms in gauge R&R context.

Gauge or gage: Any device that is used to obtain measurements.

Part: An item subjected to measurement. Typically a part is selected at
random from the entire operating range of the process.

Trial: A set of measurements on a single part that is taken by an opera-
tor.

Measurement system: The complete measuring process involving
gauges, operators, procedures, and operations. The system is evaluated
as capable, acceptable, and not capable depending on the variabilities of
its components. Notions of repeatability, reproducibility (R&R), and part
variability as the main sources of variability in a measurement system
are critical for its capability assessment.

Repeatability: The variance in measurements obtained with a measur-
ing instrument when used several times by an appraiser while measur-
ing the identical characteristic on the same part.

Reproducibility: The variation in measurements made by different ap-
praisers using the same instrument when measuring an identical char-
acteristic on the same part.

The measurements in a gauge R&R experiment are described as an ANOVA
model

yi jk =µ+Pi +O j +POi j +εi jk, i = 1, . . . , p; j = 1, . . . , o; k = 1, . . . ,n,

where Pi, Oi, POi j , and εi jk are independent random variables that represent
the contributions of parts, operators, part–operator interaction, and random
error to the measurement. We assume that the design is balanced, that there



450 11 ANOVA and Elements of Experimental Design

are p parts and o operators, and that for each part/operator combination there
are n trials.

This is an example of a random effect, two-way ANOVA, since the factors
parts and operators are both randomly selected from the population consisting
of many parts and operators. Except for the grand mean µ, which is considered
a constant, the random variables Pi, O j, POi j , εi jk are considered independent
zero-mean normal with variances σ2

P , σ2
O, σ2

PO, and σ2. Then the variability of
measurement yi jk splits into the sum of four variances:

Var (yi jk)=σ2
P +σ2

O +σ2
PO +σ2.

As in Sect. 11.3, the mean squares in the ANOVA table are obtained as

MSP = SSP
p−1

, MSO = SSO
o−1

, MSPO = SSPO
(p−1)(o−1)

, MSE = SSE
po(n−1)

,

where the sums of squares are standardly defined (p. 425). Since this is a
random-effect ANOVA, one can show that

E(MSP) = σ2 +nσ2
PO + onσ2

P ,

E(MSO) = σ2 +nσ2
PO + pnσ2

O,

E(MSPO) = σ2 +nσ2
PO,

E(MSE) = σ2.

The derivation of these expectations is beyond the scope of this text, but a
thorough presentation of it can be found in Montgomery (1984) or Kutner et
al. (2005). The above expectations, by moment matching, lead to the estimates

σ̂2
P = MSP −MSPO

on
,

σ̂2
O = MSO−MSPO

pn
,

σ̂2
PO = MSPO−MSE

n
,

σ̂2 = MSE.

In the context of R&R analysis, the definitions of empirical variance compo-
nents are as follows:
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σ̂2
Repeat = σ̂2

σ̂2
Reprod = σ̂2

O + σ̂2
PO

σ̂2
Gauge = σ̂2

Repeat + σ̂2
Reprod

= σ̂2 + σ̂2
O + σ̂2

PO

σ̂2
Total = σ̂2

Gauge + σ̂2
Part

Next we provide several measures of the capability of a measurement sys-
tem.

Number of Distinct Categories. The measure called signal-to-noise ratio,
in the context of R&R, is defined as

SNR =
√√√√2× σ̂2

Part

σ̂2
Gauge

.

The SNR rounded to the closest integer defines the NDC measure, which is a
resolution of the measurement system.

The NDC informally indicates how many “categories” the measurement
system is able to differentiate. If NDC = 0 or 1, then the measurement system
is useless. If NDC = 2, then the system can differentiate only between two
categories (“small” and “large,” in T-shirt terminology). If NDC = 3, then the
system can distinguish “small,” “medium,” and “large,” and so on. If NDC ≥ 5,
then the measurement system is capable. If NDC ≤ 1, then the measurement
system is not capable. Otherwise, the measurement system is evaluated as
acceptable.

Percent of R&R Variability. The percent of R&R variability (PRR) mea-
sures the size of the R&R variation relative to the total data variation. It is
defined as

PRR =

√√√√ σ̂2
Gauge

σ̂2
Total

.

If PRR < 10%, then the measurement system is capable. If PRR > 30%, the
measurement system is not capable; the system is acceptable for 10% ≤ PRR ≤
30%. Also, the individual contribution of repeatability and reproducibility
variances entering the summary measure PRR are of interest. For instance,
a large repeatability variation, relative to the reproducibility variation, indi-
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cates a need to improve the gauge. A high reproducibility variance relative to
repeatability indicates a need for better operator training.

MATLAB’s function gagerr(y,part,operator) performs a gauge repeata-
bility and reproducibility analysis on measurements in vector y collected by
operator on part. As in the anovan command, the number of elements in part

and operator should be the same as in y. There are many important options in
gagerr, and we recommend that the user carefully consult the function help.

Example 11.14. Measurements of Thermal Impedance. This example of
a gauge R&R study comes from Houf and Berman (1988) and Montgomery
(2005). The data, in the table below, represent measurements on thermal
impedance (in ◦C per Watt × 100) on a power module for an induction mo-
tor starter. There are ten parts, three operators, and three measurements per
part.

Part Operator 1 Operator 2 Operator 3
number Test 1 Test 2 Test 3 Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

1 37 38 37 41 41 40 41 42 41
2 42 41 43 42 42 42 43 42 43
3 30 31 31 31 31 31 29 30 28
4 42 43 42 43 43 43 42 42 42
5 28 30 29 29 30 29 31 29 29
6 42 42 43 45 45 45 44 46 45
7 25 26 27 28 28 30 29 27 27
8 40 40 40 43 42 42 43 43 41
9 25 25 25 27 29 28 26 26 26

10 35 34 34 35 35 34 35 34 35

Using ANOVA R&R analysis evaluate the capability of the measurement
system by assuming that parts and operators possibly interact. See Exer-
cise 11.27 for the case where parts and operators do not interact (additive
ANOVA model).

We will first analyze the problem as a two-way ANOVA ( RandR2.m) and
then, for comparison, provide MATLAB’s output from the function gagerr.

%model with interaction
impedance = [...

37 38 37 41 41 40 41 42 41 42 41 43 42 42 42 43 42 43 ...
30 31 31 31 31 31 29 30 28 42 43 42 43 43 43 42 42 42 ...
28 30 29 29 30 29 31 29 29 42 42 43 45 45 45 44 46 45 ...
25 26 27 28 28 30 29 27 27 40 40 40 43 42 42 43 43 41 ...
25 25 25 27 29 28 26 26 26 35 34 34 35 35 34 35 34 35]’ ;

% forming part and operator vectors.
a = repmat([1:10],9,1); part = a(:);
b = repmat([1:3], 3,1); operator = repmat(b(:),10,1);

[p table stats terms] = anovan( impedance,{part, operator},...
’model’,’interaction’,’varnames’,{’part’,’operator’} )
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MSE = table{5,5} %0.5111
MSPO =table{4,5} %2.6951
MSO = table{3,5} %19.6333
MSP = table{2,5} %437.3284
p = stats.nlevels(1); o = stats.nlevels(2);
n=length(impedance)/(p * o);%p=10, 0=3, n=3

s2Part = (MSP - MSPO)/(o * n) %48.2926
s2Oper = (MSO - MSPO)/(p * n) %0.5646
s2PartOper = (MSPO - MSE)/n %0.7280
s2 = MSE %0.5111

s2Repeat = s2 %0.5111
s2Repro = s2Oper + s2PartOper %1.2926
s2Gage = s2Repeat + s2Repro %1.8037
s2Tot = s2Gage + s2Part %50.0963

%percent variation due to part
ps2Part = s2Part/s2Tot %0.9640

% signal-to-noise ratio; > 5 measuring system is capable
snr = sqrt( 2 * ps2Part/(1-ps2Part)) %7.3177
% snr rounded is NDC (number of distinct categories).
ndc = round(snr) %7

% percent of R&R variability
prr = sqrt(s2Gage/s2Tot) %0.1897

Therefore, the measuring system is capable by NDC = 7≥ 5 but falls in the
“gray” zone (10, 30) according to the PRR measure.

MATLAB’s built-in function gagerr produces a detailed output:

gagerr(impedance,{part, operator},’model’,’interaction’)

% Source Variance %Variance sigma 5.15*sigma 5.15*sigma
% ================================================================
% Gage R&R 1.80 3.60 1.34 6.92 18.97
% Repeatability 0.51 1.02 0.71 3.68 10.10
% Reproducibility 1.29 2.58 1.14 5.86 16.06
% Operator 0.56 1.13 0.75 3.87 10.62
% Part*Operator 0.73 1.45 0.85 4.39 12.05
% Part 48.29 96.40 6.95 35.79 98.18
% Total 50.10 100.00 7.08 36.45
% ----------------------------------------------------------------
% Number of distinct categories (NDC) : 7
% % of Gage R&R of total variations (PRR): 18.97

�

When operators and parts do not interact, an additive ANOVA model,

yi jk =µ+Pi +O j +εi jk, i = 1, . . . , p; j = 1, . . . , o; k = 1, . . . ,n,
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should be used. In this case, the estimators of variances are

σ̂2
P = MSP −MSE

on
,

σ̂2
O = MSO−MSE

pn
,

σ̂2 = MSE,

and σ̂2
Reprod is simply reduced to σ̂2

O.
Exercise 11.27 solves the problem in Example 11.14 without the PO-

interaction term and compares the analysis with the output from gagerr.

11.11 Testing Equality of Several Proportions

An ANOVA-type hypothesis can be considered in the context of several pro-
portions. Consider k independent populations from which k samples of size
n1, n2, . . . , nk are taken. We record a binary attribute, say, 1 or 0. Let X1, X2, . . . ,
Xk be the observed number of 1s and p̂1 = X1/n1, . . . , p̂k = Xk/nk the sample
proportions.

To test H0 : p1 = p2 = ·· · = pk against the general alternative H1 = Hc
0, the

statistic

χ2 =
k∑

i=1

(Xi −ni p)2

ni p(1− p)

is formed. Here

p = X1 + X2 +·· ·+ Xk

n1 +n2 +·· ·+nk

is a pooled sample proportion (under H0 all proportions are the same and
equal to p, and p is the best estimator). The statistic χ2 has a χ2-distribution
with k−1 degrees of freedom.

If H0 is rejected, a Marascuillo procedure (Marascuillo and Serlin, 1988)
can be applied to compare individual pairs of population proportions. For k
populations there are k(k−1)/2 tests, and the two proportions pi and p j are
different if

|p̂i − p̂ j | >
√
χ2

k−1,1−α×
√

p̂i(1− p̂i)/ni + p̂ j(1− p̂ j)/n j . (11.13)

Example 11.15. Gender and Hair Color. Zar (1996, p. 484) provides data on
gender proportions in samples of subjects grouped by the color of their hair.
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Hair color
Gender Black Brown Blond Red
Male 32 43 16 9
Female 55 65 64 16
Total 87 108 80 25

We will test the hypothesis that population proportions of males are the same
for the four groups.

%Gender Proportions and Hair Color
Xi = [32 43 16 9];
ni = [87 108 80 25];
pi = Xi./ni %0.3678 0.3981 0.2000 0.3600
pbar = sum(Xi)/sum(ni) %0.3333
chi2 = sum( (Xi - ni*pbar).^2./(ni * pbar * (1-pbar)) ) %8.9872
pval = 1-chi2cdf(chi2, 4-1) %0.0295

Thus, with p-value of about 3%, the hypothesis of homogeneity of popu-
lation proportions is rejected. Using the condition in (11.13) show that the
difference between p̂2 and p̂3 is significant and responsible for rejecting H0.

Remark. We will se later (Chap. 14) that this test and the test for homo-
geneity in 2× c contingency tables are equivalent. Here we assumed that the
sampling design involved fixed totals ni. If the sampling was fully random (i.e.,
no totals for hair color nor males/females were prespecified) then H0 would be
the hypothesis of independence between gender and hair color.
�

For Tukey-type multiple comparisons and testing proportion trends, see
Zar (1996) and Conover (1999).

11.12 Testing the Equality of Several Poisson Means*

When in each of k treatments observations are multiple counts, the standard
ANOVA is often inappropriately applied to test for the equality of means. For
counting observations the Poisson model is more adequate than the normal,
and using a standard ANOVA methodology may be problematic. For example,
when an ANOVA hypothesis of equality of means is rejected, but the observa-
tions are in fact Poisson, multiple comparisons may be invalid due to unequal
treatment variances (which for Poisson observations are equal to the means).
Next, we describe an approach that is appropriate for Poisson observations.

Suppose that in treatment i we observe ni Poisson counts,

Xi j ∼P oi(λi), i = 1, . . . , k; j = 1, . . . , ni.
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Denote by Oi the sum of all counts in treatment i, Oi =
∑ni

j=1 Xi j , and by O

the sum of counts across all treatments, O = ∑k
i=1 Oi. The total number of

observations is N =∑k
i=1 ni.

One can show that the distribution of the vector (O1,O2, . . . ,Ok), given the
total sum O, is multinomial (p. 155),

(O1,O2, . . . ,Ok|O)∼M n(O, p),

where p = (p1, p2, . . . , pk) is defined via

pi =
niλi∑k

i=1 niλi
.

Thus, when the hypothesis H0 :λ1 = λ2 = ·· · =λk is true, then pi = ni/N.
Suppose that counts Oi are observed. Define expected counts Ei as

Ei = pi ×O = ni

N
×O, i = 1, . . . ,k.

Then

χ2 =
k∑

i=1

(Oi −Ei)2

Ei

is Pearson’s test statistic for testing H0. When H0 is true, it has an approx-
imately χ2-distribution with k−1 degrees of freedom. Alternatively, one can
use the likelihood statistic

G2 = 2
k∑

i=1
Oi log

Oi

Ei
,

which under H0 has the same distribution as the χ2. Large values of χ2 or G2

are critical for H0.

Example 11.16. Assume that in an experiment three treatments are applied
on 20 plates populated with a large number of cells, the first treatment on 7,
the second on 5, and the third on 8 plates.

The following table gives the numbers of cells per plate that responded to
the treatments.

Treatment 1 Treatment 2 Treatment 3
1 6 4 2 3 5 5 9 2 7 2 3 0 2 1
8 2 4 5 2

We assume a Poisson model and wish to test the equality of mean counts,
H0 :λ1 = λ2 =λ3.

The solution is provided in poissonmeans.m. The hypothesis of the equal-
ity of means is rejected with a p-value of about 1.3%. Note that standard
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ANOVA fails to reject H0, for the p-value is 6.15%. This example demonstrates
the inadequacy of standard ANOVA for this kind of data.

ncells = [1 6 4 2 3 8 2 5 5 9 2 7 2 3 0 2 1 4 5 2]’;
agent = [1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3]’;
ncells1=ncells(agent==1)
ncells2=ncells(agent==2)
ncells3=ncells(agent==3)
k = 3; %treatments
n1 = length(ncells1); n2 = length(ncells2); n3= length(ncells3);
ni=[n1 n2 n3] %7 5 8
N = sum(ni) %20
O1 = sum(ncells1); O2 = sum(ncells2); O3 = sum(ncells3);
Oi=[O1 O2 O3] %26 28 19
O = sum(Oi) %73
%expected
Ei = O .* ni/N %25.55 18.25 29.2
%Poisson chi2
chi2 = sum( (Oi - Ei).^2 ./ Ei ) %8.7798
%Likelihood G2
G2 = 2 * sum( Oi .* log(Oi./Ei ) ) %8.5484
pvalchi2 = 1 - chi2cdf(chi2, k-1) %0.0124
pvalG2 = 1 - chi2cdf(G2, k-1) %0.0139

% If the problem is treated as ANOVA
[panova table] = anova1(ncells, agent)

% panova = 0.0615
% table =
% ’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’
% ’Groups’ [ 32.0464] [ 2] [16.0232] [3.3016] [0.0615]
% ’Error’ [ 82.5036] [17] [ 4.8532] [] []
% ’Total’ [114.5500] [19] [] [] []

�

11.13 Exercises

11.1. Nematodes. Some varieties of nematodes (roundworms that live in the
soil and are frequently so small that they are invisible to the naked eye)
feed on the roots of lawn grasses and crops such as strawberries and toma-
toes. This pest, which is particularly troublesome in warm climates, can be
treated by the application of nematocides. However, because of the size of
the worms, it is very difficult to measure the effectiveness of these pesti-
cides directly. To compare four nematocides, the yields of equal-size plots of
one variety of tomatoes were collected. The data (yields in pounds per plot)
are shown in the table.
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Nematocide A Nematocide B Nematocide C Nematocide D
18.6 18.7 19.4 19.0
18.4 19.0 18.9 18.8
18.4 18.9 19.5 18.6
18.5 18.5 19.1 18.7
17.9 18.5

(a) Write a statistical model for ANOVA and state H0 and H1 in terms of
your model.
(b) What is your decision if α= 0.05?
(c) For what values of α will your decision be different than that in (b)?

11.2. Cell Folate Levels in Cardiac Bypass Surgery. Altman (1991, p. 208)
provides data on 22 patients undergoing cardiac bypass surgery. The pa-
tients were randomized to one of three groups receiving the following treat-
ments:
Treatment 1. Patients received a 50% nitrous oxide and 50% oxygen mix-
ture continuously for 24 hours.
Treatment 2. Patients received a 50% nitrous oxide and 50% oxygen mix-
ture only during the operation.
Treatment 3. Patients received no nitrous oxide but received 35 to 50%
oxygen for 24 hours.
The measured responses are red cell folate levels (ng/ml) for the three
groups after 24 hours of ventilation.

Treat1 243 251 275 291 347 354 380 392
Treat2 206 210 226 249 255 273 285 295 309
Treat3 241 258 270 293 328

The question of interest is whether the three ventilation methods result in
a different mean red cell folate level.
If the hypothesis of equality of treatment means is rejected, which means
are significantly different?

11.3. Computer Games. In Exercise 7.22, Mental Rotations Test scores were
provided for three groups of children:
Group 1 (“Factory” computer game): X1 = 22.47, s1 = 9.44, n1 = 19.
Group 2 (“Stellar” computer game): X2 = 22.68, s2 = 8.37, n2 = 19.
Control (no computer game): X3 = 18.63, s3 = 11.13,n3 = 19.
Assuming a normal distribution of scores in the population and equal pop-
ulation variances, test the hypothesis that the population means are the
same at a 5% significance level.

11.4. MTHFR C677T Genotype and Levels of Homocysteine and Folate.
A study by Ozturk et al. (2005) considered the association of methylenete-
trahydrofolate reductase (MTHFR) C677T polymorphisms with levels of ho-
mocysteine and folate. A total of N = 815 middle-aged and elderly subjects
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were stratified by MTHFR C677T genotype (k = 3) and their measurements
summarized as in the table below.

CC: n1 = 312 CT: n2 = 378 TT: n3 = 125
Characteristics X1 (s1) X 2 (s2) X3 (s3)
Homocysteine, nmol/l 14.1 (1.9) 14.2 (2.3) 15.3 (3.0)
Red blood cell folate, nmol/l 715 (258) 661 (236) 750 (348)
Serum folate, nmol/l 13.1 (4.7) 12.3 (4.2) 11.4 (4.4)

(a) Using one-way ANOVA, test the hypothesis that the population homo-
cysteine levels for the three genotype groups are the same. Use α= 0.05.
Hint: Since the raw data are not given, calculate

MSTr = 1
k−1

k∑
i=1

ni(X i − X )2 and MSE = 1
N −k

k∑
i=1

(ni −1)s2
i ,

for

N = n1 +·· ·+nk and X = n1X 1 +·· ·+nk X k

N
.

Statistic F is the ratio MSTr/MSE. It has k−1 and N−k degrees of freedom.
(b) For red blood cell folate measurements complete the ANOVA table.

SS DF MS F p
===================================================================
SSTr= DF1= MSTr=469904.065 F= p=
SSE = DF2= MSE = 69846.911
===========================
SST= DF=

11.5. Beetles. The following data were extracted from a more extensive study
by Sokal and Karten (1964). The data represent mean dry weights (in mil-
liggrams) of three genotypes of beetles, Tribolium castaneum, reared at a
density of 20 beetles per gram of flour. The four independent measurements
for each genotype are recorded.

Genotypes
++ +b bb

0.958 0.986 0.925
0.971 1.051 0.952
0.927 0.891 0.829
0.971 1.010 0.955

Using one-way ANOVA, test whether the genotypes differ in mean dry
weight. Take α= 0.01.

11.6. ANOVA Table from Summary Statistics. When accounts of one-way
ANOVA designs are given in journal articles or technical reports, the data
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and the ANOVA table are often omitted. Instead, means and standard de-
viations for each treatment group are given (along with the F-statistic, its
p-value, or the decision to reject or not). One can build the ANOVA table
from this summary information (and thus verify the author’s interpretation
of the data).
The results below are from an experiment with n1 = n2 = n3 = n4 = 10 ob-
servations on each of k = 4 groups.

Treatment ni X i si
1 10 100.40 11.68
2 10 103.00 11.58
3 10 107.10 10.05
4 10 114.80 10.61

(a) Write the model for this experiment and state the null hypothesis in
terms of the parameters of the model.
(b) Use the information in the table above to show that SSTr = 1186 and
SSE = 4357.
(c) Construct the ANOVA table for this experiment, with standard columns
SS, d f , MS, F, and p-value.
Hint: SSTr = n1(X1 − X )2 + n2(X2 − X )2 + n3(X 3 − X )2 + n4(X4 − X )2 and
SSE = (n1 −1)s2

1 + (n2 −1)s2
2 + (n3 −1)s2

3 + (n4 −1)s2
4.

Part (c) shows that it is possible to use treatment means and standard devi-
ations to reconstruct the ANOVA table, find its F-statistic, and test the null
hypothesis. However, without knowing the individual data values, one can-
not carry out some other important statistical analyses (residual analysis,
for example).

11.7. Protein Content in Milk for Three Diets. The data from Diggle et al.
(1994) are used to compare the content of protein in milk in 79 cows ran-
domly assigned to three different diets: barley, a barley-and-lupins mixture,
and lupins alone.
The original data set is longitudinal in nature (protein monitored weekly
for several months), but for the purpose of this exercise we took the protein
concentration at 6 weeks following calving for each cow.

b=[3.7700 3.0000 2.9300 3.0500 3.6000 3.9200...
3.6600 3.4700 3.2100 3.3400 3.5000 3.7300...
3.4900 3.1600 3.4500 3.5200 3.1500 3.4200...
3.6200 3.5700 3.6500 3.7100 3.5700 3.6300...
3.6000];

m=[3.4000 3.8000 3.2900 3.7100 3.2800 3.3800...
3.5700 2.9000 3.5500 3.5500 3.0400 3.4000...
3.1500 3.1300 3.2500 3.1500 3.1000 3.1700...
3.5000 3.5700 3.4700 3.4500 3.2600 3.2400...
3.7000 3.0500 3.5400];
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l=[3.0700 3.1200 2.8700 3.1100 3.0200 3.3800...
3.0800 3.3000 3.0800 3.5200 3.2500 3.5700...
3.3800 3.0000 3.0300 3.0600 3.9600 2.8300...
2.7400 3.1300 3.0500 3.5500 3.6500 3.2700...
3.2000 3.2700 3.7000];

resp = [b’; m’; l’]; %single column vector of all responses
class = [ones(25,1); 2*ones(27,1); 3*ones(27,1)]; %class vector
[pval, table, stats] = anova1(resp, class)
[cintsdiff,means] = multcompare(stats) %default comparisons

Partial output is given below.
(a) Fill in the empty spaces in the output.

%pval =
% 0.0053
%
%table
%’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’
%’Groups’ [______] [____] [0.3735] [______] [_______]
%’Error’ [______] [____] [______]
%’Total’ [5.8056] [____]
%
%stats =
% gnames: 3x1 cell
% n: [25 27 27]
% source: ’anova1’
% means: [3.4688 3.3556 3.2293]
% df: 76
% s: 0.2580
%
% cintsdiff =
% 1.0000 2.0000 -0.0579 0.1132 0.2844
% 1.0000 3.0000 0.0684 0.2395 0.4107
% 2.0000 3.0000 -0.0416 0.1263 0.2941
%
% means =
% 3.4688 0.0516
% 3.3556 0.0497
% 3.2293 0.0497

(b) What is H0 here and is it rejected? Use α= 5%.
(c) From the output cintsdiff discuss how the population means differ.

11.8. Tasmanian Clouds. The data clouds.txt provided by OzDASL were
collected in a cloud-seeding experiment in Tasmania between mid-1964 and
January 1971. Analysis of these data is discussed in Miller et al. (1979).
The rainfalls are period rainfalls in inches. Variables TE and TW are the
east and west target areas, respectively, while CN, CS, and CNW are the cor-
responding rainfalls in the north, south, and northwest control areas, re-
spectively. S stands for seeded and U for unseeded. Variables C and T are
averages of control and target rainfalls. Variable DIFF is the difference T-C.
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(a) Use additive two-way ANOVA to estimate and test treatment effects
Season and Seeded.
(b) Repeat the analysis from (a) after adding the interaction term.

11.9. Clover Varieties. Six plots each of five varieties of clover were planted
at the Danbury Experimental Station in North Carolina. Yields in tons per
acre were as follows:

Variety Yield
Spanish 2.79, 2.26, 3.09, 3.01, 2.56, 2.82
Evergreen 1.93, 2.07, 2.45, 2.20, 1.86, 2.44
Commercial Yellow 2.76, 2.34, 1.87, 2.55, 2.80, 2.21
Madrid 2.31, 2.30, 2.49, 2.26, 2.69, 2.17
Wisconsin A46 2.39, 2.05, 2.68, 2.96, 3.04, 2.60

(a) Test the hypothesis that the mean yields for the five clover varieties are
the same. Take α= 5%. What happens if your α is 1%.
(b) Which means are different at a 5% level?
(c) Is the hypothesis H0 : 3(µ1+µ5)= 2(µ2+µ3+µ4) a contrast? Why? If yes,
test it against the two-sided alternative, at an α= 5% level.

11.10. Cochlear Implants. A cochlear implant is a small, complex electronic de-
vice that can help to provide a sense of sound to a person who is profoundly
deaf or severely hard of hearing. The implant consists of an external portion
that sits behind the ear and a second portion that is surgically placed under
the skin (Fig. 11.11). Traditional hearing aids amplify sounds so they may
be detected by damaged ears. Cochlear implants bypass damaged portions
of the ear and directly stimulate the auditory nerve. Signals generated by
the implant are sent by way of the auditory nerve to the brain, which recog-
nizes the signals as sound. Hearing through a cochlear implant is different
from normal hearing and takes time to learn or relearn. However, it allows
many people to recognize warning signals, understand other sounds in the
environment, and enjoy a conversation in person or by telephone.

Fig. 11.11 Cochlear implant.
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Eighty-one profoundly deaf subjects in this experiment received one of
three different brands of cochlear implant (A/B/G3). Brand G3 is a third-
generation device, while brands A and B are second-generation devices.
The research question was to determine whether the three brands differed
in levels of speech recognition.
The data file is given in deaf.xlsx. The variables are as follows:

Name Description
ID Patient ID number
Age Patient’s age at the time of implantation
Device Type of cochlear implant (A/B/G3)
YrDeaf Years of profound deafness prior to implantation
CS Consonant recognition score, sound only
CV Consonant recognition score, visual only (no sound)
CSV Consonant recognition score, sound and vision
SNT Sentence understanding score
VOW Vowel recognition score
WRD Word recognition score
PHN Phoneme recognition score

Run three separate ANOVAs with three response variables, which are dif-
ferent tests of speech recognition:
(a) CSV, audiovisual consonant recognition (subjects hear triads like “ABA,”
“ATA,” and “AFA” and have to pick the correct consonant on a touch screen);
(b) PHN, phoneme understanding (number of correct phonemes in random
5- to 7-word sentences like “The boy threw the ball.”); and
(c) WRD, word recognition (number of words recognized in a list of random,
unrelated monosyllabic words “ball,” “dog,” etc.).

11.11. Bees. The data for this problem are taken from Park (1932), who inves-
tigated changes in the concentration of nectar in the honey sac of the bee.
Syrup of approx. 40% concentration was fed to the bees. The concentra-
tion in their honey sacs was determined upon their arrival at the hive. The
decreases recorded in the table are classified according to date, both day
(September 1931) and time of day being differentiated. The question to be
answered is this: Were significant differences introduced by changes in the
time of gathering the data, or may the six groups be considered random
samples from a homogeneous population?
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3 3 3 10 11 12
10:20 11:10 2:20 4:00 1:10 10:30

1.1 1.0 0.6 −1.6 1.1 2.5
1.0 0.6 0.3 0.8 0.5 0.6
0.9 1.0 −0.1 2.1 2.2 1.1
1.1 0.4 0.0 1.1 1.1 0.6
0.9 0.4 1.5 0.6 0.4 1.8
1.1 0.9 0.9 0.6 −2.0 0.6
0.6 0.6 0.3 0.6 1.4 1.2
0.5 0.4 0.2 0.2 −0.4 1.2
0.5 1.1 0.4 0.8 2.4 0.4
0.7 0.7 0.4 0.6 0.0 1.0

11.12. SiRstv: NIST’s Silicon Resistivity Data. Measurements of bulk resis-
tivity of silicon wafers were made at NIST with five probing instruments
(columns in the data matrix) on each of 5 days (rows in the data matrix).
The wafers were doped with phosphorous by neutron transmutation doping
in order to have nominal resistibility of 200 ohm cm. Measurements were
carried out with four-point DC probes according to ASTM Standard F84-93
and described in Ehrstein and Croarkin (1984).

1 2 3 4 5
196.3052 196.3042 196.1303 196.2795 196.2119
196.1240 196.3825 196.2005 196.1748 196.1051
196.1890 196.1669 196.2889 196.1494 196.1850
196.2569 196.3257 196.0343 196.1485 196.0052
196.3403 196.0422 196.1811 195.9885 196.2090

(a) Test the hypothesis that the population means of measurements pro-
duced by these five instruments are the same at α = 5%. Use MATLAB to
produce an ANOVA table.
(b) Pretend now that some measurements for the first and fifth instruments
are misrecorded (in italics) and that the modified table looks like this:

1 2 3 4 5
196.3052 196.3042 196.1303 196.2795 196.1119
196.2240 196.3825 196.2005 196.1748 196.1051
196.2890 196.1669 196.2889 196.1494 196.1850
196.2569 196.3257 196.0343 196.1485 196.0052
196.3403 196.0422 196.1811 195.9885 196.1090

Test now the same hypothesis as in (a). If H0 is rejected, perform Tukey’s
multiple comparisons procedure (at Tukey’s family error rate of 5%).

11.13. Dorsal Spines of Gasterosteus aculeatus. Bell and Foster (1994) were in-
terested in the effect of predators on dorsal spine length evolution in Gas-
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terosteus aculeatus (threespine stickleback, Fig. 11.12). Dorsal spines are
thought to act as an antipredator mechanism.

Fig. 11.12 Gasterosteus aculeatus.

To examine this issue, researchers sampled eight sticklebacks from each
of Benka Lake (no predators), Garden Bay Lake (some predators), and Big
Lake (lots of predators). Their observations on spine length (in millimeters)
are provided in the following table.

Benka Lake Garden Bay Lake Big Lake
4.2 4.4 4.9
4.1 4.6 4.6
4.2 4.5 4.3
4.3 4.2 4.9
4.5 4.4 4.7
4.4 4.2 4.4
4.5 4.5 4.5
4.3 4.7 4.4

They would like to know if spine lengths differ among these three popula-
tions and apply ANOVA with lakes as “treatments.”
(a) Test the hypothesis that the mean lengths in the three populations are
the same at level α= 0.05. State your conclusion in terms of the problem.
(b) Would you change the decision in (a) if α = 0.01? Explain why or why
not.

11.14. Incomplete ANOVA Table. In the context of balanced two factor ANOVA
recover entries a–m.

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F p-value
A 256.12 2 a 4.18 b
B c 3 12.14 d e
A×B 217.77 f g h i
Error j k l
Total m 119

11.15. Maternal Behavior in Rats. To investigate the maternal behavior of
laboratory rats, researchers separated rat pups from their mother and
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recorded the time required for the mother to retrieve the pups. The study
was run with 5-, 20-, and 35-day-old pups, six in each group. The pups were
moved to a fixed distance from the mother and the time of retrieval (in
seconds) was recorded (Montgomery, 1984):

5 days 15 10 25 15 20 18
20 days 30 15 20 25 23 20
35 days 40 35 50 43 45 40

State the inferential problem, pose the hypotheses, check for sphericity, and
do the test at α= 0.05. State your conclusions. .

11.16. Comparing Dialysis Treatments. In Example pretend that the three
columns of measurements are independent, that is, that 24 independent
patients were randomly assigned to one of the three treatments, 8 patients
to each treatment. Test the null hypothesis that there is no difference in
mean weight change among the treatments. Use α= 0.05. Compare results
with those in Example and comment.

11.17. Materials Scientist and Assessing Tensile Strength. A materials sci-
entist wishes to test the effect of four chemical agents on the strength of
a particular type of cloth. Because there might be variability from one bolt
to another, the scientist decides to use a randomized block design, with the
bolts of cloth considered as blocks. She selects five bolts and applies all four
chemicals in random order to each bolt. The resulting tensile strengths fol-
low. Analyze the data and draw appropriate conclusions.

Bolt
Chemical 1 2 3 4 5

1 73 68 74 71 67
2 73 67 75 72 70
3 75 68 78 73 68
4 73 71 75 75 69

11.18. Oscilloscope. Montgomery (1984) discusses an experiment conducted to
study the influence of operating temperature and three types of face-plate
glass in the light output of an oscilloscope tube. The following data are
collected.
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Temperature
Glass type 100 125 150

580 1090 1392
1 568 1087 1380

570 1085 1386

550 1070 1328
2 530 1035 1312

579 1000 1299

546 1045 867
3 575 1053 904

599 1066 889

11.19. Magnesium Ammonium Phosphate and Chrysanthemums. Walpole
et al. (2007) provide data on a study “Effect of magnesium ammonium phos-
phate on height of chrysanthemums” that was conducted at George Ma-
son University to determine a possible optimum level of fertilization, based
on the enhanced vertical growth response of the chrysanthemums. Forty
chrysanthemums seedlings were assigned to 4 groups, each containing 10
plants. Each was planted in a similar pot containing a uniform growth
medium. An increasing concentration of MgNH4PO4, measured in grams
per bushel, was added to each plant. The 4 groups of plants were grown un-
der uniform conditions in a greenhouse for a period of 4 weeks. The treat-
ments and the respective changes in heights, measured in centimeters, are
given in the following table:

Treatment
50 g/bu 100 g/bu 200 g/bu 400 g/bu

13.2 16.0 7.8 21.0
12.4 12.6 14.4 14.8
12.8 14.8 20.0 19.1
17.2 13.0 15.8 15.8
13.0 14.0 17.0 18.0
14.0 23.6 27.0 26.0
14.2 14.0 19.6 21.1
21.6 17.0 18.0 22.0
15.0 22.2 20.2 25.0
20.0 24.4 23.2 18.2

(a) Do different concentrations of MgNH4PO4 affect the average attained
height of chrysanthemums? Test the hypothesis at the level α= 0.10.
(b) For α= 10% perform multiple comparisons using multcompare.
(c) Find the 90% confidence interval for the contrast µ1 −µ2 −µ3 +µ4.
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11.20. Color Attraction for Oulema melanopus. Some colors are more attrac-
tive to insects than others. Wilson and Shade (1967) conducted an experi-
ment aimed at determining the best color for attracting cereal leaf beetles
(Oulema melanopus). Six boards in each of four selected colors (lemon yel-
low, white, green, and blue) were placed in a field of oats in July. The follow-
ing table (modified from Wilson and Shade, 1967) gives data on the number
of cereal leaf beetles trapped.

Board color Insects trapped
Lemon yellow 45 59 48 46 38 47
White 21 12 14 17 13 17
Green 37 32 15 25 39 41
Blue 16 11 20 21 14 7

(a) Based on computer output, state your conclusions about the attractive-
ness of these colors to the beetles. See also Fig. 11.13a.
In MATLAB:

ntrap=[ 45, 59, 48, 46, 38, 47, 21, 12, 14, 17,...
13, 17, 37, 32, 15, 25, 39, 41, 16, 11,...
20, 21, 14, 7];

color={’ly’,’ly’,’ly’,’ly’,’ly’,’ly’,...
’wh’,’wh’,’wh’,’wh’,’wh’,’wh’,...
’gr’,’gr’,’gr’,’gr’,’gr’,’gr’,...
’bl’,’bl’,’bl’,’bl’,’bl’,’bl’};

[p, table, stats] = anova1(ntrap, color)
multcompare(stats)

%
%’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’
%’Groups’ [4.2185e+003] [ 3] [1.4062e+003] [30.5519] [1.1510e-007]
%’Error’ [ 920.5000] [20] [ 46.0250] [] []
%’Total’ [5.1390e+003] [23] [] [] []
%
%Pairwise Comparisons
% 1.0000 2.0000 20.5370 31.5000 42.4630
% 1.0000 3.0000 4.7037 15.6667 26.6297
% 1.0000 4.0000 21.3703 32.3333 43.2963
% 2.0000 3.0000 -26.7963 -15.8333 -4.8703
% 2.0000 4.0000 -10.1297 0.8333 11.7963
% 3.0000 4.0000 5.7037 16.6667 27.6297

(b) The null hypothesis is rejected. Which means differ? See Fig. 11.13b.
(c) Perform an ANOM analysis. Which means are different from the (over-
all) grand mean?

11.21. Raynaud’s Phenomenon. Raynaud’s phenomenon is a condition result-
ing in a discoloration of the fingers or toes after exposure to temperature



11.13 Exercises 469

ly wh gr bl

10

20

30

40

50

60

V
a

lu
e

s

5 10 15 20 25 30 35 40 45 50 55

bl

gr

wh

ly

Click on the group you want to test

2 groups have means significantly different from wh

(a) (b)

Fig. 11.13 (a) Barplots of ntrap for the four treatments. (b) A snapshot of the interactive
plot for multiple comparisons.

changes or emotional events. Skin discoloration is caused by an abnormal
spasm of the blood vessels, diminishing blood supply to the local tissues.
Kahan et al. (1987) investigated the efficacy of the calcium-channel blocker
nicardipine in the treatment of Raynaud’s phenomenon. This efficacy was
assessed in a prospective, double-blind, randomized, crossover trial in 20
patients. Each patient received 20 mg nicardipine or placebo three times
a day for 2 weeks and then was crossed over for 2 weeks. To suppress
any carryover effect, there was a 1-week washout period between the two
treatments. The researchers were interested in seeing if nicardipine signif-
icantly decreased the frequency and severity of Raynaud’s phenomenon as
compared with placebo. The data consist of a number of attacks in 2 weeks.

Period 1 Period 2 Period 1 Period 2
Subject Nicardipine Placebo Subject Placebo Nicardipine

1 16 12 11 18 12
2 26 19 12 12 4
3 8 20 13 46 37
4 37 44 14 51 58
5 9 25 15 28 2
6 41 36 16 29 18
7 52 36 17 51 44
8 10 11 18 46 14
9 11 20 19 18 30

10 30 27 20 44 4

Download the MATLAB format of these data ( raynaud.m) and perform
an ANOVA test in MATLAB. Select an additive model, with the number of
attacks yi jk represented as

yi jk =µ+αi +β j +γk +εi jk.
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Here µ is the grand mean, αi, i = 1, . . . ,20 is the subject effect, β j , j = 1,2
is the drug effect, γk, k = 1,2 is the period effect, and εi jk is the zero-mean
normal random error.
We are not interested in testing the null hypothesis about the subjects,

H0 :αi = 0,

since the subjects are blocks here. We are interested in testing the effect of
the drug,

H′
0 :β1 =β2 = 0,

and in testing the effect of the washout period,

H′′
0 : γ1 = γ2 = 0.

(a) Provide an ANOVA table for this model using MATLAB. Test hypotheses
H′

0 and H′′
0 . Describe your findings.

(b) What proportion of variability in the data yi jk is explained by the above
ANOVA model?
(c) What happens if we believe that there are 40 subjects and they are ran-
domized to drug/period treatments. Test H′

0 and H′′
0 in this context and

comment.

11.22. Simvastatin. In a quantitative physiology lab II at Georgia Tech, students
were asked to find a therapeutic model to test on MC3T3-E1 cell line to en-
hance osteoblastic growth. The students found a drug called Simvastatin,
a cholesterol lowering drug to test on these cells. Using a control and three
different concentrations 10−9M, 10−8M, and 10−7M, cells were treated with
the drug. These cells were plated on four, 24 well plates with each well plate
having a different treatment. To test for osteoblastic differentiation an as-
say, pNPP, was used to test for alkaline phosphatase activity. The higher
the alkaline phosphatase activity the better the cells are differentiating,
and become more bone like. This assay was performed 6 times total within
11 days. Each time the assay was performed, four wells from each plate
were used. The data ( simvastatin.dat) are provided in the following ta-
ble:
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Time
Concentration Day 1 Day 3 Day 5 Day 7 Day 9 Day 11

0.062 0.055 0.055 1.028 0.607 0.067
A 0.517 0.054 0.059 1.067 0.104 0.093

(Control) 0.261 0.056 0.062 1.128 0.163 0.165
0.154 0.063 0.062 0.855 0.109 0.076
0.071 0.055 0.067 0.075 0.068 0.347

B 0.472 0.060 1.234 0.076 0.143 0.106
(10−7M) 0.903 0.057 1.086 0.090 0.108 0.170

0.565 0.056 0.188 1.209 0.075 0.097
0.068 0.059 0.092 0.091 0.098 0.115

C 0.474 0.070 0.096 0.218 0.122 0.085
(10−8M) 0.063 0.090 0.123 0.618 0.837 0.076

0.059 0.064 0.091 0.093 0.142 0.085
0.066 0.447 0.086 0.248 0.108 0.290

D 0.670 0.091 0.076 0.094 0.105 0.090
(10−9M) 0.076 0.079 0.082 0.215 0.093 0.518

0.080 0.071 0.080 0.401 0.580 0.071

In this design there are two crossed factors Concentration and Time.
(a) Using the two-way ANOVA show that the interaction between factors
Time and Concentration is significant.
(b) Since the presence of a significant interaction affects the tests for main
effects, conduct a conditional test for the Concentration factor if Time is
fixed at Day 3. Also, conduct the conditional test for Time factor if the Con-
centration level is C.

11.23. Antitobacco Media Campaigns. Since the early 1990s, the US popula-
tion has been exposed to a growing number and variety of televised antito-
bacco advertisements. By 2002, 35 states had launched antitobacco media
campaigns.
Four states (factor A) participated in an antitobacco awareness study. Each
state independently devised antitobacco program. Three cities (factor B)
within each state were selected for participation and 10 households within
each city were randomly selected to evaluate effectiveness of the program.
All members of the selected households were interviewed and a composite
index was formed for each household measuring the extent of antitobacco
awareness. The data are given in the table (larger the index, the greater
the awareness)
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State i 1 2 3 4
City j 1 2 3 1 2 3 1 2 3 1 2 3

1 42 26 33 48 56 44 23 47 48 70 56 35
2 56 38 51 54 65 34 31 39 40 61 49 30
3 35 42 43 48 71 39 34 45 43 57 58 41
4 40 29 49 57 66 40 28 51 48 69 55 52

Household k 5 54 44 42 51 64 51 30 38 51 71 47 39
6 49 43 39 51 51 47 36 47 57 49 50 44
7 51 45 41 56 60 34 41 39 40 61 49 30
8 48 39 47 50 72 41 35 44 41 57 61 40
9 52 30 45 50 60 42 28 44 49 69 54 52
10 54 40 51 49 63 49 33 46 49 67 52 45

(a) Discuss and propose the analyzing methodology.
(b) Assume that nested design with fixed factor effects is appropriate. Pro-
vide the ANOVA table.
(c) Test whether or not the mean awareness differ for the four states. Use
α= 0.05. State the alternatives and conclusion.

11.24. Orthosis. The data Ortho.dat were acquired and computed by Dr.
Amarantini David and Dr. Martin Luc (Laboratoire Sport et Performance
Motrice, Grenoble University, France). The purpose of recording such data
was the interest to better understand the processes underlying movement
generation under various levels of an externally applied moment to the
knee. In this experiment, stepping-in-place was a relevant task to inves-
tigate how muscle redundancy could be appropriately used to cope with an
external perturbation while complying with the mechanical requirements
related either to balance control and/or minimum energy expenditure. For
this purpose, 7 young male volunteers wore a spring-loaded orthosis of
adjustable stiffness under 4 experimental conditions: a control condition
(without orthosis), an orthosis condition (with the orthosis only), and two
conditions (Spring1, Spring2) in which stepping in place was perturbed by
fitting a spring-loaded orthosis onto the right knee joint.
For each stepping-in-place replication, the resultant moment was computed
at 256 time points equally spaced and scaled so that a time interval corre-
sponds to an individual gait cycle. A typical moment observation is there-
fore a one-dimensional function of normalized time t so that t ∈ [0,1]. The
data set consists in 280 separate runs and involves the j = 7 subjects over
i = 4 described experimental conditions, replicated k = 10 times for each
subject. Figure 11.14 shows the data set; typical moment plots over gait cy-
cles. Model the data as arising from a fixed-effects FANOVA model with 2
qualitative factors (Subjects and Treatments), 1 quantitative factor (Time)
and 10 replications for each level combination.
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Fig. 11.14 Orthosis data set: The panels in rows correspond to Treatments while the panels
in columns correspond to Subjects; there are 10 repeated measurements in each panel.

�
If the functional ANOVA model is Eyi jk(t) = µ(t)+αi(t)+β j(t), find and

plot functional estimators for the grand mean µ(t) and treatment effects
α1(t)−α4(t).

11.25. Bone Screws. Bone screws are the most commonly used type of orthopedic
implant. Their precision is critical and several dimensions are rigorously
checked for conformity (outside and root diameters, pitch, tread angle, etc.).
The screws are produced in lots of 20000. To confirm the homogeneity of
production, 6 lots were selected and from each lot a sample of size 100 was
obtained. The following numbers of nonconforming screws are found in the
six samples: 20, 17, 23, 9, 15, and 14.
(a) Test the hypothesis of homogeneity of proportions of nonconforming
screws in the six lots.
(b) If the null hypothesis in (a) is rejected, find which lots differ. Assume
α= 0.05.

11.26. R&R Study. Five parts are measured by two appraisers using the same
measuring instrument. Each appraiser measured each part three times.
Find the relevant parameters of the measuring system and assess its capa-
bility (PRR and NDC).

measure =[ ...
217 220 217 214 216 ...
216 216 216 212 219 ...
216 218 216 212 220 ...
216 216 215 212 220 ...
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219 216 215 212 220 ...
220 220 216 212 220]’;

part = [ ...
1 2 3 4 5 1 2 3 4 5 ...
1 2 3 4 5 1 2 3 4 5 ...
1 2 3 4 5 1 2 3 4 5]’;

appraiser =[...
1 1 1 1 1 ...
1 1 1 1 1 ...
1 1 1 1 1 ...
2 2 2 2 2 ...
2 2 2 2 2 ...
2 2 2 2 2]’;

11.27. Additive R&R ANOVA for Measuring Impedance. Repeat the analysis
in Example 11.14 by assuming that parts and operators do not interact,
that is, with an additive ANOVA model. Provide comparisons with results
from gagerr, where the option (’model’,’linear’) is used.

MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch11.Anova/

anomct.m, anovarep.m, Barspher.m, C677T.m, cardiac.m,
chrysanthemum.m, circularity.m, coagulationtimes.m, cochcdf1.m,
Cochtest.m, dialysis.m, dorsalspines.m, dunn.m, epsGG.m, fanova.m,
fibers.m, insects.m, insulin.m, maternalbehavior.m, Mauspher.m,
Mausphercnst.m, micePO2.m, nest1.m, nest2.m, nesta.m, nestAOV.m,
nicardipine.m, orthosis.m, orthosisraw.m, pedometer1300.m,
poissonmeans.m, powerANOVA.m, qtukey.m, RandR.m, RandR2.m, RandR3.m,
ratsblocking.m, raynaud.m, screws.m, secchim.m, sphertest.m,
ssizerepeated.m, tmcomptest.m

anovacoagulation.odc, dialysis.odc, insulin.odc, vortex.odc

arthritis.dat|mat, clouds.txt, deaf.xls, Ortho.dat, oxygen.dat,
pmr1300.mat, porcinedata.xls, Proliferation.xls, secchi.mat|xls,
secchi.xls, silicone.dat, silicone1.dat, simvastatin.dat
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Chapter 12
Distribution-Free Tests

Assumptions are the termites of relationships.

– Henry Winkler

WHAT IS COVERED IN THIS CHAPTER

• Sign Test
• Ranks
• Wilcoxon Signed-Rank Test and Wilcoxon Sum Rank Test
• Kruskal–Wallis and Friedman Test
• Walsh Test for Outliers

12.1 Introduction

Most of the methods we have covered until now are based on parametric as-
sumptions; the data are assumed to follow some well-known family of distri-
butions, such as normal, exponential, Poisson, and so on. Each of these dis-
tributions is indexed by one or more parameters (e.g., the normal distribution
has µ and σ2), and at least one is presumed unknown and must be inferred.
However, with complex experiments and messy sampling plans, the generated
data might not conform to any well-known distribution. In the case where the
experimenter is not sure about the underlying distribution of the data, statis-
tical techniques that can be applied regardless of the true distribution of the
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data are needed. These techniques are called distribution-free or nonparamet-
ric. To quote statistician J.V. Bradley (1968):

The terms nonparametric and distribution-free are not synonymous. . . . Popular us-
age, however, has equated the terms. . . .Roughly speaking, a nonparametric test is
one which makes no hypothesis about the value of a parameter in a statistical den-
sity function, whereas a distribution-free test is one which makes no assumptions
about the precise form of the sampled population.

Many basic statistical procedures, such as the t-test, test for Pearson’s cor-
relation coefficient, analysis of variance, etc., assume that the sampled data
come from a normal distribution or that the sample size is sufficiently large
for the CLT to make the normality assumption reasonable.

In this chapter, we will revisit the testing of means, the two-sample prob-
lem, ANOVA, and the block design, without making strict distributional as-
sumptions about the data. The material in the next chapter dealing with
goodness-of-fit tests is also considered a nonparametric methodology.

For a more comprehensive account on the theory and use of nonparametric
methods in engineering research, we direct the reader to Kvam and Vidakovic
(2007).

The following table gives nonparametric counterparts to a few of the most
popular inferential procedures. The acronym WSiRT stands for Wilcoxon’s
Signed Rank Test, while WSuRT stands for Wilcoxon’s Sum Rank Test.

Parametric Nonparametric
One-sample t-test for the location Sign test, WSiRT

Paired t-test Sign test, WSiRT
Two-sample t-test WSuRT, Wilcoxon–Mann–Whitney
One-way ANOVA Kruskal–Wallis test

Block design ANOVA Friedman test

12.2 Sign Test

We start with the simplest nonparametric procedure, the sign test. Suppose we
are interested in testing the hypothesis H0 that a population with a continu-
ous CDF has a median m0 against one of the alternatives H1 : med >6=< m0.

We assign a + sign when Xi > m0, i.e., when the difference Xi − m0 is
positive, and a − sign otherwise. The case Xi = m0 (a tie) is theoretically im-
possible for continuous distributions, although when observations are coded
with limited precision, ties are quite possible and most of the time present.
Henceforth we will assume an ideal situation in which no ties occur.

If m0 is the median and if H0 is true, then by the definition of the me-
dian, P(Xi > m0)=P(Xi < m0)= 1

2 . Thus, the statistic T representing the total
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number of + is equal to

T =
n∑

i=1
1(Xi > m0)

and has a binomial distribution with parameters n and 1/2.
Let the level of the test, α, be specified. When the alternative is H1 : med >

m0, the critical values of T are integers greater than or equal to kα, which is
defined as the smallest integer for which the relationship

n∑
t=kα

(
n
k

)(
1
2

)n
<α

holds.
Likewise, if the alternative is H1 : med < m0, the critical values of T are

integers less than or equal to k′
α, which is defined as the largest integer for

which the relationship

k′
α∑

t=0

(
n
k

)(
1
2

)n
<α

holds.
If the alternative is two-sided, i.e., H1 : med 6= m0, the critical values of T

are integers less than or equal to k′
α/2 and greater than or equal to kα/2, which

are defined, respectively, as the largest and smallest integers for which the
inequalities

k′
α/2∑

t=0

(
n
k

)(
1
2

)n
<α/2, and

n∑
t=kα/2

(
n
k

)(
1
2

)n
<α/2

hold.
If the value T is observed, then in testing against the alternative H1 :

med > m0, large values of T are critical and the p-value is p = ∑n
i=T

(n
i
)
2−n =∑n−T

i=0
(n

i
)
2−n. When testing against the alternative H1 : med < m0, small val-

ues of T are critical and the p-value is p = ∑T
i=0

(n
i
)
2−n. When the alternative

is two-sided, the p-value is p = 2
∑T′

i=0
(n

i
)
2−n for T ′ =min{T,n−T}.

Alternative p-value
H1 : med > m0

∑n
i=T

(n
i
)
2−n

H1 : med 6= m0 2
∑T′

i=0
(n

i
)
2−n for T ′ =min{T, n−T}

H1 : med < m0
∑T

i=0
(n

i
)
2−n
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Consider now the two-paired-sample case, and suppose that the samples
X1, . . . , Xn and Y1, . . . ,Yn are observed. We are interested in knowing whether
the population median of the differences X1 −Y1, X2 −Y2, . . . , Xn −Yn is equal
to 0. In this case, T = ∑n

i=1 1(Xi > Yi), is the total number of strictly positive
differences.

Although it is true that the hypothesis of equality of means is equivalent
to the hypothesis that the mean of the differences is 0, for the medians an
analogous statement is not true in general. More precisely, if D = X −Y , then
med(D) may not be equal to med(X )−med(Y ). Thus, with the sign test we are
not testing the equality of medians, but whether the median of the differences
is 0.

Ties complicate the calculations but can be handled. Even when observa-
tions come from a continuous distribution, ties appear due to limited precision
in the application part. There are several ways of dealing with ties:

(i) Ignore them. If there are s ties, use only the “untied” observations. Of
course, the sample size drops to n− s.

(ii) Assign the winning sign to tied pairs. For example, if there are two
minuses, two ties, and six pluses, consider the two ties as pluses.

(iii) Randomize. If you have two ties, flip a coin twice and assign a plus if
the coin lands heads and minus if the coin lands tails.

In script signtst.m conducting the sign test (not to be mixed with MAT-
LAB’s built in signtest), the options for handling ties are: I, C, and R, for poli-
cies in (i)-(iii).

Example 12.1. TCDD Levels. Many Vietnam veterans have dangerously
high levels of the dioxin 2,3,7,8-TCDD in their blood and fat tissue as a result
of their exposure to the defoliant Agent Orange. A study published in Chemo-
sphere (vol. 20, 1990) reported on the TCDD levels of 20 Massachusetts Viet-
nam veterans who had possibly been exposed to Agent Orange. The amounts
of TCDD (measured in parts per trillion) in blood plasma and fat tissue drawn
from each veteran are shown in the table below.

TCDD levels in plasma TCDD levels in fat tissue
2.5 3.1 2.1 4.9 5.9 4.4
3.5 3.1 1.8 6.9 7.0 4.2
6.8 3.0 36.0 10.0 5.5 41.0
4.7 6.9 3.3 4.4 7.0 2.9
4.6 1.6 7.2 4.6 1.4 7.7
1.8 20.0 2.0 1.1 11.0 2.5

2.5 4.1 2.3 2.5

Is there sufficient evidence of a difference between the distributions of TCDD
levels in plasma and fat tissue for Vietnam veterans exposed to Agent Orange?
Use the sign test and α= 0.10.
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tcddpla = [2.5 3.1 2.1 3.5 3.1 1.8 6.8 3.0 36.0 ...
4.7 6.9 3.3 4.6 1.6 7.2 1.8 20.0 2.0 2.5 4.1];

tcddfat = [4.9 5.9 4.4 3.5 7.0 4.2 10.0 5.5 41.0 ...
4.4 7.0 2.9 4.6 1.4 7.7 1.8 11.0 2.5 2.3 2.5];

% ignore ties
[pvae, pvaa, n, plusses, ties] = signtst(tcddpla, tcddfat)
%pvae =0.1662
%pvaa =0.1660
%n =17
%plusses =6
%ties =3

% randomize ties
[pvae, pvaa, n, plusses, ties] = signtst(tcddpla, tcddfat,’R’)
% pvae =0.2517
% take the conservative, least favorable approach
[pvae, pvaa, n, plusses, ties] = signtst(tcddpla, tcddfat,’C’)
% pvae =0.0577

Overall, the sign test failed to find significant differences between the dis-
tributions of TCDD levels. Only the conservative assignment of ties (least fa-
vorable to H0) produced p-value of 0.0577, significant at α= 10% level. Com-
pare these results with MATLAB’s built-in function signtest.
�

12.3 Ranks

Let X1, X2, . . . , Xn be a sample from a population with a continuous distri-
bution F. Many distribution-free procedures are based on how observations
within the sample are ranked compared to either a parameter θ or to another
sample. The ranks of a sample X1, X2, . . . , Xn are defined as indices of ordered
sample

r(X1), r(X2), . . . ,r(Xn).

For example,

ranks([10 20 25 7])
%ans = 2 3 4 1

The function ranks.m is

function r = ranks(data, glob)
%--------------------------------------
if nargin < 2

glob = 1;
end
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shape = size(data);
if glob == 1

data=data(:);
end

% Ties ranked from UptoDown
[ irrelevant , indud ] = sort(data);
[ irrelevant , rUD ] = sort(indud);

% Ties ranked from RtoL
[ irrelevant , inddu ] = sort(flipud(data));
[ irrelevant , rDU ] = sort(inddu);

% Averages ranks of ties, keeping ranks
% of no-tie-observations the same
r = (rUD + flipud(rDU))./2;
r = reshape(r,shape);

For example, when the input is a matrix, the optional parameter glob = 1

produces global ranking, while for glob not equal to 1, columnwise ranking is
performed.

%a =
% 0.8147 0.9134 0.2785 0.9649
% 0.9058 0.6324 0.5469 0.1576
% 0.1270 0.0975 0.9575 0.9706

ranks(a)
% ans =
% 7 9 4 11
% 8 6 5 3
% 2 1 10 12

ranks(a,2)
% ans =
% 2 3 1 2
% 3 2 2 1
% 1 1 3 3

In the case of ties, it is customary to average the tied rank values. The
script ranks.m does just that:

ranks([2 1 7 1 15 9])
%ans = 3.0000 1.5000 4.0000 1.5000 6.0000 5.0000

Here r(2) = 3, r(1)= 1.5, r(7)= 4, and so on. Note that 1 appears twice and
ranks 1 and 2 are averaged. In the case

ranks([9 1 7 1 9 9])
%ans = 5.0000 1.5000 3.0000 1.5000 5.0000 5.0000

the ranks of three 9s are 4, 5, and 6, which are averaged to 5.
Suppose that a random sample from continuous distribution X1, . . . , Xn is

ranked and that Ri = r(Xi), i = 1, . . . ,n are the ranks. Ranks Ri are random
variables with discrete uniform distribution (p. 141). The properties of integer
sums lead to the following properties for ranks:
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E(Ri) =
n∑

j=1

j
n
= n+1

2
,

E(R2
i ) =

n∑
j=1

j2

n
= n(n+1)(2n+1)

6n
= (n+1)(2n+1)

6

Var (Ri) =
n2 −1

12
.

These relationships follow from the fact that for a random sample, ranks are
distributed as discrete uniform, namely, for any i,

P(Ri = j)= 1
n

, 1≤ j ≤ n.

12.4 Wilcoxon Signed-Rank Test

More powerful than the sign test is Wilcoxon’s signed-rank test (Wilcoxon,
1945), where, in addition to signs, particular ranks are taken into account.

Let the paired sample (Xi,Yi), i = 1, . . . ,n be observed and let Di = Xi −
Yi, i = 1, . . . ,n be the differences. In a two-sample problem, we are interested
in testing that the true mean of the differences is 0.

It is also possible to consider a one-sample scenario in which testing the
hypothesis about the median med is of interest. Here H0 : med = m0 is tested
versus the one- or two-sided alternative. Then observations Xi, i = 1, . . . ,n are
compared to m0, and the differences are Di = Xi −m0, i = 1, . . . ,n.

The only assumption is that the distribution of the differences Di, i =
1, . . . ,n is symmetric about 0. This implies that positive and negative differ-
ences are equally likely. For this test, the absolute values of the differences
(|D1|, |D2|, . . . , |Dn|) are ranked. Let r(|D1|), r(|D2|), . . . ,r(|Dn|) be the ranks of
the differences.

Under H0, the expectations of the sum of positive differences and the sum
of negative differences should be equal. Define

W+ =
n∑

i=1
Si r(|Di|)

and

W− =
n∑

i=1
(1−Si) r(|Di|),
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where Si = 1 if Di > 0 and Si = 0 if Di < 0. Cases where Di = 0 are ties and
are ignored. Thus, W++W− is the sum of all ranks, and in the case of no ties
is equal to

∑n
i=1 i = n(n+ 1)/2. The statistic for the WSiRT is the difference

between the ranks of positive differences and ranks of negative differences:

W =W+−W− = 2
n∑

i=1
r(|Di|)Si −n(n+1)/2.

Rule: For the WSiRT, it is suggested that a large-sample approximation
should be used for W. If the samples are from the same population, the differ-
ences should be well mixed, and the sum of the ranks of positive differences
should be close to the sum of the ranks of negative differences. Thus, in this
case, E(W) = 0 and Var (W) = ∑

i(r(|Di|)2) = ∑
i i2 = n(n+1)(2n+1)/6 under H0

and no ties in differences. The statistic

Z = Wp
Var (W)

has an approximately standard normal distribution, so normcdf can be used to
evaluate the p-values of the observed statistic W with respect to a particular
alternative (see the m-file wsirt.m).

function [W, Z, p] = wsirt( data1, data2, alt )
% -----------------------------------------------------
% WILCOXON SIGNED RANK TEST
% Input: data1, data2 - first and second sample
% alt - code for alternative hypothesis;
% -1 mu1<mu2; 0 mu1 ne mu2; and 1 mu1>mu2
% Output: W - sum of all signed ranks
% Z - standardized W but adjusted for the ties
% p - p-value for testing equality of distribs
% (equality of locations) against the
% alternative specified by the input alt
% Example of use:
% > dat1=[1 3 2 4 3 5 5 4 2 3 4 3 1 7 6 6 5 4 5 8 7];
% > dat2=[2 5 4 3 4 3 2 2 1 2 3 2 3 4 3 2 3 4 4 3 5];
% > [srs, tstat, pval] = wsirt(dat1, dat2, 1)
%
% Needs: M-FILE ranks.m (ranking procedure)
%------------------------------------------------------
data1 = data1(:)’ ; % convert sample 1 to a row vector
data2 = data2(:)’ ; % convert sample 2 to a row vector
if length(data1) ~= length(data2)

error(’Sample sizes should coincide’)
end
difs = data1 - data2;
difs = difs( difs ~= 0); % exclude ties
rank_all = ranks(abs(difs));
signs = 2.*(difs > 0)-1;
sig_ranks = signs .* rank_all;

W = sum( sig_ranks ); %sum of all signed ranks
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W2 = sum( ( sig_ranks.^2 ) );
Z = W/sqrt(W2);
cc = 1/sqrt(W2); %continuity correction
%-------------------------- alternatives -------------
% alt == 0 for two sided;
% alt == -1 for mu1 < mu2; alt == 1 for mu1 > mu2.
if alt == 0

p = 2*normcdf(-abs( Z ) + cc);
elseif alt == -1

p = normcdf( Z + cc);
elseif alt == 1

p = normcdf( -Z + cc);
else

error(’Input "alt" should be either 0,-1,or 1.’)
end

Example 12.2. Identical Twins. This data set was discussed in Conover
(1999). Twelve pairs of identical twins underwent psychological tests to mea-
sure the amount of aggressiveness in each person’s personality. We are inter-
ested in comparing the twins to each other to see if the first-born twin tends to
be more aggressive than the other. The results are as follows (the higher score
indicates more aggressiveness).

First-born, Xi 86 71 77 68 91 72 77 91 70 71 88 87
Second twin, Yi 88 77 76 64 96 72 65 90 65 80 81 72

The hypotheses are: H0 : the mean aggressiveness scores for the two twins
are the same, that is, E(Xi) = E(Yi), and H1 : the first-born twin tends to be
more aggressive than the other, i.e., E(Xi) > E(Yi). The WSiRT is appropriate
if we assume that Di = Xi −Yi are independent and symmetric. Below is the
output of wsirt, where the T statistic has been used.

fb = [86 71 77 68 91 72 77 91 70 71 88 87];
sb = [88 77 76 64 96 72 65 90 65 80 81 72];
[w1, z1, p] = wsirt(fb, sb, 1)
%w1 = 17 %value of T
%z1 = 0.7565 %value of Z
%p = 0.2382 %p-value of the test

Note that the test failed to reject H0.
�

The WSiRT can be used to test the hypothesis of location H0 :µ= µ0 using
a single sample, as in a one-sample t-test. The differences in the WSiRT are
X1 −µ0, X2 −µ0, . . . , Xn −µ0 instead of X1 −Y1, X2 −Y2, . . . , Xn −Yn, as in the
two-sample WSiRT.

Example 12.3. In the Moon Illusion (Example 9.4), we tested H0 :µ= 1 against
H1 :µ> 1.
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moon = [1.73 1.06 2.03 1.40 0.95 1.13 1.41 1.73 1.63 1.56];
mu0 = 1;
mu0vec = mu0 * ones(size(moon));
[w, z, p]=wsirt(moon, mu0vec, 1)
%w = 53
%z = 2.7029
%p = 0.0040

Compared to the t-test where the p-value was found to be pval = 9.9885e-04,
the WSiRT still rejects H0 even though the p-value is higher, p = 0.004.

�

Equivalently, the WSiRT can be based on the sum of the ranks of posi-
tive differences only (or, equivalently, the sum of the ranks of negative dif-
ferences only). In that case, under H0, EW+ = n(n+1)/4 and Var (W+) =
n(n+1)(2n+1)/24, leading to

Z = W+−n(n+1)/4p
n(n+1)(2n+1)/24

.

12.5 Wilcoxon Sum Rank Test and
Wilcoxon–Mann–Whitney Test

The Wilcoxon sum rank test (WSuRT) and Wilcoxon–Mann–Whitney test
(WMW) are equivalent tests and we will discuss only the former, WSuRT. The
tests are named after statisticians shown in Fig. 12.1a-c.

(a) (b) (c)

Fig. 12.1 (a) Frank Wilcoxon (1892–1965), (b) Henry Berthold Mann (1905–2000), and (c)
Donald Ransom Whitney (1915–2001).

The WSuRT is often used in place of a two-sample t-test when the popula-
tions being compared are independent, but possibly not normally distributed.
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An example of the sort of data for which this test could be used is responses
on a Likert scale (e.g., 1 = much worse, 2 = worse, 3 = no change, 4 = better,
5 = much better). It would be inappropriate to use the t-test for such data be-
cause for ordinal data the normality assumption does not hold. The WSuRT
tells us more generally whether the groups are homogeneous or if one group is
“better’ than the other. More generally, the basic null hypothesis of the WSuRT
is that the two populations are equal. That is, H0 : FX (x)= FY (x). When stated
in this way, this test assumes that the shapes of the distributions are similar,
which is not a stringent assumption.

Let X = X1, . . . , Xn1 and Y = Y1, . . . ,Yn2 be two samples of sizes n1 and n2,
respectively, from the populations that we want to compare. Assume that the
samples are put together and that n = n1 + n2 ranks are assigned to their
concatenation. The test statistic Wn is the sum of ranks (1 to n) corresponding
to the first sample, X . For example, if X1 = 1, X2 = 13, X3 = 7, X4 = 9, and
Y1 = 2,Y2 = 0,Y3 = 18, then the value of Wn is 2+4+5+6= 17.

If the two populations have the same distribution, then the sum of the
ranks of the first sample and those in the second sample should be close, rela-
tive to their sample sizes. The WSuRT statistic is

Wn =
n∑

i=1
iSi(X ,Y ),

where Si(X ,Y ) is an indicator function defined as 1 if the ith ranked obser-
vation is from the first sample and as 0 if the observation is from the second
sample.

For example, for X1 = 1, X2 = 13, X3 = 7, X4 = 9 and Y1 = 2,Y2 = 0,Y3 = 18,
S1 = 0,S2 = 1,S3 = 0,S4 = 1,S5 = 1,S6 = 1,S7 = 0. Thus

Wn = 1×0+2×1+3×0+4×1+5×1+6×1+7×0= 2+4+5+6= 17.

If there are no ties, then under H0

E(Wn)= n1(n+1)
2

and Var (Wn)= n1n2(n+1)
12

.

The statistic Wn achieves its minimum when the first sample is entirely
smaller than the second, and its maximum when the opposite occurs:

minWn =
n1∑
i=1

i = n1(n1 +1)
2

, maxWn =
n∑

i=n−n1+1
i = n1(2n−n1 +1)

2
.

For the statistic Wn a normal approximation holds:

Wn ∼N

(
n1(n+1)

2
,
n1n2(n+1)

12

)
.
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A better approximation is

P(Wn ≤ w)≈Φ(x)+φ(x)(x3 −3x)
n2

1 +n2
2 +n1n2 +n

20n1n2(n+1)
,

where φ(x) and Φ(x) are the PDF and CDF of a standard normal distribu-
tion, respectively, and x = (w−E(Wn)+0.5)/

√
Var (Wn). This approximation is

satisfactory for n1 > 5 and n2 > 5 if there are no ties.

function [W, Z, p] = wsurt( data1, data2, alt )
% --------------------------------------------------------
% WILCOXON SUM RANK TEST
% Input: data1, data2 - first and second sample
% alt - code for alternative hypothesis;
% -1 mu1<m2; 0 mu1 ne m2; and 1 mu1>mu2
% Output: W - sum of the ranks for the first sample. If
% there is no ties, the standardization by ER &
% Var R allows using standard normal quantiles
% as long as sample sizes are larger than 15-20.
% Z - standardized R but adjusted for the ties
% p - p-value for testing equality of distributions
% (equality of locations) against the alternative
% specified by input "alt"
% Example of use:
% > dat1=[1 3 2 4 3 5 5 4 2 3 4 3 1 7 6 6 5 4 5 8 7 3 3 4];
% > dat2=[2 5 4 3 4 3 2 2 1 2 3 2 3 4 3 2 3 4 4 3 5];
% > [sumranks1, tstat, pval] = wsurt(dat1, dat2, 1)
%
% Needs: M-FILE ranks.m (ranking procedure)
%-----------------------------------------------------------
data1 = data1(:)’ ; %convert sample 1 to a row vector

n1 = length( data1 ); %n1 - size of first sample, data1
data2 = data2(:)’ ; %convert sample 2 to a row

n2 = length( data2 ); %n2 - size of second sample, data2
n =n1+ n2; %n is the total sample size

mergeboth = [ data1 data2 ];
ranksall = ranks( mergeboth ); %ranks of merged observations

W2 = sum( ( ranksall.^2 ) ); %sum of all ranks squared
% needed to make adjustment for the ties; if no ties are
% present, this sum is equal to the sum of squares of the
% first n integers: n(n+1)(2 n+1)/6.
ranksdata1 = ranksall( :, 1:n1); %ranks of first sample

W = sum( ranksdata1 ); % statistic for WMW
%--------------------------------------------------------
Z = (W - n1 * (n+1)/2 )/sqrt( n1*n2*W2/(n * (n-1)) ...

- n1*n2*(n+1)^2/(4*(n-1)));
% Z is approximately standard normal and approximation is
% quite good if n1,n2 > 15. Since W ranges over integers
% and half integers, a continuity correction, cc, may be
% used for improving the accuracy of p-values.
cc = 0.25/sqrt( n1*n2*W2/(n * (n-1)) - ...

n1*n2*(n+1)^2/(4*(n-1)));
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%-------------------------- alternatives -----------------
% alt == 0 for two sided;
% alt == -1 for mu1 < mu2; alt == 1 for mu1 > mu2.
if alt == 0

p = 2*normcdf(- abs( Z ) - cc);
elseif alt == -1

p = normcdf( Z - cc );
elseif alt == 1

p = normcdf( - Z - cc );
else

error(’Input "alt" should be either 0, -1, or 1.’)
end
%---------------------------------------------------------

probes against various biomolecules is very important in the furthering of ba-
sic studies of cellular biology and pathology. One way to improve the binding
properties of these probes is to have multiple binding domains or ligands on
the surface of the probes. The more ligands, the greater the chance of binding.
One issue that comes up with such probes is whether, due to the multiple lig-
ands, they will cause aggregation of target molecules within the cell. In order
to show that new probes do not induce aggregation, researchers in the lab of
Dr. Phil Santangelo at Georgia Tech compared the number of granules using a
monovalent and a tetravalent probe in a cell plated at the same time and un-
der the same biological conditions. The numbers of granules detected by each
probe were recorded, and the researchers were interested to see if there were
real differences between the numbers.

Using WSuRT we test the hypothesis of equality of distributions and, sub-
sequently, all theoretical moments at the significance level α= 0.05.

monovalent = [117 92 84 213 89 76 96 104 114 142 ...
122 154 124 65 129 67 100 127 63 82 ...
114 93 117 83 82 83 111 78 92 91];

tetravalent = [103 78 155 107 113 75 74 80 120 112 ...
158 72 81 124 110 90 64 74 110 149 ...
97 70 105 94 110 93 115 114 110 95];

[sumranks1, tstat, pval] = wsurt(monovalent, tetravalent, 0)

% sumranks1 = 925.5000
%
% tstat = 0.1553
%
% pval = 0.8737

The statistical evidence that the two samples come from the same distribu-
tion is overwhelming since the p-value of 0.8737 exceeds the significance level
α= 0.05.
�

Example 12.4. Nanoscale Probes. The development of intracellular nanoscale
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12.6 Kruskal–Wallis Test

The Kruskal–Wallis (KW) test is a generalization of the WSuRT. It is a non-
parametric test used to compare three or more samples. It is used to test
the null hypothesis that all populations have identical distribution functions
against the alternative hypothesis that at least two of the samples differ only
with respect to location (median), if at all.

The KW test is an analog to the F-test used in one-way ANOVA. While
ANOVA tests depend on the assumption that all populations under compar-
ison are independent and normally distributed, the KW test places no such
restriction. Suppose the data consist of k independent random samples with
sample sizes n1, . . . , nk. Let n = n1 +·· ·+nk.

Sample 1 X11, X12, . . . X1,n1

Sample 2 X21, X22, . . . X2,n2
...

...
Sample k−1 Xk−1,1, Xk−1,2, . . . Xk−1,nk−1
Sample k Xk1, Xk2, . . . Xk,nk

Under the null hypothesis, we can claim that all of the k samples are from
a common population.

The expected sum of ranks for sample i, E(Ri), would be ni times the ex-
pected rank for a single observation. That is, ni(n+1)/2, and the variance can
be calculated as Var (Ri) = ni(n+1)(n−ni)/12. One way to test H0 is to calcu-
late Ri =

∑ni
j=1 r(Xi j) – the total sum of ranks in sample i. The statistic

k∑
i=1

[
Ri −

ni(n+1)
2

]2
(12.1)

will be large if the samples differ, so the idea is to reject H0 if (12.1) is “too
large.” However, its distribution is quite messy, even for small samples, so we
can use the normal approximation

Ri −E(Ri)√
Var (Ri)

appr∼ N (0,1)⇒
k∑

i=1

(Ri −E(Ri))2

Var (Ri)
appr∼ χ2

k−1,

where the χ2-statistic has only k−1 degrees of freedom due to the fact that
only k−1 ranks are unique.

Based on this idea, Kruskal and Wallis (1952) proposed the test statistic

H′ = 1
S2

[
k∑

i=1

R2
i

ni
− n(n+1)2

4

]
, (12.2)

where



12.6 Kruskal–Wallis Test 491

S2 = 1
n−1

[
k∑

i=1

ni∑
j=1

r(Xi j)2 − n(n+1)2

4

]
.

If there are no ties in the data, (12.2) simplifies to

H = 12
n(n+1)

k∑
i=1

1
ni

[
Ri −

ni(n+1)
2

]2
. (12.3)

Kruskal and Wallis (Fig. 12.2a,b) showed that this statistic has an approxi-
mate χ2-distribution with k−1 degrees of freedom.

(a) (b) (c)

Fig. 12.2 (a) William Henry Kruskal (1919–2005), (b) Wilson Allen Wallis (1912–1998), and
(c) Milton Friedman (1912–2006).

The MATLAB routine kw.m implements the KW test using a vector to
represent the responses and another to identify the population from which the
response came. Suppose we have the following responses from three treatment
groups:

(1,3,4), (3,4,5), (4,4,4,6,5).

The code for testing the equality of locations of the three populations computes
a p-value of 0.1428.

data = [ 1 3 4 3 4 5 4 4 4 6 5 ];
belong = [ 1 1 1 2 2 2 3 3 3 3 3 ];
[H, p] = kw(data, belong)

% [H, p] = 3.8923 0.1428

Example 12.5. The following data are from a classic agricultural experiment
measuring crop yield in four different plots. For simplicity, we identify the
treatment (plot) using the integers {1,2,3,4}. The third treatment mean mea-
sures far above the rest, and the null hypothesis (the treatment means are
equal) is rejected with a p-value less than 0.0002.

data= [83 91 94 89 89 96 91 92 90 84 91 90 81 83 84 83 ...
88 91 89 101 100 91 93 96 95 94 81 78 82 81 77 79 81 80];
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belong = [1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ...
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4];

[H, p] = kw(data, belong)

% H = 20.3371
% p = 1.4451e-004

�

Kruskal–Wallis Pairwise Comparisons. If the KW test detects treatment
differences, we can determine if two particular treatment groups (say, i and j)
are different at level α if

∣∣∣∣
Ri

ni
− R j

n j

∣∣∣∣> tn−k,1−α/2

√
S2(n−1−H′)

n−k
·
(

1
ni

+ 1
n j

)
. (12.4)

Example 12.6. Since in Example 12.5 we found the four crop treatments sig-
nificantly different, it would be natural to find out which ones seem better and
which ones seem worse. In the table below, we compute the statistic

T =

∣∣∣ Ri
ni

− R j
n j

∣∣∣
√

S2(n−1−H′)
n−k

(
1
ni

+ 1
n j

)

for every combination of 1≤ i 6= j ≤ 4 and compare it to t30,0.975 = 2.042.

(i, j) 1 2 3 4
1 0 1.856 1.859 5.169
2 1.856 0 3.570 3.363
3 1.859 3.570 0 6.626
4 5.169 3.363 6.626 0

This shows that the third treatment is the best, but not significantly differ-
ent from the first treatment, which is second best. Treatment 2, which is third
best, is not significantly different from treatment 1, but is different from treat-
ments 4 and 3.
�

12.7 Friedman’s Test

Friedman’s test is a nonparametric alternative to the randomized block de-
sign (RBD) in regular ANOVA. It replaces the RBD when the assumptions
of normality are in question or when the variances are possibly different from
population to population. This test uses the ranks of the data rather than their
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raw values to calculate the test statistic. Because the Friedman test does not
make distribution assumptions, it is not as powerful as the standard test if
the populations are indeed normal.

Milton Friedman (Fig. 12.2c) published the first results for this test, which
was eventually named after him. He received the Nobel Prize in economics
in 1976, and one of the listed breakthrough publications was his article “The
use of ranks to avoid the assumption of normality implicit in the analysis of
variance,” published in 1937 (Friedman, 1937).

Recall that the RBD design requires repeated measures for each block at
each level of treatment. Let Xi j represent the experimental outcome of subject
(or “block”) i with treatment j, where i = 1, . . . , b, and j = 1, . . . , k.

Treatment
Block 1 2 . . . k

1 X11 X12 . . . X1k
2 X21 X22 . . . X2k
...

...
...

...
b Xb1 Xb2 . . . Xbk

To form the test statistic, we assign ranks {1,2, . . . , k} to each row in the
table of observations. Thus the expected rank of any observation under H0
is (k+1)/2. We next sum all the ranks by columns (by treatments) to obtain
R j =

∑b
i=1 r(Xi j), 1 ≤ j ≤ k. If H0 is true, the expected value for R j is E(R j) =

b(k+1)/2. The statistic

k∑
j=1

(
R j −

b(k+1)
2

)2

is an intuitive formula to reveal treatment differences. It has expectation
bk(k2 −1)/12 and variance k2b(b−1)(k−1)(k+1)2/72. Once normalized to

S = 12
bk(k+1)

k∑
j=1

(
R j −

b(k+1)
2

)2
, (12.5)

it has moments E(S) = k − 1 and Var (S) = 2(k− 1)(b − 1)/b ≈ 2(k − 1), which
coincide with the first two moments of χ2

k−1. Higher moments of S also ap-
proximate well those of χ2

k−1 when b is large.
In the case of ties, a modification to S is needed. Let C = bk(k+1)2/4 and

R∗ =∑b
i=1

∑k
j=1 r(Xi j)2. Then,

S′ = k−1
R∗ −bk(k+1)2/4

(
k∑

j=1
R2

j − bC

)
(12.6)

is also approximately distributed as χ2
k−1.
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Although the Friedman statistic makes for a sensible, intuitive test, it
turns out there is a better one to use. As an alternative to S (or S′), the test
statistic

F = (b−1)S
b(k−1)−S

is approximately distributed as Fk−1,(b−1)(k−1), and tests based on this approx-
imation are generally superior to those based on chi-square tests that use S.
For details on the comparison between S and F, see Iman and Davenport
(1980)

Example 12.7. In an evaluation of vehicle performance, six professional drivers
(labeled I, II, III, IV, V, VI) evaluated three cars (A, B, and C) in a randomized
order. Their grades concern only the performance of the vehicles and suppos-
edly are not influenced by the vehicle brand name or similar exogenous infor-
mation. Here are their rankings on a scale of 1 to 10:

Car I II III IV V VI
A 7 6 6 7 7 8
B 8 10 8 9 10 8
C 9 7 8 8 9 9

To use the MATLAB procedure friedmanGT the input data should be format-
ted as a matrix in which the rows are blocks and the columns are treatments.

data = [7 8 9; 6 10 7; 6 8 8; ...
7 9 8; 7 10 9; 8 8 9];

[S,F,pS,pF] = friedmanGT(data)

%S = 8.2727
%F = 11.0976
%pS = 0.0160
%pF = 0.0029
% pF p-value is more reliable

�

Friedman’s Pairwise Comparisons. If the p-value is small enough to war-
rant multiple comparisons of treatments, we consider two treatments i and j
to be different at level α if

∣∣Ri −R j
∣∣> t(b−1)(k−1),1−α/2

√√√√
2 ·

bR∗ −∑k
j=1 R2

j

(b−1)(k−1)
. (12.7)
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Example 12.8. From Example 12.7, the three cars A, B, and C are considered
significantly different at test level α= 0.01 (if we use the F-statistic). We can
use the function friedmanpairwise(x,i,j,alpha) to make a pairwise com-
parison between treatments i and j at level alpha. The output = 1 if treat-
ments i and j are different; otherwise it is 0. The Friedman pairwise compari-
son reveals that car A is rated significantly lower than both cars B and C, but
cars B and C are not considered to be different.

12.8 Walsh Nonparametric Test for Outliers*

Suppose that r outliers are suspect, where r ≥ 1 and fixed. Order observations
X1, . . . , Xn and obtain the order statistic X(1) ≤ X(2) ≤ ·· · ≤ X(n), and set the
significance level α. The test is nonparametric and no assumptions about the
underlying distribution are made.

We will explain the steps and provide a MATLAB implementation, but
readers interested in details are directed to Walsh (1962). The Walsh recipe
has the following steps, following Madansky (1988).

STEP 1: Calculate c = b
p

2nc, where bxc is the largest integer ≤ x,

b2 = 1/α, k = r+ c, and a= (1+ b
√

c−b2

c−1 )/(c−b2 −1).
STEP 2: The smallest r values X(1) ≤ ·· · ≤ X(r) are outliers if

rL = X(r) − (1+a)X(r+1) +aXk < 0,

and the largest r values X(n−r+1) ≤ ·· · ≤ X(n) are outliers if

rU = X(n−r+1) − (1+a)X(n−r) +aXn−k+1 > 0.

The sample size has to satisfy n ≥ 1
2 (1+ 1

α )2. To achieve α= 0.05, a sample
size of at least 221 is needed. As an outcome, one either rejects no outliers,
rejects the smallest r, the largest r, or even both the smallest and largest r,
thus potentially rejecting a total of 2r observations. Here is an example of
Walsh’s procedure implemented by m-function walshnp.m.

dat = normrnd(0, 2, [300 1]);
data = [-11.26; dat; 13.12];
walshnp(data) %default r=1, alpha=0.05
%Lower outliers are: -11.26
%Upper outliers are: 13.12
%ans = -11.2600 13.1200
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12.9 Exercises

12.1. Friday the 13th. The following data set is part of the larger study from
Scanlon et al. (1993) titled “Is Friday the 13th bad for your health?” The
data analysis in this paper addresses the issues of how superstitions re-
garding Friday the 13th affect human behavior. The authors reported and
analyzed data on traffic accidents for Friday the 6th and Friday the 13th
between October 1989 and November 1992. The data consist of the num-
ber of patients accepted in SWTRHA (South West Thames Regional Health
Authority, London) hospital on the dates of Friday the 6th and Friday the
13th.

# of accidents
Year, month Friday 6th Friday 13th Sign
1989, October 9 13 −
1990, July 6 12 −
1991, September 11 14 −
1991, December 11 10 +
1992, March 3 4 −
1992, November 5 12 −

Use the sign test at the level α= 10% to test the hypothesis that the “Friday
the 13th effect” is present. The m-file signtst.m could be applied.

12.2. Reaction Times. In Exercise 10.22 the paired t-test was used to assess
the differences between reaction times to red and green lights. Repeat this
analysis using both sign test and WSiRT.

12.3. Simulation. To compare the t-test with the Wilcoxon signed-rank test, set
up the following simulation in MATLAB:
(1) Generate n = 20 observations from N (0,1) as your first sample X .
(2) Form Y = X + randn(size(x)) + 0.5 as your second sample paired with
the first.
(3) For the test of H0 : µ1 = µ2 versus H1 : µ1 < µ2, perform the t-test at
α= 0.05.
(4) Run the Wilcoxon signed-rank test.
(5) Repeat this simulation 1000 times and compare the powers of the tests
by counting the number of times H0 was rejected.

12.4. Grippers. Measurements of the left- and right-hand gripping strengths of
ten left-handed writers are recorded.

Person 1 2 3 4 5 6 7 8 9 10
Left hand (X ) 140 90 125 130 95 121 85 97 131 110
Right hand (Y ) 138 87 110 132 96 120 86 90 129 100
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(a) Does the data provide strong evidence that people who write with their
left hand have a greater gripping strength in the left hand than they do in
their right hand? Use the Wilcoxon signed-rank test and α= 0.05.
(b) Would you change your opinion on the significance if you used the paired
t-test?

12.5. Iodide and Serum Concentration of Thyroxine. The effect of iodide
administration on serum concentration of thyroxine (T4) was investigated
in Vagenakis et al. (1974). Twelve normal volunteers (9 male and 3 female)
were given 190 mg iodide for 10 days. The measurement X is an average of
T4 in the last 3 days of administration while Y is the mean value in three
successive days after the administration stopped.

Subject 1 2 3 4 5 6 7 8 9 10 11 12
Iodide (X ) 7.9 9.1 9.2 8.1 4.2 7.2 5.4 4.9 6.6 4.7 5.2 7.3
Control (Y ) 10.2 10.2 11.5 8.0 6.6 7.4 7.7 7.2 8.2 6.2 6.0 8.7

Assume that the difference D = X −Y has a symmetric distribution. Com-
pare the p-values of WSiRT and the paired t-test in testing the hypothesis
that the mean of control measurements exceed that of the iodide measure-
ments.

12.6. Weightlifters. Blood lactate levels were determined in a group of ama-
teur weightlifters following a competition of 10 repetitions of 5 different
upper-body lifts, each at 70% of each lifter’s single maximum ability. A
sample of 17 randomly selected individuals was tested: 10 males and 7 fe-
males. The following table gives the blood lactate levels in female and male
weightlifters, in units of mg/100 ml of blood.

Gender N Blood lactate
Female 7 7.9 8.2 8.7 12.3 12.5 16.7 20.2
Male 10 5.2 5.4 6.7 6.9 8.2 8.7 14.2 14.2 17.4 20.3

Test an H0 that blood lactate levels were not different between the two gen-
ders at the level α= 0.05. Assume that the data, although consisting of mea-
surements of continuous variables, are not distributed normally or vari-
ances are possibly heteroscedastic (nonequal variances). In other words,
the traditional t-test may not be appropriate.

12.7. Cartilage Thickness in Two Osteoarthritis Models. Osteoarthritis
(OA), characterized by gradual degradation of the cartilage extracellular
matrix, articular cartilage degradation, and subchondral bone remodeling,
is the most common degenerative joint disease in humans. One of the most
common ways for researchers to study the progression of OA in a controlled
manner is to use small animal models. In a study conducted in the labo-
ratory of Robert Guldberg at the Georgia Institute of Technology, a group
of 14 rats was randomly divided into two subgroups, and each subgroup
was subjected to an induced form of OA. One of the subgroups (n1 = 7) was
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subjected to a chemically induced form of OA via an intra-articular injec-
tion of monosodium iodoacetate (MIA), while the other subgroup (n2 = 7)
was subjected to a surgically induced form of OA by transecting the me-
dial meniscus (MMT). In this study, all rats had OA induced by either MIA
or MMT on the left knee, with the right knee serving as a contralateral
control.
The objectives of this study were to quantify changes in cartilage thickness
of a selected area of the medial tibial plateau, compare thickness values
between the treatments and the controls, and determine if OA induced by
MIA produced different results from OA inducted by MMT. Cartilage thick-
ness values were measured 3 weeks after the treatments using an ex vivo
micro-CT scanner; the data are provided in the table below.

Rat MIA Treated Control Rat MMT Treated Control
1 0.1334 0.2194 8 0.2569 0.2726
2 0.1214 0.1929 9 0.2101 0.2234
3 0.1276 0.1833 10 0.1852 0.2216
4 0.1152 0.1879 11 0.1798 0.1905
5 0.1047 0.2529 12 0.1049 0.1444
6 0.1312 0.2527 13 0.2649 0.2841
7 0.1222 0.2595 14 0.2383 0.2731

(a) Using the Wilcoxon signed-rank test, test the hypothesis that the differ-
ence between MIA-treated rats and its control thickness is significant.
(b) Find the difference in thickness (treatment–control) for MIA and MMT
and test the hypothesis that they are the same. Apply a nonparametric
version of a two-sample t-test on the differences.
Conduct both tests at a 5% significance level.

12.8. A Claim. Professor Scott claims that 50% of his students in a big class get
a final score of 90 and higher.
A suspicious student asks 17 randomly selected students from Professor
Scott’s class and they report the following scores:

80 81 87 94 79 78 89 90 92 88 81 79 82 79 77 89 90

Test the hypothesis that Professor Scott’s claim does not conform to the
evidence, i.e., that the 50th percentile (0.5-quantile, median) is different
than 90. Use α= 0.05.

12.9. Claustrophobia. Sixty subjects seeking treatment for claustrophobia are
independently sorted into two groups, the first of size n = 40 and the sec-
ond of size m = 20. The members of the first group each individually re-
ceive treatment A over a period of 15 weeks, while those of the second
group receive treatment B. The investigators’ directional hypothesis is that
treatment A will prove to be more effective. At the end of the experimental
treatment period, the subjects are individually placed in a series of claus-
trophobia test situations, knowing that their reactions to these situations
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are being recorded on videotape. Subsequently three clinical experts, un-
involved in the experimental treatment and not knowing which subject re-
ceived which treatment, independently view the videotapes and rate each
subject according to the degree of claustrophobic tendency shown in the test
situations. Each subject is rated by the experts on a scale of 0 (no claustro-
phobia) to 10 (an extreme claustrophobia). The following table shows the
average ratings for each subject in each of the two groups.

A
4.6 4.7 4.9 5.1 7.0 4.9
5.1 5.2 5.5 4.8 5.7 5.0
5.8 6.1 6.5 7.0 6.4 5.2
4.6 4.7 4.9 6.4 5.9 4.7
5.8 5.2 5.4 6.1 7.7 6.2
5.8 5.1 6.5 2.2 6.9 5.0
6.5 7.2 8.2 6.7

B
5.2 5.3 5.4 7.7 8.1 4.9
5.6 6.2 6.3 7.0 7.0 7.8
6.8 7.7 8.0 6.6 5.5 8.2
8.1 5.0

The investigators expected treatment A to prove more effective, and sure
enough it is group A that appears to show the lower mean level of claustro-
phobic tendency in the test situations.
Using Wilcoxon’s sum rank test, test the hypothesis H0 that treatments A
and B are of the same effectiveness, versus the alternative that treatment A
is more effective.

12.10. Nonparametric Stats with Raynaud’s Phenomenon. (a) Refer to Ray-
naud’s phenomenon data from Exercise 11.21. Using Wilcoxon’s signed-
rank test, compare the responses (number of attacks) for drug/placebo ef-
fect. Ignore the Period variable. Compare this result with the result from a
paired t-test.
(b) Compare the drug/placebo effect using Bayesian inference. Write a Win-
BUGS program that will read the drug/placebo info, take the difference
between the measurements, d, and model it as a normal, with noninforma-
tive priors on the mean mu and precision prec. Check if the credible set for
mu contains 0 and draw the appropriate conclusion.

12.11. Cotinine and Nicotine Oxide. Garrod et al. (1974) measured the nico-
tine metabolites, cotinine, and nicotine-1’-N-oxide in 24-hour urine collec-
tions from normal healthy male smokers and smokers affected with cancer
of the urinary bladder. The data, also discussed by Daniel (1978), show the
ratio of cotinine to nicotine-1’-N-oxide in the two groups of subjects.

Ratio
Cancer 5.0 8.3 6.7 3.0 2.5 12.5 2.4 5.5 5.2 21.3 5.1 1.6
patients 2.1 4.6 3.2 2.2 7.0 3.3 6.7 11.1 3.4 5.9 27.4
Control 2.3 1.9 3.6 2.5 0.75 2.5 2.1 1.1 2.3 2.2 3.5 1.8
subjects 2.3 1.4 2.1 2.0 2.3 2.4 3.6 2.6 1.5

Test the difference between the two populations using WSuRT, at α= 0.05.



500 12 Distribution-Free Tests

12.12. Coagulation Times. In Example 11.1 a standard one-way ANOVA gave p-
value of 4.6585e-05. Repeat the test of equality of means using the Kruskal–
Wallis procedure. If the test turns out significant, compare the means using
the Kruskal–Wallis pairwise comparisons.

12.13. Blocking by Rats. In Example 11.5 factor Procedure was found signifi-
cant with p-value of 8.7127e-04. Is this factor significant according to Fried-
man’s test?

MATLAB FILES USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch12.NP/

claustrophobia.m, friedmanGT.m, friedmanpairwise.m, grubbs.m, kw.m,
miammt.m, NPdemo.m, npexamples.m, ranks.m, signtst.m, walshnp.m,
wsirt.m, wsurt.m
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Chapter 13
Goodness-of-Fit Tests

When schemes are laid in advance, it is surprising how often the circumstances fit in
with them.

– William Osler, Canadian Physician (1849–1919)

WHAT IS COVERED IN THIS CHAPTER

• Quantile–Quantile Plots
• Pearson’s χ2-Test
• Kolmogorov–Smirnov Goodness-of-Fit Test
• Smirnov’s Two-Sample Test
• Moran’s Test
• Testing Departures from Normality

13.1 Introduction

Goodness-of-fit tests are batteries of tests that test that the distribution of a
sample is equal to some fixed-in-advance distribution. We already saw Q–Q
plots in Chap. 5 where the samples were compared to some theoretical distri-
butions but in a descriptive fashion, without formal inference. In this chapter
we discuss the celebrated Pearson’s χ2-test and the Kolmogorov–Smirnov (KS)
test.
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13.2 Quantile–Quantile Plots

Quantile–quantile, or Q–Q, plots are a popular and informal diagnostic tool
for assessing the distribution of data and comparing two distributions. There
are two kinds of Q–Q plot, one that compares an empirical distribution with a
theoretical one and another that compares two empirical distributions.

We will explain the plots with an example. Suppose that we generated
some random sample X from a uniform U (−10,10) distribution of size n= 200.
Suppose for a moment that we do not know the distribution of this data and
want to check for normality by a Q–Q plot. We generate quantiles of a normal
distribution for n equally spaced probabilities between 0 and 1, starting at
0.5/n and ending at 1−0.5/n. The empirical quantiles for X are simply the ele-
ments of a sorted sample. If the empirical distribution matches the theoretical,
the Q–Q plot is close to a straight line.

n=200;
X = unifrnd(-10, 10, [1 n]);
q=((0.5/n):1/n:(1-0.5/n));
qY = norminv(q);
qZ = unifinv(q);
qX = sort(X);
figure(1); plot(qX, qY, ’*’)
figure(2); plot(qX, qZ, ’*’)

The Q–Q plot is given in Fig.13.1a. Note that the ends of the Q–Q plot
curve up and down from the straight line, indicating that the sample is not
normal.
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Fig. 13.1 (a) Q–Q plot of a uniform sample against normal quantiles. (b) Q–Q plot of a
uniform sample against uniform quantiles.
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then the Q–Q plot indicates that the match is good and that the sample is uni-
form (Fig. 13.1b). Note that while the moments (mean and variance) of the
sample and theoretical distributions may differ, matching the family of distri-
butions is important. If the mean and variance differ, the straight line in the
plot is shifted and has a different slope. Sometimes the straight line passing
through the first and third quartiles is added to the Q–Q plot for reference.

MATLAB has built-in functions qqplot, normplot, probplot, and cdfplot for
a variety of visualization and diagnostic tasks.
�

In our example we used pi-quantiles for pi = (i−0.5)/n, i = 1, . . . ,n. In gen-
eral, one can use pi = (i− c)/(n−2c+1) for any c ∈ [0,1], and popular choices
are c = 1/3, c = 1/2 (our choice), and c = 1. The choice c = 0.3175 is recom-
mended if the distributions are long-tailed since the extreme points on a Q–Q
plot are more stable. This choice of c corresponds to medians of order statistics
from a uniform distribution on (0,1) and has invariance property, F−1(pi) are
medians of order statistics from F.

Multivariate extensions are possible. A simple procedure that can be used
to assess multivariate normality is described next.
�

Given multivariate data yi = (yi1, yi2, . . . , yip), i = 1, . . . ,n one finds

d2
i = (yi − yi) S−1 (yi − yi)

′, (13.1)

where yi = 1
n

∑n
i=1 yi is the sample mean and S = 1

n−1
∑n

i=1(yi − yi)′(yi − yi)
is the sample covariance matrix. If the yis are distributed as multivariate
normal, then the d2

i s have an approximately χ2
p-distribution, and plotting the

empirical quantiles of d2
i against the corresponding quantiles of χ2

p assesses
the goodness of a multivariate normal fit.

Example 13.1. The data set pearson.dat compiled by K. Pearson contains
the hereditary stature of 1078 fathers and their sons. This data set will be
revisited in Chap. 16 in the context of regression. We will visualize the agree-
ment of pairs of heights to a bivariate normal distribution by inspecting a Q–Q
plot. We will calculate and sort d2s in (13.1) and plot them against quantiles
of a χ2

2-distribution (Fig. 13.2).

%qqbivariatenormal.m
load ’pearson.dat’
S = cov(pearson)
[m n] = size(pearson) %[1078 2]
mp = repmat(mean(pearson), m, 1);
d2 = diag((pearson - mp) * inv(S) * (pearson - mp)’);

% chi-square (2 df) quantiles
p = 0.5/m:1/m:1;
quanch2 = chi2inv(p,2);

If, on the other hand, the statement qY=norminv(q) is replaced by qY=unifinv(q),
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figure(1)
loglog(quanch2, sort(d2),’o’,’Markersize’,msize,...

’MarkerEdgeColor’,’k’, ’MarkerFaceColor’,’g’)
hold on
loglog([0.0002 50],[0.0002 50],’r’,’linewidth’,lw)
axis([10^-4, 100, 10^-4, 100])
xlabel(’Quantiles of chi^2_2 ’)
ylabel(’Sorted d^2’)

Fig. 13.2 Sorted values of d2 plotted against quantiles of a χ2
2-distribution. The linearity of

the plot indicates a good fit of Pearson’s data to a bivariate normal distribution.

�

Example 13.2. Poissonness Plots. Poissonness plots were developed by Hoaglin
(1980) and consist of assessing the goodness of fit of observed frequencies to
frequencies corresponding to Poisson-distributed data. Suppose that frequen-
cies ni, i = 1, . . . ,k corresponding to realizations 0,1, . . . , k−1 are observed and
that for i ≥ k all ni = 0. Let N =∑k

i=1 ni.

Then, the frequency ni and the theoretical counterpart ei = N× λi

i! exp{−λ}
should be close, if the data are consistent with a Poisson distribution,

ni ∼ N × λi

i!
exp{−λ}.

By taking the logarithms of both sides one gets

logni + log(i!)− log N ∼ logλ · i−λ.

Thus, the plot of log ni + log(i!)− log N against integer i should be linear with
slope logλ if the frequencies are consistent with a Poisson P oi(λ) distribution.
Such a plot is called a poissonness plot.
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The script poissonness.m illustrates this. N = 50,000 Poisson random
variables with λ= 4 are generated, observed frequencies are calculated, and a
Poisonness plot is made (Fig.13.3).

rand(’state’,2)
N = 50000; xx = poissrnd(4, 1, N); %simulate N Poisson(4) rv’s.
% observed frequencies
ni = [sum(xx==0) sum(xx==1) sum(xx==2) sum(xx==3) sum(xx==4) ...

sum(xx==5) sum(xx==6) sum(xx==7) sum(xx==8) sum(xx==9) ...
sum(xx==10) sum(xx==11) sum(xx==12) sum(xx==13) sum(xx==14)]’ ;

i=(0:14)’
poissonness = log(ni) + log(factorial(i)) - log(N);

plot(i, poissonness,’o’)
xlabel(’i’)
ylabel(’log(n_i) + log(i!) - log(N)’)
hold on
plot(i, log(4)*i - 4,’r:’) %theoretical line with lambda=4
[beta] = regress(poissonness, [ones(size(i)) i])

% beta =
% -4.0591
% 1.4006
%
% Slope in the linear fit is 1.4006
% lambda can be estimated as exp(1.4006) = 4.0576,
% also, as negative intercept, 4.0509
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Fig. 13.3 Poissonness plot for simulated example involving N = 50,000 Poisson P oi(4) ran-
dom variates. The slope of this plot estimates logλ while the intercept estimates −λ. The
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13.3 Pearson’s Chi-Square Test

Pearson’s χ2-test (Pearson, 1900) is the first formally formulated testing proce-
dure in the history of statistical inference. In his 1984 Science article entitled
“Trial by number,” Ian Hacking says that the goodness-of-fit chi-square test
introduced by Karl Pearson (Fig. 13.4) ushered in a new kind of decision mak-
ing and gives it a place among the top 20 discoveries since 1900 considering
all branches of science and technology.

Fig. 13.4 Karl Pearson (1857–1936).

Suppose that X1, X2, . . . , Xn is a sample from an unknown distribution. We
are interested in testing that this distribution is equal to some specific distri-
bution F0, i.e., in testing the goodness-of-fit hypothesis H0 : FX (x)= F0(x).

Suppose that the domain (a,b) of the distribution F0 is split into r nonover-
lapping intervals, I1 = (a, x1], I2 = (x1, x2] . . . Ir = (xr−1,b). Such intervals have
probabilities p1 = F0(x1)−F0(a), p2 = F0(x2)−F0(x1), . . . , pr = F0(b)−F0(xr−1),
under the assumption that H0 is true. Of course it is understood that the obser-
vations belong to the domain of F0; if this is not the case, the null hypothesis
is automatically rejected.

Let n1,n2, . . . ,nr be the observed frequencies of observations falling in the
intervals I1, I2, . . . , Ir . In this notation, n1 is the count of observations from the
sample X1, . . . , Xn that fall in the interval I1. Of course, n1 +·· ·+nr = n since
the intervals partition the domain of the sample.

The discrepancy between observed frequencies ni and frequencies under
F0, npi is the rationale for forming the statistic

χ2 =
r∑

i=1

(ni −npi)2

npi
, (13.2)

which has a χ2-distribution with r−1 degrees of freedom. Alternative repre-
sentations include
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χ2 =
r∑

i=1

n2
i

npi
−n and χ2 = n

[
r∑

i=1

(
p̂i

pi

)
p̂i −1

]
,

where p̂ i = ni/n.
In some cases, the distribution under H0 is not fully specified; for example,

one might conjecture that the data is exponentially distributed without know-
ing the exact value of λ. In this case, the unknown parameter can be estimated
from the sample.

If k parameters needed to fully specify F0 are estimated from the sample,
the χ2-statistic in (13.2) has a χ2-distribution with r−k−1 degrees of freedom.
A degree of freedom in the test statistic is lost for each estimated parameter.

Firm recommendations on how to select the intervals or even the number of
intervals for a χ2-test do not exist. For a continuous distribution function one
may make the intervals approximately equal in probability. Practitioners may
want to arrange interval selection so that all npi > 1 and that at least 80% of
the npis exceed 5. The rule of thumb is n ≥ 10, r ≥ 3, n2/r ≥ 10, npi ≥ 0.25.

Some statisticians refer to the χ2-test as Pearson’s “poorness-of-fit” test.
This attribute is appropriate since the test can only conclude that the model
does not fit the data well. If the model fits the data well, then it may not be
unique and one could possibly find other models that would pass the test as
well.

When some of the expected frequencies are less than 5, or when the number
of classes is small, then the χ2-test with Yates (Yates, 1934) corrections is
recommended,

χ2 =
r∑

i=1

(|ni −npi|−0.5)2

npi
,

which, under H0, has a χ2-distribution with r−1 degrees of freedom.

Example 13.3. Weldon’s 26,306 Rolls of 12 Dice. Pearson (1900) discusses
Weldon’s data (table below) as the main illustration for his test. Raphael Wel-
don, an evolutionary biologist and founder of biometry, rolled 12 dice simulta-
neously and recorded the number of times a 5 or a 6 was rolled. In his letter to
Galton, dated 2 February 1894, Weldon provided the data and asked for Gal-
ton’s opinion about their validity. Three contemporary British statisticians,
Pearson, Edgeworth, and Yule, have also considered Weldon’s data. An inter-
esting historic account can be found in Kemp and Kemp (1991).

The results from 26,306 rolls of 12 dice are summarized in the following
table:
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No. of dice resulting in Observed
	 or
 when 12 dice are rolled frequency

0 185
1 1149
2 3265
3 5475
4 6114
5 5194
6 3067
7 1331
8 403
9 105

10 14
11 4
12 0

In Pearson (1900), the value of χ2-statistic was quoted as 43.9, which is
slightly different than the correct value. The discrepancy is probably due to
the use of expected frequencies rounded to the nearest integer and due to the
accumulation of rounding errors when calculating χ2.

To find the expected frequencies, recall the binomial distribution. The num-
ber of times 	 or 
 was rolled with 12 dice is binomial: B in(12,1/3). To find
the expected frequencies, multiply the total number of rolls 26,306 by the ex-
pected (theoretical) probabilities obtained from B in(12,1/3), as in the follow-
ing MATLAB output:

obsfreq = [ 185 1149 3265 5475 6114 5194 ...
3067 1331 403 105 14 4 0];

n = sum(obsfreq) %26306
expected = n * binopdf(0:12, 12, 1/3)

%expected =
% 1.0e+003 *
%
% 0.2027 1.2165 3.3454 5.5756 6.2726 5.0180 2.9272
% 1.2545 0.3920 0.0871 0.0131 0.0012 0.0000

chisqs = (obsfreq - expected).^2./expected
%chisqs =
% 1.5539 3.7450 1.9306 1.8155 4.0082 6.1695 6.6772
% 4.6635 0.3067 3.6701 0.0665 6.6562 0.0495

chi2 = sum(chisqs)
%chi2 = 41.3122

pval=1 - chi2cdf(chi2, 13-1)
% pval = 4.3449e-005
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crit = chi2inv(0.95, 13-1)
% crit = 21.0261

As evident from the MATLAB output, the observations are not supporting
the fact that the dice were fair (p-value of 4.3449e-05), see also Fig. 13.5.
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Fig. 13.5 Bar plot of observed frequencies and theoretical frequencies. Although the graphs
appear close, the large sample size makes the discrepancy of this size very unlikely. It is
almost certain that one or more of Weldon’s 12 dice were not well balanced.

�

Example 13.4. Is the Process Poisson? The Poisson process is one of the
most important stochastic models. For example, random arrival times of pa-
tients to a clinic are well modeled by a Poisson process. This means that in any
interval of time, say [0, t], the number of arrivals is Poisson with parameter
λt. For such Poisson processes, the interarrival times follow an exponential
distribution with density f (t) = λe−λt, t ≥ 0,λ > 0. It is often of interest to
establish the Poissonity of a process since many theoretical results are avail-
able for such processes, which are ubiquitous in queueing theory and various
engineering applications.

The interarrival times of the arrival process were recorded, and it was
observed that n= 109 recorded times could be categorized as follows:

Interval 0≤ T < 1 1≤ T < 2 2≤ T < 3 3≤ T < 4 4≤ T < 5 5≤ T < 6 T ≥ 6
Frequency 34 20 16 15 9 7 8

A simple calculation determined that the sample mean was T = 5/2. Test
the hypothesis that the process described with the above interarrival times is
Poisson, at level α= 0.05.
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Given this data, one should test the hypothesis that the interarrivals times
are exponential. The density f (t) = λe−λt, t ≥ 0,λ> 0 corresponds to the CDF
F(t) = 1− e−λt, t ≥ 0,λ> 0, and the theoretical probability of an interval [a, b]
is F(b)−F(a).

But we first need to estimate the parameter λ in order to calculate the
(theoretical) probabilities. A standard estimator for the parameter λ is λ̂ =
1/T = 1/(5/2)= 0.4.

The theoretical frequencies of intervals [3,4] and [4,5] are p4 = 109·(F(4)−
F(3)) = 109 · (1− e−0.4·4 − (1− e−0.4·3)) = 109 · (e−0.4·3 − e−0.4·3) = 0.099298 ·109 =
10.823 and 0.066561 ·109= 7.255, respectively, yielding χ2 equal to

(34−35.9335)2

35.935
+ (20−24.089)2

24.089
+ (16−16.147)2

16.147
+ (15−10.823)2

10.823
+

(9−7.255)2

7.255
+ (7−4.863)2

4.863
+ (8−9.888)2

9.888
= 4.13.

The number of degrees of freedom is d f = 7−1−1= 5 and the 95% quantile
for χ2

5 is chi2inv(0.95,5)=11.071. Thus, we do not reject the hypothesis that
the interarrival times are exponential, i.e., the observed process is consistent
with a Poisson process.
�

Example 13.5. A sample of n=1000 exponential E (1/2) random variates is gen-
erated. We pretend that the generating distribution is unknown. Using MAT-
LAB’s chi2gof function we test the consistency of the generated data with an
exponential distribution with the rate λ estimated from the sample.

X = exprnd(2, [1, 1000]);
[h,p,stats] = ...
chi2gof(X,’cdf’,@(z)expcdf(z,mean(X)),’nparams’,1,’nbins’,7)
%
%h = 0
%p = 0.6220
%stats = chi2stat: 2.6271
% df: 4
% edges: [1x7 double]
% O: [590 258 96 34 14 8]
% E: [1x6 double]

The sample is consistent with the exponential distribution with p-value of
0.6220. Note that the number of intervals selected by MATLAB is 6, not the
requested 7. This is because the upper tail intervals with a low expected count
(< 5) are merged.
�

Example 13.6. Wrinkled Peas. Mendel crossed peas that were heterozygotes
for smooth/wrinkled, where smooth is dominant. The expected ratio in the off-
spring is 3 smooth: 1 wrinkled. He observed 423 smooth and 133 wrinkled
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peas. The expected frequency of smooth is calculated by multiplying the sam-
ple size (556) by the expected proportion (3/4) to yield 417. The same is done
for wrinkled to yield 139. The number of degrees of freedom when an extrin-
sic hypothesis is used is the number of values of the nominal variable minus
one. In this case, there are two values (smooth and wrinkled), so there is one
degree of freedom.

chisq = (556/4 - 133)^2/(556/4) + (556*3/4 - 423)^2/(556*3/4)
%chisq = 0.3453

1 - chi2cdf(chisq, 2-1)
%ans = 0.5568

chisqy = (abs(556/4 - 133)-0.5)^2/(556/4) + ...
(abs(556*3/4 - 423)-0.5)^2/(556*3/4) %with Yates correction

%chisq = 0.2902
1-chi2cdf(chisqy, 2-1)

%ans = 0.5901

We conclude that the theoretical odds 3:1 in favor of smooth peas are con-
sistent with the observations at level α= 0.05.
�

Example 13.7. Horse-Kick Fatalities. During the latter part of the nine-
teenth century, Prussian officials gathered information on the hazards that
horses posed to cavalry soldiers. Fatal accidents for 10 cavalry corps were col-
lected over a period of 20 years (Preussischen Statistik). The number of fatali-
ties due to kicks, x, was recorded for each year and each corps. The table below
shows the distribution of x for these 200 “corps-years.”

Observed number of corps-years
x = number of deaths in which x fatalities occurred

0 109
1 65
2 22
3 3
≥ 4 1

200

Altogether there were 122 fatalities [109(0) +65(1)+ 22(2) +3(3)+ 1(4)],
meaning that the observed fatality rate was 122/200, or 0.61 fatalities per
corps-year. Von Bortkiewicz (1898) proposed a Poisson model for X with a
mean of c = 0.61. The table below shows the observed and expected frequencies
corresponding to x= 0,1,2, . . . , etc. The expected frequencies are

n× 0.61i

i!
exp{−0.61},

for n = 200 and i = 0,1,2, and 3. We put together all values ≥ 4 as a single
class; this will ensure that the sum of the theoretical probabilities is equal to
1. For example, the expected frequencies npi are
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npi = 200 * [poisspdf(0:3, 0.61) 1-poisscdf(3, 0.61)]
%npi = 108.6702 66.2888 20.2181 4.1110 0.7119
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Fig. 13.6 Poissonness plot for von Bortkiewicz’s data. The theoretical line, log(0.61)i−0.61,
is shown in red.

Observed number of Expected number of
i # of fatalities corps-years, ni corps-years, ei
1 0 109 108.6702
2 1 65 66.2888
3 2 22 20.2181
4 3 3 4.1110
5 ≥ 4 1 0.7119

200 200

Now we calculate the statistic χ2 = ∑5
i=1 (ni −npi)2/(npi) and find the p-

value for the test and rejection region. Note that the number of degrees of
freedom is df= 5−1−1 since λ= 0.61 was estimated from the data.

ni = [109 65 22 3 1]
% ni = 109 65 22 3 1

ch2 = sum( (ni-npi).^2 ./npi )
% ch2 = 0.5999

1-chi2cdf(0.5999, 5-1-1)
% ans = 0.8965, pvalue

chi2inv(0.95, 5-1-1)
% ans = 7.8147, critical value
% rejection region [7.8147, infinity)
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The Poisson distribution in H0 is consistent with the data at the level α=
0.05. Clearly the agreement between the observed and expected frequencies is
remarkable, see also Poissonness plot in Fig. 13.6.
�

13.4 Kolmogorov–Smirnov Tests

The first measure of goodness of fit for general distributions was derived by
Kolmogorov (1933). Andrei Nikolaevich Kolmogorov (Fig. 13.7a), the most ac-
complished and celebrated Russian mathematician of all time, made funda-
mental contributions to probability theory, including a test statistic for dis-
tribution functions, some of which are named after him. Nikolai Vasilyevich
Smirnov (Fig. 13.7b), another Russian mathematician, extended Kolmogorov’s
results to two samples.

(a) (b)

Fig. 13.7 (a) Andrei Nikolaevich Kolmogorov (1905–1987); (b) Nikolai Vasilyevich Smirnov
(1900–1966).

13.4.1 Kolmogorov’s Test

Let X1, X2, . . . , Xn be a sample from a population with a continuous, but
unknown, CDF F. As in (2.2), let Fn(x) be the empirical CDF based on
X1, X2, . . . , Xn.

We are interested in testing the hypothesis

H0 : F(x)= F0(x), (∀x) versus H1 : F(x) 6= F0(x), (∃x),

where F0(x) is a fully specified continuous distribution.
The test statistic Dn is calculated from the sample as
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Dn = max
1≤i≤n

{
i
n
−F0(Xi), F0(Xi)−

i−1
n

}
.

When hypothesis H0 is true, Kolmogorov (1933) showed that the statisticp
nDn is approximately distributed as

lim
n→∞P(

p
nDn ≤ x)= K(x)= 1−2

∞∑
k=1

(−1)k−1e−2k2x2
, x ≥ 0,

which allows one to calculate critical regions and p-values for this test.
The MATLAB file kscdf.m calculates the CDF K . Since large values of

Dn are critical for H0, the p-value of the test is approximated as

p ≈ 1−K(
p

nDn),

or in MATLAB as 1-kscdf(sqrt(n)*Dn).
In practice, most KS-type tests are two-sided, testing whether F is equal

to F0, the distribution postulated by H0, or not. Alternatively, one might test
to see if the distribution is larger or smaller than a hypothesized F0 [see, for
example, Kvam and Vidakovic (2007)].

Example 13.8. To illustrate the Kolmogorov test we simulate 30 observations
from an exponential distribution with λ= 1/2.

% rand(’state’, 0);
% n = 30; i = 1:n;
% x = exprnd(1/2,[1,n]); x = sort(x);
x = [...

0.0256 0.0334 0.0407 0.0434 0.0562 0.0575...
0.0984 0.1034 0.1166 0.1358 0.1518 0.2427...
0.2497 0.2523 0.3608 0.3921 0.4052 0.4455...
0.4511 0.5208 0.6506 0.7324 0.7979 0.8077...
0.8079 0.8679 0.9870 1.4246 1.9949 2.309];

distances = [i./n - expcdf(x, 1/2); expcdf(x, 1/2) - (i-1)./n ];
Dn = max(max(distances)) %0.1048
pval = 1 - kscdf(sqrt(n)*Dn) %0.8966

The p-value is 0.8966 and H0 is not rejected. In other words, the sample
is consistent with the hypothesis of the population’s exponential distribution
E (1/2).
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The CDF K(x) is an approximate distribution for
p

nDn and for small val-
ues of n may not be precise. Better approximations use a continuity correction:

p ≈ 1−K
(p

nDn +
1

6
p

n

)
.

This approximation is satisfactory for n≥ 20.

1 - kscdf(sqrt(n) * Dn + 1/(6 * sqrt(n)) ) %0.8582

MATLAB has a built-in function, kstest, that produces similar output.

% form theoretical cdf
t = 0:0.01:20;
y = expcdf(t,1/2);
cdf = [t’ y’];
[decision, pval, KSstat, critValue] = kstest(x, cdf, 0.01, 0)

%decision = 0
%pval = 0.8626
%KSstat = 0.1048
%critValue = 0.2899

Figure 13.8 shows the empirical and theoretical distribution in this exam-
ple and it is produced by the code below.

%Plot
xx = 0:0.01:4;
plo = cdfplot(x); set(plo,’LineWidth’,2);
hold on
plot(xx,expcdf(xx, 1/2),’r-’,’LineWidth’,2);
legend(’Empirical’,’Theoretical Exponential’,...

’Location’,’SE’)

Note that in the two calculations the values of Dn statistics coincide but
the p-values differ. This is because kstest uses a different approximation to
the p-value.
�

The Kolmogorov test has advantages over exact tests based on the χ2

goodness-of-fit statistic, which depend on an adequate sample size and proper
interval assignments for the approximations to be valid. A shortcoming of the
KS test is that the F0 distribution in H0 must be fully specified. That is, if
location, scale, or shape parameters are estimated from the data, the criti-
cal region of the KS test is no longer valid. An example is Lilliefors’ test for
departures from normality when the null distribution is not fully specified.

13.4.2 Smirnov’s Test to Compare Two Distributions

Smirnov (1939) extended the Kolmogorov test to compare two distributions
based on independent samples from each population. Let X1, X2, . . . , Xm and
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Fig. 13.8 Empirical and theoretical distributions in the simulated example.

Y1,Y2, . . . ,Yn be two independent samples from populations with unknown
CDFs FX and GY . Let Fm(x) and Gn(x) be the corresponding empirical dis-
tribution functions.

We would like to test

H0 : FX (x)=GY (x) ∀x versus H1 : FX (x) 6=GY (x) for some x.

We will use the analog of the Kolmogorov statistic

Dm,n =max
{

max
1≤i≤m

{
i

m
−Gn(Xi)

}
, max

1≤ j≤n

{
j
n
−Fm(Yj)

} }
.

The limiting distribution for Dm,n can be expressed by Kolmogorov’s CDF
K as

lim
m,n→∞P

(√
mn

m+n
Dm,n ≤ x

)
= K(x),

and the p-value for the test is approximated as

p ≈ 1−K
(√

mn
m+n

Dm,n

)
. (13.3)
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This approximation is good when both m and n are large.
Remark. The approximation of the p-value in (13.3) can be improved by
continuity corrections as

p ≈ 1−K
(√

mn
m+n

(
Dm,n +

|m−n|
6mn

+bm,n

) )
,

where

bm,n = (m+n) (min(m, n)−gcd(m,n))
2mn(m+n+gcd(m,n))

and gcd(m,n) is the greatest common divisor of m and n. This approximation
is satisfactory if m,n > 20.

If m = n are not large, then exact p-values can be found by using ranks and
combinatorial calculations.

Example 13.9. To illustrate Smirnov’s test we simulate m = 39 observations
from a normal N (−1,22) distribution and n = 35 observations from Student’s
t-distribution with 10 degrees of freedom. The hypothesis of equality of distri-
butions is rejected at the level α = 0.05 since the p-values are approximately
in the neighborhood of 2%.

Notice that the corrected p-value 0.0196 is close to that in kstest2, and the
differences are due to different approximation formulas.

x =[...
-5.75 -3.89 -3.69 -3.68 -3.54 -2.59 ...
-2.53 -2.40 -2.39 -2.27 -2.02 -1.72 ...
-1.64 -1.54 -1.27 -1.11 -1.08 -1.00 ...
-0.88 -0.84 -0.47 -0.36 -0.29 -0.24 ...
-0.20 -0.19 0.02 0.15 0.25 0.45 ...
0.51 0.72 0.74 0.96 1.25 1.33 ...
1.49 2.39 2.59 ];

y=[...
-2.72 -2.18 -1.31 -1.17 -1.00 -0.94 ...
-0.78 -0.65 -0.63 -0.52 -0.40 -0.37 ...
-0.30 -0.21 -0.19 -0.11 -0.05 0.12 ...
0.14 0.25 0.27 0.35 0.45 0.48 ...
0.48 0.60 0.71 0.76 0.79 1.01 ...
1.10 1.10 1.12 1.36 2.03 ];

m = length(x); n=length(y);
i = 1:m; j = 1:n;
distances = [i./m - empiricalcdf(x, y), j./n - empiricalcdf(y, x)];
Dmn = max(max(distances)) %0.3414
z = sqrt(m * n/(m + n))*Dmn %1.4662
pval1 = 1 - kscdf(z) %0.0271
%
bmn = (m+n)/(2*m*n) * (min(m,n) - gcd(m, n))/(m + n + gcd(m,n)) %0.0123
zz = sqrt(m * n/(m + n))*(Dmn + abs(m-n)/(6*m*n) + bmn ) %1.5211
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pval2 = 1 - kscdf(zz) %0.0196
% MATLAB’s built in function
[h,p,k] = kstest2(x,y)

% 1
% 0.0202
% 0.3414

�

13.5 Moran’s Test*

Before discussing Moran’s test, we note that any goodness-of-fit null hypothe-
sis H0 : F = F0, where F0 is a fixed continuous distribution, can be restated in
terms of a uniform distribution. This is a simple consequence of the following
result:

Result. Let random variable X have a continuous distribution F. Then,
F(X ) has a uniform distribution on [0,1].

This important fact has a simple proof, since the continuity of F ensures the
existence of F−1:

P(F(X )≤ x)=P(X ≤ F−1(x))= F(F−1(x))= x, 0≤ x≤ 1.

Thus the hypothesis H0 : F = F0 for observed x1, . . . , xn is equivalent to H0: the
CDF is uniform on [0,1] for transformed values y1 = F0(x1), y2 = F0(x2), . . . , yn =
F0(xn).

Define spacings

di = y(i+1) − y(i), i = 0,1,2, . . . ,n,

where y(1) ≤ y(2) ≤ ·· · ≤ y(n) is the order statistic of y1, . . . , yn and y(0) = 0 and
y(n+1) = 1. Then Moran’s statistic

M =p
n

(
n
2

n∑
i=0

d2
i −1

)

has an approximately standard normal distribution. This approximation is
adequate if n > 30.

The hypothesis H0 : F = F0 is rejected if M > zα. The p-value is
1-normcdf(M).
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Since Moran’s M is minimized by identical spacing di = 1/(n+ 1), small
values of M may indicate nonrandom data.

Moran’s test is complementary to other goodness-of-fit tests since it is sen-
sitive to data clustering and anomalous spacing. The alternatives, consisting
of long-tailed densities that remain undetected by Pearson’s χ2 or KS tests,
may be detected by Moran’s test. The following example demonstrates that
Moran’s test is superior in detecting a long-tailed alternative compared to Kol-
mogorov’s test.

Example 13.10. In the following MATLAB script we repeated 1000 times the
following: (i) a sample of size 200 was generated from a t4 distribution and (ii)
the sample was tested for standard normality using Moran’s and Kolmogorov’s
tests. Moran’s test rejected H0 203 times while by Kolmogorov’s test H0 was
rejected 122 times.The exact number of times H0 was rejected varies slightly
depending on the random number seed; in this example we used a combined
multiple recursive generator: stream=RandStream(’mrg32k3a’);

n=200;
stream = RandStream(’mrg32k3a’);
RandStream.setDefaultStream(stream);
pvalmoran =[]; pvalks=[];
for i = 1:1000

x = trnd(4,[n 1]); %simulate t_4
y=normcdf(x,0,1); %H0: F=N(0,1)
yy =[0; sort(y); 1];
Sd = sum(diff(yy,1).^2);
M =sqrt(n)*(n * Sd/2 - 1); %Moran’s Stat
p = 1-normcdf(M);
pvalmoran = [pvalmoran p];
[h pv dn] = kstest(x, [x normcdf(x, 0, 1)]);
pvalks = [pvalks pv];

end
%Number of times H_0 was rejected in 1000 runs
sum(pvalmoran < 0.05) %203
sum(pvalks < 0.05) %122

�

13.6 Departures from Normality

Several tests are available specifically for the normal distribution. The Jarque–
Bera test (Jarque and Bera, 1980) is a goodness-of-fit measure of departure
from normality, based on the sample kurtosis and skewness. The test statistic
is defined as
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χ2
JB = n

6

(
γ2

n +
(κn −3)2

4

)
,

where n is the sample size, γn is the sample skewness,

γn =
1
n

∑n
i=1(Xi − X )3

(
1
n

∑n
i=1(Xi − X )2

)3/2 ,

and κn is the sample kurtosis,

κn =
1
n

∑n
i=1(Xi − X )4

(
1
n

∑n
i=1(Xi − X )2

)2 ,

as on p. 20.
Note that the first four moments are used jointly for the calculation of

χ2
JB. The statistic χ2

JB has an asymptotic chi-square distribution with 2 de-
grees of freedom and is a measure of deviation from the moments of normal
distribution (Sk = 0 and κ = 3). In MATLAB, the Jarque–Bera test is called
[h,p,jbstat,critval]=jbtest(x,alpha).

Lilliefors’ test (Lilliefors, 1967) for departures from normality is a version
of the KS test, where the theoretical distribution is normal but not fully spec-
ified, as the KS test requires. The test statistic is of the same type as in the
KS test. The MATLAB command for Lilliefors’ test is [h,p,ksstat,critval] =

lillietest(x, alpha), where the data to be tested are in vector x.

Example 13.11. Suppose that we generate a random sample of size 30 from an
F distribution with 5 and 10 degrees of freedom and we want to test that the
sample is normal.

x = frnd(5, 10, [1, 30]);
alpha=0.05;
[h1,p1] = jbtest(x, alpha)
%h1 = 1
%p1 = 1.0000e-003

[h2,p2] = lillietest(x, alpha)
%h2 = 1
%p2 = 0.0084

Both the Jarque–Bera and Lilliefors’ tests reject H0 that the sample is nor-
mally distributed. In this example, the Jarque–Bera test resulted in a smaller
p-value.
�
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13.7 Exercises

13.1. Q–Q Plot for
√

2χ2. Simulate N = 10,000 χ2 random variables with k = 40
degrees of freedom. Demonstrate empirically that

Z =
√

2χ2 −
p

2k−1

is approximately standard normal N (0,1) by plotting a histogram and Q–Q
plot.
Hint: df=40; zs=sqrt(2*chi2rnd(df,[1 10000]))-sqrt(2*df-1);

13.2. Not at All Like Me. You have a theory that if you ask subjects to sort
one-sentence characteristics of people (e.g., “I like to get up early in the
morning”) into five groups ranging from not at all like me (group 1) to very
much like me (group 5), the percentage falling in each of the five groups will
be approximately 10, 20, 40, 20, and 10. You have one of your friends sort
50 statements, and you obtain the following data: 8, 9, 21, 8, and 4.
Do these data support your hypothesis at α= 5%?

13.3. Cell Counts. A student takes the blood cell count of five random blood
samples from a larger volume of solution to determine if it is well mixed.
She expects the cell counts to be distributed uniformly. The data is given
below:

Sample blood Expected blood
cell count cell count

35 27.2
20 27.2
25 27.2
25 27.2
31 27.2
136 136

Can she depend on the results to be uniformly distributed? Do the chi-
square test with α= 0.05.

13.4. GSS Data. Below is part of the data from the 1984 and 1990 General Social
Survey, conducted annually by the National Opinion Research Center. Ran-
dom samples of 1473 persons in 1984 and 899 persons in 1990 were taken
using multistage cluster sampling. One of the questions in a 67-question-
long questionnaire was: Do you think most people would try to take advan-
tage of you if they got a chance, or would they try to be fair?
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1984 survey 1990 survey
1. Would take advantage of you 507 325
2. Would try to be fair 913 515
3. Depends 47 53
4. No answer 6 6

Assuming that 1984 frequencies are theoretical, using Pearson’s χ2 test ex-
plore how the 1990 frequencies agree. Use α = 0.05. State your findings
clearly.

13.5. Strokes on “Black Monday.” In a long-term study of heart disease, the
day of the week on which 63 seemingly healthy men died was recorded.
These men had no history of disease and died suddenly.

Day of week Mon. Tue. Wed. Thu. Fri. Sat. Sun.
No. of deaths 22 7 6 13 5 4 6

(a) Test the hypothesis that these men were just as likely to die on one day
as on any other. Use α= 0.05.
(b) Explain in words what constitutes the error of the second kind in the
testing in (a).

13.6. Benford’s Law. Benford’s law (Benford, 1938; Hill, 1998) concerns the
relative frequencies of leading digits of various data sets, numerical tables,
accounting data, etc. Benford’s law, also called the first digit law, states that
in numbers from many sources, the leading digit is much more often a 1
than it is any other digit (specifically about 30% of the time). Furthermore,
the higher the digit, the less likely it is to occur as the leading digit of a
number. This applies to figures related to the natural world or figures of
social significance, be it numbers taken from electricity bills, newspaper
articles, street addresses, stock prices, population numbers, death rates,
areas or lengths of rivers, or physical and mathematical constants.

Fig. 13.9 Frank Benford (1883–1948).

More precisely, the Benford law states that the leading digit n, (n= 1, . . . ,9)
occurs with probability P(n)= log10(n+1)−log10(n), or as in the table below
[probabilities P(n) rounded to 4 decimal places]:
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Digit n 1 2 3 4 5 6 7 8 9
P(n) 0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0458

An oft-cited data set is the distribution of the leading digit of all 309 num-
bers appearing in a particular issue of Reader’s Digest.

Digit 1 2 3 4 5 6 7 8 9
Count 103 57 38 23 20 23 17 15 13

At level α= 0.05, test the hypothesis that the observed distribution of lead-
ing digits in Reader’s Digest numbers follows Benford’s law.
Hint: To speed up the calculation, some theoretical frequencies rounded to
two decimal places are provided:

93.01 54.41 • 29.94 24.47 • • 15.82 14.15

13.7. Simulational Exercise.

• Generate a sample of size n= 216 from a standard normal distribution.
• Select intervals by cutting the range of simulated values by points −2.7,

−2.2, −2, −1.7, −1.5, −1.2, −1, −0.8, −0.5, −0.3, 0, 0.2, 0.4, 0.9, 1, 1.4,
1.6, 1.9, 2, 2.5, and 2.8.

• Using a χ2-test confirm the normality of the sample.
• Repeat the previous test if your sample is contaminated by a Cauchy

Ca(0,1) distribution in the following way: 0.95 * normal_sample + 0.05

* cauchy_sample.

13.8. Deathbed Scenes. Can some people postpone their death until after a spe-
cial event takes place? It is believed that famous people do so with respect
to their birthdays to which they attach some importance. A study by Philips
(1972) seems to be consistent with this notion. Philips obtained data1 on the
months of birth and death of 1251 famous Americans; the deaths were clas-
sified by the time period between the birth dates and death dates as shown
in the following table:

b e f o r e birth a f t e r
6 5 4 3 2 1 month 1 2 3 4 5

90 100 87 96 101 86 119 118 121 114 113 106

(a) Clearly formulate the statistical question based on the above observa-
tions.
(b) Provide a solution for the question formulated in (a). Use α= 0.05.

13.9. Grouping in a Vervet Monkey Troop. Struhsaker (1965) recorded, in-
dividual by individual, the composition of sleeping groups of wild verver

1 348 were people listed in Four Hundred Notable Americans and 903 are listed as the
foremost families in three volumes of Who Was Who for the years 1951–1960, 1943–1950,
and 1897–1942.
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monkeys (Cercopithecus aethiops) in East Africa. A particular large troop
was observed for 22 nights.

Size 1 2 3 4 5 6 7 8 9 10 11 ≥12
Freq 19 14 19 11 7 7 3 2 3 1 2 1

It is well known that the sizes of groups among humans in various so-
cial settings (shoppers, playgroups, pedestrians) follows a truncated Pois-
son distribution:

P(X = k)= λk exp{−λ}
k!(1−exp{−λ})

, k = 1,2,3, . . . .

Using a χ2 goodness-of-fit test, demonstrate that the truncated Poisson is
not a good model for this data at the significance level α = 0.05. To find
the theoretical frequencies, λ can be estimated by the method of moments
using an average size of X = 3.74 and the equation λ/(1− exp{−λ}) = 3.74.
In MATLAB fzero(@(lam) lam - 3.74*(1-exp(-lam)), 3) gives λ̂= 3.642.
Struhsaker further argues that in this context the truncated negative bino-
mial gives a reasonably good fit.

13.10. Crossing Mushrooms. In a botany experiment the results of crossing
two hybrids of a species of mushrooms (Agaricus bisporus) gave observed
frequencies of 120, 53, 36, and 15. Do these results disagree with theoretical
frequencies that specify a 9:3:3:1 ratio? Use α= 0.05.

13.11. Renner’s Honey Data Revisited. In Example 6.10 we argued that a
lognormal distribution with parameters µ = and σ2 = 1.00402 provides a
good fit for Renner’s honey data. Find χ2-statistics and the p-value of the
fit. State decision at level α= 0.05. The midintervals in the first column of
data set renner.mat|dat, 0.1250,0.3750,0.6250, . . . , 7.1250 correspond to
the intervals (0,0.25], (0.25,0.5], (0.5,0.75], . . . , (7,7.5].

13.12. PCB in Yolks of Pelican Eggs. A well-known data set for testing agree-
ment with a normal distribution comes from Risebrough (1972) who ex-
plored concentrations of polychlorinated biphenyl (PCB) in yolk lipids of
pelican eggs. For n = 65 pelicans from Anacapa Island (northwest of Los
Angeles), the concentrations of PCB were as follows:

452 184 115 315 139 177 214 356 166 246 177 289 175
296 205 324 260 188 208 109 204 89 320 256 138 198
191 193 316 122 305 203 396 250 230 214 46 256 204
150 218 261 143 229 173 132 175 236 220 212 119 144
147 171 216 232 216 164 185 216 199 236 237 206 87

Test the hypothesis that PCB concentrations are consistent with the normal
distribution at the level α= 0.05.
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13.13. Number of Leaves per Whorl in Ceratophyllum demersum. After spend-
ing a year with Karl Pearson in London, biometrician Raymond Pearl pub-
lished his work on mathematical and statistical modeling of growth of an
aquatic plant, Ceratophyllum demersum (Pearl, 1907). Among several in-
teresting data sets, Pearl gives the table of frequencies of numbers of leaves
per whorl.

Leaves 5 6 7 8 9 10 11 12 Total
Whorls 6 169 258 495 733 617 48 2 2328

Is the binomial distribution B in(12, p) a good fit for the data? Hint: The
probability p can be estimated from the data; the average of Leaves should
be close to 12p.

13.14. From 1998–2002 U.S. National Health Interview Survey (NHIS).
Stansfield and Carlton (2007) analyzed data in sibships of size 2 and 3 from
the 1998–2002 U.S. National Health Interview Survey (NHIS).
For the 25,468 sibships of size 2, among all 50,936 children, 10 years of age
and younger, in the NHIS data set (the youngest age cohort available), they
found that 51.38% were boys (B) and 48.62% were girls (G); the B/G ratio
was 1.0566, or about 106 boys for every 100 girls. The number of boys is
given in the following table:

Number of boys 0 1 2
Observed sibships 5,844 13,079 6,545

For the 7,541 sibships of size 3 from the same NHIS data set the number of
boys among the first two children is given in the following table:

Number of boys 0 1 2
Observed sibships 1,941 3,393 2,207

(a) If the number of boys among the first two children in sibships of size 3
is binomial B in(2,0.515), find what theoretical frequencies are expected in
the table for sibships of size 3. Are the observed and theoretical frequencies
close? Comment. Hint: Find the binomial probabilities and multiply them
by n = 7,541.
(b) For the 25,468 sibships of size 2, test the hypothesis that the probability
of a boy is 1/2 versus the one-sided alternative, that is,

H0 : p = 0.5 vs H1 : p > 0.5,

at the level α= 0.05. Hint: Be careful about the n here. The rejection region
of this test is RR = [1.645,∞).

13.15. Neuron Fires Revisited. The 989 firing times of a cell culture of neurons
have been recorded. The records are time instances when a neuron sends a
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signal to another linked neuron (a spike) and the largest time instance is
1001.
The count of firings in 200 consecutive time intervals of length 5 (= 1000/200)
time units is as follows:

2 7 5 5 1 6 8 4 6 4 5 7 7 5 4 7 4 4 5 9 6 5 6 6 5
5 6 4 10 7 8 8 2 9 5 4 4 4 3 8 3 2 7 6 7 5 6 6 4 6
5 7 3 5 6 5 5 2 7 7 6 4 8 8 9 7 3 3 3 5 6 6 4 6 4
5 4 4 5 2 3 5 1 4 4 3 2 10 4 7 2 1 7 9 4 3 6 8 6 5
2 4 4 3 7 2 2 6 1 3 7 6 6 4 7 5 5 8 7 3 5 5 4 5 6

10 3 6 9 5 7 2 8 4 4 2 3 4 3 3 3 5 4 2 2 7 4 5 4 5
3 5 3 5 5 7 2 5 5 4 8 4 3 5 7 4 4 8 5 4 3 6 4 6 4
1 7 9 4 2 5 4 4 4 4 7 2 4 4 5 2 4 7 5 12 1 5 4 6 7

Are the data consistent with a Poisson distribution?

13.16. Cloudiness in Greenwich. Pearse (1928) cites data describing the degree
of cloudiness in Greenwich, UK for days in the month of July between 1890
and 1904.

Cloudiness 0 1 2 3 4 5 6 7 8 9 10 Total
Days 320 129 74 68 45 45 55 65 90 148 676 1715

Assume that the measure of cloudiness can be modeled as a continuous
random variable C = 10 ·X , where X has a beta Be(α,β) distribution.
Find the best fitting parameters α and β and assess the goodness of fit.

13.17. Distance Between Spiral Reversals in Cotton Fibers. Tippett (1941)
discusses a frequency histogram for a data set consisting of intervals and
counts for a distance between spiral reversals in cotton fiber (Fig. 13.10).
The distances are given in units of mm−2, and the sample size was 1117.

Distance [0,2.5) [2.5,4.5) [4.5,6.5) [6.5,8.5) [8.5,10.5)
Number 7 48 100 106 84

[10.5,12.5) [12.5,16.5) [16.5,20.5) [20.5,24.5) [24.5,28.5)
72 136 94 78 69

[28.5,32.5) [32.5,36.5) [36.5,40.5) [40.5,50.5) [50.5,60.5)
53 45 36 69 40

[60.5,70.5) [70.5,80.5) [80.5,90.5) [90.5,∞) Total
31 21 17 11 1117

Using Pearson’s χ2 criterion and significance level α= 0.05, test the hypoth-
esis that the data are consistent with the χ2-distribution. Use the midpoints
of intervals to estimate the mean of a theoretical χ2-distribution. Recall
that the mean in this case is equal to the number of degrees of freedom.



Chapter References 529

Fig. 13.10 Structure of spiral reversals in cotton fiber.

MATLAB FILES AND DATA SETS USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch13.Goodness/

anacapa.m, consolidator.m, empiricalcdf.m, examples.m,
horsekicks.m, kolsm.m, ks2cdf.m, kscdf.m, moran.m, neuronfiresqq.m,
neurongof.m, notatalllikeme.m, perk.m, plotsimulqq.m, poissonness.m,
qqbivariatenormal.m, qqnorm.m, qqplotsGOF.m, RANDmillion.m,
smirnov.m, smirnov2tests.m, tippett.m, weldon.m

neuronfires.mat, RAND1Millrandomdigits.txt
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Chapter 14
Models for Tables

It seems to me that everything that happens to us is a disconcerting mix of choice and
contingency.

– Penelope Lively

WHAT IS COVERED IN THIS CHAPTER

• Contingency Tables and Testing for Independence in Categorical
Data

• Measuring Association in Contingency Tables
• Three-dimensional Tables
• Tables with Fixed Marginals: Fisher’s Exact Test
• Combining Contingency Tables: Mantel–Haenszel Theory
• Paired Tables: McNemar Test
• Risk Differences, Risk Ratios, and Odds Ratios for Paired Experi-

ments

14.1 Introduction

The focus of this chapter is the analysis of tabulated data. Although the mea-
surements could be numerical, the tables summarize only the counts along the
levels of two or more crossed factors according to which the data are tabulated.
In this text, we go beyond the traditional coverage and discuss topics such as
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three-dimensional tables, multiple tables (Mantel–Haenszel theory), paired
tables (McNemar test), and risk theory (risk differences, relative risk, and
odds ratios) for paired tables. The risk theory for ordinary (unpaired) tables
was already discussed in Chap. 10 in the context of comparing two population
proportions.

The dominant statistical procedure in this chapter is testing for the inde-
pendence of two cross-tabulated factors. In cases where the marginal counts
are fixed before the sampling, the test for independence becomes the test for
homogeneity of one factor across the levels of the other factor. Although the
concepts of homogeneity and independence are different, the mechanics of the
two tests is the same. Thus, it is important to know how an experiment was
conducted and whether the table marginal counts were fixed in advance.

The paired tables, like the paired t-test or block designs, are preferred to
ordinary (or parallel) tables whenever pairing is feasible. In paired tables, we
would usually be interested in testing the agreement of proportions.

14.2 Contingency Tables: Testing for Independence

To formulate a test for the independence of two crossed factors, we need to
recall the definition of independence of two events and two random variables.
Two events R and C are independent if the probability of their intersection is
equal to the product of their individual probabilities,

P(R∩C)=P(R) ·P(C).

For random variables independence is defined using the independence of
events. For example, two random variables X and Y are independent if the
events {X ∈ Ix} and {Y ∈ I y}, where Ix and I y are arbitrary intervals, are inde-
pendent.

To motivate inference for tabulated data we also need a brief review of
two-dimensional discrete random variables, discussed in Chap. 4. A two-
dimensional discrete random variable (X ,Y ), where X ∈ {x1, . . . , xr} and Y ∈
{y1, . . . , yc}, is fully specified by its probability distribution, which is given in
the form of a table:

y1 y2 · · · yc Marginal
x1 p11 p12 p1c p1·
x2 p21 p22 p2c p2·

xr pr1 pr2 prc pr·
Marginal p·1 p·2 p·c 1

The two components (marginal variables) X and Y in (X ,Y ) are independent
if all cell probabilities are equal to the product of the associated marginal
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probabilities, that is, if pi j = P(X = xi,Y = yj) = P(X = xi)P(Y = yj) = pi· × p· j
for each i, j. If there exists a cell (i, j) for which pi j 6= pi·×p· j , then X and Y are
dependent. The marginal distributions for components X and Y are obtained
by taking the sums of probabilities in the table, row-wise and column-wise,

respectively:
X x1 x2 . . . xr
p p1· p2· . . . pr·

and
Y y1 y2 . . . yc
p p·1 p·2 . . . p·c

.

Example 14.1. If (X ,Y ) is defined by

X \ Y 10 20 30 40
−1 0.1 0.2 0 0.05
0 0.2 0 0.05 0.1
1 0.1 0.1 0.05 0.05

then the marginals are
X −1 0 1
p 0.35 0.35 0.3

and
Y 10 20 30 40
p 0.4 0.3 0.1 0.2

, and X and

Y are dependent since we found a cell, for example, (2,1), such that 0.2 =
P(X = 0,Y = 10) 6= P(X = 0) ·P(Y = 10) = 0.35 ·0.4= 0.14. As we indicated, it is
sufficient for one cell to violate the condition pi j = pi· × p· j in order for X and
Y to be dependent.
�

Instead of random variables and cell probabilities, we will consider an em-
pirical counterpart, a table of observed frequencies. The table is defined by
the levels of two factors R and C. The levels are not necessarily numerical
but could be, and most often are, categorical, ordinal, or interval. For example,
when assessing the possible dependence between gender (factor R) and per-
sonal income (factor C), the levels for R are categorical {male, female}, and for
the C interval, say, {[0,30K ), [30K ,60K ), [60K ,100K ), ≥ 100K }. In the table
below, factor R has r levels coded as 1, . . . , r and factor C has c levels coded as
1, . . . , c. A cell (i, j) is an intersection of the ith row and the jth column and
contains ni j observations. The sum of the ith row is denoted by ni· while the
sum of the jth column is denoted by n· j .

1 2 · · · c Total
1 n11 n12 n1c n1·
2 n21 n22 n2c n2·

r nr1 nr2 nrc nr·
Total n·1 n·2 n·c n··

Denote the total number of observations n·· =
∑r

i=1 ni· =
∑c

j=1 n· j simply by n.

The empirical probability of the cell (i, j) is ni j
n , and the empirical marginal

probabilities of levels i and j are ni·
n and n· j

n , respectively.
When factors R and C are independent, the frequency in the cell (i, j) is

expected to be n · pi· · p· j. This can be estimated by empirical frequencies
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ei j = n × ni·
n

× n· j
n

,

that is, as the product of the total number of observations n and the corre-
sponding empirical marginal probabilities. After simplification, the empirical
frequency in the cell (i, j) for independent factors A and B is

ei j =
ni· ×n· j

n
.

By construction, the table containing “independence” frequencies ei j would
have the same row and column totals as the table containing observed frequen-
cies ni j, that is,

1 2 · · · c Total
1 e11 e12 e1c n1·
2 e21 e22 e2c n2·

r er1 er2 erc nr·
Total n·1 n·2 n·c n··

To measure the deviation from independence of the factors, we compare
ni j and ei j over all cells. There are several measures for discrepancy between
observed and expected frequencies, the two most important being Pearson’s
χ2,

χ2 =
r∑

i=1

c∑
j=1

(ni j − ei j)2

ei j
, (14.1)

and the likelihood ratio statistic G2,

G2 = 2
r∑

i=1

c∑
j=1

ni j log
( ni j

ei j

)
.

Both statistics χ2 and G2 are approximately distributed as chi-square with
(r−1)×(c−1) degrees of freedom and their large values are critical for H0. The
approximation is good when cell frequencies are not small. Informal require-
ments are that no empty cells should be present and that observed counts
should not be less than 5 for at least 80% of the cells. We focus on χ2 since the
inference using statistic G2 is similar.



14.2 Contingency Tables: Testing for Independence 535

Thus, for testing H0 : Factors R and C are independent, versus H1 : Factors
R and C are dependent, the test statistic is χ2 given in (14.1) and the test is
summarized as

Null Alternative α-level rejection region p-value (MATLAB)
H0 : R,C ind. H1 : R,C dep. [χ2

d f ,1−α,∞) 1-chi2cdf(chi2, df)

where d f = (r−1) · (c−1).
When some cells have expected frequencies < 5, the Yates correction for

continuity is recommended, and statistic χ2 gets the form

χ2 =
r∑

i=1

c∑
j=1

(|ni j − ei j|−0.5)2

ei j
.

We denote by pi j the population counterpart to p̂i j = ni j
n and by pi· and p· j

the population counterparts of p̂i· = ni·/n and p̂· j = n· j/n. In terms of p, the
independence hypothesis takes the form

H0 : pi j = pi· × p· j for all i, j versus H1 : pi j 6= pi· × p· j for at least one i, j.

The following MATLAB program, tablerxc.m, calculates expected fre-
quencies, the value of the χ2 statistic, and the associated p-value.

function [chi2, pvalue, exp, assoc] = tablerxc(obs)
% Contingency Table r x c for testing the probabilities
%
% Input:
% obs - r x c matrix of observations.
%
% Output:
% chi2 - statistic (approx distributed as chi-square
% with (r-1)(c-1) degrees of freedom)
% pvalue - p - value
% exp - matrix of expected frequencies
% asoc - structure containing association measures: phi,
% C, and Cramer’s V
% Example of use:
% [chi2,pvalue,exp,assoc]=tablerxc([6 14 17 9; 30 32 17 3])
%-------------------------------------------------------

[r c]=size(obs); %size of matrix
n = sum(sum(obs)); %total s. size
columns = sum(obs); %col sums 1 x c
rows = sum(obs’)’; %row sums r x 1
exp = rows * columns ./ n; %[r x c] matrix
chi2 = sum(sum((exp - obs).^2./exp ));
df=(r-1)*(c-1);
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pvalue = 1- chi2cdf(chi2, df);
% measures of association
if (df == 1)

assoc.phi = sqrt(chi2/n);
end
assoc.C = sqrt(chi2/(n + chi2));
assoc.V = sqrt(chi2/(n * (min(r,c)-1)));

Example 14.2. PAS and Streptomycin Cures for Pulmonary Tuberculo-
sis. Data released by the British Medical Research Council in 1950 (ana-
lyzed also in Armitage and Berry, 1994) concern the efficiency of para-amino-
salicylic acid (PAS), streptomycin, and their combination in the treatment
of pulmonary tuberculosis. Outcomes of sputum culture test performed on
patients after the treatment are categorized as “Positive Smear,” “Negative
Smear & Positive Culture,” and “Negative Smear & Negative Culture.”

The table below summarizes the findings on 273 treated patients with a
TB diagnosis.

Smear (+) Smear (–) Smear (–) Total
Culture (+) Culture (–)

PAS 56 30 13 99
Streptomycin 46 18 20 84
PAS & Streptomycin 37 18 35 90
Total 139 66 68 273

There are two factors here: cure and sputum results. We will test the hy-
pothesis of their independence at the level α= 0.05.

D =[ ...
56 30 13 ; %99
46 18 20 ; %84
37 18 35 ]; %90

% 139 66 68 273
[chi2,pvalue,exp] = tablerxc(D)

% chi2 = 17.6284
% pvalue = 0.0015
% exp =
% 50.4066 23.9341 24.6593
% 42.7692 20.3077 20.9231
% 45.8242 21.7582 22.4176

The p-value is 0.0015, which is significant. For α = 0.05, the rejection re-
gion of the test comprise values larger than chi2inv(1-0.05, (3-1)*(3-1)),
which is the interval [9.4877,∞). Since 17.6284 > 9.4877, the hypothesis of
independence is rejected.
�
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14.2.1 Measuring Association in Contingency Tables

In a contingency table, statistic χ2 tests the hypothesis of independence and
in some sense measures the association between the two factors. However, as
a measure, χ2 is not normalized and depends on the sample size, while its
distribution depends on the number of rows and columns. There are several
measures that are calibrated to the interval [0,1] and measure the strength
of association in a way similar to R2 in a regression context. We discuss three
measures of association: the φ-coefficient, the contingency coefficient C, and
Cramer’s V coefficient.

φ-Coefficient. If a 2×2 contingency table classifying n elements pro-

duces statistic χ2, then the φ-coefficient is defined as

φ=
√
χ2

n
.

Contingency Coefficient C. If an r× c contingency table classifying
n elements produces statistic χ2, then the contingency coefficient C is
defined as

C =
√

χ2

χ2 +n
.

Cramer’s V Coefficient. If an r × c contingency table classifying n
elements produces statistic χ2, then Cramer’s V coefficient is defined as

V =
√

χ2

n(k−1)
,

where k is the smaller of r and c, k = min{r, c}. If the number of levels
for any factor is 2, then Cramer’s V becomes the φ-coefficient.

Example 14.3. Thromboembolism and Contraceptive Use. A data set,
considered in more detail by Worchester (1971), contains a cross-classification
of 174 subjects with respect to the presence of thromboembolism and contra-
ceptive use as a risk factor.
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Contraceptive use No contraceptive use Total
Thromboembolism 26 32 58

Control 10 106 116
Total 36 138 174

Statistic χ2 is 30.8913 with p-value = 2.7289·10−8, and the hypothesis of in-
dependence of thromboembolism and contraceptive usage is strongly rejected.
For this table:

φ =
√
χ2

n
=

√
30.8913

174
= 0.4214,

C =
√

χ2

χ2 +n
=

√
30.8913

30.8913+174
= 0.3883.

For 2×2 tables φ and Cramer’s V coincide. The fourth component in the output
of tablerxc.m is a data structure with measures of association.

[chi2, pvalue, exp, stat]=tablerxc([26,32; 10,106])

%chi2 = 30.8913
%pvalue = 2.7289e-008
%
%exp =
% 12 46
% 24 92
%
%stat =
% phi: 0.4214
% C: 0.3883
% V: 0.4214

�

Example 14.4. Galton and ALW Features in Fingerprints. In his influen-
tial book Finger Prints, Sir Francis Galton details the description and distri-
butions of arch-loop-whorl (ALW) features of human fingerprints (Fig. 14.1).
Some of his findings from 1892 are still in use today.

Tables 14.1a,b are from Galton (1892) and tabulate ALW features on fore-
fingers in pairs of school children.

In Table 14.1a subjects A and B are paired at random from a large pop-
ulation of subjects. In Table 14.1b, subjects A and B are two brothers with a
random assignment of order (A, B).

Galton was interested in knowing if there was any influence of fraternity
on the dependence of ALW features. Using a χ2-test, test for the dependence
in both tables.

H0: Individuals A and B are independent if characterized by their finger-
print features.
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(a) (b) (c)

Fig. 14.1 (a) Arch, (b) loop, and (c) whorl features in a fingerprint.

Table 14.1 (a) Table with random pairing of children. (b) Table with fraternal pairing.

A
Arch Loop Whorl

B
Arch 5 12 8
Loop 8 18 8
Whorl 9 20 13

A
Arch Loop Whorl

B
Arch 5 12 2
Loop 4 42 15
Whorl 1 14 10

(a) (b)

MATLAB output:

[chisq, p, expected,assoc]=tablerxc([5 12 8; 8 18 8; 9 20 13])
%(a) random pairing
%chisq = 0.6948
% p = 0.9520
% expected =
% 5.4455 12.3762 7.1782
% 7.4059 16.8317 9.7624
% 9.1485 20.7921 12.0594
% assoc =
% C: 0.0827
% V: 0.0586

[chisq, p, expected,assoc]=tablerxc([5 12 2; 4 42 15; 1 14 10])
%(b) fraternal pairing
% chisq = 11.1699
% p = 0.0247
% expected =
% 1.8095 12.3048 4.8857
% 5.8095 39.5048 15.6857
% 2.3810 16.1905 6.4286
% assoc =
% C: 0.3101
% V: 0.2306

It is evident that for random pairing, the hypothesis of independence H0 is
not rejected (p-value 0.9520), while in the case of fraternal pairing the finger-
print features are significantly dependent (p-value 0.0247).
�

Power Analysis. Power analysis for contingency tables involves evalua-
tion of a noncentral χ2 in which the noncentrality parameter λ depends on an
appropriate effect size.
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The traditional effect size in this context is Cohen’s w, which is in fact
equivalent to the φ-coefficient, φ=

√
χ2/n, where n is the total table size. Un-

like the φ-coefficient which is used for 2×2 tables only, w is used for arbitrary
r×c tables and can exceed 1. Effects w = 0.1,0.3 and 0.5 correspond to a small,
medium and large size, respectively.

For prospective analyses, the noncentrality parameter λ is nw2 while for
retrospective analyses λ is the observed χ2. The power is

1−β= 1−ncχ2(χ2
k,1−α, k,λ),

where k = (r−1)× (c−1) is the number of degrees of freedom and χ2
k,1−α is the

(1−α)-quantile of a (central) χ2
k distribution.

Example 14.5. (a) Find the power in a 2×6 contingency table, for n = 180 and
w = 0.3 (medium effect).

w = 0.3; n = 180; k = (2-1)*(6-1); alpha = 0.05; lambda=n*w^2
pow = 1-ncx2cdf( chi2inv(1-alpha,k), k, lambda) %0.8945

(b) What sample size ensures the power of 95% in a contingency table 2×6,
for an effect of w = 0.3 and α= 0.05?

beta = 0.05; alpha = 0.05; k = (2-1)*(6-1); w=0.3;
pf = @(n) ncx2cdf( chi2inv(1-alpha,k), k, n*w^2) - beta;
ssize = fzero(pf, 200) %219.7793 approx 220

�

14.2.2 Cohen’s Kappa

Cohen’s kappa is an important descriptor of agreement between two testing
procedures. This descriptor is motivated by calibrating the observed agree-
ment by an agreement due to chance. If pc is the proportion of agreement due
to chance and po the proportion of observed agreement, then

κ̂= po − pc

1− pc
. (14.2)

For a paired table representing the results of n tests by two devices or
ratings by two raters

+ −
+ a b a+b
− c d c+d

a+ c b+d n = a+b+ c+d

Cohen’s kappa index is defined as



14.2 Contingency Tables: Testing for Independence 541

κ̂= 2(ad−bc)
(a+b)(b+d)+ (a+ c)(c+d)

. (14.3)

The expression in Eq. (14.2) is equivalent to that in Eq. (14.3) for po = a/n+
d/n and pc = (a+b)(a+ c)/n2 + (b+d)(c+d)/n2, respectively. The former is the
observed agreement equal to the proportion of (+,+) and (–,–) outcomes, while
the latter is the proportion of agreement when the results are independent
within fixed marginal proportions.

There are no formal rules for judging κ̂, but here is the standard:

κ̂ Degree of agreement
<0.20 Poor
0.20 – 0.40 Fair
0.40 – 0.60 Moderate
0.60 – 0.80 Good
0.8 – 1 Very good

The MLE of κ is

κ̂mle =
4(ad−bc)− (b− c)2

(2a+b+ c)(2d+b+ c)
,

and it is obtained from (14.2) by taking po = a/n+ d/n and pc = P2 + (P ′)2,
where P = (2a+b+c)/(2n) and P ′ = (2d+b+c)/(2n) are, respectively, the MLEs
of the prevalence of + and – in the population.

There are several expressions for the variance of κ̂. Two standard estima-
tors are the Block–Kraemer (BK) and Garner (G) approximations:

(1) (BK):

Var κ̂≈ 1− κ̂
n

(
(1− κ̂)(1−2κ̂)+ κ̂(2− κ̂)

2P(1−P ′)

)
;

(2) (G)

Var κ̂≈ 4
(1− pc)2n2( 1

a+1 + 1
b+1 + 1

c+1 + 1
d+1 )

.

The sampling distribution of κ̂ is asymptotically normal and the approx-
imation is satisfactory if n is large and κ not too close to 1. This leads, in a
standard manner, to approximate confidence intervals for κ.

Example 14.6. A company producing a medical sensor A is applying for FDA
approval of a new version B. Both sensors A and B are prone to errors, and a
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gold standard is absent. The FDA is requesting that the new sensor be compa-
rable to the currently used one, and the company decides to include Cohen’s κ̂
statistic in the report.

The experiment consisted of n = 2803 trials and resulted in a paired table
[97 11; 6 2689], where 97 was the number of (+,+) outcomes and 2689 the
number of (–,–) outcomes. The code cohen.m finds Cohen’s κ̂ and 95% confi-
dence intervals for the population κ, based on the two estimators of variance,
Block-Kraemer and Garner.

data =[97 11; 6 2689]
%data =
% 97 11
% 6 2689
a=data(1,1); b=data(1,2); c=data(2,1); d=data(2,2);
apb = a+b; cpd = c+d; apc = a+c; bpd = b+d;
n = a + b + c + d;
%------------
p0 = (a + d)/n; %Observed agreement
pc = (apb*apc + cpd*bpd)/n^2; %Chance agreement
Pre = (2*a + b + c)/(2 * n); %Prevalence of +
pcc = Pre^2 + (1-Pre)^2; %MLE of chance agreement
%------------
kappa = 2 * (a * d - b * c)/(apb*bpd + apc*cpd) %0.9163
%or kappa=(p0-pc)/(1-pc)

kappamle = (4 * (a*d - b*c) - (b -c)^2)/...
((2 * a + b + c) * (2 * d + b + c)) %0.9163

%or kappamle=(p0-pcc)/(1-pcc)
%------------
%Block-Kraemer variance estimator
varbk = (1- kappa)/n * ( (1- kappa)*(1-2* kappa) + ...

(kappa * (2 - kappa)/(2 * Pre * (1-Pre)))) %4.0731e-004
%Garner variance estimator
vargarner = 4/( (1- pc)^2 * n^2 * (1/(a+1) + 1/(b+1) + ...

1/(c+1) + 1/(d + 1) ) ) %4.0971e-004
%------------
%Confidence intervals
[ kappa - 1.96 * sqrt(varbk) ...

kappa + 1.96 * sqrt(varbk)] %0.8767 0.9558
[ kappa - 1.96 * sqrt(vargarner) ...

kappa + 1.96 * sqrt(vargarner)] %0.8766 0.9560

Cohen’s κ is estimated to be 91.63%, which represents very good agree-
ment.
�
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14.3 Three-Way Tables

A natural extension of two-way tables for testing the independence of two fac-
tors are n-dimensional tables for testing the independence of n factors. We
will discuss a three-dimensional extension; the interested reader can consult
Zar (2007), Agresti (2002), or Fienberg (2000) for more detailed coverage. In
three-dimensional tables the counts constitute three-dimensional arrays char-
acterized by rows, columns, and pages. We associate factors with these three
dimensions and consider row, column, and page factors (R, C, and P). In the
cell (i, j,k) there are ni jk observations, i = 1, . . . , r; j = 1, . . . , c; and k = 1, . . . , p.

Denote the total number of observations by n. The empirical probabil-
ity of the cell (i, j, k) is ni jk/n, and the empirical marginal probabilities of
row i, column j, and page k are ni··/n, n· j·/n, and n··k/n. The numerators
are calculated as the sums over all indices replaced by dots. For example,
n· j· =

∑r
i=1

∑p
k=1 ni jk, j = 1, . . . , c.

We are interested in testing the hypothesis H0 that the factors R, C, and P
are independent. The alternative H1 would be that the factors are dependent.
Under H0, the frequency in the cell (i, j, k) is expected to be

ei jk = n × ni··
n

× n· j·
n

× n··k
n

,

as the product of the total number of observations n and the corresponding
empirical marginal probabilities. After simplification, the expected frequency
in the cell (i, j,k) becomes

ei jk = ni·· ×n· j· ×n··k
n2 .

The test statistic is

χ2 =
r∑

i=1

c∑
j=1

p∑
k=1

(ni jk − ei jk)2

ei jk
, (14.4)

and the likelihood ratio statistic is

G2 = 2
r∑

i=1

c∑
j=1

p∑
k=1

ni jk log
( ni jk

ei jk

)
.
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When H0 is true, both statistics χ2 and G2 follow approximately a χ2 distribu-
tion with rcp− r− c− p+2 degrees of freedom. Large values of χ2 are critical
for H0.

If H0 is rejected, then multiple alternatives are possible. For example, all
three factors R, C, and P are mutually dependent, factors R and C are de-
pendent but both are independent of factor P, and so on. To specify why H0 is
rejected, one needs to test the hypothesis whether each single factor is inde-
pendent of the other two. There are three such tests, and they are summarized
in the following table:

Factor ei jk d f
R vs. C,P ni̇̇×n· jk

n rcp− cp− r+1
C vs. R,P ni̇̇×n· jk

n rcp− rp− c+1
P vs. R,C ni̇̇×n· jk

n rcp− rc− p+1

Here ni j· =
∑

k ni jk, n· jk = ∑
i ni jk, and ni·k = ∑

j ni jk. Also, as before ni·· =∑
j
∑

k ni jk, n· j· =
∑

i
∑

k ni jk, and n··k =∑
i
∑

j ni jk. The χ2 statistic is calculated
as in (14.4) and the degrees of freedom are given in the table.

Example 14.7. Anolis Lizards of Bimini. This well-known data set comes
from the paper of Schoener (1968) and is also used in Fienberg (1970). The
researcher was interested in structural habitat categories for Anolis lizards
of Bimini: sagrei (brown anole) adult males versus distichus (trunk anole)
adult and subadult males. The brown anole and trunk anole are medium-
sized, fairly robust, “trunk-ground” lizards. They generally prefer the fairly
open vegetation of disturbed sites, where they adopt a head-down, sit-and-
wait posture and perch low on large trunks or fenceposts (Fig. 14.2).

Fig. 14.2 Brown anole (Anolis sagrei) in typical position at its perch.

The researcher was interested in the preferences of these two species with
respect to the perch height and diameter.
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A. sagrei A. distichus
Perch Diameter Perch Diameter
≤ 4 > 4 ≤ 4 > 4

Perch Height > 4.75 32 11 61 41
(in feet) ≤ 4.75 86 35 73 70

The data is classified with respect to three dichotomous factors: Height at
levels Low (≤ 4.75) and High (> 4.75), Diameter at levels Small (≤ 4) and Large
(> 4), and Species with levels A. sagrei and A. distichus. Are these three fac-
tors independent? The null hypothesis is that the factors are independent and
the alternative is that they are not. The MATLAB program tablerxcxp.m

calculates the expected frequencies (under mutual independence hypothesis)
and provides the χ2 statistic, its degrees of freedom, and the p-value. This
program also outputs the expected frequencies in the format that matches the
input data. Here, Height is the row factor R, Diameter is the column factor C,
and Species is the page factor P.

anolis = [32 11; 86 35];
anolis(:,:,2)=[61 41; 73 70];
[ch2 df pv exp]=tablerxcxp(anolis)

%ch2 = 23.9055
%df = 4
%pv =8.3434e-005
%exp(:,:,1) =
% 35.8233 22.3185
% 65.2231 40.6351
%exp(:,:,2) =
% 53.5165 33.3417
% 97.4370 60.7048

The hypothesis H0 is rejected (with p-value < 5%), and we infer that the
three factors are not independent. However, this analysis does not fully ex-
plain the dependencies responsible for rejecting H0. Are all three factors de-
pendent, or maybe two of the factors are mutually dependent and the third
is independent of both? When H0 is rejected, we need a partial independence
test, similar to pairwise comparisons in the case where the ANOVA hypothesis
is rejected. The MATLAB program for this test is partialrxcxp.m.

[ch2 df pv exp]=partialrxcxp(anolis,’r_cp’)
%ch2 = 12.3028; df=3; pv = 0.0064, exp=...

[ch2 df pv exp]=partialrxcxp(anolis,’c_pr’)
%ch2 = 14.4498; df=3; pv = 0.0024, exp=...

[ch2 df pv exp]=partialrxcxp(anolis,’p_rc’)
%ch2 = 23.9792; df=3; pv =2.5231e-005, exp=...

Three tests are performed: (i) the row factor independent of column/page
factors (partial = ’r_cp’), (ii) the column factor independent of row/page fac-
tors (partial = ’c_rp’), and (iii) the page factor independent of row/column
factors (partial = ’p_rc’). It is evident from the output that all three tests
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produced significant χ2, that is, each factor depends on the two others. Since
Height was the row factor R, Diameter the column factor C, and Species the
page factor P, we conclude that the strongest dependence is that of Species
factor on the height and diameter of the perch, partialrxcxp(anolis,’p_rc’),
with a p-value of 0.000025.
�

14.4 Contingency Tables with Fixed Marginals: Fisher’s
Exact Test

In his book, Fisher (1935) provides an example of a small 2×2 contingency
table related to a tea-tasting experiment, namely, a woman claimed to be able
to judge whether tea or milk was poured in a cup first. The woman was given
eight cups of tea, in four of which tea was poured first, and was told to guess
which four had tea poured first. The contingency table for this design is

Guess milk first Guess tea first Total
Milk first x 4− x 4
Tea first 4− x x 4

Column total 4 4 8

The number of correct guesses “Milk first” in the cell (1,1), x, can take

values 0, 1, 2, 3, or 4 with the probabilities (4
x)( 4

4−x)
(8

4)
, as in

hygepdf(0:4, 8,4,4)
% ans = 0.0143 0.2286 0.5143 0.2286 0.0143

These are hypergeometric probabilities, applicable here since the marginal
counts are fixed.

For x = 4 the probability of obtaining this table by chance is 0.0143, while
for x = 3 the probability of getting this or a more extreme table by chance
is 0.2286 + 0.0143 = 0.2429, and so on. Thus the probability of the woman’s
guessing correctly, i.e., if x= 4, would be less than 5%.

Suppose that in the table

Column 1 Column 2 Row total
Row 1 a b a+b
Row 2 c d c+d

Column total a+ c b+d n = a+b+ c+d

marginal counts a+ b, c+d, a+ c, and b+d are fixed. Then a, b, c, and d are
constrained by these marginals. We are interested if the probabilities that an
observation will be in column 1 are the same for rows 1 and 2. Denote these
probabilities as p1 and p2. The null hypothesis here is not the hypothesis of
independence but the hypothesis of homogeneity, H0 : p1 = p2. The test is close
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to the two-sample problem considered in Chap. 10; however, in this case the
samples are dependent because of marginal constraints.

The statistic T to test H0 is simply the number of observations in the cell
(1,1):

T = a.

If H0 is true, then T has a hypergeometric distribution H G (n,a+c,a+b), that
is

P(T = x)=
(a+c

x
)
·
( b+d
a+b−x

)
( n
a+b

) , x= 0,1, . . . ,min{a+b,a+ c}.

The p-value against the one-sided alternative H1 : p1 < p2 is hygecdf(a,

n, a+c, a+b) and against the alternative H1 : p1 > p2 is 1 - hygecdf(a-1, n,

a+c, a+b). If the hypothesis is two-sided, then the p-value cannot be obtained
by doubling one-sided p-value due to asymmetry of the hypergeometric dis-
tribution. The two-sided p-value is obtained as the sum of all probabilities
hygepdf(x, n, a+c, a+b), x = 0,1, . . . ,min{a+ b,a+ c} which are smaller than
or equal to hygepdf(a, n, a+c, a+b).

Example 14.8. There are 22 subjects enrolled in a clinical trial and 9 are fe-
males. Researchers plan to administer 11 portions of a drug and 11 placebos.
Only 2 females are administered the drug. Are the proportions of males and
females assigned to the drug significantly different? What are the p-values for
one- and two-sided alternatives?

a = 2; b = 7; c = 9; d =4;
n = a + b + c + d;
T = a;
pval = hygecdf(T,n,a+c,a+b) %H1: p1<p2 pval=0.0402
%
pa = hygepdf(T,n,a+c,a+b);
for i = 1:min(a+b, a+c)+1

p(i) = hygepdf(i-1,n,a+c,a+b) ;
end
pval2 = sum(p(p <= pa)) %H1: p1 ~= p2 pval2=0.1179

Since the one-sided p-value is less than 5%, we reject the hypothesis of
homogeneity of adminstration of a drug versus placebo with respect to gender.
For the two-sided alternative, we fail to reject H0.
�

Example 14.9. The Effect of Passive Smoking on Lung Cancer. Lawal
(2003) considers the following data originally published by Correa et al. (1983)
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on the effect of passive smoking on lung cancer. A total of 155 non-smoking
ever-married females were tabulated by their lung cancer status and hus-
band’s smoking status.

Is the proportion of lung cancer cases homogeneous with respect to the
husband’s smoking status? Find the p-value for both one- and two-sided alter-
natives.

Smoking status
Case Control Total

Spouse smoked 14 61 75
Spouse did not smoke 8 72 80

Total 22 133 155

Here H0 : p1 = p2 and H1 : p1 > p2 or H1 : p1 6= p2.

a = 14; b = 61; c = 8; d =72;
n = a + b + c + d;
T = a;
%H1: p1 > p2
pval = 1-hygecdf(T-1,n,a+c,a+b) %0.0941
%H1: p1 ~= p2
pa = hygepdf(T,n,a+c,a+b);
for i = 1:min(a+b, a+c)+1

p(i) = hygepdf(i-1,n,a+c,a+b) ;
end
pval2 = sum(p(p <= pa)) %0.1669

Thus, Fisher’s exact test fails to reject the null hypothesis at 5% signifi-
cance level.
�

Fisher’s exact test remains valid for designs with random row totals, ran-
dom column totals, or tables with random marginals (as in the previous sec-
tion). In this case the tests are conservative, and more powerful versions exist.
A benefit of using Fisher’s exact test is that it operates with small cell frequen-
cies, for example, a 0 count in a table cell is a possibility. Since χ2 or normal
approximations assume large n and npi js preferably larger than 5, the reason
for the popularity of Fisher’s exact test is obvious.

14.5 Multiple Tables: Mantel–Haenszel Test

In Chap. 10, p. 380, 2×2 tables were discussed in the context of comparing two
proportions. Here we discuss multiple 2×2 tables and inference from combined
information. The Mantel–Haenszel (Fig. 14.3a,b) methodology can be used in
2×2 tables to control for a variable that stratifies the data. This leads to mul-
tiple tables, one for each level of controlled variable. The Mantel–Haenszel
methodology can be used for (i) testing the conditional independence of two
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factors or (ii) measuring the degree of conditional association (risk ratios).
All conditioning is on the variable by which the tables are stratified. There
are several other uses of the Mantel–Haenszel methodology such as in sur-
vival analysis (longrank tests of Peto and Peto) and in depairing of McNemar’s
paired designs.

14.5.1 Testing Conditional Independence or Homogeneity

Suppose that k independent classifications into a 2×2 table are observed. We
could denote the ith such table by

ai bi ai +bi
ci di ci +di

ai + ci bi +di ni

The tables give counts broken down by binary levels of two factors, and the
separate tables usually correspond to the levels of a third factor that needs
to be controlled. Imagine that we want to test for the independence of two
factors, say, political association (Democrat, Republican) and opinion about
some social issue (Support, Oppose). The single contingency table may not be
significant, but when controlled by gender (two tables, one for males, the other
for females) or by age group, the dependence may turn out significant. Thus,
multiple tables make inference more precise by controlling for an influential
variable.

For each of k tables consider cell at the position (1,1), so called pivot, with
ai counts. If the two tabulated factors are independent, then the counts ai
should be close to “expected” counts ei = (ai +bi)(ai + ci)/ni.

The test statistic measuring discrepancies in the pivot cell over all k tables
is

χ2 = (|A−E|−1/2)2

V
, where (14.5)

A =
k∑

i=1
ai, E =

k∑
i=1

ei, V =
k∑

i=1

(ai +bi)(ci +di)(ai + ci)(bi +di)
n2

i (ni −1)
,

which has an approximately χ2-distribution with 1 degree of freedom when
the (null) hypothesis of independence/homogeneity is true. Large values of χ2

are critical for H0.
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It is interesting that even for sparse individual tables the χ2-approximation
holds as long as the sum of row totals in all tables is larger than 20, say,∑

i(ai +bi),
∑

i(ci +di)> 20.
As in contingency tables, if the marginal sums are fixed in advance, the

subsequent inference does not concern the independence; it concerns the ho-
mogeneity of one factor within the levels of the other factor. The following ex-
ample tests for homogeneity of proportions of cancer incidence among smokers
and nonsmokers stratified by populations in different cities.

Example 14.10. The three 2 × 2 tables provide classification of people from
three Chinese cities, Zhengzhou, Taiyuan, and Nanchang, with respect to
smoking habits and incidence of lung cancer (Liu, 1992).

Zhengzhou Taiyuan Nanchang
Cancer Diagnosis: yes no total yes no total yes no total

Smoker 182 156 338 60 99 159 104 89 193
Nonsmoker 72 98 170 11 43 54 21 36 57

Total 254 254 508 71 142 213 125 125 250

We can apply the Mantel–Haenszel test to decide if the proportions of can-
cer incidence for smokers and nonsmokers coincide for the three cities, i.e.,
H0 : p1i = p2i, where p1i is the proportion of incidence of cancer among smok-
ers in city i and p2i is the proportion of incidence of cancer among nonsmokers
in city i, i = 1,2,3. We use the two-sided alternative, H1 : p1i 6= p2i, for some
i ∈ {1,2,3} and fix the type I error rate at α= 0.10.

To compute χ2 in (14.5), we find A, E, and V . From the tables, A =∑
i ai =

182+60+104= 346. Also, E =∑
i e i = 338·254/508+ 159·71/213+193·125/250=

169+53+96.5= 318.5.

V =
k∑

i=1

(ai +bi)(ci +di)(ai + ci)(bi +di)
n2

i (ni −1)

= 338 ·254 ·170 ·254
5082 ·507

+ 159 ·71 ·54 ·142
2132 ·212

+ 193 ·125 ·57 ·125
2502 ·249

= 28.33333+9+11.04518= 48.37851.

Therefore,

χ2 = (|346−318.5|−0.5)2

48.37851
= 15.0687.

Because the statistic χ2 is distributed approximately as χ2
1, the p-value (via

MATLAB m-file mantelhaenszel.m) is 0.0001.

[chi2, pval] = mantelhaenszel([182 156; 72 98; ...
60 99; 11 43; 104 89; 21 36])
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%chi2 = 15.0687
%pval = 1.0367e-004

In this case, there is clear evidence that the cancer rates are not homogeneous
among the three cities.
�

14.5.2 Conditional Odds Ratio

Measures of association in a 2× 2 table have been discussed in “risk” sum-
maries: risk ratio and odds ratio (Chap. 10) are examples. Suppose that k
independent classifications into a 2×2 table are observed.

Let the rows in the ith table

Presence Absence
Group 1 ai bi ai +bi
Group 2 ci di ci +di

ai + ci bi +di ni

represent Groups 1 and 2 and the columns Presence/Absence of a particular
attribute. For example, Groups could be case and control subjects and Pres-
ence/Absence can be related to a particular risk factor. The tables can be strat-
ified to control for some other risk factor or demographic feature of the subjects
such as gender, age, smoking status, etc.

Then the proportion of subjects with the attribute present for Group 1
is ai/(ai + bi), and the proportion of subjects with the attribute present for
Group 2 is ci/(ci +di).

The observed odds ratio (between the groups) for a single ith table is

ai/bi

ci/di
= aidi

bi ci
.

The combined odds ratio for all k strata tables is defined as

ÔRMH =
∑

i aidi/ni∑
i bi ci/ni

.

The expression ÔRMH was proposed in Mantel and Haenszel (1959) and repre-
sents the weighted average of individual odds ratios ai di

bi ci
with weights bi ci/ni.

An approximation to the variance of the log odds ratio ÔRMH is given by
the RGB formula (Robins et al., 1986):
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Var (log(ÔR))=
∑

i RiPi

2R2 +
∑

i PiSi +QiRi

2RS
+

∑
i SiQi

2S2 ,

where Pi = (ai +di)/ni, Qi = (bi + ci)/ni, Ri = aidi/ni, Si = bi ci/ni, R = ∑
i Ri,

and S = ∑
i Si. If k is equal to 1, the RGB variance formula reduces to the

familiar ( 1
a + 1

b + 1
c + 1

d ), (p. 383).
The (1−α)100% confidence interval for OR is

[
ÔRMH · exp{−z1−α/2σ̂}, ÔRMH · exp{z1−α/2σ̂}

]
,

where σ̂=
√
Var (log(ÔR)).

(a) (b) (c)

Fig. 14.3 (a) Nathan Mantel (1919–2002), (b) William Haenszel (1910–1998), and (c) Quinn
McNemar (1900–1986).

14.6 Paired Tables: McNemar’s Test

Another type of table commonly used in dental, opthalmology, and pharmacol-
ogy trials is matched-pair tables summarizing the designs in which interven-
tions are applied to the same patient. For example, in randomized split-mouth
trials comparing the effectiveness of tooth-specific interventions to prevent de-
cay, one tooth in a subject is randomly selected to receive treatment A while
the contralateral tooth in the same subject receives treatment B. Another ex-
ample is crossover trials testing the efficacy of drugs. In this design, a patient
is randomly administered treatment A or B in the first time period and then
administered the remaining treatment in the second time period. The link
between the split-mouth design and crossover trials is apparent – the tooth
location in the split-mouth design is analogous to time in the crossover design.

The matched-pair design has statistical advantages. Because the control
and test groups are subject to the same environment, this design controls for
many confounding factors. Thus differences in outcomes between test and con-



14.6 Paired Tables: McNemar’s Test 553

trol groups are likely attributable to the treatment. Moreover, since control
and test groups receive both interventions, matched-pair studies usually re-
quire no more than half the number of subjects to produce the same precision
as parallel group studies.

McNemar’s test (after Quinn McNemar, Fig.14.3c) used for inference in
paired tables. Although data for the McNemar test resemble contingency ta-
bles, the structure of the tables is quite different and the inference is quite
different. For simplicity, assume that measurements at Before and After on
the same subject result in Positive and Negative responses. From N subjects
we obtain 2N responses, or N pairs of responses, organized as follows:

After
Positive Negative Total

Before
Positive A B A+B
Negative C D C+D

Total A+C B+D N

For example, A is the number of subjects (pairs of responses) where both
Before and After resulted in a positive. More generally, Before and After could
be any two different groups of matched subjects that produce binary responses.

The marginal sum A+B is the number of positives in Before and A+C is
the number of positives in After. The proportion of positives in Before is p̂1 =
A+B

N , while the proportion of positives in After is p̂2 = A+C
N . Let the population

counterparts of p̂1 and p̂2 be p1 and p2.

14.6.1 Risk Differences

The McNemar test examines the difference between the proportions that de-
rive from the marginal sums and tries to infer if the two population propor-
tions p1 and p2 differ significantly. The difference between this test and the
test for two proportions from Chap. 10, p. 381, is that in the paired tables
the two proportions are not independent. Note that both sample proportions
depend on A from the upper left cell of the table. The inference about the dif-
ference between p1 and p2 involves only entries B and C from the table, since
A/N cancels.

Under the hypothesis H0 : p1 = p2, both B and C are distributed as bino-
mial B in(B+C,0.5). In this case, EB = B+C

2 and Var (B)= B+C
4 . By the CLT,

Z = B−EBp
Var (B)

= B− (B+C)/2

2
p

B+C
.

Thus, after simplifying and squaring, we obtain the statistic
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χ2 = Z2 = (B−C)2

B+C
,

which has an approximately χ2-distribution with 1 degree of freedom. Large
values of χ2 are critical.

When B+C is small, it is recommended to use a continuity correction in χ2

as χ2 = Z2 = (|B−C|−1)2
B+C .

The confidence interval for the difference in proportions is

[p̂1 − p̂2 − z1−α/2s, p̂1 − p̂2 + z1−α/2s] ,

where s is the square root of s2, and

s2 = p̂1(1− p̂1)
N

+ p̂2(1− p̂2)
N

+ 2( p̂11 p̂22 − p̂12 p̂21)
N

,

where p̂11 = A/N, p̂12 = B/N, p̂21 = C/N, and p̂22 = D/N. Note that the first
two factors in the expression for s2 are for the case of independent proportions,
while the third factor accounts for the dependence.

14.6.2 Risk Ratios

The risk ratio is defined as

RR = p̂1

p̂2
= A+B

A+C
,

with variance for the log(RR),

Var (log(RR)= 1
A+B

+ 1
A+C

− 2A
(A+B)(A+C)

.

14.6.3 Odds Ratios

To conduct the inference on odds ratios in paired tables, we use the Mantel–
Haenszel theory with parallel (unpaired) tables derived from a paired table.
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Any table with N paired observations generates N Mantel–Haenszel tables

1 0
0 0

7→ 1 1
0 0

0 1
0 0

7→ 1 0
0 1

0 0
1 0

7→ 0 1
1 0

and
0 0
0 1 7→ 0 0

1 1

where the first table is paired and the second (red) is parallel.

After
Positive Negative

Before
Positive • •
Negative • •

−→
Before After

Positive • •
Negative • •

For example, 1 in the paired cell
1 0
0 0

where both Before and After are Posi-

tive is translated to 1 for each Before and After in a table
1 1
0 0

, contrasting

Positives and Negatives for Before and After. From an analysis of Mantel–
Haenszel tables one can show that the empirical odds ratio for the probabili-
ties p1 and p2 is

OR = B
C

.

To find the confidence interval on the log(OR) we use the Miettinen’s test-
based method (Miettinen, 1976). First note that when H0 is true, McNemar’s
χ2-statistic can be expressed as

χ2 = (log(OR)−0)2

Var [log(OR)]
,

in which the only unknown is Var [log(OR)] since log(OR)= log(B/C) and χ2 =
(|B−C| −1)2/(B+C) are easy to find. By solving it for Var [log(OR)], one can
find the confidence interval for log(OR) as

[log(OR)− z1−α/2s, log(OR)+ z1−α/2s] ,

where s =
√
Var [log(OR)]. Of course, the confidence interval for the OR is

derived from the above using antilogs.
Another formula for variance in a matched-pairs table comes from the

Robins, Breslow, and Greenland (RGB) estimator for Mantel–Haenszel un-
matched cases, s =

√
Var [log(OR)] =

p
1/B+1/C. It is easy to see that the

estimator of log(OR) is consistent since when the number of tables goes to
infinity, s→ 0.
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MATLAB function mcnemart.m computes the estimators and confidence
intervals for McNemar’s layout.

function [] = mcnemart(matr)
% input matr is matrix [A B; C D]
A=matr(1,1); B= matr(1,2); C= matr(2,1); D=matr(2,2);
if( A*B*C*D==0 )

matr = matr + 0.5;
end
%
N = A + B + C + D;
%
p1 = (A + B)/N; %prob row
p2 = (A + C)/N; %prob column

p11 = A/N; p12 = B/N; p21 = C/N; p22 = D/N;

% risk difference
diffp1p2 = p1 - p2

delta = p11*p22 - p12*p21
s = sqrt( p1*(1-p1)/N + p2*(1-p2)/N + 2*delta/N )
ssel = sqrt( ((B+C)*N - (B-C)^2)/N^3 )

lbd = p1 - p2 - norminv(0.975)*s;
ubd = p1 - p2 + norminv(0.975)*s;

cidiff = [lbd, ubd]

% odds ratio
or1 = B/C
% miettinen approx
s2lor1 = (log(B/C))^2 * (B+C)/((abs(B-C)-1)^2 + 0.0000001)
slor1 = sqrt(s2lor1)

lblor1 = log(or1) - norminv(0.975)*slor1 ;
ublor1 = log(or1) + norminv(0.975)*slor1 ;

miettlint = [lblor1, ublor1]
miettint = [exp(lblor1), exp(ublor1)]

% RGB approx
slor2 = sqrt(1/B + 1/C)

lblor2 = log(or1) - norminv(0.975)*slor2 ;
ublor2 = log(or1) + norminv(0.975)*slor2 ;
rgblint = [lblor2, ublor2]
rgbint = [exp(lblor2), exp(ublor2)]
% --------- exact method ------------------
df1l = 2*C +2; df2l = 2*B;
F1 = finv(0.975, df1l, df2l);
tl = B/(B+(C+1)*F1 );
orexactl = tl/(1-tl);

df1u = 2*B +2; df2u = 2*C;
F2 = finv(0.975, df1u, df2u);
tu = (B+1)*F2/(C+(B+1)*F2 );
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orexactu = tu/(1-tu);
exactorci = [orexactl, orexactu]

%--------- approximate prob ---------
phat = B/(B+C);
pl = phat - norminv(0.975)*sqrt(phat * (1-phat)/(B+C)) - 1/(2*B+2*C);
pu = phat + norminv(0.975)*sqrt(phat * (1-phat)/(B+C)) + 1/(2*B+2*C);
intor = [pl/(1-pl), pu/(1-pu)]

Example 14.11. Split-Mouth Trials for Dental Sealants. Randomized split-
mouth trials (RSM) are frequently used in dentistry to examine the effective-
ness of preventive interventions that impact individual teeth as opposed to the
whole mouth. For example, to examine the effectiveness of dental sealants in
preventing caries, a permanent first molar is randomly chosen for the inter-
vention while its contralateral tooth serves as the control. Because the control
and test teeth are subject to the same oral environment, this design controls
for many confounding factors such as diet, tooth morphology, and oral hygiene
habits. Thus differences in outcomes between test and control teeth are likely
attributable to the treatment. Because of this pairing, adequate power may be
achieved with a smaller sample size than if the teeth were independent.

Forss and Halme (1998) report results of a split-mouth study that started
in 1988 with 166 children, with the goal of assessing tooth-sealant materials.
Participants were children from Finland, aged 5 to 14 years (mean age 11
years). To be included in the study, children had to have a contralateral pair
of newly erupted, sound, unsealed permanent first or second molar teeth.

Interventions on the occlusal surfaces of sound first or second permanent
molars involved glass ionomer Fuji III sealant as a treatment and third-
generation, resin-based, light-cured Delton sealant as control. The results are
recorded at the 7-year follow-up involving 97 children (the dropout rate was
42%).

Control (Resin)
Caries No Caries Total

Treatment (Fuji III) Caries 8 15 23
No Caries 8 66 74

Total 16 81 97

Risk differences and risk and odds ratios with confidence intervals are ob-
tained by the MATLAB program mcnemart.m. Several approaches to con-
fidence intervals (exact, approximate RGB, approximate Miettinen) are pre-
sented. The odds ratio is 1.8750, the exact 95% confidence interval for OR is
[0.7462, 5.1064], and three approximations are miettint = [0.7003, 5.0198],
rgbint = [0.7950, 4.4224], and intor = [0.7724, 6.6080].

The complete output from mcnemart.m is

mcnemart([8, 15; 8, 66])
%
%diffp1p2 = 0.0722
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%delta = 0.0434
%s = 0.0646
%ssel = 0.0489
%cidiff = -0.0545 0.1989
%or1 = 1.8750
%s2lor1 = 0.2525
%slor1 = 0.5025
%miettlint = -0.3562 1.6134
%miettint = 0.7003 5.0198
%slor2 = 0.4378
%rgblint = -0.2295 1.4867
%exactorci = 0.7462 5.1064
%intor = 0.7724 6.6080

�

Example 14.12. Schistosoma Mansoni. Schistosoma mansoni is a parasite
that is found in Africa, Madagascar, parts of South America (such as Venezuela
and Brazil), Puerto Rico, and the West Indies. Among human parasitic dis-
eases, schistosomiasis ranks second behind malaria in terms of socioeconomic
and public health importance in tropical and subtropical areas. Some estimate
that there are approx. 20,000 deaths related to schistosomiasis yearly. Sleigh
et al. (1982) compare results of one Bell and one Kato-Katz examination per-
formed on each of 315 stool specimens from residents in an area in northeast-
ern Brazil endemic for schistosomiasis mansoni. The following table, discussed
also in Kirkwood and Sterne (2003), summarizes the findings.

Kato-Katz Positive Kato-Katz Negative Total
Bell Positive 184 54 238
Bell Negative 14 63 77

Total 198 117 315

Is the probability of detecting Schistosomiasis mansoni the same for the
two tests? Find the odds ratio and its approximate confidence intervals. From
the output of mcnemart.m we have

%or1 = 3.8571
%miettint = 2.2045 6.7488
%exactorci = 2.1130 7.5193
%intor = 2.2327 8.7633

�

Example 14.13. Testing for Salmonella. Large discrepancies are usually
found when different ELISAs for the diagnosis of pig salmonellosis are com-
pared. Mainar-Jaime et al. (2008) explored the diagnostic agreement of two
commercial assays: (i) Salmonella Covalent Mix-ELISA (Svanovir), positive
OD% =20% denoted as test A and (b) Swine Salmonella Antibody Test Kit
(HerdCheck), positive OD% =10% as test B, for the detection of antibodies to
Salmonella spp. in slaughter pigs.
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Populations of pigs slaughtered in abattoirs from Saskatchewan, Canada.
Population 1: animals from farms marketing <10,000 pigs/year.
Population 2: animals from farms marketing 10,000 pigs/year.

Population 1 Population 2
Test B + Test B – Total Test B + Test B – Total

Test A + 11 16 27 2 5 7
Test A – 6 119 125 1 72 73

Total 17 135 152 3 77 80

From McNemar’s χ2-test one concludes that test A (at either OD% = 40%
or OD% =20%) significantly differs from test B in the proportion positive at
α= 0.05.
�

14.6.4 Multicategorical Paired Tables: Stuart–Maxwell
Test*

A natural generalization of the McNemar test is a design in which there are N
matched pairs where each response can be classified into k > 2 different cate-
gories. We will be interested in the equality of proportions for categories in the
two populations that form the paired responses. For simplicity we discuss only
the case of k = 3. A general test is given in Maxwell (1970) and implemented
as MATLAB function stuartmaxwell.m.

Assume that paired responses come from Before and After and each re-
sponse may result in one of the three categories: Positive, Neutral, and Nega-
tive.

After
Positive Neutral Negative Total

Positive n11 n12 n13 n1·
Before Neutral n21 n22 n23 n2·

Negative n31 n32 n33 n3·
Total n·1 n·2 n·3 N

Notice that the table counts matched pairs, for example, n23 is the number
of cases where Before resulted in neutral and After resulted in negative. Thus,
again we have a total of 2N responses organized into N matched pairs.

Denote by pi j the population proportion of subjects in population i (one of
Before, After) that are classified as j (one of Positive, Neutral, or Negative).

The null hypothesis of interest is

H0 : p11 = p21, p12 = p22, and p13 = p23.
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This hypothesis states that the population proportions of the three categories
are the same for the two groups Before and After. The alternative is a negation
of H0:

H1 : (p11, p12, p13) 6= (p21, p22, p23).

The test statistic is

χ2 = n23(n1· −n·1)2 +n13(n2· −n·2)2 +n12(n3· −n·3)2

2(n12n13 +n12n23 +n13n23)
, (14.6)

where ni j = (ni j +n ji)/2.
The statistic χ2 in (14.6) has a χ2-distribution with 2 degrees of freedom

and its large values are critical.

Rule: Reject H0 at significance level α if χ2 > χ2
2,1−α, where χ2

2,1−α
is a 1 − α quantile of a χ2-distribution with 2 degrees of freedom
(chi2inv(1-alpha, 2)). The p-value of this test is 1-chi2cdf(chi2, 2) for
chi2 as in (14.6).

Example 14.14. Speckmann (1965) and Lawal (2003) provide data on the reli-
gious affiliation of husbands and wives in 264 marriages in Surinam.

Wife
Christian Muslim Hindu Total

Christian 17 1 7 25
Husband Muslim 1 66 6 73

Hindu 9 6 151 166
Total 27 73 164 264

Here Hindu counts combine Sanatan Dharm and Arya Samaj affiliations. Are
the population proportions of husbands who are Christian, Muslim, or Hindu
equal to the proportions of wives who belong to those three religious groups?

Note that the data are paired and the Stuart–Maxwell test is appropriate.
For the data in the table, χ2 in (14.6) is 28/124 = 0.2258. At 2 degrees of free-
dom, the p-value of the test is 0.8932 (as 1-chi2cdf(0.2258, 2). Thus, H0 is
not rejected, the proportions of these three religious groups in the population
of Surinam husbands are not different than the proportions among the wives.
�



14.7 Exercises 561

14.7 Exercises

14.1. Amoebas and intestinal disease. When an epidemic of severe intestinal
disease occurred among workers in a plant in South Bend, Indiana, doctors
said that the illness resulted from infection by the amoeba Entamoeba his-
tolytica. There are actually two races of these amoebas, large and small, and
the large ones were believed to be causing the disease. Doctors suspected
that the presence of the small ones might help people resist infection by the
large ones. To check on this, public health officials chose a random sample of
138 apparently healthy workers and determined if they were infected with
either the large or small amoebas. The table below [given by Cohen (1973)]
provides the resulting data. Is the presence of the large race independent
of the presence of the small one? Test at 5% significance level.

Large race
Small race Present Absent Total
Present 12 23 35
Absent 35 68 103
Total 47 91 138

14.2. Drinking and Smoking. Alcohol and nicotine consumption during preg-
nancy are believed to be associated with certain characteristics in children.
Since drinking and smoking behaviors may be related, it is important to
understand the nature of this relationship when fully assessing their influ-
ence on children. In a study by Streissguth et al. (1984), 452 mothers were
classified according to their alcohol intake prior to pregnancy recognition
and their nicotine intake during pregnancy. The data are summarized in
the following table.

Nicotine (mg/day)
Alcohol (ounces/day) None 1–15 16 or more
None 105 7 11
0.01–0.10 58 5 13
0.11–0.99 84 37 42
1.00 or more 57 16 17

(a) Calculate the column sums. In what way does the pattern of alcohol
consumption vary with nicotine consumption?
(b) Calculate the row sums. In what way does the pattern of nicotine con-
sumption vary with alcohol consumption?
(c) Formulate H0 and H1 for assessing whether or not alcohol consumption
and nicotine consumption are independent.
(d) Compute the table of expected counts.
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(e) Find the χ2 statistic. Report the degrees of freedom and the p-value.
(f) What do you conclude from the analysis of this table?

14.3. Alcohol and Marriage. A national survey was conducted to obtain infor-
mation on the alcohol consumption patterns of American adults by marital
status. A random sample of 1303 residents 18 years old and over yielded
the data below. Do the data suggest at a 5% significance level that marital
status and alcohol consumption patterns are statistically dependent?

Abstain 1–60 Over 60 Total
Single 67 213 74 354
Widowed 85 633 129 847
Divorced 27 60 15 102
Total 179 906 218 1303

14.4. Family Size. A demographer surveys 1000 randomly chosen American
families and records their family sizes and family incomes:

Family Size
Family Income 2 3 4 5 6 7
Low 145 81 57 22 9 8
Middle 151 73 71 33 13 10
High 124 60 80 42 13 8

Do the data provide sufficient evidence to conclude that family size and
family income are statistically dependent?
(a) State the H0 and H1 hypotheses.
(b) Perform the test. Use α= 0.05. Comment.

14.5. Nightmares. Over the years numerous studies have sought to charac-
terize the nightmare sufferer. From these studies has emerged the stereo-
type of someone with high anxiety, low ego strength, feelings of inadequacy,
and poorer-than-average physical health. A study by Hersen (1971) ex-
plored whether gender is independent of having frequent nightmares. Us-
ing Hersen’s data summarized in the table below, test the hypothesis of
independence at level α= 0.05.

Men Women
Nightmares often (at least once a month) 55 60
Nightmares seldom (less than once in a month) 105 132

14.6. Independence of Segregation. According to a mathematical model of
inheritance, at a given meiosis, the probability of an allele at one locus
passing to the gamete is independent of an allele at any locus on another
chromosome passing to the gamete. This is usually referred as the law of
independent segregation of genes. Also, one allele from the pair at any locus
passes to the gamete with probability equal to 1/2.
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Roberts et al. (1939) conducted an extensive set of experiments for testing
independent segregation of the genes in mice and rats. One of results of a
mating of the form Aa Bb Dd×aa bb dd is reported as:

ab aB Ab AB Total
d 427 440 509 460 1836
D 494 467 462 475 1898
Total 921 907 971 935 3734

Using χ2 statistic test for the independence of segregation at α= 5%.
Hint. The expected number in each cell is 1/2×1/2×1/2×3734= 466.75.

14.7. Site of Corpus Luteum in Caesarean Births. Williams (1921) observed
that in Caesarean-section births, the corpus luteum was located in the right
ovary 23 times and 16 times in the left for male children. For female chil-
dren the numbers were 13 and 12, respectively. Test for the independence
of ovary side and gender of a child.

14.8. An Easy Grade? A student wants to take a statistics course with a pro-
fessor who is an easy grader. There are three professors scheduled to teach
the course sections next semester. The student manages to obtain a random
sample of grades given by the three professors this past year.

Observed Prof A Prof B Prof C Total
Grades A 10 12 28 50
Grades B 35 30 15 80
Grades C 15 30 25 70

Total 60 72 68 200

Using a significance level of 1%, test the hypothesis that a student’s grade
is independent of the professor.

14.9. Importance of Bystanders. When a group of people is confronted with an
emergency, a diffusion-of-responsibility process can interfere with an indi-
vidual’s responsiveness. Darley and Latané (1968) asked subjects to partic-
ipate in a discussion carried over an intercom. Aside from the experimenter
to whom they were speaking, subjects thought that there were zero, one, or
four other people (bystanders) also listening over the intercom. Part way
through the discussion, the experimenter feigned serious illness and asked
for help. Darley and Latané noted how often the subject sought help for the
experimenter as a function of the number of supposed bystanders. The data
are summarized in the table:

Sought assistance No assistance
No bystanders 11 2
One bystander 16 10

Four bystanders 4 9
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What could Darley and Latané conclude from the results?
(a) State H0 and H1.
(b) Perform the test at a 5% significance level.

14.10. Baseball in 2003. As part of baseball’s attempt to make the All-Star Game
more meaningful, baseball Commissioner Bud Selig pushed through a pro-
posal to give the winning league home-field advantage in the World Series.
The proposal, while controversial to many baseball purists, was just one of
many changes instituted by Selig since he became commissioner in 1998.
Despite Selig’s efforts, which are generally rated positively by baseball fans,
sports fans are most likely to say Major League Baseball has the most se-
rious problems of the major professional sports leagues. And nearly 4 in
10 sports fans say baseball is currently in a state of crisis or has major
problems. Nevertheless, the majority of sports fans say they are following
baseball as much or more than they did 3 years ago. Our interest is in how
the opinions of fans who are particular about baseball compare to those of
general sports fans regarding the Major League events. The question to 140
declared fans was: Are you following Major League Baseball more closely
than you did three years ago, less closely, or about the same as before?

More Less Same Total
Sports Fans 6 19 32 57

Baseball Fans 13 25 45 83
Total 19 44 77 140

Test the hypothesis that the type of fan is independent of a change in inter-
est level. Use α= 5%.

14.11. Psychosis in Adopted Children. Numerous studies have been done to
determine the etiology of schizophrenia. Such factors as biological, psy-
chocultural, and sociocultural influences have been suggested as possible
causes of this disorder. To test if schizophrenia has a hereditary compo-
nent, researchers compared adopted children whose biological mothers are
schizophrenic (“exposure”) to adopted children whose biological mothers are
normal (“nonexposure”).
Furthermore, the child-rearing abilities of adoptive families have been as-
sessed to determine if there is a relationship between those children who
become psychotic and the type of family into which they are adopted.
The families are classified as follows: healthy, moderately disturbed, and
severely disturbed.
The following data are from an experiment described in Carson and Butcher
(1992).

Type of Adoptive Family
Healthy Moderately Disturbed Severely Disturbed

Diagnosis Exp Nonexp Exp Nonexp Exp Nonexp
None 41 42 11 26 6 15

Psychotic 10 11 18 25 38 28
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(a) For moderately disturbed families find the risk difference for a child’s
psychosis with the mother’s schizophrenia as a risk factor. Find a 95% con-
fidence interval for the risk difference.
(b) For severely disturbed families find the risk ratio and odds ratio for
psychosis with the mother’s schizophrenia as a risk factor. Find a 95% con-
fidence interval for the risk ratio and odds ratio.
(c) Is a mother’s schizophrenia a significant factor for a child’s psychosis
overall? Assess this using the Mantel–Haenszel test. Find the overall odds
ratio and corresponding 95% confidence interval.

14.12. The Midtown Manhattan Study. The data set below has been analyzed
by many authors (Haberman, Goodman, Agresti, etc.) and comes from the
study by Srole et al. (1962). The data cross-classifies 1660 young New York
residents with respect to two factors: Mental Health and parents’ Socioeco-
nomic Status (SES).
The Mental Health factor is classified by four categories: Well, Mild Symp-
tom Formation, Moderate Symptom Formation, and Impaired. The parents’
SES has six categories ranging from High (1) to Low (6).
Here is the table:

Well Mild Moderate Impaired
1 (High) 64 94 58 46
2 57 94 54 40
3 57 105 65 60
4 72 141 77 94
5 36 97 54 78
6 (Low) 21 71 54 71

(a) Test the hypothesis that Mental Health and parents’ SES are indepen-
dent factors at a 5% confidence level. You can use tablerxc.m code.
(b) The table below provides the expected frequencies. Explain what the
expected frequencies are. Explain how the number 104.0807 from the table
was obtained and show your work.

Well Mild Moderate Impaired
1 (High) 48.4542 95.0145 57.1349 61.3964
2 45.3102 88.8494 53.4277 57.4127
3 53.0777 104.0807 62.5867 67.2548
4 71.0169 139.2578 83.7398 89.9855
5 49.0090 96.1024 57.7892 62.0994
6 (Low) 40.1319 78.6952 47.3217 50.8512

14.13. Tonsillectomy and Hodgkin’s Disease. A study by Johnson and John-
son (1972) involved 85 patients with Hodgkin’s disease. Each of these had a
normal sibling (one who did not have the disease). In 26 of these pairs, both
individuals had had tonsillectomies (T); in 37 pairs, both individuals had
not had tonsillectomies (N); in 15 pairs, only the normal individual had had
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a tonsillectomy; in 7 pairs, only the one with Hodgkin’s disease had had a
tonsillectomy.

Normal/T Normal/N Total
Patient/T 26 15 41
Patient/N 7 37 44

Total 33 52 85

A goal of the study was to determine whether there was a link between
the disease and having had a tonsillectomy: Is the proportion of those who
had tonsillectomies the same among those with Hodgkin’s disease as among
those who do not have it?

14.14. School Spirit at Duke. Duke has always been known for its great
school spirit and support of its athletic teams, as evidenced by the famous
Cameron Crazies. One way that school enthusiasm is shown is by donning
Duke paraphernalia including shirts, hats, shorts, and sweatshirts. The
students’ project in an introductory statistics class was to explore possible
links between school spirit, measured by the number of students wearing
paraphernalia, and some other attributes. It was hypothesized that men
would wear Duke clothes more frequently than women. The data were col-
lected on the Bryan Center walkway starting at a random hour on five dif-
ferent days. Each day 100 men and 100 women were tallied.

Duke Paraphenalia No Duke Paraphenalia Total
Male 131 369 500

Female 52 448 500
Total 183 817 1000

14.15. Two Halloween Questions with Easy Answers. A study was designed
to test whether or not aggression is a function of anonymity. The study was
conducted as a field experiment on Halloween (Fraser, 1974); 300 children
were observed unobtrusively as they made their rounds. Of these 300 chil-
dren, 173 wore masks that completely covered their faces, while 127 wore
no masks. It was found that 101 children in the masked group displayed ag-
gressive or antisocial behavior versus 36 children in the unmasked group.
(a) Are anonymity and aggression independent? Use α= 0.01.
(b) If p1 is the (population) proportion for aggressive behavior for subjects
wearing a mask and p2 is the proportion for subjects not wearing a mask,
find a 95% confidence interval for the odds ratio:

p1/(1− p1)
p2/(1− p2)

.

14.16. Runners and Heart Attack. The influence of running on preventing
heart attacks has been studied by a local runners club. The following two-
way table classifies 350 people as runners or nonrunners, and whether or
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not they have had a heart attack. The factors are runner status and history
of heart attack.

Heart attack No heart attack Total
Runner 12 112 124

Nonrunner 36 190 226
Total 48 302 350

(a) Test for the independence of factors. Use α= 0.05.
(b) Explain in words (in terms of this problem) what constitutes errors of
the first and second kind in the above testing.

14.17. Perceptions of Dangers of Smoking. A poll was conducted to determine
if perceptions of the hazards of smoking were dependent on whether or not
the person smoked. One hundred (100) smokers and 100 nonsmokers were
randomly selected and surveyed. The results are given below.

Smoking is: Very Somewhat Not
Dangerous Dangerous Dangerous Dangerous

Smokers 21 (35.5) 29 (30) 29 ( ) 21 ( )
Nonsmokers 50 (35.5) 31 ( ) 11 ( ) 8 ( )

Test the hypothesis that smoking status does not affect perception of the
dangers of smoking at α = 0.05 (three theoretical frequencies are given in
parentheses).

14.18. Red Dye No. 2. Fienberg (1980) discusses an experiment in which the food
additive Red Dye No. 2 was fed to two groups of rats at various dosages.
Some rats died during the experiment, which lasted 131 weeks, and the
remainder were sacrificed at the end of the 131st week. All rats were exam-
ined for tumors.

Age of Death 0–131 weeks Terminal sacrifice
Dosage Low High Low High

Tumor present 4 7 0 7
Tumor absent 26 16 14 14

Test the dependence among the three factors.

14.19. Cooper Hawks. The data in the table below originates from a study de-
signed to assess whether tape-recorded alarm calls enhanced the detectabil-
ity of Cooper’s hawks (Accipiter cooperii) (Rosenfield et al., 1988). Observa-
tions were made on each sampling transect both with and without recorded
calls. Thus, the observations are paired rather than independent.

Detected Not detected Total # Transects
Tapes used 9 9 18

Tapes not used 4 14 18
Total 13 23 36
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According to Engeman and Swanson (2003), Rosenfield et al. (1988) have
assumed that the observations under the two conditions from each transect
could be considered independent. Their analysis for the nestling stage data
uses Fisher’s exact test and results in a one-tailed p-value of 0.08. They con-
cluded that during the nestling stage, broadcast recordings “can markedly
increase the chance of detecting Cooper’s hawks near their nests.” However,
an appropriate analysis would have been McNemar’s test for paired data.
Engeman and Swanson (2003) continue: “. . . let us presume that for some
reason we could assume that observations with and without recorded calls
were independent rather than paired. Then the data set, by all criteria of
which we are aware, still is of sufficient size to apply Pearson’s χ2, rather
than Fisher’s exact test as the authors have done.”
We note that rather than size, the design of an experiment is critical for a
suggestion to use Fisher’s exact test. The marginals should be fixed before
the experiment; this is not the case here.
Find the p-value for the correct McNemar test.

14.20. Hepatic Arterial Infusion. Allen-Mersh et al. (1994), as well as Spiegel-
halter et al. (2004), reported the results of a trial in which patients under-
going therapy for liver metastasis were randomized to receive it either sys-
tematically (as is standardly done) or via hepatic arterial infusion (HAI). Of
51 randomized to HAI, 44 died, and of 49 randomized to systematic therapy,
46 died. Estimate the log odds ratio and find a 95% confidence interval.

14.21. Vaccine Efficacy Study. Consider the data from a vaccine efficacy study
(Chan, 1998). In a randomized clinical trial of 30 subjects, 15 were inoc-
ulated with a recombinant DNA influenza vaccine and the remaining 15
were inoculated with a placebo. Twelve of the 15 subjects in the placebo
group (80%) eventually became infected with influenza, whereas for the
vaccine group, only 7 of the 15 subjects (47%) became infected. Suppose p1
is the probability of infection for the vaccine group and p2 is the probability
of infection for the placebo group.
What is the one-sided p-value for testing the null hypothesis H0 : p1 = p2
obtained by Fisher’s exact test?

MATLAB FILES USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch14.Tables/

concoef.m, fisherexact.m, hindu.m, kappa1.m, mantelhaenszel.m,
mcnemart.m, partialrxcxp.m, PAS.m, ponvexam.m, stuartmaxwell.m,
table2x2.m, tablerxc.m, tablerxcxp.m, unmatch.m
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Chapter 15
Correlation

The invalid assumption that correlation implies cause is probably among the two or
three most serious and common errors of human reasoning.

– Stephen Jay Gould

WHAT IS COVERED IN THIS CHAPTER

• Calculating the Pearson Coefficient of Correlation. Conditional Cor-
relation

• Testing the Null Hypothesis of No Correlation
• General Test for Correlation and Confidence Intervals. Fisher z-

Transformation
• Inference for Two Correlation Coefficients
• Nonparametric Correlation Measures: Spearman’s and Kendall’s

Correlation Coefficient

15.1 Introduction

Roget’s New Thesaurus (3rd Edition, 1995) defines correlation as a logical or
natural association between two or more things, with synonyms connection,
interconnection, interdependence, interrelationship, link, linkage, relation, re-
lationship, and tie-in.
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Statistically, correlation is a measure of the particular affinity between two
sets of comparable measurements. It is often incorrectly believed that the no-
tions of correlation and statistical dependence and causality coincide. Accord-
ing to an anecdote, it could be true that the number of drownings at a partic-
ular large beach in one season is positively and significantly correlated with
the number of ice-creams sold at the beach during the same period of time.
However, nobody would argue that the relationship is causal. Purchasing an
ice-cream at the beach does not increase the risk of drowning – the positive
correlation is caused by a latent (lurking) variable, the number of visitors at
the beach.

Correlation is, in informal terms, a constrained dependence. For exam-
ple, the most common (Pearson) coefficient of correlation measures the
strength and direction of the linear relationship between two variables.

If measurements are correlated, then they are dependent, but not neces-
sarily vice versa. A simple example involves points on a unit circle. One selects
n angles ϕi, i = 1, . . . ,n, uniformly from [0,2π]. The angles determine n points
on the unit circle, (xi, yi) = (cosϕi,sinϕi), i = 1, . . . ,n. Although x = (x1, . . . , xn)
and y = (y1, . . . , yn) are functionally dependent (since x2

i + y2
i = 1), their coeffi-

cient of correlation is 0 or very close to 0. See also Exercise 15.1. Only for a
normal distribution do the notions of correlation and independence coincide:
uncorrelated normally distributed measurements are independent.

15.2 The Pearson Coefficient of Correlation

In Chap. 2, when discussing the summaries of multidimensional data we dis-
cussed correlations between the variables and connected the coefficient of cor-
relation with scatterplots and a descriptive statistical methodology. In this
chapter we will take an inferential point of view on correlations. For develop-
ing the tests and confidence intervals we will assume that the data come from
normal distributions for which the population coefficient of correlation is ρ.

Suppose that pairs (X1,Y1), (X2,Y2), . . . , (Xn,Yn) are observed, and assume
that Xs and Y s come from normal N (0,σ2

X ) and N (0,σ2
Y ) distributions and

that the correlation coefficient between X and Y is ρXY , or simply ρ. We are
interested in making an inference about ρ when n pairs (Xi,Yi) are observed.

From the observations the following sums of squares are formed: Sxx =∑n
i=1(Xi − X )2, Syy =

∑n
i=1(Yi −Y )2, and Sxy =

∑n
i=1(Xi − X )(Yi −Y ). Then, an

estimator of ρ is

r = Sxy√
Sxx Syy

.
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Fig. 15.1 A simulated example showing scatterplots with correlated components (a) r =
0.04, (b) r = 0.54, (c) r =−0.77, and (d) r = 0.96.

An alternative expression for r is

r =
∑

i X iYi −nXY√
(
∑

i X2
i −n(X )2)(

∑
i Y 2

i −n(Y )2)
.

This estimator is an MLE for ρ, and it is asymptotically unbiased, that is,
limn→∞ Ern = ρ.

Sample correlation coefficient r is always in [−1,1]. To show this, consider
the Cauchy–Schwartz inequality that states:

Substitutions ui = Xi − X and vi = Yi −Y prove the inequality r2 ≤ 1. Figure
15.1 shows simulated correlated data (green dots) with coefficients (a) r = 0.04,
(b) r = 0.54, (c) r =−0.77, and (d) r = 0.96.
Partial Correlation. Let rxy, rxz, and r yz be correlations between the pairs
of variables X , Y , and Z. The partial correlation between X and Y if Z is
accounted for (or excluding the influence of Z) is

rxy.z =
rxy − rxzr yz√

1− r2
xz

√
1− r2

yz

.

For any two vectors (u1, u2, . . . ,un) and (v1,v2, . . . ,vn), it holds that (
∑

i uivi)2 ≤∑
i u2

i
∑

i v2
i .
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When two variables Z and W are excluded from the correlation of X and Y ,
the partial coefficient is

rxy.zw = rxy.w − rxz.wr yz.w√
1− r2

xz.w

√
1− r2

yz.w

or, equivalently,

rxy.zw = rxy.z − rxw.zr yw.z√
1− r2

xw.z

√
1− r2

yw.z

,

depending on the order of exclusion of W and Z.

15.2.1 Inference About ρ

To test H0 : ρ = 0 against one of the alternatives ρ >, 6=,< 0, the t-statistic is
used:

t = r

√
n−2
1− r2 ,

which has a t-distribution with d f = n−2 degrees of freedom.

Alternative α-level rejection region p-value
H1 : ρ > 0 [td f ,1−α,∞) 1-tcdf(t, df)

H1 : ρ 6= 0 (−∞, td f ,α/2]∪ [td f ,1−α/2,∞) 2*tcdf(-abs(t), df)

H1 : ρ < 0 (−∞, td f ,α] tcdf(t, df)

Example 15.1. The table below gives the number of times X rats ran through
a maze and the time Y it took them to run through the maze on their last trial.

Rat Trials (X ) Time (Y )
1 8 10.9
2 9 8.6
3 6 11.4
4 5 13.6
5 3 10.3
6 6 11.7
7 3 10.7
8 2 14.8

(a) Find r.
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(b) Is the maze learning significant? Test the hypothesis that the popula-
tion correlation coefficient ρ is 0, versus the alternative that ρ is negative.∑

i Xi = 42,
∑

X2
i = 264,

∑
i Yi = 92,

∑
i Y 2

i = 1084.2,
∑

i XiYi = 463.8, X =
5.25, Y = 11.5.

r = 463.8−8 ·5.25 ·11.5√
(264−8 ·5.252)(1084.2−8 ·11.52)

= −19.2p
43.5 ·26.2

=−0.5687.

For testing H0 : ρ = 0 versus H1 : ρ < 0 we find

t= r

√
n−2
1− r2 =−1.69.

For α= 0.05 the critical value is t6,0.05 =−1.943 and the null hypothesis is not
rejected.
Remark: Sample size is critical for our decision for the matching observed
values of r. If for the same r, the sample size n were 30, then t =−3.6588, and
H0 would be rejected, since t< t28,0.05 =−1.7.

In MATLAB:

X = [8 9 6 5 3 6 3 2];
Y = [10.9 8.6 11.4 13.6 10.3 11.7 10.7 14.8];
n=8;
cxy=cov(X,Y)
% cxy =
% 6.2143 -2.7429
% -2.7429 3.7429

rxy=cxy(1,2)/sqrt(cxy(1,1)*cxy(2,2))
%rxy = -0.5687

tstat = rxy * sqrt(n-2)/sqrt(1-rxy^2)
%tstat = -1.6937

pval = tcdf(tstat, n-2)
%pval = 0.0706
%n=8, p-val = 7% > 5% do not reject H_0
%============

n=30; rxy=-0.5687;
tstat = rxy * sqrt(n-2)/sqrt(1-rxy^2)

%tstat =-3.6585
pval = tcdf(tstat, n-2)

% pval = 5.2070e-004

�

When partial correlations are of interest, the test is based on the statistic

t = r
√

n−q−2
1−r2 , which has d f = n−q−2 degrees of freedom. Here q is the number

of other variables accounted for.

Example 15.2. On the basis of n = 28 records it was found that the education
level of the mother (X ) was negatively correlated with infant mortality (Y )
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as rxy = −0.6. Socioeconomic status (Z) is a variable that was not taken into
account. Z is correlated with X and Y as rxz = 0.65 and r yz =−0.7. Find rxy.z
and test for the significance of the population counterpart ρxy.z.

rxy=-0.6; rxz=0.65; ryz=-0.7;
rxy_z = (rxy - rxz*ryz)/sqrt( (1-rxz^2)*(1-ryz^2))
%rxy_z = -0.2672

n=28;
2 * tcdf( rxy * sqrt(n-2)/sqrt(1-rxy^2), n-2)
%p-value for testing H_0: rho_xy = 0, against
%the two sided alternative
%ans = 7.3810e-004

2 * tcdf( rxy_z * sqrt(n-1-2)/sqrt(1-rxy_z^2), n-1-2)
%p-value for h_0: rho_xy.z = 0, against
%the two sided alternative
%ans = 0.1779

Thus, the significant correlation between X and Y (p-value of 0.000738)
becomes insignificant (p-value of 0.1779) when variable Z is taken into ac-
count.
�

15.2.1.1 Confidence Intervals for ρ.

Confidence intervals for the population coefficient of correlation ρ are obtained
not by using direct measurements, but in a transformed domain. This trans-
formation is known as Fisher’s z-transformation and is introduced next.

Let (X11, X21), . . . , (X1n, X2n) be a sample from a bivariate normal distribu-
tion N2(µ1,µ2,σ2

1,σ2
2,ρ), and X i = 1

n
∑n

j=1 Xi j, i = 1,2.
The Pearson coefficient of linear correlation

r =
∑n

i=1(X1i − X1)(X2i − X2)
[∑n

i=1(X1i − X1)2 ·∑n
i=1(X2i − X2)2

]1/2

has a complicated distribution involving special functions, e.g., Anderson
(1984), p. 113. However, it is well known that the asymptotic distribution
for r is normal, N (ρ, (1−ρ2)2

n ). Since the variance is a function of the mean

[σ2(ρ)= (1−ρ2)2
n , see equation (6.4)], the transformation defined as
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ϑ(ρ) =
∫ c
σ(ρ)

dρ

=
∫

c
p

n
1−ρ2 dρ

= c
p

n
2

∫ (
1

1−ρ + 1
1+ρ

)
dρ

= c
p

n
2

log
(

1+ρ
1−ρ

)
+ k

stabilizes the variance. It is known as Fisher’s z-transformation for the corre-
lation coefficient (usually for c = 1/

p
n and k = 0).

Assume that r and ρ are mapped to w and ζ as

w= 1
2

log
(

1+ r
1− r

)
= arctanh r, ζ= 1

2
log

(
1+ρ
1−ρ

)
= arctanh ρ.

The distribution of w is approximately normal, N (ζ, 1
n−3 ), and this ap-

proximation is quite accurate when ρ2/n2 is small and n is as low as 20.

The inverse z-transformation is

r = tanh(w)= exp{2w}−1
exp{2w}+1

.

The use of Fisher’s z-transformation is illustrated on finding the confidence
intervals for ρ and testing hypotheses about ρ.

To exemplify the above-stated transformations, we generated n = 30 pairs
of normally distributed random samples with theoretical correlation

p
2/2.

This was done by generating two i.i.d. normal samples a and b of length 30
and taking the transformation x1 = a+ b, x2 = b. The sample correlation co-
efficient r was found. This was repeated M = 10,000 times. A histogram of
10,000 sample correlation coefficients is shown in Fig. 15.2a. A histogram of
the z-transformed rs is shown in Fig. 15.2b with a superimposed normal ap-
proximation N (arctanh(

p
2/2),1/(30−3)).

The sampling distribution for w is approximately normal with mean ζ =
1
2 log 1+ρ

1−ρ and variance 1/(n−3). This approximation is satisfactory when the
number of pairs exceeds 20. Thus, the (1−α)100% confidence interval for ζ =
1
2 log 1+ρ

1−ρ is
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Fig. 15.2 (a) Simulational run of 10,000 rs from a bivariate population having a theoretical
ρ =

p
2/2. (b) The same rs transformed into ws with the normal approximation superim-

posed.

[wL,wU ]=
[
w− z1−α/2p

n−3
, w+ z1−α/2p

n−3

]
,

where w = 1
2 log 1+r

1−r .

Since r = e2w−1
e2w+1 , an approximate (1−α)100% confidence interval for ρ

is

[rL,rU ]=
[

e2wL −1
e2wL +1

,
e2wU −1
e2wU +1

]
.

Remark. More accurate approximation for the sampling distribution of w has
the mean ζ+ρ/(2n−2). The correction ρ/(2n−2) is often used in testing and
confidence intervals when n is not large. In the above interval the corrected w
would be 1

2 log 1+r
1−r − r

2(n−1) .

Example 15.3. If r = −0.5687 and n = 8, then w = −0.6456. The bounds for
the 95% confidence interval for ζ = 1

2 log 1+ρ
1−ρ are wL = −0.6456− 1.96/

p
5 =

−1.522 and wU = −0.6456+ 1.96/
p

5 = 0.2309. The confidence interval for ρ

is obtained by back-transforming wL and wU using r = e2w−1
e2w+1 . The result is

[−0.9091,0.2269].
�
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15.2.1.2 Test for ρ = ρ0

We saw that when ρ0 = 0, this test is a t-test with a statistic given as t =
r
√

n−2
1−r2 . When ρ0 6= 0, then the test of H0 : ρ = ρ0 versus H1 : ρ >, 6=,< ρ0 does

not have a simple generalization. An approximate test is based on a normal
approximation. Under H0 : ρ = ρ0 the test statistic

z =
p

n−3
2

[
log

(
1+ r
1− r

)
− log

(
1+ρ0

1−ρ0

)]
,

has an approximately standard normal distribution. This implies the following
testing rules:

Alternative α-level rejection region p-value
H1 : ρ > ρ0 [z1−α,∞) 1-normcdf(z)
H1 : ρ 6= ρ0 (−∞, zα/2]∪ [z1−α/2,∞) 2*normcdf(-abs(z))
H1 : ρ < ρ0 (−∞, zα] normcdf(z)

Example 15.4. Interparticular Spacing in Nanoprisms. There is much
interest in knowing and understanding how nanoparticles interact optically.
One reason is the use of nanoparticles as plasmon rulers. Plasmon rulers are
beneficial to the field of biomedical engineering as they allow researchers to
measure changes and differences in DNA or cells at the nano level. This is
promising for diagnostics, especially with respect to genetic disorders, which
could be potentially identified by data from a plasmon ruler. In order to cre-
ate a basis for this idea, research must be done to determine the effect of
different interparticle spacing on the maximum wavelength of absorbance of
the particles. While a linear correlation between measured separation and
wavelength is not strong, researchers have found that the correlation be-
tween the reciprocal of separation, recsep=1/separation, and the logarithm
of a wavelength, logwl=log(wavelength), is strong. The data from the lab of Dr.
Mostafa El-Sayed, Georgia Tech, are given in the table below, as well as in

nanoprism.dat.
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recsep logwl recsep logwl recsep logwl

2.9370 0.0694 2.9284 0.0433 2.9212 0.0331
2.9196 0.0288 2.9149 0.0221 2.9106 0.0121
2.9047 0.0080 2.9047 0.0069 2.9031 0.0049
2.9320 0.0714 2.9154 0.0427 2.9165 0.0336
2.9085 0.0292 2.9090 0.0240 2.9047 0.0197
2.9058 0.0052 2.9025 0.0104 2.9025 0.0087
2.8976 0.0078 2.8971 0.0065 2.8976 0.0062

(a) Test the hypothesis that the population coefficient of correlation for
the transformed measures is ρ = 0.96 against the alternative ρ < 0.96. Use
α= 0.05.

(b) Find a 95% confidence interval for ρ.
From the MATLAB code below, we see that r = 0.9246 and the p-value for

the test is 0.0832. Thus, at a 5% significance level H0 : ρ = 0.96 is not rejected.
The 95% confidence interval for ρ in this case is [0.8203,0.9694].

%nanoprism.m
load ’nanoprism.dat’
recsep = nanoprism(:,1);
logwl = nanoprism(:,2);
r = corr(recsep, logwl) %0.9246
n = length(logwl);
fisherz = @(x) atanh(x); invfisherz = @(x) tanh(x);
%fisher z and inverse transformations as pure functions
%Forming z for testing H0: rho = rho0:
z = (fisherz(r) - fisherz(0.96))/(1/sqrt(n-3)) %-1.3840
pval = normcdf(z) %0.0832
%95% confidence interval

invfisherz([fisherz(r) - norminv(0.975)/sqrt(n-3) ,...
fisherz(r) + norminv(0.975)/sqrt(n-3)])

%0.8203 0.9694

�

15.2.1.3 Test for the Equality of Two Correlation Coefficients

In some testing scenarios we might be interested to know if the correlation
coefficients from two bivariate populations, ρ1 and ρ2, are equal. From the
first population the pairs (X (1)

i ,Y (1)
i ), i = 1, . . . , n1 are observed. Analogously,

from the second population the pairs (X (2)
i ,Y (2)

i ), i = 1, . . . ,n2 are observed and
sample correlations r1 and r2 are calculated. The populations are assumed
normal and independent, but components X and Y within each population
might be correlated.

The test statistic for testing H0 : ρ1 = ρ2 versus H1 : ρ1 >, 6=,< ρ2 is ex-
pressed in terms of Fisher’s z-transformations of the sample correlations r1
and r2:
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z = w1 −w2√
1

n1−3 + 1
n2−3

,

where wi = 1
2 log 1+ri

1−ri
, i = 1,2 and n1 and n2 are the number of pairs in the

first and second sample, respectively.

Alternative α-level rejection region p-value
H1 : ρ1 > ρ2 [z1−α,∞) 1-normcdf(z)
H1 : ρ1 6= ρ2 (−∞, zα/2]∪ [z1−α/2,∞) 2*normcdf(-abs(z))
H1 : ρ1 < ρ2 (−∞, zα] normcdf(z)

If the H0 is not rejected, then one may be interested in pooling the two
sample estimators r1 and r2. This is done in the domain of z-transformed
values as

wp = (n1 −3)w1 + (n2 −3)w2

n1 +n2 −6

and inverting wp to rp via

rp = 1−exp{2wp}
1+exp{2wp}

.

Example 15.5. Swallowtail Butterflies. The following data were extracted
from a larger study by Brower (1959) on a speciation in a group of swallowtail
butterflies (Fig. 15.3). Morphological measurements are in millimeters coded
× 8 (X – length of eighth tergile, Y – length of superuncus).

(a) (b)

Fig. 15.3 (a) Papilio multicaudatus. (b) Papilio rutulus.
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Species X Y X Y X Y X Y
Papilio 24 14 21 15 20 17.5 21.5 16.5
multicaudatus 21.5 16 25.5 16 25.5 17.5 28.5 16.5

23.5 15 22 15.5 22.5 17.5 20.5 19
21 13.5 19.5 19 26 18 23 17
21 18 21 17 20.5 16 22.5 15.5

Papilio 20 11.5 21.5 11 18.5 10 20 11
rutulus 19 11 20.5 11 19.5 11 19 10.5

21.5 11 20 11.5 21.5 10 20.5 12
20 10.5 21.5 12.5 17.5 12 21 12.5
21 11.5 21 12 19 10.5 19 11
18 11.5 21.5 10.5 23 11 22.5 11.5
19 13 22.5 14 21 12.5 19.5 12.5

The observed correlation coefficients are r1 = −0.1120 (for P. multicauda-
tus) and r2 = 0.1757 (for P. rutulus). We are interested if the corresponding
population correlation coefficients ρ1 and ρ2 are significantly different.

The Fisher z-transformations of r1 and r2 are w1 = −0.1125 and w2 =
0.1776. The test statistic is z = −0.1125−0.1776p

1/17+1/25
= −0.9228. For this value of z

the p-value against the two-sided alternative is 0.3561, and the null hypothe-
sis of the equality of population correlations is not rejected. Here is a MATLAB
session for the above exercise.

PapilioM=[24, 14; 21, 15; 20, 17.5; 21.5, 16.5; ...
21.5, 16; 25.5, 16; 25.5, 17.5; 28.5, 16.5; ...
23.5, 15; 22, 15.5; 22.5, 17.5; 20.5, 19; ...
21, 13.5; 19.5, 19; 26, 18; 23, 17; ...
21, 18; 21, 17; 20.5, 16; 22.5, 15.5];

PapilioR=[20, 11.5; 21.5, 11; 18.5, 10; 20, 11; ...
19, 11; 20.5, 11; 19.5, 11; 19, 10.5; ...
21.5, 11; 20, 11.5; 21.5, 10; 20.5, 12; ...
20, 10.5; 21.5, 12.5; 17.5, 12; 21, 12.5; ...
21, 11.5; 21, 12; 19, 10.5; 19, 11; ...
18, 11.5; 21.5, 10.5; 23, 11; 22.5, 11.5; ...
19, 13; 22.5, 14; 21, 12.5; 19.5, 12.5];

PapilioMX=PapilioM(:,1); % X_m
PapilioMY=PapilioM(:,2); % Y_m

PapilioRX=PapilioR(:,1); % X_r
PapilioRY=PapilioR(:,2); % Y_r

n1=length(PapilioMX);
n2=length(PapilioRX);

r1=corr(PapilioMX, PapilioMY); % -0.1120
r2=corr(PapilioRX, PapilioRY); % 0.1757
%test for rho1 = 0
pval1 = 2* tcdf(-abs(r1*sqrt(n1-3)/sqrt(1-r1^2)), n1-3);
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% 0.6480
%test for rho2 = 0
pval2 = 2* tcdf(-abs(r2*sqrt(n2-3)/sqrt(1-r2^2)), n2-3);
%0.3806

fisherz = @(x) 1/2*log( (1+x)/(1-x) );
%Fisher z transformation as pure function
w1 = fisherz(r1); %-0.1125
w2 = fisherz(r2); %0.1776

%test for rho1 = rho2 vs rho1 ~= rho2
z = (w1 - w2)/sqrt(1/(n1-3) + 1/(n2-3)) %-0.9228
pval = 2 * normcdf(-abs(z)) %0.3561

�

15.2.1.4 Testing the Equality of Several Correlation Coefficients

We are interested in testing H0 : ρ1 = ρ2 = ·· · = ρk.
Let ri be the correlation coefficient based on ni pairs, i = 1, . . . , k, and let

wi = 1
2 log 1+ri

1−ri
be its Fisher transformation. Define

N = (n1 −3)+ (n2 −3)+·· ·+ (nk −3)=
k∑

i=1
ni −3k, and

w = (n1 −3)w1 + (n2 −3)w2 +·· ·+ (nk −3)wk

N
.

Then the statistic

χ2 = (n1 −3)w2
1 + (n2 −3)w2

2 +·· ·+ (nk −3)w2
k −N(w)2

has a χ2-distribution with k−1 degrees of freedom.

Example 15.6. In testing whether the correlations between sepal and petal
lengths differ for the species: setosa, versicolor and virginica, the p-value
found was close to 0.

load fisheriris
%Correlations between sepal and petal lengths
%for species setosa, versicolor and virginica
n1=50; n2=50; n3=50; k=3; N=n1+n2+n3-3*k;
r =[ corr(meas(1:50, 1), meas(1:50, 3)), ...

corr(meas(51:100, 1), meas(51:100, 3)), ...
corr(meas(101:150, 1), meas(101:150, 3)) ]

%0.2672 0.7540 0.8642
fisherz = @(r) 1/2 * log( (1+r)./(1-r) );

w=fisherz(r)
%0.2738 0.9823 1.3098

wbar = [n1-3 n2-3 n3-3]/N * w’ %0.8553
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chi2 = [n1-3, n2-3, n3-3]*(w.^2)’- N*wbar^2 %26.3581
pval = 1-chi2cdf(chi2, k-1) %1.8897e-006

�

15.2.1.5 Power and Sample Size in Inference About Correlations

Power and sample size computations for testing correlations use the fact that
Fisher’s z-transformed sample correlation coefficients have an approximately
normal distribution, as we have seen before.

The statistic t = r
√

n−2
1−r2 , which has a t-distribution with d f = n−2 degrees

of freedom, determines the critical points of the rejection region as

rα,n−2 =

√√√√ t2
n−2,1−α

t2
n−2,1−α+ (n−2)

,

where α is replaced by α/2 for the two-sided alternative, and where the sign of
the square root is negative if H1 : ρ < 0.

Let z-transformations of r and rα,n−2 be w and wα, respectively. Then the
power, as a function of w, is

1−β=Φ
(
(w−wα)

p
n−3

)
.

The sample size needed to achieve a power of 1−β, in a test of level α
against the one-sided alternative, is

n =
( z1−α+ z1−β

w1

)2
+3.

Here w1 is z-transformation of ρ1 from the specific alternative, H1 : ρ = ρ1,
and z1−α and z1−β are quantiles of a standard normal distribution. When the
alternative is two-sided, z1−α is replaced by z1−α/2.

Example 15.7. One wishes to determine the size of a sample sufficient to reject
H0 : ρ = 0 with a power of 1−β = 0.90 in a test of level α = 0.05 whenever
ρ ≥ 0.4. Here we take H1 : ρ = 0.4 and find that a sample of size 51 will be
necessary:

fisherz = @(x) atanh(x);
w1 = fisherz(0.4) % 0.4236
n =((norminv(0.95)+norminv(0.90))/w1)^2 + 3 %50.7152

If H0 : ρ = 0 is to be rejected whenever |ρ| ≥ 0.4, then a sample of size 62 is
needed:

n =((norminv(0.975)+norminv(0.90))/w1)^2 + 3 %61.5442

�
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15.2.1.6 Multiple Correlation Coefficient

Consider three variables X1, X2, and Y . The correlation between Y and the
pair X1, X2 is measured by the multiple correlation coefficient

Ry.x1x2 =

√√√√ r2
x1 y −2rx1x2 · rx1 y · rx2 y + r2

x2 y

1− r2
x1x2

.

This correlation is significant if

F =
R2

y.x1x2
/2

(
1−R2

y.x1x2

)
/(n−3)

is large. Here n is the number of triplets (X1, X2,Y ), and statistic F has an
F-distribution with 2,n−3 degrees of freedom.

The general case R = Ry.x1x2...xk will be covered in the multiple regression
section, p. 605; in fact, R2 is called the coefficient of determination and testing
its significance is equivalent to testing the significance of the multiple regres-
sion of Y on X1, . . . , Xk.

15.2.2 Bayesian Inference for Correlation Coefficients

To conduct a Bayesian inference on a correlation coefficient, a bivariate nor-
mal distribution for the data is assumed and Wishart’s prior is placed on
the inverse of the covariance matrix. Recall that the Wishart distribution is
a multivariate counterpart of a gamma distribution (more precisely, of a χ2-
distribution) and the model is in fact a multivariate analog of a gamma prior
on the normal precision parameter.

To illustrate this Bayesian model, a bivariate normal sample of size n = 46
is generated. For this sample Pearson’s coefficient of correlation was found to
be r = 0.9908, with sample variances of s2

x = 8.1088 and s2
y = 35.0266.

WinBUGS code corr.odc, as given bellow, is run and Bayes estimators
for population correlation ρ and component variances σ2

x and σ2
y are obtained

as 0.9901, 8.114, and 34.99. These values are close to the classical estimators
since the priors are noninformative. The hyperparameters of Wishart’s prior
are matrix W and degrees of freedom df, and low degrees of freedom, df=3, make
this prior “vague.”

As an exercise, compute a classical 95% confidence interval for ρ (p. 577)
and compare it with the 95% credible set [0.9823,0.9952]. Are the intervals
similar?
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model{
for( i in 1:nn){

y[i,1:2] ~ dmnorm( mu[i,], Tau[,] )
mu[i,1] ~ dnorm(mu.x, tau1)
mu[i,2] ~ dnorm(mu.y, tau2)
}

mu.x ~ dnorm(0, 0.0001)
mu.y ~ dnorm(0, 0.0001)
tau1 ~ dgamma(0.001, 0.001)
tau2 ~ dgamma(0.001, 0.001)
Tau[1:2,1:2] ~ dwish( W[,], df )
df <- 3
Sigma[1:2, 1:2] <- inverse(Tau[,])
rho <- Sigma[1,2]/sqrt(Sigma[1,1]*Sigma[2,2])
}

DATA
list( nn=46, y = structure(.Data = c( 0.5674, -1.6458,

-0.4656, -4.8531,
1.5253 , -2.1200,
...
8.3435, 14.7693,
11.0151, 18.8988,
8.9949, 15.3797,
10.5287, 18.1455), .Dim=c(46,2)) ,

W = structure(.Data = c(1,0,0,1),.Dim=c(2,2) ) )

INIT
list(Tau = structure(.Data = c(1,1,1,1), .Dim = c(2,2)),
mu.x = 1, mu.y = 1, tau1=1, tau2=1)

mean sd MC error val2.5pc median val97.5pc start sample
Sigma[1,1] 8.114 1.757 0.01462 5.361 7.881 12.21 1001 100000
Sigma[1,2] 16.68 3.625 0.03035 11.0 16.2 25.13 1001 100000
Sigma[2,1] 16.68 3.625 0.03035 11.0 16.2 25.13 1001 100000
Sigma[2,2] 34.99 7.570 0.06331 23.15 33.98 52.63 1001 100000

rho 0.9901 0.0033 3.287E-5 0.9823 0.9906 0.9952 1001 100000

15.3 Spearman’s Coefficient of Correlation

Charles Edward Spearman (Fig. 15.4) was a late bloomer, academically speak-
ing. He received his Ph.D. at the age of 48, after having served as an officer
in the British army for 15 years. He is most famous in the field of psychology,
where he theorized that “general intelligence” was a function of a compre-
hensive mental competence rather than a collection of multifaceted mental
abilities. His theories eventually led to the development of factor analysis.
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Fig. 15.4 Charles Edward Spearman (1863–1945).

Spearman (1904) proposed the rank correlation coefficient long before
statistics became a scientific discipline. For bivariate data, an observation
has two coupled components (X ,Y ) that may or may not be related to each
other. Let ρ=Corr(X ,Y ) represent the unknown correlation between two com-
ponents. In a sample of n, let R1, . . . ,Rn denote the ranks for the first compo-
nent X and S1, . . . ,Sn denote the ranks for Y . For example, if x1 = x(n) is the
largest value from x1, . . . , xn and y1 = y(1) is the smallest value from y1, . . . , yn,
then (R1,S1) = (n,1). Corresponding to Pearson’s (parametric) coefficient of
correlation, the Spearman coefficient of correlation is defined as

ρ̂ =
∑n

i=1(Ri −R)(Si −S)
√∑n

i=1(Ri −R)2 ·∑n
i=1(Si −S)2

. (15.1)

This expression can be simplified. From (15.1), R = S = (n+1)/2 and
∑

(Ri −
R)2 =∑

(Si−S)2 = nV ar(Ri)= n(n2−1)/12. Define D as the difference between
ranks, i.e., Di = Ri −Si. With R = S, we can see that

Di = (Ri −R)− (Si −S)

and

n∑
i=1

D2
i =

n∑
i=1

(Ri −R)2 +
n∑

i=1
(Si −S)2 −2

n∑
i=1

(Ri −R)(Si −S),

i.e.,

n∑
i=1

(Ri −R)(Si −S)= n(n2 −1)
12

− 1
2

n∑
i=1

D2
i .
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By dividing both sides of the equation by
√∑n

i=1(Ri −R)2 ·∑n
i=1(Si −S)2 =

∑n
i=1(Ri −R)2 = n(n2 −1)/12, we obtain

ρ̂ = 1−
6
∑n

i=1 D2
i

n(n2 −1)
. (15.2)

Consistent with Pearson’s coefficient of correlation (the standard paramet-
ric measure of covariance), Spearman’s coefficient of correlation ranges be-
tween −1 and 1. If there is perfect agreement, i.e., all the differences are 0,
then ρ̂ = 1. The scenario that maximizes

∑
D2

i occurs when ranks are perfectly
opposite: Ri = n−Si +1.

If the sample is large enough, then Spearman’s statistic can be approxi-
mated using the normal distribution. It was shown that if n> 10, then

Z = (ρ̂−ρ)
p

n−1∼N (0,1).

Example 15.8. Stichler et al. (1953) list tread wear for tires, each tire mea-
sured by two methods based on (a) weight loss and (b) groove wear.

Weight Groove Weight Groove
45.9 35.7 41.9 39.2
37.5 31.1 33.4 28.1
31.0 24.0 30.5 28.7
30.9 25.9 31.9 23.3
30.4 23.1 27.3 23.7
20.4 20.9 24.5 16.1
20.9 19.9 18.9 15.2
13.7 11.5 11.4 11.2

For this data, ρ̂ = 0.9265. Note that if we opt for the parametric measure
of correlation, the Pearson coefficient is 0.948.
�

Ties in the Data: The statistics in (15.1) and (15.2) are not designed for
paired data that include tied measurements. If ties exist in the data, a simple
adjustment should be made. Define u′ = ∑

u(u2 −1)/12 and v′ = ∑
v(v2 −1)/12

where the us and vs are the ranks for X and Y adjusted (e.g., averaged) for
ties. Then

ρ̂′ =
n(n2 −1)−6

∑n
i=1 D2

i −6(u′ +v′)

{[n(n2 −1)−12u′][n(n2 −1)−12v′]}1/2 ,

and it holds that, for large n,

Z = (ρ̂′ −ρ′)
p

n−1∼N (0,1).
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The MATLAB function corr(x,y,’type’,’Spearman’) computes the Spear-
man correlation coefficient for column vectors x and y.

15.4 Kendall’s Tau

M. G. Kendall (Fig. 15.5) formalized an alternative measure of dependence
(originally proposed and used in the nineteenth century) by finding out how
many pairs in a bivariate sample are “concordant,” which means that the signs
between X and Y agree in the pairs. Pairs for which one sign is plus and the
other is minus are “discordant.” From (Xi,Yi), i = 1, . . . ,n one can choose

(n
2
)

different pairs. The pair (Xi,Yi), (X j ,Yj) is concordant if either Xi ≤ X j and
Yi ≤ Yj or Xi ≥ X j and Yi ≥ Yj . The pair is called discordant if either Xi ≤ X j
and Yi ≥Yj or Xi ≥ X j and Yi ≤Yj. For example, the pairs (2,4) and (1,−1) are
concordant, while the pairs (−2,4) and (1,−1) are discordant.

Fig. 15.5 Sir Maurice George Kendall (1907–1983).

Kendall’s τ̂-statistic (Kendall, 1938) is defined as

τ̂= 2Sτ

n(n−1)
, Sτ =

n∑
i=1

n∑
j=i+1

sign{ri − r j},

where ris are defined via ranks of the second sample corresponding to the
ordered ranks of the first sample, {1,2, . . . , n}, i.e.,

(
1 2 . . . n
r1 r2 . . . rn

)
.

In this notation
∑n

i=1 D2
i from Spearman’s coefficient of correlation becomes∑n

i=1(ri − i)2. In terms of the number of concordant (nC) and discordant (nD =
n−nC) pairs,

τ̂= 2(nC −nD)
n(n−1)

,
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and in the case of ties, use

τ̂= nC −nD

nC +nD
.

Example 15.9. Prevention of Vitreous Loss. Limbal incisions were made
in rabbit eyes to mirror the initial steps of lens extraction. The vitreous body
loses water when the eye is open and decreases in weight, as reported by
Galin et al. (1971). The results had implications in the context of cataract
surgery. The authors measured the vitreous body weight for each eye of 15
New Zealand albino rabbits. One eye has been open for 5 min. (y), while the
other served as a control (x). The measurements of vitreous weight (in mg) are
provided next:

Rabbit # 1 2 3 4 5 6 7 8
Control eye (x) 1848 1532 1460 1947 1810 1718 1686 1617
Open eye (y) 1738 1440 1388 1756 1692 1629 1583 1499
Rabbit # 9 10 11 12 13 14 15
Control eye (x) 1724 1873 1928 2226 1708 1605 1822
Open eye (y) 1596 1794 1785 2044 1602 1491 1702

We will find Kendall’s τ̂ and provide an approximate 95% confidence inter-
val.

The sample variance of τ̂ when no ties are present is approximately

s2(τ̂)= 4
n∑

i=1
c2

i −2
n∑

i=1
ci −

(2n−3)
(∑n

i=1 ci
)2

(n
2
) .

With the presence of ties the expression for sample variance is more com-
plicated, but the above expression can serve as an approximation. Then
(1−α)100% confidence interval is

[
τ̂− z1−α/2(n

2
) s(τ̂), τ̂+ z1−α/2(n

2
) s(τ̂)

]
∩ [−1,1].

Using rabbits.m we found no ties, nC = 100, nD = 5, τ̂ = 0.9048, and a
95% confidence interval of [0.8091,1.0000]. Using the difference T = nC − nD
one can test for independence of the two components. The test has a p-value
of

p = 2P

(
Z ≥ 3(|T|+1)

p
2p

n(n−1)(2n−5)

)

where Z is standard normal. In our example a strong dependence between
control and open eye measurements is found
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T=nc-nd %95
p = 2 * (1-normcdf(3*(abs(T)+1)*sqrt(2)/sqrt(n*(n-1)*(2*n -5))))
%1.8965e-008

�

15.5 Cum hoc ergo propter hoc

We conclude this chapter with a discussion on the misuses of correlations. The
fallacy that correlation implies causation is summarized by Gould’s quote at
the chapter’s beginning (Latin Cum hoc ergo propter hoc meaning “With this,
therefore because of this”). We already mentioned the “link” between ice-cream
sold on the beach and the number of drowning accidents, but the fallacy causes
more serious damage to science. Spurious correlations are often misused in
medical and health science and attributed to causations. The number of pub-
lished studies with voodoo causations, often conflicted from study to study, is
stunning.
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Fig. 15.6 Fresh lemons imported to USA from Mexico (in metric tons; U.S. Department of
Agriculture) and total U.S. highway fatality rate (per 100,000; U.S. NHTSA, DOT HS 810
780).

As an extreme case of spurious correlation we give an example (popular
among bloggers on the Web) involving data on imports of fresh lemons from
Mexico (1996–2000) and U.S. highway fatality rates (1996–2000), Fig. 15.6.
The correlation is r = −0.986 and is highly significant (p < 0.0002) even with
sample size n = 5. Some bloggers provided “causal links” citing less expensive
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car air-fresheners that make drivers happy or slower traffic caused by trucks
from Mexico transporting lemons.

There are two possible errors in correlation inference caused by grouping
data. The first one is if two separate groups are combined. For each group there
may not be correlation, but when the groups are combined, the correlation
may be significant and, of course, spurious. Figure 15.7 illustrated this point.
Observations represented by red circles (group 1, r = 0.0643), as well as the
pairs represented by blue circles (group 2, r = 0.0079), show no significant
correlation. However, when the groups are combined, the correlation increases
to r = 0.7031, and it is significant with a p-value of 1.5×10−5. Details can be
found in spur.m.
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Fig. 15.7 Spurious correlation when two groups of uncorrelated pairs are combined.

The second error is more subtle. Often, repeated bivariate measurements
are considered as independent and an artificial correlation due to a blocking
factor is introduced. For example, if for 15 subjects one measures weight (X )
and skinfold thickness (Y ) before and after a diet and combines the measure-
ments, then due to the “increased sample size” a significance of correlation
between X and Y is more likely.

15.6 Exercises

15.1. Correlation Between Uniforms and Their Squares. Generate 10,000
uniform random numbers between −1 and 1 in the form of a vector x.



15.6 Exercises 593

Demonstrate that y=x.2 has a small correlation with x, regardless of their
perfect functional relationship.

15.2. Muscle Strength of “Ethanol Abusers.” It is estimated that 10% of Eu-
ropean and North American adults, and up to one-third of acute hospital ad-
missions, are alcoholics. Obviously, the high proportion of alcoholics in the
hospitalized population imposes severe financial constraints on health au-
thorities and emphasizes the need for primary caretakers to focus on min-
imizing alcohol misuse. A staggering two-thirds of chronic ethanol abusers
have skeletal muscle myopathy (Martin et al., 1985; Worden, 1976).
Hickish et al. (1989) provide height, quadriceps muscle strength, and age
data in 41 male alcoholics, as in the table below. The data are available as

alcos.xls or alcos.ascii.

Height Quadriceps Age Height Quadriceps Age
(cm) muscle (years) (cm) muscle (years)

strength (N) strength (N)
155 196 55 172 147 32
159 196 62 173 441 39
159 216 53 173 343 28
160 392 32 173 441 40
160 98 58 173 294 53
161 387 39 175 304 27
162 270 47 175 404 28
162 216 61 175 402 34
166 466 24 175 392 53
167 294 50 175 196 37
167 491 35 176 368 51
168 137 65 177 441 49
168 343 41 177 368 48
168 74 65 177 412 32
170 304 55 178 392 49
171 294 47 178 540 41
172 294 31 178 417 42
172 343 38 178 324 55
172 147 31 179 270 32
172 319 39 180 368 34
172 466 53

(a) Find the sample correlation between Height and Strength, rHS . Test the
hypothesis that the population correlation coefficient between the Height
and Strength ρHS is significantly positive at the level α= 0.01.
Since an increase in Age is expected to decrease the Strength (negative
correlation), find the correlation between Height and Strength when Age is
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accounted for, that is, find rHS.A . Test the hypothesis that ρHS.A is positive
at the level α= 0.01.
Find an approximate 95% confidence interval for ρHS .

15.3. Vending Machine and Pharmacy Errors. Mr. Joseph Bentley, the
owner of a pharmacy store, wants to remove the Coke vending machine
standing in front of his store because he believes the vending machine in-
fluences the number of errors the store employees make. More precisely, as
more Coke is sold outside his store, more errors are made. He provided the
following data:

Errors made 5 3 10 9 5 7 8 4
Coke sold 112 100 220 250 100 200 160 100

Find the coefficient of correlation. Comment on why this correlation is high.
Is there a causation – are Coke sales by themselves influencing the phar-
macy employees?

15.4. Vending Machine and Pharmacy Errors Revisited. Refer to Exercise
15.3. In addition to Errors and Coke, Mr. Bentley provided the count of
people that pass by his store (and the vending machine):

Errors made 5 3 10 9 5 7 8 4
Coke 112 100 220 250 100 200 160 100
People 10000 6000 17000 20000 9000 15000 14000 8000

Find the coefficient of correlation between Errors and Coke sales while ac-
counting for the number of people. Comment.

15.5. Corn Yields and Rainfall. The following table published by Misner
(1928) has been analyzed by Ezekiel and Fox (1959). The variables are
years:
rain (X): rainfall measurements in inches, in the six states, from 1890 to
1927. Year 1 in the data below corresponds to 1890.
yield (Y): yearly corn yield in bushels per acre, in six Corn Belt states
(Iowa, Illinois, Nebraska, Missouri, Indiana, and Ohio).

year X Y year X Y
1 9.6 24.5 20 12.0 32.3
2 12.9 33.7 21 9.3 34.9
3 9.9 27.9 22 7.7 30.1
4 8.7 27.5 23 11.0 36.9
5 6.8 21.7 24 6.9 26.8
6 12.5 31.9 25 9.5 30.5
7 13.0 36.8 26 16.5 33.3
8 10.1 29.9 27 9.3 29.7
9 10.1 30.2 28 9.4 35.0

10 10.1 32.0 29 8.7 29.9
11 10.8 34.0 30 9.5 35.2
12 7.8 19.4 31 11.6 38.3
13 16.2 36.0 32 12.1 35.2
14 14.1 30.2 33 8.0 35.5
15 10.6 32.4 34 10.7 36.7
16 10.0 36.4 35 13.9 26.8
17 11.5 36.9 36 11.3 38.0
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18 13.6 31.5 37 11.6 31.7
19 12.1 30.5 38 10.4 32.6

Find the sample correlation coefficient r and a 95% confidence interval for
the population coefficient ρ.

15.6. Drosophilæ. Sokoloff (1966) reported the correlation between body weight
and wing length in Drosophila pseudoobscura as 0.52 in a sample of n1 =
39 at the Grand Canyon, and as 0.67 in a sample of n2 = 20 at Flagstaff,
Arizona. Do the correlations in these two populations differ significantly?
Use α= 0.05.

15.7. Confidence Interval for the Difference of Two Correlation Coeffi-
cients. Using the results on testing the equality of two correlation coeffi-
cients develop a (1−α)100% confidence interval for their difference.

15.8. Oxygen Intake. The human body takes in more oxygen when exercising
than when it is at rest, and to deliver the oxygen to the muscles, the heart
must beat faster. Heart rate is easy to measure, but the measurement of
oxygen uptake requires elaborate equipment. If oxygen uptake (VO2) is
strongly correlated with the heart rate (HR) under a particular set of ex-
ercise conditions, then its predicted, rather than measured, values could be
used for various research purposes.1

HR VO2 HR VO2
94 0.473 108 1.403
96 0.753 110 1.499
95 0.929 113 1.529
95 0.939 113 1.599
94 0.832 118 1.749
95 0.983 115 1.746
94 1.049 121 1.897

104 1.178 127 2.040
104 1.176 135 2.231
106 1.292

Find the sample correlation r and calculate a 95% confidence interval for
its population counterpart, ρ.

15.9. Obesity and Pain. Khimich (1997) found that a pain threshold increases
in obese subjects and increases with age. Obesity is measured as the per-
centage over ideal weight (X ). The response to pain is measured by using
the threshold of the nociceptive flexion reflex (Y ), which is a measure of
the pricking pain sensation in an individual. Measurements X and Y are

1 Data provided by Paul Waldsmith from experiments conducted in Don Corrigan’s lab at
Purdue University, West Lafayette, Indiana.
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considered to be normal. We are interested in an inference about the corre-
lation between X and Y . The following data were obtained:

X 89 90 75 30 51 75 62 45 90 20
Y 2 3 4 4.5 5.5 7 9 13 15 14

77,
∑

i Y 2
i = 799.5 calculate the Pearson coefficient of linear correlation, r.

(b) Test the hypothesis that the population coefficient of correlation, ρ, is 0,
against the alternative H1 : ρ < 0. Use α= 0.05.
(c) Let the age Z (in years) of the individuals from the table be as follows
(in the corresponding order): 20 18 23 19 44 51 36 47 60 55. Find the partial
coefficient of correlation rxy.z if rxz =−0.2089 and r yz = 0.8627.
(d) Find a 95% confidence interval for ρ.

MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch15.Corr/

corrs.m, errorscoke.m, fisherzsimu.m, histo.m, iriscorr.m, lemon.m,
nanoprism.m, ObesityPain.m, rabbits.m, spur.m, variouscorrs.m

corr.odc

nanoprism.dat
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Chapter 16
Regression

The experiments showed further that the mean filial regression towards mediocrity
was directly proportional to the parental deviation from it.

– Francis Galton, F.R.S. & c. (1886)

WHAT IS COVERED IN THIS CHAPTER

• Ordinary Linear Regression.
• Confidence Intervals and Hypothesis Tests for Parameters and Re-

sponses in Linear Regression.
• Multivariable Regression. Matrix Formulation
• Model Selection and Assessment in Multivariable Regression.
• Power Analysis in Regression.
• Regression Nonlinear in Predictors. Errors-in-Variables Regression.
• Analysis of Covariance (ANCOVA)

16.1 Introduction

The rather curious name regression was given to a statistical methodology
by British scientist Sir Francis Galton, who analyzed the heights of sons
and the average heights of their parents. From his observations, Galton
(Fig. 16.1a) concluded that sons of very tall (or short) parents were generally
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600 16 Regression

taller (shorter) than average, but not as tall (short) as their parents. The re-
sults were published in 1886 under the title Regression Towards Mediocrity in
Hereditary Stature. In the course of time the word regression became synony-
mous with the statistical study of the functional relationship between two or
more variables. The data set illustrating Darwin’s finding and used by Pearson
is given in pearson.dat. The scatterplot and regression fits are analyzed in

galton.m and summarized in Fig. 16.1b. The circles correspond to pairs of
father–son heights, the black line is the line y = x, the red line is the regres-
sion line, and the green line is the regression line constrained to pass through
the origin. Darwin’s findings can be summarized by the observation that the
slope of the regression (red) line was significantly smaller than the slope of the
45◦-line.
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Fig. 16.1 (a) Sir Francis Galton (1822–1911). (b) Galton’s father–son height data (used by
Pearson). The circles correspond to pairs of father–son heights, the black line is the line
y= x, the red line is the regression line, and the green line is the regression line constrained
to pass through the origin.

Usually the response variable y is “regressed” on several predictors or co-
variates, x1, . . . , xk, and this raises many interesting questions involving the
model choice and fit, collinearity among the predictors, and others. When we
have a single predictor x and a linear relation between y and x, the regression
is called a simple linear regression.

16.2 Simple Linear Regression

Assume that we observed n pairs (x1, y1), . . . , (xn, yn), and each observation yi
can be modeled as a linear function of xi, plus an error,

yi =β0 +β1xi +εi, i = 1, . . . , n.
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Here β0 and β1 are the population intercept and slope parameters, respec-
tively, and εi is the error. We assume that the errors are not correlated and
have mean 0 and variance σ2, thus Eyi = β0 +β1xi and Var yi = σ2. The goal
is to estimate this linear model, that is, estimate β0, β1, and σ2 from the
n observed pairs. To put our discussion in context, we consider an example
concerning a study of factors affecting patterns of insulin-dependent diabetes
mellitus in children.

Example 16.1. Diabetes Mellitus in Children. Diabetes mellitus is a con-
dition characterized by hyperglycemia resulting from the body’s inability to
use blood glucose for energy. In type 1 diabetes, the pancreas no longer makes
insulin and therefore blood glucose cannot enter the cells to be used for energy.

The objective was to investigate the dependence of the level of serum C-
peptide on various other factors in order to understand the patterns of resid-
ual insulin secretion. C-peptide is a protein produced by the beta cells of the
pancreas whenever insulin is made. Thus, the level of C-peptide in the blood
is an index of insulin production.

The part of the data from Sockett et al. (1987), discussed in the context
of statistical modeling by Hastie and Tibshirani (1990), is given next. The
response measurement is the logarithm of C-peptide concentration (pmol/ml)
at the time of diagnosis, and the predictor is the base deficit, a measure of
acidity.

Deficit (x) −8.1 −16.1 −0.9 −7.8 −29.0 −19.2 −18.9 −10.6 −2.8 −25.0 −3.1
Log C-peptide (y) 4.8 4.1 5.2 5.5 5 3.4 3.4 4.9 5.6 3.7 3.9

Deficit (x) −7.8 −13.9 −4.5 −11.6 −2.1 −2.0 −9.0 −11.2 −0.2 −6.1 −1
Log C-peptide (y) 4.5 4.8 4.9 3.0 4.6 4.8 5.5 4.5 5.3 4.7 6.6

Deficit (x) −3.6 −8.2 −0.5 −2.0 −1.6 −11.9 −0.7 −1.2 −14.3 −0.8 −16.8
Log C-peptide (y) 5.1 3.9 5.7 5.1 5.2 3.7 4.9 4.8 4.4 5.2 5.1

Deficit (x) −5.1 −9.5 −17.0 −3.3 −0.7 −3.3 −13.6 −1.9 −10.0 −13.5
Log C-peptide (y) 4.6 3.9 5.1 5.1 6.0 4.9 4.1 4.6 4.9 5.1

We will follow this example in MATLAB as an annotated step-by-step
code/output of cpeptide.m. For more sophisticated analysis, MATLAB has
quite advanced built-in regression tools, regress, regstats, robustfit, stepwise,
and many other more or less specialized fitting and diagnostic tools.

After importing the data, we specify p, which is the number of parameters,
rename the variables, and find the sample size.

Deficit =[-8.1 -16.1 -0.9 -7.8 -29.0 -19.2 -18.9 -10.6 -2.8...
-25.0 -3.1 -7.8 -13.9 -4.5 -11.6 -2.1 -2.0 -9.0 -11.2 -0.2...
-6.1 -1 -3.6 -8.2 -0.5 -2.0 -1.6 -11.9 -0.7 -1.2 -14.3 -0.8...
-16.8 -5.1 -9.5 -17.0 -3.3 -0.7 -3.3 -13.6 -1.9 -10.0 -13.5];

logCpeptide =[ 4.8 4.1 5.2 5.5 5 3.4 3.4 4.9 5.6 3.7 3.9 ...
4.5 4.8 4.9 3.0 4.6 4.8 5.5 4.5 5.3 4.7 6.6 5.1 3.9 ...
5.7 5.1 5.2 3.7 4.9 4.8 4.4 5.2 5.1 4.6 3.9 5.1 5.1 ...
6.0 4.9 4.1 4.6 4.9 5.1];
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
p = 2; %number of parameters, (beta0, beta1)

%"Deficit" measurement is "x", "logCpeptide" is "y".
x = Deficit’ ; %as a column vector
y = logCpeptide’ ; %as a column vector
n = length(x);

It is of interest to express the log C-peptide (variable y) as a linear function
of alkaline deficiency (variable x), and the population model y = β0 +β1x+ ε
is postulated. Finding estimators for β0 and β1 is an exercise in calculus –
finding the extrema of a function of two variables. The following derivation is
known as the least-squares method, which is a broad mathematical method-
ology for approximate solutions of overdetermined systems, first described by
Gauss at the end of the eighteenth century. The best regression line minimizes
the sum of squares of errors:

L =
n∑

i=1
ε2

i =
n∑

i=1
(yi − (β0 +β1xi))2.

When pairs (xi, yi) are considered fixed, L is a function of β0 and β1 only.
Minimizing L amounts to solving the so-called normal equations

∂L
∂β0

= −2
n∑

i=1
[yi −β0 −β1xi]= 0 and

∂L
∂β1

= −2
n∑

i=1
[xi yi −β0xi −β1x2

i ]= 0,

that is,

nβ0 +β1

n∑
i=1

xi =
n∑

i=1
yi and

β0

n∑
i=1

xi +β1

n∑
i=1

x2
i =

n∑
i=1

xi yi. (16.1)

Let x = 1
n

∑n
i=1 xi and y= 1

n
∑n

i=1 yi be the sample means of predictor values
and the responses. If

Sxy =
n∑

i=1
(xi − x)(yi − y)=

n∑
i=1

yi(xi − x)=
n∑

i=1
xi yi −nx y,

Sxx =
n∑

i=1
(xi − x)2 =

n∑
i=1

x2
i −nx2,

and
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Syy =
n∑

i=1
(yi − y)2 =

n∑
i=1

y2
i −ny2,

then the values for β0 and β1 minimizing L or, equivalently, solving the normal
equations (16.1) are

β̂1 =
Sxy

Sxx
and β̂0 = y− β̂1x.

We will simplify the notation by denoting β̂0 by b0 and β̂1 by b1. Thus, the
fitted regression equation is

ŷ= b0 +b1x,

b1 =
Sxy

Sxx
and b0 = y−b1x.

For values x = xi the fits ŷi are obtained as

ŷi = b0 +b1xi,

with the residuals ei = yi− ŷi. The residuals are the most important diagnostic
modality in regression. They explain how well the predicted data ŷi fit the
observations, and if the fit is not good, residuals indicate what caused the
problem.

%Sums of Squares
SXX = sum( (x - mean(x)).^2 ) %SXX=2.1310e+003
SYY = sum( (y - mean(y)).^2 ) %SYY=21.807
SXY = sum( (x - mean(x)).* (y - mean(y)) ) %SXY=105.3477
%estimators of coefficients beta1 and beta0
b1 = SXY/SXX %0.0494
b0 = mean(y) - b1 * mean(x) %5.1494

% predictions
yhat = b0 + b1 * x;
%residuals

res = y - yhat;

We found that yhat=5.1494+0.0494*x. Figure 16.2 shows scatterplot of log
C-peptide level (y) against alkaline deficiency (x) with superimposed regres-
sion fit b0 +b1x.

Denote by SSE the sum of squared residuals, SSE =∑n
i=1 e2

i .
One can show that SSE = Syy − b1Sxy and that E(SSE) = (n−2)σ2. Thus,

the mean square error MSE = SSE/(n−2) is an unbiased estimator of error
variance σ2. Recall the fundamental ANOVA identity SST = SSTr+SSE. In
regression terms, the fundamental ANOVA identity has the form
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Fig. 16.2 Scatterplot of log C-peptide level (y) against alkaline deficiency (x). The regression
fit (red) is ŷ= 5.1494+0.0494x.

SST = SSR+SSE,

where SST = Syy, SSR = b1Sxy, and SSE =∑n
i=1 e2

i . Since

ESSR =σ2 +β2
1Sxx,

SSR has an associated 1 degree of freedom and the regression mean sum of
squares MSR is SSR/1= SSR.

The statistic MSR becomes an unbiased estimator of variance σ2 when
β1 = 0. Thus, to test H0 : β1 = 0 one should have F = MSR/MSE close to 1
since under H0 both MSR and MSE estimate the same quantity, σ2. Under
H0, the statistic F = MSR/MSE has an F-distribution with 1 and n−2 degrees
of freedom.

Large values of F indicate that there is a contribution of β1 in MSR and
discrepancy from H0 can be assessed using an F-test. The sums of squares,
degrees of freedom, mean squares, F-statistic and p-value associated with ob-
served F are customarily summarized in an ANOVA table:

Source DF SS MS F p-value
Regression 1 SSR MSR = SSR F = MSR

MSE P(F1,n−2 > F)
Error n−2 SSE MSE = SSE

n−2
Total n−1 SST

The p-value is associated with testing of H0, which essentially states that
covariate x does not influence the response y and the same fit can be obtained
by just taking y as the model for yis.
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%ANOVA Identity
SST = sum((y - mean(y)).^2) %this is also SYY
SSR = sum((yhat - mean(y)).^2) %5.2079
SSE = sum((y - yhat).^2) %=sum(res.^2), 16.599
% forming F and testing the adequacy of linear regression
MSR = SSR/(p - 1) %5.2079
MSE = SSE/(n - p) %estimator of variance, 0.4049
s = sqrt(MSE) %0.6363
F = MSR/MSE %12.8637
pvalue = 1-fcdf(F, p-1, n-p)
%testing H_0: regression has beta1=0,
%that is, there is no need for linear fit, p-val = 0.00088412

The above calculations are arranged in the ANOVA table:

Source DF SS MS F p-value
Regression 1 5.2079 5.2079 12.8637 0.0009
Error 41 16.5990 0.4049
Total 42 21.8070

Figure 16.3a shows plot of residuals yi − ŷi against xi. A normalized his-
togram of residuals with superimposed normal distribution N (0,0.63632), is
given in Fig. 16.3b.
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Fig. 16.3 (a) Plot of residuals y1 − ŷi against x. (b) Normalized histogram of residuals with
superimposed normal distribution N (0, s2), with s estimated as 0.6363.

The quantity R2, called the coefficient of determination, is defined as

R2 = SSR
SST

= 1− SSE
SST

.

The R2 in this context coincides with the square of the correlation coefficient
between (x1, . . . , xn) and (y1, . . . , yn). However, the representation of R2 via the
ratio SSR/SST is more illuminating. In words, R2 explains what proportion
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of the total variability (SST) encountered in observations is explained or ac-
counted for by the regression (SSR). Thus, a high R2 is desirable in any re-
gression. The adjusted R2 is defined as

R2
ad j = 1− n−1

n− p
· SSE

SST
,

but it is important only in cases with many predictors (p > 2) since it penalizes
inclusion of predictors in the model.

% Other measures of goodness of fit
R2 = SSR/SST %0.2388
R2adj = 1 - (n-1)/(n-p)* SSE/SST %0.2203

Often, instead of regressing yi on xi, one regresses yi on xi − x as

yi =β∗
0 +β1(xi − x).

This is beneficial for several reasons. In practice, we calculate only the es-
timator b1. Since the fitted line contains the point (x, y), the intercept β∗

0 is
estimated by y, and our regression fit is

ŷi = y+b1(xi − x).

In the Bayesian context estimating β∗
0 and β1 is more stable and efficient

than estimating β0 and β1 directly since y and b1 are uncorrelated.
�

Estimators b0 and b1 are unbiased estimators of population’s β0 and β1.
We will show that they are unbiased and that their variance is intimately
connected with the variance of responses, σ2.

Eb1 = β1 and Var b1 =
σ2

Sxx
,

Eb0 = β0 and Var b0 =σ2
(

1
n
+ (x)2

Sxx

)
.

Here is the rationale:
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Eb1 = E
Sxy

Sxx
= 1

Sxx
E

n∑
i=1

yi(xi − x)

= 1
Sxx

E
n∑

i=1
(β∗

0 +β1(xi − x)+εi)(xi − x)

= 1
Sxx

[
n∑

i=1
β∗

0(xi − x)+
n∑

i=1
β1(xi − x)2 +E

n∑
i=1

εi(xi − x)

]

= 1
Sxx

[
0+β1Sxx +0

]=β1.

Var b1 = Var
Sxy

Sxx
= 1

S2
xx

n∑
i=1
Var (yi(xi − x))

= 1
S2

xx

n∑
i=1

σ2(xi − x)2 = σ2

Sxx
.

Since b0 = y−b1x,

Eb0 = E(y−b1x)=β0 +β1x−β1x =β0

and

Var b0 =Var y+Var (b1x)−2Cov(y, b1x)= σ2

n
+ (x)2 σ2

Sxx
−2 ·0=σ2

[
1
n
+ (x)2

Sxx

]
.

Sample counterparts of Var b0 and Var b1 will be needed for the inference
in subsequent sections, they are obtained by plugging in the MSE in place of
σ2.

The covariance between b0 and b1 is

Cov(b0, b1)=Cov(y−b1 · x,b1)=Cov(y, b1)− x ·Var (b1)=−x · σ
2

Sxx
,

since Cov(y,b1)= 0.
In MATLAB the estimator of σ and sample standard deviations of estima-

tors b0 and b1 from Example 16.1 are as follows:

% s, sb0, and sb1
s = sqrt(MSE) %s = 0.6363

%Standard errors of parameter estimators
sb1 = s/sqrt(SXX) %sb1 = 0.0138
sb0 = s * sqrt(1/n + (mean(x))^2/SXX ) %sb0 = 0.1484
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16.2.1 Testing Hypotheses in Linear Regression

To find the estimators of regression parameters and calculate their expecta-
tions and variances we do not need distributional properties of errors – except
that they are independent, have a mean 0 and a variance that does not vary
with x. However, to test the hypotheses about the population intercept and
slope, and to find confidence intervals, we need to assume that the errors εi are
i.i.d. normal. In practice, the residual analysis is conducted to verify whether
the normality assumption is justified.

16.2.1.1 Inference About the Slope Parameter β1

For a given constant β10, the test for

H0 :β1 =β10

relies on the statistic

t= b1 −β10√
s2/Sxx

,

where s2 = MSE. This statistic under H0 has a t-distribution with n−2 de-
grees of freedom, and testing is done as follows:

Alternative α-level rejection region p-value (MATLAB)
H1 :β1 >β10 [tn−2,1−α,∞) 1-tcdf(t,n-2)

H1 :β1 6=β10 (−∞, tn−2,α/2]∪ [tn−2,1−α/2,∞) 2*tcdf(-abs(t),n-2)
H1 :β1 <β10 (−∞, tn−2,α] tcdf(t,n-2)

The distribution of the test statistic is derived from a linear representation
of b1 as

b1 =
n∑

i=1
ai yi, ai =

xi − x
Sxx

.

Under H0, b1 ∼N (β10,σ2/Sxx). Thus,

t = b1 −β10√
s2/Sxx

= b1 −β10√
σ2/Sxx

× σ

s
=

b1−β10p
σ2/Sxx√

SSE
(n−2)σ2

,
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which by definition has a tn−2 distribution, as Z/

√
χ2

n−2
n−2 . We also used the fact

that s2 = MSE = SSE/(n−2).

The (1−α)100% confidence interval for β1 is
[

b1 − tn−2,1−α/2
s√
Sxx

, b1 + tn−2,1−α/2
s√
Sxx

]
.

16.2.1.2 Inference About the Intercept Parameter β0

For a given constant β00, the test for

H0 :β0 =β00

relies on the statistic

t= b0 −β00

s
√

1
n + (x)2

Sxx

.

Under H0 this statistic has a t-distribution with n−2 degrees of freedom and
testing is done as follows:

Alternative α-level rejection region p-value (MATLAB)
H1 :β0 >β00 [tn−2,1−α,∞) 1-tcdf(t,n-2)

H1 :β0 6=β00 (−∞, tn−2,α/2]∪ [tn−2,1−α/2,∞) 2*tcdf(-abs(t),n-2)
H1 :β0 <β00 (−∞, tn−2,α] tcdf(t,n-2)

This is based on the representation of b0 as b0 = y− b1x and under H0

b0 ∼N
(
β00,σ2

(
1
n + (x)2

Sxx

))
. Thus,

t = b0 −β00

s
√

1/n+ (x)2/Sxx
= b1 −β00

σ
√

1/n+ (x)2/Sxx
× σ

s
=

b0−β00

σ
p

1/n+(x)2/Sxx√
SSE

(n−2)σ2

,

which by definition has a tn−2 distribution, as Z/

√
χ2

n−2
n−2 .
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The (1−α)100% confidence interval for β0 is

[
b0 − tn−2,1−α/2 s

√
1
n
+ (x)2

Sxx
, b0 + tn−2,1−α/2 s

√
1
n
+ (x)2

Sxx

]
.

% are the coefficients equal to 0?
t1 = b1/sb1 %3.5866
pb1 = 2 * (1-tcdf(abs(t1),n-p) ) %8.8412e-004
t0 = b0/sb0 %34.6927
pb1 = 2 * (1-tcdf(abs(t0),n-p) ) %0

%test H_0: beta1 = 0.04 vs H_1: beta1 > 0.04
tst1 = (b1 - 0.04)/sb1 %0.6846
ptst1 = 1 - tcdf( tst1, n-p ) %0.2487
% test H_0: beta0 = 5.8 vs H_1: beta0 < 5.8
tst2 = (b0 - 5.8)/sb0 %-4.3836
ptst2 = tcdf(tst2, n-p ) %3.9668e-005
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Find 95% CI for beta1
[b1 - tinv(0.975, n-p)*sb1, b1 + tinv(0.975, n-p)*sb1]
% 0.0216 0.0773
% Find 99% CI for beta0
[b0 - tinv(0.995, n-p)*sb0, b0 + tinv(0.995, n-p)*sb0]
% 4.7484 5.5503

16.2.1.3 Inference About the Variance σ2

Testing H0 : σ2 = σ2
0 relies on the statistic χ2 = (n−2)MSE

σ2
0

= SSE
σ2

0
. This statistic

under H0 has a χ2-distribution with n−2 degrees of freedom and testing is
done as follows:

Alternative α-level rejection region p-value (MATLAB)
H1 :σ2 <σ2

0 [0,χ2
n−2,α] chi2cdf(chi2,n-2)

H1 :σ2 6=σ2
0 [0,χ2

n−2,α/2]∪ [χ2
n−2,1−α/2,∞) 2*chi2cdf(ch,n-2)

H1 :σ2 >σ2
0 [χ2

n−2,1−α,∞) 1-chi2cdf(chi2,n-2)

where chi2 is the test statistic and ch=min(chi2,1/chi2).
The (1−α)100% confidence interval for σ2 is
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[
SSE

χ2
n−2,1−α/2

,
SSE

χ2
n−2,α/2

]
.

The following part of MATLAB script tests H0 :σ2 = 0.5 versus H1 :σ2 < 0.5
and finds a 95% confidence interval for σ2. As is evident, H0 is not rejected (p-
value 0.1981), and the interval is [0.2741,0.6583].

%test H_0: sigma2 = 0.5 vs H_1: sigma2 < 0.5
ch2 = SSE/0.5 %33.1981
ptst3 = chi2cdf(ch2, n-p) %0.1981
% Find 95% CI for sigma2
[SSE/chi2inv(0.975, n-p), SSE/chi2inv(0.025, n-p)]
% 0.2741 0.6583

16.2.1.4 Inference About the Mean Regression Response for x= x∗

Suppose that the regression ŷ= b0+b1x has been found and that we are inter-
ested in making an inference about the response ym = E(y|x = x∗) = β0 +β1x∗.
The statistic for ym is ŷm = b0 + b1x∗, and it is a random variable since both
b0 and b1 are random variables.

The ŷm is an unbiased estimator of ym, E ŷm = E(b0+b1x∗)=β0+β1x∗ = ym,
as expected. The variance of ŷm is obtained from representation ŷm = b0 +
b1x∗ = y+b1(x∗−x) and the fact that the correlation between y and b1 is zero:

Var ŷm =σ2
(

1
n
+ (x∗ − x)2

Sxx

)
.

Thus,

ŷm ∼N

(
β0 +β1x∗,σ2

(
1
n
+ (x∗ − x)2

Sxx

))
,

from which we develop the inference.
The test

H0 : ym = y0

relies on the statistic

t = ŷm − y0

s
√

1
n + (x∗−x)2

Sxx

.
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This statistic under H0 has a t-distribution with n−2 degrees of freedom and
testing is done as in the cases of β0 and β1.

The (1−α)100% confidence interval for ym =β0 +β1x∗ is

[
ŷm − tn−2,1−α/2 s

√
1
n
+ (x∗ − x)2

Sxx
, ŷm + tn−2,1−α/2 s

√
1
n
+ (x∗ − x)2

Sxx

]
.

16.2.1.5 Inference About a New Response for x= x∗

Suppose that the regression ŷ = b0 + b1x has been established and that we
are interested in predicting the response ŷpred for a new observation, cor-
responding to a covariate x = x∗. Given the value x = x∗, the difference be-
tween the inference about the mean response ym discussed in the previous
section and the inference about an individual outcome ypred is substantial.
As in the previous subsection, ŷpred = b0 + b1x∗, and the mean of ŷpred is
E( ŷpred)=β0 +β1x∗ = ypred, which is in fact equal to ym.

Where ypred and ym differ is their variability. The variability of ŷpred has
two sources, first, the variance of the distribution of ys for x = x∗, which is
σ2, and second, the variance of sampling distribution for b0 + b1x∗, which is
σ2

(
1
n + (x∗−x)2

Sxx

)
. Thus, Var ( ŷpred)= MSE+Var ( ŷm).

The distribution for ŷpred is normal,

ŷpred ∼N

(
β0 +β1x∗,σ2

(
1+ 1

n
+ (x∗ − x)2

Sxx

))
,

and the subsequent inference is based on this distribution.
The test

H0 : ypred = y0

relies on the statistic

t = ŷpred − y0

s
√

1+ 1
n + (x∗−x)2

Sxx

.

This statistic under H0 has a t-distribution with n− 2 degrees of freedom,
which implies the inference.



16.2 Simple Linear Regression 613

The (1−α)100% confidence interval for ypred is

[
ŷpred − tn−2,1−α/2 s

√
1+ 1

n
+ (x∗ − x)2

Sxx
, ŷpred + tn−2,1−α/2 s

√
1+ 1

n
+ (x∗ − x)2

Sxx

]
.

% predicting y for the new observation x, CI and PI
newx = 230; %Deficit = 230
y_newx = b0 + b1 * newx % 16.5195
sym = s * sqrt(1/n + (mean(x) - newx)^2/SXX )

%st.dev. for mean response, sym = 3.2839
syp = s * sqrt(1 + 1/n + (mean(x) - newx)^2/SXX )

%st.dev. for the prediction syp = 3.3450
alpha = 0.05;
%mean response interval

lbym = y_newx - tinv(1-alpha/2, n-p) * sym;
rbym = y_newx + tinv(1-alpha/2, n-p) * sym;

% prediction interval
lbyp = y_newx - tinv(1-alpha/2, n-p) * syp;
rbyp = y_newx + tinv(1-alpha/2, n-p) * syp;

% the intervals
[lbym rbym] % 9.8875 23.1516
[lbyp rbyp] % 9.7642 23.2749

Next, we will find Bayesian estimators of regression parameters in the
same example, Diabetes Mellitus in Children, by using WinBUGS. On p. 606
we mentioned that taking xi − x as a predictor instead of xi is beneficial in the
Bayesian context. From such a parametrization of regression,

yi =β∗
0 +β1(xi − x)+εi,

the traditional intercept β0 is easily obtained as β∗
0 −β1x.

model{
for (i in 1:ntotal){
y[i] ~ dnorm( mui[i], tau )
mui[i] <- bb.0 + b.1 *(x[i] - mean(x[]))
yres[i] <- y[i] - mui[i]
}
bb.0 ~ dnorm(0, 0.0001)
b.0 <- bb.0 - b.1 * mean(x[])
b.1 ~ dnorm(0, 0.0001)
tau ~ dgamma(0.001, 0.001)
s <- 1/sqrt(tau)
}

DATA
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list(ntotal=43,
y = c(4.8, 4.1, 5.2, 5.5, 5.0, 3.4, 3.4, 4.9, 5.6, 3.7,

3.9, 4.5, 4.8, 4.9, 3.0, 4.6, 4.8, 5.5, 4.5, 5.3,
4.7, 6.6, 5.1, 3.9, 5.7, 5.1, 5.2, 3.7, 4.9, 4.8,
4.4, 5.2, 5.1, 4.6, 3.9, 5.1, 5.1, 6.0, 4.9, 4.1,
4.6, 4.9, 5.1),

x = c(-8.1, -16.1, -0.9, -7.8, -29.0, -19.2, -18.9, -10.6,
-2.8, -25.0, -3.1, -7.8, -13.9, -4.5, -11.6, -2.1,
-2.0, -9.0, -11.2, -0.2, -6.1, -1.0, -3.6, -8.2,
-0.5, -2.0, -1.6, -11.9, -0.7, -1.2, -14.3, -0.8,

-16.8, -5.1, -9.5, -17.0, -3.3, -0.7, -3.3, -13.6,
-1.9, -10.0, -13.5))

INITS
list(bb.0 = 0, b.1 = 0, tau=1)

The output is given in the table below. It contains Bayesian estimators b.0

for β0 and b.1 for β1. In the least-squares regression we found b1 = Sxy/Sxx =
0.0494, b0 = y−b1 ·x = 5.1494, and s=

p
MSE = 0.6363. Since priors were non-

informative, we expect that Bayesian estimators will be close to the classical.
Indeed that is the case: b.0 = 5.149, b.1 = 0.0494, and s = 0.6481.

The classical standard errors of estimators for β0 and β1 are sb0 = 0.1484

and sb1 = 0.0138, while the corresponding Bayesian estimators are 0.1525
and 0.01418.

The classical 95% confidence interval for β1 was found to be [0.0216,0.0773].
The Bayesian 95% credible set for β1 is [0.02139,0.07733], as is evident from
val2.5pc and val97.5pc in the output below.

mean sd MC error val2.5pc median val97.5pc start sample
b.0 5.149 0.1525 3.117E-4 4.848 5.149 5.449 2001 200000
b.1 0.0494 0.0141 3.072E-5 0.02139 0.04944 0.07733 2001 200000
s 0.6481 0.0734 1.771E-4 0.5236 0.6415 0.811 2001 200000
yres[1] 0.05111 0.09944 2.175E-4 -0.1444 0.05125 0.2472 2001 200000
yres[2] -0.2537 0.1502 3.459E-4 -0.5499 -0.2533 0.0418 2001 200000
yres[3] 0.09544 0.1431 2.925E-4 -0.1861 0.09505 0.378 2001 200000
yres[4] 0.7363 0.09957 2.167E-4 0.5406 0.7364 0.9325 2001 200000
...
yres[41] -0.4552 0.1333 2.727E-4 -0.7173 -0.4555 -0.1919 2001 200000
yres[42] 0.245 0.1028 2.314E-4 0.04251 0.2451 0.4475 2001 200000
yres[43] 0.6179 0.125 2.879E-4 0.3718 0.6179 0.8632 2001 200000

Thus, the Bayesian approach to regression estimation is quite close to the
classical when the priors on β0 and β1 and the precision τ= 1/σ2 are noninfor-
mative.

Example 16.2. Hubble Telescope and Hubble Regression. Hubble’s con-
stant (H) is one of the most important numbers in cosmology because it is
instrumental in estimating the size and age of the universe. This long-sought
number indicates the rate at which the universe is expanding, from the pri-
mordial “Big Bang.” The Hubble constant can be used to determine the intrin-
sic brightness and masses of stars in nearby galaxies, examine those same
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properties in more distant galaxies and galaxy clusters, deduce the amount of
dark matter present in the universe, obtain the scale size of faraway galaxy
clusters, and serve as a test for theoretical cosmological models.

Fig. 16.4 Edwin Powell Hubble (1889–1953).

In 1929, Edwin Hubble1 (Fig. 16.4) investigated the relationship between
the distance of a galaxy from the Earth and the velocity with which it ap-
pears to be receding. Galaxies appear to be moving away from us no matter
which direction we look. This is thought to be the result of the “Big Bang.”
Hubble hoped to provide some knowledge about how the universe was formed
and what might happen in the future. The data collected included distances
(megaparsecs2) to n = 24 galaxies and their recessional velocities (km/sec).

Hubble’s law is as follows: Recessional velocity = H × distance,
where H is Hubble’s constant (units of H are [km/sec/Mpc]). By working back-
ward in time, the galaxies appear to meet in the same place. Thus 1/H can be
used to estimate the time since the Big Bang – a measure of the age of the
universe.

Distance in megaparsecs ([Mpc]) 0.032 0.034 0.214 0.263 0.275 0.275
0.45 0.5 0.5 0.63 0.8 0.9
0.9 0.9 0.9 1.0 1.1 1.1
1.4 1.7 2.0 2.0 2.0 2.0

Recessional velocity ([km/sec]) 170 290 −130 −70 −185 −220
200 290 270 200 300 −30
650 150 500 920 450 500
500 960 500 850 800 1090

A regression analysis seems appropriate; however, there is no intercept
term in Hubble’s law. Can you verify that the constant term of the regression
analysis is not significantly different than 0 at any reasonable3 level of α. Find

1 Edwin Powell Hubble (b. Nov. 20, 1889, Marshfield, Missouri, U.S., d. Sept. 28, 1953, San
Marino, California.), American astronomer who is considered the founder of extragalactic
astronomy and who provided the first evidence of the expansion of the universe.
2 1 parsec = 3.26 light years
3 Reasonable here means level α not larger than 0.10
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the 95% confidence interval for the slope β1, also known as Hubble’s constant
H, from the given data.

The age of the universe as predicted by Hubble (in years) is about 2.3 bil-
lion years.
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Fig. 16.5 Hubble’s data and regression fits. The blue line is an unconstrained regression
(with intercept fitted), and the red line is a no-intercept fit. The slope for the no-intercept fit
is b1 = 423.9373 (=H).

%H = 423.9373
secinyear =60*60*24*365 %31536000
kminmps = 3.08568025 * 10^19;
age = 1/H * kminmps/secinyear %2.3080e+009

Modern measurements put H at approx. 70, thus predicting the age of the
universe to about 14 billion years.

Figure 16.5 showing Hubble’s data and regression fits is generated by
hubble.m.

�

16.3 Testing the Equality of Two Slopes*

Let (x1i, y1i), i = 1, . . . ,n1 and (x2i, y2i), i = 1, . . . , n2, be the pairs of measure-
ments obtained from two groups, and for each group the regression is esti-
mated as

y1i = b0(1) +b1(1)x1i + ei(1), i = 1, . . . ,n1, and

y2i = b0(2) +b1(2)x2i + ei(2), i = 1, . . . ,n2,
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where in groups i = 1,2 the statistics b0(i) and b1(i) are estimators of the re-
spective population parameters, intercepts β0(i), and slopes β1(i). We are inter-
ested in testing the equality of the population slopes,

H0 :β1(1) =β1(2),

against the one- or two-sided alternatives.
The test statistic is

t = b1(1) −b1(2)

s.e.(b1(1) −b1(2))
, (16.2)

where the standard error of the difference b1(1) −b1(2) is

s.e.(b1(1) −b1(2))=
√

s2
[

1
Sxx(1)

+ 1
Sxx(2)

]
,

and s2 is the polled estimator of variance,

s2 = SSE1 +SSE2

n1 +n2 −4
.

Statistic t in (16.2) has a t-distribution with n1+n2 −4 degrees of freedom
and, in addition to testing, could be used for a (1−α) 100% confidence interval
for β1(1) −β1(2),

[(b1(1) − b1(2))∓ tn1+n2−4,1−α/2 × s.e.(b1(1) −b1(2))].

Example 16.3. Cadmium Poisoning. Chronic cadmium poisoning is an in-
sidious disease associated with the development of emphysema and the excre-
tion in the urine of a characteristic protein of low molecular weight. The first
signs of chronic cadmium poisoning become apparent following a latent in-
terval after exposure has ended. Respiratory functions deteriorate faster with
in age. The data set featured in Armitage and Berry (1994) gives ages (in
years) and vital capacity (in liters) for 84 men working in the cadmium indus-
try, cadmium.dat|mat|xlsx. The observations with flag exposure equal to 0
denote persons unexposed to cadmium oxide fumes, while flags 1 and 2 corre-
spond to exposed persons. The purpose of the study was to assess the degree
of influence of exposure to respiratory functions. Since respiratory functions
are influenced by age, regardless of exposure, age as a covariate needs to be
taken into account. Thus, the suggested methodology is to test the equality of
the slopes in group regressions of vital capacity to age:

H0 :β1(exposed) =β1(unexposed) versus H1 :β1(exposed) <β1(unexposed).
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The research hypothesis is that the regression in the exposed group is “steeper,”
that is, the vital capacity decays significantly faster with age. This corresponds
to a smaller slope parameter for the exposed group since in this case the slopes
are negative (Fig. 16.6). The inference is supported by the following MATLAB
code.

xlsread vitalcapacity.xlsx;
twos = ans;
x1 = twos( twos(:,3) > 0, 1); y1 = twos( twos(:,3) > 0, 2);
x2 = twos( twos(:,3) ==0, 1); y2 = twos( twos(:,3) ==0, 2);
n1=length(x1); n2 = length(x2);

SXX1 = sum((x1 - mean(x1)).^2) %4.3974e+003
SXX2 = sum((x2 - mean(x2)).^2) %6.1972e+003
SYY1 = sum((y1 - mean(y1)).^2) %26.5812
SYY2 = sum((y2 - mean(y2)).^2) %20.6067
SXY1 = sum((x1 - mean(x1)).*(y1 - mean(y1))) %-236.3850
SXY2 = sum((x2 - mean(x2)).*(y2 - mean(y2))) %-189.7116
b1_1 = SXY1/SXX1 %-0.0538
b1_2 = SXY2/SXX2 %-0.0306
SSE1 = SYY1 - (SXY1)^2/SXX1 %13.8741
SSE2 = SYY2 - (SXY2)^2/SXX2 %14.7991
s2 = (SSE1 + SSE2)/(n1 + n2 - 4) %0.3584
s = sqrt(s2) %0.5987
seb1b2 = s * sqrt( 1/SXX1 + 1/SXX2 ) %0.0118
t = (b1_1 - b1_2)/seb1b2 %-1.9606
pval = tcdf(t, n1 + n2 - 4) %0.0267
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Fig. 16.6 Samples from exposed (red) and unexposed (green) groups with fitted regression
lines. The slopes of the two regressions are significantly different with a p-value smaller
than 3%.
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Thus, the hypothesis of equality of slopes is rejected with a p-value of
2.67%.

Note. Since the distribution of t-statistic is calculated under H0, which
assumes parallel regression lines, the more natural estimator s22, in place of
s2, takes into account this fact. The number of degrees of freedom in the t-
statistic changes to n1 +n2 −3. The changes in the inference are minimal, as
evidenced from the MATLAB code accounting for s22.

%s22 accounts for equality of slopes:
s22 = (SYY1 + SYY2 - ...
(SXY1 + SXY2)^2/(SXX1 + SXX2))/(n1 + n2 - 3) %0.3710

s = sqrt(s22) %0.6091
seb1b2 = s * sqrt( 1/SXX1 + 1/SXX2 ) %0.0120
t = (b1_1 - b1_2)/seb1b2 %-1.9270
pval = tcdf(t, n1 + n2 - 3) %0.0287

For the case of the confidence interval, estimator s2 and n1+n2−4 degrees
of freedom should be used.
�

16.4 Multivariable Regression

It is often the case that in an experiment leading to regression analysis more
than a single covariate is available. For example, in Chap. 2, p. 31, we dis-
cussed an experiment in which two indices of the amount of body fat (Siri
and Brozek indices) were calculated from the body density measure. In ad-
dition, a variety of body measurements, including weight, height, adiposity,
neck, chest, abdomen, hip, thigh, knee, ankle, biceps, forearm, and wrist, were
recorded. Recall that the body density measure is complicated and potentially
unpleasant, since it is taken by submerging the subject in water. Therefore, it
is of interest to ask whether the Brozek index can be well predicted using the
nonintrusive measurements.

If x1, x2, . . . , xk are variables, covariates, or predictors, and we have n joint
measurements of covariates and the response, xi1, xi2, . . . , xik, yi, i = 1,2, . . . , n,
then multivariable regression expresses the response as a linear combination
of covariates, plus an intercept and an additive error:

yi =β0 +β1xi1 +β2xi2 +·· ·+βkxik +εi, i = 1, . . . , n.

The errors εi are assumed to be independent and normal with mean 0 and
constant variance σ2. We will denote by k the number of covariates, but the
number of parameters in the model is p = k+1 because the intercept β0 should
be added. To avoid confusion we will mostly use p – the number of parameters
in all expressions that involve dimensions and derived statistics.

As in the univariate case, we will be interested in estimating and test-
ing the coefficients, error variance, and mean and prediction responses. How-
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ever, multivariable regression brings several new challenges when compared
to a simple regression. The two main challenges are (i) the possible presence
of multicollinearity among the covariates, that is, covariates being correlated
among themselves, and (ii) a multitude of possible models and the need to find
the best model by identifying the “best” subset of predictors. A synonym for
multivariable regression is multivariate regression, although the second term
is also used when the response y is multivariate, which is not the case here.

16.4.1 Matrix Notation

If the regression equations for all n observations (xi1, xi2, . . . , xik, yi), i = 1, . . . ,n
are written as

y1 = β0 +β1x11 +β2x12 +·· ·+βkx1k +ε1,

y2 = β0 +β1x21 +β2x22 +·· ·+βkx2k +ε2,
...

yn = β0 +β1xn1 +β2xn2 +·· ·+βkxnk +εn,

then one can write the above system in convenient matrix form as

y= Xβ+ε,

where

y=




y1
y2
...

yn


 ,

X =




x1
x2
...

xn


=




1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
1 xn1 xn2 · · · xnk


 , β=




β0
β1
...
βk


 , and ε=




ε1
ε2
...
εn


 .

Note that y and ε are n×1 vectors, X is an n×p matrix, and β is a p×1 vector.
Here p = k+1. To find the least-squares estimator of β, one minimizes the sum
of squares:

n∑
i=1

(yi − (β0 +β1xi1 +·· ·+βkxik))2.
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The minimizing solution

b =




b0
b1
...

bk




satisfies the system (normal equations)

X ′Xb = X ′ y, (16.3)

and the least-squares estimator of β is

b = (X ′X )−1X ′ y.

The fitted values are obtained as

ŷ= Xb = X (X ′X )−1X ′ y,

and the residuals are

e = y− ŷ= y−Xb = y−X (X ′X )−1X ′ y= (I −X (X ′X )−1X ′)y,

where I is an n×n identity matrix.
The matrix H = X (X ′X )−1X ′ that appears in expressions for fitted values

and residuals is important in this context; it is called the hat matrix. In terms
of the hat matrix H,

ŷ= H y, and e = (I −H)y.

Matrices H and I −H are projection matrices, and the n-dimensional vector
y is projected to ŷ by H and to residual vector e by I − H. Any projection
matrix A is idempotent, which means that A2 = A. Simply put, a projection of
a projection will be the same as the original projection. Geometrically, vectors
ŷ and e are orthogonal since the product of their projection matrices is 0.
Indeed, because H is idempotent, H(I −H)= H −H2 = H −H = 0.

The errors εi are independent and the variance of vector ε is σ2I .

fat.dat; all calculations are part of MATLAB script fatregdiag.m.

load ’fat.dat’
casen = fat(:,1); %case number
broz = fat(:,2); %dependent variable
siri = fat(:,3); %function of densi
densi = fat(:,4); %an intrusive measure
age = fat(:,5);

%below are the predictors

We will illustrate some concepts from multivariable regression using dataset
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weight = fat(:,6); height = fat(:,7);
adiposi = fat(:,8); %adiposity is BMI index=weight/height^2
ffwei = fat(:,9); %fat free weight, excluded from predictors

% since it involves body fat and brozek
neck = fat(:,10); chest = fat(:,11); abdomen = fat(:,12);
hip = fat(:,13); thigh = fat(:,14); knee = fat(:,15);
ankle = fat(:,16); biceps = fat(:,17); forearm = fat(:,18);
wrist = fat(:,19);

vecones = ones(size(broz)); % necessary for the intercept

disp(’=======================================================’)
disp(’ p = 15, 14 variables + intercept’)
disp(’=======================================================’)

Z =[age weight height adiposi neck chest abdomen ...
hip thigh knee ankle biceps forearm wrist];

X =[vecones Z];
Y = broz
% X is design matrix, n x p where n is the number of subjects
% and p is the number of parameters, or number of predictors+1.
% varnames = [’intercept=0’ ’age=1’ ’weight=2’ ’height=3’
% ’adiposi=4’ ’neck=5’ ’chest=6’ ’abdomen=7’ ’hip=8’ ’thigh=9’
% ’knee=10’ ’ankle=11’’biceps=12’ ’forearm=13’ ’wrist=14’];
[n, p] = size(X)
b = inv(X’ * X) * X’* Y;
H = X * inv(X’ * X) * X’;
max(max(H * H - H)); %0 since H is projection matrix
Yhat = H * Y; %or Yhat = X * b;
%-------------------------------------------------------

16.4.1.1 Sums of Squares and an ANOVA Table

Sums of squares, SST, SSR, and SSE, for multivariable regression have sim-
ple expressions in matrix notation. Here we introduce matrix J, which is an
n×n matrix in which each element is 1. The total sum of squares can be cal-
culated as

SST = y′ y− 1
n

y′J y= y′
(
I − 1

n
J

)
y.

The error sum of squares is SSE = e′e = y′(I−H)′(I−H)y= y′(I−H)y because
I −H is a symmetric projection matrix.

By taking the difference,

SSR = SST −SSE = y′
(
H − 1

n
J

)
y.

The number of degrees of freedom for SST, SSR, and SSE are n−1, p−1,
and n− p, respectively. Thus, the multivariable regression ANOVA table is
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Source DF SS MS F p-value
Regression p−1 SSR MSR = SSR

p−1 F = MSR
MSE P(F−1,n−p > F)

Error n− p SSE MSE = SSE
n−p

Total n−1 SST

where large values of F are critical for H0 which states that the covariates
x1, . . . , xk do not influence the response y. Formally, the null hypothesis is

H0 :β1 =β2 = ·· · =βk = 0,

while the alternative is that at least one βi, i = 1, . . . ,k is not 0.
As in the simple regression, R2 is called the coefficient of determination,

R2 = SSR
SST

= 1− SSE
SST

.

Adding more variables to a regression always increases R2, even when the
covariates have nothing to do with the experiment. If two models have com-
parable R2s, then, according to Ockham’s razor4, the simpler model should be
preferred and adding new variables to the regression should be penalized. One
way to achieve this is via an adjusted coefficient of determination,

R2
ad j = 1− n−1

n− p
SSE
SST

,

which is one of the criteria for comparing models.
The estimator of the error variance σ2 is MSE. We can find the confidence

intervals of the components of e and ŷ using respectively the diagonal ele-
ments of covariance matrices MSE× (I −H) and MSE×H.

%Sums of Squares
J=ones(n); I = eye(n);
SSR = Y’ * (H - 1/n * J) * Y;
SSE = Y’ * (I - H) * Y;
SST = Y’ * (I - 1/n * J) * Y;
MSR = SSR/(p-1) %806.7607
MSE = SSE/(n-p) %15.9678
F = MSR/MSE %50.5243
pval = 1-fcdf(F, p-1, n-p) %0
Rsq = 1 - SSE/SST %0.7490
Rsqadj = 1 - (n-1)/(n-p) * SSE/SST %0.7342
s = sqrt(MSE) %3.9960
%------------------------------------------------------

4 Pluralitas non est ponenda sine neccesitate, which translates into English as “Plurality
should not be posited without necessity” (William of Ockham, 1287–1347)
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16.4.1.2 Inference About Regression Parameters and Responses

The covariance matrix for a vector of estimators of regression coefficients b is
equal to

s2
b = MSE× (X ′X )−1.

Its ith diagonal element is an estimator of variance for bi, and off-diagonal
elements at the position (i, j) are estimators of covariances between bi and b j .

When finding a confidence interval or testing a hypothesis about a particu-
lar βi, we use bi and sbi in the same way as in the univariate regression, only
this time the test statistic t has n− p degrees of freedom instead of n−2. Sev-
eral subsequent MATLAB scripts are excerpts from the file fatregdiag.m.

sig2 = MSE * inv(X’ * X);% covariances among b’s
sb=sqrt(diag(sig2));
tstats = b./sb;
pvals = 2 * tcdf(-abs(tstats), n-p);
disp(’--------------------------------------’)
disp(’ var# t pval ’)
disp(’--------------------------------------’)
[ (0:p-1)’ tstats pvals ]
%--------------------------------------
% var# t pval
%--------------------------------------
% 0 -0.9430 0.3467
% 1.0000 1.8942 0.0594
% 2.0000 -1.6298 0.1045
% ...
% 12.0000 0.9280 0.3543
% 13.0000 2.3243 0.0210
% 14.0000 -2.9784 0.0032

Note that in the fat example, the intercept is not significant (p = 0.3467),
nor is the coefficient for variable #12 (biceps) (p = 0.3543), while for #13 (fore-
arm) it is significant (p = 0.0210).

The regression response ym = x∗b evaluated at x∗ = (1 x∗1 x∗2 . . . x∗k) has
sample variance

s2
ym = (x∗)sb(x∗)′.

For a prediction, the variance is, as in univariate regression, s2
yp = s2

ym +MSE.
For the inference about regression response, the t-statistic with n− p degrees
of freedom is used. As an example, assume that for a “new” person with co-
variates xh = (1 38 191 72 26 41 104 95 101.5 66 39 24 31 30 18.5)
a prediction of the Brozek index is needed. The model gives a prediction of
19.5143, and the variances for mean response and individual response are
found as below. This is sufficient to calculate confidence intervals on the mean
and individual response.
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%--------------------------------------------------
% predicting mean responses and individual response
% with 95% confidence/prediction intervals

Xh=[1 38 191 72 26 41 104 ...
95 101.5 66 39 24 31 30 18.5];

Yh = Xh * b %19.5143
sig2h = MSE * Xh * inv(X’ * X) * Xh’;
sig2hpre = MSE * (1 + Xh * inv(X’ * X) * Xh’);
sigh = sqrt(sig2h);
sighpre = sqrt(sig2hpre);
%95% CI’s on the mean and individual response
[Yh-tinv(0.975, n-p)*sigh, Yh+tinv(0.975, n-p)*sigh]

%[17.4347, 21.5940]
[Yh-tinv(0.975, n-p)*sighpre, Yh+tinv(0.975, n-p)*sighpre]

%[11.3721 27.6566]

16.4.2 Residual Analysis, Influential Observations,
Multicollinearity, and Variable Selection∗

Three important deficiencies in a multivariable linear model can be diagnosed:
(i) the presence of outliers, (ii) the nonconstant error variance, and (iii) a possi-
ble suboptimal model selection. Although the exposition level of these diagnos-
tic methods exceeds the level in introductory coverage of regression, multivari-
able regression modeling is important in practice and provides an important
step to understanding more sophisticated nonlinear models such as general-
ized linear models. For this reason, we provide a basic overview of residual and
influence analysis, as well as an assessment of multicollinearity and choice of
model. For readers interested in a more comprehensive treatment of multi-
variable linear models, the book by Rawlings et al. (1998) is a comprehensive
resource.

16.4.2.1 Residual Analysis and Influence

Residual analysis can be combined with cross-validation in a model assess-
ment. The following table gives several types of residuals used in analysis:

1. Ordinary residuals ei = yi − ŷi
2. Studentized residuals ri = ei

s
p

1−hii

3. Externally studentized residuals ti = ei

s−i
p

1−hii

4. Prediction sum of squares residuals (PRESS) ei,−i = ei
1−hii
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�
The ordinary residuals ei = yi− ŷi are components of (I−−−H)y. The lever-

ages hii are diagonal elements of hat matrix H. These are important descrip-
tors of design matrix X and explain how far xi is from x. All leverages are
bounded 1/n ≤ hii ≤ 1 and their sum is

∑
hii = p, the number of regression

parameters. The studentized residual is the residual divided by its standard
deviation and recalls the t-statistic. Such residuals are scale-free comparable,
and values outside the interval [−2.5,2.5] are potential outliers. Sometimes
these residuals are called internally studentized since the standard deviation
s=

p
MSE depends on the ith observation.

Externally studentized residuals (also called R-Student residuals) are more
of a measures of influence of the ith observation (yi, xi) on the ith residual.
Instead of s, the residuals are studentized by an external standard deviation,

s−i =
√

(n− p)s2 − e2
i /(1−hii)

n− p−1
. (16.4)

This external estimate of σ comes from the model fitted without the ith ob-
servation; however, the refitting is not necessary due to a simple expression
in (16.4). Externally studentized residuals can be tested since they are dis-
tributed as a t-distribution with n − p − 1 degrees of freedom. Of course, if
multiple residuals are tested simultaneously, then it should be done in the
spirit of multiple hypothesis testing (Sect. 9.7).

PRESS residuals ei,−i = ei/(1− hii) also remove the impact of the ith ob-
servation (yi, xi) on the fit at xi. This is a cross-validatory residual, and one
is interested in how a model built without using the ith observation would
predict the ith response.

For model assessment, the statistic PRESS is useful. It is defined as a sum
of squares of PRESS residuals,

PRESS=
∑

i
e2

i,−i,

and used in defining the prediction R2,

R2
pred = 1− PRESS

SST
.

Here SST is the total sum of squares
∑

i(yi − y)2. The ordinary R2 is defined
as 1− SSE/SST, and in R2

pred the SSE is replaced by PRESS. Since the

average prediction error is defined as
p

PRESS/n, good models should have
small PRESS.

DFBETAS stands for difference in betas. It measures the influence of the
ith observation on β j :

DFBETASi j =
b j −b j(−i)

s−i
pc j j

,
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where b j is the estimator of β j , b j(−i) is the estimator of β j when the ith
observation is excluded, and c j j is the ( j+1)st diagonal element in (X ′X )−1.
Large DFBETAS may indicate which predictor might be influential. The rec-
ommended threshold is 2/

p
n. The black boxes in Fig. 16.9 are at combinations

(β0 −β14 vs. indices of observations) for which abs(DFBetas>2/sqrt(n)).
Since several DFBETAS can be large, it is useful to pay attention to those

corresponding to large DFFITS. The DFFITS measure the influence of the ith
observation on the prediction ŷi:

DFFITSi =
ŷi − ŷi,−i

s(−i)
√

hii
=

√
hii

1−hii

ei

s−i
√

1−hii
.

The value ŷi,−i is the prediction of yi on the basis of a regression fit without
the ith observation. The observation is considered influential if its DFFITS
value exceeds 2

√
p/n.

A measure related computationally to DFFITS is Cook’s distance, Di:

Di = (DFFITSi)2 s2
−i

ps2 .

Cook’s distance measures the effect of the ith observation on the whole vector
b = β̂. An observation is deemed influential if its Cook’s distance exceeds 4/n.

Figure 16.8 shows ordinary residuals plotted against predicted values ŷ.
The radii of circles are proportional to |Dffits| in panel (a) and to Cook’s dis-
tance in panel (b).

Influential observations are not necessarily outliers and should not be
eliminated from a model only on the basis of their influence.

Influential observations can be identified by their influence on a predicted
value. One often finds predictions of the ith response ŷi,−i in a regression in
which the ith case (yi, xi) is omitted (Fig. 16.7).

%prediction of y_i with ith observation removed
%hat y_i(-i)
ind = 1:n;
Yhati = [];
for i = 1:n

indi = find(ind ~= i);
Yi = Y(indi);
Xi=X(indi,:);
bi = inv(Xi’ * Xi) * Xi’* Yi;
Yhatii = X(i,:) * bi;
Yhati =[Yhati; Yhatii];

end
Yhati %prediction of y_i without i-th observation

%-----------------------------------------------

%============ residual analysis==================
hii = diag(H); %leverages
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Fig. 16.7 Predicted responses ŷi (blue) and predicted responses ŷi,−i (red). Large changes
in prediction signify an influential observation.

resid = (I - H)*Y; %ordinary residuals
sresid = sqrt(MSE .* (1-hii));
stresid = resid./sresid %studentized residuals
%----------studentized deleted residuals---
di = Y - Yhati; %or di = resid./(1-hii)
%di is also called PRESS residual
PRESS =sum(di.^2)
R2pred = 1-PRESS/SST %R^2 predictive

sminusi = sqrt(((n-p)*MSE*ones(n,1) -...
resid.^2./(1-hii))/(n-p-1)); %stdev(-i)

ti = resid ./(sminusi .* sqrt(1-hii))
% externally studentized residuals
% outliers based on leverage = hii
outli=hii/mean(hii);
find(outli > 3)
% 31 36 39 41 42 86 159 175 206

%influential observations
Dffits = ti .* sqrt( hii ./(1-hii)) %influ ith to ith
find(abs(Dffits) > 2 * sqrt(p/n));
% 31 39 42 82 86 128 140 175 207 216 221 231 250
%
CooksD = resid.^2 .* (hii./(1-hii).^2)/(p * MSE)
% influence if ith to all;
find(CooksD > 4/n) %find influential
%31 39 42 82 86 128 175 207 216 221 250

%DFBetas - influence if ith obs on jth coefficient
cii = diag(inv(X’ * X));
DFBetas =[];

for i = 1:n
indi = find(ind ~= i);
Yi = Y(indi);



16.4 Multivariable Regression 629

0 10 20 30 40
−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

ŷ
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Fig. 16.8 Ordinary residuals plotted against predicted values ŷ. The radii of circles are
proportional to |Dffits| in panel (a) and to Cook’s distance in panel (b). The observations
with the largest circles are in both cases the 42nd and the 39th.

Xi=X(indi,:);
bi = inv(Xi’ * Xi) * Xi’* Yi;
Hi = Xi * inv(Xi’ * Xi) * Xi’;
SSEi = Yi’ * (eye(n-1) - Hi) * Yi;
MSEi = SSEi./(n-p-1);
DFBetasi = (b - bi)./sqrt(MSEi .* cii) ;
DFBetas = [DFBetas; DFBetasi’];

end

Fig. 16.9 DFBetas: The x-axis enumerates β0 − β14 while on the y-axis are plot-
ted the indices of observations. The black boxes are at combinations for which
abs(DFBetas>2/sqrt(n)).
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16.4.2.2 Multicollinearity

The multicollinearity problem in regression concerns the correlation among
the predictors. Suppose that matrix X contains two collinear columns xi and
x j = 2xi. Obviously covariates xi and xj are linearly dependent and xj does
not bring any new information about the response. This collinearity makes
matrix X not of full rank and X ′′′X singular, that is, not invertible, and normal
equations (16.3) have no solution. In reality, if multicollinearity is present,
then matrix X ′′′X is not singular, but near-singular, in the sense that its de-
terminant is close to 0, making the inversion of X ′′′X , and consequently the
solution β̂, very unstable. This happens when either two or more variables are
highly correlated or when a variable has a small variance (and, in a sense, is
correlated to the intercept).

�
There are several indices of multicollinearity. We will discuss the con-

dition index, which is a global measure, and the local condition index and
variance inflation factor, which are linked to a particular variable.

Let λ(1) ≤ λ(2) ≤ ·· · ≤ λ(p) be ordered eigenvalues of X ′′′X . The condition
number is defined as the ratio of the largest and smallest eigenvalues:

K =
√

λ(n)

λ(1)
.

Concerning values for K starting at around 10, values between 30 and 100
influence the results, and values over 100 indicate a serious collinearity prob-
lem.

The (local) condition index for variable xi is

Ki =
√

λ(n)

λi
.

Since eigenvalues explain the budget of variances among the variables, a large
condition index means the variance in variable i is relatively small, which is a
source of multicollinearity. Variables with indices that exceed 30 are problem-
atic.

The variance inflation factor (VIF) explains the extent of correlation of a
particular variable xi to the rest of predictors. It is defined as

VIFi =
1

1−R2
i

,

where R2
i is the coefficient of determination in regression of xi to the rest

of predictors. VIFs exceeding 10 are considered serious. Computationally, one
finds the correlation matrix for the predictors. The diagonal elements of this
inverse are the VIFs. Unfortunately, a VIF diagnostic sometimes can miss a
problem since the intercept is not included in the analysis.



16.4 Multivariable Regression 631

Multicollinearity can be diminished by excluding problematic variables
causing the collinearity in the first place. Alternatively, groups of variables
can be combined and merged into a single variable.

Another measure is to keep all variables but “condition” matrix X ′′′X by
adding kI , for some k > 0, to the normal equations. There is a tradeoff: the
solutions of (X ′′′X +kI)β̂= X ′′′y are more stable, but some bias is introduced.

lambdas = eig(X’ * X);
K = max(lambdas)/min(lambdas)
Ki = max(lambdas)./lambdas
%
Xprime = [];

for k=2:p
Xkbar = mean(X(:,k));
sk = std( X(:,k));
Xprimek = 1/sqrt(n-1) .* (X(:,k)- Xkbar * ones(n,1) )/sk;
Xprime = [Xprime Xprimek];

end
RXX = Xprime’ * Xprime;
VIF = diag (inv(RXX));
VIF’

% 2.2509 33.7869 2.2566 16.1634 4.4307 10.6846 13.3467
%15.1583 7.9615 4.8288 1.9455 3.6745 2.1934 3.3796

Alternatively, for most of the above calculations one can use MATLAB’s
regstats or diagnostics.m,

s = regstats(Y,Z,’linear’,’all’);
[index,res,stud_res,lev,DFFITS1,Cooks_D,DFBETAS]=diagnostics(Y,Z);

16.4.2.3 Variable Selection in Regression

Model selection involves finding a subset of predictors from a large number of
potential predictors that is optimal in some sense.

We defined the coefficient of determination R2 as the proportion of model-
explained variability, and it seems natural to choose a model that maximizes
R2. It turns out that this is not a good idea since the maximum will always be
achieved by that model that has the maximal number of parameters. It is a
fact that R2 increases when even a random or unrelated predictor is included.

The adjusted R2 penalizes the inclusion of new variables and represents a
better criterion for choosing a model. However, with k variables there would
be 2k possible candidate models, and even for moderate k this could be a
formidable number.

There are two mirroring procedures, forward selection and backward selec-
tion, that are routinely employed in cases where checking all possible models
is infeasible. Forward selection proceeds in the following way.

STEP 1. Choose the predictor that has the largest R2 among the models with a
single variable. Call this variable x1.
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STEP 2. Assume that the model already has k variables, x1, . . . , xk, for some k ≥ 1.
Select the variable xk+1 that gives the maximal increase to R2 and refit the model.

STEP 3. Denote by SSR(x1, . . . , xk) the regression sum of squares for a regression fit-
ted with variables x1, . . . , xk. Then R(xk+1|x1, . . . , xk)= SSR(x1, . . . , xk+1)−SSR(x1, . . . , xk)
is the contribution of the (k+1)st variable and it is considered significant if

R(xk+1|x1, . . . , xk)/MSE > F1,n−k−1,α. (16.5)

If relation (16.5) is satisfied, then variable xk+1 is included in the model. Increase k
by one and go to STEP 2.

If relation (16.5) is not satisfied, then the contribution of xk+1 is not significant, in
which case go to STEP 4.

STEP 4. Stop with the model that has k variables. END

The MSE in (16.5) was estimated from the full model. Note that the for-
ward selection algorithm is “greedy” and chooses the single best improving
variable at each step. This, of course, may not lead to the optimal model since
in reality variable x1, which is the best for one-variable models, may not be
included in the best two-variable model.

Backward stepwise regression starts with the full model and removes vari-
ables with insignificant contributions to R2. Seldom do these two approaches
end with the same candidate model.

MATLAB’s Statistics Toolbox has two functions for stepwise regression:
stepwisefit, a function that proceeds automatically from a specified initial
model and entrance/exit tolerances, and stepwise, an interactive tool that al-
lows you to explore individual steps in a process.

An additional criterion for the goodness of a model is the Mallows Cp. This
criterion evaluates a proposed model with k variables and p = k+1 parame-
ters. The Mallows Cp is calculated as

Cp = (n− p)
s2

σ̂2 −n+2p,

where s2 is the MSE of the candidate model and σ̂2 is an estimator of σ2,
usually taken to be the best available estimate. The MSE of the full model is
typically used as σ̂2.

�
A common misinterpretation is that in Cp, p is referred to as the num-

ber of predictors instead of parameters. This is correct only for models with-
out the intercept (or when 1 from the vector of ones in the design matrix is
declared as a predictor).

Adequate models should have a small Cp that is close to p. Typically, a
plot of Cp against p for all models is made. The “southwesternmost” points
close to the line Cp = p correspond to adequate models. The Cp criterion is
also employed in forward and backward variable selection as a stopping rule.

Bayesian Multiple Regression. Next we revisit fat.dat with some
Bayesian analyses. We selected four competing models and compared them
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using the Laud–Ibrahim predictive criterion, LI. Models with smaller LI are
favored.

Laud and Ibrahim (1995) argue that agreement of model-simulated pre-
dictions and original data should be used as a criterion for model selection. If
for yi responses ŷi,new are hypothetical replications according to the posterior
predictive distribution of competing model parameters, then

LI=
n∑

i=1
(E ŷi,new − yi)2 +Var ( ŷi,new)

measures the discrepancy between the observed and model-predicted data. A
smaller LI is better. The file fat.odc performs a Laud–Ibrahim Bayesian
model selection and prefers model #2 of the four models analyzed.

#fat.odc
model{
for(j in 1:N ){
# four competing models
mu[1, j] <- b1[1] + b1[2] *age[j] + b1[3]*wei[j] + b1[4]*hei[j] +

b1[5]*adip[j] + b1[6]*neck[j] + b1[7]*chest[j] +
b1[8]*abd[j] + b1[9]*hip[j] + b1[10]*thigh[j] +
b1[11]*knee[j]+b1[12]*ankle[j]+b1[13]*biceps[j] +
b1[14]*forea[j] + b1[15]*wrist[j]

mu[2, j] <- b2[1]+b2[2]*wei[j]+b2[3]*adip[j]+b2[4]*abd[j]
mu[3, j] <- b3[1]+b3[2]*adip[j]
mu[4, j] <- b4[1]*wei[j]+b4[2]*abd[j]+b4[3]*abd[j]+b4[4]*wrist[j]

}
#LI - Laud-Ibrahim Predictive Criterion. LI-smaller-better
for(i in 1:4 ){

tau[i] ~ dgamma(2,32)
LI[i] <- sqrt( sum(D2[i,]) + pow(sd(broz.new[i,]),2))

# data sets 1-4 for different models
for (j in 1:N) {
broz2[i,j] <- broz[j]
broz2[i,j] ~ dnorm(mu[i,j],tau[i])
broz.new[i,j] ~ dnorm(mu[i,j],tau[i])
D2[i,j] <- pow(broz[j]-broz.new[i,j],2)

}
}

# Compare predictive criteria between models i and j
# Comp[i,j] is 1 when LI[i]<LI[j], i-th model better.
for (i in 1:3) { for (j in i+1:4)

{Comp[i,j] <- step(LI[j]-LI[i])}}
# priors

for (j in 1:15) { b1[j] ~ dnorm(0,0.001)}
for(j in 1:4) { b2[j] ~ dnorm(0,0.001)

b4[j] ~ dnorm(0,0.001)}
for(j in 1:2) { b3[j] ~ dnorm(0,0.001)}

}

#DATA 1: Load this first
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list(N = 252)

# DATA2: Then load the variables

broz[] age[] wei[] hei[] ... biceps[] forea[] wrist[]
12.6 23 154.25 67.75 ... 32.0 27.4 17.1
23.4 38.5 93.6 83.00 ... 30.5 28.9 18.2
...248 lines deleted...
25.3 72 190.75 70.50 ... 30.5 29.4 19.8
30.7 74 207.50 70.00 ... 33.7 30.0 20.9
END

#the line behind ’END’ has to be empty

# INITS (initialize by loading tau’s
# and generating the rest
list(tau=c(1,1,1,1))

The output is given in the table below. Note that even though the posterior
mean of LI[4] is smaller that that of LI[2], it is the posterior median that mat-
ters. Model #2 is more frequently selected as the best compared to model #4.

mean sd MC error val2.5pc median val97.5pc start sample
LI[1] 186.5 209.2 17.63 84.0 104.6 910.5 1001 20000
LI[2] 96.58 23.46 1.924 85.08 93.14 131.2 1001 20000
LI[3] 119.6 5.301 0.03587 109.4 119.5 130.2 1001 20000
LI[4] 94.3 4.221 0.03596 86.33 94.2 103.0 1001 20000
Comp[1,2] 0.2974 0.4571 0.02785 0.0 0.0 1.0 1001 20000
Comp[1,3] 0.5844 0.4928 0.03939 0.0 1.0 1.0 1001 20000
Comp[1,4] 0.3261 0.4688 0.03008 0.0 0.0 1.0 1001 20000
Comp[2,3] 0.9725 0.1637 0.01344 0.0 1.0 1.0 1001 20000
Comp[2,4] 0.5611 0.4963 0.01003 0.0 1.0 1.0 1001 20000
Comp[3,4] 5.0E-5 0.007071 4.98E-5 0.0 0.0 0.0 1001 20000

More comprehensive treatment of Bayesian approaches in linear regres-
sion can be found in Ntzoufras (2009).

16.5 Sample Size in Regression

The evaluation of power in a regression with p−1 variables and p parameters
(when an intercept is present) requires specification of a significance level and
precision. Suppose that we want a power such that a total sample size of n =
61 would make R2 = 0.2 significant for α = 0.05 and the number of predictor
variables p−1= 3. Cohen’s effect size here is defined as f 2 = R2/(1−R2). Recall
that values of f 2 ≈ 0.01 correspond to small, f 2 ≈ 0.0625 to medium, and f 2 ≈
0.16 to large effects. Note that from f 2 = R2/(1−R2) one gets R2 = f 2/(1+ f 2),
which can be used to check the adequacy of the elicited/required effect size.

The power, similarly as in ANOVA, is found using the noncentral F-
distribution,
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1−β=P(Fnc(p−1,n− p,λ)> F−1(1−α, p−1,n− p)), (16.6)

where λ= nf 2 is the noncentrality parameter.

Example 16.4. For p = 4, R2 = 0.2, that is, f 2 = 0.25 (an X-large effect size),
and a sample size of n = 61, one gets λ = 61× 0.25 = 15.25, and a power of
approx. 90%.

p=4; n=61; lam=15.25;
1-ncfcdf( finv(1-0.05, p-1, n-p), p-1, n-p, lam)
% ans = 0.9014

�

16.6 Linear Regression That Is Nonlinear in Predictors

In linear regression, “linear” concerns the parameters, not the predictors. For
instance,

1
yi

=β0 +
β1

xi
+εi, i = 1, . . . ,n

and

yi = εi ×exp{β0 +β1x1i +β2x2i}, i = 1, . . . ,n

are examples of a linear regression. There are many functions where x and y
can be linearized by an obvious transformation of x or y or both; however, one
needs to be mindful that the normality and homoscedasticity of errors is often
compromised. In such a case, fitting a regression is simply an optimization
task without natural inferential support. Bayesian solutions involving MCMC
are generally more manageable as regards inference (Bayes estimators, credi-
ble sets, predictions).

An example where errors are not affected by the transformation of vari-
ables is a polynomial relationship between x and y postulated as

yi =β0 +β1xi +β2x2
i +·· ·+βkxk

i +εi, i = 1, . . . ,n,

which is in fact a linear regression. Simply, the k predictors are x1i = xi,x2i =
x2

i , . . . , xki = xk
i ,and estimating the polynomial relationship is straightforward.

The example below is a research problem in which a quadratic relationship is
used.

Example 16.5. Von Willebrand Factor. Von Willebrand disease is a bleed-
ing disorder caused by a defect or deficiency of a blood clotting protein called
von Willebrand factor. This glue-like protein, produced by the cells that line
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blood vessel walls, interacts with blood cells called platelets to form a plug that
prevents bleeding. In order to understand the differential bonding mechanics
underlying von Willebrand-type bleeding disorders, researchers in Dr. Larry
McIntire’s lab at Georgia Tech studied the interactions between the wild-type
platelet GPIba molecule (receptor) and wild-type von Willebrand Factor (lig-
and).

The mean stop time rolling parameter was calculated from frame-by-frame
rolling velocity data collected at 250 frames per second. Mean stop time indi-
cates the amount of time a cell spends stopped, so it is analogous to the bond
lifetime. This parameter, being an indicator for how long a bond is stopped
before the platelet moves again, can be used to assess the bond lifetime and
off-rate (Yago et al., 2008).

For the purpose of exploring interactions between the force and the mean
stop times, Ficoll 6% is added to increase the viscosity.

Data are courtesy of Dr. Leslie Coburn. The mat file coburn.mat contains
the structure coburn with data vectors coburn.fxssy, where x = 0, 6 is a
code for Ficoll absence/presence and y = 1, 2, 4, ..., 256 denotes the shear
stress (in dyn/cm2). For example, coburn.f0ss16 is a 243×1 vector of mean stop
times obtained with no Ficoll, under a shear stress of 16 dyn/cm2.

Shear Stress 2 4 8 16 32 64 128 256
Shear Number 1 2 3 4 5 6 7 8
Mean Stop Time f0ss2 f0ss4 f0ss8 f0ss16 f0ss32 f0ss64 f0ss128 f0ss256
Sample Size 26 57 157 243 256 185 62 14

We fit a regression on the logarithm of mean stop time log2mst, with no Fi-
coll present, as a quadratic function of share stress (dyn/cm2). This regression
is linear (in parameters) with two predictors, shear and the squared shear,
shear2=shear2.

The regression fit is

log2mst=−6.2423+0.8532 shear−0.0978 shear2.

Regression is significant (F = 63.9650, p = 0); however, its predictive power is
rather weak, with R2 = 0.1137.

Figure 16.10 is plotted by the script coburnreg.m.

%coburnreg.mat
load ’coburn.mat’;
mst=[coburn.f0ss2; coburn.f0ss4; coburn.f0ss8; coburn.f0ss16; ...

coburn.f0ss32; coburn.f0ss64; coburn.f0ss128; coburn.f0ss256];

shearn = [1 * ones( 26,1); 2 * ones( 57,1); 3 * ones(157,1); ...
4 * ones(243,1); 5 * ones(256,1); 6 * ones(185,1); ...
7 * ones( 62,1); 8 * ones( 14,1)];

shearn2 = shearn.^2; %quadratic term
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Fig. 16.10 (a) Quadratic regression on log mean stop time. (b) Residuals fitted with normal
density.

%design matrix
X = [ones(length(shearn),1) shearn shearn2];
[b,bint,res,resint,stats] = regress(log2(mst), X) ;

%b0=-6.2423, b1=0.8532, b2 =-0.0978
stats %R2, F, p, sigma2

%0.1137 63.9650 0.0000 0.5856

�

16.7 Errors-In-Variables Linear Regression*

Assume that in the context of regression both responses Y and covariates X
are measured with error. This is a frequent scenario in research labs in which
it would be inappropriate to apply standard linear regression, which assumes
that covariates are designed and constant.

This scenario in which covariates are observed with error is called errors-
in-variables (EIV) linear regression. There are several formulations for EIV

yi ∼ N (β0 +β1ξi,σ2
y)

xi ∼ N (ξi,σ2
x).

In an equivalent form, the regression is Eyi =β0+β1Exi =β0+β1ξi, i = 1, . . . , n,
and the inference on parameters β0 and β1 is made conditionally on ξi. To

make the model identifiable, a parameter η= σ2
x

σ2
y

is assumed known. Note that

we do not need to know individual variances, just their ratio.
If the observations (xi, yi), i = 1, . . . ,n produce sums of squares Sxx =

∑
i(xi−

x)2, Syy =
∑

i(yi − y)2, and Sxy =
∑

i(xi − x)(yi − y), then

i i
1, . . . ,n, the EIV regression model is
regression (Fuller, 2006). For pairs from a bivariate normal distribution (x , y ), i =
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β̂1 =
−(Sxx −ηSyy)+

√
(Sxx −ηSyy)2 +4ηS2

xy

2ηSxy
, (16.7)

β̂0 = y− β̂1x.

The estimators of the errors are

σ̂2
x = 1

2n
× η

1+ηβ̂2
1

n∑
i=1

(
yi − (β̂0 + β̂1xi)

)2

σ̂2
y = σ̂2

x

η
.

When η = 1 (variances of errors are the same), the solution in (16.7) co-
incides with numerical least-squares minimization, while for η = 0 (no errors
in covariates, σ2

x = 0), we are back to the standard regression where β̂1 = Sxy
Sxx

(Exercise 16.16).

Example 16.6. Griffin et al. (1945) reported plasma volume (in cc) and cir-
culating albumin (in gm) for n = 58 healthy males. Both quantities were
measured with error and it was assumed that the variance of plasma mea-
surement exceeded the variance of circulating albumin by 200 times. Using
EIV regression, establish an equation that would be used to predict circulat-
ing albumin from plasma volume. The data are given in circalbumin.dat,
where the first column contains plasma volume and the second is albumin.
The script errorinvar.m calculates the following EIV regression equation:
Eyi = 0.0521 ·Exi −13.1619. This straight line is plotted in black in Fig. 16.11.
For comparison, the standard regression is Eyi = 0.0494xi −5.7871, and it is
plotted in red. Parameter η was set to 200, and the variances are estimated as
s2

x = 4852.8 and s2
y = 24.2641.

�

16.8 Analysis of Covariance

Analysis of covariance (ANCOVA) is a linear model that includes two types of
predictors: quantitative (like the regression) and categorical (like the ANOVA).
It can be formulated in quite general terms, but we will discuss the case of a
single predictor of each kind.

The quantitative variable x is linearly connected with the response, and
for a fixed categorical variable the problem is exactly the regression. On the
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Fig. 16.11 EIV regression (black) and standard regression (red) for circalbumin data.

other hand, for a fixed variable x, the model is ANOVA with treatments/groups
defined by the categorical variable.

The rationale behind the merging of the two models is that in a range
of experiments, modeling the problem as regression only or as ANOVA only
may be inadequate, and that introducing a quantitative covariate to ANOVA,
or equivalently groups/treatments to regression, may better account for the
variability in data and produce better modeling and prediction results.

We will analyze two illustrative examples. In the first example, which will
be solved in MATLAB, the efficacies of two drugs for lowering blood pressure
are compared by analyzing the drop in blood pressure after taking the drug.
However, the initial blood pressure measured before the drug is taken should
be taken into account since a drop of 50, for example, is not the same if the
initial pressure was 90 as opposed to 180.

In the second example, which will be solved in WinBUGS, the measured re-
sponse is the strength of synthetic fiber and the two covariates are the fiber’s
diameter (quantitative) and the machine on which the fiber was produced (cat-
egorical with three levels).

We assume the model

yi j =µ+αi +β(xi j − x)+εi j, i = 1, . . . ,a; j = 1, . . . ,n, (16.8)

where a is the number of levels/treatments, n is a common sample size within
each level, and x = 1

an
∑

i, j xi j is the overall mean of xs. The errors εi are as-
sumed independent normal with mean 0 and constant variance σ2.

For practical reasons the covariates xi j are centered as xi j − x since the
expressions for the estimators will be more simple. Let xi = 1

n
∑

j xi j be the ith
treatment mean for the xs. The means y and yi are defined analogously to x
and xi.
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In ANCOVA we calculate the sums of squares and mixed-product sums as

Sxx =
∑a

i=1
∑n

j=1(xi j − x)2

Sxy =
∑a

i=1
∑n

j=1(xi j − x)(yi j − y)
Syy =

∑a
i=1

∑n
j=1(yi j − y)2

Txx =
∑a

i=1(xi − x)2

Txy =
∑a

i=1(xi − x)(yi − y)
Tyy =

∑a
i=1(yi − y)2

Qxx =
∑a

i=1
∑n

j=1(xi j − xi)2 = Sxx −Txx

Qxy =
∑a

i=1
∑n

j=1(xi j − xi)(yi j − yi)= Sxy −Txy

Qyy =
∑a

i=1
∑n

j=1(yi j − yi)2 = Syy −Tyy

We are interested in finding estimators for the parameters in model (16.8),
the common mean µ, treatment effects αi, regression slope β, and the variance
of the error σ2.

The estimators are µ̂= y, b = β̂=Qxy/Qxx, and α̂i = yi − y− b(xi − x).
The estimator of the variance, σ2, is s2 = MSE = SSE/(a(n−1)−1), where

SSE =Qyy −Q2
xy/Qxx.

If there are no treatment effects, that is, if all αi = 0, then the model is a
plain regression and

yi j =µ+β(xi j − x)+εi j, i = 1, . . . ,a; j = 1, . . . ,n.

In this reduced case the error sum of squares is SSE′ = Syy −S2
xy/Sxx, with

an−2 degrees of freedom. Thus, the test H0 :αi = 0 is based on an F-statistic,

F = (SSE′ −SSE)/(a−1)
SSE/(a(n−1)−1)

,

that has an F-distribution with a−1 and a(n−1)−1 degrees of freedom.
The test for regression H0 :β= 0 is based on the statistic

F =
Q2

xy/Qxx

SSE/(a(n−1)−1)
,

which has an F-distribution with 1 and a(n−1)−1 degrees of freedom.
Next we provide a MATLAB solution for a simple ANCOVA layout.

Example 16.7. Kodlin (1951) reported an experiment that compared two sub-
stances for lowering blood pressure, denoted as substances A and B. Two
groups of animals are randomized to the two substances and a decrease in
pressure is recorded. The initial pressure is recorded. The data for the blood
pressure experiment appear in the table below. Compare the two substances
by accounting for the possible effect of the initial pressure on the decrease in
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pressure. Discuss the results of the ANCOVA analysis and compare them with
those obtained by ignoring the potential effect of the initial pressure.

Substance A Substance B
Animal Decrease Initial Animal Decrease Initial

1 45 135 11 34 90
2 45 125 12 55 135
3 20 125 13 50 130
4 50 130 14 45 115
5 25 105 15 30 110
6 37 130 16 45 140
7 50 140 17 45 130
8 20 93 18 23 95
9 25 110 19 40 90

10 15 100 20 35 105

We will use α= 0.05 for all significance assessments.

%codlin.m
%x = Initial; y = Decrease; g=1 for ’A’, g=2 for ’B’
x = [135 125 125 130 105 130 140 93 110 100 ...

90 135 130 115 110 140 130 95 90 105];
y = [45 45 20 50 25 37 50 20 25 15 ...

34 55 50 45 30 45 45 23 40 35];
g = [1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2];

a = 2; n = 10;

x1=x(g==1); x2=x(g==2);
y1=y(g==1); y2=y(g==2);
x1b=mean(x1); x2b=mean(x2);
y1b=mean(y1); y2b=mean(y2);
xb = mean(x); yb = mean(y);

SXX = sum( (x - xb).^2 );
SXY = sum( (x - xb).* (y - yb) );
SYY = sum( (y - yb).^2 );

QXX = sum( (x1-x1b).^2 + (x2-x2b).^2 );
QXY = sum( (x1-x1b).* (y1 - y1b) + ...

(x2-x2b).*(y2 - y2b) );
QYY = sum( (y1-y1b).^2 + (y2-y2b).^2 );
% estimators of model parameters mu, alpha_i, beta
mu = yb %mu = 36.7
b = QXY/QXX %b = 0.5175
alpha = [y1b y2b] - [yb yb] - b*([x1b x2b]-[xb xb])

%alpha =[-4.8714 4.8714]
TXX = SXX - QXX;
TXY = SXY - QXY;
TYY = SYY - QYY;
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SSE = QYY - QXY^2/QXX;
MSE = SSE/(a * (n-1) - 1 ) %MSE = 60.6542
SSEp = SYY - SXY^2/SXX;

% F-test for testing $H_0: alpha_i = 0 (all i)
F1 = ((SSEp - SSE)/(a-1)) /MSE %F1 = 7.6321
pvalF1 = 1- fcdf(F1,a-1, a*(n-1) - 1) %pvalF1=0.0133

% F-test for testing $H_0: beta = 0
F2 = (QXY^2/QXX)/MSE %F2 = 24.5668
pvalF2 = 1 - fcdf(F2, 1, a * (n-1)-1 )

%pvalF2 = 0.00012
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Fig. 16.12 Scatterplot of decrease (y) against the initial value (x) for substances A and B.

Note that both null hypotheses are found to be significant, but the testing
of the equality of treatments seems to be the more important hypothesis in this
example. The conclusion is that substances A and B are significantly different
at level α= 0.0133. Figure 16.12 plots the decrease (y) against the initial value
(x) for substances A and B. The ANCOVA fits ŷ = 36.7±4.8714+0.5175 · (x−
116.65) are superimposed.

If we conducted the ANOVA test by ignoring the covariates, the test would
find no differences among the drugs (p-value = 0.2025). Likewise, if both treat-
ments were lumped together and the response regressed on x, the regression
would be significant but with a p-value more than eight times larger than in
ANCOVA.

oX = [ones(size(x’)) x’];
[b, bint, r, rint, stats] = regress(y’, oX);
stats % 0.4599 15.3268 0.0010 83.0023
[p, table, statan] = anova1(y, g);
p %0.2025
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This example shows how important accounting for sensible predictors is
and how selecting the right statistical procedure is critical in decision making.
�

opens a front-end suite with various extended modeling and graphing capa-
bilities. The output stats from aoctool can be imported into multcompare for
subsequent pairwise comparison analysis.

The following example is solved in a Bayesian manner.

Example 16.8. ANCOVA Fibers. Three machines produce monofilament syn-
thetic fiber for medical use (surgery, implants, devices, etc.). The measured
response is the strength y (in pounds, lb.) and a covariate is the diameter x (in
inches/1000).

#ancovafibers.odc
model{
for (i in 1:ntotal){
y[i] ~ dnorm( mui[i], tau )
mui[i] <- mu + alpha[g[i]] + beta1 *(x[i] - mean(x[]))
}
#alpha[1] <- 0.0; #CR constraints
alpha[1] <- -sum( alpha[2:a] );#STZ constraints

mu ~ dnorm(0, 0.0001)
beta1 ~ dnorm(0, 0.0001)
beta0 <- mu - beta1 * mean(x[])
alpha[2] ~ dnorm(0, 0.0001)
alpha[3] ~ dnorm(0, 0.0001)
tau ~ dgamma(0.001, 0.001)
var <- 1/tau
}

DATA
list(ntotal=15, a=3,
y = c(36, 41, 39, 42, 49,

40, 48, 39, 45, 44,
35, 37, 42, 34, 32),

x = c(20, 25, 24, 25, 32,
22, 28, 22, 30, 28,
21, 23, 26, 21, 15),

g = c( 1, 1, 1, 1, 1,
2, 2, 2, 2, 2,
3, 3, 3, 3, 3) )

INITS
list(mu=1, alpha=c(NA, 0, 0), beta1=0, tau=1)

The output from WinBUGS is

MATLAB has a built-in function aoctool that, when invoked as aoctool(x,y,g),
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mean sd MC error val2.5pc median val97.5pc start sample
alpha[1] 0.182 0.6618 0.001848 −1.129 0.1833 1.494 10001 100000
alpha[2] 1.218 0.6888 0.003279 −0.1576 1.217 2.596 10001 100000
alpha[3] −1.4 0.743 0.003757 −2.876 −1.399 0.07178 10001 100000
beta0 17.18 3.086 0.01394 11.01 17.18 23.31 10001 100000
beta1 0.9547 0.1266 5.634E-4 0.7019 0.9543 1.207 10001 100000
mu 40.2 0.4564 0.001372 39.29 40.2 41.11 10001 100000
var 3.118 1.671 0.007652 1.276 2.716 7.348 10001 100000

The regression equations corresponding to the three treatments (machines)
are

ŷ1i = 17.18+0.182+0.9547 · xi,

ŷ2i = 17.18+1.218+0.9547 · xi, and

ŷ3i = 17.18−1.4+0.9547 · xi.

Note that all three 95% credible sets for alpha contain 0, while the credible
set for the slope beta1 does not contain 0. This analysis of credible sets is not
a formal Bayesian testing, but agrees with the output from

y = [36 41 39 42 49 40 48 39 45 44 35 37 42 34 32];
x = [20 25 24 25 32 22 28 22 30 28 21 23 26 21 15];
g = [1 1 1 1 1 2 2 2 2 2 3 3 3 3 3];
aoctool(x, y, g) %parallel lines option

where the p-value corresponding to ANOVA part is 0.11808. The test for the
regression slope is significant with p-value of 4.2645e-06.
�

16.9 Exercises

16.1. Regression with Three Points. Points (x1, y1)= (1,1), (x2, y2)= (2,2), and
(x3, y3)= (3,2) are given.
(a) Find (by hand calculation) the regression line that best fits the points,
and sketch a scatterplot of points with the superimposed fit.
(b) What are the “predictions” at 1, 2, and 3, i.e, ŷ1, ŷ2, and ŷ3?
(c) What are SST, SSR, and SSE?
(d) Find an estimator of variance σ̂2.

16.2. Age and IVF Success Rate. The highly publicized (recent TV reports)
in vitro fertilization (IVF) success cases for women in their late fifties all
involve donors’ eggs. If the egg is the woman’s own, the story is quite differ-
ent.
IVF, an assisted reproductive technology (ART) procedure, involves extract-
ing a woman’s eggs, fertilizing the eggs in the laboratory, and then trans-
ferring the resulting embryos to the woman’s uterus through the cervix.
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Fertilization involves a specialized technique known as intracytoplasmic
sperm injection (ICSI).
The table below shows the live-birth success rate per transfer rate from
a woman’s own eggs, by age of recipient. The data are for the year 1999,
published by the CDC at http://www.cdc.gov/art/ARTReports.htm.

Age (x) 24 25 26 27 28 29 30 31 32 33 34 35
Percentage (y) 38.7 38.6 38.9 41.4 39.7 41.1 38.7 37.6 36.3 36.9 35.7 33.8
Age (x) 36 37 38 39 40 41 42 43 44 45 46
Percentage (y) 33.2 30.1 27.8 22.7 21.3 15.4 11.2 9.2 5.4 3.0 1.6

Select the age in the range 33–46 since it shows an almost linear decay of
the success rate (Fig. 16.13). Fit the linear model ŷ = b0 + b1x. Would the
quadratic relationship ŷ= b0 +b1x+b2x2 be more appropriate?

20 25 30 35 40 45 50
0

10

20

30

40

50

Fig. 16.13 Success rate versus age.

16.3. Sharp Dissection and Severity of Postoperative Adhesions. Postop-
erative adhesions are formed after surgical cardiac and great vessel proce-
dures as part of the healing process. Scar tissue makes the reentry complex
and increases the rate of iatrogenic lesions. Currently, as reoperations are
needed in 10 to 20% of heart surgeries, various methods have been investi-
gated to prevent or decrease the severity of postoperative adhesions.
The surgical time spent in the adhesiolysis procedure and amounts of sharp
dissection are informative summaries to to predict the severity of pericar-
dial adhesions, as reported by Lopes et al. (2009). For example, the authors
reported a linear relationship between the logarithm of the amount of sharp
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dissection lasd and severity score sesco assessed by a standard categoriza-
tion. Use the data in MATLAB format to answer (a)–(e).

shdiss = [14 108 39 311 24 112 104 ...
382 42 74 67 145 21 93 ...
75 381 36 36 73 239 35 69];

lasd = log(shdiss);

sesco = [6 12 9 18 7 12 12 ...
17 8 11 14 15 7 12 ...
13 18 9 9 10 16 7 10];

(a) Write down the linear relationship between lasd and sesco.
(b) What is R2 here and what does it represent?
(c) Test the hypothesis H0 : β0 = 0 versus the alternative H1 : β0 < 0. Use
α= 0.05. The critical cut points are provided at the back of the problem, or,
alternatively, you can report the p-value.
(d) Find a 95% confidence interval for the population intercept β1.
(e) For lasd=4 predict the severity score. Find a 99% confidence interval for
the mean response.

16.4. Kanamycin Levels in Premature Babies. Miller (1980) describes a
project and provides data on assessing the precision of noninvasive mea-
suring of kanamycin concentration in neonates.
Premature babies are susceptible to infections, and kanamycin (an amino-
glycoside) is used for the treatment of sepsis. Because kanamycin is inef-
fective at low doses and potentially harmful at high doses, it is necessary to
constantly monitor its levels in a premature baby’s body during treatment.
The standard procedure for measuring serum kanamycin levels is to take
blood samples from a heel. Unfortunately, due to frequent blood sampling,
neonates are left with badly bruised heels.
Kanamycin is routinely administered through an umbilical catheter. An
alternative procedure for measuring serum kanamycin would be to reverse
the flow in the catheter and draw a blood sample from it. The concern about
this noninvasive method is that the blood drawn from the point close to
an infusion may have an elevated level of kanamycin compared to blood
samples from more distant points in the body.
In a carefully designed experimental setup, blood samples from 20 babies
were obtained simultaneously from an umbilical catheter and a heel ve-
napuncture (using heelstick). If the agreement is satisfactory, physicians
would be willing to use the catheter values instead of heelstick values.
Here are the data:
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Baby Heelstick Catheter Baby Heelstick Catheter
1 23.0 25.2 11 26.4 24.8
2 33.2 26.0 12 21.8 26.8
3 16.6 16.3 13 14.9 15.4
4 26.3 27.2 14 17.4 14.9
5 20.0 23.2 15 20.0 18.1
6 20.0 18.1 16 13.2 16.3
7 20.6 22.2 17 28.4 31.3
8 18.9 17.2 18 25.9 31.2
9 17.8 18.8 19 18.9 18.0

10 20.0 16.4 20 13.8 15.6

(a) Model the Heelstick responses with Catheter as predictor in a linear
regression.
(b) Are there any unusual observations? Does regression improve when un-
usual observations are removed from the analysis?
(c) Test H0 :β1 = 1 versus H1 :β1 < 1 at the level α= 0.05.
(d) Find a 97% confidence interval for the population intercept.
(e) Find 95% confidence and prediction intervals for the regression response
when cath = 20.
(f) Using WinBUGS, estimate the parameters in a Bayesian regression with
noninformative priors. Compare Bayesian and the least-squares solutions.

16.5. Degradation of Scaffolds. In an experiment conducted at Georgia Tech/
Emory Center for the Engineering of Living Tissues the goal was to find
a suitable biomechanical replacement for cartilage, better known as tissue
engineered cartilage. There are many factors (dimensional or mechanical)
at which the cartilage scaffold is tested to assess whether it is a viable
replacement. One of the problems is the degradation of scaffolds as the tis-
sue grows, which affects all of the experimental metrics. The experimental
data collected comprise a tissue growth experiment in which no cells were
added, thus approximating the degradation of the scaffold over a sequence
of 8 days. The dynamic shear summaries capture two physical phenomena,
the modulus or the construct’s ability to resist deformation under load and
the frequency at which the modulus was evaluated. This modulus provides
a measure of the extent of interconnectivity within the fibrous scaffold.
The table below contains moduli, in 1000s, for the frequency f = 1 over
8 days, each day represented by three independent measurements.
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Fig. 16.14 The modulus against time for frequency f = 1.

Day Mod at f = 1 Day Mod at f = 1
0 42.520 4 44.929
0 71.590 4 29.348
0 40.063 4 37.259
1 68.397 5 28.625
1 53.527 5 25.956
1 40.676 5 20.179
2 21.724 6 14.994
2 35.032 6 9.051
2 56.687 6 14.923
3 44.029 7 2.692
3 45.058 7 15.688
3 27.579 7 3.420

The data and the code are available in the file degradation.m.
(a) Use the moduli for frequency f = 1. Write down the linear regression
model: mod1= b0+b1·day, where b0 and b1 are estimators of the population
intercept and slope (Fig. 16.14). What is R2 for your regression?
(b) Test the hypothesis that the population intercept is equal to 100 versus
the alternative that it is smaller than 100.
(c) Find a 96% confidence interval for the population slope.
(d) For day = 5.5 find the prediction of the modulus. What is the standard
deviation for this predicted value?

16.6. Glucosis in Lactococcus Lactis. The data set Lactis.dat is cour-
tesy of Dr. Eberhard Voit at the Georgia Institute of Technology and are
an excerpt from a larger collection of data dealing with glycolysis in the
bacterium Lactococcus lactis MG1363 (which is involved in essentially all
yogurts, cheeses, etc.). The experiment was conducted in aerobic conditions
with cell suspension in a 50-mM KPi buffer with a pH of 6.5, and 20 mM
[6-13C] glucose. There are four columns in the file Lactis.dat: time, gly-
cose, lactate, and acetate.
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The levels of extracelular metabolites lactate and acetate are monitored in
time. After time t = 5 the level of lactate stabilizes around 30 while the level
of acetate shows linearly increasing trend in time.
(a) Plot lactate level against time. Take a subset of lactate levels for times
> 5 (86 observations) and find basic descriptive statistics.
(b) Check the normality of the subset data. Test the hypothesis that the
mean lactate level for t> 5 is 30 against the two-sided alternative.
(c) Select acetate levels for t > 5. Fit linear relationship of acetate level
against time and show that the linear model is justified by providing and
discussing ANOVA table.

16.7. Weight and Latency in Rats. Data consisting of rat body weight (grams)
and latency to seizure (minutes) are given for 15 rats (adapted from Klein-
baum et al., 1987)

Rat # Weight Latency Rat # Weight Latency Rat # Weight Latency
1 348 1.80 2 372 1.95 3 378 2.90
4 390 2.30 5 392 1.10 6 395 2.50
7 400 1.30 8 409 2.00 9 413 1.70

10 415 2.00 11 423 2.95 12 428 2.25
13 464 3.05 14 468 3.70 15 470 3.62

(a) Test the hypothesis H0 : β0 = 0 against the two-sided alternative. Use
α= 0.05.
(b) Test the hypothesis H0 :β1 = 0.02 against the alternative H0 :β1 < 0.02.
Use α= 0.05.
(c) Find a 95% confidence interval for the slope β1.
(d) For weight wei = 410 find the mean latency response, ŷm. Test the hy-
pothesis H0 : ŷm = 3 versus the alternative H1 : ŷm < 3. Test the same hy-
pothesis for the predicted response ŷpred . In both tests use α= 0.05.

16.8. Rinderpest Virus in Rabbits. Temperatures (temp) were recorded in a
rabbit at various times (time) after the rabbit was inoculated with rinder-
pest virus (Carter and Mitchell, 1958). Rinderpest (RP) is an infectious vi-
ral disease of cattle, domestic buffalo, and some species of wildlife; it is
commonly referred to as cattle plague. It is characterized by fever, oral ero-
sions, diarrhea, lymphoid necrosis, and high mortality. In German, Rinder-
pest means cattle plague.
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Time after injection Temperature
(time in hrs) (temp in ◦ F)

24 102.8
32 104.5
48 106.5
56 107.0
70 105.1
72 103.9
80 103.2
96 102.1

(a) Demonstrate that a linear regression with one predictor (time) gives an
insignificant F-statistic and a low R2.
(b) Include time2 (squared time) as the second predictor, making the regres-
sion quadratic in variables (but still linear in coefficients). Show that this
regression is significant and has a large R2.
(c) Find the 90% confidence interval for the coefficient of the quadratic term
and test the hypothesis that the intercept is equal to 100 versus the one-
sided alternative that it is smaller than 100. Use α= 0.05.

16.9. Hemodilution. Clark et al. (1975) examined the fat filtration characteris-
tics of a packed polyester-and-wool filter used in arterial lines during clin-
ical hemodilution. They collected data on the filter’s recovery of solids for
ten patients who underwent surgery. The table below shows removal rates
of lipids and cholesterol. Fit a regression line to the data, with cholesterol
as the response variable and lipids as the covariate.

Removal rates, mg/kg/L ·10−2

Patient Lipids (x) Cholesterol (y)
1 3.81 1.90
2 2.10 1.03
3 0.79 0.44
4 1.99 1.18
5 1.03 0.62
6 2.07 1.29
7 0.74 0.39
8 3.88 2.30
9 1.43 0.93

10 0.41 0.29

Give answers to the following questions using standard regression output.
(a) What test is performed by a given p-value? State H0 and H1.
(b) Find the 95% confidence interval for the intercept of the population re-
gression line (β0).
(c) Test the hypothesis that the slope of the population regression line is
equal to 1 versus the one-sided alternative that it is less than 1.
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(d) Discuss the adequacy of the proposed linear fit. Predict the cholesterol
rate for lipids at the level 1.65 mg/kg/L×10−2. Find the 95% confidence and
prediction intervals.

16.10. Anscombe’s Data Sets. A celebrated classic example of the role of resid-
ual analysis and statistical graphics in statistical modeling was created by
Anscombe (1973). He constructed four quite different data sets (xi, yi), i =
1, . . . ,11 that share the descriptive statistics necessary to establish a linear
regression fit ŷ= β̂0 + β̂1x.
A linear model is appropriate for Data Set 1; the scatterplots and resid-
ual analysis suggest that Data Sets 2–4 seem not to be amenable to linear
modeling.

Set 1
x 10 8 13 9 11 14 6 4 12 7 5
y 8.04 6.95 7.58 8.81 8.33 9.96 7.24 4.26 10.84 4.82 5.68

Set 2
x 10 8 13 9 11 14 6 4 12 7 5
y 9.14 8.14 8.74 8.77 9.26 8.10 6.13 3.10 9.13 7.26 4.74

Set 3
x 10 8 13 9 11 14 6 4 12 7 5
y 7.46 6.77 12.74 7.11 7.81 8.84 6.08 5.39 8.15 6.42 5.73

Set 4
x 8 8 8 8 8 8 8 19 8 8 8
y 6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.50 5.56 7.91 6.89

(a) Using MATLAB fit the regression line for the four sets and provide four
ANOVA tables. What statistics are the same? What statistics differ?
(b) Plot the residuals against the fitted values. Discuss the appropriateness
of the regressions.

16.11. Potato Leafhopper. The length of the developmental period (in days)
of the potato leafhopper, Empoasca fabae, from egg to adult seems to be
dependent on temperature (Kouskolekas and Decker, 1966). The original
data were weighted means, but for the purpose of this analysis we shall
consider them as though they were single observed values.

Temp ◦ F 59.8 67.6 70.0 70.4 74.0 75.3 78.0 80.4 81.4 83.2 88.4 91.4 92.5
Development (days) 58.1 27.3 26.8 26.3 19.1 19.0 16.5 15.9 14.8 14.2 14.4 14.6 15.3

(a) Find a 98% confidence interval for unknown slope β1.
(b) Test the hypothesis that the intercept is equal to 60 against the alterna-
tive that it is larger than 60. Take α= 0.01.
(c) What is the 96% confidence interval for the mean response (mean num-
ber of days) if the temperature is 85◦F?

16.12. Cross-validating a Bayesian Regression. In this simulated exercise
covariates x1 and x2 are generated as



652 16 Regression

x1 = rand(1, 40); x2 = floor(10 * rand(1,40)) + 1;

and the response variable y is obtained as

y = 2 + 6 * x1 - 0.5 * x2 + 0.8*randn(size(x1))

Write a WinBUGS program that selects 20 triples (x1, x2, y) to train the
linear regression model ŷ = b0 + b1x1 + b2x2 and then uses the remaining
20 triples to evaluate the model by comparing the original responses yi, i =
21, . . . ,40 with regression-predicted values ŷi, i = 21, . . . ,40. The comparison
involves calculating the MSE, the mean of (yi − ŷi)2, i = 21, . . . ,40.
This is an example of how a cross-validation methodology is often employed
to assess statistical models.
How do the Bayesian estimators of β0, β1, β2, and σ compare to the “true”
values 2, 6, −0.5, and 0.8?

16.13. Taste of Cheese. As cheddar cheese matures, a variety of chemical pro-
cesses take place. The taste of mature cheese is related to the concentration
of several chemicals in the final product. In a study of cheddar cheese from
LaTrobe Valley of Victoria, Australia, samples of cheese were analyzed for
their chemical composition and were subjected to taste tests. The table be-
low presents data [from the experiments of G. T. Lloyd and E. H. Ramshaw,
CISRO Food Research, Victoria, Australia, analyzed in Moore and McCabe
(2006)] for one type of cheese manufacturing process. Taste is the response
variable of interest. The taste scores were obtained by combining scores
from several tasters. Three of the chemicals whose concentrations were
measured were acetic acid, hydrogen sulfide, and lactic acid. For acetic acid
and hydrogen sulfide log transformations were taken.

Taste Acetic H2S Lactic Taste Acetic H2S Lactic
12.3 4.54 3.13 0.86 20.9 5.16 5.04 1.53
39.0 5.37 5.44 1.57 47.9 5.76 7.59 1.81

5.6 4.66 3.81 0.99 25.9 5.70 7.60 1.09
37.3 5.89 8.73 1.29 21.9 6.08 7.97 1.78
18.1 4.90 3.85 1.29 21.0 5.24 4.17 1.58
34.9 5.74 6.14 1.68 57.2 6.45 7.91 1.90

0.7 4.48 3.00 1.06 25.9 5.24 4.94 1.30
54.9 6.15 6.75 1.52 40.9 6.37 9.59 1.74
15.9 4.79 3.91 1.16 6.4 5.41 4.70 1.49
18.0 5.25 6.17 1.63 38.9 5.44 9.06 1.99
14.0 4.56 4.95 1.15 15.2 5.30 5.22 1.33
32.0 5.46 9.24 1.44 56.7 5.86 10.20 2.01
16.8 5.37 3.66 1.31 11.6 6.04 3.22 1.46
26.5 6.46 6.92 1.72 0.7 5.33 3.91 1.25
13.4 5.80 6.69 1.08 5.5 6.18 4.79 1.25

(a) Find the equation in multivariable linear regression that predicts Taste

using Acetic, H2S, and Lactic as covariates.
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(b) For Acetic = 5, H2S = 8, and Lactic = 2 estimate the regression re-
sponse Ŷh and find standard deviations for the mean and individual re-
sponses. [Ans. 43.37, 6.243, 11.886]
(c) Find the 98% confidence interval for the intercept β0.
(d) Construct an ANOVA table.
(e) Find ordinary, studentized, and studentized deleted residuals for the
observation Y8.
(f) Find DFFITS8 and COOKSD8.
(g) Find DFBETAS8 on the Lactic coefficient.
(h) Find and discuss the VIF.

16.14. Slowing the Progression of Arthritis. Arthritis is caused by the break-
down of collagen in joint cartilage by the enzyme MMP-13. The antibiotic
doxycycline is a general inhibitor of MMPs and, by inhibiting the activity
of MMP-13, is an effective method of slowing the progression of arthritis.
At present, doxycycline is used to treat both rheumatiod arthritis and os-
teoarthritis. The rabbit’s HIG-82 synovial cell line was used to model arthri-
tis. MMP-13 was prepared by adding PMA, which guarantees that its pres-
ence, and APMA, which activates it. The enzyme MMP-13 was mixed with
a quenched substrate. When the enzyme cleaves the substrate, it fluoresces.
This fluorescence was used to measure the amount of MMP-13 activity.
Doxycycline, which decreases the amount of enzyme activity, was added
in increasing concentrations: 0, 25, 50, 75, 100, and 200 micromols. The
decrease in the fluorescence produced by the cleaved substrate when doxy-
cycline was present was used to measure the decrease in activity of the en-
zyme. The same experiment was performed on three different plates, and
the data was normalized.
The data set arthritis1.mat can be found on the book’s Web page. The
data file contains 72 observations (rows); the first column represents doxy-
cycline concentration (0, 25, 50, 75, 100 and 200), the second column is the
fluorescence response, and the third column is the plate number.
(a) Fit the linear regression where fluorescence is the response and doxycy-
cline concentration is the predictor. Predict the fluorescence if the doxycy-
cline concentration is equal to 125.
(b) Since three plates are present, run aoctool with doxycycline concentra-
tion as x, fluorescence as y, and plate number as g. Is there a significant
difference between the plates?

16.15. Insulin on Opossum Liver. Corkill (1932) provides data on the influence
of insulin on opossum liver. In the experimental setup the 20 animals (com-
mon gray Australian opossums – Trichosurus) fasted for 24 or 36 hours.
Ten animals, four from the 24-hour fasting group and six from the 36-hour
fasting group, were injected with insulin, while the remaining ten animals
served as controls, that is, they received no insulin. After 3 to 4 hours liver
glycogen and blood sugar were measured. The weights of the animals were
recorded as well.
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The goal of the study was to explore the deposition of liver glycogen after the
insulin regimen in opossums. In rabbits and cats, for example, it was pre-
viously found that insulin induced significant glycogen storage. This study
found a slight depletion of liver glycogen after the insulin treatment.
Our goal is to model the liver glycogen based on weight, level of blood sugar,
insulin indicator, and fasting regime.
Is the insulin indicator (0 no, 1 yes) an important covariate in the model?

Animal Weight Liver glycogen Blood sugar Fasting period Insulin
1 1502 1.80 0.124 24 0
2 1345 0.95 0.115 24 0
3 1425 1.12 0.128 24 0
4 1650 1.05 0.110 24 0
5 1520 0.45 0.052 24 1
6 1300 0.48 0.050 24 1
7 1250 0.75 0.045 24 1
8 1620 0.60 0.040 24 1
9 1725 0.76 0.130 36 0

10 1450 0.51 0.112 36 0
11 1800 0.48 0.105 36 0
12 1685 0.34 0.121 36 0
13 1560 0.38 0.116 36 0
14 1650 0.45 0.108 36 0
15 1650 0.65 0.032 36 1
16 1575 0.28 0.025 36 1
17 1260 0.10 0.045 36 1
18 1485 0.26 0.050 36 1
19 1520 0.18 0.030 36 1
20 1616 0.30 0.028 36 1

16.16. Slope in EIV Regression. Show that the EIV regression slope in (16.7)
tends to Sxy/Sxx when η→ 0.

16.17. Interparticular Spacing and Wavelength in Nanoprisms 2. In the
context of Example 15.4, let x = (separation)−1 and y = log(wavelength).
The part of MATLAB regression output for nonoprism.dat data set is
given below.

[b, bint, r, rint, stats] = regress(y,[ones(size(x)) x])

%b =
% -4.7182
% 1.6289
%
%bint =
% -5.6578 -3.7787
% 1.3061 1.9516
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%
%r =
% 0.0037
% -0.0084
% ...
% 0.0058
% 0.0046
%
%rint =
% -0.0101 0.0176
% -0.0232 0.0064
% ...
% -0.0096 0.0213
% -0.0110 0.0203
%
%stats =
% 0.8545 111.5735 0.0000 0.0001

Using information contained in this output, answer the following questions:
(a) What is the regression equation linking x and y?
(b) Predict y = log(wavelength) for x = 2.9. What is the wavelength for such
x?
(c) What is R2 here and how is it interpreted? What is the F-statistic here?
Is it significant?
(d) The 95% confidence interval for the population slope β1 is [1.3061,
1.9516]. Using information in this output construct a 99% confidence in-
terval for β1.

MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch16.Reg/

adhesions.m, ancova2.m, coburnreg.m, cpeptide.m, degradation.m,
diabetes.m, diagnostics.m, dissection.m, errorinvar.m, fatreg.m,
fatreg1.m, fatregdiag.m, galton.m, hemo.m, hubble.m, invitro.m,
kanamycin.m, kodlin.m, myeb.m, oldfaithful.m, pedometer1.m, ratwei.m,
tastecheese.m, vitalcapacity.m

ancovafibers.odc, fat.odc, mellitus.odc, regressionpred.odc,
vortex.odc

adhesion.xls, alcos.dat|xls, arthritis1.dat|mat, circalbumin.dat,
coburn.mat, Cpeptideext.dat|mat, fat.dat, fatreg1.m, galton.dat,
galtoncompact.dat, kanamycin.dat, Lactis.dat, nanoprism.dat,
pearson.dat, pmr1.mat, vitalcapacity.xlsx
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Chapter 17
Regression for Binary and Count Data

There are 10 types of people in the world, those who can read binary, and those who
can’t.

– Anonymous

WHAT IS COVERED IN THIS CHAPTER

• Logistic Regression: Fitting and Assessing the Model
• Probit and Complementary Log-Log Links
• Poisson Regression: Fitting and Assessing the Model
• Two Case Studies: Caesarean Sections and Danish IHGA Study
• Log-linear Models in Contingency Tables

17.1 Introduction

Traditional uni- or multivariable linear regression assumes a normally dis-
tributed response centered at a linear function of the predictors. For example,
in regression with a single predictor, the response yi is modeled as normal
N (β0 +β1xi,σ2), where the expectation (conditional on covariate xi) is a lin-
ear function of xi.

For some regression scenarios this model is inadequate because the re-
sponse is not normally distributed. The response could be categorical, for ex-
ample, with two or more categories (“disease present – disease absent,” “sur-
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vived – died,” “low – medium – high,” etc.) or be integer valued (“number with
the disease,” “number of failures,” etc.), and yet it may still depend on a covari-
ate or a vector of covariates, x. In this chapter we discuss logistic and Poisson
regressions that are appropriate for binary and counting responses.

In logistic regression the responses are binary, coded, without loss of gen-
erality, as 0 and 1 (or as 1 and 2 in WinBUGS). In Poisson regression the
responses are nonnegative integers well modeled by a Poisson distribution in
which the rate λ depends on one or more covariates. The covariates enter the
model in a linear fashion; however, their connection with the (expected) re-
sponse is nonlinear.

Both logistic and Poisson regressions are examples of a wide class of models
called generalized linear models (GLMs). The term generalized linear model
refers to models introduced by Nelder and Wedderburn (1972) and popularized
by the monograph of McCullagh and Nelder (1982, second edition 1989). In a
canonical GLM model, the response variable yi is assumed to follow a distri-
bution from the class of distributions called the exponential family, with mean
µ, which is assumed to depend on covariates via their linear combination. The
exponential family is a rich family of distributions and includes almost all im-
portant distributions (normal, Bernoulli, binomial, Poisson, gamma, etc.). This
link between the mean µ and covariates can be nonlinear, but the distribution
of yi depends on covariates only via their linear combination. Linear regres-
sion is a special case of GLMs for normally distributed responses, in which the
mean is directly modeled by a linear combination of covariates.

17.2 Logistic Regression

Assume that a response yi, depending on a covariate xi, is categorical and can
take two possible values. Examples of such responses include male–female,
sick–healthy, alive–dead, pass–fail, success–failure, win–loss, etc. One usually
assigns provisional numerical values to the responses, say 0 and 1, mainly to
simplify notation. Our interest is in modeling the probability of response y= 1
given the observed covariates.

Classical least-squares regression yi = β0 +β1xi + εi is clearly inadequate
since for unbounded xi the linear term β0 +β1xi is unbounded as well. In
addition, the residuals have only two possible values, and the variance of yi is
not free of xi.

We assume that y is Bernoulli distributed with Ey = P(y = 1) = p. Since
E(yi|X = xi) = P(yi = 1|X = xi) = pi is a number between 0 and 1, it is reason-
able to model pi as F(β0 +β1xi) for some probability CDF F. Equivalently,

F−1 (p)=β0 +β1x.
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In principle, any monotone cumulative distribution function F can provide a
link between the probability p and the covariate(s), but the most used dis-
tributions are logistic, normal, and complementary log-log, leading to logistic,
probit, and clog-log regressions. The most popular among the three is the logis-
tic regression because its coefficients, measuring the impact of the predictors
on the binary response y, have convenient interpretations via the log odds of
the events {y= 1}. In logistic regression, F−1(p)= log p

1−p is called the logit and
denoted as logit(p).

17.2.1 Fitting Logistic Regression

The basic statistical model for logistic regression is

yi ∼ Ber(pi), (17.1)

logit(pi) = log
pi

1− pi
=β0 +β1xi, i = 1, . . . , n

when the responses are Bernoulli, 0 or 1.
When multiple measurements correspond to the same covariate, it is con-

venient to express the responses as binomial counts, that is, ni responses cor-
responding to covariate xi are grouped together and yi is the number of re-
sponses equal to 1:

yi ∼ B in(ni, pi), (17.2)

logit(pi) = log
pi

1− pi
=β0 +β1xi, i = 1, . . . ,k,

k∑
i=1

ni = n.

In principle, it is always possible to express the binomial response model
via Bernoulli responses by repeating yi times the response 1 and ni − yi times
the response 0 for the same covariate xi. The converse is not possible in gen-
eral, especially if yi depends on a continuous covariate. Assessing the goodness
of fit for models of type (17.1) is a well-known problem since the asymptotic
distributional results do not hold even for arbitrarily large sample sizes.

How does one estimate parameters β0 and β1 in logistic model (17.1) or
(17.2)? The traditional least-squares algorithm that is utilized in linear re-
gression is not applicable. Estimating the model coefficients amounts to solv-
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ing a nonlinear equation, and this is done by an iterative procedure. The al-
gorithm for a single predictor is illustrated and implemented in the m-file

logisticmle.m. There, the Newton–Raphson method is used to solve non-
linear likelihood equations and calculate coefficients b0 and b1 as estimators of
population parameters β0 and β1. Details regarding the background and con-
vergence of methods for estimating model parameters are beyond the scope of
this text and can be found in McCullagh and Nelder (1989).

Once the parameters β0 and β1 are estimated, the probability pi = P(y =
1|x = xi) is obtained as

p̂i =
exp{b0 +b1xi}

1+exp{b0 +b1xi}
= 1

1+exp{−b0 −b1xi}
.

In addition to the nature of response yi, there is another key difference
between ordinary and logistic regressions. For linear regression the variance
does not depend on the mean β0 +β1xi; it is constant for all xi. This is one
of the assumptions for linear regression. In logistic regression the variance is
not constant; it is a function of the mean. From (17.1), Eyi = pi and Var yi =
Eyi(1−Eyi).

If p−1 covariates (p ≥ 2 parameters) are available, as is often the case,
then

X ′
ib = `i = b0 +b1xi1 +b2xi2 +·· ·+bp−1xi,p−1

replaces b0 + b1xi, where X ′
i is the ith row of a design matrix X of size n× p,

and b = (b0 b1 . . . bp−1)′. Now,

p̂i =
exp{X ′

ib}

1+exp{X ′
ib}

= 1
1+exp{−X ′

ib}
,

with b maximizing the log-likelihood

logL(β)= `(β)=
n∑

i=1
yi · (X ′

iβ)−
n∑

i=1
log

(
1+exp{X ′

iβ}
)
.

Example 17.1. Caesarean-Section Infections. A Caesarean-section, or C-
section, is major abdominal surgery, so moms who undergo C-sections are
more likely to have an infection, excessive bleeding, blood clots, more post-
partum pain, a longer hospital stay, and a significantly longer recovery. The
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data in this example comes from Munich’s Klinikum Großharden (Fahrmeir
and Tutz, 1996) and concerns infections in births by C-section. The response
variable of interest is the occurrence or nonoccurrence of infection. Three co-
variates, each at two levels, were considered as important for the occurrence
of infection:

noplan – The C-section delivery was planned (0) or not planned (1);
riskfac – Risk factors for the mother, such as diabetes, overweight, previ-

ous C-section birth, etc., are present (1) or not present (0); and
antibio – Antibiotics as a prophylaxis are given (1) or not given (0).
Table 17.1 provides the results.

Table 17.1 Caesarean-section delivery data.

Planned No Plan
Infection Infection

yes no total yes no total
Antibiotics

Risk factor yes 1 17 18 11 87 98
Risk factor no 0 2 2 0 0 0

No Antibiotics
Risk factor yes 28 30 58 23 3 26
Risk factor no 8 32 40 0 9 9

Here is the MATLAB code that uses built-in functions glmfit and glmval

to fit and present the model.

infection = [ 1 11 0 0 28 23 8 0];
total = [18 98 2 0 58 26 40 9];
proportion = infection./total;
noplan = [ 0 1 0 1 0 1 0 1];
riskfac = [ 1 1 0 0 1 1 0 0];
antibio = [ 1 1 1 1 0 0 0 0];
[b,dev,stats] = glmfit([noplan’ riskfac’ antibio’],...

[infection’ total’],’binomial’,’logit’);
logitFit = ...

glmval(b,[noplan’ riskfac’ antibio’],’logit’);

The resulting additive model (no interactions) is

log
P(infection)

P(no infection)
=β0 +β1 ·noplan+β2 · riskfac+β3 ·antibio

with estimators of βs as

b0 b1 b2 b3
–1.8926 1.0720 2.0299 –3.2544

The interpretation of the estimators for β coefficients is illuminating if we
look at the odds ratio P(infection)

P(no infection)
:
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P(infection)
P(no infection)

= exp(β0) ·exp(β1 noplan) ·exp(β2 riskfac) ·exp(β3 antibio).

For example, when antibio=1, i.e., when antibiotics are given, the estimated
odds of infection P(infection)/P(no infection) increase by the factor exp(−3.25)=
0.0388, that is, the odds decrease 25.79 times. Of course, these statements are
valid only if the model is accurate. Other competing models (such as probit or
clog-log) may result in different changes in risk ratios.
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Fig. 17.1 Caesarean delivery infection predictions. For a triple (noplan, riskfac, antibio), the
numbers on the x-axis code as follows: 1=(0,1,1), 2=(1,1,1), 3=(0,0,1), 4=(1,0,1), 5=(0,1,0),
6=(1,1,0), 7=(0,0,0), and 8=(1,0,0). Blue squares are the observed relative frequencies and
green circles are the model-predicted probabilities of infection. Note that point 4 does not
have an observed proportion.

The m-function logisticmle.m also gives standard errors for estimators
of βs. Table provides t-values, that is, ratios of coefficients and their stan-
dard deviations, for testing if the coefficients are significantly different from
0. These are known as Wald’s Z statistics, since they are approximately nor-
mal.

Table 17.2 t-ratios (Wald’s Z statistic) for the estimators b = β̂.

b sb t
Intercept –1.8926 0.4124 –4.5893
noplan 1.0720 0.4253 2.5203
riskfac 2.0299 0.4553 4.4588
antibio –3.2544 0.4812 –6.7624

The deviance (p. 665) of this model as a measure of goodness of fit is dis-
tributed as χ2 with 3 degrees of freedom. The number of degrees of freedom is
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calculated as 7 (number of groups with observations) minus 4 (four estimated
parameters β0 −β3). Since it is found to be significant,

dev = 10.9967;
pval = 1 - chi2cdf(dev, 7-4) % 0.0117

the fit of this model is not good. To improve the fit, one may include the inter-
actions.

One may ask why the regression model was needed in the first place.
The probabilities of interest could be predicted by relative frequencies. For
example, in the case (noplan = 0, riskfac = 1, antibio = 1), the relative fre-
quency of infection was 1/18 = 0.0556, just slightly larger than the model-
predicted p̂ = 0.0424. There are two benefits to this approach. First, the model
is able to predict probabilities in the cases where no patients are present, such
as for (noplan = 1, riskfac = 0, antibio = 1). Second, the predictions for the
cases where y = 1 is not observed are “borrowing strength” from the model
and are not modeled individually. For example, zero as an estimator in the
case (noplan = 1, riskfac = 0, antibio = 0) is not reasonable; the model-based
estimator p̂ = 0.3056 is more realistic. Figure 17.1 compares observed and
model-predicted infection rates. For a triple of covariates (noplan, riskfac, an-
tibio), the numbers on the x-axis code as follows: 1=(0,1,1), 2=(1,1,1), 3=(0,0,1),
4=(1,0,1), 5=(0,1,0), 6=(1,1,0), 7=(0,0,0), and 8=(1,0,0). Note that point 4 does
not have an observed proportion, however the model-predicted proportion can
be found. For computational aspects refer to file caesarean.m.

Next, we provide a Bayesian solution to this example and compare the
model fit with the classical fit above. The comparisons are summarized in Ta-
ble 17.1.

C-SECTION INFECTIONS

model{
for(i in 1:N){

inf[i] ~ dbin(p[i],total[i])
logit(p[i]) <- beta0 + beta1*noplan[i] +

beta2*riskfac[i] + beta3*antibio[i]
}

beta0 ~dnorm(0, 0.00001)
beta1 ~dnorm(0, 0.00001)
beta2 ~dnorm(0, 0.00001)
beta3 ~dnorm(0, 0.00001)
}

DATA

list(inf=c(1, 11, 0, 0, 28, 23, 8, 0),
total = c(18, 98, 2, 0, 58, 26, 40, 9),
noplan = c(0,1,0,1,0,1,0,1),
riskfac = c(1,1, 0, 0, 1,1, 0, 0),
antibio =c(1,1,1,1,0,0,0,0), N=8)
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INITS

list(beta0 =0, beta1=0, beta2=0, beta3=0)

mean sd MC error val2.5pc median val97.5pc start sample
beta0 –1.964 0.4258 0.001468 –2.853 –1.945 –1.183 1001 1000000
beta1 1.111 0.4339 8.857E-4 0.2851 1.102 1.986 1001 1000000
beta2 2.104 0.4681 0.00159 1.226 2.09 3.066 1001 1000000
beta3 –3.335 0.4915 9.756E-4 –4.337 –3.322 –2.411 1001 1000000
deviance 32.24 2.873 0.00566 28.67 31.59 39.49 1001 1000000

Table 17.3 Comparison of classical and noninformative Bayes estimators b = β̂, with esti-
mators of standard deviations.

b sb β̂B σ̂B
Intercept −1.8926 0.4124 −1.964 0.4258
noplan 1.0720 0.4253 1.111 0.4339
riskfac 2.0299 0.4553 2.104 0.4681
antibio −3.2544 0.4812 −3.335 0.4915

�

17.2.2 Assessing the Logistic Regression Fit

The measures for assessing the goodness of linear regression fit that we cov-
ered in Chap. 16, R2, F, MSE, etc., are not appropriate for logistic regression.
As in the case of linear regression, there is a range of measures for assessing
the performance of logistic regression and we will briefly overview a few.

The significance of model parameters β0,β1, . . . is tested by the so-called
Wald’s test. One finds the statistic Zi = bi

s(bi)
that has an approximate normal

distribution if the coefficient βi is 0. Equivalently, Wi =
b2

i
s2(bi)

with an approx-

imate χ2-distribution with 1 degree of freedom can be used. Large values of
|Zi| or Wi are critical for H0 :βi = 0.

The sample variances s2(bi) are diagonal elements of (X ′V X )−1, where

X =




1 x11 x12 . . . x1,p−1
1 x21 x22 . . . x2,p−1

. . .
1 xn1 xn2 . . . xn,p−1




is the design matrix and
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V =




p̂1(1− p̂1) 0 . . . 0
0 p̂2(1− p̂2) . . . 0

. . .
0 0 . . . p̂n(1− p̂n)


 .

The customary measure for goodness of fit is deviance, defined as

D =−2log
likelihood of the fitted model

likelihood of the saturated model
.

For the logistic regression in (17.2), where yi is the number of 1s and ni − yi is
the number of 0s in class i, the likelihood is L = ∏k

i=1 pyi
i (1− pi)ni−yi and the

deviance is

D =−2
k∑

1=1

{
yi log

(
ŷi

yi

)
+ (ni − yi) log

(
ni − ŷi

ni − yi

)}
,

where ŷi = ni p̂i is the model fit for yi. The saturated model estimates pi as
p̂i = yi/ni and ŷi = yi providing the fit that matches the observations.

The deviance statistic in this case has a χ2-distribution with k− p degrees
of freedom, where k is the number of classes/groups and p is the number of
parameters in the model. Recall that in the previous example the deviance of
the model was distributed as χ2 with k− p = 7−4= 3 degrees of freedom.

For both Bernoulli and binomial observations, the mean and variance de-
pend on a single parameter, p. When the mean is well fitted, the variance
could be underfitted (overdispersion in data) or overfitted (underdispersion in
data). The ratio D/df is often used to indicate over- or underdispersion in the
data.

The traditional χ2-statistic for the goodness of fit in model (17.2) is defined
as

χ2 =
k∑

i=1

[
(yi − ŷi)2

ŷi
+ (yi − ŷi)2

ni − ŷi

]
,

where ni is the number of observations in class i, i = 1, . . . ,k. This statistic has
an approx. χ2-distribution with k− p degrees of freedom.

Goodness of fit measure G is defined as the difference of deviance between
the null model (intercept-only model) and the model under consideration. G
has a χ2-distribution with p−1 degrees of freedom, and small values of G are
critical, suggesting that the deviance did not improve significantly by adding
covariates.

The logistic model can always be expressed in terms of Bernoulli outcomes,
where yi is 0 or 1, as in (17.1). Then k = n, ni = 1, the likelihood for the sat-
urated model, is

∏n
i=1 yyi

i (1− yi)1−yi = 1 (we assume that 00 = 1), and the de-
viance for the Bernoulli representation becomes
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D =−2
n∑

i=1
[yi log p̂i + (1− yi) log(1− p̂i)] .

Statistic D does not follow any specific distribution, irrespective of sample
size. Likewise, the Pearson χ2 becomes

χ2 =
n∑

i=1

(yi − p̂i)2

p̂i(1− p̂i)
(17.3)

in model (17.1) and does not follow any specific distribution, either.
To further evaluate the model, several types of residuals are available.
Deviance residuals are defined as

rD
i = sign(yi − ŷi)

√
2
{

yi log
(

yi

ŷi

)
+ (ni − yi) log

(
ni − yi

ni − ŷi

)}
, i = 1, . . . ,k,

for model (17.2) and

rD
i = sign(yi − p̂i)

√
2yi log p̂i + (1− yi) log(1− p̂i), i = 1, . . . ,n,

for model (17.1). The deviance D is decomposed to the sum of squares of de-
viance residuals in an ANOVA-like fashion as D =∑

(rD
i )2. The squared resid-

ual (rD
i )2 measures the contribution of the ith case to the deviance.

Deviance residuals can be plotted against the order of sampling to explore
for possible trends and outliers. Also useful for checking the model are half-
normal plots where the ordered absolute values rD

i are plotted against the

normal quantiles Φ−1
(

i+n−1/8
2n+1/2

)
. These kinds of plots are an extension of Atkin-

son’s (1985) half normal plots in regular linear regression models. Deviation
from a straight line in a half-normal plot indicates model inadequacy.

For the model in (17.1), the Pearson residual is defined as

rpea
i = yi − p̂i√

p̂i(1− p̂i)
,

and the sum of squares of rpea
i constitutes Pearson’s χ2 statistic,

n∑
i=1

(rpea
i )2 =

n∑
i=1

(yi − p̂i)2

p̂i(1− p̂i)
,

as in (17.3). This statistic represents a discrepancy measure; however, as we
mentioned, it does not follow the χ2-distribution, even asymptotically.

In the case of continuous covariates, large n and small ni, Hosmer and
Lemeshow proposed a χ2-statistic based on the grouping of predicted values
p̂i. All p̂i are ordered and divided into g approximately equal groups, usually
ten. For ten groups, sample deciles of ordered p̂i could be used.

The Hosmer–Lemeshow statistic is
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χ2
HL =

g∑
i=1

(ni −npi)2

npi
,

where g is the number of groups, ni is the number of cases in the ith group,
and pi is the average of model (predicted) probabilities for the cases in the
ith group. The χ2

hl-statistic is compared to χ2
g−2 quantiles, and small p-values

indicate that the fit is poor. In the case of ties, that is, when there are blocks
of items with the same predicted probability p̂, the blocks are not split but
assigned to one of the two groups that share the block. The details of the algo-
rithm can be found in Hosmer and Lemeshow (1989).

In the case of linear regression, R2, as a proportion of model-explained
variability in observations, had a strong intuitive appeal in assessing the re-
gression fit. In the case of logistic regression, there is no such intuitive R2.
However, there are several proposals of R2-like measures, called pseudo-R2.
Most of them are defined in terms of model likelihood or log-likelihood. The
model likelihood and log-likelihood are calculated using model logit,

`i = b0 +b1xi1 +·· ·+ bp−1xi,p−1,

LL p = LL(b0, . . . , bp−1)=
n∑

i=1
(yi ×`i − log(1+exp{`i})) ,

and the model likelihood is Lp = exp{LLp}. The null model is fitted without
covariates, and

`0 = b0

LLnull = LL(b0)=
n∑

i=1
(yi ×`0 − log(1+exp{`0})) .

The null model likelihood is Lnull = exp{LLnull }.
By analogy to linear regression, R2 = SSR

SST = SST−SSE
SST ,

R2
mf =

LLnull −LLp

LLnull
= 1− LL p

LLnull
,

defines McFadden’s pseudo-R2. Some other counterparts of R2 are

Cox–Snell: R2
cs = 1−

[
Lnull

Lp

]2/n
;

Nagelkerke: R2
n =

1−
[

Lnull
Lp

]2/n

1− (Lnull)2/n ;

Effron: R2
e = 1−

∑n
i=1(yi − p̂i)2

∑n
i=1(yi − y)2 , y=

∑n
i=1 yi

n
.



668 17 Regression for Binary and Count Data

Example 17.2. Arrhythmia. Patients who undergo coronary artery bypass
graft surgery (CABG) have an approximately 19 to 40% chance of developing
atrial fibrillation (AF). AF is a quivering, chaotic motion in the upper cham-
bers of the heart, known as the atria. AF can lead to the formation of blood
clots, causing greater in-hospital mortality, strokes, and longer hospital stays.
While this can be prevented with drugs, it is very expensive and sometimes
dangerous if not warranted. Ideally, several risk factors that would indicate an
increased risk of developing AF in this population could save lives and money
by indicating which patients need pharmacological intervention. Researchers
began collecting data from CABG patients during their hospital stay such as
demographics like age and sex, as well as heart rate, cholesterol, operation
time, etc. Then the researchers recorded which patients developed AF during
their hospital stay. The goal was to evaluate the probability of AF given the
measured demographic and risk factors.

The data set arrhythmia.dat, courtesy of Dr. Matthew C. Wiggins, con-
tains the following variables:

Y Fibrillation
X1 Age
X2 Aortic Cross Clamp Time
X3 Cardiopulmonary Bypass Time
X4 Intensive Care Unit (ICU) Time
X5 Average Heart Rate
X6 Left Ventricle Ejection Fraction
X7 Anamnesis of Hypertension
X8 Gender [1 - Female; 0 - Male]
X9 Anamnesis of Diabetes
X10 Previous MI

The MATLAB script arrhythmia.m provided a logistic regression fit. The
script calculates deviance and several goodness-of-fit measures.

load ’Arrhythmia.mat’
Y = Arrhythmia(:,1);
X = Arrhythmia(:,2:11); %Design matrix n x (p-1) without

%vector 1 (intercept)
Xdes =[ones(size(Y)) X]; %with the intercept: n x p
n = length(Y); %number of subjects
alpha = 0.05; %alpha for CIs

[b, dev, stats]=glmfit(X,Y, ’binomial’,’link’,’logit’)

lin = Xdes * b %linear predictor, n x 1 vector

Figure 17.2 shows observed arrhythmia responses (0 or 1) with their logis-
tic fit.

With the linear predictor, fitted probabilities for {Yi = 1} are given as p̂i.
Also, the estimators of the βs and their standard deviations and p-values for
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Fig. 17.2 Arrhythmia responses 0 or 1 with their logistic fit. The abscise axis is the linear
predictor lin.

the Wald test are given next. The intercept is significantly nonzero (0.0158),
and the variable X1 (age) is strongly significant (0.0005). This agrees with the
inference based on confidence intervals, only the intervals for β0 and β1 do not
contain 0, or, equivalently, the intervals for the odds ratio, exp{β0} and exp{β1},
do not contain 1.

phat = exp(lin)./(1 + exp(lin));
V = diag( phat .* (1 - phat) );
sqrtV = diag( sqrt(phat .* (1 - phat) ))
sb = sqrt( diag( inv( Xdes’ * V * Xdes ) ) )
% inv( Xdes’ * V * Xdes ) is stats.covb
% Wald tests for parameters beta
z = b./sb %tests for beta_i = 0, i=0,...,p-1
pvals = 2 * normcdf(-abs(z)) %p-values
%[0.0158; 0.0005; 0.3007; 0.2803; 0.1347; 0.8061
% 0.4217; 0.3810; 0.6762; 0.0842; 0.5942]
%(1-alpha)*100% CI for betas
CIs = [b - norminv(1 - alpha/2) * sb , b + norminv(1-alpha/2) * sb]
%(1-alpha)*100% CIs for odds ratios
CIsOR = exp([b-norminv(1-alpha/2)*sb , b+norminv(1-alpha/2)*sb])

% 0.0000 0.1281
% 1.0697 1.2711
% 0.9781 1.0744
% ...
% 0.8628 10.3273
% 0.4004 4.9453

Figure 17.3 shows estimators of β0 −β10 (as green circles) and 95% con-
fidence bounds. Since the intervals for β0 and β1 do not contain 0, both the
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intercept and covariate age are important in the model. It is tempting to do
variable/model selection based on outcomes of Wald’s test – but this is not
advisable. Exclusion of a parameter/variable from the model will necessarily
change the estimators and confidence intervals for the remaining parameters
and previously insignificant parameters may become significant. As in linear
regression, best subset, forward, and backward variable selection procedures
exist and may be implemented.
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Fig. 17.3 Estimators of β0 −β10 are shown as green circles, and 95% confidence intervals
are given. For comparison, the intervals for β1−β6 are shown separately on a different scale.

Next, we find the log-likelihoods for the model and null model. The model
deviance is 78.2515, while the difference of deviances between the models is
26.1949. This would be a basis for a likelihood ratio test if the response were
grouped. Since in a Bernoulli setup the distributions of deviance and G are
not χ2, the testing needs to be done by one of the response-grouping methods,
such as the Hosmer–Lemeshaw method.

%Log-likelihood
loglik = sum( Y .* lin - log( 1 + exp(lin) )) %-39.1258
%fitting null model.
[b0, dev0, stats0] = glmfit(zeros(size(Y)),Y,’binomial’,’link’,’logit’)
%b0=-0.6381, dev0=104.4464, stats=... (structure)

loglik0 = sum( Y .* b0(1) - log(1 + exp(b0(1))) ) %-52.2232
%
G = -2 * (loglik0 - loglik) % 26.1949
dev0 - dev %26.1949, the same as G, difference of deviances
%
%model deviance
devi = -2 * sum( Y .* log( phat + eps) + (1-Y ).*log(1 - phat + eps) )
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%78.2515, directly
dev %78.2515, glmfit output
-2 * loglik %78.2515, as a link between loglik and deviance

Several measures correspond to R2 in the linear regression context: Mac-
Fadden’s pseudo-R2, Cox–Snell R2, Nagelkerke R2, and Effron’s R2. All mea-
sures fall between 0.25 and 0.4.

%McFadden Pseudo R^2, equivalent expressions
mcfadden = -2*(loglik0-loglik)/(-2*loglik0) %0.2508
1 - loglik/loglik0 %0.2508
%
coxsnell =1-(exp(loglik0)/exp(loglik))^(2/n) %0.2763
%
nagelkerke=(1-(exp(loglik0)/exp(loglik))^(2/n))/...

(1-exp(loglik0)^(2/n)) %0.3813
%
effron=1-sum((Y-phat).^2)/sum((Y-sum(Y)/n).^2) %0.2811

Next we find several types of residuals: ordinary, Pearson, deviance, and
Anscombe.

ro = Y - phat; %Ordinary residuals

%Deviance Residuals
rdev = sign(Y - phat) .* sqrt(-2 * Y .* log(phat+eps) - ...

2*(1 - Y) .* log(1 - phat+eps));
%Anscombe Residuals
ransc = (betainc(Y,2/3,2/3) - betainc(phat,2/3,2/3) ) .* ...

( phat .* (1-phat) + eps).^(1/6);
%
% Model deviance is recovered as
%the sum of squared dev. residuals
sum(rdev.^2) %78.2515

Figure 17.4 shows four kinds of residuals (ordinary, Pearson, deviance, and
Anscombe), plotted against p̂.

If the model is adequate, the smoothed residuals should result in a function
close to 0. Figure 17.5 shows Pearson’s residuals smoothed by a loess smooth-
ing method, ( loess.m).

Influential and outlying observations can be detected with a plot of abso-
lute values of residuals against half-normal quantiles. Figure 17.6 was pro-
duced by the script below and shows a half-normal plot. The upper and lower
bounds (in red) show an empirical 95% confidence interval and were obtained
by simulation. The sample of size 19 was obtained from Bernoulli Ber(p̂),
where p̂ is the model fit, and then the minimum, mean, and maximum of the
absolute residuals of the simulated values were plotted.

k = 1:n;
q = norminv((k + n - 1/8)./(2 * n + 1/2));
plot( q, sort(abs(rdev)), ’k-’,’LineWidth’,1.5);

% Simulated Envelope
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Fig. 17.4 Ordinary, Pearson, deviance, and Anscombe residuals plotted against p̂.
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Fig. 17.5 Pearson’s residuals (green circles) smoothed. The red circles show the result of
smoothing.
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rand(’state’,1)
env =[];
for i = 1:19

surrogate = binornd(1, phat);
rdevsu = sign(surrogate - phat).*sqrt(- 2*surrogate .* ...
log(phat+eps)- 2*(1 - surrogate) .* log(1 - phat+eps) );
env = [env sort(abs(rdevsu))];

end
envel=[min(env’); mean(env’ ); max(env’ )]’;
hold on
plot( q , envel(:,1), ’r-’);
plot( q , envel(:,2), ’g-’);
plot( q , envel(:,3), ’r-’);
xlabel(’Half-Normal Quantiles’,’Interpreter’,’LaTeX’)
ylabel(’Abs. Dev. Residuals’,’Interpreter’,’LaTeX’)
h=legend(’Abs. Residuals’,’Simul. $95%$ CI’,’Simul. Mean’,2)
set(h,’Interpreter’,’LaTeX’)
axis tight
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Fig. 17.6 Half-normal plot for deviance residuals.

To predict the mean response for a new observation, we selected a “new
person” with specific covariate values. For this person the estimator for P(Y =
1) is 0.3179 and 0 for a single future response. A single future response is in
fact a classification problem: individuals with a specific set of covariates are
classified as either 0 or 1.

%Probability of Y=1 for a new observation
Xh =[1 72 81 130 15 78 43 1 0 0 1]’ ;
% responses for a new person
pXh = exp(Xh’ * b)/(1 + exp(Xh’ * b) ) %0.3179
%(1-alpha) * 100% CI
ppXh = Xh’ * b %-0.7633
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s2pXp = Xh’ * inv( Xdes’ * V * Xdes ) * Xh %0.5115
spXh = sqrt(s2pXp) %0.7152
% confidence interval on the linear part
li = [ppXh-norminv(1-alpha/2)*spXh ...
ppXh+norminv(1-alpha/2)*spXh] %-2.1651 0.6385

% transformation to the CI for the mean response
exp(li)./(1 + exp(li)) %0.1029 0.6544

%Predicting single future observation
cutoff = sum(Y)/n %0.3457
%
pXh > cutoff %Ynew = 0

Next, we provide a Bayesian solution to Arrhythmia logistic model
( Arrhythmia.odc) and compare classical and Bayesian model parameters.

model{
eps <- 0.00001
for(i in 1:N){
Y[i] ~ dbern(p[i])
logit(p[i]) <- beta[1] + beta[2] * X1[i]+

beta[3] * X2[i] + beta[4] * X3[i]+ beta[5] * X4[i] +
beta[6] * X5[i] + beta[7] * X6[i] + beta[8] * X7[i] +
beta[9] * X8[i] + beta[10] * X9[i] + beta[11] * X10[i]

devres[i] <- 2*Y[i]* log(Y[i]/p[i] +eps) +
2*(1 - Y[i])*log((1-Y[i])/(1-p[i])+eps)

}
for(j in 1:11){
beta[j] ~ dnorm(0, 0.0001)

}
dev <- sum(devres[])
}

DATA + INITS (see Arrhythmia.odc)

The classical and Bayesian model parameters are shown in the table:

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10 Dev.
Classical −10.95 0.1536 0.0248 −0.0168 −0.1295 0.0071 0.0207 −0.5377 −0.2638 1.0936 0.3416 78.25
Bayes −13.15 0.1863 0.0335 −0.0236 −0.1541 0.0081 0.0025 −0.6419 −0.3157 1.313 0.4027 89.89

�

17.2.3 Probit and Complementary Log-Log Links

We have seen that for logistic regression,

p̂i = F(`i)=
exp{`i}

1+exp{`i}
,
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where `i = b0 + b1xi1 +·· ·+ bp−1xi,p−1 is the linear part of the model.
A probit regression uses a normal distribution instead,

p̂i =Φ(`i),

while for the complementary log-log, the distribution

F(x)= 1−exp
{−ex}

is used.
The complementary log-log link interprets the regression coefficients in

terms of the hazard ratio rather than the log odds ratio. It is defined as

clog-log= log(− log(1− p)).

The clog-log regression is typically used when the outcome {y= 1} is rare. Pro-
bit models are popular in a bioassay context. A disadvantage of probit models
is that the link Φ−1 does not have an explicit expression, although approxima-
tions and numerical algorithms for its calculation are readily available.

Once the linear part `i in a probit or clog-log model is fitted, the probabili-
ties are estimated as

p̂i =Φ(`i) or p̂i = 1−exp(−exp(`i)),

respectively. In MATLAB, the probit and complementary log-log links are op-
tional arguments, ’link’,’probit’ or ’link’,’comploglog’.

Example 17.3. Bliss Data. In his 1935 paper, Bliss provides a table showing a
number of flour beetles killed after 5 hours’ exposure to gaseous carbon disul-
fide at various concentrations. This data set has since been used extensively
by statisticians to illustrate and compare models for binary and binomial data.

Table 17.4 Bliss beetle data.
Dose Number of Number

(log10 CS2 mgl−1) Beetles Killed
1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 53
1.8610 62 61
1.8839 60 60

The following Bayesian model is applied on Bliss’ data a probit fit is pro-
vided ( bliss.odc).
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model{
for( i in 1 : N ) {

y[i] ~ dbin(p[i],n[i])
probit(p[i]) <- alpha.star + beta * (x[i] - mean(x[]))

yhat[i] <- n[i] * p[i]
}
alpha <- alpha.star - beta * mean(x[])
beta ~ dnorm(0.0,0.001)
alpha.star ~ dnorm(0.0,0.001)

}

DATA
list( x = c(1.6907, 1.7242, 1.7552, 1.7842,

1.8113, 1.8369, 1.8610, 1.8839),
n = c(59, 60, 62, 56, 63, 59, 62, 60),
y = c(6, 13, 18, 28, 52, 53, 61, 60), N = 8)

INITS
list(alpha.star=0, beta=0)

mean sd MC error val2.5pc median val97.5pc start sample
alpha –35.03 2.652 0.01837 –40.35 –35.01 –29.98 1001 100000
alpha.star 0.4461 0.07724 5.435E-4 0.2938 0.4461 0.5973 1001 100000
beta 19.78 1.491 0.0104 16.94 19.77 22.78 1001 100000
yhat[1] 3.445 1.018 0.006083 1.757 3.336 5.725 1001 100000
yhat[2] 10.76 1.69 0.009674 7.643 10.7 14.26 1001 100000
yhat[3] 23.48 1.896 0.01095 19.77 23.47 27.2 1001 100000
yhat[4] 33.81 1.597 0.01072 30.62 33.83 36.85 1001 100000
yhat[5] 49.59 1.623 0.01208 46.28 49.63 52.64 1001 100000
yhat[6] 53.26 1.158 0.008777 50.8 53.33 55.33 1001 100000
yhat[7] 59.59 0.7477 0.00561 57.91 59.68 60.82 1001 100000
yhat[8] 59.17 0.3694 0.002721 58.28 59.23 59.71 1001 100000

If instead of probit, the clog-log was used, as cloglog(p[i]) <- alpha.star

+ beta * (x[i] - mean(x[])), then the coefficients are

mean sd MC error val2.5pc median val97.5pc start sample
alpha –39.73 3.216 0.02195 –46.24 –39.66 –33.61 1001 100000
beta 22.13 1.786 0.01214 18.73 22.09 25.74 1001 100000

For comparisons we take a look at the classical solution ( beetleBliss2.m).
Figure 17.7 shows three binary regressions (logit, probit and clog-log) fitting
the Bliss data.

disp(’Logistic Regression 2: Bliss Beetle Data’)
lw = 2.5;
set(0, ’DefaultAxesFontSize’, 16);
fs = 15;
msize = 10;
beetle=[...
1.6907 6 59; 1.7242 13 60; 1.7552 18 62; 1.7842 28 56;...



17.2 Logistic Regression 677

1.8113 52 63; 1.8369 53 59; 1.8610 61 62; 1.8839 60 60];
%%%%%%%%%%%%%%%%%
xi = beetle(:,1); yi=beetle(:,2); ni=beetle(:,3);
figure(1)
[b, dev, stats] = glmfit(xi,[yi ni],’binomial’,’link’,’logit’);
[b1, dev1, stats1] = glmfit(xi,[yi ni],’binomial’,’link’,’probit’);
[b2, dev2, stats2] = glmfit(xi,[yi ni],’binomial’,’link’,’comploglog’);

xs = 1.5:0.01:2.0;
ys = glmval(b, xs, ’logit’);
y1s = glmval(b1, xs, ’probit’);
y2s = glmval(b2, xs, ’comploglog’);
% Plot
plot(xs,ys,’r-’,’LineWidth’,lw)
hold on
plot(xs,y1s,’k--’,’LineWidth’,lw)
plot(xs,y2s,’-.’,’LineWidth’,lw)
plot(xi, yi./ni, ’o’,’MarkerSize’,msize,...

’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’)
axis([1.5 2.0 0 1])
grid on
xlabel(’Log concentration’)
ylabel(’Proportion killed’)
legend(’Obs. proportions’,’Logit’,’Probit’,’Clog-log’,2)
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Fig. 17.7 Bliss data (green dots). Regression fit with logit link red, probit link black, and
clog-log link blue.

The table below compares the coefficients of the linear part of the three
models. Note that classical and Bayesian results are close because the priors
in the Bayesian model are noninformative.
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Classical Bayes
Link Logit Probit Clog-log Logit Probit Clog-log
Intercept –60.72 –34.94 –39.57 –60.78 –35.03 –39.73
Slope 34.27 19.73 22.04 34.31 19.78 22.13

�

17.3 Poisson Regression

Poisson regression models the counts y= {0,1,2,3, . . . } of rare events in a large
number of trials. Typical examples are unusual adverse events, accidents, in-
cidence of a rare disease, device failures during a particular time interval,
etc. Recall that Poisson random variable Y ∼P oi(λ) has the probability mass
function

f (y)=P(Y = y)= λy

y!
exp{−λ}, y= 0,1,2,3, . . .

with both mean and variance equal to the rate parameter λ> 0.
Suppose that n counts of yi, i = 1, . . . , n are observed and that each count

corresponds to a particular value of a covariate xi, i = 1, . . . , n. A typical Pois-
son regression can be formulated as follows:

yi ∼ P oi(λi), (17.4)

log(λi) = β0 +β1xi, i = 1, . . . ,n,

although other relations between λi and the linear part β0 +β1xi are possible
as long as λi remains positive. More generally, λi can be linked to a linear
expression containing p−1 covariates and p parameters as

log(λi) = β0 +β1xi1 +β2xi2 +·· ·+βp−1xi,p−1, i = 1, . . . ,n.

In terms of model (17.4) the Poisson rate λi is the expectation, and its
logarithm can be expressed as logE(yi|X = xi) =β0 +β1xi. When the covariate
xi gets a unit increment, xi +1, then

logE(yi|X = xi +1)=β0 +β1xi +β1 = logE(yi|X = xi)+β1.

Thus, parameter β1 can be interpreted as the increment to log rate when the
covariate gets an increment of 1. Equivalently, exp{β1} is the ratio of rates,

exp{β1}= E(yi|xi +1)
E(yi|xi)

.
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The model-assessed mean response is ŷi = exp{b0 + b1xi}, where b0 and b1
are the estimators of β0 and β1. Strictly speaking, the model predicts the rate
λ̂i, but the rate is interpreted as the expected response.

The deviance of the model, D, is defined as

D = 2
n∑

i=1

(
yi log

yi

ŷi
− (yi − ŷi)

)
,

where yi log yi = 0 if yi = 0. As in logistic regression, the deviance is a measure
of goodness of fit of a model and for a Poisson model has a χ2-distribution with
n− p degrees of freedom.

Deviance residuals, defined as

rdev
i = sign(yi − ŷi)×

√
2yi log

yi

ŷi
−2(yi − ŷi) ,

satisfy D =∑n
i=1

(
rdev

i

)2 .
Pearson’s residuals are defined as

rpea
i = yi − ŷi√

ŷi
.

Then the Pearson goodness-of-model-fit statistic χ2 = ∑n
i=1(rpea

i )2 also has a
χ2-distribution with n− p degrees of freedom.

Freedman–Tukey residuals are defined as

r f t
i =p

yi +
√

yi +1−
√

4 ŷi +1

and Anscombe residuals as

ra
i =

3
2
×

y2/3
i − ŷ2/3

i

ŷ1/6
i

.

Some additional diagnostic tools are exemplified in the following case study
( ihga.m).

Example 17.4. Case Study: Danish IHGA Data. In an experiment con-
ducted in the 1980s (Hendriksen et al., 1984), 572 elderly people living in a
number of villages in Denmark were randomized, 287 to a control (C) group
(who received standard care) and 285 to an experimental group (who received
standard care plus IHGA: a kind of preventive assessment in which each per-
son’s medical and social needs were assessed and acted upon individually).
The important outcome was the number of hospitalizations during the 3-year
life of the study.

% IHGA
% data
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Table 17.5 Distribution of number of hospitalizations in IHGA study.

Group # of hospitalizations n Mean Variance
0 1 2 3 4 5 6 7

Control 138 77 46 12 8 4 0 2 287 0.944 1.54
Treatment 147 83 37 13 3 1 1 0 285 0.768 1.02

x0 = 0 * ones(287,1); x1 = 1 * ones(285,1);
%covariate 0-no intervention, 1- intervention

y0 = [0*ones(138,1); 1*ones(77,1); 2*ones(46,1);...
3*ones(12,1); 4 * ones(8,1); 5*ones(4,1); 7*ones(2,1)];

y1 = [0*ones(147,1); 1*ones(83,1); 2*ones(37,1);...
3*ones(13,1); 4 * ones(3,1); 5*ones(1,1); 6*ones(1,1)];
%response # of hospitalizations

x =[x0; x1]; y=[y0; y1];
xdes = [ones(size(y)) x];
[n p] = size(xdes)

[b dev stats] = glmfit(x,y,’poisson’,’link’,’log’)
yhat = glmval(b, x,’log’) %model predicted responses

% Pearson residuals
rpea = (y - yhat)./sqrt(yhat);
% deviance residuals
rdev = sign(y - yhat) .* sqrt(-2*y.*log(yhat./(y + eps))-2*(y - yhat));
% Friedman-Tukey residuals
rft = sqrt(y) + sqrt(y + 1) - sqrt(4 * yhat + 1)
% Anscombe residuals
ransc = 3/2 * (y.^(2/3) - yhat.^(2/3) )./(yhat.^(1/6))

Figure 17.8 shows four our types of residual in Poisson regression fit of
IHGA data: Pearson, deviance, Friedman–Tukey, and Anscombe. The residu-
als are plotted against responses y.

loglik = sum(y .* log(yhat+eps) - yhat - log(factorial(y)));
%
[b0, dev0, stats0] = glmfit(zeros(size(y)),y,’poisson’,’link’,’log’)
yhat0 = glmval(b0, zeros(size(y)),’log’);
loglik0 = sum( y .* log(yhat0 + eps) - yhat0 - log(factorial(y)))

G = -2 * (loglik0 - loglik) %LR test, nested model chi2 5.1711
dev0 - dev % the same as G, difference of deviances 5.1711
pval = 1-chi2cdf(G,1) %0.0230

Under H0 stating that the model is null (model with an intercept and no
covariates), the statistic G will have d f = p−1 degrees of freedom, in our case
d f = 1. Since this test is significant (p = 0.0230), the covariate contributes
significantly to the model.

Below are several ways to express the deviance of the model. Note that
the sum of squares of the deviance residuals simplifies to −2

∑n
i=1 yi log( ŷi/yi),

since in Poisson regression
∑n

i=1(yi − ŷi)= 0.
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Fig. 17.8 (a) Four types of residual in a Poisson regression fit of IHGA data: Pearson, de-
viance, Friedman–Tukey, and Anscombe. The residuals are plotted against responses y.

%log-likelihood for saturated model
logliksat = sum(y.*log(y+eps)-y-log(factorial(y))) %-338.1663
m2LL = -2 * sum( y .* log(yhat./(y + eps)) ) %819.8369
deviance = sum(rdev.^2) %819.8369
dev %819.8369 from glmfit
-2*(loglik - logliksat) % 819.8369

The following is a Bayesian model fit in WinBUGS ( geriatric.odc).
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model
{
for (i in 1:n)

{
y[i] ~ dpois(lambda[i] )
log( lambda[i]) <- beta.0 + beta.1 * x[i]

}
beta.0 ~ dnorm(0, 0.0001)
beta.1 ~ dnorm(0, 0.0001)
lambda.C <- exp(beta.0)
lambda.E <- exp(beta.0 + beta.1 )
diff <- lambda.E - lambda.C
meffect <- exp( beta.1 )
}

DATA
list( y = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

...
2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 7, 7, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

...
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

4, 4, 4, 5, 6 ),
x = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1 ), n = 572 )

INITS
list( beta.0 = 0.0, beta.1 = 0.0 )

mean sd MC error val2.5pc median val97.5pc start sample
beta.0 -0.05915 0.06093 2.279E-4 -0.1801 -0.05861 0.05881 1001 100000
beta.1 -0.2072 0.09096 3.374E-4 -0.3861 -0.2071 -0.02923 1001 100000
deviance 1498.0 2.012 0.006664 1496.0 1498.0 1504.0 1001 100000
diff -0.1764 0.07737 2.872E-4 -0.3285 -0.1763 -0.02493 1001 100000
lambda.C 0.9443 0.05749 2.137E-4 0.8352 0.9431 1.061 1001 100000
lambda.T 0.7679 0.05188 1.784E-4 0.6693 0.7668 0.8732 1001 100000
meffect 0.8162 0.07437 2.76E-4 0.6797 0.8129 0.9712 1001 100000

�
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Example 17.5. Cellular Differentiation Data. In a biomedical study of the
immunoactivating ability of the agents TNF (tumor necrosis factor) and IFN
(interferon) to induce cell differentiation, the number of cells that exhibited
markers of differentiation after exposure to TNF or IFN was recorded (Pier-
gorsch et al., 1988; Fahrmeir and Tutz, 1994). At each of the 16 dose combina-
tions of TNF/IFN, 200 cells were examined. The number y of differentiating
cells corresponding to a TNF/IFN combination are given in Table 17.6.

Table 17.6 Cellular differentiation data.
Number Dose of Dose of Number Dose of Dose of
cells diff TNF (U/ml) IFN (U/ml) cells diff TNF (U/ml) IFN (U/ml)

11 0 0 31 10 0
18 0 4 68 10 4
20 0 20 69 10 20
39 0 100 128 10 100
22 1 0 102 100 0
38 1 4 171 100 4
52 1 20 180 100 20
69 1 100 193 100 100

The suggested model is Poisson with the form

λ= E(y|TNF, IFN)= exp
{
β0 +β1 TNF+β2 IFN+β3 TNF×IFN

}
.

From

load ’celular.dat’
number = celular(:,1);
TNF = celular(:,2);
IFN = celular(:,3);
[b, dev, stats] = glmfit([TNF IFN TNF.*IFN],number,...

’poisson’,’link’,’log’)

the estimators for β0–β3 are

b0 b1 b2 b3
3.43463 0.01553 0.00895 −0.0000567

Since b3 < 0.0001, it is tempting to drop the interaction term. However, since
the standard error of b3 is s.e.(b3)= 0.000013484, Wald’s Z = b3/s.e.(b3) statis-
tic is −4.2050, suggesting that the term TNF×IFN might be significant. How-
ever, the overdispersion parameter, which theoretically should be stats.s=1,
is estimated as stats.s=3.42566, and the Wald statistic should be adjusted
to Z′ = −0.0000567/(3.42566×0.000013484) = 1.2275. Since the p-value is 2 *
normcdf(-1.2275) = 0.2196, after all, the interaction term turns out not to be
significant and the additive model could be fit:

[b, dev, stats] = glmfit([TNF IFN],number,...
’poisson’,’link’,’log’)
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which gives estimates b0 = 3.57311, b1 = 0.01314, and b3 = 0.00585. Details
can be found in celular.m.

The additive model was also fit in a Bayesian manner.

model
{
for (i in 1:n)

{
numbercells[i] ~ dpois(lambda[i])
lambda[i] <- exp(beta0 + beta1 * tnf[i] + beta2 * ifn[i])

}
beta0 ~ dnorm(0, 0.00001)
beta1 ~ dnorm(0, 0.00001)
beta2 ~ dnorm(0, 0.00001)
}

DATA
list(n=16,
numbercells = c(11,18,20,39,22,38,52,69,31,68,69,128,102,171,180,193),
tnf = c(0,0,0,0, 1,1,1,1, 10,10,10,10, 100,100,100,100),
ifn = c(0,4,20,100, 0,2,20,100, 0,4,20,100, 0,4,20,100 ) )

INITS
list(b0=0, b1=0, b2=0)

mean sd MC error val2.5pc median val97.5pc start sample
b0 3.573 0.05139 0.001267 3.473 3.574 3.672 1001 100000
b1 0.01313 5.921E-4 1.18E-5 0.01197 0.01314 0.01431 1001 100000
b2 0.00585 6.399E-4 1.142E-5 0.004585 0.005855 0.007086 1001 100000

Note that, because of the noninformative priors on β0, β1, and β3, the
Bayesian estimators almost coincide with the MLEs from glmfit.
�

17.4 Log-linear Models

Poisson regression can be employed in the context of contingency tables
(Chap. 14). The logarithm of the table cell count is modeled in a linear fashion.

Let in an r × c contingency table the probability of a cell (i, j) be pi j. If
n subjects are cross-tabulated, let ni j be the number of subjects classified in
the cell (i, j). The count ni j is realization of random variable Ni j. We assume
that the sample size n is random, since in that case the cell frequency Ni j is
a Poisson random variable with the intensity µi j. If the sample size n is fixed,
then the Ni js are realizations of a multinomial random variable. In Fisher’s
exact test context (p. 546), we saw that if in addition the marginal counts are
fixed, the Ni js are hypergeometric random variables.

Then the expected table is
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1 2 · · · c Total
1 np11 np12 np1c np1·
2 np21 np22 np2c np2·

r npr1 npr2 nprc npr·
Total np·1 np·2 np·c n

Note that both ni j and ei j = ni· ×n· j /n involve observations and empirical
marginal probabilities defined by the observed marginal frequencies. If we de-
note µi j = ENi j = npi j, then both ni j and ei j are estimators of µi j ; the first is
unconstrained and the second is constrained when the independence of factors
is assumed, pi j = pi·p· j. This point is important since ei j are “expected” under
independence once the table is observed and fixed, while µi j are expectations
of the random variables Ni j .

The log-linear model for the expected frequency µi j is given as

logµi j =λ0 +λR
i +λC

j + (λRC)i j , i = 1, . . . , r; j = 1, . . . , c,

where λR
i and λC are contributions by row and column, respectively, and λRC

i j
is a row–column interaction term.

This model is called a saturated log-linear model and is similar to the two-
factor ANOVA model. Note that an unconstrained model has (1+ r+ c+ r× c)
free parameters but only r× c observations, ni j . To make this overparameter-
ized model identifiable, constraints on parameters are imposed. A standard
choice is STZ:

∑
λR

i = 0,
∑

jλ
C
j = 0,

∑
i(λRC)i j =

∑
j(λRC)i j = 0. Thus, with the

constraints we have 1− (r−1)+ (c+1)+ (r−1)(c−1) = r× c free parameters,
which is equal to the number of observations, and the model gives a perfect
fit for the observed frequencies. This is the reason why this model is called
saturated.

The hypothesis of independence in a contingency table that was discussed
Chap. 14 has simple form:

H0 :λRC
i j = 0, i = 2, . . . , r; j = 2, . . . , c.

Under H0 the log-linear model becomes additive:

logµi j =λ0 +λR
i +λC

j , i = 1, . . . , r; j = 1, . . . , c.

The MLEs of components in the log-linear model [not derived here, but see
Agresti (2002)] are
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λ̂0 =
∑

i, j logni j

rc
,

λ̂R
i =

∑
j logni j

c
− λ̂0,

λ̂C
j =

∑
i logni j

r
− λ̂0,

λ̂RC
i j = logni j − (λ̂0 + λ̂R

i + λ̂C
j ).

If any ni j is equal to 0, then all entries in the table are replaced by ni j +0.5.
Traditional analysis involves testing that particular λ components are

equal to 0. One approach, often implemented in statistical software, would
be to find the variance of λ̂ (using a hypergeometric model), Var (λ̂), and use
the statistic (λ̂)2/Var (λ̂) that has a χ2-distribution with one degree of freedom
(λ here is any of λ0, λR

i , λC
j , or λRC

i j ). Large values of this statistic are critical
for H0.

Next, we focus on the Bayesian analysis of a log-linear model.

Example 17.6. In Exercise 14.9 concerning a psychological experiment, seek-
ing assistance (help) was dependent on a subject’s perception of the number of
bystanders. The resulting chi-square statistic χ2 = 7.908 was significant with
a p-value of about 2%. We revisit this exercise and provide a Bayesian solution
using a loglinear approach. The WinBUGS program bystanders.odc is used
to conduct statistical inference.

model{
for (i in 1:r) for (j in 1:c) n[i,j] ~ dpois(mu[i,j]);
log(mu[i,j]) <- lambda0+ lambdaR[i]+lambdaC[j]+lambdaRC[i,j]

}

lambda0 ~ dnorm(0,prec)

lambdaR[1] <- 0
lambdaC[1] <- 0
for (i in 2:r) { lambdaR[i] ~ dnorm(0,prec) }
for (i in 2:c) { lambdaC[i] ~ dnorm(0,prec) }

for (j in 1 : c) { lambdaRC[1, j] <- 0 }
for (i in 2 : r) { lambdaRC[i, 1] <- 0;
for (j in 2 : c) { lambdaRC[i, j] ~ dnorm(0, prec)}

}

DATA
list(r=3,c=2,prec=0.0001,

n=structure(.Data=c(11,2,16,10,4,9),.Dim=c(3,2)))
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INITS
list(lambda0 = 0,lambdaR = c(NA,0,0), lambdaC=c(NA,0),
lambdaRC = structure(.Data = c(NA, NA, NA,0,NA,0),

.Dim = c(3,2)) )

mean sd MC error val2.5pc median val97.5pc start sample
lambda0 2.351 0.3075 0.003347 1.707 2.366 2.908 2001 100000
lambdaC[2] −1.922 0.8446 0.01376 −3.796 −1.85 −0.481 2001 100000
lambdaR[2] 0.3895 0.3977 0.004085 −0.372 0.3842 1.186 2001 100000
lambdaR[3] −1.089 0.6145 0.006468 −2.375 −1.061 0.03655 2001 100000
lambdaRC[2,2] 1.435 0.9372 0.01451 −0.2453 1.38 3.465 2001 100000
lambdaRC[3,2] 2.801 1.051 0.01653 0.9045 2.744 5.041 2001 100000

The hypothesis of independence is assessed by testing that all λRC are
equal to 0. In this case lambdaRC[1,1], lambdaRC[1,2], and lambdaRC[2,1] are
set to 0 because of identifiability constraints. The 95% credible set for inter-
action lambdaRC[2,2] contains 0 – therefore, this interaction is not significant.
On the other hand, lambdaRC[3,2] is significantly positive since the credible
set [0.9045, 5.041] does not contain 0.
�

Example 17.7. Upton–Fingleton Square. An example from Upton and Fin-
gleton (1985) concerns finding directional trends in spatial count data. The
simple count data set is given as follows:

0 0 0 1 0
3 3 5 2 0
2 3 6 2 5
1 5 4 6 7
6 2 4 3 4

We are interested in testing if there are any north–south or east–west trends
present in the spatial pattern. The idea of Upton and Fingleton was to estab-
lish a Poisson regression where the response was the intensity ni j in the loca-
tion (i, j) and the covariates are x-coordinate, related to the east–west trend,
and y-coordinate, related to the north–south trend.

Thus, the observed frequencies ni j will be modeled as

E(ni j)= exp{β0 +β1xi +β2 yj}, i, j = 1, . . . ,5,

where xi = i and yj = j. Significant β1 or β2 in a well-fitting Poisson regression
will indicate the presence of corresponding trends (see UptonFingleton.m

for details).
�
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17.5 Exercises

17.1. Blood Pressure and Heart Disease. This example is based on data
given by Cornfield (1962). A sample of male residents of Framingham, Mas-
sachusetts, aged 40–59, were chosen. During a 6-year follow-up period they
were classified according to several factors, including blood pressure and
whether they had developed coronary heart disease. The results for these
two variables are given in the table below. The covariate for blood pressure
represents the interval, for example, 122 stands for blood pressure in the
interval 117–126.

Blood pressure No disease Disease Total
112 (<117) 156 3 159
122 (117–126) 252 17 269
132 (127–136) 284 12 296
142 (137–146) 271 16 287
152 (147–156) 139 12 151
162 (157–166) 85 8 93
177 (167–186) 99 16 115
197 (> 186) 43 8 51

Using logistic regression, estimate the probability of disease for a person
with an average blood pressure equal to 158.

17.2. Blood Pressure and Heart Disease in WinBUGS. Use data from the
previous exercise. Parameter p represents the probability of development
of coronary disease and can be estimated as

p̂ = eb0+b1BP

1+ eb0+b1BP ,

where b0 and b1 are Bayes estimators of β0 and β1 obtained by WinBUGS.
Use noninfromative priors on β0 and β1.
(a) What are values b0 and b1? Provide plots of posterior densities for b0
and b1.
(b) What are the 95% credible intervals for β0 and β1?
(c) Estimate the probability of disease for a person with an average blood
pressure of 158.

17.3. Sex of Turtles and Incubation Temperature. Below are data on the
relationship between the proportion of male turtles and incubation temper-
ature for turtle eggs from New Mexico.

Temp in ◦ C Male Female
27.2 0 10
28.3 8 4
29.9 8 2
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Predict the probability of female turtle for a temperature of 28◦ C.

17.4. Health Promotion. Students at the University of the Best in England
(UBE) investigated the use of a health promotion video in a doctor’s surgery.
Covariates Age and Amount of Weekly Exercise for a sample of 30 men
were obtained, and each man was asked a series of questions on the video.
On the basis of the responses to these questions the psychologist simply
recorded whether the promotion video was Effective or Not Effective.
The data collected are as follows:

Number Age Exercise Code of response Response
1 27 3 0 Not Effective
2 26 5 0 Not Effective
3 28 10 1 Effective
4 40 4 1 Effective
5 19 3 0 Not Effective
6 36 14 0 Not Effective
7 41 5 1 Effective
8 27 5 0 Not Effective
9 33 1 0 Not Effective

10 34 2 1 Effective
11 51 8 1 Effective
12 33 21 1 Effective
13 23 12 0 Not Effective
14 41 19 1 Effective
15 38 2 0 Not Effective
16 25 9 0 Not Effective
17 40 6 0 Not Effective
18 36 25 1 Effective
19 40 13 0 Not Effective
20 39 3 0 Not Effective
21 45 10 1 Effective
22 39 5 0 Not Effective
23 40 2 1 Effective
24 20 1 0 Not Effective
25 47 9 1 Effective
26 31 17 1 Effective
27 37 7 1 Effective
28 30 0 0 Not Effective
29 32 13 1 Effective
30 25 10 0 Not Effective

(a) Use the fitted model to estimate the probability that a male of age 40
who exercises 10 hours a week would find the video “effective.”
Comment: The linear predictor is

−7.498+0.17465 Age+0.16324 Exercise.
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The positive coefficient with covariate Age means that older subjects tend to
respond “video is effective” with higher probabilities. Similarly, the positive
coefficient with predictor Exercise indicates that increasing the values of
Exercise also increases the probabilities for the response “video is effective.”
(b) Comment on the fit of the model based on deviance and residuals.

17.5. PONV. Despite advances over the past decade, including the advent of 5-
HT3 receptor antagonists, combination therapy, and multimodal strategies,
postoperative nausea and vomiting (PONV) remains a serious and frequent
adverse event associated with surgery and anesthesia. PONV can be very
distressing for patients, can lead to medical complications, and impose eco-
nomic burdens. A meta-analysis of several studies gives rates of 37% for
nausea and 20% for vomiting in patients undergoing general anesthesia.
However, indiscriminate prophylaxis is not recommended (the “prevent-or-
cure” dilemma).
There are considerable variations in the reported incidence of PONV, which
can be attributed to a number of factors. Risk factors for PONV can be di-
vided into patient risk factors, procedural risk factors, anesthetic risk fac-
tors, and postoperative risk factors. The main and well-understood risk fac-
tors are gender, history of motion sickness/PONV, smoking status, and use
of postoperative opioids.
A data set PONV.xls or PONV.mat (courtesy of Jelena Velickovic, MD
anesthesiologist from Belgrade) contains records of 916 patients consisting
of some demographic, anamnetic, clinical, and procedural variables. Sev-
eral variables are of interest to be modeled and controlled: manifestation
of PONV from 0 to 2 hours after surgery, PONV from 2 to 24 hours, and
PONV from 0 to 24 hours (PONV0to2, PONV2to24, and PONV0to24).
Three score variables (SinclairScore, ApfelScore, and LelaScore)
summarize the relevant demographic and clinical information prior to
surgery with the goal of predicting PONV.
The starter file ponv.m gives a basic explanation of variables and helps to
read all the variables into MATLAB.
Fit a logistic model for predicting PONV0to24 based on a modified Sin-
clair Score defined as MSS = SinclairScore + 1/20 * LelaScore. What is
the probability of PONV0to24 for a person with MSS = 1.3?

17.6. Mannose-6-phosphate Isomerase. McDonald (1985) counted allele fre-
quencies at the mannose-6-phosphate isomerase (Mpi) locus in the amphi-
pod crustacean Megalorchestia californiana, which lives on sandy beaches
of the Pacific coast of North America. There were two common alleles,
Mpi90 and Mpi100. The latitude of each collection location, the number
of each allele, and the proportion of the Mpi100 allele are shown here:
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location latitude Mpi90 Mpi100 prop Mpi100
Port Townsend, WA 48.1 47 139 0.748
Neskowin, OR 45.2 177 241 0.577
Siuslaw River, OR 44.0 1087 1183 0.521
Umpqua River, OR 43.7 187 175 0.483
Coos Bay, OR 43.5 397 671 0.628
San Francisco, CA 37.8 40 14 0.259
Carmel, CA 36.6 39 17 0.304
Santa Barbara, CA 34.3 30 0 0.000

Estimate the probability of allele Mpi100, taking into account latitude as a
covariate, using logistic regression.

17.7. Arthritis Treatment Data. The data were obtained from Koch and Ed-
wards (1988) for a double-blind clinical trial investigating a new treatment
for rheumatoid arthritis. In this data set, there were 84 subjects of different
ages who received an active or placebo treatment for their arthritis pain,
and the subsequent extent of improvement was recorded as marked, some,
or none. The dependent variable improve was an ordinal categorical obser-
vation with three categories (0 for none, 1 for some, and 2 for marked). The
three explanatory variables were treatment (1 for active or 0 for placebo),
gender (1 for male, 2 for female), and age (recorded as a continuous vari-
able). The data in arthritis2.dat is organized as a matrix, with 84 rows
corresponding to subjects and 5 columns containing ID number, treatment,
gender, age, and improvement status:

57 1 1 27 1
9 0 1 37 0

46 1 1 29 0
· · ·
15 0 2 66 1
1 0 2 74 2

71 0 2 68 1

Dichotomize the variable improve as improve01=improve>0; and fit the bi-
nary regression with improve01 as a response and treatment, gender,
and age as covariates. Use the three links logit, probit, and comploglog and
compare the models by comparing the deviances.

17.8. Third-degree Burns. The data for this exercise, discussed in Fan et al.
(1995), refer to n = 435 adults who were treated for third-degree burns by
the University of Southern California General Hospital Burn Center. The
patients were grouped according to the area of third-degree burns on the
body. For each midpoint of the groupings “log(area +1),” the number of pa-
tients in the corresponding group who survived, and the number who died
from the burns.
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log(area+1) Survived Died
1.35 13 0
1.60 19 0
1.75 67 2
1.85 45 5
1.95 71 8
2.05 50 20
2.15 35 31
2.25 7 49
2.35 1 12

• Fit the logistic regression on the probability of death due to third-degree
burns with the covariate log(area+1).
• Using your model, estimate the probability of survival for a person for
which log(area + 1) equals 2.

17.9. Diabetes Data. The data repository of Andrews and Herzberg (1985)
features a data set containing measures of blood glucose, insulin levels, rel-
ative weights, and clinical classifications of 145 subjects, diabetes.dat:

1 0.81 80 356 124 55 1
2 0.95 97 289 117 76 1
3 0.94 105 319 143 105 1

· · ·
143 0.90 213 1025 29 209 3
144 1.11 328 1246 124 442 3
145 0.74 346 1568 15 253 3

The columns represent the following variables:

Variable Meaning
relwt Relative weight
glufast Fasting plasma glucose
glutest Test plasma glucose
instest Plasma insulin during test
sspg Steady-state plasma glucose
group Clinical group: (3) overt diabetic; (2) chem. diabetic; (1) normal

From the variable group form the variable dia and set it to 1 if diabetes is
present (group=1,2) and 0 if the subject has no diabetes (group=1). Find the
regression of the five other variables on dia.

17.10. Remission Ratios over Time. A clinical trial on a new anticancer agent
produced the following remission ratios for 40 patients on trial at each of
the six stages of the trial:

9/40 14/40 22/40 29/40 33/40 35/40

Fit the logistic model for the probability of remission if the stages are mea-
sured in equal time units. Give the probability that a new patient on this
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regiment will be in remission at stage 4 and discuss how this probability
compares to 29/40.

17.11. Death of Sprayed Flour Beetles. Hewlett (1974) and Morgan (2000)
provide data that have been considered by many researchers in bioassay
theory. The data consist of a quantal bioassay for pyrethrum in which
the mortality of adult flour beetles (Tribolium castaneum) was measured
over time under four dose levels. The columns are cumulative numbers of
dead adult flour beetles exposed initially to pyrethrum, a well-known plant-
based insecticide. Mixed with oil, the pyrethrum was sprayed at the given
dosages over small experimental areas in which the groups of beetles were
confined but allowed to move freely. The beetles were fed during the exper-
iment in order to eliminate the effect of natural mortality.

Dose(mg/cm2) 0.20 0.32 0.50 0.80
Sex M F M F M F M F

Day 1 3 0 7 1 5 0 4 2
2 14 2 17 6 13 4 14 9
3 24 6 28 17 24 10 22 24
4 31 14 44 27 39 16 36 33
5 35 23 47 32 43 19 44 36
6 38 26 49 33 45 20 46 40
7 40 26 50 33 46 21 47 41
8 41 26 50 34 47 25 47 42
9 41 26 50 34 47 25 47 42

10 41 26 50 34 47 25 48 43
11 41 26 50 34 47 25 48 43
12 42 26 50 34 47 26 48 43
13 43 26 50 34 47 27 48 43

Group Size 144 152 69 81 54 44 50 47

Using WinBUGS, model the proportion of dead beetles using sex, dosage,
and day as covariates. The data set in WinBUGS format can be found in

tribolium.odc.

17.12. Mortality in Swiss White Mice. An experiment concerning the influ-
ence of diet on the rate of Salmonella enteritidis infection (mouse typhoid)
among W-Swiss mice was conducted by Schneider and Webster (1945). Two
diets, one of whole wheat and whole dried milk [coded 100] and the other
synthetic [coded 191], are compared against two doses of bacilli, 50K and
500K. The experimental results are summarized in the following table.

Dose 50K Dose 500K
Number Number of Number Number of

Diet of mice surviving of mice surviving
100 293 194 144 54
191 296 120 141 25
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The authors conclude that diet is able to condition natural resistance, but
one of the factors was the genetic constitution of the mice employed.
Model the probability of survival using an additive logistic regression with
the covariates Diet and Dose.

17.13. Kyphosis Data. The measurements in kyphosis.dat are from Hastie
and Tibshirani (1990, p. 301) and were collected on 83 patients undergoing
corrective spinal surgery (Bell et al., 1994). The objective was to determine
the important risk factors for kyphosis, or the forward flexion of the spine
at least 40 degrees from vertical following surgery. The covariates are age
in month, the starting vertebrae level of the surgery, and the number of
vertebrae involved.
The data set kyphosis.dat has four columns:

71 5 3 0
158 14 3 0
128 5 4 1
· · ·

120 13 2 0
42 6 7 1
36 13 4 0

where the first column is the age (in month), the second is the starting ver-
tebrae start of the surgery, the third is the number of vertebrae involved,
and the fourth column is binary indicator for the presence of kyphosis, 0 if
absent and 1 if present.
Using logistic regression, model the probability of kyphosis given the risk
factors age, start, and number.

17.14. Prostate Cancer. The Prostate Cancer clinical trial data of Byar and
Green (1980) is given in the file prostatecanc.dat with description of

variables in prostatecanc.txt or prostatecanc.m. There are 475 ob-
servations with 12 measured covariates. The response is the stage (3 or 4)
of a patient assessed by a physician.
Propose a model for predicting the stage by a subset of predictors.

17.15. Pediculosis Capitis. An outbreak of Pediculosis capitis is being investi-
gated in a girls’ school containing 291 pupils. Of 130 children who live in a
nearby housing estate, 18 were infested, and of 161 who live elsewhere, 37
were infested. Thus, the school girls are stratified by the housing attribute
into two groups: (A) the nearby housing estate and (B) elsewhere.
(a) Test the hypothesis that the population proportions of infested girls for
groups A and B are the same.
(b) Run a logistic regression that predicts the probability of a girl being
infested including the predictor housing that takes value 1 if the girl is
from group A and 0 if she is from group B. All you need are the sample sizes
from groups A and B and the corresponding incidences of of infestation. You
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might need to recode the data and represent the summarized data as 291
individual cases containing the incidence of infestation and housing status.
(c) A sample of 26 girls from group A and 34 from group B are randomly
selected for more detailed modeling analysis. The instances of infestation
(0-no, 1-yes), housing (A=1, B=0), family income (in thousands), family size,
and girl’s age are recorded. The data are available in the file lice.xls.
Propose the logistic model that predicts the probability that a girl who is
infested will possess some or all of the predictors (housing, income, size,
age). This is an open-ended question, and you are expected to defend your
proposed model.
(c.1) According to your model, what is the probability of a girl being infested
if housing is A, family income is 74, family size is 4, and age is 12? Of course,
you will use only the values of the predictors included in your model.
(c.2) If the family size is increased by 1 and all other covariates remain the
same, how much do the odds of infestation change?
(d) The 55 affected girls were divided randomly into two groups of 29 and
26. The first group received a standard local application and the second
group a new local application. The efficacy of each was measured by clear-
ance of the infestation after one application. By this measure the standard
application failed in ten cases and the new application in five. Is the new
treatment more effective? This part may mimic the methodology in (a).

17.16. Finney Data. In a controlled experiment to study the effect of the rate
and volume of air inspired on a transient reflex vasoconstriction in the skin
of the digits, 39 tests under various combinations of rate and volume of
air inspired were conducted (Finney, 1947). The end point of each test was
whether or not vasoconstriction occurred.

Volume Rate Response Volume Rate Response Volume Rate Response
3.70 0.825 Constrict 3.50 1.09 Constrict 1.80 1.50 Constrict
1.25 2.50 Constrict 0.75 1.50 Constrict 0.95 1.90 No constrict
0.80 3.20 Constrict 0.70 3.50 Constrict 1.90 0.95 Constrict
0.60 0.75 No constrict 1.10 1.70 No constrict 1.60 0.40 No constrict
0.90 0.75 No constrict 0.90 0.45 No constrict 2.70 0.75 Constrict
0.80 0.57 No constrict 0.55 2.75 No constrict 2.35 0.03 No constrict
0.60 3.00 No constrict 1.40 2.33 Constrict 1.10 1.83 No constrict
0.75 3.75 Constrict 2.30 1.64 Constrict 1.10 2.20 Constrict
3.20 1.60 Constrict 0.85 1.415 Constrict 1.20 2.00 Constrict
1.70 1.06 No constrict 1.80 1.80 Constrict 0.80 3.33 Constrict
0.40 2.00 No constrict 0.95 1.36 No constrict 0.95 1.90 No constrict
1.35 1.35 No constrict 1.50 1.36 No constrict 0.75 1.90 No constrict
1.60 1.78 Constrict 0.60 1.50 No constrict 1.30 1.625 Constrict

Model the probability of vasoconstriction as a function of two covariates,
Volume and Rates. Use MATLAB and compare the results with Win-
BUGS output. The data in MATLAB and WinBUGS formats is provided
in finney.dat.

17.17. Shocks. An experiment was conducted (Dalziel et al., 1941) to assess the
effect of small electrical currents on farm animals, with the eventual goal
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of understanding the effects of high-voltage power lines on livestock. The
experiment was carried out with seven cows using six shock intensities, 0,
1, 2, 3, 4, and 5 milliamps (shocks on the order of 15 milliamps are painful
for many humans). Each cow was given 30 shocks, 5 at each intensity, in
random order. The entire experiment was then repeated, so each cow re-
ceived a total of 60 shocks. For each shock the response, mouth movement,
was either present or absent. The data as quoted give the total number of
responses, out of 70 trials, at each shock level. We ignore cow differences
and differences between blocks (experiments).

Current Number of Number of Proportion of
(milliamps) x responses y trials n responses p

0 0 70 0.000
1 9 70 0.129
2 21 70 0.300
3 47 70 0.671
4 60 70 0.857
5 63 70 0.900

Using logistic regression and noninformative priors on its parameters, es-
timate the proportion of responses after a shock of 2.5 milliamps. Find 95%
credible set for the population proportion.

17.18. Ants. The data set ants.dat, discussed in Gotelli and Ellison (2002),
provides the ant species richness (number of ant species) found in 64-
square-meter sampling grids in 22 forests (coded as 1) and 22 bogs (coded
as 2) surrounding the forrests in Connecticut, Massachusetts, and Vermont.
The sites span 3◦ of latitude in New England. There are 44 observations
on 4 variables (columns in data set): Ants – number of species, Habitat –
forests (1) and bogs (2), and Elevation – in meters above sea level.
Using Poisson regression, model the number of ant species (Ants) with co-
variates Habitat and Elevation.

17.19. Sharp Dissection and Postoperative Adhesions Revisited. In Ex-
ercise 16.3 we fitted a linear relationship between the logarithm of the
amount of sharp dissection lasd (predictor) and severity score sesco (re-
sponse). Criticize this linear model. Model this relationship using Poisson
regression and graphically compare the linear and Poisson fits.

17.20. Airfreight breakage. A substance used in biological and medical re-
search is shipped by air freight to users in cartons of 1000 ampules. The
data below, involving ten shipments, were collected on the number of times
a carton was transferred from one aircraft to another over the shipment
route (X ) and the number of ampules found to be broken upon arrival (Y ).

X 1 0 2 0 3 1 0 1 2 0
Y 16 9 17 12 22 13 8 15 19 11
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Using WinBUGS, fit Y by Poisson regression, with X as a covariate. Ac-
cording to your model, how many packages will be broken if the number of
shipment routes is X = 4?

17.21. Body Fat Affecting Accuracy of Heart Rate Monitors. In the course
Problems in Biomedical Engineering I at Georgia Tech, a team of students
investigated whether the readings of heart rate from a chest strap monitor
(Polar T31) were influenced by the subject’s percent body fat.
Hand counts facilitated by a stethoscope served as the gold standard. The
absolute differences between device and hand counts (AD) were regressed
on body fat (BF) measurements. The measurements for 28 subjects are pro-
vided below.

Subj. BF AD Subj. BF AD Subj. BF AD Subj. BF AD
1 17.8 4 8 18.8 1 15 25.1 3 22 24.1 6
2 13.2 3 9 13.4 0 16 18.3 2 23 12.9 2
3 7.7 3 10 39.4 7 17 16.9 3 24 30.1 6
4 11.8 1 11 6.8 1 18 27.8 6 25 17.1 4
5 23.9 0 12 25.0 6 19 36.0 5 26 18.4 4
6 27.2 0 13 19.9 0 20 31.9 1 27 14.6 4
7 27.6 0 14 23.0 9 21 17.4 2 28 26.8 3

A significant non-constant representation of AD as a function of BF can be
translated as a significant influence of percent of body fat on the accuracy
of the device.
(a) Why the linear regression is not adequate here?
(b) Fit the Poisson regression AD ∼ P oi(exp{b0 + b1BF}). Is the slope b1
from the linear part significantly positive?
(c) Using WinBUGS find 95% credible set for the slope b1 in the linear part
of a Bayesian Poisson regression model. Use the non-informative priors.

17.22. Miller Lumber Company Customer Survey. Kutner et al. (2005) ana-
lyze a data set from a survey of customers of the Miller Lumber Company.
The response is the total number of customers (in a representative 2-week
period) coming from a tract of a metropolitan area within 10 miles from the
store. The covariates include five variables concerning the tracts: number of
housing units, average income in dollars, average housing unit age in years,
distance to nearest competitor in miles, and distance to store in miles. Fit
and assess a Poisson regression model for the number of customers as pre-
dicted by the covariates. The data are in lumber.m.

17.23. SO2, NO2, and Hospital Admissions. Fan and Chen (1999) discuss a
public health data set consisting of daily measurements of pollutants and
other environmental factors in Hong Kong between January 1, 1994 and
December 31, 1995. The association between levels of pollutants and the
number of daily hospital admissions for circulation and respiratory prob-
lems is of particular interest.
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The data file hospitaladmissions.dat consists of six columns: (1) year,
(2) month, (3) day in month, (4) concentration of sulfur dioxide SO2, (5)
concentration of pollutant nitrogen NO2, and (6) daily number of hospital
admissions.

(a) Using logistic regression, determine how the probability of a high level
of sulfur dioxide (with values > 20µg/m3) is associated with the level of
pollutant nitrogen NO2.
(b) Using a Poisson regression model, explore how the number of hospital
admissions varies with the level of NO2.

17.24. Kidney Stones. Charig et al. (1986) provide data on the success rates
of two methods of treating kidney stones: open surgery methods and per-
cutaneous nephrolithotomy. There are two predictors: Size of stone at two
levels: < 2 cm in diameter, coded as Small, and > 2 cm in diameter, coded as
Large. The two methods are coded as A (open surgery) and B (percutaneous
nephrolithotomy). The outcome of interest is the outcome of the treatment
(Success, Failure).

Count Size Method Outcome
81 Small A Success

6 Small A Failure
234 Small B Success
36 Small B Failure

192 Large A Success
71 Large A Failure
55 Large B Success
25 Large B Failure

There are four combinations of the covariates: Small A, Small B, Large A,
and Large B. Find the relative frequencies of the outcome “Success” and
compare them with the model-predicted probabilities using logistic regres-
sion.
Show that these data hide a Simpson paradox.
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MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch17.Logistic/

arrhythmia.m, arthritis2.m, beetleBliss1.m, beetleBliss2.m,
caesarean.m, celular.m, counterr.m, dmdreg.m, ihga.m, kyphosis.m,
logisticmle.m, logisticSeed.m, lumber.m, outbreak.m, ponv.m,
prostatecanc.m, UptonFingleton.m

accidentssimple.odc, arrhythmia.odc, beetles.odc, bliss.odc,
bystanders.odc, caesarean.odc, celldifferentiation.odc, errors1.odc,
geriatric.odc, loglinear1.odc, microdamage.odc, raynaud.odc,
remission.odc, tribolium.odc

ants.dat, Arrhythmia.mat, arrhythmiadata.txt, arthritis2.dat,
birthweight.dat, cardiac.mat|txt, celular.dat, diabetes.dat,
dmd.dat|mat, finney.dat, hospitaladmissions.dat, ihgadat.m,
kyphosis.dat|txt, lowbwt.dat, microdamage.mat|txt, outbreak.mat,
pima.dat, PONV.mat|xls, programm.mat, prostatecanc.dat, tribolium.mat
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Chapter 18
Inference for Censored Data and Survival
Analysis

The first condition of progress is the removal of censorship.

– George Bernard Shaw

WHAT IS COVERED IN THIS CHAPTER

• Parametric Models for Time-to-Event Data
• Kaplan–Meier Estimator
• Cox Proportional Hazards Model
• Bayesian Approaches

18.1 Introduction

Survival analysis models the survival times of a group of subjects (usually

shows how many of the subjects are “alive” or survive over time.

ology is the presence of censored observations; in addition, some subjects may
have left the study and may be lost to follow-up. Such subjects were known to
have survived for some amount of time (up until the time we last saw them),
but we do not know how much longer they might ultimately have survived.

What makes survival analysis different from the standard regression method-
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with some kind of medical condition) and generates a survival curve, which

Several methods have been developed for using this “at least this long” infor-
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mation to finding unbiased survival curve estimates, the most popular being
the nonparametric method of Kaplan and Meier.

An observation is said to be censored if we know only that it is less than
(or greater than) a certain known value. For instance, in clinical trials, one
could be interested in patients’ survival times. Survival time is defined as the
length of time between diagnosis and death, although other “start” events
(such as surgery), and other “end” events (such as relapse of disease, increase
in tumor size beyond a particular threshold, rejection of a transplant, etc.) are
commonly used. Because of many constraints, trials cannot be run until the
endpoints are observed for all patients. Just because for a particular subject
the time to endpoint is not fully observed, partial information is still avail-
able: the patient survived up to the end of the observational period, and this
should be incorporated into the analysis. Such observations are called right
censored. Observations can also be left censored, for example, an assay may
have a detection threshold. In order to utilize information contained in cen-
sored observations, special methods of analysis are required.

Biomedical engineers are often interested in the reliability of medical de-
vices, and most of the methodology from survival analysis is applicable in
device reliability analyses. There are of course important differences. In the
reliability of multicomponent systems an important aspect is optimization of
the number and position of components. Analogous considerations with or-
gans or parts of organs as components in living systems (animals or humans)
are impossible. Methods such as “accelerated life testing” commonly used in
engineering reliability are inappropriate when dealing with human subjects.

However, in comparing the lifetimes of subjects in clinical trials involving
different treatments (humans, animals) or different engineering interventions
(systems, devices), the methodology that deals with censored observations is
shared.

18.2 Definitions

Let T be a random variable with CDF F(t) representing a lifetime. The sur-
vival (or survivor) function is the tail probability for T, i.e., S(t)= 1−F(t), t > 0.
The function S(t) gives the probability of surviving up to time t, that is,

S(t)=P(T > t).

The hazard function or hazard rate is defined as
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h(t)= f (t)
S(t)

= f (t)
1−F(t)

,

when T has a density f (t). Note that S′(t)=− f (t). It is insightful to represent
h(t) in limit terms,

S(t)−S(t+∆t)
∆t

× 1
S(t)

= F(t+∆t)−F(t)
∆t

× 1
S(t)

= P(t < T ≤ t+∆t)
∆t P(T > t)

= P(T ≤ t+∆t|T > t)
∆t

,

when ∆t → 0. It represents “an instantaneous” probability that an event that
was not observed up to time t will be observed before t+∆t, when ∆t → 0.

Cumulative hazard is defined as H(t) = ∫ t
0 h(s)ds. Both hazard and cu-

mulative hazard uniquely determine the distribution of lifetime F, F(t) =
1−exp{−∫ t

0 h(s)ds}, i.e., F(t) = 1−exp{−H(t)}. Cumulative hazard can also be
connected to the survival function as H(t)=− logS(t), or

S(t)= exp{−H(t)}. (18.1)

Example 18.1. The hazard function for an exponential distribution with den-
sity f (t)=λe−λt, t ≥ 0,λ> 0 is constant in time, h(t)=λ.
�

Example 18.2. The hazard rate for a one-parameter Weibull distribution with
CDF F(t)= 1−exp{−tγ} and density f (t)= γt(γ−1) exp{−tγ}, t ≥ 0,γ> 0 is h(t)=
γtγ−1. The parameter γ is called a shape parameter. Depending on the “shape
parameter,” γ, the hazard function h(t) could model various types of survival
analyses.

The two-parameter version of Weibull is used more frequently. It is defined
as F(t)= 1−exp{−λtγ}, with density f (t)=λγt(γ−1) exp{−λtγ}, t ≥ 0,γ> 0,λ> 0.
The parameter λ is called a “rate” parameter. In this case h(t)=λγtγ.
�

Two important summaries in the parametric case (where the survival dis-
tribution is specified up to a parameter) are mean residual life (mrl) and me-
dian life, defined respectively as
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mrl(t)=
∫ ∞

t S(x)dx
S(t)

,

t0.5 : S(t0.5)= 0.5.

Example 18.3. For an exponential lifetime, the expected lifetime and mrl coin-
cide. Indeed, ET = 1/λ, while

mrl(t)=
∫ ∞

t e−λxdx
e−λt = 1

λ
.

At first glance this looks like a paradox, the expected total lifetime ET is
equal to the residual lifetime mrt(t) irrespective of t. This is an example of
the “inspection paradox” that follows from the memoryless property of the ex-
ponential distribution. The median lifetime of an exponential distribution is
t0.5 = (log2)/λ.
�

In MATLAB, dfittool, normfit, wblfit, and other commands for fitting
parametric distributions can be applied to censored data by specifying the cen-
soring vector at input.

18.3 Inference with Censored Observations

We will consider the case of right-censored data (the most common type of
censoring) and two approaches: a parametric approach, in which the survival
function S(t) would have a specific functional form, and a nonparametric ap-
proach, in which no such functional form is assumed.

18.3.1 Parametric Approach

In the parametric approach the models depend on the parameters, and the
parameters are estimated by taking into account both uncensored and cen-
sored observations. We will show how to find an MLE in the general case and
illustrate it on an exponential lifetime distribution.

Let (ti,δi), i = 1, . . . ,n be observations of a lifetime T for n individuals,
with δ ∈ {0,1} indicating censored and fully observed lifetimes, and let k obser-
vations be fully observed while n−k are censored. Suppose that the underlying
lifetime T has a density f (t|θ) with survival function S(t|θ). Then the likeli-
hood is
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L(θ|t1, . . . , tn)=
n∏

i=1
( f (ti|θ)δi × (S(ti|θ))1−δi =

k∏
i=1

( f (ti|θ)×
n∏

i=k+1
S(ti|θ).

Since h(ti|θ)× (S(ti|θ))= f (ti|θ), then

L(θ|t1, . . . , tn)=
n∏

i=1
(h(ti|θ)δi ×S(ti|θ). (18.2)

Example 18.4. We will show that for an exponential lifetime in the presence of
right-censoring, the MLE for λ is

λ̂= k∑n
i=1 ti

, (18.3)

where k is the number of noncensored data and
∑n

i=1 ti is the sum of all ob-
served and censored times. From (18.2), the likelihood is L =λk exp{−λ∑n

i=1 ti}.
By taking the log and differentiating one gets the MLE as the solution to
k
λ
−∑n

i=1 ti = 0.
The variance of the MLE λ̂ is k/

(∑n
i=1 ti

)2 and can be used to find the confi-
dence interval for λ (Exercise 18.2).
�

Example 18.5. Immunoperoxidase and BC. Data analyzed in Sedmak et
al. (1989) and also in Klein and Moeschberger (2003) represent times to death
(in months) for breast cancer patients with different immunohistochemical
responses. Out of 45 patients in the study, 9 were immunoperoxidase positive
while the remaining 36 were negative (+ denotes censored time).

Immunoperoxidase Negative
19, 25, 30, 34, 37, 46, 47, 51, 56, 57, 61, 66, 67, 74, 78, 86, 122+,
123+, 130+, 130+, 133+, 134+, 136+, 141+, 143+, 148+, 151+, 152+,
153+, 154+, 156+, 162+, 164+, 165+, 182+, 189+
Immunoperoxidase Positive
22, 23, 38, 42, 73, 77, 89, 115, 144+

Assume that lifetimes are exponentially distributed and that rates λ1 (for Im-
munoperoxidase Negative) and λ2 (for Immunoperoxidase Positive) are to be
estimated. The following MATLAB code finds MLEs of λ1 and λ2, first directly
by using (18.3) and then by using MATLAB’s built-in function mle with option
’censoring’.
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ImmPeroxNeg=[...
19, 25, 30, 34, 37, 46, 47, 51, 56, 57, 61, 66, 67, 74, 78, 86,...
122, 123, 130, 130, 133, 134, 136, 141, 143, 148, 151, 152,...
153, 154, 156, 162, 164, 165, 182, 189];
CensorIPN=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];

ImmPeroxPos=[...
22, 23, 38, 42, 73, 77, 89, 115, 144];
CensorIPP=[0,0,0,0,0,0,0,0,1];

%number of observed (non-censored)
k1 = sum(1-CensorIPN) %16
k2 = sum(1-CensorIPP) %8

% MLEs of rate lambda for 2 samples.
hatlam1 = k1/sum(ImmPeroxNeg) %0.0042
hatlam2 = k2/sum(ImmPeroxPos) %0.0128

[reclambdahat1 lamci1] = mle(ImmPeroxNeg, ...
’distribution’,’exponential’,’censoring’,CensorIPN)
% 237.6250
% 153.6769 415.7289

[reclambdahat2 lamci2] = mle(ImmPeroxPos, ...
’distribution’,’exponential’,’censoring’,CensorIPP)
% 77.8750
% 43.1959 180.3793

%(MATLAB parametrization) scale to rate
lambdahat1 = 1/reclambdahat1 %0.0042
lambdahat2 = 1/reclambdahat2 %0.0128

In conclusion, the patients who are immunoperoxidase positive are at in-
creased risk since the rate λ̂2 = 0.0128 exceeds λ̂1 = 0.0042.
�

18.3.2 Nonparametric Approach: Kaplan–Meier Estimator

Assume that individuals in the study are assessed at discrete time instances
t1, t2, . . . , tk, which may not be equally spaced. Sometimes, the times are se-
lected when failures occur. If we want to calculate the probability of survival
up to time ti, then by the chain rule of conditional probabilities and their
Markovian property,

Ŝ(ti)=P( surviving to time ti ) = P( survived up to time t1 )

× P( surviving to time t2 | survived up to time t1 )

× P( surviving to time t3 | survived up to time t2 )

. . .

× P( surviving to time ti | survived up to time ti−1 ).
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Suppose ri subjects are at risk at time ti−1 and are not censored at time
ti−1. In the ith interval (ti−1, ti) among these ri subjects di have an event,
`i are censored, and ri+1 survive. The ri+1 subjects will be at risk at the
beginning of the (i + 1)th time interval (ti, ti+1), that is, at time ti. Thus,
ri = di +`i + ri+1. We can estimate the probability of survival up to time ti,
given that one survived up to time ti−1, as 1−di/(ri+1 +di +`i)= 1−di/ri.

The `i subjects censored at time ti do not contribute to the survival func-
tion for times t > ti.

Ŝ(t) =
(
1− d1

r1

)
×

(
1− d2

r2

)
×·· ·×

(
1− di

ri

)

=
∏
ti≤t

(
1− di

ri

)
, for t > t1;

Ŝ(t) = 1, for t< t1.

This is the celebrated Kaplan–Meier or product-limit estimator (Kaplan
and Meier, 1958). This result has been one of the most influential devel-
opments in the past century in statistics; the paper by Kaplan and Meier
(Fig. 18.1) is the most cited paper in the field of statistics (Stigler, 1994).

(a) (b)

Fig. 18.1 (a) Edward Kaplan (1920–2006) and (b) Paul Meier (b. 1924). Kaplan and Meier
never actually met during the time their article was published. They both submitted their
idea for the “product-limit estimator” to the Journal of the American Statistical Association
at approximately the same time, so their results have been merged through mail correspon-
dence.

For uncensored observations, the Kaplan–Meier estimator is identical to
the regular MLE. The difference occurs when there is a censored observation
– then the Kaplan–Meier estimator takes the “weight” normally assigned to
that observation and distributes it evenly among all observed values to the
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right of the observation. This is intuitive because we know that the true value
of the censored observation must be somewhere to the right of the censored
value, but information about what the exact value should be is lacking.

The variance of Kaplan–Meier estimator is estimated by Greenwood’s for-
mula:

Var
(
Ŝ(t)

)= (
Ŝ(t)

)2 ×
∑
ti≤t

di

ri(ri −di)
.

The pointwise confidence intervals (for a fixed time t∗) for the survival
function S(t∗) can be found in several ways. The two most popular confidence
intervals are

linear
[
Ŝ(t∗)− z1−α/2

√
Var

(
Ŝ(t∗)

)
, Ŝ(t∗)+ z1−α/2

√
Var

(
Ŝ(t∗)

) ]

and log-transformed

[
(Ŝ(t∗))1/v, (Ŝ(t∗))v

]
, v = exp





z1−α/2

√
Var

(
Ŝ(t∗)

)

log Ŝ(t∗)





.

Although not centered at Ŝ(t∗), the log-transformed interval is considered su-
perior to the linear.

The above pointwise confidence intervals differ from simultaneous confi-
dence bounds on S(t) for which the confidence of 1−α means that the prob-
ability that any part of the curve S(t) will fall outside the bounds does not
exceed α. Such general bounds are naturally wider than those generated by
pointwise confidence intervals since the overall confidence is controlled. Two
important types of confidence bands are Nair’s equal precision bands and
the Hall–Wellner bands. These bounds fall beyond the scope of this text; see
Klein and Moeschberger (2003), p. 109, for further discussion and implementa-
tion. The bounds computed in MATLAB’s [f,t,flo,fup]=ecdf(...) also return
lower and upper confidence bounds for the CDF. These bounds are calculated
by using Greenwood’s formula and are not simultaneous confidence bounds.

The Kaplan–Meier estimator also provides an estimator for the cumulative
hazard H(t) as
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Ĥ(t)=− log
(
Ŝ(t)

)
.

Better small-sample performance in estimating the cumulative hazard
could be achieved by the Nelson–Aalen estimator,

H̃(t)=
∑
ti<t

di/ri, for t > t1, H̃(t)= 0, for t≤ t1,

with an estimated variance σ2
H(t) = ∑

ti<t di/r2
i . Using H̃(t) and σ2

H(t), point-
wise confidence intervals on H(t) can be obtained.

Example 18.6. Catheter Complications in Peritoneal Dialysis. The fol-
lowing example is from Chadha et al. (2000). The authors studied a sample
of 36 pediatric patients undergoing acute peritoneal dialysis through Cook
Catheters. They wished to examine how long these catheters performed prop-
erly. They noted the date of complication (either occlusion, leakage, exit-site
infection, or peritonitis).

Half of the subjects had no complications before the catheter was removed.
Reasons for removal of the catheter in this group of patients were that the
patient recovered (n = 4), the patient died (n= 9), or the catheter was changed
to a different type electively (n = 5). If the catheter was removed prior to com-
plications, that represented a censored observation, because they knew that
the catheter remained complication free at least until the time of removal.

Day Censored, ` Fail, d At Risk, r 1−(Failures/At Risk) KM
1 8 2 36 1 − 2/36 = 0.944 0.9444
2 2 2 36 − 8 − 2 = 26 1 − 2/26 = 0.92 0.92 · 0.944 = 0.8718
3 1 2 26 − 2 − 2 = 22 1 − 2/22 = 0.91 0.91 · 0.872 = 0.7925
4 1 1 22 − 1 − 2 = 19 1 − 1/19 = 0.95 0.95 · 0.793 = 0.7508
5 6 3 19 − 1 − 1 = 17 1 − 3/17 = 0.82 0.6183
6 0 2 17 − 6 − 3 = 8 1 − 2/8 = 0.75 0.4637
7 0 1 8 − 0 − 2 = 6 1 − 1/6 = 0.83 0.3865

10 0 2 6 − 0 − 1 = 5 1 − 2/5 = 0.60 0.2319
12 0 2 5 − 0 − 2 = 3 1 − 2/3 = 0.33 0.0773
13 0 1 3 − 0 − 2 = 1 1 − 1/1 = 0.00 0.0000

MATLAB script chada.m finds the Kaplan–Meier estimator and gener-
ates Fig. 18.2. plots

%chada.m
times=[1,1,1,1,1,1,1,1,1,1,2,2,2,2,...

3,3,3,4,4,5,5,5,5,5,5,5,5,5,...
6,6,7,10,10,12,12,13];

censored =[1,1,1,1,1,1,1,1,0,0,1,1,...
0,0,1,0,0,1,0,1,1,1,1,1,...
1,0,0,0,0,0,0,0,0,0,0,0];

% Calculate and plot empirical
% cdf and confidence bounds
[f,x,flo,fup] = ecdf(times,’censoring’,censored);
(1-f)’
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%1.0000 0.9444 0.8718 0.7925 0.7508
%0.6183 0.4637 0.3865 0.2319 0.0773 0
x’

%1 1 2 3 4 5 6 10 12 13
stairs(x,1-f,’LineWidth’,2)
hold on
stairs(x,1-flo,’r:’,’LineWidth’,2)
stairs(x,1-fup,’r:’,’LineWidth’,2)
legend(’Empirical’,’LCB’,’UCB’,...

’Location’,’NE’)
hold off
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Fig. 18.2 Kaplan–Meier estimator for Catheter Complications data.

�

Example 18.7. Strength of Weathered Cord. Data from Crowder et al.
(1991) lists strength measurements (in coded units) for 48 pieces of weathered
cord. Seven of the pieces of cord were damaged and yielded strength measure-
ments that are considered right-censored. That is, because the damaged cord
was taken off test, we know only the lower limit of its strength. In the MAT-
LAB code below, the vector data represents the strength measurements, and
the vector censor indicates (with a zero) if the corresponding observation in
data is censored.

data=[36.3,41.7,43.9,49.9,50.1,50.8,51.9,52.1,52.3,52.3,...
52.4,52.6,52.7,53.1,53.6,53.6,53.9,53.9,54.1,54.6,...
54.8,54.8,55.1,55.4,55.9,56.0,56.1,56.5,56.9,57.1,...
57.1,57.3,57.7,57.8,58.1,58.9,59.0,59.1,59.6,60.4,...
60.7,26.8,29.6,33.4,35.0,40.0,41.9,42.5];
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censor=[ones(1,41),zeros(1,7)];
[kmest,sortdat,sortcen]= KMcdfSM(data’,censor’,0);
plot(sortdat,1-kmest,’k’);

The table below shows how the Kaplan–Meier estimator is calculated for the
first 16 measurements, which includes 7 censored observations. Figure 18.3
shows the estimated survival function for the cord strength data.
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Fig. 18.3 Kaplan–Meier estimator cord strength (in coded units).

Uncensored xj m j d j
m j−d j

m j
1−FKM(xj)

26.8 48 0 1.000 1.000
29.6 47 0 1.000 1.000
33.4 46 0 1.000 1.000
35.0 45 0 1.000 1.000

1 36.3 44 1 0.977 0.977
40.0 43 0 1.000 0.977

2 41.7 42 1 0.976 0.954
41.9 41 0 1.000 0.954
42.5 40 0 1.000 0.954

3 43.9 39 1 0.974 0.930
4 49.9 38 1 0.974 0.905
5 50.1 37 1 0.973 0.881
6 50.8 36 1 0.972 0.856
7 51.9 35 1 0.971 0.832
8 52.1 34 1 0.971 0.807
9 52.3 33 2 0.939 0.758
...

...
...

...
...

...

�
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18.3.3 Comparing Survival Curves

In clinical trials it is often important to compare survival curves calculated
for cohorts undergoing different treatments. Most often one is interested in
comparing the new treatment to the existing one or to a placebo. In comparing
two survival curves we are testing whether the corresponding hazard func-
tions h1(t) and h2(t) coincide:

H0 : h1(t)= h2(t) vs H1 : h1(t)>, 6=,< h2(t).

The simplest comparison involves exponential lifetime distributions where
the comparison between survival/hazard functions is simply a comparison of
constant rate parameters. The statistic is calculated using logarithms of haz-
ard rates as

Z = logλ1 − logλ2√
1/k1 +1/k2

,

where k1 and k2 are numbers of observed (uncensored) survival times in the
two comparison groups. Now, the inference relies on the fact that statistic Z is
approximately standard normal.

Example 18.8. In Example 18.5 the rate for immunoperoxidase-positive pa-
tients was larger than that of immunoperoxidase-negative patients? Was this
difference significant?

z = (log(lambdahat1)-log(lambdahat2))/sqrt(1/k1+1/k2) %-2.5763
p = normcdf(z) %0.0050

As is evident from the code, the hazard rate λ2 (and, in the case of exponential
distribution, hazard function) for the immunoperoxidase-positive patients is
significantly larger than the rate for negative patients, λ1, with a p-value of
1/2 percent.
�

LogRank Test. Tests for comparing survival functions in nonparamet-
ric fashion use Hanszel–Mantel theory on survival data represented as 2×2
tables. Another popular term is logrank test.

Let (r11, d11), (r12,d12), . . . , (r1k,d1k) be the number of people at risk and
the number of people who died at times t11, t12, . . . , t1k in the first cohort,
and (r21, d21), (r22,d22), . . . , (r2m,d2m) be the number of people at risk and the
number of people who died at times t21, t22, . . . , t1m in the second cohort. We
merge the two data sets together with the corresponding times. Thus there will
be D = k+m time points if there are no ties, and each time point corresponds
to a death from either the first or second cohort. For example, if times of events
in the first sample are 1, 4, and 10 and in the second 2, 3, 7, and 8, then in the
merged data sets the times will be 1, 2, 3, 4, 7, 8, and 10.
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For a time ti from the merged data set, let r1i and r2i correspond to the
number of subjects at risk in cohorts 1 and 2, respectively, and let ri = r1i+r2i
be the number of subjects at risk in the combined sample. Analogously, let d1i,
d2i, and di = d1i +d2i be the number of events at time ti.

Then, if H0 : h1(t) = h2(t) is true, then d1i has a hypergeometric distribu-
tion with parameters (ri,di, r1i).

Event No event At risk
Treatment 1 d1i r1i −d1i r1i
Treatment 2 d2i r2i −d2i r2i

Merged di ri −di ri

Since d1i ∼H G (ri,di, r1i), the expectation and variance of d1i are

Ed1i = r1i ×
di

ri
,

Var (d1i)=
ri1

ri

(
1− ri1

ri

)(
ri −di

ri −1

)
di.

Note that in the terminology of the Kaplan–Meier estimator, the number
of subjects with no event at time ti is equal to ri − di = ri+1 +`i, where `i is
the number of subjects censored in the time interval (ti−1, ti) and ri+1 is the
number of subjects at risk at the beginning of the subsequent interval (ti, ti+1).

The test statistic for testing H0 : h1(t) = h2(t) against the two-sided alter-
native H1 : h1(t) 6= h2(t) is

χ2 =
(∑D

i=1 (di1 −E(d1i))
)2

∑D
i=1 Var (d1i)

,

which has a χ2-distribution with 1 degree of freedom. The continuity cor-
rection 0.5 can be added to the numerator of the χ2-statistic as (|∑D

i=1(di1 −
E(d1i))| −0.5)2 when the sample size is small. If the statistic is calculated as
chi2, then its large values are critical and the p-value of the test is equal to
1-chi2cdf(chi2,1).

If the alternative is one-sided, H1 : h1(t) < h2(t) or H1 : h1(t) > h2(t), then
the preferable statistic is

Z =
∑D

i=1 (di1 −E(d1i))√ ∑D
i=1 Var (d1i)
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and the p-values are normcdf(Z) and 1-normcdf(Z), respectively. A more gen-
eral statistic is of the form

Z =
∑D

i=1 W(ti) (di1 −E(d1i))√ ∑D
i=1 W2(ti)Var (d1i)

,

where W(ti) = 1 (as above), W(ti) = ri (Gehan’s statistic), and W(ti) = p
ri

(Tarone–Ware statistic).

Example 18.9. Histiocytic Lymphoma. The data (from McKelvey et al.,
1976; Armitage and Berry, 1994) given below are survival times (in days) since
entry to a trial by patients with diffuse histiocytic lymphoma. Two cohorts of
patients are considered: (1) with stage III and (2) with stage IV of the disease.
The observations with + are censored.

Stage 6 19 32 42 42 43+ 94 126+ 169+ 207 211+
III 227+ 253 255+ 270+ 310+ 316+ 335+ 346+

Stage 4 6 10 11 11 11 13 17 20 20 21
IV 22 24 24 29 30 30 31 33 34 35 39

40 41+ 43+ 45 46 50 56 61+ 61+ 63 68
82 85 88 89 90 93 104 110 134 137 160+

169 171 173 175 184 201 222 235+ 247+ 260+ 284+
290+ 291+ 302+ 304+ 341+ 345+

Using a logrank test we will assess the equality of the two survival curves.
Figure 18.4 and table

%----------------------------------------------------------
% L S.E. z p-value alpha
%----------------------------------------------------------
% 8.65786 3.35325 2.43283 0.01498 0.050
%----------------------------------------------------------
% The survival functions are statistically different

are outputs from logrank.m (Cardillo, 2008).
�

18.4 The Cox Proportional Hazards Model

We often need to take into account that survival is influenced by one or more
covariates, which may be categorical (such as the kind of treatment a patient
received) or continuous (such as the patient’s age, weight, or the dosage of
a drug). For simple situations involving a single factor with just two values
(such as drug versus placebo) we discussed a method for comparing the sur-
vival curves for the two groups of subjects. But for more complicated situations
a regression-type model that incorporates the effect of each predictor on the
shape of the survival curve is needed.
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Fig. 18.4 Kaplan–Meier estimators of the two survival functions. Here group 1 corresponds
to Stage III and group 2 to Stage IV cohorts.

Assume that the log hazard for subject i can be modeled via a linear rela-
tionship:

logh(t, xi)=β0 +β1x1,i +·· ·+βpxp,i,

where xi = x1,i, . . . , xp,i is p-dimensional vector of covariates associated with
subject i. The Cox model assumes that β0 is a log baseline hazard, log h0(t) =
β0, i.e., log hazard for a “person” for whom all covariates are 0 (Cox, 1972; Cox
and Oakes, 1984). Alternatively, one can set the baseline hazard to correspond
to a person for whom all covariates are averages of covariates from all subjects
in the study. For the Cox model,

logh(t, xi)= logh0(t)+β1x1,i +·· ·+βpxp,i,

or, equivalently,

h(t, xi)= h0(t)×exp{β1x1,i +·· ·+βpxp,i}= h0(t)×exp{x′iβ}.

Inclusion of an intercept would lead to nonidentifiability because

h0(t)×exp{x′iβ}= (h0(t)e−α)×exp{α+ x′iβ}.

This allows for some freedom in choosing the baseline hazard.
For two subjects, i and j, the ratio of hazard functions
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h(t, xi)/h(t, xj)= exp{(x′i − x′j)β}

is free of t, motivating the name proportional. Also, for a subject i,

S(t, xi)= (S0(t))exp{x′iβ} ,

where S0(t) is the survival function corresponding to the baseline hazard h0(t).
This follows directly from (18.1) and H(t, xi)= H0(t)exp{x′iβ}.

In MATLAB, coxphfit fits the Cox proportional hazards regression model,
which relates survival times to predictor variables. The following example
uses coxphfit to fit Cox’s proportional hazards model.

Example 18.10. Mayo Clinic Trial in PBC. Primary biliary cirrhosis (PBC)
is a rare but fatal chronic liver disease of unknown cause, with a prevalence of
about 1/20,000. The primary pathologic event appears to be the destruction of
interlobular bile ducts, which may be mediated by immunologic mechanisms.

The PBC data set available at StatLib is an excerpt from the Mayo Clinic
trial in PBC of the liver conducted between 1974 and 1984. From a total of
424 patients that met eligibility criteria, 312 PBC patients participated in the
double-blind, randomized, placebo-controlled trial of the drug D-penicillamine.
Details of the trial can be found in Markus et al. (1989).

Survival statuses were recorded for as many patients as possible until July
1986. By that date, 125 of the 312 patients had died and 187 were censored.

The variables contained in the data set pbc.xls|dat are described in the
following table:

casen = pbc(:,1); %case number 1-312
lived = pbc(:,2); %days lived (from registration to study date)
indicatord = pbc(:,3); %0 censored, 1 death
treatment = pbc(:,4); %1 - D-Penicillamine, 2 - Placebo
age = pbc(:,5); %age in years
gender = pbc(:,6); %0 male, 1 female
ascites= pbc(:,7); %0 no, 1 yes
hepatomegaly=pbc(:,8); %0 no, 1 yes
spiders = pbc(:,9); %0 no, 1 yes
edema = pbc(:,10); %0 no, 0.5 yes/no therapy, 1 yes/therapy
bilirubin = pbc(:,11); %bilirubin [mg/dl]
cholesterol = pbc(:,12); %cholesterol [mg/dl]
albumin = pbc(:,13); %albumin [gm/dl]
ucopper =pbc(:,14); %urine copper [mg/day]
aphosp =pbc(:,15); %alcaline phosphatase [U/liter]
sgot = pbc(:,16); %SGOT [U/ml]
trig =pbc(:,17); %triglycerides [mg/dl]
platelet = pbc(:,18); %# platelet count [#/mm^3]/1000
prothro = pbc(:,19); %prothrombin time [sec]
histage = pbc(:,20); %hystologic stage [1,2,3,4]

To illustrate the CPH model, in this example we selected four predictors
and formed a design matrix X as
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X = [treatment age gender edema];

The treatment has two values, 1 for treatment by D-penicillamine and 2
for placebo. The variable edema takes three values: 0 if no edema is present,
0.5 when edema is present but no diuretic therapy was given or edema re-
solved with diuretic therapy, and 1 if edema is present despite administration
of diuretic therapy.

The variable lived is the lifetime observed or censored, a censoring vector
is 1-indicatord, and a baseline hazard is taken to be a hazard for which all
covariates are set to 0.

[b,logL,H,stats] = coxphfit(X,lived,...
’censoring’,1-indicatord,’baseline’,0);

The output H is a two-column matrix as a discretized cumulative hazard
estimate. The first column of H contains values from the vector lived, while the
second column contains the estimated baseline cumulative hazard evaluated
at lived.

To illustrate the model, we selected two subjects from the study to find
survival curves corresponding to their covariates. Subject #100 is a 51-year-old
male with no edema who received placebo while subject #275 is a 38-year-old
female with no edema who received D-penicillamine treatment.

X(100,:) %2.0000 51.4689 0 0
% placebo; 51 y.o.; male; no edema;
X(275,:) %1.0000 38.3162 1.0000 0
% D-Penicillamine; 38 y.o.; female; no edema;

First we find cumulative hazards at the mean values of predictors, as well
as for subjects #100 and #275, as

H(t, x) = H0(t)×exp{β1x1 +·· ·+β4x4},

H(t, xi) = H0(t)×exp{β1x1,i +·· ·+β4x4,i}, i = 100, 275

Hmean(:,2) = H(:,2) .* exp(mean(X)*b); %c.haz. average
Hsubj100(:,2) = H(:,2) .* exp(X(100,:)*b); %subject #100
Hsubj275(:,2) = H(:,2) .* exp(X(275,:)*b); %subject #275

Here, the estimators of coefficients β1, . . . ,β4 are

b’
% 0.0831 0.0324 -0.3940 2.2424

Note that the treatment coefficient 0.0831> 0 indicates that, given all other
covariates fixed, the placebo increases the risk over the treatment. Also note
that age and edema statuses also increase the risk, while the risk for female
subjects is smaller.

Next, from cumulative hazards we find survival functions

Smean = exp(-Hmean(:,2));
Ssubj100 = exp(-Hsubj100(:,2));
Ssubj275 = exp(-Hsubj275(:,2));
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The subsequent commands plot the survival curves for an “average” subject
(blue), as well as for subjects #100 (black) and #275 (red), see Fig. 18.5.

stairs(H(:,1),Smean,’b-’,’linewidth’,2)
hold on
stairs(H(:,1),Ssubj100,’k-’)
stairs(H(:,1),Ssubj275,’r-’)
xlabel(’$t$ (days)’,’Interpreter’,’LaTeX’)
ylabel(’$\hat S(t)$’,’Interpreter’,’LaTeX’)
legend(’average subject’,’subject #100’, ’subject #275’, 3)
axis tight
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Fig. 18.5 Cox model for survival curves for a “subject” with average covariates, subject #100
(51-year-old male on placebo, no edema), and subject #275 (38-year-old female on treatment,
no edema).

�

18.5 Bayesian Approach

We will focus on parametric models in which the lifetime distributions are
specified up to unknown parameters. The unknown parameters will be as-
signed prior distributions and the inference will proceed in a Bayesian fash-
ion. Nonparametric Bayesian modeling of survival data is possible; however,
the methodology is advanced and beyond the scope of this text. For a compre-
hensive coverage see Ibrahim et al. (2001).

Let survival time T have distribution f (t|θ), where θ is unknown parame-
ters. For t1, . . . , tk observed and tk+1, . . . , tn censored times, the likelihood is
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L(θ|t1, . . . , tn)=
k∏

i=1
f (ti|θ)×

n∏
i=k+1

S(ti|θ).

If the prior on θ is π(θ), then the posterior is

π(θ|t1, . . . , tn)∝ L(θ|t1, . . . , tn)×π(θ).

The Bayesian estimator of hazard is

ĥB(t)=
∫

h(t|θ)π(θ|t1, . . . , tn)dθ

and the survival function is

ŜB(t)=
∫

S(t|θ)π(θ|t1, . . . , tn)dθ.

Example 18.11. In Example 18.4 we showed that for the exponential lifetime
in the presence of censoring, the MLE for λ is

λ̂= k/
n∑

i=1
ti,

where k is the number of uncensored data and
∑n

i=1 ti is the sum of all ob-
served and censored times and that the likelihood was L(λ)=λk exp{−λ∑n

i=1 ti}.
If a gamma G a(α,β) prior on λ is adopted, π(λ)∝λα−1 exp{−βλ}, then the con-
jugacy leads to the posterior

π(λ|t1, . . . , tn)∝λk+α−1 exp{−(β+
n∑

i=1
ti) λ},

from which the Bayes estimator of λ is the posterior mean,

λ̂B = k+α
β+∑n

i=1 ti
.

One can show that the posterior predictive distribution of future failure time
tn+1 is

f (tn+1|t1, . . . , tn) =
∫ ∞

0
λe−λtn+1 ×π(λ|t1, . . . , tn)dλ

=
(k+α)

(
β+∑n

i=1 ti
)α+k

(
β+∑n

i=1 ti + tn+1
)α+k+1 , yn+1 > 0.

This distribution is known as an inverse beta distribution.
The Bayes estimator of hazard function coincides with the Bayes estimator

of λ,
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ĥB(t)= k+α
β+∑n

i=1 ti
,

while the Bayes estimator of the survival function is

ŜB(t)=
(
1+ t

β+∑n
i=1 ti

)−(k+α)

.

The expression for ŜB(t) can be derived from the moment-generating function
of a gamma distribution.
�

When the posterior distribution is intractable, one can use WinBUGS.

18.5.1 Survival Analysis in WinBUGS

WinBUGS uses two arrays to define censored observations: observed (uncen-
sored) times and censored times. For example, an input such as

list(times = c(0.5, NA, 1, 2, 6, NA, NA),
t.censored = c(0, 0.9, 0, 0, 0, 9, 12))

corresponds to times {0.5,0.9+,1,2,6,9+,12+}.
In WinBUGS, direct time-to-event modeling is possible with exponential,

Weibull, gamma, and log-normal densities.
There is a multiplier I that is used to implement censoring. For exam-

ple, if Weibull dweib(r, mu) observations are on the input, the multiplier
exceeded time t.censored[i]:

t[i] ~ dweib(r, mu) I(t.censored[i],)

Example 18.12. Bayesian Immunoperoxidase and BC. In Example 18.5
MLEs and confidence intervals on λ1 and λ2 were found. In this example we
find Bayes estimators and credible sets.

Before discussing the results, note that when observations are censored,
their values are unknown parameters in the Bayesian model and predictions
can be found. On the other hand, all censored observations need to be ini-
tialized, and the initial values should exceed the censoring times. Here is the
WinBUGS program that estimates λ1 and λ2.

model{
for(i in 1:n1) {

ImmPeroxNeg[i] ~ dexp(lam1) I(CensorIPN[i], )

For uncensored data, t.censored[i]=0. The above describes right-censoring.
Left-censored observations are modeled using the multiplier
I(,t.censored[i]).
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}
for(i in 1:n2) {

ImmPeroxPos[i] ~ dexp(lam2) I(CensorIPP[i], )
}

lam1 ~ dgamma(0.001, 0.001)
lam2 ~ dgamma(0.001, 0.001)
}

DATA

list( n1 = 36, n2 = 9,
ImmPeroxNeg=c(19, 25, 30, 34, 37, 46, 47, 51,
56, 57, 61, 66, 67, 74, 78, 86,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA),
CensorIPN = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
122, 123, 130, 130, 133, 134, 136, 141, 143, 148,
151, 152, 153, 154, 156, 162, 164, 165, 182, 189),
ImmPeroxPos = c(22, 23, 38, 42, 73, 77, 89, 115, NA),
CensorIPP= c(0,0,0,0,0,0,0,0,144))

INITS

list(lam1=1, lam2 = 1,
ImmPeroxNeg=c(NA, NA, NA, NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA, NA, NA, NA,
200, 200, 200, 200, 200, 200, 200, 200, 200, 200,
200, 200, 200, 200, 200, 200, 200, 200, 200, 200),

ImmPeroxPos = c(NA, NA, NA, NA, NA, NA, NA, NA, 200) )

mean sd MCrror val2.5pc median val97.5pc start sample
ImmPeroxNeg[17] 374.8 270.8 0.4261 128.0 289.7 1107.0 1001 500000
ImmPeroxNeg[18] 376.2 270.6 0.4568 129.0 291.2 1107.0 1001 500000
ImmPeroxNeg[19] 383.2 270.6 0.4342 136.0 298.0 1115.0 1001 500000

· · ·
ImmPeroxNeg[35] 435.1 270.2 0.4319 188.1 349.9 1166.0 1001 500000
ImmPeroxNeg[36] 442.3 270.6 0.4272 195.0 357.1 1173.0 1001 500000
ImmPeroxPos[9] 233.1 102.8 0.1730 146.0 200.5 508.2 1001 500000
lam1 0.0042 0.0010 2.849E-6 0.0024 0.0041 0.0065 1001 500000
lam2 0.0128 0.0045 7.496E-6 0.0055 0.0123 0.0231 1001 500000

The Bayes estimator of λ1 is λ̂1,B = 0.004211, and a 95% credible set is
[0.002404, 0.006505]. The Bayes estimator and interval are close to classical
(Exercise 18.2).
�

Example 18.13. Smoking Cessation Experiment. The data set for this ex-
ample comes from a clinical trial discussed in Banerjee and Carlin (2004). A
number of smokers entered into a smoking cessation study, and 263 of them
quit. These 263 quitters were monitored and checked to see if and when they
relapsed. RelapseT is the time to relapse; it is either observed or censored,
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with the censoring indicator contained in the vector censored.time. The inde-
pendent covariates are Age (age of the individual), AgeStart (age when he/she
started smoking), SexF (Female=1, Male=0), SIUC (whether the individual re-
ceived an intervention or not), and F10Cigs (the average number of cigarettes
smoked per day).

A logistic distribution is constrained to a nonnegative domain to model
RelapseT. The parameters of dlogis(mu,tau) are the mean mu, which depends
on the linear combination of covariates, and tau, which is a rate parameter.
The standard deviation is π/(

p
3τ)≈ 1.8138/τ.

model {
for (i in 1:N)

{
RelapseT[i] ~ dlogis(mu[i],tau) I(censored.time[i],)
mu[i] <- beta[1] + beta[2] * Age[i] + beta[3] * AgeStart[i] +
beta[4] * SexF[i] + beta[5] * SIUC[i] + beta[6] * F10Cigs[i]
}

for( j in 1:6){
beta[j] ~ dnorm(0, 0.01)

}
tau ~ dgamma(1,0.01)
meanT <- mean(mu[])
sigma <- 1.8138/tau #1.8138 ~ pi/sqrt(3)

# Evaluate Survival Curve for a Subject with covariates:
Ag <- 50; AgSt <- 18; SxF <- 0; S <- 1; Cigs <- 20;
fmu <- beta[1] + beta[2] * Ag + beta[3] * AgSt +

beta[4] * SxF + beta[5] * S + beta[6] * Cigs
for(i in 1:100) {

time[i] <- i/10
Surv[i] <- 1/(1 + exp(tau*(time[i] - fmu)))
}

}
# Data and Inits omitted (see Smoking.odc)

mean sd MCrror val2.5pc median val97.5pc start sample
beta[1] 2.686 2.289 0.1254 –2.026 2.701 7.284 1001 100000
beta[2] 0.07817 0.03844 0.002078 0.009544 0.07815 0.1509 1001 100000
beta[3] –0.07785 0.07222 0.003745 –0.2181 –0.07965 0.06802 1001 100000
beta[4] –0.9555 0.5382 0.009515 –2.02 –0.9494 0.08981 1001 100000
beta[5] 1.666 0.5993 0.01482 0.4886 1.672 2.817 1001 100000
beta[6] –0.02347 0.02459 9.21E-4 –0.07072 –0.02394 0.0281 1001 100000
meanT 5.314 0.3382 0.00604 4.712 5.292 6.034 1001 100000
sigma 3.445 0.345 0.005367 2.841 3.421 4.187 1001 100000
tau 0.5317 0.05256 8.15E-4 0.4332 0.5302 0.6384 1001 100000
Surv[1] 0.9628 0.01129 5.199E-4 0.9366 0.9642 0.9808 1001 100000
Surv[2] 0.9609 0.01173 5.459E-4 0.9336 0.9623 0.9797 1001 100000

· · ·
Surv[99] 0.1402 0.05249 0.003402 0.06123 0.1334 0.2645 1001 100000
Surv[100] 0.1342 0.05118 0.003311 0.05765 0.1274 0.2557 1001 100000
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The Surv values (ordinate, mean, std, median, and quantiles) are exported
to MATLAB as data file smokingoutbugs.mat. The file smokingbugs.m reads
in the data and plots the posterior estimator of the survival curve (Fig. 18.6).
Note that the survival curve is S(t|µ,τ) = 1/(1+ exp{τ(t−µ)}). The posterior
distribution of S(t|µ,τ) is understood as a distribution of a function of µ and τ

for t fixed.
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Fig. 18.6 Bayesian estimator of survival curve. The green bands are the 0.025 and 0.975
percentiles of the posterior distribution for S(t), while the blue errorbars have a size of
posterior standard deviations.

�

Example 18.14. Duration of Remissions in Acute Leukemia. A data set
analyzed by Freireich et al. (1963), and subsequently by many authors, comes
from a trial of 42 leukemia patients (under age 20) treated in 11 US hospitals.

The effect of 6-mercaptopurine (6-MP) therapy on the duration of remis-
sions induced by adrenal corticosteroids has been studied as a model for test-
ing new agents. Some patients were treated with 6-MP and the rest were con-
trols. The trial was designed as matched pairs. The matching was done with
respect to remission status (partial = 1, complete = 2). Randomization to 6-MP
or control arms was done within a pair. Patients were followed until leukemia
relapsed or until the end of the study. Overall survival was not significantly
different for the two treatment programs since patients maintained on placebo
were treated with 6-MP when relapse occurred.

# Status Contr 6-MP # Status Contr 6-MP # Status Contr 6-MP
1 1 1 10 8 2 11 34+ 15 2 8 17+
2 2 22 7 9 2 8 32+ 16 1 23 35+
3 2 3 32+ 10 2 12 25+ 17 1 5 6
4 2 12 23 11 2 2 11+ 18 2 11 13
5 2 8 22 12 1 5 20+ 19 2 4 9+
6 1 17 6 13 2 4 19+ 20 2 1 6+
7 2 2 16 14 2 15 6 21 2 8 10+
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#Duration of Steroid-induced Remissions in Acute Leukemia
model {
for (i in 1:n) {

log(mu[i]) <- b0+ b1[treat[i]] + b2[status[i]]
t[i] ~ dweib(r,mu[i]) I(t.cen[i],)
S[i] <- exp(-mu[i]*pow(t[i],r));
f[i] <- mu[i]*r*pow(t[i],r-1)*S[i]
Lik[i] <- pow(f[i],1-delta[i])*pow(S[i],delta[i]);
logLik[i] <- log(Lik[i])
}

b0 ~ dnorm(0,0.00001)
b1[1] <- 0
b1[2] ~ dnorm(0,0.001)
b2[1] <- 0
b2[2] ~ dnorm(0,0.001)
r ~ dgamma(0.01,0.01)

Dev <- -2*sum(logLik[]) #deviance

}

DATA

list(n=42,
t = c(1, 22, 3, 12, 8, 17, 2, 11, 8, 12,

2, 5, 4, 15, 8, 23, 5, 11, 4, 1, 8,
10, 7, NA, 23, 22, 6, 16, NA, NA, NA,
NA, NA, NA, 6, NA, NA, 6, 13, NA, NA, NA),

t.cen = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,32,0,0,0,0,

34,32,25,11,20,19,0,17,35,0,0,9,6,10),
treat = c(1,1,1,1,1, 1,1,1,1,1, 1,1,1,1,1, 1,1,1,1,1,1,

2,2,2,2,2, 2,2,2,2,2, 2,2,2,2,2, 2,2,2,2,2,2),
status = c(1,2,2,2,2,1,2,2,2,2,2,1,2,2,2,1,1,2,2,2,2,

1,2,2,2,2,1,2,2,2,2,2,1,2,2,2,1,1,2,2,2,2),
delta = c(0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,0,

0,0,1,0,0, 0,0,1,1,1, 1,1,1,0,1, 1,0,0,1,1,1) )

INITS

list(r=1,b0 = 0, b1=c(NA,0),b2=c(NA,0),
t = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,

NA,NA,NA,NA,NA,NA,NA,NA,32,NA,NA,NA,NA,34,32,
25,11,20,19,NA,17,35,NA,NA,9,6,10))
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mean sd MCrror val2.5pc median val97.5pc start sample
Dev 241.2 7.527 0.02825 228.5 240.6 257.8 1001 200000
b0 –3.209 0.6867 0.009883 –4.636 –3.181 –1.949 1001 200000
b1[2] –1.772 0.4241 0.003255 –2.629 –1.76 –0.9696 1001 200000
b2[2] 0.1084 0.4306 0.002543 –0.6967 0.09381 0.9995 1001 200000
r 1.37 0.2069 0.003338 0.9877 1.361 1.798 1001 200000
t[24] 57.34 29.86 0.1341 32.62 48.55 132.9 1001 200000
t[29] 58.96 29.15 0.1345 34.6 50.17 134.7 1001 200000

· · ·
t[41] 37.21 30.96 0.1128 7.161 29.06 115.5 1001 200000
t[42] 39.68 31.09 0.1177 10.95 31.45 117.3 1001 200000

�

Example 18.15. Photocarcinogenicity. Grieve (1987) and Dellaportas and
Smith (1993) explored photocarcinogenicity in four treatment groups with 20
rats in each treatment group. Treatment 3 is the test drug and the others are
some type of control. Response is time to death or censoring time.

We will find Bayes estimators for median survival times for the four treat-
ments. The survival times are modeled as Weibull W ei(r,µi), i = 1, . . . ,4. The
WinBUGS code specifies the censoring and priors on the Weibull model. The
data part provides observed and censored times. Posterior densities for me-
dian survival times are given in Fig. 18.7.

model{
for(i in 1 : M) {

for(j in 1 : N) {
t[i, j] ~ dweib(r, mu[i])I(t.cen[i, j],)

}
mu[i] <- exp(beta[i])
beta[i] ~ dnorm(0.0, 0.001)
median[i] <- pow(log(2) * exp(-beta[i]), 1/r)

}
r ~ dexp(0.001)
}

DATA

list( t = structure(.Data = c(12, 1, 21, 25, 11, 26, 27, 30, 13,
12, 21, 20, 23, 25, 23, 29, 35, NA, 31, 36, 32, 27, 23, 12,
18, NA, NA, 38, 29, 30, NA, 32, NA, NA, NA, NA, 25, 30,
37, 27, 22, 26, NA, 28, 19, 15, 12, 35, 35, 10, 22, 18, NA,
12, NA, NA, 31, 24, 37, 29, 27, 18, 22, 13, 18, 29, 28, NA,
16, 22, 26, 19, NA, NA, 17, 28, 26, 12, 17, 26), .Dim = c(4,20)),
t.cen = structure(.Data = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 40, 0, 0, 0, 0, 0, 0, 0, 40, 40, 0, 0, 0, 40, 0, 40,
40, 40, 40, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0,
40, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 29, 10, 0,
0, 0, 0, 0, 0), .Dim = c(4, 20)), M = 4, N = 20)

INITS
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list( r=1, beta=c(0,0,0,0) ) #generate the rest

mean sd MCrror val2.5pc median val97.5pc start sample
median[1] 23.82 1.977 0.02301 20.20 23.74 27.96 1001 100000
median[2] 35.11 3.459 0.01650 29.23 34.79 42.82 1001 100000
median[3] 26.80 2.401 0.02169 22.46 26.66 31.94 1001 100000
median[4] 21.38 1.845 0.01446 18.09 21.26 25.34 1001 100000

Fig. 18.7 Posterior densities of median survival times median[1]–median[4].

�

18.6 Exercises

18.1. Simulation of Censoring.

y = exprnd(10,50,1); % Random failure times exponential(10)
d = exprnd(20,50,1); % Drop-out times exponential(20)
t = min(y,d); % Observe the minimum of these times
censored = (y>d); % Observe whether the subject failed

Using MATLAB’s ecdf calculate and plot empirical CDF and confidence
bounds for arguments t and censored.

18.2. Immunoperoxidase. In the context of Example 18.5 find a confidence in-
terval for λ1, the rate parameter for immunoperoxidase-negative patients.
Use the fact that for MLE λ̂1,

λ̂1 −λ1

λ̂/
√

k1
or

√
k1 (log λ̂1 − logλ1),
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both have an approximately standard normal distribution.

18.3. Massachusetts Data. This exercise will illustrate the survival analy-
sis of outcome predictions from DNA microarrays. Such survival analy-
ses are often found in DNA microarray papers that concern the diagnosis
or prognosis of human cancers. A description is given in Bhattacharjee et
al. (2001) which is available at: http://www.pnas.org/content/98/24/
13790.full.
A publicly available data set of 125 adenocarcinomas can be downloaded
from: http://www.genome.wi.mit.edu/MPR/lung.

18.4. Expected Lifetime. Let T be a lifetime with survival function S(t). Using
integration by parts in the definition of ET show

ET =
∫ ∞

0
S(t)dt.

18.5. Censored Rayleigh. The lifetime (in hours) of a certain sensor has
Rayleigh distribution, with survival function

S(t)= exp
{
−1

2
λt2

}
, λ> 0.

Twelve sensors are placed under test for 100 hours, and the following fail-
ure times are recorded 23, 40, 41, 67, 69, 72, 84, 84, 88, 100+, 100+. Here +
denotes a censored time.
(a) If failure times t1, . . . , tr are observed, and t+r+1, . . . , t+n are censored, show
that the MLE of λ is

λ̂= 2r∑r
i=1 ti +

∑n
i=r+1 t+2

i
.

Evaluate the MLE for the given data. Consult Example 18.4.
(b) Calculate and plot Kaplan-Meier estimator and superimpose S(t) eval-
uated at λ̂.

18.6. MLE for Equally Censored Data. A cohort of n subjects are monitored in
the time interval [0,T], where T is fixed in advance. Suppose that r failures
are observed (r can be any number from 0 to n) at times t1, t2, . . . , tr ≤ T.
There are (n− r) subjects that survived the entire period [0,T], and their
failure times are not observed.
Suppose that f (t) is the density of a lifetime. The likelihood is

L = C
r∏

i=1
f (ti) (1−F(T))n−r

for some normalizing constant C.
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(a) Express the likelihood L for the exponential lifetime distribution, that
is, f (t)=λe−λt, t ≥ 0, and F(t)= 1− e−λt, t ≥ 0.
(b) Take the log of the likelihood, `= log(L).
(c) Find the derivative of ` with respect to λ. Set the derivative to 0 and
solve for λ. If the solution λ̂ maximizes `, (`′′(λ̂) < 0), then λ̂ is the MLE of
λ.
(d) Show that the MLE is

λ̂mle =
r∑r

i=1 ti + (n− r)T
.

(e) If in the interval [0,8] four subjects failed at times t1 = 2, t2 = 5/2, t3 = 4,
and t4 = 5 and two subjects survived without failure, find the estimator
λ, assuming that the lifetime has an exponential distribution. Check your
calculations with

data = [2 2.5 4 5 8 8];
cens = [0 0 0 0 1 1];
lamrec = mle(data, ’distribution’,’exponential’,’censoring’,cens)
lammle = 1/lamrec %MATLAB uses reciprocal parametrization

(f) What is the MLE of λ if the unobserved failure times are ignored, that
is, only four observed failure times, t1, t2, t3, and t4, are used.

18.7. Malignant Melanoma. Survival times of 256 males with malignant
melanoma who had metastases on admission to the MD Anderson Clinic
are reported (McDonald, 1963). The period of admission was between 1944
and 1960. The table shows survival times (no censoring) of the patients on
a year scale.
Find the mean survival time.

Survival time Number of patients Number of patients
(in years) admitted in time interval dying in time interval

0–1 256 167
1–2 89 48
2–3 41 23
3–4 18 6
4–5 12 3
5–6 9 6
6–7 3 1
7–8 2 1
8–9 1 1
9+ 0 0

18.8. Rayleigh Survival Times. It was observed that in clinical studies dealing
with cancer survival times follow Rayleigh distribution with pdf

f (x)= 2λte−λt2
, t ≥ 0, λ> 0.
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(a) Show that the hazard function is linear.
(b) Find the mean survival time as a function of λ.
(c) For t1, . . . , tk observed and tk+1, . . . , tn censored times, show that the like-
lihood is proportional to

L ∝λk exp{−λ
n∑

i=1
t2
i }.

If the prior on λ is gamma G (α,β), show that the posterior is gamma G (α+
k,β+∑n

i=1 t2
i ).

(d) Show that the Bayes estimators of the hazard and survival functions
are

ĥB(t)= 2(k+α)t
β+∑n

i=1 t2
i

and ŜB(t)=
(
1+ t2

β+∑n
i=1 t2

i

)−(k+α)

.

18.9. Western White Clematis. Muenchow (1986) tested whether male or fe-
male flowers (of Clematis ligusticifolia) were equally attractive to insects.
The data in table represent waiting times (in minutes), which includes cen-
sored data (observations with +).

Male flowers Female flowers
1 9 27 1 19 57
1 9 27 2 23 59
2 9 30 4 23 67
2 11 31 4 26 71
4 11 35 5 28 75
4 14 36 6 29 75+
5 14 40 7 29 78+
5 14 43 7 29 81
6 16 54 8 30 90+
6 16 61 8 32 94+
6 17 68 8 35 96
7 17 69 9 35 96+
7 18 70 14 37 100+
8 19 83 15 39 102+
8 19 95 18 43 105+
8 19 102+ 18 56

104+

Compare survival functions for Male and Female flowers.
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MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch18.Survival/

chada.m, cordband.m, ImmunoPerox.m, kmcdfsm.m, KMmuenchow.m,
kmplot.m, limphomaLR.m, logrank.m, logrankdata.mat, logrankmod.m,
Muenchow.m, PBC.m, simulation1.m, simulation2.m, smokingbugs.m,
weibullsim.m

ibrahim1.odc, ibrahim2.odc, Immunoperoxidase.odc, Leukemia.odc,
photocar.odc, Smoking.odc

gehan.dat KMmuenchow.txt limphoma.mat pbc.xls pbcdata.dat
prostatecanc.dat smokingoutbugs.mat
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Chapter 19
Bayesian Inference Using Gibbs Sampling
– BUGS Project

Beware: MCMC sampling can be dangerous!

– Disclaimer in WinBUGS User Manual

WHAT IS COVERED IN THIS CHAPTER

• Where to find WinBUGS, How to Install, Resources
• Step-by-step Example
• Built-in Functions and Common Distributions in BUGS
• MATBUGS: A MATLAB Interface to BUGS

19.1 Introduction

statistical models using simulation approaches based on the Markov Chain
Monte Carlo methodology.

BUGS and WINBUGS are distributed freely and are the result of many
years of development by a team of statisticians and programmers at the Med-
ical Research Council Biostatistics Research Unit in Cambridge (BUGS and
WinBUGS), and from recently by a team at the University of Helsinki (Open-
BUGS); see the project pages http://www.mrc-bsu.cam.ac.uk/bugs/ and
http://www.openbugs.info/w/.

© Springer Science+Business Media, LLC 2011 
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Models are represented by a flexible language, and there is also a graphical
feature, DOODLEBUGS, that allows users to specify their models as directed
graphs. For complex models DOODLEBUGS can be very useful (Lunn et al.,
2000). As of April 2011, the latest version are WinBUGS 1.4.3 and OpenBUGS
3.1.2. A comprehensive overview of WinBUGS programming and applications
can be found in Ntzoufras (2009) and Congdon (2001, 2003, 2005).

19.2 Step-by-Step Session

We start this tutorial chapter on WinBUGS with a simple regression example.
Consider the model

yi|µi,τ ∼ N (µi,τ), i = 1, . . . ,n,

µi = α+β(xi − x),

α ∼ N (0,10−4),

β ∼ N (0,10−4),

τ ∼ G a(0.001,0.001).

The normal distribution is parameterized by a precision parameter τ that is
the reciprocal of the variance, τ= 1/σ2. Natural priors for precision parameters
are gamma, and small values of the precision reflect the flatness (noninforma-
tiveness) of the priors. Assume that (x, y) pairs (1,1), (2,3), (3,3), (4,3), and
(5,5) are observed.

Estimators in classical, least-squares regression of y on x− x are given in
the following MATLAB output:

y = [1 3 3 3 5]’; %response
xx = [1 2 3 4 5]’;
X = [ones(size(xx)) xx-mean(xx)];
[b.b,b.int,res.res,res.int,stats] = regress(y,X);

b.b’
% 3.0000 0.8000
stats
% 0.8000 12.0000 0.0405 0.5333

Thus, the estimators are α̂= y= 3, β̂= 0.8, and τ̂= 1/σ̂2 = 1/0.5333= 1.875.
What about Bayesian estimators? We will find the estimators by MCMC

simulation, as empirical means of the simulated posterior distributions. As-
sume that the initial parameter values are α0 = 0.1, β0 = 0.6, and τ= 1. Start
WinBUGS and input the following code in [File > New]:

# A simple regression
model{

for (i in 1:N) {
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(a) (b)

Fig. 19.1 (a) Opening WinBUGS front end with a simple regression task. The simple regres-
sion program is opened or typed in. (b) The front end after selecting Specification from the
Model menu.

Y[i] ~ dnorm(mu[i],tau)
mu[i] <- alpha + beta * (x[i] - x.bar)
}

x.bar <- mean(x[])
alpha ~ dnorm(0, 0.0001)
beta ~ dnorm(0, 0.0001)
tau ~ dgamma(0.001, 0.001)
sigma <- 1.0/sqrt(tau)
}
#-----------------------------
DATA
list(N=5, x=c(1,2,3,4,5), Y=c(1,3,3,3,5))
#-----------------------------
INITS
list(alpha = 0.1, beta = 0.6, tau = 1)

Next, make sure that the cursor is somewhere within the scope of “model,”
that is, somewhere between the first open and the last closed curly bracket. Go
to the Model menu and open Specification. The Specification Tool win-
dow will pop out (Fig. 19.1b). Next, press check model in the Specification
Tool window. If the model is correct, the response on the lower left border of
the window should be: model is syntactically correct (Fig. 19.2a). Next,
data are read in. Highlight the “list” statement in the data part of your code
(Fig. 19.2b). In the Specification Tool window, select load data. If the data are
in the correct format, you should receive a response in the lower left corner
of the WinBUGS window: data loaded (Fig. 19.3a). You will need to compile
your model in order to activate the inits buttons.

Select compile in the Specification Tool window. The response should be:
model compiled (Fig. 19.3b), and the load inits and gen inits buttons be-
come active. Finally, highlight the “list” statement in the initials part of your
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(a) (b)

Fig. 19.2 (a) After selecting check model, if the syntax is correct, the response is model
is syntactically correct. (b) Highlighting the list in the data prior to reading data in.

(a) (b)

Fig. 19.3 WinBUGS’ responses to (a) load data and (b) compile in the model specification
tool.

code, and in the Specification Tool window, select load inits (Fig. 19.4a). The
response should be: model is initialized (Fig. 19.4b), and this completes the
reading in of the model. If the response is initial values loaded but this or
another chain contains uninitialized variables, click on the gen inits
button. The response should be: initial values generated, model initial-
ized.

Now you are ready to burn in some simulations and at the same time check
if the program works. Recall that burning in the Markov chain model is nec-
essary for the chain to “forget” the initialized parameter values. In the Model
menu, choose Update... and open Update Tool to check if your model updates
(Fig. 19.5a).
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(a) (b)

Fig. 19.4 (a) Highlighting the list to initialize the model. (b) WinBUGS confirms that the
model (in fact a Markov chain) is initialized.

From the Inference menu, open Samples.... A window titled Sample
Monitor Tool will pop out (Fig. 19.5b). In the node subwindow, input the
names of the variables you want to monitor. In this case, the variables are
alpha, beta, and tau. If you correctly input the variable name, the set button
becomes active and you should set the variable. Do this for all three variables
of interest. In fact, sigma as a transformation of tau is available to be set as
well.

(a) (b)

Fig. 19.5 WinBUGS’ response to (a) Update... tool from the Model menu, (b) Samples...
from the Inference menu.

Now choose alpha from the subwindow in Sample Monitor Tool. All of
the buttons (clear, set, trace, history, density, stats, coda, quantiles, bgr
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diag, auto cor) are now active. Return to Update Tool and select the desired
number of simulations, say 100,000, in the updates subwindow. Press the
update button (Fig. 19.6a).

Return to Sample Monitor Tool and check trace for the part of the MC
trace for α, history for the complete trace, density for a density estimator of
α, etc. For example, pressing the stats button will produce something like the
following table:

mean sd MC error val2.5pc median val97.5pc start sample
alpha 2.996 0.5583 0.001742 1.941 2.998 4.041 1001 100000

The mean 2.996 is the Bayes estimator (as the mean from the sample from
the posterior for α). There are two precision outputs, sd and MC error. The
former is an estimator of the standard deviation of the posterior and can be
improved by increasing the sample size but not the number of simulations.
The latter is the simulation error and can be improved by additional simu-
lations. The 95% credible set (1.941, 4.041) is determined by val2.5pc and
val97.5pc, which are the 0.025 and 0.975 (empirical) quantiles from the pos-
terior. The empirical median of the posterior is given by median. The outputs
start and sample show the starting index for the simulations (after burn-in)
and the available number of simulations.

(a) (b)

Fig. 19.6 (a) Select the simulation size and update. (b) After the simulation is done, check
the stats node.

For all parameters a comparative table (Fig. 19.6b) is as follows:

mean sd MC error val2.5pc median val97.5pc start sample
alpha 2.996 0.5583 0.001742 1.941 2.998 4.041 1001 100000
beta 0.7987 0.3884 0.001205 0.06345 0.7999 1.537 1001 100000
sigma 1.014 0.7215 0.004372 0.4134 0.8266 2.765 1001 100000
tau 1.865 1.533 0.006969 0.1308 1.463 5.852 1001 100000
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We recall the least squares estimators from the beginning of this session:
α̂ = 3, β̂ = 0.8, and τ̂ = 1.875, and note that their Bayesian counterparts are
very close.

Densities (smoothed histograms) and traces for all parameters are given
in Fig. 19.7.

(a) (b)

Fig. 19.7 Checking (a) density and (b) trace in the Sample Monitor Tool.

If you want to save the trace for α in a file and process it in MATLAB, select
coda and the data window will open with an information window as well.
Keep the data window active and select Save As from the File menu. Save
the αs in alphas.txt, where it will be ready to be imported into MATLAB.
Later in this chapter we will discuss the direct interface between WinBUGS
and MATLAB called MATBUGS.

19.3 Built-in Functions and Common Distributions in
WinBUGS

This section contains two tables: one with the list of built-in functions and
another with the list of available distributions.

A first-time WinBUGS user may be disappointed by the selection of built-
in functions – the set is minimal but sufficient. The full list of distributions in
WinBUGS can be found in Manuals>OpenBUGS User Manual. WinBUGS
also allows for the inclusion of distributions for which functions are not built
in. Table 19.2 provides a list of important continuous and discrete distribu-
tions, with their syntax and parametrizations. WinBUGS has the capability
to define custom distributions, both as a likelihood and as a prior, via the so-
called zero-tricks (p. 296).
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Fig. 19.8 Traces of the four parameters from a simple example: (a) α, (b) β, (c) τ, and (d) σ
from WinBUGS. Data are plotted in MATLAB after being exported from WinBUGS.

19.4 MATBUGS: A MATLAB Interface to WinBUGS

There is strong motivation to interface WinBUGS with MATLAB. Cutting and
pasting results from WinBUGS is cumbersome if the simulation size is in mil-
lions or if the number of simulated parameters is large. Also, the data manip-
ulation and graphical capabilities in WinBUGS are quite rudimentary com-
pared to MATLAB.
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Table 19.1 Built-in functions in WinBUGS
WinBUGS code Function
abs(y) |y|
cloglog(y) ln(− ln(1− y))
cos(y) cos(y)
equals(y, z) 1 if y= z; 0 otherwise
exp(y) exp(y)
inprod(y, z)

∑
i yi zi

inverse(y) y−1 for symmetric positive–definite matrix y
log(y) ln(y)
logfact(y) ln(y!)
loggam(y) ln(Γ(y))
logit(y) ln(y/(1− y))
max(y, z) y if y> z; y otherwise
mean(y) n−1 ∑

i yi , n = dim(y)
min(y, z) y if y< z; z otherwise
phi(y) standard normal CDF Φ(y)
pow(y, z) yz

sin(y) sin(y)
sqrt(y)

p
y

rank(v, s) number of components of v less than or equal to vs
ranked(v, s) sth smallest component of v
round(y) nearest integer to y
sd(v) standard deviation of components of y (n−1 in denom.)
step(y) 1 if y≥ 0; 0 otherwise
sum(y)

∑
i yi

trunc(y) greatest integer less than or equal to y

MATBUGS is a MATLAB program that communicates with WinBUGS.
The program matbugs.m was written by Kevin Murphy and his team and can
be found at: http://code.google.com/p/matbugs.

We now demonstrate how to solve Jeremy’s IQ problem in MATLAB by
calling WinBUGS. First we need to create a simple text file, say, jeremy.txt:

model{
for(i in 1 : N)

{
scores[i] ~ dnorm(theta, tau)

}
theta ~ dnorm(mu, xi)

and then run the MATLAB file:

dataStruct = struct( ...
’N’, 5, ...
’tau’,1/80,...
’xi’,1/120,...
’mu’,110,...
’scores’,[97 110 117 102 98]);
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initStruct = struct( ...
’theta’, 100 );

cd(’C:\MyBugs\matbugs\’)
[samples, stats] = matbugs(dataStruct, ...
fullfile(pwd, ’jeremy.txt’), ...
’init’, initStruct, ...

’nChains’, 1, ...
’view’, 0, ...

’nburnin’, 2000, ...
’nsamples’, 50000, ...

’thin’, 1, ...
’monitorParams’, {’theta’}, ...

’Bugdir’, ’C:/Program Files/BUGS’);

baymean = mean(samples.theta)
frmean=mean(dataStruct.scores)

figure(1)
[p, x] = ksdensity(samples.theta);
plot(x, p);

85 90 95 100 105 110 115 120 125
0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 19.9 Posterior for Jeremy’s data set. Data are plotted in MATLAB after being exported
from WinBUGS by MATBUGS.
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19.5 Exercises

19.1. A Coin and a Die. The following WinBUGS code simulates flips of a coin.
The outcome H is coded by 1 and T by 0. Mimic this code to simulate rolls
of a fair die.

#coin
model{
flip ~ dcat(p.coin[])
coin <- flip - 1
}
DATA
list(p.coin=c(0.5, 0.5))
#just generate initials

19.2. De Mere Paradox in WinBUGS. In 1654 the Chevalier de Mere asked
Blaise Pascal (1623–1662) the following question: In playing a game with
three dice, why is the sum 11 advantageous to the sum 12 when both are the
result of six possible outcomes? Indeed, there are six favorable triplets for
each of the sums 11 and 12:

11: (1, 4, 6), (1, 5, 5), (2, 3, 6), (2, 4, 5), (3, 3, 5), (3, 4, 4)
12: (1, 5, 6), (2, 4, 6), (2, 5, 5), (3, 3, 6), (3, 4, 5), (4, 4, 4)

19.3. Simulating the Probability of an Interval. Consider an exponen-
tially distributed random variable X , X ∼ E

( 1
10

)
, with density f (x) =

1
10 exp{−x/10}, x > 0. Compute P(10 < X < 16) using (a) exact integration,
(b) MATLAB’s expcdf, and (c) WinBUGS.

19.4. WinBUGS as a Calculator. WinBUGS can approximate definite inte-
grals, solve nonlinear equations, and even find values of definite integrals
over random intervals. The following WinBUGS program finds an approxi-
mation to

∫ π
0 sin(x)dx, solves the equation y5−2y= 0, and finds the integral∫ R

0 z3(1− z4)dz, where R is a beta Be(2,2) random variable. The solution is
given by the following code:

model{
F(x) <- sin(x)
int <- integral(F(x), 0, pi, 1.0E-6)
pi<- 3.141592659

y0 <- solution(F(y), 1,2, 1.0E-6)
F(y) <- pow(y,5) - 2*y
zero <- pow(y0, 5)-2*y0

randint <- integral(F(z), 0, randbound, 1.0E-6)
F(z) <- pow(z,3)*(1-pow(z,4))
randbound ~ dbeta(2,2)
}

NO DATA
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INITS
list(x=1, y=0, z=NA, randbound=0.5)

After model checking, one should go directly to compiling (no data to load
in) and initializing the model. There is NO need to update the model, to
go to the Inference tool, to set the variables for monitoring or to sample.
One simply goes to the Info menu and checks Node Info. In the Node
Info tool one specifies int for the approximation of an integral, y0 for the
solution of an equation, zero for checking that y0 satisfies the equation
(approximately), and randint for the value of a random interval.

MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://springer.bme.gatech.edu/Ch19.WinBUGS/

simple.m

DeMere.odc, jeremy.odc, Regression1.odc, Regression2.odc,
simulationd.odc

alpha.txt, beta.txt, sigma.txt, tau.txt
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agreement, 112, 540
analysis of covariance (ANCOVA),
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ANOVA

balanced design, 411
functional, 443
fundamental identity, 412
nested design, 436
one way, 410
repeated measures, 432
table, 412
testing contrasts, 417
two way, 424

arithmetic mean, 13
association measures, 537

contingency coefficient C, 537
Cramer’s V , 537
φ coefficient, 537

attribute, 6
AUC, 119
average prediction error, 626

Bayes’
factor, 88, 325
rule, 85–90, 113, 280
theorem, 283

Bayesian
computation, 293
estimation, 288
interval estimation, 298
networks, 90
prediction, 303
testing, 324

beta function, 167
bias, 238
bioequivalence, 320, 390

Schuirmann’s TOST, 390
Westlake’s confidence interval, 391

blocking, 369, 430
Bonferroni

correction, 342
inequality, 67

Bonferroni–Holm method, 343

capture-recapture models, 147
CDF, 133, 157
censored observation, 702
central limit theorem (CLT), 204
Chebyshev’s inequality, 241
Chernoff faces, 41
circuit problem, 68
clog-log regression, 674
CLT, 204
coefficient

of correlation, 30
coefficient of variation (CV), 21
combinations, 76
concordance, 112
confidence interval, 246

3/n rule, 258
Anscombe’s ArcSin, 255
Clopper-Pearson, 255
difference of normal means, 361
normal mean, 247
normal variance, 249
Poisson rate, 263
proportion, 253
quantiles, 262
Wald’s, 253
Wald’s corrected, 253
Wilson score, 254
Wilson’s, 254

conjugate priors, 287
consensus means, 305
contingency tables, 532

expected frequency, 534
contrasts, 416
Cook’s distance, 627
correlation, 30, 571
correlation coefficient
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confidence interval, 576
Kendall’s, 589
multiple, 585
partial, 573
Pearson’s, 572
Spearman’s, 586
testing ρ = 0, 574
testing ρ = ρ0, 579
testing equality of two correla-

tions, 580
counting principles, 75
Cox proportional hazards model, 714
CR constraint, 422
credible set

equal-tail, 299
highest posterior density (HPD),

298
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cumulative distribution function (CDF),

133, 157
cumulative hazard, 703

data, 2, 6
censored, 702
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nominal, 45
ordinal, 45
ratio, 45

De Morgan’s laws, 66
delta method, 219
density

conditional, 159
joint, 159
marginal, 159

deviance, 665, 679
DFBETAS, 627
DFFITS, 627
distribution

Bernoulli, 141, 659
beta, 167
beta-binomial, 288
binomial, 141, 246
Cauchy, 214
chi-square, 209, 243
complementary log-log, 675

conditional, 138, 159
Dirichlet, 172
discrete uniform, 140, 483
empirical, 515
exponential, 162
F, 215
gamma, 165
Gaussian, 164, 193
geometric, 151
hypergeometric, 146, 713
inverse gamma, 166
Irwing-Hall, 162
Kolmogorov, 518
leptokurtic, 20
logistic, 169, 659
lognormal, 218
Lorentz, 214
marginal, 138, 159, 283
Maxwell, 236
multinomial, 155
negative binomial, 152

generalized, 154
noncentral χ2, 217, 540
noncentral F, 217, 439, 441, 634
noncentral t, 217, 335, 363
normal, 164, 193

bivariate, 197
Pareto, 171
platykurtic, 20
Poisson, 149
Polya, 154
posterior, 284
prior, 283
prior predictive, 284
probability, 132
Rayleigh, 175
sampling, 238, 243
Student’s t, 213
uniform, 161, 237
Weibull, 170
Wishart, 212, 585

diversity index
Shannon’s, 23
Simpson’s, 50
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effect size, 322
empirical cdf, 26
entropy, 158
equivalence tests, 389
error-in-variables regression, 637
errors in testing, 321
estimator

consistent, 239
Graybill-Deal, 305
interval, 246
Kaplan-Meier, 707
MLE, 232
moment matching, 231
product-limit, 707
robust, 244
Schiller-Eberhardt, 305
unbiased, 238
Wilson’s, 289

event, 63
complement, 64
impossible, 63
sure, 63

events
exclusive, 64
hypotheses, 83
independence, 79
intersection, 63
union, 64

failure rate, 163
false discovery rate (FDR), 343
familywise error rate (FWER), 342
FDA guidelines, 282
Fisher’s exact test, 546
five-number summary, 19
Friedman’s test, 492

pairwise comparisons, 494
functional ANOVA, 443

gamma function, 165
gauge R&R, 449
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percent of R&R variability (PRR),
451

repeatibility, 449

reproducibility, 449
geometric mean, 13
Gini’s mean difference, 244
grand mean, 411
Greenwood formula, 708

Hanszel–Mantel test, 712
harmonic mean, 13
hat matrix, 621
hazard function, 702
histogram, 24

Sturges rule, 24
homogeneity index

Shannon’s, 23
Simpson’s, 50

homogeneity measure, 23
hyperparameter, 283

i.i.d. random variables, 134
inclusion-exclusion rule, 64
incomplete beta function, 167
index

Quetelet, 192
Youden, 120

inter-quartile range (IQR), 18
interaction plots, 428

Jarque–Bera test, 521

Kaplan–Meier estimator, 706, 710
Kolmogorov’s test, 517
Kolmogorov-Smirnov test, 515
Kruskal–Wallis test, 490, 491

pairwise comparisons, 492
kurtosis, 20

leptokurtic, 20
platykurtic, 20

Laud–Ibrahim predictive criterion,
633

law of large numbers (LLN), 241
leptokurtic, 20
likelihood, 283

ratio
negative, 112
positive, 112
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ratio negative, 113
ratio positive, 113

Likert scale, 45
Lilliefors’ test, 517, 522
log-linear models, 684
logistic regression, 658

Cox-Snell R2, 667
deviance, 665
deviance residuals, 666
Effron’s pseudo-R2, 667
half-normal plots, 666
Hosmer–Lemeshow statistic, 666
McFadden’s pseudo-R2, 667
Nagelkerke’s pseudo-R2, 667
Pearson’s χ2, 666
Wald’s test, 664

logrank test, 712

MAD, 17
Mahalanobis transformation, 36
Mantel–Haenszel test, 548
Marascuillo procedure, 454
margin of error, 259
Markov chain, 178
Markov chain Monte Carlo (MCMC),

294
MATBUGS, 740
maximum likelihood estimation (MLE),

232
McNemar’s test, 552
mean

arithmetic, 13
geometric, 13
harmonic, 13
posterior, 289
prior, 289
sample, 13
trimmed, 15
winsorized, 15

mean residual life (mrl), 703
mean square error (MSE), 238
median, 14, 15

life, 703
memoryless property, 152, 163, 184
Miettinen’s test, 555

mixtures, 177
mode, 14
moment generating function, 135
Moran’s test, 521
multicollinearity, 620
multiplication rule, 75
multivariable regression, 619

ANOVA table, 622
Cook’s distance, 627
DFBETAS, 626
DFFITS, 627
forward/backward variable selec-

tion, 631
inference for parameters, 624
influence analysis, 627
Mallows’ Cp, 632
polynomial, 635
PRESS residuals, 626
residual analysis, 625
sample size, 634

variable selection, 631

n-choose-k
(n
k
)
, 74

negative
false, 111
true, 111

Nelson–Aalen estimator, 709
nested design, 436
normal equations, 621
null hypothesis (H0), 319

odds, 71
odds ratio, 383

paired tables, 555
OpenBUGS, 734
order statistic, 14
orthogonal contrasts, 418

paired t-test, 367
paired tables, 552

Miettinen’s test, 555
RGB estimator, 555

pairwise comparisons, 419
Friedman’s test, 494
Kruskal–Wallis test, 492

variable inflation factor (VIF), 630
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Scheffee’s procedure, 421
Sidak’s procedure, 421
Tukey’s procedure, 419

parameter, 6
PDF, 133, 157
Pearson’s χ2-test, 508
permutations, 76
pie charts, 27
platykurtic, 20
plot

Andrews, 39
parallel coordinates, 39
star, 41

PMF, 133
Poisson process, 511
Poisson regression, 678

Anscombe residuals, 679
deviance, 679
deviance residuals, 679
Friedman-Tukey residuals, 679

Poissonness plots, 506
population, 2, 6
positive

false, 111
true, 111

posterior distribution, 284
power

retrospective, 375
two normal variances, 374
two sample t-test, 362

power of the test, 322
prediction intervals, 260
predictive value

negative, 112
positive, 112

prevalence, 112
prior, 283

conjugate, 287
elicitation, 290, 291
enthusiastic, 293
Jeffreys’, 292
noninformative, 292
sample size, 289
skeptic, 293
vague, 293

probability
conditional, 78
distribution function (PDF), 133,

157
mass function (PMF), 133
total, 84

probit regression, 674
product-limit estimator, 707
p-value, 323

Q–Q plots, 27, 211, 504, 505

R&R study, 449
random variable, 131

continuous, 157
moments, 158

discrete, 133
expectation, 133
variance, 134

quantiles, 156
transformation, 174

random variables
correlation, 140
covariance, 139
i.i.d., 134
independent, 134, 138, 159
jointly distributed, 159

range, 18
ranks, 481, 482
receiver operating characteristic

regression, 600
ANOVA table, 604
error-in-variables, 637
multivariable, 619
testing a new response, 612
testing equality of slopes, 616
testing intercept β0, 609
testing mean response, 611
testing slope β1, 608
testing variance σ2, 610

relative risk, 382
paired tables, 554

repeatability, 449
repeated measures design, 431

sphericity tests, 435

curve, 118
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reproducibility, 449
residuals

Anscombe, 671, 679
deviance, 666, 671, 679
externally studentized, 626
Friedman-Tukey, 679
Pearson, 666
PRESS, 626
studentized, 626

risk difference
paired tables, 554

risk differences, 381
risk ratio, 382

paired tables, 554
ROC curve, 118
rule

Bayes, 86
total probability, 84

sample, 2, 6
central moments, 20
composite, 22
correlation, 31
covariance, 30
covariance matrix, 34
mean, 13
moments, 19
multivariate, 33
percentile, 18
quantile, 18
simple, 22
standard deviation, 16
variance, 16

sample size
ANOVA, 438, 441
by confidence interval, 259
contingency tables, 539
paired t-test, 373
regression, 634
repeated measures design, 442
two normal means, 362
two normal variances, 374
two proportions, 379

sample standard deviation
pooled, 357

sample variance
pooled, 357

scatterplot, 39
sensitivity, 112
sensitivity/specificity of combined

tests, 116
sigma rules, 197
sign test, 478
significance level, 321
Simpson’s paradox, 698
skewness, 20
Smirnov’s test, 517
specificity, 112
standard error (s.e.), 239
statistic

t, 332, 357
z, 330
Pearson’s χ2, 534

statistical hypothesis, 318
statistical model, 6
Stuart–Maxwell test, 559
STZ constraint, 411, 422, 685
survival function, 702

tables
association, 537
contingency, 534
Fisher’s exact test, 546
paired, 552
three way (r× c× p), 543
two way (r× c), 533

test
Fisher’s exact, 546
Jarque-Bera, 521
Kolmogorov’s, 516
Kolmogorov-Smirnov, 515
Lilliefors’, 522
logrank, 712
Mantel–Haenszel, 548
McNemar’s, 552
Pearson’s χ2, 508
Smirnov’s, 517
Stuart-Maxwell, 559

testing hypotheses
equivalence tests, 389
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several Poisson means, 456
several proportions, 454
several variances

Bartlet’s test, 415
Cochran’s test, 415
Levene’s test, 415

two normal variances, 358, 373
two Poisson rates, 387
two proportions, 378
two sample t-test, 356

equall variances, 357
no assumption on variances, 357

testing hypothesis
Bayes’ factor, 325
Bayesian approach, 324
Fisherian approach, 323
Neyman-Pearsonian approach, 321
normal variance, 336
one proportion, 338
power, 322
t-test, 331
z-test, 329

theorem
Bayes’, 281, 283
de Moivre, 205

time series, 42
tolerance intervals, 260
total probability, 84–85
transformation

Box-Cox, 221
Fisher’s z, 577
variance stabilizing, 221

treatment effect, 411
trimmed mean, 15
t-test

one sample, 331
paired, 367
two samples, 356

equall variances, 357
no assumption on variances, 357

type I error, 321
type II error, 321

variable inflation factor (VIF), 630
variations, 76
Venn diagrams, 71

Walsh test for outlers, 495
Welch–Satterthwaite formula, 357
Wilcoxon’s signed-rank test (WSiRT),

483
Wilcoxon’s sum rank test (WSuRT),

486
Wilcoxon–Mann–Whitney test

WinBUGS, 734
winsorized mean, 15

Yates corrections in χ2-test, 509
Youden index, 120

zero tricks in WinBUGS, 296
z-score, 19
z-test, 329
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